]> git.proxmox.com Git - mirror_ovs.git/blob - lib/uuid.c
uuid: Make uuid_generate() thread-safe.
[mirror_ovs.git] / lib / uuid.c
1 /* Copyright (c) 2008, 2009, 2010, 2011, 2013 Nicira, Inc.
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at:
6 *
7 * http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16 #include <config.h>
17
18 #include "uuid.h"
19
20 #include <ctype.h>
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <sys/time.h>
24 #include <sys/types.h>
25 #include <unistd.h>
26
27 #include "aes128.h"
28 #include "entropy.h"
29 #include "ovs-thread.h"
30 #include "sha1.h"
31 #include "timeval.h"
32 #include "util.h"
33
34 static struct aes128 key;
35 static uint64_t counter[2];
36 BUILD_ASSERT_DECL(sizeof counter == 16);
37
38 static void do_init(void);
39
40 /*
41 * Initialize the UUID module. Aborts the program with an error message if
42 * initialization fails (which should never happen on a properly configured
43 * machine.)
44 *
45 * Currently initialization is only needed by uuid_generate(). uuid_generate()
46 * will automatically call uuid_init() itself, so it's only necessary to call
47 * this function explicitly if you want to abort the program earlier than the
48 * first UUID generation in case of failure.
49 */
50 void
51 uuid_init(void)
52 {
53 static pthread_once_t once = PTHREAD_ONCE_INIT;
54 pthread_once(&once, do_init);
55 }
56
57 /* Generates a new random UUID in 'uuid'.
58 *
59 * We go to some trouble to ensure as best we can that the generated UUID has
60 * these properties:
61 *
62 * - Uniqueness. The random number generator is seeded using both the
63 * system clock and the system random number generator, plus a few
64 * other identifiers, which is about as good as we can get in any kind
65 * of simple way.
66 *
67 * - Unpredictability. In some situations it could be bad for an
68 * adversary to be able to guess the next UUID to be generated with some
69 * probability of success. This property may or may not be important
70 * for our purposes, but it is better if we can get it.
71 *
72 * To ensure both of these, we start by taking our seed data and passing it
73 * through SHA-1. We use the result as an AES-128 key. We also generate a
74 * random 16-byte value[*] which we then use as the counter for CTR mode. To
75 * generate a UUID in a manner compliant with the above goals, we merely
76 * increment the counter and encrypt it.
77 *
78 * [*] It is not actually important that the initial value of the counter be
79 * random. AES-128 in counter mode is secure either way.
80 */
81 void
82 uuid_generate(struct uuid *uuid)
83 {
84 static pthread_mutex_t mutex = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER;
85 uint64_t copy[2];
86
87 uuid_init();
88
89 /* Copy out the counter's current value, then increment it. */
90 xpthread_mutex_lock(&mutex);
91 copy[0] = counter[0];
92 copy[1] = counter[1];
93 if (++counter[1] == 0) {
94 counter[0]++;
95 }
96 xpthread_mutex_unlock(&mutex);
97
98 /* AES output is exactly 16 bytes, so we encrypt directly into 'uuid'. */
99 aes128_encrypt(&key, copy, uuid);
100
101 /* Set bits to indicate a random UUID. See RFC 4122 section 4.4. */
102 uuid->parts[2] &= ~0xc0000000;
103 uuid->parts[2] |= 0x80000000;
104 uuid->parts[1] &= ~0x0000f000;
105 uuid->parts[1] |= 0x00004000;
106 }
107
108 /* Sets 'uuid' to all-zero-bits. */
109 void
110 uuid_zero(struct uuid *uuid)
111 {
112 uuid->parts[0] = uuid->parts[1] = uuid->parts[2] = uuid->parts[3] = 0;
113 }
114
115 /* Returns true if 'uuid' is all zero, otherwise false. */
116 bool
117 uuid_is_zero(const struct uuid *uuid)
118 {
119 return (!uuid->parts[0] && !uuid->parts[1]
120 && !uuid->parts[2] && !uuid->parts[3]);
121 }
122
123 /* Compares 'a' and 'b'. Returns a negative value if 'a < b', zero if 'a ==
124 * b', or positive if 'a > b'. The ordering is lexicographical order of the
125 * conventional way of writing out UUIDs as strings. */
126 int
127 uuid_compare_3way(const struct uuid *a, const struct uuid *b)
128 {
129 if (a->parts[0] != b->parts[0]) {
130 return a->parts[0] > b->parts[0] ? 1 : -1;
131 } else if (a->parts[1] != b->parts[1]) {
132 return a->parts[1] > b->parts[1] ? 1 : -1;
133 } else if (a->parts[2] != b->parts[2]) {
134 return a->parts[2] > b->parts[2] ? 1 : -1;
135 } else if (a->parts[3] != b->parts[3]) {
136 return a->parts[3] > b->parts[3] ? 1 : -1;
137 } else {
138 return 0;
139 }
140 }
141
142 /* Attempts to convert string 's' into a UUID in 'uuid'. Returns true if
143 * successful, which will be the case only if 's' has the exact format
144 * specified by RFC 4122. Returns false on failure. On failure, 'uuid' will
145 * be set to all-zero-bits. */
146 bool
147 uuid_from_string(struct uuid *uuid, const char *s)
148 {
149 if (!uuid_from_string_prefix(uuid, s)) {
150 return false;
151 } else if (s[UUID_LEN] != '\0') {
152 uuid_zero(uuid);
153 return false;
154 } else {
155 return true;
156 }
157 }
158
159 /* Same as uuid_from_string() but s[UUID_LEN] is not required to be a null byte
160 * to succeed; that is, 's' need only begin with UUID syntax, not consist
161 * entirely of it. */
162 bool
163 uuid_from_string_prefix(struct uuid *uuid, const char *s)
164 {
165 /* 0 1 2 3 */
166 /* 012345678901234567890123456789012345 */
167 /* ------------------------------------ */
168 /* 00000000-1111-1111-2222-222233333333 */
169
170 bool ok;
171
172 uuid->parts[0] = hexits_value(s, 8, &ok);
173 if (!ok || s[8] != '-') {
174 goto error;
175 }
176
177 uuid->parts[1] = hexits_value(s + 9, 4, &ok) << 16;
178 if (!ok || s[13] != '-') {
179 goto error;
180 }
181
182 uuid->parts[1] += hexits_value(s + 14, 4, &ok);
183 if (!ok || s[18] != '-') {
184 goto error;
185 }
186
187 uuid->parts[2] = hexits_value(s + 19, 4, &ok) << 16;
188 if (!ok || s[23] != '-') {
189 goto error;
190 }
191
192 uuid->parts[2] += hexits_value(s + 24, 4, &ok);
193 if (!ok) {
194 goto error;
195 }
196
197 uuid->parts[3] = hexits_value(s + 28, 8, &ok);
198 if (!ok) {
199 goto error;
200 }
201 return true;
202
203 error:
204 uuid_zero(uuid);
205 return false;
206 }
207 \f
208 static void
209 do_init(void)
210 {
211 uint8_t sha1[SHA1_DIGEST_SIZE];
212 struct sha1_ctx sha1_ctx;
213 uint8_t random_seed[16];
214 struct timeval now;
215 pid_t pid, ppid;
216 uid_t uid;
217 gid_t gid;
218
219 /* Get seed data. */
220 get_entropy_or_die(random_seed, sizeof random_seed);
221 xgettimeofday(&now);
222 pid = getpid();
223 ppid = getppid();
224 uid = getuid();
225 gid = getgid();
226
227 /* Convert seed into key. */
228 sha1_init(&sha1_ctx);
229 sha1_update(&sha1_ctx, random_seed, sizeof random_seed);
230 sha1_update(&sha1_ctx, &pid, sizeof pid);
231 sha1_update(&sha1_ctx, &ppid, sizeof ppid);
232 sha1_update(&sha1_ctx, &uid, sizeof uid);
233 sha1_update(&sha1_ctx, &gid, sizeof gid);
234 sha1_final(&sha1_ctx, sha1);
235
236 /* Generate key. */
237 BUILD_ASSERT(sizeof sha1 >= 16);
238 aes128_schedule(&key, sha1);
239
240 /* Generate initial counter. */
241 get_entropy_or_die(counter, sizeof counter);
242 }