]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - lib/xarray.c
Merge tag 'mips_5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[mirror_ubuntu-jammy-kernel.git] / lib / xarray.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <willy@infradead.org>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/export.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/xarray.h>
14
15 /*
16 * Coding conventions in this file:
17 *
18 * @xa is used to refer to the entire xarray.
19 * @xas is the 'xarray operation state'. It may be either a pointer to
20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
21 * ambiguity.
22 * @index is the index of the entry being operated on
23 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
24 * @node refers to an xa_node; usually the primary one being operated on by
25 * this function.
26 * @offset is the index into the slots array inside an xa_node.
27 * @parent refers to the @xa_node closer to the head than @node.
28 * @entry refers to something stored in a slot in the xarray
29 */
30
31 static inline unsigned int xa_lock_type(const struct xarray *xa)
32 {
33 return (__force unsigned int)xa->xa_flags & 3;
34 }
35
36 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
37 {
38 if (lock_type == XA_LOCK_IRQ)
39 xas_lock_irq(xas);
40 else if (lock_type == XA_LOCK_BH)
41 xas_lock_bh(xas);
42 else
43 xas_lock(xas);
44 }
45
46 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
47 {
48 if (lock_type == XA_LOCK_IRQ)
49 xas_unlock_irq(xas);
50 else if (lock_type == XA_LOCK_BH)
51 xas_unlock_bh(xas);
52 else
53 xas_unlock(xas);
54 }
55
56 static inline bool xa_track_free(const struct xarray *xa)
57 {
58 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
59 }
60
61 static inline bool xa_zero_busy(const struct xarray *xa)
62 {
63 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
64 }
65
66 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
67 {
68 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
69 xa->xa_flags |= XA_FLAGS_MARK(mark);
70 }
71
72 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
73 {
74 if (xa->xa_flags & XA_FLAGS_MARK(mark))
75 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
76 }
77
78 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
79 {
80 return node->marks[(__force unsigned)mark];
81 }
82
83 static inline bool node_get_mark(struct xa_node *node,
84 unsigned int offset, xa_mark_t mark)
85 {
86 return test_bit(offset, node_marks(node, mark));
87 }
88
89 /* returns true if the bit was set */
90 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
91 xa_mark_t mark)
92 {
93 return __test_and_set_bit(offset, node_marks(node, mark));
94 }
95
96 /* returns true if the bit was set */
97 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
98 xa_mark_t mark)
99 {
100 return __test_and_clear_bit(offset, node_marks(node, mark));
101 }
102
103 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
104 {
105 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
106 }
107
108 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
109 {
110 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
111 }
112
113 #define mark_inc(mark) do { \
114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
115 } while (0)
116
117 /*
118 * xas_squash_marks() - Merge all marks to the first entry
119 * @xas: Array operation state.
120 *
121 * Set a mark on the first entry if any entry has it set. Clear marks on
122 * all sibling entries.
123 */
124 static void xas_squash_marks(const struct xa_state *xas)
125 {
126 unsigned int mark = 0;
127 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
128
129 if (!xas->xa_sibs)
130 return;
131
132 do {
133 unsigned long *marks = xas->xa_node->marks[mark];
134 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
135 continue;
136 __set_bit(xas->xa_offset, marks);
137 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
138 } while (mark++ != (__force unsigned)XA_MARK_MAX);
139 }
140
141 /* extracts the offset within this node from the index */
142 static unsigned int get_offset(unsigned long index, struct xa_node *node)
143 {
144 return (index >> node->shift) & XA_CHUNK_MASK;
145 }
146
147 static void xas_set_offset(struct xa_state *xas)
148 {
149 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
150 }
151
152 /* move the index either forwards (find) or backwards (sibling slot) */
153 static void xas_move_index(struct xa_state *xas, unsigned long offset)
154 {
155 unsigned int shift = xas->xa_node->shift;
156 xas->xa_index &= ~XA_CHUNK_MASK << shift;
157 xas->xa_index += offset << shift;
158 }
159
160 static void xas_advance(struct xa_state *xas)
161 {
162 xas->xa_offset++;
163 xas_move_index(xas, xas->xa_offset);
164 }
165
166 static void *set_bounds(struct xa_state *xas)
167 {
168 xas->xa_node = XAS_BOUNDS;
169 return NULL;
170 }
171
172 /*
173 * Starts a walk. If the @xas is already valid, we assume that it's on
174 * the right path and just return where we've got to. If we're in an
175 * error state, return NULL. If the index is outside the current scope
176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
177 * set @xas->xa_node to NULL and return the current head of the array.
178 */
179 static void *xas_start(struct xa_state *xas)
180 {
181 void *entry;
182
183 if (xas_valid(xas))
184 return xas_reload(xas);
185 if (xas_error(xas))
186 return NULL;
187
188 entry = xa_head(xas->xa);
189 if (!xa_is_node(entry)) {
190 if (xas->xa_index)
191 return set_bounds(xas);
192 } else {
193 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
194 return set_bounds(xas);
195 }
196
197 xas->xa_node = NULL;
198 return entry;
199 }
200
201 static void *xas_descend(struct xa_state *xas, struct xa_node *node)
202 {
203 unsigned int offset = get_offset(xas->xa_index, node);
204 void *entry = xa_entry(xas->xa, node, offset);
205
206 xas->xa_node = node;
207 if (xa_is_sibling(entry)) {
208 offset = xa_to_sibling(entry);
209 entry = xa_entry(xas->xa, node, offset);
210 }
211
212 xas->xa_offset = offset;
213 return entry;
214 }
215
216 /**
217 * xas_load() - Load an entry from the XArray (advanced).
218 * @xas: XArray operation state.
219 *
220 * Usually walks the @xas to the appropriate state to load the entry
221 * stored at xa_index. However, it will do nothing and return %NULL if
222 * @xas is in an error state. xas_load() will never expand the tree.
223 *
224 * If the xa_state is set up to operate on a multi-index entry, xas_load()
225 * may return %NULL or an internal entry, even if there are entries
226 * present within the range specified by @xas.
227 *
228 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
229 * Return: Usually an entry in the XArray, but see description for exceptions.
230 */
231 void *xas_load(struct xa_state *xas)
232 {
233 void *entry = xas_start(xas);
234
235 while (xa_is_node(entry)) {
236 struct xa_node *node = xa_to_node(entry);
237
238 if (xas->xa_shift > node->shift)
239 break;
240 entry = xas_descend(xas, node);
241 if (node->shift == 0)
242 break;
243 }
244 return entry;
245 }
246 EXPORT_SYMBOL_GPL(xas_load);
247
248 /* Move the radix tree node cache here */
249 extern struct kmem_cache *radix_tree_node_cachep;
250 extern void radix_tree_node_rcu_free(struct rcu_head *head);
251
252 #define XA_RCU_FREE ((struct xarray *)1)
253
254 static void xa_node_free(struct xa_node *node)
255 {
256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
257 node->array = XA_RCU_FREE;
258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
259 }
260
261 /*
262 * xas_destroy() - Free any resources allocated during the XArray operation.
263 * @xas: XArray operation state.
264 *
265 * This function is now internal-only.
266 */
267 static void xas_destroy(struct xa_state *xas)
268 {
269 struct xa_node *next, *node = xas->xa_alloc;
270
271 while (node) {
272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
273 next = rcu_dereference_raw(node->parent);
274 radix_tree_node_rcu_free(&node->rcu_head);
275 xas->xa_alloc = node = next;
276 }
277 }
278
279 /**
280 * xas_nomem() - Allocate memory if needed.
281 * @xas: XArray operation state.
282 * @gfp: Memory allocation flags.
283 *
284 * If we need to add new nodes to the XArray, we try to allocate memory
285 * with GFP_NOWAIT while holding the lock, which will usually succeed.
286 * If it fails, @xas is flagged as needing memory to continue. The caller
287 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
288 * the caller should retry the operation.
289 *
290 * Forward progress is guaranteed as one node is allocated here and
291 * stored in the xa_state where it will be found by xas_alloc(). More
292 * nodes will likely be found in the slab allocator, but we do not tie
293 * them up here.
294 *
295 * Return: true if memory was needed, and was successfully allocated.
296 */
297 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
298 {
299 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
300 xas_destroy(xas);
301 return false;
302 }
303 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
304 gfp |= __GFP_ACCOUNT;
305 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
306 if (!xas->xa_alloc)
307 return false;
308 xas->xa_alloc->parent = NULL;
309 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
310 xas->xa_node = XAS_RESTART;
311 return true;
312 }
313 EXPORT_SYMBOL_GPL(xas_nomem);
314
315 /*
316 * __xas_nomem() - Drop locks and allocate memory if needed.
317 * @xas: XArray operation state.
318 * @gfp: Memory allocation flags.
319 *
320 * Internal variant of xas_nomem().
321 *
322 * Return: true if memory was needed, and was successfully allocated.
323 */
324 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
325 __must_hold(xas->xa->xa_lock)
326 {
327 unsigned int lock_type = xa_lock_type(xas->xa);
328
329 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
330 xas_destroy(xas);
331 return false;
332 }
333 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
334 gfp |= __GFP_ACCOUNT;
335 if (gfpflags_allow_blocking(gfp)) {
336 xas_unlock_type(xas, lock_type);
337 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
338 xas_lock_type(xas, lock_type);
339 } else {
340 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
341 }
342 if (!xas->xa_alloc)
343 return false;
344 xas->xa_alloc->parent = NULL;
345 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
346 xas->xa_node = XAS_RESTART;
347 return true;
348 }
349
350 static void xas_update(struct xa_state *xas, struct xa_node *node)
351 {
352 if (xas->xa_update)
353 xas->xa_update(node);
354 else
355 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
356 }
357
358 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
359 {
360 struct xa_node *parent = xas->xa_node;
361 struct xa_node *node = xas->xa_alloc;
362
363 if (xas_invalid(xas))
364 return NULL;
365
366 if (node) {
367 xas->xa_alloc = NULL;
368 } else {
369 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
370
371 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
372 gfp |= __GFP_ACCOUNT;
373
374 node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
375 if (!node) {
376 xas_set_err(xas, -ENOMEM);
377 return NULL;
378 }
379 }
380
381 if (parent) {
382 node->offset = xas->xa_offset;
383 parent->count++;
384 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
385 xas_update(xas, parent);
386 }
387 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
388 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
389 node->shift = shift;
390 node->count = 0;
391 node->nr_values = 0;
392 RCU_INIT_POINTER(node->parent, xas->xa_node);
393 node->array = xas->xa;
394
395 return node;
396 }
397
398 #ifdef CONFIG_XARRAY_MULTI
399 /* Returns the number of indices covered by a given xa_state */
400 static unsigned long xas_size(const struct xa_state *xas)
401 {
402 return (xas->xa_sibs + 1UL) << xas->xa_shift;
403 }
404 #endif
405
406 /*
407 * Use this to calculate the maximum index that will need to be created
408 * in order to add the entry described by @xas. Because we cannot store a
409 * multi-index entry at index 0, the calculation is a little more complex
410 * than you might expect.
411 */
412 static unsigned long xas_max(struct xa_state *xas)
413 {
414 unsigned long max = xas->xa_index;
415
416 #ifdef CONFIG_XARRAY_MULTI
417 if (xas->xa_shift || xas->xa_sibs) {
418 unsigned long mask = xas_size(xas) - 1;
419 max |= mask;
420 if (mask == max)
421 max++;
422 }
423 #endif
424
425 return max;
426 }
427
428 /* The maximum index that can be contained in the array without expanding it */
429 static unsigned long max_index(void *entry)
430 {
431 if (!xa_is_node(entry))
432 return 0;
433 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
434 }
435
436 static void xas_shrink(struct xa_state *xas)
437 {
438 struct xarray *xa = xas->xa;
439 struct xa_node *node = xas->xa_node;
440
441 for (;;) {
442 void *entry;
443
444 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
445 if (node->count != 1)
446 break;
447 entry = xa_entry_locked(xa, node, 0);
448 if (!entry)
449 break;
450 if (!xa_is_node(entry) && node->shift)
451 break;
452 if (xa_is_zero(entry) && xa_zero_busy(xa))
453 entry = NULL;
454 xas->xa_node = XAS_BOUNDS;
455
456 RCU_INIT_POINTER(xa->xa_head, entry);
457 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
458 xa_mark_clear(xa, XA_FREE_MARK);
459
460 node->count = 0;
461 node->nr_values = 0;
462 if (!xa_is_node(entry))
463 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
464 xas_update(xas, node);
465 xa_node_free(node);
466 if (!xa_is_node(entry))
467 break;
468 node = xa_to_node(entry);
469 node->parent = NULL;
470 }
471 }
472
473 /*
474 * xas_delete_node() - Attempt to delete an xa_node
475 * @xas: Array operation state.
476 *
477 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
478 * a non-zero reference count.
479 */
480 static void xas_delete_node(struct xa_state *xas)
481 {
482 struct xa_node *node = xas->xa_node;
483
484 for (;;) {
485 struct xa_node *parent;
486
487 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
488 if (node->count)
489 break;
490
491 parent = xa_parent_locked(xas->xa, node);
492 xas->xa_node = parent;
493 xas->xa_offset = node->offset;
494 xa_node_free(node);
495
496 if (!parent) {
497 xas->xa->xa_head = NULL;
498 xas->xa_node = XAS_BOUNDS;
499 return;
500 }
501
502 parent->slots[xas->xa_offset] = NULL;
503 parent->count--;
504 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
505 node = parent;
506 xas_update(xas, node);
507 }
508
509 if (!node->parent)
510 xas_shrink(xas);
511 }
512
513 /**
514 * xas_free_nodes() - Free this node and all nodes that it references
515 * @xas: Array operation state.
516 * @top: Node to free
517 *
518 * This node has been removed from the tree. We must now free it and all
519 * of its subnodes. There may be RCU walkers with references into the tree,
520 * so we must replace all entries with retry markers.
521 */
522 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
523 {
524 unsigned int offset = 0;
525 struct xa_node *node = top;
526
527 for (;;) {
528 void *entry = xa_entry_locked(xas->xa, node, offset);
529
530 if (node->shift && xa_is_node(entry)) {
531 node = xa_to_node(entry);
532 offset = 0;
533 continue;
534 }
535 if (entry)
536 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
537 offset++;
538 while (offset == XA_CHUNK_SIZE) {
539 struct xa_node *parent;
540
541 parent = xa_parent_locked(xas->xa, node);
542 offset = node->offset + 1;
543 node->count = 0;
544 node->nr_values = 0;
545 xas_update(xas, node);
546 xa_node_free(node);
547 if (node == top)
548 return;
549 node = parent;
550 }
551 }
552 }
553
554 /*
555 * xas_expand adds nodes to the head of the tree until it has reached
556 * sufficient height to be able to contain @xas->xa_index
557 */
558 static int xas_expand(struct xa_state *xas, void *head)
559 {
560 struct xarray *xa = xas->xa;
561 struct xa_node *node = NULL;
562 unsigned int shift = 0;
563 unsigned long max = xas_max(xas);
564
565 if (!head) {
566 if (max == 0)
567 return 0;
568 while ((max >> shift) >= XA_CHUNK_SIZE)
569 shift += XA_CHUNK_SHIFT;
570 return shift + XA_CHUNK_SHIFT;
571 } else if (xa_is_node(head)) {
572 node = xa_to_node(head);
573 shift = node->shift + XA_CHUNK_SHIFT;
574 }
575 xas->xa_node = NULL;
576
577 while (max > max_index(head)) {
578 xa_mark_t mark = 0;
579
580 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
581 node = xas_alloc(xas, shift);
582 if (!node)
583 return -ENOMEM;
584
585 node->count = 1;
586 if (xa_is_value(head))
587 node->nr_values = 1;
588 RCU_INIT_POINTER(node->slots[0], head);
589
590 /* Propagate the aggregated mark info to the new child */
591 for (;;) {
592 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
593 node_mark_all(node, XA_FREE_MARK);
594 if (!xa_marked(xa, XA_FREE_MARK)) {
595 node_clear_mark(node, 0, XA_FREE_MARK);
596 xa_mark_set(xa, XA_FREE_MARK);
597 }
598 } else if (xa_marked(xa, mark)) {
599 node_set_mark(node, 0, mark);
600 }
601 if (mark == XA_MARK_MAX)
602 break;
603 mark_inc(mark);
604 }
605
606 /*
607 * Now that the new node is fully initialised, we can add
608 * it to the tree
609 */
610 if (xa_is_node(head)) {
611 xa_to_node(head)->offset = 0;
612 rcu_assign_pointer(xa_to_node(head)->parent, node);
613 }
614 head = xa_mk_node(node);
615 rcu_assign_pointer(xa->xa_head, head);
616 xas_update(xas, node);
617
618 shift += XA_CHUNK_SHIFT;
619 }
620
621 xas->xa_node = node;
622 return shift;
623 }
624
625 /*
626 * xas_create() - Create a slot to store an entry in.
627 * @xas: XArray operation state.
628 * @allow_root: %true if we can store the entry in the root directly
629 *
630 * Most users will not need to call this function directly, as it is called
631 * by xas_store(). It is useful for doing conditional store operations
632 * (see the xa_cmpxchg() implementation for an example).
633 *
634 * Return: If the slot already existed, returns the contents of this slot.
635 * If the slot was newly created, returns %NULL. If it failed to create the
636 * slot, returns %NULL and indicates the error in @xas.
637 */
638 static void *xas_create(struct xa_state *xas, bool allow_root)
639 {
640 struct xarray *xa = xas->xa;
641 void *entry;
642 void __rcu **slot;
643 struct xa_node *node = xas->xa_node;
644 int shift;
645 unsigned int order = xas->xa_shift;
646
647 if (xas_top(node)) {
648 entry = xa_head_locked(xa);
649 xas->xa_node = NULL;
650 if (!entry && xa_zero_busy(xa))
651 entry = XA_ZERO_ENTRY;
652 shift = xas_expand(xas, entry);
653 if (shift < 0)
654 return NULL;
655 if (!shift && !allow_root)
656 shift = XA_CHUNK_SHIFT;
657 entry = xa_head_locked(xa);
658 slot = &xa->xa_head;
659 } else if (xas_error(xas)) {
660 return NULL;
661 } else if (node) {
662 unsigned int offset = xas->xa_offset;
663
664 shift = node->shift;
665 entry = xa_entry_locked(xa, node, offset);
666 slot = &node->slots[offset];
667 } else {
668 shift = 0;
669 entry = xa_head_locked(xa);
670 slot = &xa->xa_head;
671 }
672
673 while (shift > order) {
674 shift -= XA_CHUNK_SHIFT;
675 if (!entry) {
676 node = xas_alloc(xas, shift);
677 if (!node)
678 break;
679 if (xa_track_free(xa))
680 node_mark_all(node, XA_FREE_MARK);
681 rcu_assign_pointer(*slot, xa_mk_node(node));
682 } else if (xa_is_node(entry)) {
683 node = xa_to_node(entry);
684 } else {
685 break;
686 }
687 entry = xas_descend(xas, node);
688 slot = &node->slots[xas->xa_offset];
689 }
690
691 return entry;
692 }
693
694 /**
695 * xas_create_range() - Ensure that stores to this range will succeed
696 * @xas: XArray operation state.
697 *
698 * Creates all of the slots in the range covered by @xas. Sets @xas to
699 * create single-index entries and positions it at the beginning of the
700 * range. This is for the benefit of users which have not yet been
701 * converted to use multi-index entries.
702 */
703 void xas_create_range(struct xa_state *xas)
704 {
705 unsigned long index = xas->xa_index;
706 unsigned char shift = xas->xa_shift;
707 unsigned char sibs = xas->xa_sibs;
708
709 xas->xa_index |= ((sibs + 1UL) << shift) - 1;
710 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
711 xas->xa_offset |= sibs;
712 xas->xa_shift = 0;
713 xas->xa_sibs = 0;
714
715 for (;;) {
716 xas_create(xas, true);
717 if (xas_error(xas))
718 goto restore;
719 if (xas->xa_index <= (index | XA_CHUNK_MASK))
720 goto success;
721 xas->xa_index -= XA_CHUNK_SIZE;
722
723 for (;;) {
724 struct xa_node *node = xas->xa_node;
725 xas->xa_node = xa_parent_locked(xas->xa, node);
726 xas->xa_offset = node->offset - 1;
727 if (node->offset != 0)
728 break;
729 }
730 }
731
732 restore:
733 xas->xa_shift = shift;
734 xas->xa_sibs = sibs;
735 xas->xa_index = index;
736 return;
737 success:
738 xas->xa_index = index;
739 if (xas->xa_node)
740 xas_set_offset(xas);
741 }
742 EXPORT_SYMBOL_GPL(xas_create_range);
743
744 static void update_node(struct xa_state *xas, struct xa_node *node,
745 int count, int values)
746 {
747 if (!node || (!count && !values))
748 return;
749
750 node->count += count;
751 node->nr_values += values;
752 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
753 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
754 xas_update(xas, node);
755 if (count < 0)
756 xas_delete_node(xas);
757 }
758
759 /**
760 * xas_store() - Store this entry in the XArray.
761 * @xas: XArray operation state.
762 * @entry: New entry.
763 *
764 * If @xas is operating on a multi-index entry, the entry returned by this
765 * function is essentially meaningless (it may be an internal entry or it
766 * may be %NULL, even if there are non-NULL entries at some of the indices
767 * covered by the range). This is not a problem for any current users,
768 * and can be changed if needed.
769 *
770 * Return: The old entry at this index.
771 */
772 void *xas_store(struct xa_state *xas, void *entry)
773 {
774 struct xa_node *node;
775 void __rcu **slot = &xas->xa->xa_head;
776 unsigned int offset, max;
777 int count = 0;
778 int values = 0;
779 void *first, *next;
780 bool value = xa_is_value(entry);
781
782 if (entry) {
783 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
784 first = xas_create(xas, allow_root);
785 } else {
786 first = xas_load(xas);
787 }
788
789 if (xas_invalid(xas))
790 return first;
791 node = xas->xa_node;
792 if (node && (xas->xa_shift < node->shift))
793 xas->xa_sibs = 0;
794 if ((first == entry) && !xas->xa_sibs)
795 return first;
796
797 next = first;
798 offset = xas->xa_offset;
799 max = xas->xa_offset + xas->xa_sibs;
800 if (node) {
801 slot = &node->slots[offset];
802 if (xas->xa_sibs)
803 xas_squash_marks(xas);
804 }
805 if (!entry)
806 xas_init_marks(xas);
807
808 for (;;) {
809 /*
810 * Must clear the marks before setting the entry to NULL,
811 * otherwise xas_for_each_marked may find a NULL entry and
812 * stop early. rcu_assign_pointer contains a release barrier
813 * so the mark clearing will appear to happen before the
814 * entry is set to NULL.
815 */
816 rcu_assign_pointer(*slot, entry);
817 if (xa_is_node(next) && (!node || node->shift))
818 xas_free_nodes(xas, xa_to_node(next));
819 if (!node)
820 break;
821 count += !next - !entry;
822 values += !xa_is_value(first) - !value;
823 if (entry) {
824 if (offset == max)
825 break;
826 if (!xa_is_sibling(entry))
827 entry = xa_mk_sibling(xas->xa_offset);
828 } else {
829 if (offset == XA_CHUNK_MASK)
830 break;
831 }
832 next = xa_entry_locked(xas->xa, node, ++offset);
833 if (!xa_is_sibling(next)) {
834 if (!entry && (offset > max))
835 break;
836 first = next;
837 }
838 slot++;
839 }
840
841 update_node(xas, node, count, values);
842 return first;
843 }
844 EXPORT_SYMBOL_GPL(xas_store);
845
846 /**
847 * xas_get_mark() - Returns the state of this mark.
848 * @xas: XArray operation state.
849 * @mark: Mark number.
850 *
851 * Return: true if the mark is set, false if the mark is clear or @xas
852 * is in an error state.
853 */
854 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
855 {
856 if (xas_invalid(xas))
857 return false;
858 if (!xas->xa_node)
859 return xa_marked(xas->xa, mark);
860 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
861 }
862 EXPORT_SYMBOL_GPL(xas_get_mark);
863
864 /**
865 * xas_set_mark() - Sets the mark on this entry and its parents.
866 * @xas: XArray operation state.
867 * @mark: Mark number.
868 *
869 * Sets the specified mark on this entry, and walks up the tree setting it
870 * on all the ancestor entries. Does nothing if @xas has not been walked to
871 * an entry, or is in an error state.
872 */
873 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
874 {
875 struct xa_node *node = xas->xa_node;
876 unsigned int offset = xas->xa_offset;
877
878 if (xas_invalid(xas))
879 return;
880
881 while (node) {
882 if (node_set_mark(node, offset, mark))
883 return;
884 offset = node->offset;
885 node = xa_parent_locked(xas->xa, node);
886 }
887
888 if (!xa_marked(xas->xa, mark))
889 xa_mark_set(xas->xa, mark);
890 }
891 EXPORT_SYMBOL_GPL(xas_set_mark);
892
893 /**
894 * xas_clear_mark() - Clears the mark on this entry and its parents.
895 * @xas: XArray operation state.
896 * @mark: Mark number.
897 *
898 * Clears the specified mark on this entry, and walks back to the head
899 * attempting to clear it on all the ancestor entries. Does nothing if
900 * @xas has not been walked to an entry, or is in an error state.
901 */
902 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
903 {
904 struct xa_node *node = xas->xa_node;
905 unsigned int offset = xas->xa_offset;
906
907 if (xas_invalid(xas))
908 return;
909
910 while (node) {
911 if (!node_clear_mark(node, offset, mark))
912 return;
913 if (node_any_mark(node, mark))
914 return;
915
916 offset = node->offset;
917 node = xa_parent_locked(xas->xa, node);
918 }
919
920 if (xa_marked(xas->xa, mark))
921 xa_mark_clear(xas->xa, mark);
922 }
923 EXPORT_SYMBOL_GPL(xas_clear_mark);
924
925 /**
926 * xas_init_marks() - Initialise all marks for the entry
927 * @xas: Array operations state.
928 *
929 * Initialise all marks for the entry specified by @xas. If we're tracking
930 * free entries with a mark, we need to set it on all entries. All other
931 * marks are cleared.
932 *
933 * This implementation is not as efficient as it could be; we may walk
934 * up the tree multiple times.
935 */
936 void xas_init_marks(const struct xa_state *xas)
937 {
938 xa_mark_t mark = 0;
939
940 for (;;) {
941 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
942 xas_set_mark(xas, mark);
943 else
944 xas_clear_mark(xas, mark);
945 if (mark == XA_MARK_MAX)
946 break;
947 mark_inc(mark);
948 }
949 }
950 EXPORT_SYMBOL_GPL(xas_init_marks);
951
952 #ifdef CONFIG_XARRAY_MULTI
953 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
954 {
955 unsigned int marks = 0;
956 xa_mark_t mark = XA_MARK_0;
957
958 for (;;) {
959 if (node_get_mark(node, offset, mark))
960 marks |= 1 << (__force unsigned int)mark;
961 if (mark == XA_MARK_MAX)
962 break;
963 mark_inc(mark);
964 }
965
966 return marks;
967 }
968
969 static void node_set_marks(struct xa_node *node, unsigned int offset,
970 struct xa_node *child, unsigned int marks)
971 {
972 xa_mark_t mark = XA_MARK_0;
973
974 for (;;) {
975 if (marks & (1 << (__force unsigned int)mark)) {
976 node_set_mark(node, offset, mark);
977 if (child)
978 node_mark_all(child, mark);
979 }
980 if (mark == XA_MARK_MAX)
981 break;
982 mark_inc(mark);
983 }
984 }
985
986 /**
987 * xas_split_alloc() - Allocate memory for splitting an entry.
988 * @xas: XArray operation state.
989 * @entry: New entry which will be stored in the array.
990 * @order: New entry order.
991 * @gfp: Memory allocation flags.
992 *
993 * This function should be called before calling xas_split().
994 * If necessary, it will allocate new nodes (and fill them with @entry)
995 * to prepare for the upcoming split of an entry of @order size into
996 * entries of the order stored in the @xas.
997 *
998 * Context: May sleep if @gfp flags permit.
999 */
1000 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1001 gfp_t gfp)
1002 {
1003 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1004 unsigned int mask = xas->xa_sibs;
1005
1006 /* XXX: no support for splitting really large entries yet */
1007 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order))
1008 goto nomem;
1009 if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1010 return;
1011
1012 do {
1013 unsigned int i;
1014 void *sibling;
1015 struct xa_node *node;
1016
1017 node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
1018 if (!node)
1019 goto nomem;
1020 node->array = xas->xa;
1021 for (i = 0; i < XA_CHUNK_SIZE; i++) {
1022 if ((i & mask) == 0) {
1023 RCU_INIT_POINTER(node->slots[i], entry);
1024 sibling = xa_mk_sibling(0);
1025 } else {
1026 RCU_INIT_POINTER(node->slots[i], sibling);
1027 }
1028 }
1029 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1030 xas->xa_alloc = node;
1031 } while (sibs-- > 0);
1032
1033 return;
1034 nomem:
1035 xas_destroy(xas);
1036 xas_set_err(xas, -ENOMEM);
1037 }
1038 EXPORT_SYMBOL_GPL(xas_split_alloc);
1039
1040 /**
1041 * xas_split() - Split a multi-index entry into smaller entries.
1042 * @xas: XArray operation state.
1043 * @entry: New entry to store in the array.
1044 * @order: New entry order.
1045 *
1046 * The value in the entry is copied to all the replacement entries.
1047 *
1048 * Context: Any context. The caller should hold the xa_lock.
1049 */
1050 void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1051 {
1052 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1053 unsigned int offset, marks;
1054 struct xa_node *node;
1055 void *curr = xas_load(xas);
1056 int values = 0;
1057
1058 node = xas->xa_node;
1059 if (xas_top(node))
1060 return;
1061
1062 marks = node_get_marks(node, xas->xa_offset);
1063
1064 offset = xas->xa_offset + sibs;
1065 do {
1066 if (xas->xa_shift < node->shift) {
1067 struct xa_node *child = xas->xa_alloc;
1068
1069 xas->xa_alloc = rcu_dereference_raw(child->parent);
1070 child->shift = node->shift - XA_CHUNK_SHIFT;
1071 child->offset = offset;
1072 child->count = XA_CHUNK_SIZE;
1073 child->nr_values = xa_is_value(entry) ?
1074 XA_CHUNK_SIZE : 0;
1075 RCU_INIT_POINTER(child->parent, node);
1076 node_set_marks(node, offset, child, marks);
1077 rcu_assign_pointer(node->slots[offset],
1078 xa_mk_node(child));
1079 if (xa_is_value(curr))
1080 values--;
1081 } else {
1082 unsigned int canon = offset - xas->xa_sibs;
1083
1084 node_set_marks(node, canon, NULL, marks);
1085 rcu_assign_pointer(node->slots[canon], entry);
1086 while (offset > canon)
1087 rcu_assign_pointer(node->slots[offset--],
1088 xa_mk_sibling(canon));
1089 values += (xa_is_value(entry) - xa_is_value(curr)) *
1090 (xas->xa_sibs + 1);
1091 }
1092 } while (offset-- > xas->xa_offset);
1093
1094 node->nr_values += values;
1095 }
1096 EXPORT_SYMBOL_GPL(xas_split);
1097 #endif
1098
1099 /**
1100 * xas_pause() - Pause a walk to drop a lock.
1101 * @xas: XArray operation state.
1102 *
1103 * Some users need to pause a walk and drop the lock they're holding in
1104 * order to yield to a higher priority thread or carry out an operation
1105 * on an entry. Those users should call this function before they drop
1106 * the lock. It resets the @xas to be suitable for the next iteration
1107 * of the loop after the user has reacquired the lock. If most entries
1108 * found during a walk require you to call xas_pause(), the xa_for_each()
1109 * iterator may be more appropriate.
1110 *
1111 * Note that xas_pause() only works for forward iteration. If a user needs
1112 * to pause a reverse iteration, we will need a xas_pause_rev().
1113 */
1114 void xas_pause(struct xa_state *xas)
1115 {
1116 struct xa_node *node = xas->xa_node;
1117
1118 if (xas_invalid(xas))
1119 return;
1120
1121 xas->xa_node = XAS_RESTART;
1122 if (node) {
1123 unsigned long offset = xas->xa_offset;
1124 while (++offset < XA_CHUNK_SIZE) {
1125 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1126 break;
1127 }
1128 xas->xa_index += (offset - xas->xa_offset) << node->shift;
1129 if (xas->xa_index == 0)
1130 xas->xa_node = XAS_BOUNDS;
1131 } else {
1132 xas->xa_index++;
1133 }
1134 }
1135 EXPORT_SYMBOL_GPL(xas_pause);
1136
1137 /*
1138 * __xas_prev() - Find the previous entry in the XArray.
1139 * @xas: XArray operation state.
1140 *
1141 * Helper function for xas_prev() which handles all the complex cases
1142 * out of line.
1143 */
1144 void *__xas_prev(struct xa_state *xas)
1145 {
1146 void *entry;
1147
1148 if (!xas_frozen(xas->xa_node))
1149 xas->xa_index--;
1150 if (!xas->xa_node)
1151 return set_bounds(xas);
1152 if (xas_not_node(xas->xa_node))
1153 return xas_load(xas);
1154
1155 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1156 xas->xa_offset--;
1157
1158 while (xas->xa_offset == 255) {
1159 xas->xa_offset = xas->xa_node->offset - 1;
1160 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1161 if (!xas->xa_node)
1162 return set_bounds(xas);
1163 }
1164
1165 for (;;) {
1166 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1167 if (!xa_is_node(entry))
1168 return entry;
1169
1170 xas->xa_node = xa_to_node(entry);
1171 xas_set_offset(xas);
1172 }
1173 }
1174 EXPORT_SYMBOL_GPL(__xas_prev);
1175
1176 /*
1177 * __xas_next() - Find the next entry in the XArray.
1178 * @xas: XArray operation state.
1179 *
1180 * Helper function for xas_next() which handles all the complex cases
1181 * out of line.
1182 */
1183 void *__xas_next(struct xa_state *xas)
1184 {
1185 void *entry;
1186
1187 if (!xas_frozen(xas->xa_node))
1188 xas->xa_index++;
1189 if (!xas->xa_node)
1190 return set_bounds(xas);
1191 if (xas_not_node(xas->xa_node))
1192 return xas_load(xas);
1193
1194 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1195 xas->xa_offset++;
1196
1197 while (xas->xa_offset == XA_CHUNK_SIZE) {
1198 xas->xa_offset = xas->xa_node->offset + 1;
1199 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1200 if (!xas->xa_node)
1201 return set_bounds(xas);
1202 }
1203
1204 for (;;) {
1205 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1206 if (!xa_is_node(entry))
1207 return entry;
1208
1209 xas->xa_node = xa_to_node(entry);
1210 xas_set_offset(xas);
1211 }
1212 }
1213 EXPORT_SYMBOL_GPL(__xas_next);
1214
1215 /**
1216 * xas_find() - Find the next present entry in the XArray.
1217 * @xas: XArray operation state.
1218 * @max: Highest index to return.
1219 *
1220 * If the @xas has not yet been walked to an entry, return the entry
1221 * which has an index >= xas.xa_index. If it has been walked, the entry
1222 * currently being pointed at has been processed, and so we move to the
1223 * next entry.
1224 *
1225 * If no entry is found and the array is smaller than @max, the iterator
1226 * is set to the smallest index not yet in the array. This allows @xas
1227 * to be immediately passed to xas_store().
1228 *
1229 * Return: The entry, if found, otherwise %NULL.
1230 */
1231 void *xas_find(struct xa_state *xas, unsigned long max)
1232 {
1233 void *entry;
1234
1235 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1236 return NULL;
1237 if (xas->xa_index > max)
1238 return set_bounds(xas);
1239
1240 if (!xas->xa_node) {
1241 xas->xa_index = 1;
1242 return set_bounds(xas);
1243 } else if (xas->xa_node == XAS_RESTART) {
1244 entry = xas_load(xas);
1245 if (entry || xas_not_node(xas->xa_node))
1246 return entry;
1247 } else if (!xas->xa_node->shift &&
1248 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1249 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1250 }
1251
1252 xas_advance(xas);
1253
1254 while (xas->xa_node && (xas->xa_index <= max)) {
1255 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1256 xas->xa_offset = xas->xa_node->offset + 1;
1257 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1258 continue;
1259 }
1260
1261 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1262 if (xa_is_node(entry)) {
1263 xas->xa_node = xa_to_node(entry);
1264 xas->xa_offset = 0;
1265 continue;
1266 }
1267 if (entry && !xa_is_sibling(entry))
1268 return entry;
1269
1270 xas_advance(xas);
1271 }
1272
1273 if (!xas->xa_node)
1274 xas->xa_node = XAS_BOUNDS;
1275 return NULL;
1276 }
1277 EXPORT_SYMBOL_GPL(xas_find);
1278
1279 /**
1280 * xas_find_marked() - Find the next marked entry in the XArray.
1281 * @xas: XArray operation state.
1282 * @max: Highest index to return.
1283 * @mark: Mark number to search for.
1284 *
1285 * If the @xas has not yet been walked to an entry, return the marked entry
1286 * which has an index >= xas.xa_index. If it has been walked, the entry
1287 * currently being pointed at has been processed, and so we return the
1288 * first marked entry with an index > xas.xa_index.
1289 *
1290 * If no marked entry is found and the array is smaller than @max, @xas is
1291 * set to the bounds state and xas->xa_index is set to the smallest index
1292 * not yet in the array. This allows @xas to be immediately passed to
1293 * xas_store().
1294 *
1295 * If no entry is found before @max is reached, @xas is set to the restart
1296 * state.
1297 *
1298 * Return: The entry, if found, otherwise %NULL.
1299 */
1300 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1301 {
1302 bool advance = true;
1303 unsigned int offset;
1304 void *entry;
1305
1306 if (xas_error(xas))
1307 return NULL;
1308 if (xas->xa_index > max)
1309 goto max;
1310
1311 if (!xas->xa_node) {
1312 xas->xa_index = 1;
1313 goto out;
1314 } else if (xas_top(xas->xa_node)) {
1315 advance = false;
1316 entry = xa_head(xas->xa);
1317 xas->xa_node = NULL;
1318 if (xas->xa_index > max_index(entry))
1319 goto out;
1320 if (!xa_is_node(entry)) {
1321 if (xa_marked(xas->xa, mark))
1322 return entry;
1323 xas->xa_index = 1;
1324 goto out;
1325 }
1326 xas->xa_node = xa_to_node(entry);
1327 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1328 }
1329
1330 while (xas->xa_index <= max) {
1331 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1332 xas->xa_offset = xas->xa_node->offset + 1;
1333 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1334 if (!xas->xa_node)
1335 break;
1336 advance = false;
1337 continue;
1338 }
1339
1340 if (!advance) {
1341 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1342 if (xa_is_sibling(entry)) {
1343 xas->xa_offset = xa_to_sibling(entry);
1344 xas_move_index(xas, xas->xa_offset);
1345 }
1346 }
1347
1348 offset = xas_find_chunk(xas, advance, mark);
1349 if (offset > xas->xa_offset) {
1350 advance = false;
1351 xas_move_index(xas, offset);
1352 /* Mind the wrap */
1353 if ((xas->xa_index - 1) >= max)
1354 goto max;
1355 xas->xa_offset = offset;
1356 if (offset == XA_CHUNK_SIZE)
1357 continue;
1358 }
1359
1360 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1361 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1362 continue;
1363 if (!xa_is_node(entry))
1364 return entry;
1365 xas->xa_node = xa_to_node(entry);
1366 xas_set_offset(xas);
1367 }
1368
1369 out:
1370 if (xas->xa_index > max)
1371 goto max;
1372 return set_bounds(xas);
1373 max:
1374 xas->xa_node = XAS_RESTART;
1375 return NULL;
1376 }
1377 EXPORT_SYMBOL_GPL(xas_find_marked);
1378
1379 /**
1380 * xas_find_conflict() - Find the next present entry in a range.
1381 * @xas: XArray operation state.
1382 *
1383 * The @xas describes both a range and a position within that range.
1384 *
1385 * Context: Any context. Expects xa_lock to be held.
1386 * Return: The next entry in the range covered by @xas or %NULL.
1387 */
1388 void *xas_find_conflict(struct xa_state *xas)
1389 {
1390 void *curr;
1391
1392 if (xas_error(xas))
1393 return NULL;
1394
1395 if (!xas->xa_node)
1396 return NULL;
1397
1398 if (xas_top(xas->xa_node)) {
1399 curr = xas_start(xas);
1400 if (!curr)
1401 return NULL;
1402 while (xa_is_node(curr)) {
1403 struct xa_node *node = xa_to_node(curr);
1404 curr = xas_descend(xas, node);
1405 }
1406 if (curr)
1407 return curr;
1408 }
1409
1410 if (xas->xa_node->shift > xas->xa_shift)
1411 return NULL;
1412
1413 for (;;) {
1414 if (xas->xa_node->shift == xas->xa_shift) {
1415 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1416 break;
1417 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1418 xas->xa_offset = xas->xa_node->offset;
1419 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1420 if (!xas->xa_node)
1421 break;
1422 continue;
1423 }
1424 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1425 if (xa_is_sibling(curr))
1426 continue;
1427 while (xa_is_node(curr)) {
1428 xas->xa_node = xa_to_node(curr);
1429 xas->xa_offset = 0;
1430 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1431 }
1432 if (curr)
1433 return curr;
1434 }
1435 xas->xa_offset -= xas->xa_sibs;
1436 return NULL;
1437 }
1438 EXPORT_SYMBOL_GPL(xas_find_conflict);
1439
1440 /**
1441 * xa_load() - Load an entry from an XArray.
1442 * @xa: XArray.
1443 * @index: index into array.
1444 *
1445 * Context: Any context. Takes and releases the RCU lock.
1446 * Return: The entry at @index in @xa.
1447 */
1448 void *xa_load(struct xarray *xa, unsigned long index)
1449 {
1450 XA_STATE(xas, xa, index);
1451 void *entry;
1452
1453 rcu_read_lock();
1454 do {
1455 entry = xas_load(&xas);
1456 if (xa_is_zero(entry))
1457 entry = NULL;
1458 } while (xas_retry(&xas, entry));
1459 rcu_read_unlock();
1460
1461 return entry;
1462 }
1463 EXPORT_SYMBOL(xa_load);
1464
1465 static void *xas_result(struct xa_state *xas, void *curr)
1466 {
1467 if (xa_is_zero(curr))
1468 return NULL;
1469 if (xas_error(xas))
1470 curr = xas->xa_node;
1471 return curr;
1472 }
1473
1474 /**
1475 * __xa_erase() - Erase this entry from the XArray while locked.
1476 * @xa: XArray.
1477 * @index: Index into array.
1478 *
1479 * After this function returns, loading from @index will return %NULL.
1480 * If the index is part of a multi-index entry, all indices will be erased
1481 * and none of the entries will be part of a multi-index entry.
1482 *
1483 * Context: Any context. Expects xa_lock to be held on entry.
1484 * Return: The entry which used to be at this index.
1485 */
1486 void *__xa_erase(struct xarray *xa, unsigned long index)
1487 {
1488 XA_STATE(xas, xa, index);
1489 return xas_result(&xas, xas_store(&xas, NULL));
1490 }
1491 EXPORT_SYMBOL(__xa_erase);
1492
1493 /**
1494 * xa_erase() - Erase this entry from the XArray.
1495 * @xa: XArray.
1496 * @index: Index of entry.
1497 *
1498 * After this function returns, loading from @index will return %NULL.
1499 * If the index is part of a multi-index entry, all indices will be erased
1500 * and none of the entries will be part of a multi-index entry.
1501 *
1502 * Context: Any context. Takes and releases the xa_lock.
1503 * Return: The entry which used to be at this index.
1504 */
1505 void *xa_erase(struct xarray *xa, unsigned long index)
1506 {
1507 void *entry;
1508
1509 xa_lock(xa);
1510 entry = __xa_erase(xa, index);
1511 xa_unlock(xa);
1512
1513 return entry;
1514 }
1515 EXPORT_SYMBOL(xa_erase);
1516
1517 /**
1518 * __xa_store() - Store this entry in the XArray.
1519 * @xa: XArray.
1520 * @index: Index into array.
1521 * @entry: New entry.
1522 * @gfp: Memory allocation flags.
1523 *
1524 * You must already be holding the xa_lock when calling this function.
1525 * It will drop the lock if needed to allocate memory, and then reacquire
1526 * it afterwards.
1527 *
1528 * Context: Any context. Expects xa_lock to be held on entry. May
1529 * release and reacquire xa_lock if @gfp flags permit.
1530 * Return: The old entry at this index or xa_err() if an error happened.
1531 */
1532 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1533 {
1534 XA_STATE(xas, xa, index);
1535 void *curr;
1536
1537 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1538 return XA_ERROR(-EINVAL);
1539 if (xa_track_free(xa) && !entry)
1540 entry = XA_ZERO_ENTRY;
1541
1542 do {
1543 curr = xas_store(&xas, entry);
1544 if (xa_track_free(xa))
1545 xas_clear_mark(&xas, XA_FREE_MARK);
1546 } while (__xas_nomem(&xas, gfp));
1547
1548 return xas_result(&xas, curr);
1549 }
1550 EXPORT_SYMBOL(__xa_store);
1551
1552 /**
1553 * xa_store() - Store this entry in the XArray.
1554 * @xa: XArray.
1555 * @index: Index into array.
1556 * @entry: New entry.
1557 * @gfp: Memory allocation flags.
1558 *
1559 * After this function returns, loads from this index will return @entry.
1560 * Storing into an existing multi-index entry updates the entry of every index.
1561 * The marks associated with @index are unaffected unless @entry is %NULL.
1562 *
1563 * Context: Any context. Takes and releases the xa_lock.
1564 * May sleep if the @gfp flags permit.
1565 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1566 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1567 * failed.
1568 */
1569 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1570 {
1571 void *curr;
1572
1573 xa_lock(xa);
1574 curr = __xa_store(xa, index, entry, gfp);
1575 xa_unlock(xa);
1576
1577 return curr;
1578 }
1579 EXPORT_SYMBOL(xa_store);
1580
1581 /**
1582 * __xa_cmpxchg() - Store this entry in the XArray.
1583 * @xa: XArray.
1584 * @index: Index into array.
1585 * @old: Old value to test against.
1586 * @entry: New entry.
1587 * @gfp: Memory allocation flags.
1588 *
1589 * You must already be holding the xa_lock when calling this function.
1590 * It will drop the lock if needed to allocate memory, and then reacquire
1591 * it afterwards.
1592 *
1593 * Context: Any context. Expects xa_lock to be held on entry. May
1594 * release and reacquire xa_lock if @gfp flags permit.
1595 * Return: The old entry at this index or xa_err() if an error happened.
1596 */
1597 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1598 void *old, void *entry, gfp_t gfp)
1599 {
1600 XA_STATE(xas, xa, index);
1601 void *curr;
1602
1603 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1604 return XA_ERROR(-EINVAL);
1605
1606 do {
1607 curr = xas_load(&xas);
1608 if (curr == old) {
1609 xas_store(&xas, entry);
1610 if (xa_track_free(xa) && entry && !curr)
1611 xas_clear_mark(&xas, XA_FREE_MARK);
1612 }
1613 } while (__xas_nomem(&xas, gfp));
1614
1615 return xas_result(&xas, curr);
1616 }
1617 EXPORT_SYMBOL(__xa_cmpxchg);
1618
1619 /**
1620 * __xa_insert() - Store this entry in the XArray if no entry is present.
1621 * @xa: XArray.
1622 * @index: Index into array.
1623 * @entry: New entry.
1624 * @gfp: Memory allocation flags.
1625 *
1626 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1627 * if no entry is present. Inserting will fail if a reserved entry is
1628 * present, even though loading from this index will return NULL.
1629 *
1630 * Context: Any context. Expects xa_lock to be held on entry. May
1631 * release and reacquire xa_lock if @gfp flags permit.
1632 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1633 * -ENOMEM if memory could not be allocated.
1634 */
1635 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1636 {
1637 XA_STATE(xas, xa, index);
1638 void *curr;
1639
1640 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1641 return -EINVAL;
1642 if (!entry)
1643 entry = XA_ZERO_ENTRY;
1644
1645 do {
1646 curr = xas_load(&xas);
1647 if (!curr) {
1648 xas_store(&xas, entry);
1649 if (xa_track_free(xa))
1650 xas_clear_mark(&xas, XA_FREE_MARK);
1651 } else {
1652 xas_set_err(&xas, -EBUSY);
1653 }
1654 } while (__xas_nomem(&xas, gfp));
1655
1656 return xas_error(&xas);
1657 }
1658 EXPORT_SYMBOL(__xa_insert);
1659
1660 #ifdef CONFIG_XARRAY_MULTI
1661 static void xas_set_range(struct xa_state *xas, unsigned long first,
1662 unsigned long last)
1663 {
1664 unsigned int shift = 0;
1665 unsigned long sibs = last - first;
1666 unsigned int offset = XA_CHUNK_MASK;
1667
1668 xas_set(xas, first);
1669
1670 while ((first & XA_CHUNK_MASK) == 0) {
1671 if (sibs < XA_CHUNK_MASK)
1672 break;
1673 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1674 break;
1675 shift += XA_CHUNK_SHIFT;
1676 if (offset == XA_CHUNK_MASK)
1677 offset = sibs & XA_CHUNK_MASK;
1678 sibs >>= XA_CHUNK_SHIFT;
1679 first >>= XA_CHUNK_SHIFT;
1680 }
1681
1682 offset = first & XA_CHUNK_MASK;
1683 if (offset + sibs > XA_CHUNK_MASK)
1684 sibs = XA_CHUNK_MASK - offset;
1685 if ((((first + sibs + 1) << shift) - 1) > last)
1686 sibs -= 1;
1687
1688 xas->xa_shift = shift;
1689 xas->xa_sibs = sibs;
1690 }
1691
1692 /**
1693 * xa_store_range() - Store this entry at a range of indices in the XArray.
1694 * @xa: XArray.
1695 * @first: First index to affect.
1696 * @last: Last index to affect.
1697 * @entry: New entry.
1698 * @gfp: Memory allocation flags.
1699 *
1700 * After this function returns, loads from any index between @first and @last,
1701 * inclusive will return @entry.
1702 * Storing into an existing multi-index entry updates the entry of every index.
1703 * The marks associated with @index are unaffected unless @entry is %NULL.
1704 *
1705 * Context: Process context. Takes and releases the xa_lock. May sleep
1706 * if the @gfp flags permit.
1707 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1708 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1709 */
1710 void *xa_store_range(struct xarray *xa, unsigned long first,
1711 unsigned long last, void *entry, gfp_t gfp)
1712 {
1713 XA_STATE(xas, xa, 0);
1714
1715 if (WARN_ON_ONCE(xa_is_internal(entry)))
1716 return XA_ERROR(-EINVAL);
1717 if (last < first)
1718 return XA_ERROR(-EINVAL);
1719
1720 do {
1721 xas_lock(&xas);
1722 if (entry) {
1723 unsigned int order = BITS_PER_LONG;
1724 if (last + 1)
1725 order = __ffs(last + 1);
1726 xas_set_order(&xas, last, order);
1727 xas_create(&xas, true);
1728 if (xas_error(&xas))
1729 goto unlock;
1730 }
1731 do {
1732 xas_set_range(&xas, first, last);
1733 xas_store(&xas, entry);
1734 if (xas_error(&xas))
1735 goto unlock;
1736 first += xas_size(&xas);
1737 } while (first <= last);
1738 unlock:
1739 xas_unlock(&xas);
1740 } while (xas_nomem(&xas, gfp));
1741
1742 return xas_result(&xas, NULL);
1743 }
1744 EXPORT_SYMBOL(xa_store_range);
1745
1746 /**
1747 * xa_get_order() - Get the order of an entry.
1748 * @xa: XArray.
1749 * @index: Index of the entry.
1750 *
1751 * Return: A number between 0 and 63 indicating the order of the entry.
1752 */
1753 int xa_get_order(struct xarray *xa, unsigned long index)
1754 {
1755 XA_STATE(xas, xa, index);
1756 void *entry;
1757 int order = 0;
1758
1759 rcu_read_lock();
1760 entry = xas_load(&xas);
1761
1762 if (!entry)
1763 goto unlock;
1764
1765 if (!xas.xa_node)
1766 goto unlock;
1767
1768 for (;;) {
1769 unsigned int slot = xas.xa_offset + (1 << order);
1770
1771 if (slot >= XA_CHUNK_SIZE)
1772 break;
1773 if (!xa_is_sibling(xas.xa_node->slots[slot]))
1774 break;
1775 order++;
1776 }
1777
1778 order += xas.xa_node->shift;
1779 unlock:
1780 rcu_read_unlock();
1781
1782 return order;
1783 }
1784 EXPORT_SYMBOL(xa_get_order);
1785 #endif /* CONFIG_XARRAY_MULTI */
1786
1787 /**
1788 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1789 * @xa: XArray.
1790 * @id: Pointer to ID.
1791 * @limit: Range for allocated ID.
1792 * @entry: New entry.
1793 * @gfp: Memory allocation flags.
1794 *
1795 * Finds an empty entry in @xa between @limit.min and @limit.max,
1796 * stores the index into the @id pointer, then stores the entry at
1797 * that index. A concurrent lookup will not see an uninitialised @id.
1798 *
1799 * Context: Any context. Expects xa_lock to be held on entry. May
1800 * release and reacquire xa_lock if @gfp flags permit.
1801 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1802 * -EBUSY if there are no free entries in @limit.
1803 */
1804 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1805 struct xa_limit limit, gfp_t gfp)
1806 {
1807 XA_STATE(xas, xa, 0);
1808
1809 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1810 return -EINVAL;
1811 if (WARN_ON_ONCE(!xa_track_free(xa)))
1812 return -EINVAL;
1813
1814 if (!entry)
1815 entry = XA_ZERO_ENTRY;
1816
1817 do {
1818 xas.xa_index = limit.min;
1819 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1820 if (xas.xa_node == XAS_RESTART)
1821 xas_set_err(&xas, -EBUSY);
1822 else
1823 *id = xas.xa_index;
1824 xas_store(&xas, entry);
1825 xas_clear_mark(&xas, XA_FREE_MARK);
1826 } while (__xas_nomem(&xas, gfp));
1827
1828 return xas_error(&xas);
1829 }
1830 EXPORT_SYMBOL(__xa_alloc);
1831
1832 /**
1833 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1834 * @xa: XArray.
1835 * @id: Pointer to ID.
1836 * @entry: New entry.
1837 * @limit: Range of allocated ID.
1838 * @next: Pointer to next ID to allocate.
1839 * @gfp: Memory allocation flags.
1840 *
1841 * Finds an empty entry in @xa between @limit.min and @limit.max,
1842 * stores the index into the @id pointer, then stores the entry at
1843 * that index. A concurrent lookup will not see an uninitialised @id.
1844 * The search for an empty entry will start at @next and will wrap
1845 * around if necessary.
1846 *
1847 * Context: Any context. Expects xa_lock to be held on entry. May
1848 * release and reacquire xa_lock if @gfp flags permit.
1849 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1850 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1851 * allocated or -EBUSY if there are no free entries in @limit.
1852 */
1853 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1854 struct xa_limit limit, u32 *next, gfp_t gfp)
1855 {
1856 u32 min = limit.min;
1857 int ret;
1858
1859 limit.min = max(min, *next);
1860 ret = __xa_alloc(xa, id, entry, limit, gfp);
1861 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1862 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1863 ret = 1;
1864 }
1865
1866 if (ret < 0 && limit.min > min) {
1867 limit.min = min;
1868 ret = __xa_alloc(xa, id, entry, limit, gfp);
1869 if (ret == 0)
1870 ret = 1;
1871 }
1872
1873 if (ret >= 0) {
1874 *next = *id + 1;
1875 if (*next == 0)
1876 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1877 }
1878 return ret;
1879 }
1880 EXPORT_SYMBOL(__xa_alloc_cyclic);
1881
1882 /**
1883 * __xa_set_mark() - Set this mark on this entry while locked.
1884 * @xa: XArray.
1885 * @index: Index of entry.
1886 * @mark: Mark number.
1887 *
1888 * Attempting to set a mark on a %NULL entry does not succeed.
1889 *
1890 * Context: Any context. Expects xa_lock to be held on entry.
1891 */
1892 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1893 {
1894 XA_STATE(xas, xa, index);
1895 void *entry = xas_load(&xas);
1896
1897 if (entry)
1898 xas_set_mark(&xas, mark);
1899 }
1900 EXPORT_SYMBOL(__xa_set_mark);
1901
1902 /**
1903 * __xa_clear_mark() - Clear this mark on this entry while locked.
1904 * @xa: XArray.
1905 * @index: Index of entry.
1906 * @mark: Mark number.
1907 *
1908 * Context: Any context. Expects xa_lock to be held on entry.
1909 */
1910 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1911 {
1912 XA_STATE(xas, xa, index);
1913 void *entry = xas_load(&xas);
1914
1915 if (entry)
1916 xas_clear_mark(&xas, mark);
1917 }
1918 EXPORT_SYMBOL(__xa_clear_mark);
1919
1920 /**
1921 * xa_get_mark() - Inquire whether this mark is set on this entry.
1922 * @xa: XArray.
1923 * @index: Index of entry.
1924 * @mark: Mark number.
1925 *
1926 * This function uses the RCU read lock, so the result may be out of date
1927 * by the time it returns. If you need the result to be stable, use a lock.
1928 *
1929 * Context: Any context. Takes and releases the RCU lock.
1930 * Return: True if the entry at @index has this mark set, false if it doesn't.
1931 */
1932 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1933 {
1934 XA_STATE(xas, xa, index);
1935 void *entry;
1936
1937 rcu_read_lock();
1938 entry = xas_start(&xas);
1939 while (xas_get_mark(&xas, mark)) {
1940 if (!xa_is_node(entry))
1941 goto found;
1942 entry = xas_descend(&xas, xa_to_node(entry));
1943 }
1944 rcu_read_unlock();
1945 return false;
1946 found:
1947 rcu_read_unlock();
1948 return true;
1949 }
1950 EXPORT_SYMBOL(xa_get_mark);
1951
1952 /**
1953 * xa_set_mark() - Set this mark on this entry.
1954 * @xa: XArray.
1955 * @index: Index of entry.
1956 * @mark: Mark number.
1957 *
1958 * Attempting to set a mark on a %NULL entry does not succeed.
1959 *
1960 * Context: Process context. Takes and releases the xa_lock.
1961 */
1962 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1963 {
1964 xa_lock(xa);
1965 __xa_set_mark(xa, index, mark);
1966 xa_unlock(xa);
1967 }
1968 EXPORT_SYMBOL(xa_set_mark);
1969
1970 /**
1971 * xa_clear_mark() - Clear this mark on this entry.
1972 * @xa: XArray.
1973 * @index: Index of entry.
1974 * @mark: Mark number.
1975 *
1976 * Clearing a mark always succeeds.
1977 *
1978 * Context: Process context. Takes and releases the xa_lock.
1979 */
1980 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1981 {
1982 xa_lock(xa);
1983 __xa_clear_mark(xa, index, mark);
1984 xa_unlock(xa);
1985 }
1986 EXPORT_SYMBOL(xa_clear_mark);
1987
1988 /**
1989 * xa_find() - Search the XArray for an entry.
1990 * @xa: XArray.
1991 * @indexp: Pointer to an index.
1992 * @max: Maximum index to search to.
1993 * @filter: Selection criterion.
1994 *
1995 * Finds the entry in @xa which matches the @filter, and has the lowest
1996 * index that is at least @indexp and no more than @max.
1997 * If an entry is found, @indexp is updated to be the index of the entry.
1998 * This function is protected by the RCU read lock, so it may not find
1999 * entries which are being simultaneously added. It will not return an
2000 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2001 *
2002 * Context: Any context. Takes and releases the RCU lock.
2003 * Return: The entry, if found, otherwise %NULL.
2004 */
2005 void *xa_find(struct xarray *xa, unsigned long *indexp,
2006 unsigned long max, xa_mark_t filter)
2007 {
2008 XA_STATE(xas, xa, *indexp);
2009 void *entry;
2010
2011 rcu_read_lock();
2012 do {
2013 if ((__force unsigned int)filter < XA_MAX_MARKS)
2014 entry = xas_find_marked(&xas, max, filter);
2015 else
2016 entry = xas_find(&xas, max);
2017 } while (xas_retry(&xas, entry));
2018 rcu_read_unlock();
2019
2020 if (entry)
2021 *indexp = xas.xa_index;
2022 return entry;
2023 }
2024 EXPORT_SYMBOL(xa_find);
2025
2026 static bool xas_sibling(struct xa_state *xas)
2027 {
2028 struct xa_node *node = xas->xa_node;
2029 unsigned long mask;
2030
2031 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2032 return false;
2033 mask = (XA_CHUNK_SIZE << node->shift) - 1;
2034 return (xas->xa_index & mask) >
2035 ((unsigned long)xas->xa_offset << node->shift);
2036 }
2037
2038 /**
2039 * xa_find_after() - Search the XArray for a present entry.
2040 * @xa: XArray.
2041 * @indexp: Pointer to an index.
2042 * @max: Maximum index to search to.
2043 * @filter: Selection criterion.
2044 *
2045 * Finds the entry in @xa which matches the @filter and has the lowest
2046 * index that is above @indexp and no more than @max.
2047 * If an entry is found, @indexp is updated to be the index of the entry.
2048 * This function is protected by the RCU read lock, so it may miss entries
2049 * which are being simultaneously added. It will not return an
2050 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2051 *
2052 * Context: Any context. Takes and releases the RCU lock.
2053 * Return: The pointer, if found, otherwise %NULL.
2054 */
2055 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2056 unsigned long max, xa_mark_t filter)
2057 {
2058 XA_STATE(xas, xa, *indexp + 1);
2059 void *entry;
2060
2061 if (xas.xa_index == 0)
2062 return NULL;
2063
2064 rcu_read_lock();
2065 for (;;) {
2066 if ((__force unsigned int)filter < XA_MAX_MARKS)
2067 entry = xas_find_marked(&xas, max, filter);
2068 else
2069 entry = xas_find(&xas, max);
2070
2071 if (xas_invalid(&xas))
2072 break;
2073 if (xas_sibling(&xas))
2074 continue;
2075 if (!xas_retry(&xas, entry))
2076 break;
2077 }
2078 rcu_read_unlock();
2079
2080 if (entry)
2081 *indexp = xas.xa_index;
2082 return entry;
2083 }
2084 EXPORT_SYMBOL(xa_find_after);
2085
2086 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2087 unsigned long max, unsigned int n)
2088 {
2089 void *entry;
2090 unsigned int i = 0;
2091
2092 rcu_read_lock();
2093 xas_for_each(xas, entry, max) {
2094 if (xas_retry(xas, entry))
2095 continue;
2096 dst[i++] = entry;
2097 if (i == n)
2098 break;
2099 }
2100 rcu_read_unlock();
2101
2102 return i;
2103 }
2104
2105 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2106 unsigned long max, unsigned int n, xa_mark_t mark)
2107 {
2108 void *entry;
2109 unsigned int i = 0;
2110
2111 rcu_read_lock();
2112 xas_for_each_marked(xas, entry, max, mark) {
2113 if (xas_retry(xas, entry))
2114 continue;
2115 dst[i++] = entry;
2116 if (i == n)
2117 break;
2118 }
2119 rcu_read_unlock();
2120
2121 return i;
2122 }
2123
2124 /**
2125 * xa_extract() - Copy selected entries from the XArray into a normal array.
2126 * @xa: The source XArray to copy from.
2127 * @dst: The buffer to copy entries into.
2128 * @start: The first index in the XArray eligible to be selected.
2129 * @max: The last index in the XArray eligible to be selected.
2130 * @n: The maximum number of entries to copy.
2131 * @filter: Selection criterion.
2132 *
2133 * Copies up to @n entries that match @filter from the XArray. The
2134 * copied entries will have indices between @start and @max, inclusive.
2135 *
2136 * The @filter may be an XArray mark value, in which case entries which are
2137 * marked with that mark will be copied. It may also be %XA_PRESENT, in
2138 * which case all entries which are not %NULL will be copied.
2139 *
2140 * The entries returned may not represent a snapshot of the XArray at a
2141 * moment in time. For example, if another thread stores to index 5, then
2142 * index 10, calling xa_extract() may return the old contents of index 5
2143 * and the new contents of index 10. Indices not modified while this
2144 * function is running will not be skipped.
2145 *
2146 * If you need stronger guarantees, holding the xa_lock across calls to this
2147 * function will prevent concurrent modification.
2148 *
2149 * Context: Any context. Takes and releases the RCU lock.
2150 * Return: The number of entries copied.
2151 */
2152 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2153 unsigned long max, unsigned int n, xa_mark_t filter)
2154 {
2155 XA_STATE(xas, xa, start);
2156
2157 if (!n)
2158 return 0;
2159
2160 if ((__force unsigned int)filter < XA_MAX_MARKS)
2161 return xas_extract_marked(&xas, dst, max, n, filter);
2162 return xas_extract_present(&xas, dst, max, n);
2163 }
2164 EXPORT_SYMBOL(xa_extract);
2165
2166 /**
2167 * xa_delete_node() - Private interface for workingset code.
2168 * @node: Node to be removed from the tree.
2169 * @update: Function to call to update ancestor nodes.
2170 *
2171 * Context: xa_lock must be held on entry and will not be released.
2172 */
2173 void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2174 {
2175 struct xa_state xas = {
2176 .xa = node->array,
2177 .xa_index = (unsigned long)node->offset <<
2178 (node->shift + XA_CHUNK_SHIFT),
2179 .xa_shift = node->shift + XA_CHUNK_SHIFT,
2180 .xa_offset = node->offset,
2181 .xa_node = xa_parent_locked(node->array, node),
2182 .xa_update = update,
2183 };
2184
2185 xas_store(&xas, NULL);
2186 }
2187 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */
2188
2189 /**
2190 * xa_destroy() - Free all internal data structures.
2191 * @xa: XArray.
2192 *
2193 * After calling this function, the XArray is empty and has freed all memory
2194 * allocated for its internal data structures. You are responsible for
2195 * freeing the objects referenced by the XArray.
2196 *
2197 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
2198 */
2199 void xa_destroy(struct xarray *xa)
2200 {
2201 XA_STATE(xas, xa, 0);
2202 unsigned long flags;
2203 void *entry;
2204
2205 xas.xa_node = NULL;
2206 xas_lock_irqsave(&xas, flags);
2207 entry = xa_head_locked(xa);
2208 RCU_INIT_POINTER(xa->xa_head, NULL);
2209 xas_init_marks(&xas);
2210 if (xa_zero_busy(xa))
2211 xa_mark_clear(xa, XA_FREE_MARK);
2212 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2213 if (xa_is_node(entry))
2214 xas_free_nodes(&xas, xa_to_node(entry));
2215 xas_unlock_irqrestore(&xas, flags);
2216 }
2217 EXPORT_SYMBOL(xa_destroy);
2218
2219 #ifdef XA_DEBUG
2220 void xa_dump_node(const struct xa_node *node)
2221 {
2222 unsigned i, j;
2223
2224 if (!node)
2225 return;
2226 if ((unsigned long)node & 3) {
2227 pr_cont("node %px\n", node);
2228 return;
2229 }
2230
2231 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2232 "array %px list %px %px marks",
2233 node, node->parent ? "offset" : "max", node->offset,
2234 node->parent, node->shift, node->count, node->nr_values,
2235 node->array, node->private_list.prev, node->private_list.next);
2236 for (i = 0; i < XA_MAX_MARKS; i++)
2237 for (j = 0; j < XA_MARK_LONGS; j++)
2238 pr_cont(" %lx", node->marks[i][j]);
2239 pr_cont("\n");
2240 }
2241
2242 void xa_dump_index(unsigned long index, unsigned int shift)
2243 {
2244 if (!shift)
2245 pr_info("%lu: ", index);
2246 else if (shift >= BITS_PER_LONG)
2247 pr_info("0-%lu: ", ~0UL);
2248 else
2249 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2250 }
2251
2252 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2253 {
2254 if (!entry)
2255 return;
2256
2257 xa_dump_index(index, shift);
2258
2259 if (xa_is_node(entry)) {
2260 if (shift == 0) {
2261 pr_cont("%px\n", entry);
2262 } else {
2263 unsigned long i;
2264 struct xa_node *node = xa_to_node(entry);
2265 xa_dump_node(node);
2266 for (i = 0; i < XA_CHUNK_SIZE; i++)
2267 xa_dump_entry(node->slots[i],
2268 index + (i << node->shift), node->shift);
2269 }
2270 } else if (xa_is_value(entry))
2271 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2272 xa_to_value(entry), entry);
2273 else if (!xa_is_internal(entry))
2274 pr_cont("%px\n", entry);
2275 else if (xa_is_retry(entry))
2276 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2277 else if (xa_is_sibling(entry))
2278 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2279 else if (xa_is_zero(entry))
2280 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2281 else
2282 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2283 }
2284
2285 void xa_dump(const struct xarray *xa)
2286 {
2287 void *entry = xa->xa_head;
2288 unsigned int shift = 0;
2289
2290 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2291 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2292 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2293 if (xa_is_node(entry))
2294 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2295 xa_dump_entry(entry, 0, shift);
2296 }
2297 #endif