]> git.proxmox.com Git - rustc.git/blob - library/alloc/src/slice.rs
New upstream version 1.58.1+dfsg1
[rustc.git] / library / alloc / src / slice.rs
1 //! A dynamically-sized view into a contiguous sequence, `[T]`.
2 //!
3 //! *[See also the slice primitive type](slice).*
4 //!
5 //! Slices are a view into a block of memory represented as a pointer and a
6 //! length.
7 //!
8 //! ```
9 //! // slicing a Vec
10 //! let vec = vec![1, 2, 3];
11 //! let int_slice = &vec[..];
12 //! // coercing an array to a slice
13 //! let str_slice: &[&str] = &["one", "two", "three"];
14 //! ```
15 //!
16 //! Slices are either mutable or shared. The shared slice type is `&[T]`,
17 //! while the mutable slice type is `&mut [T]`, where `T` represents the element
18 //! type. For example, you can mutate the block of memory that a mutable slice
19 //! points to:
20 //!
21 //! ```
22 //! let x = &mut [1, 2, 3];
23 //! x[1] = 7;
24 //! assert_eq!(x, &[1, 7, 3]);
25 //! ```
26 //!
27 //! Here are some of the things this module contains:
28 //!
29 //! ## Structs
30 //!
31 //! There are several structs that are useful for slices, such as [`Iter`], which
32 //! represents iteration over a slice.
33 //!
34 //! ## Trait Implementations
35 //!
36 //! There are several implementations of common traits for slices. Some examples
37 //! include:
38 //!
39 //! * [`Clone`]
40 //! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`].
41 //! * [`Hash`] - for slices whose element type is [`Hash`].
42 //!
43 //! ## Iteration
44 //!
45 //! The slices implement `IntoIterator`. The iterator yields references to the
46 //! slice elements.
47 //!
48 //! ```
49 //! let numbers = &[0, 1, 2];
50 //! for n in numbers {
51 //! println!("{} is a number!", n);
52 //! }
53 //! ```
54 //!
55 //! The mutable slice yields mutable references to the elements:
56 //!
57 //! ```
58 //! let mut scores = [7, 8, 9];
59 //! for score in &mut scores[..] {
60 //! *score += 1;
61 //! }
62 //! ```
63 //!
64 //! This iterator yields mutable references to the slice's elements, so while
65 //! the element type of the slice is `i32`, the element type of the iterator is
66 //! `&mut i32`.
67 //!
68 //! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default
69 //! iterators.
70 //! * Further methods that return iterators are [`.split`], [`.splitn`],
71 //! [`.chunks`], [`.windows`] and more.
72 //!
73 //! [`Hash`]: core::hash::Hash
74 //! [`.iter`]: slice::iter
75 //! [`.iter_mut`]: slice::iter_mut
76 //! [`.split`]: slice::split
77 //! [`.splitn`]: slice::splitn
78 //! [`.chunks`]: slice::chunks
79 //! [`.windows`]: slice::windows
80 #![stable(feature = "rust1", since = "1.0.0")]
81 // Many of the usings in this module are only used in the test configuration.
82 // It's cleaner to just turn off the unused_imports warning than to fix them.
83 #![cfg_attr(test, allow(unused_imports, dead_code))]
84
85 use core::borrow::{Borrow, BorrowMut};
86 #[cfg(not(no_global_oom_handling))]
87 use core::cmp::Ordering::{self, Less};
88 #[cfg(not(no_global_oom_handling))]
89 use core::mem;
90 #[cfg(not(no_global_oom_handling))]
91 use core::mem::size_of;
92 #[cfg(not(no_global_oom_handling))]
93 use core::ptr;
94
95 use crate::alloc::Allocator;
96 #[cfg(not(no_global_oom_handling))]
97 use crate::alloc::Global;
98 #[cfg(not(no_global_oom_handling))]
99 use crate::borrow::ToOwned;
100 use crate::boxed::Box;
101 use crate::vec::Vec;
102
103 #[unstable(feature = "slice_range", issue = "76393")]
104 pub use core::slice::range;
105 #[unstable(feature = "array_chunks", issue = "74985")]
106 pub use core::slice::ArrayChunks;
107 #[unstable(feature = "array_chunks", issue = "74985")]
108 pub use core::slice::ArrayChunksMut;
109 #[unstable(feature = "array_windows", issue = "75027")]
110 pub use core::slice::ArrayWindows;
111 #[unstable(feature = "inherent_ascii_escape", issue = "77174")]
112 pub use core::slice::EscapeAscii;
113 #[stable(feature = "slice_get_slice", since = "1.28.0")]
114 pub use core::slice::SliceIndex;
115 #[stable(feature = "from_ref", since = "1.28.0")]
116 pub use core::slice::{from_mut, from_ref};
117 #[stable(feature = "rust1", since = "1.0.0")]
118 pub use core::slice::{from_raw_parts, from_raw_parts_mut};
119 #[stable(feature = "rust1", since = "1.0.0")]
120 pub use core::slice::{Chunks, Windows};
121 #[stable(feature = "chunks_exact", since = "1.31.0")]
122 pub use core::slice::{ChunksExact, ChunksExactMut};
123 #[stable(feature = "rust1", since = "1.0.0")]
124 pub use core::slice::{ChunksMut, Split, SplitMut};
125 #[unstable(feature = "slice_group_by", issue = "80552")]
126 pub use core::slice::{GroupBy, GroupByMut};
127 #[stable(feature = "rust1", since = "1.0.0")]
128 pub use core::slice::{Iter, IterMut};
129 #[stable(feature = "rchunks", since = "1.31.0")]
130 pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
131 #[stable(feature = "slice_rsplit", since = "1.27.0")]
132 pub use core::slice::{RSplit, RSplitMut};
133 #[stable(feature = "rust1", since = "1.0.0")]
134 pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
135 #[stable(feature = "split_inclusive", since = "1.51.0")]
136 pub use core::slice::{SplitInclusive, SplitInclusiveMut};
137
138 ////////////////////////////////////////////////////////////////////////////////
139 // Basic slice extension methods
140 ////////////////////////////////////////////////////////////////////////////////
141
142 // HACK(japaric) needed for the implementation of `vec!` macro during testing
143 // N.B., see the `hack` module in this file for more details.
144 #[cfg(test)]
145 pub use hack::into_vec;
146
147 // HACK(japaric) needed for the implementation of `Vec::clone` during testing
148 // N.B., see the `hack` module in this file for more details.
149 #[cfg(test)]
150 pub use hack::to_vec;
151
152 // HACK(japaric): With cfg(test) `impl [T]` is not available, these three
153 // functions are actually methods that are in `impl [T]` but not in
154 // `core::slice::SliceExt` - we need to supply these functions for the
155 // `test_permutations` test
156 mod hack {
157 use core::alloc::Allocator;
158
159 use crate::boxed::Box;
160 use crate::vec::Vec;
161
162 // We shouldn't add inline attribute to this since this is used in
163 // `vec!` macro mostly and causes perf regression. See #71204 for
164 // discussion and perf results.
165 pub fn into_vec<T, A: Allocator>(b: Box<[T], A>) -> Vec<T, A> {
166 unsafe {
167 let len = b.len();
168 let (b, alloc) = Box::into_raw_with_allocator(b);
169 Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
170 }
171 }
172
173 #[cfg(not(no_global_oom_handling))]
174 #[inline]
175 pub fn to_vec<T: ConvertVec, A: Allocator>(s: &[T], alloc: A) -> Vec<T, A> {
176 T::to_vec(s, alloc)
177 }
178
179 #[cfg(not(no_global_oom_handling))]
180 pub trait ConvertVec {
181 fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
182 where
183 Self: Sized;
184 }
185
186 #[cfg(not(no_global_oom_handling))]
187 impl<T: Clone> ConvertVec for T {
188 #[inline]
189 default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
190 struct DropGuard<'a, T, A: Allocator> {
191 vec: &'a mut Vec<T, A>,
192 num_init: usize,
193 }
194 impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
195 #[inline]
196 fn drop(&mut self) {
197 // SAFETY:
198 // items were marked initialized in the loop below
199 unsafe {
200 self.vec.set_len(self.num_init);
201 }
202 }
203 }
204 let mut vec = Vec::with_capacity_in(s.len(), alloc);
205 let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
206 let slots = guard.vec.spare_capacity_mut();
207 // .take(slots.len()) is necessary for LLVM to remove bounds checks
208 // and has better codegen than zip.
209 for (i, b) in s.iter().enumerate().take(slots.len()) {
210 guard.num_init = i;
211 slots[i].write(b.clone());
212 }
213 core::mem::forget(guard);
214 // SAFETY:
215 // the vec was allocated and initialized above to at least this length.
216 unsafe {
217 vec.set_len(s.len());
218 }
219 vec
220 }
221 }
222
223 #[cfg(not(no_global_oom_handling))]
224 impl<T: Copy> ConvertVec for T {
225 #[inline]
226 fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
227 let mut v = Vec::with_capacity_in(s.len(), alloc);
228 // SAFETY:
229 // allocated above with the capacity of `s`, and initialize to `s.len()` in
230 // ptr::copy_to_non_overlapping below.
231 unsafe {
232 s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len());
233 v.set_len(s.len());
234 }
235 v
236 }
237 }
238 }
239
240 #[lang = "slice_alloc"]
241 #[cfg(not(test))]
242 impl<T> [T] {
243 /// Sorts the slice.
244 ///
245 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
246 ///
247 /// When applicable, unstable sorting is preferred because it is generally faster than stable
248 /// sorting and it doesn't allocate auxiliary memory.
249 /// See [`sort_unstable`](slice::sort_unstable).
250 ///
251 /// # Current implementation
252 ///
253 /// The current algorithm is an adaptive, iterative merge sort inspired by
254 /// [timsort](https://en.wikipedia.org/wiki/Timsort).
255 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
256 /// two or more sorted sequences concatenated one after another.
257 ///
258 /// Also, it allocates temporary storage half the size of `self`, but for short slices a
259 /// non-allocating insertion sort is used instead.
260 ///
261 /// # Examples
262 ///
263 /// ```
264 /// let mut v = [-5, 4, 1, -3, 2];
265 ///
266 /// v.sort();
267 /// assert!(v == [-5, -3, 1, 2, 4]);
268 /// ```
269 #[cfg(not(no_global_oom_handling))]
270 #[stable(feature = "rust1", since = "1.0.0")]
271 #[inline]
272 pub fn sort(&mut self)
273 where
274 T: Ord,
275 {
276 merge_sort(self, |a, b| a.lt(b));
277 }
278
279 /// Sorts the slice with a comparator function.
280 ///
281 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
282 ///
283 /// The comparator function must define a total ordering for the elements in the slice. If
284 /// the ordering is not total, the order of the elements is unspecified. An order is a
285 /// total order if it is (for all `a`, `b` and `c`):
286 ///
287 /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
288 /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
289 ///
290 /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
291 /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
292 ///
293 /// ```
294 /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
295 /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap());
296 /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
297 /// ```
298 ///
299 /// When applicable, unstable sorting is preferred because it is generally faster than stable
300 /// sorting and it doesn't allocate auxiliary memory.
301 /// See [`sort_unstable_by`](slice::sort_unstable_by).
302 ///
303 /// # Current implementation
304 ///
305 /// The current algorithm is an adaptive, iterative merge sort inspired by
306 /// [timsort](https://en.wikipedia.org/wiki/Timsort).
307 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
308 /// two or more sorted sequences concatenated one after another.
309 ///
310 /// Also, it allocates temporary storage half the size of `self`, but for short slices a
311 /// non-allocating insertion sort is used instead.
312 ///
313 /// # Examples
314 ///
315 /// ```
316 /// let mut v = [5, 4, 1, 3, 2];
317 /// v.sort_by(|a, b| a.cmp(b));
318 /// assert!(v == [1, 2, 3, 4, 5]);
319 ///
320 /// // reverse sorting
321 /// v.sort_by(|a, b| b.cmp(a));
322 /// assert!(v == [5, 4, 3, 2, 1]);
323 /// ```
324 #[cfg(not(no_global_oom_handling))]
325 #[stable(feature = "rust1", since = "1.0.0")]
326 #[inline]
327 pub fn sort_by<F>(&mut self, mut compare: F)
328 where
329 F: FnMut(&T, &T) -> Ordering,
330 {
331 merge_sort(self, |a, b| compare(a, b) == Less);
332 }
333
334 /// Sorts the slice with a key extraction function.
335 ///
336 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
337 /// worst-case, where the key function is *O*(*m*).
338 ///
339 /// For expensive key functions (e.g. functions that are not simple property accesses or
340 /// basic operations), [`sort_by_cached_key`](slice::sort_by_cached_key) is likely to be
341 /// significantly faster, as it does not recompute element keys.
342 ///
343 /// When applicable, unstable sorting is preferred because it is generally faster than stable
344 /// sorting and it doesn't allocate auxiliary memory.
345 /// See [`sort_unstable_by_key`](slice::sort_unstable_by_key).
346 ///
347 /// # Current implementation
348 ///
349 /// The current algorithm is an adaptive, iterative merge sort inspired by
350 /// [timsort](https://en.wikipedia.org/wiki/Timsort).
351 /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
352 /// two or more sorted sequences concatenated one after another.
353 ///
354 /// Also, it allocates temporary storage half the size of `self`, but for short slices a
355 /// non-allocating insertion sort is used instead.
356 ///
357 /// # Examples
358 ///
359 /// ```
360 /// let mut v = [-5i32, 4, 1, -3, 2];
361 ///
362 /// v.sort_by_key(|k| k.abs());
363 /// assert!(v == [1, 2, -3, 4, -5]);
364 /// ```
365 #[cfg(not(no_global_oom_handling))]
366 #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
367 #[inline]
368 pub fn sort_by_key<K, F>(&mut self, mut f: F)
369 where
370 F: FnMut(&T) -> K,
371 K: Ord,
372 {
373 merge_sort(self, |a, b| f(a).lt(&f(b)));
374 }
375
376 /// Sorts the slice with a key extraction function.
377 ///
378 /// During sorting, the key function is called only once per element.
379 ///
380 /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*))
381 /// worst-case, where the key function is *O*(*m*).
382 ///
383 /// For simple key functions (e.g., functions that are property accesses or
384 /// basic operations), [`sort_by_key`](slice::sort_by_key) is likely to be
385 /// faster.
386 ///
387 /// # Current implementation
388 ///
389 /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
390 /// which combines the fast average case of randomized quicksort with the fast worst case of
391 /// heapsort, while achieving linear time on slices with certain patterns. It uses some
392 /// randomization to avoid degenerate cases, but with a fixed seed to always provide
393 /// deterministic behavior.
394 ///
395 /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
396 /// length of the slice.
397 ///
398 /// # Examples
399 ///
400 /// ```
401 /// let mut v = [-5i32, 4, 32, -3, 2];
402 ///
403 /// v.sort_by_cached_key(|k| k.to_string());
404 /// assert!(v == [-3, -5, 2, 32, 4]);
405 /// ```
406 ///
407 /// [pdqsort]: https://github.com/orlp/pdqsort
408 #[cfg(not(no_global_oom_handling))]
409 #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
410 #[inline]
411 pub fn sort_by_cached_key<K, F>(&mut self, f: F)
412 where
413 F: FnMut(&T) -> K,
414 K: Ord,
415 {
416 // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
417 macro_rules! sort_by_key {
418 ($t:ty, $slice:ident, $f:ident) => {{
419 let mut indices: Vec<_> =
420 $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
421 // The elements of `indices` are unique, as they are indexed, so any sort will be
422 // stable with respect to the original slice. We use `sort_unstable` here because
423 // it requires less memory allocation.
424 indices.sort_unstable();
425 for i in 0..$slice.len() {
426 let mut index = indices[i].1;
427 while (index as usize) < i {
428 index = indices[index as usize].1;
429 }
430 indices[i].1 = index;
431 $slice.swap(i, index as usize);
432 }
433 }};
434 }
435
436 let sz_u8 = mem::size_of::<(K, u8)>();
437 let sz_u16 = mem::size_of::<(K, u16)>();
438 let sz_u32 = mem::size_of::<(K, u32)>();
439 let sz_usize = mem::size_of::<(K, usize)>();
440
441 let len = self.len();
442 if len < 2 {
443 return;
444 }
445 if sz_u8 < sz_u16 && len <= (u8::MAX as usize) {
446 return sort_by_key!(u8, self, f);
447 }
448 if sz_u16 < sz_u32 && len <= (u16::MAX as usize) {
449 return sort_by_key!(u16, self, f);
450 }
451 if sz_u32 < sz_usize && len <= (u32::MAX as usize) {
452 return sort_by_key!(u32, self, f);
453 }
454 sort_by_key!(usize, self, f)
455 }
456
457 /// Copies `self` into a new `Vec`.
458 ///
459 /// # Examples
460 ///
461 /// ```
462 /// let s = [10, 40, 30];
463 /// let x = s.to_vec();
464 /// // Here, `s` and `x` can be modified independently.
465 /// ```
466 #[cfg(not(no_global_oom_handling))]
467 #[rustc_conversion_suggestion]
468 #[stable(feature = "rust1", since = "1.0.0")]
469 #[inline]
470 pub fn to_vec(&self) -> Vec<T>
471 where
472 T: Clone,
473 {
474 self.to_vec_in(Global)
475 }
476
477 /// Copies `self` into a new `Vec` with an allocator.
478 ///
479 /// # Examples
480 ///
481 /// ```
482 /// #![feature(allocator_api)]
483 ///
484 /// use std::alloc::System;
485 ///
486 /// let s = [10, 40, 30];
487 /// let x = s.to_vec_in(System);
488 /// // Here, `s` and `x` can be modified independently.
489 /// ```
490 #[cfg(not(no_global_oom_handling))]
491 #[inline]
492 #[unstable(feature = "allocator_api", issue = "32838")]
493 pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
494 where
495 T: Clone,
496 {
497 // N.B., see the `hack` module in this file for more details.
498 hack::to_vec(self, alloc)
499 }
500
501 /// Converts `self` into a vector without clones or allocation.
502 ///
503 /// The resulting vector can be converted back into a box via
504 /// `Vec<T>`'s `into_boxed_slice` method.
505 ///
506 /// # Examples
507 ///
508 /// ```
509 /// let s: Box<[i32]> = Box::new([10, 40, 30]);
510 /// let x = s.into_vec();
511 /// // `s` cannot be used anymore because it has been converted into `x`.
512 ///
513 /// assert_eq!(x, vec![10, 40, 30]);
514 /// ```
515 #[stable(feature = "rust1", since = "1.0.0")]
516 #[inline]
517 pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
518 // N.B., see the `hack` module in this file for more details.
519 hack::into_vec(self)
520 }
521
522 /// Creates a vector by repeating a slice `n` times.
523 ///
524 /// # Panics
525 ///
526 /// This function will panic if the capacity would overflow.
527 ///
528 /// # Examples
529 ///
530 /// Basic usage:
531 ///
532 /// ```
533 /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
534 /// ```
535 ///
536 /// A panic upon overflow:
537 ///
538 /// ```should_panic
539 /// // this will panic at runtime
540 /// b"0123456789abcdef".repeat(usize::MAX);
541 /// ```
542 #[cfg(not(no_global_oom_handling))]
543 #[stable(feature = "repeat_generic_slice", since = "1.40.0")]
544 pub fn repeat(&self, n: usize) -> Vec<T>
545 where
546 T: Copy,
547 {
548 if n == 0 {
549 return Vec::new();
550 }
551
552 // If `n` is larger than zero, it can be split as
553 // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
554 // `2^expn` is the number represented by the leftmost '1' bit of `n`,
555 // and `rem` is the remaining part of `n`.
556
557 // Using `Vec` to access `set_len()`.
558 let capacity = self.len().checked_mul(n).expect("capacity overflow");
559 let mut buf = Vec::with_capacity(capacity);
560
561 // `2^expn` repetition is done by doubling `buf` `expn`-times.
562 buf.extend(self);
563 {
564 let mut m = n >> 1;
565 // If `m > 0`, there are remaining bits up to the leftmost '1'.
566 while m > 0 {
567 // `buf.extend(buf)`:
568 unsafe {
569 ptr::copy_nonoverlapping(
570 buf.as_ptr(),
571 (buf.as_mut_ptr() as *mut T).add(buf.len()),
572 buf.len(),
573 );
574 // `buf` has capacity of `self.len() * n`.
575 let buf_len = buf.len();
576 buf.set_len(buf_len * 2);
577 }
578
579 m >>= 1;
580 }
581 }
582
583 // `rem` (`= n - 2^expn`) repetition is done by copying
584 // first `rem` repetitions from `buf` itself.
585 let rem_len = capacity - buf.len(); // `self.len() * rem`
586 if rem_len > 0 {
587 // `buf.extend(buf[0 .. rem_len])`:
588 unsafe {
589 // This is non-overlapping since `2^expn > rem`.
590 ptr::copy_nonoverlapping(
591 buf.as_ptr(),
592 (buf.as_mut_ptr() as *mut T).add(buf.len()),
593 rem_len,
594 );
595 // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
596 buf.set_len(capacity);
597 }
598 }
599 buf
600 }
601
602 /// Flattens a slice of `T` into a single value `Self::Output`.
603 ///
604 /// # Examples
605 ///
606 /// ```
607 /// assert_eq!(["hello", "world"].concat(), "helloworld");
608 /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
609 /// ```
610 #[stable(feature = "rust1", since = "1.0.0")]
611 pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
612 where
613 Self: Concat<Item>,
614 {
615 Concat::concat(self)
616 }
617
618 /// Flattens a slice of `T` into a single value `Self::Output`, placing a
619 /// given separator between each.
620 ///
621 /// # Examples
622 ///
623 /// ```
624 /// assert_eq!(["hello", "world"].join(" "), "hello world");
625 /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
626 /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
627 /// ```
628 #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
629 pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
630 where
631 Self: Join<Separator>,
632 {
633 Join::join(self, sep)
634 }
635
636 /// Flattens a slice of `T` into a single value `Self::Output`, placing a
637 /// given separator between each.
638 ///
639 /// # Examples
640 ///
641 /// ```
642 /// # #![allow(deprecated)]
643 /// assert_eq!(["hello", "world"].connect(" "), "hello world");
644 /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
645 /// ```
646 #[stable(feature = "rust1", since = "1.0.0")]
647 #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")]
648 pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
649 where
650 Self: Join<Separator>,
651 {
652 Join::join(self, sep)
653 }
654 }
655
656 #[lang = "slice_u8_alloc"]
657 #[cfg(not(test))]
658 impl [u8] {
659 /// Returns a vector containing a copy of this slice where each byte
660 /// is mapped to its ASCII upper case equivalent.
661 ///
662 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
663 /// but non-ASCII letters are unchanged.
664 ///
665 /// To uppercase the value in-place, use [`make_ascii_uppercase`].
666 ///
667 /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
668 #[cfg(not(no_global_oom_handling))]
669 #[must_use = "this returns the uppercase bytes as a new Vec, \
670 without modifying the original"]
671 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
672 #[inline]
673 pub fn to_ascii_uppercase(&self) -> Vec<u8> {
674 let mut me = self.to_vec();
675 me.make_ascii_uppercase();
676 me
677 }
678
679 /// Returns a vector containing a copy of this slice where each byte
680 /// is mapped to its ASCII lower case equivalent.
681 ///
682 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
683 /// but non-ASCII letters are unchanged.
684 ///
685 /// To lowercase the value in-place, use [`make_ascii_lowercase`].
686 ///
687 /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
688 #[cfg(not(no_global_oom_handling))]
689 #[must_use = "this returns the lowercase bytes as a new Vec, \
690 without modifying the original"]
691 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
692 #[inline]
693 pub fn to_ascii_lowercase(&self) -> Vec<u8> {
694 let mut me = self.to_vec();
695 me.make_ascii_lowercase();
696 me
697 }
698 }
699
700 ////////////////////////////////////////////////////////////////////////////////
701 // Extension traits for slices over specific kinds of data
702 ////////////////////////////////////////////////////////////////////////////////
703
704 /// Helper trait for [`[T]::concat`](slice::concat).
705 ///
706 /// Note: the `Item` type parameter is not used in this trait,
707 /// but it allows impls to be more generic.
708 /// Without it, we get this error:
709 ///
710 /// ```error
711 /// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
712 /// --> src/liballoc/slice.rs:608:6
713 /// |
714 /// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
715 /// | ^ unconstrained type parameter
716 /// ```
717 ///
718 /// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
719 /// such that multiple `T` types would apply:
720 ///
721 /// ```
722 /// # #[allow(dead_code)]
723 /// pub struct Foo(Vec<u32>, Vec<String>);
724 ///
725 /// impl std::borrow::Borrow<[u32]> for Foo {
726 /// fn borrow(&self) -> &[u32] { &self.0 }
727 /// }
728 ///
729 /// impl std::borrow::Borrow<[String]> for Foo {
730 /// fn borrow(&self) -> &[String] { &self.1 }
731 /// }
732 /// ```
733 #[unstable(feature = "slice_concat_trait", issue = "27747")]
734 pub trait Concat<Item: ?Sized> {
735 #[unstable(feature = "slice_concat_trait", issue = "27747")]
736 /// The resulting type after concatenation
737 type Output;
738
739 /// Implementation of [`[T]::concat`](slice::concat)
740 #[unstable(feature = "slice_concat_trait", issue = "27747")]
741 fn concat(slice: &Self) -> Self::Output;
742 }
743
744 /// Helper trait for [`[T]::join`](slice::join)
745 #[unstable(feature = "slice_concat_trait", issue = "27747")]
746 pub trait Join<Separator> {
747 #[unstable(feature = "slice_concat_trait", issue = "27747")]
748 /// The resulting type after concatenation
749 type Output;
750
751 /// Implementation of [`[T]::join`](slice::join)
752 #[unstable(feature = "slice_concat_trait", issue = "27747")]
753 fn join(slice: &Self, sep: Separator) -> Self::Output;
754 }
755
756 #[cfg(not(no_global_oom_handling))]
757 #[unstable(feature = "slice_concat_ext", issue = "27747")]
758 impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
759 type Output = Vec<T>;
760
761 fn concat(slice: &Self) -> Vec<T> {
762 let size = slice.iter().map(|slice| slice.borrow().len()).sum();
763 let mut result = Vec::with_capacity(size);
764 for v in slice {
765 result.extend_from_slice(v.borrow())
766 }
767 result
768 }
769 }
770
771 #[cfg(not(no_global_oom_handling))]
772 #[unstable(feature = "slice_concat_ext", issue = "27747")]
773 impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
774 type Output = Vec<T>;
775
776 fn join(slice: &Self, sep: &T) -> Vec<T> {
777 let mut iter = slice.iter();
778 let first = match iter.next() {
779 Some(first) => first,
780 None => return vec![],
781 };
782 let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
783 let mut result = Vec::with_capacity(size);
784 result.extend_from_slice(first.borrow());
785
786 for v in iter {
787 result.push(sep.clone());
788 result.extend_from_slice(v.borrow())
789 }
790 result
791 }
792 }
793
794 #[cfg(not(no_global_oom_handling))]
795 #[unstable(feature = "slice_concat_ext", issue = "27747")]
796 impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
797 type Output = Vec<T>;
798
799 fn join(slice: &Self, sep: &[T]) -> Vec<T> {
800 let mut iter = slice.iter();
801 let first = match iter.next() {
802 Some(first) => first,
803 None => return vec![],
804 };
805 let size =
806 slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
807 let mut result = Vec::with_capacity(size);
808 result.extend_from_slice(first.borrow());
809
810 for v in iter {
811 result.extend_from_slice(sep);
812 result.extend_from_slice(v.borrow())
813 }
814 result
815 }
816 }
817
818 ////////////////////////////////////////////////////////////////////////////////
819 // Standard trait implementations for slices
820 ////////////////////////////////////////////////////////////////////////////////
821
822 #[stable(feature = "rust1", since = "1.0.0")]
823 impl<T> Borrow<[T]> for Vec<T> {
824 fn borrow(&self) -> &[T] {
825 &self[..]
826 }
827 }
828
829 #[stable(feature = "rust1", since = "1.0.0")]
830 impl<T> BorrowMut<[T]> for Vec<T> {
831 fn borrow_mut(&mut self) -> &mut [T] {
832 &mut self[..]
833 }
834 }
835
836 #[cfg(not(no_global_oom_handling))]
837 #[stable(feature = "rust1", since = "1.0.0")]
838 impl<T: Clone> ToOwned for [T] {
839 type Owned = Vec<T>;
840 #[cfg(not(test))]
841 fn to_owned(&self) -> Vec<T> {
842 self.to_vec()
843 }
844
845 #[cfg(test)]
846 fn to_owned(&self) -> Vec<T> {
847 hack::to_vec(self, Global)
848 }
849
850 fn clone_into(&self, target: &mut Vec<T>) {
851 // drop anything in target that will not be overwritten
852 target.truncate(self.len());
853
854 // target.len <= self.len due to the truncate above, so the
855 // slices here are always in-bounds.
856 let (init, tail) = self.split_at(target.len());
857
858 // reuse the contained values' allocations/resources.
859 target.clone_from_slice(init);
860 target.extend_from_slice(tail);
861 }
862 }
863
864 ////////////////////////////////////////////////////////////////////////////////
865 // Sorting
866 ////////////////////////////////////////////////////////////////////////////////
867
868 /// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted.
869 ///
870 /// This is the integral subroutine of insertion sort.
871 #[cfg(not(no_global_oom_handling))]
872 fn insert_head<T, F>(v: &mut [T], is_less: &mut F)
873 where
874 F: FnMut(&T, &T) -> bool,
875 {
876 if v.len() >= 2 && is_less(&v[1], &v[0]) {
877 unsafe {
878 // There are three ways to implement insertion here:
879 //
880 // 1. Swap adjacent elements until the first one gets to its final destination.
881 // However, this way we copy data around more than is necessary. If elements are big
882 // structures (costly to copy), this method will be slow.
883 //
884 // 2. Iterate until the right place for the first element is found. Then shift the
885 // elements succeeding it to make room for it and finally place it into the
886 // remaining hole. This is a good method.
887 //
888 // 3. Copy the first element into a temporary variable. Iterate until the right place
889 // for it is found. As we go along, copy every traversed element into the slot
890 // preceding it. Finally, copy data from the temporary variable into the remaining
891 // hole. This method is very good. Benchmarks demonstrated slightly better
892 // performance than with the 2nd method.
893 //
894 // All methods were benchmarked, and the 3rd showed best results. So we chose that one.
895 let mut tmp = mem::ManuallyDrop::new(ptr::read(&v[0]));
896
897 // Intermediate state of the insertion process is always tracked by `hole`, which
898 // serves two purposes:
899 // 1. Protects integrity of `v` from panics in `is_less`.
900 // 2. Fills the remaining hole in `v` in the end.
901 //
902 // Panic safety:
903 //
904 // If `is_less` panics at any point during the process, `hole` will get dropped and
905 // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it
906 // initially held exactly once.
907 let mut hole = InsertionHole { src: &mut *tmp, dest: &mut v[1] };
908 ptr::copy_nonoverlapping(&v[1], &mut v[0], 1);
909
910 for i in 2..v.len() {
911 if !is_less(&v[i], &*tmp) {
912 break;
913 }
914 ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1);
915 hole.dest = &mut v[i];
916 }
917 // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`.
918 }
919 }
920
921 // When dropped, copies from `src` into `dest`.
922 struct InsertionHole<T> {
923 src: *mut T,
924 dest: *mut T,
925 }
926
927 impl<T> Drop for InsertionHole<T> {
928 fn drop(&mut self) {
929 unsafe {
930 ptr::copy_nonoverlapping(self.src, self.dest, 1);
931 }
932 }
933 }
934 }
935
936 /// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
937 /// stores the result into `v[..]`.
938 ///
939 /// # Safety
940 ///
941 /// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough
942 /// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type.
943 #[cfg(not(no_global_oom_handling))]
944 unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F)
945 where
946 F: FnMut(&T, &T) -> bool,
947 {
948 let len = v.len();
949 let v = v.as_mut_ptr();
950 let (v_mid, v_end) = unsafe { (v.add(mid), v.add(len)) };
951
952 // The merge process first copies the shorter run into `buf`. Then it traces the newly copied
953 // run and the longer run forwards (or backwards), comparing their next unconsumed elements and
954 // copying the lesser (or greater) one into `v`.
955 //
956 // As soon as the shorter run is fully consumed, the process is done. If the longer run gets
957 // consumed first, then we must copy whatever is left of the shorter run into the remaining
958 // hole in `v`.
959 //
960 // Intermediate state of the process is always tracked by `hole`, which serves two purposes:
961 // 1. Protects integrity of `v` from panics in `is_less`.
962 // 2. Fills the remaining hole in `v` if the longer run gets consumed first.
963 //
964 // Panic safety:
965 //
966 // If `is_less` panics at any point during the process, `hole` will get dropped and fill the
967 // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every
968 // object it initially held exactly once.
969 let mut hole;
970
971 if mid <= len - mid {
972 // The left run is shorter.
973 unsafe {
974 ptr::copy_nonoverlapping(v, buf, mid);
975 hole = MergeHole { start: buf, end: buf.add(mid), dest: v };
976 }
977
978 // Initially, these pointers point to the beginnings of their arrays.
979 let left = &mut hole.start;
980 let mut right = v_mid;
981 let out = &mut hole.dest;
982
983 while *left < hole.end && right < v_end {
984 // Consume the lesser side.
985 // If equal, prefer the left run to maintain stability.
986 unsafe {
987 let to_copy = if is_less(&*right, &**left) {
988 get_and_increment(&mut right)
989 } else {
990 get_and_increment(left)
991 };
992 ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1);
993 }
994 }
995 } else {
996 // The right run is shorter.
997 unsafe {
998 ptr::copy_nonoverlapping(v_mid, buf, len - mid);
999 hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid };
1000 }
1001
1002 // Initially, these pointers point past the ends of their arrays.
1003 let left = &mut hole.dest;
1004 let right = &mut hole.end;
1005 let mut out = v_end;
1006
1007 while v < *left && buf < *right {
1008 // Consume the greater side.
1009 // If equal, prefer the right run to maintain stability.
1010 unsafe {
1011 let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) {
1012 decrement_and_get(left)
1013 } else {
1014 decrement_and_get(right)
1015 };
1016 ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1);
1017 }
1018 }
1019 }
1020 // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of
1021 // it will now be copied into the hole in `v`.
1022
1023 unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T {
1024 let old = *ptr;
1025 *ptr = unsafe { ptr.offset(1) };
1026 old
1027 }
1028
1029 unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T {
1030 *ptr = unsafe { ptr.offset(-1) };
1031 *ptr
1032 }
1033
1034 // When dropped, copies the range `start..end` into `dest..`.
1035 struct MergeHole<T> {
1036 start: *mut T,
1037 end: *mut T,
1038 dest: *mut T,
1039 }
1040
1041 impl<T> Drop for MergeHole<T> {
1042 fn drop(&mut self) {
1043 // `T` is not a zero-sized type, so it's okay to divide by its size.
1044 let len = (self.end as usize - self.start as usize) / mem::size_of::<T>();
1045 unsafe {
1046 ptr::copy_nonoverlapping(self.start, self.dest, len);
1047 }
1048 }
1049 }
1050 }
1051
1052 /// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail
1053 /// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt).
1054 ///
1055 /// The algorithm identifies strictly descending and non-descending subsequences, which are called
1056 /// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed
1057 /// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are
1058 /// satisfied:
1059 ///
1060 /// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len`
1061 /// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len`
1062 ///
1063 /// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case.
1064 #[cfg(not(no_global_oom_handling))]
1065 fn merge_sort<T, F>(v: &mut [T], mut is_less: F)
1066 where
1067 F: FnMut(&T, &T) -> bool,
1068 {
1069 // Slices of up to this length get sorted using insertion sort.
1070 const MAX_INSERTION: usize = 20;
1071 // Very short runs are extended using insertion sort to span at least this many elements.
1072 const MIN_RUN: usize = 10;
1073
1074 // Sorting has no meaningful behavior on zero-sized types.
1075 if size_of::<T>() == 0 {
1076 return;
1077 }
1078
1079 let len = v.len();
1080
1081 // Short arrays get sorted in-place via insertion sort to avoid allocations.
1082 if len <= MAX_INSERTION {
1083 if len >= 2 {
1084 for i in (0..len - 1).rev() {
1085 insert_head(&mut v[i..], &mut is_less);
1086 }
1087 }
1088 return;
1089 }
1090
1091 // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it
1092 // shallow copies of the contents of `v` without risking the dtors running on copies if
1093 // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run,
1094 // which will always have length at most `len / 2`.
1095 let mut buf = Vec::with_capacity(len / 2);
1096
1097 // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a
1098 // strange decision, but consider the fact that merges more often go in the opposite direction
1099 // (forwards). According to benchmarks, merging forwards is slightly faster than merging
1100 // backwards. To conclude, identifying runs by traversing backwards improves performance.
1101 let mut runs = vec![];
1102 let mut end = len;
1103 while end > 0 {
1104 // Find the next natural run, and reverse it if it's strictly descending.
1105 let mut start = end - 1;
1106 if start > 0 {
1107 start -= 1;
1108 unsafe {
1109 if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) {
1110 while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) {
1111 start -= 1;
1112 }
1113 v[start..end].reverse();
1114 } else {
1115 while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1))
1116 {
1117 start -= 1;
1118 }
1119 }
1120 }
1121 }
1122
1123 // Insert some more elements into the run if it's too short. Insertion sort is faster than
1124 // merge sort on short sequences, so this significantly improves performance.
1125 while start > 0 && end - start < MIN_RUN {
1126 start -= 1;
1127 insert_head(&mut v[start..end], &mut is_less);
1128 }
1129
1130 // Push this run onto the stack.
1131 runs.push(Run { start, len: end - start });
1132 end = start;
1133
1134 // Merge some pairs of adjacent runs to satisfy the invariants.
1135 while let Some(r) = collapse(&runs) {
1136 let left = runs[r + 1];
1137 let right = runs[r];
1138 unsafe {
1139 merge(
1140 &mut v[left.start..right.start + right.len],
1141 left.len,
1142 buf.as_mut_ptr(),
1143 &mut is_less,
1144 );
1145 }
1146 runs[r] = Run { start: left.start, len: left.len + right.len };
1147 runs.remove(r + 1);
1148 }
1149 }
1150
1151 // Finally, exactly one run must remain in the stack.
1152 debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len);
1153
1154 // Examines the stack of runs and identifies the next pair of runs to merge. More specifically,
1155 // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the
1156 // algorithm should continue building a new run instead, `None` is returned.
1157 //
1158 // TimSort is infamous for its buggy implementations, as described here:
1159 // http://envisage-project.eu/timsort-specification-and-verification/
1160 //
1161 // The gist of the story is: we must enforce the invariants on the top four runs on the stack.
1162 // Enforcing them on just top three is not sufficient to ensure that the invariants will still
1163 // hold for *all* runs in the stack.
1164 //
1165 // This function correctly checks invariants for the top four runs. Additionally, if the top
1166 // run starts at index 0, it will always demand a merge operation until the stack is fully
1167 // collapsed, in order to complete the sort.
1168 #[inline]
1169 fn collapse(runs: &[Run]) -> Option<usize> {
1170 let n = runs.len();
1171 if n >= 2
1172 && (runs[n - 1].start == 0
1173 || runs[n - 2].len <= runs[n - 1].len
1174 || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len)
1175 || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len))
1176 {
1177 if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) }
1178 } else {
1179 None
1180 }
1181 }
1182
1183 #[derive(Clone, Copy)]
1184 struct Run {
1185 start: usize,
1186 len: usize,
1187 }
1188 }