]> git.proxmox.com Git - rustc.git/blob - library/alloc/src/raw_vec.rs
New upstream version 1.54.0+dfsg1
[rustc.git] / library / alloc / src / raw_vec.rs
1 #![unstable(feature = "raw_vec_internals", reason = "implementation detail", issue = "none")]
2 #![doc(hidden)]
3
4 use core::alloc::LayoutError;
5 use core::cmp;
6 use core::intrinsics;
7 use core::mem::{self, ManuallyDrop, MaybeUninit};
8 use core::ops::Drop;
9 use core::ptr::{self, NonNull, Unique};
10 use core::slice;
11
12 #[cfg(not(no_global_oom_handling))]
13 use crate::alloc::handle_alloc_error;
14 use crate::alloc::{Allocator, Global, Layout};
15 use crate::boxed::Box;
16 use crate::collections::TryReserveError::{self, *};
17
18 #[cfg(test)]
19 mod tests;
20
21 #[cfg(not(no_global_oom_handling))]
22 enum AllocInit {
23 /// The contents of the new memory are uninitialized.
24 Uninitialized,
25 /// The new memory is guaranteed to be zeroed.
26 Zeroed,
27 }
28
29 /// A low-level utility for more ergonomically allocating, reallocating, and deallocating
30 /// a buffer of memory on the heap without having to worry about all the corner cases
31 /// involved. This type is excellent for building your own data structures like Vec and VecDeque.
32 /// In particular:
33 ///
34 /// * Produces `Unique::dangling()` on zero-sized types.
35 /// * Produces `Unique::dangling()` on zero-length allocations.
36 /// * Avoids freeing `Unique::dangling()`.
37 /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
38 /// * Guards against 32-bit systems allocating more than isize::MAX bytes.
39 /// * Guards against overflowing your length.
40 /// * Calls `handle_alloc_error` for fallible allocations.
41 /// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
42 /// * Uses the excess returned from the allocator to use the largest available capacity.
43 ///
44 /// This type does not in anyway inspect the memory that it manages. When dropped it *will*
45 /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
46 /// to handle the actual things *stored* inside of a `RawVec`.
47 ///
48 /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
49 /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
50 /// `Box<[T]>`, since `capacity()` won't yield the length.
51 #[allow(missing_debug_implementations)]
52 pub struct RawVec<T, A: Allocator = Global> {
53 ptr: Unique<T>,
54 cap: usize,
55 alloc: A,
56 }
57
58 impl<T> RawVec<T, Global> {
59 /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so
60 /// they cannot call `Self::new()`.
61 ///
62 /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything
63 /// that would truly const-call something unstable.
64 pub const NEW: Self = Self::new();
65
66 /// Creates the biggest possible `RawVec` (on the system heap)
67 /// without allocating. If `T` has positive size, then this makes a
68 /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
69 /// `RawVec` with capacity `usize::MAX`. Useful for implementing
70 /// delayed allocation.
71 pub const fn new() -> Self {
72 Self::new_in(Global)
73 }
74
75 /// Creates a `RawVec` (on the system heap) with exactly the
76 /// capacity and alignment requirements for a `[T; capacity]`. This is
77 /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
78 /// zero-sized. Note that if `T` is zero-sized this means you will
79 /// *not* get a `RawVec` with the requested capacity.
80 ///
81 /// # Panics
82 ///
83 /// Panics if the requested capacity exceeds `isize::MAX` bytes.
84 ///
85 /// # Aborts
86 ///
87 /// Aborts on OOM.
88 #[cfg(not(no_global_oom_handling))]
89 #[inline]
90 pub fn with_capacity(capacity: usize) -> Self {
91 Self::with_capacity_in(capacity, Global)
92 }
93
94 /// Like `with_capacity`, but guarantees the buffer is zeroed.
95 #[cfg(not(no_global_oom_handling))]
96 #[inline]
97 pub fn with_capacity_zeroed(capacity: usize) -> Self {
98 Self::with_capacity_zeroed_in(capacity, Global)
99 }
100
101 /// Reconstitutes a `RawVec` from a pointer and capacity.
102 ///
103 /// # Safety
104 ///
105 /// The `ptr` must be allocated (on the system heap), and with the given `capacity`.
106 /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
107 /// systems). ZST vectors may have a capacity up to `usize::MAX`.
108 /// If the `ptr` and `capacity` come from a `RawVec`, then this is guaranteed.
109 #[inline]
110 pub unsafe fn from_raw_parts(ptr: *mut T, capacity: usize) -> Self {
111 unsafe { Self::from_raw_parts_in(ptr, capacity, Global) }
112 }
113 }
114
115 impl<T, A: Allocator> RawVec<T, A> {
116 // Tiny Vecs are dumb. Skip to:
117 // - 8 if the element size is 1, because any heap allocators is likely
118 // to round up a request of less than 8 bytes to at least 8 bytes.
119 // - 4 if elements are moderate-sized (<= 1 KiB).
120 // - 1 otherwise, to avoid wasting too much space for very short Vecs.
121 const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
122 8
123 } else if mem::size_of::<T>() <= 1024 {
124 4
125 } else {
126 1
127 };
128
129 /// Like `new`, but parameterized over the choice of allocator for
130 /// the returned `RawVec`.
131 #[rustc_allow_const_fn_unstable(const_fn)]
132 pub const fn new_in(alloc: A) -> Self {
133 // `cap: 0` means "unallocated". zero-sized types are ignored.
134 Self { ptr: Unique::dangling(), cap: 0, alloc }
135 }
136
137 /// Like `with_capacity`, but parameterized over the choice of
138 /// allocator for the returned `RawVec`.
139 #[cfg(not(no_global_oom_handling))]
140 #[inline]
141 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
142 Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
143 }
144
145 /// Like `with_capacity_zeroed`, but parameterized over the choice
146 /// of allocator for the returned `RawVec`.
147 #[cfg(not(no_global_oom_handling))]
148 #[inline]
149 pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
150 Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
151 }
152
153 /// Converts a `Box<[T]>` into a `RawVec<T>`.
154 pub fn from_box(slice: Box<[T], A>) -> Self {
155 unsafe {
156 let (slice, alloc) = Box::into_raw_with_allocator(slice);
157 RawVec::from_raw_parts_in(slice.as_mut_ptr(), slice.len(), alloc)
158 }
159 }
160
161 /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
162 ///
163 /// Note that this will correctly reconstitute any `cap` changes
164 /// that may have been performed. (See description of type for details.)
165 ///
166 /// # Safety
167 ///
168 /// * `len` must be greater than or equal to the most recently requested capacity, and
169 /// * `len` must be less than or equal to `self.capacity()`.
170 ///
171 /// Note, that the requested capacity and `self.capacity()` could differ, as
172 /// an allocator could overallocate and return a greater memory block than requested.
173 pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
174 // Sanity-check one half of the safety requirement (we cannot check the other half).
175 debug_assert!(
176 len <= self.capacity(),
177 "`len` must be smaller than or equal to `self.capacity()`"
178 );
179
180 let me = ManuallyDrop::new(self);
181 unsafe {
182 let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
183 Box::from_raw_in(slice, ptr::read(&me.alloc))
184 }
185 }
186
187 #[cfg(not(no_global_oom_handling))]
188 fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
189 if mem::size_of::<T>() == 0 {
190 Self::new_in(alloc)
191 } else {
192 // We avoid `unwrap_or_else` here because it bloats the amount of
193 // LLVM IR generated.
194 let layout = match Layout::array::<T>(capacity) {
195 Ok(layout) => layout,
196 Err(_) => capacity_overflow(),
197 };
198 match alloc_guard(layout.size()) {
199 Ok(_) => {}
200 Err(_) => capacity_overflow(),
201 }
202 let result = match init {
203 AllocInit::Uninitialized => alloc.allocate(layout),
204 AllocInit::Zeroed => alloc.allocate_zeroed(layout),
205 };
206 let ptr = match result {
207 Ok(ptr) => ptr,
208 Err(_) => handle_alloc_error(layout),
209 };
210
211 Self {
212 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
213 cap: Self::capacity_from_bytes(ptr.len()),
214 alloc,
215 }
216 }
217 }
218
219 /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
220 ///
221 /// # Safety
222 ///
223 /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
224 /// `capacity`.
225 /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
226 /// systems). ZST vectors may have a capacity up to `usize::MAX`.
227 /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
228 /// guaranteed.
229 #[inline]
230 pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
231 Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
232 }
233
234 /// Gets a raw pointer to the start of the allocation. Note that this is
235 /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
236 /// be careful.
237 #[inline]
238 pub fn ptr(&self) -> *mut T {
239 self.ptr.as_ptr()
240 }
241
242 /// Gets the capacity of the allocation.
243 ///
244 /// This will always be `usize::MAX` if `T` is zero-sized.
245 #[inline(always)]
246 pub fn capacity(&self) -> usize {
247 if mem::size_of::<T>() == 0 { usize::MAX } else { self.cap }
248 }
249
250 /// Returns a shared reference to the allocator backing this `RawVec`.
251 pub fn allocator(&self) -> &A {
252 &self.alloc
253 }
254
255 fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
256 if mem::size_of::<T>() == 0 || self.cap == 0 {
257 None
258 } else {
259 // We have an allocated chunk of memory, so we can bypass runtime
260 // checks to get our current layout.
261 unsafe {
262 let align = mem::align_of::<T>();
263 let size = mem::size_of::<T>() * self.cap;
264 let layout = Layout::from_size_align_unchecked(size, align);
265 Some((self.ptr.cast().into(), layout))
266 }
267 }
268 }
269
270 /// Ensures that the buffer contains at least enough space to hold `len +
271 /// additional` elements. If it doesn't already have enough capacity, will
272 /// reallocate enough space plus comfortable slack space to get amortized
273 /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
274 /// itself to panic.
275 ///
276 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
277 /// the requested space. This is not really unsafe, but the unsafe
278 /// code *you* write that relies on the behavior of this function may break.
279 ///
280 /// This is ideal for implementing a bulk-push operation like `extend`.
281 ///
282 /// # Panics
283 ///
284 /// Panics if the new capacity exceeds `isize::MAX` bytes.
285 ///
286 /// # Aborts
287 ///
288 /// Aborts on OOM.
289 ///
290 /// # Examples
291 ///
292 /// ```
293 /// # #![feature(raw_vec_internals)]
294 /// # extern crate alloc;
295 /// # use std::ptr;
296 /// # use alloc::raw_vec::RawVec;
297 /// struct MyVec<T> {
298 /// buf: RawVec<T>,
299 /// len: usize,
300 /// }
301 ///
302 /// impl<T: Clone> MyVec<T> {
303 /// pub fn push_all(&mut self, elems: &[T]) {
304 /// self.buf.reserve(self.len, elems.len());
305 /// // reserve would have aborted or panicked if the len exceeded
306 /// // `isize::MAX` so this is safe to do unchecked now.
307 /// for x in elems {
308 /// unsafe {
309 /// ptr::write(self.buf.ptr().add(self.len), x.clone());
310 /// }
311 /// self.len += 1;
312 /// }
313 /// }
314 /// }
315 /// # fn main() {
316 /// # let mut vector = MyVec { buf: RawVec::new(), len: 0 };
317 /// # vector.push_all(&[1, 3, 5, 7, 9]);
318 /// # }
319 /// ```
320 #[cfg(not(no_global_oom_handling))]
321 #[inline]
322 pub fn reserve(&mut self, len: usize, additional: usize) {
323 // Callers expect this function to be very cheap when there is already sufficient capacity.
324 // Therefore, we move all the resizing and error-handling logic from grow_amortized and
325 // handle_reserve behind a call, while making sure that the this function is likely to be
326 // inlined as just a comparison and a call if the comparison fails.
327 #[cold]
328 fn do_reserve_and_handle<T, A: Allocator>(
329 slf: &mut RawVec<T, A>,
330 len: usize,
331 additional: usize,
332 ) {
333 handle_reserve(slf.grow_amortized(len, additional));
334 }
335
336 if self.needs_to_grow(len, additional) {
337 do_reserve_and_handle(self, len, additional);
338 }
339 }
340
341 /// The same as `reserve`, but returns on errors instead of panicking or aborting.
342 pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
343 if self.needs_to_grow(len, additional) {
344 self.grow_amortized(len, additional)
345 } else {
346 Ok(())
347 }
348 }
349
350 /// Ensures that the buffer contains at least enough space to hold `len +
351 /// additional` elements. If it doesn't already, will reallocate the
352 /// minimum possible amount of memory necessary. Generally this will be
353 /// exactly the amount of memory necessary, but in principle the allocator
354 /// is free to give back more than we asked for.
355 ///
356 /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
357 /// the requested space. This is not really unsafe, but the unsafe code
358 /// *you* write that relies on the behavior of this function may break.
359 ///
360 /// # Panics
361 ///
362 /// Panics if the new capacity exceeds `isize::MAX` bytes.
363 ///
364 /// # Aborts
365 ///
366 /// Aborts on OOM.
367 #[cfg(not(no_global_oom_handling))]
368 pub fn reserve_exact(&mut self, len: usize, additional: usize) {
369 handle_reserve(self.try_reserve_exact(len, additional));
370 }
371
372 /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
373 pub fn try_reserve_exact(
374 &mut self,
375 len: usize,
376 additional: usize,
377 ) -> Result<(), TryReserveError> {
378 if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
379 }
380
381 /// Shrinks the allocation down to the specified amount. If the given amount
382 /// is 0, actually completely deallocates.
383 ///
384 /// # Panics
385 ///
386 /// Panics if the given amount is *larger* than the current capacity.
387 ///
388 /// # Aborts
389 ///
390 /// Aborts on OOM.
391 #[cfg(not(no_global_oom_handling))]
392 pub fn shrink_to_fit(&mut self, amount: usize) {
393 handle_reserve(self.shrink(amount));
394 }
395 }
396
397 impl<T, A: Allocator> RawVec<T, A> {
398 /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
399 /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
400 fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
401 additional > self.capacity().wrapping_sub(len)
402 }
403
404 fn capacity_from_bytes(excess: usize) -> usize {
405 debug_assert_ne!(mem::size_of::<T>(), 0);
406 excess / mem::size_of::<T>()
407 }
408
409 fn set_ptr(&mut self, ptr: NonNull<[u8]>) {
410 self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
411 self.cap = Self::capacity_from_bytes(ptr.len());
412 }
413
414 // This method is usually instantiated many times. So we want it to be as
415 // small as possible, to improve compile times. But we also want as much of
416 // its contents to be statically computable as possible, to make the
417 // generated code run faster. Therefore, this method is carefully written
418 // so that all of the code that depends on `T` is within it, while as much
419 // of the code that doesn't depend on `T` as possible is in functions that
420 // are non-generic over `T`.
421 fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
422 // This is ensured by the calling contexts.
423 debug_assert!(additional > 0);
424
425 if mem::size_of::<T>() == 0 {
426 // Since we return a capacity of `usize::MAX` when `elem_size` is
427 // 0, getting to here necessarily means the `RawVec` is overfull.
428 return Err(CapacityOverflow);
429 }
430
431 // Nothing we can really do about these checks, sadly.
432 let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
433
434 // This guarantees exponential growth. The doubling cannot overflow
435 // because `cap <= isize::MAX` and the type of `cap` is `usize`.
436 let cap = cmp::max(self.cap * 2, required_cap);
437 let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
438
439 let new_layout = Layout::array::<T>(cap);
440
441 // `finish_grow` is non-generic over `T`.
442 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
443 self.set_ptr(ptr);
444 Ok(())
445 }
446
447 // The constraints on this method are much the same as those on
448 // `grow_amortized`, but this method is usually instantiated less often so
449 // it's less critical.
450 fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
451 if mem::size_of::<T>() == 0 {
452 // Since we return a capacity of `usize::MAX` when the type size is
453 // 0, getting to here necessarily means the `RawVec` is overfull.
454 return Err(CapacityOverflow);
455 }
456
457 let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
458 let new_layout = Layout::array::<T>(cap);
459
460 // `finish_grow` is non-generic over `T`.
461 let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
462 self.set_ptr(ptr);
463 Ok(())
464 }
465
466 #[cfg(not(no_global_oom_handling))]
467 fn shrink(&mut self, amount: usize) -> Result<(), TryReserveError> {
468 assert!(amount <= self.capacity(), "Tried to shrink to a larger capacity");
469
470 let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
471 let new_size = amount * mem::size_of::<T>();
472
473 let ptr = unsafe {
474 let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
475 self.alloc.shrink(ptr, layout, new_layout).map_err(|_| TryReserveError::AllocError {
476 layout: new_layout,
477 non_exhaustive: (),
478 })?
479 };
480 self.set_ptr(ptr);
481 Ok(())
482 }
483 }
484
485 // This function is outside `RawVec` to minimize compile times. See the comment
486 // above `RawVec::grow_amortized` for details. (The `A` parameter isn't
487 // significant, because the number of different `A` types seen in practice is
488 // much smaller than the number of `T` types.)
489 #[inline(never)]
490 fn finish_grow<A>(
491 new_layout: Result<Layout, LayoutError>,
492 current_memory: Option<(NonNull<u8>, Layout)>,
493 alloc: &mut A,
494 ) -> Result<NonNull<[u8]>, TryReserveError>
495 where
496 A: Allocator,
497 {
498 // Check for the error here to minimize the size of `RawVec::grow_*`.
499 let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
500
501 alloc_guard(new_layout.size())?;
502
503 let memory = if let Some((ptr, old_layout)) = current_memory {
504 debug_assert_eq!(old_layout.align(), new_layout.align());
505 unsafe {
506 // The allocator checks for alignment equality
507 intrinsics::assume(old_layout.align() == new_layout.align());
508 alloc.grow(ptr, old_layout, new_layout)
509 }
510 } else {
511 alloc.allocate(new_layout)
512 };
513
514 memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })
515 }
516
517 unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
518 /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
519 fn drop(&mut self) {
520 if let Some((ptr, layout)) = self.current_memory() {
521 unsafe { self.alloc.deallocate(ptr, layout) }
522 }
523 }
524 }
525
526 // Central function for reserve error handling.
527 #[cfg(not(no_global_oom_handling))]
528 #[inline]
529 fn handle_reserve(result: Result<(), TryReserveError>) {
530 match result {
531 Err(CapacityOverflow) => capacity_overflow(),
532 Err(AllocError { layout, .. }) => handle_alloc_error(layout),
533 Ok(()) => { /* yay */ }
534 }
535 }
536
537 // We need to guarantee the following:
538 // * We don't ever allocate `> isize::MAX` byte-size objects.
539 // * We don't overflow `usize::MAX` and actually allocate too little.
540 //
541 // On 64-bit we just need to check for overflow since trying to allocate
542 // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
543 // an extra guard for this in case we're running on a platform which can use
544 // all 4GB in user-space, e.g., PAE or x32.
545
546 #[inline]
547 fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
548 if usize::BITS < 64 && alloc_size > isize::MAX as usize {
549 Err(CapacityOverflow)
550 } else {
551 Ok(())
552 }
553 }
554
555 // One central function responsible for reporting capacity overflows. This'll
556 // ensure that the code generation related to these panics is minimal as there's
557 // only one location which panics rather than a bunch throughout the module.
558 #[cfg(not(no_global_oom_handling))]
559 fn capacity_overflow() -> ! {
560 panic!("capacity overflow");
561 }