]> git.proxmox.com Git - rustc.git/blob - library/alloc/src/sync.rs
24849d52dbbc7b7a6b7b14adff56eb190f68b34a
[rustc.git] / library / alloc / src / sync.rs
1 #![stable(feature = "rust1", since = "1.0.0")]
2
3 //! Thread-safe reference-counting pointers.
4 //!
5 //! See the [`Arc<T>`][Arc] documentation for more details.
6 //!
7 //! **Note**: This module is only available on platforms that support atomic
8 //! loads and stores of pointers. This may be detected at compile time using
9 //! `#[cfg(target_has_atomic = "ptr")]`.
10
11 use core::any::Any;
12 use core::borrow;
13 use core::cmp::Ordering;
14 use core::fmt;
15 use core::hash::{Hash, Hasher};
16 use core::hint;
17 use core::intrinsics::abort;
18 #[cfg(not(no_global_oom_handling))]
19 use core::iter;
20 use core::marker::{PhantomData, Unsize};
21 #[cfg(not(no_global_oom_handling))]
22 use core::mem::size_of_val;
23 use core::mem::{self, align_of_val_raw};
24 use core::ops::{CoerceUnsized, Deref, DispatchFromDyn, Receiver};
25 use core::panic::{RefUnwindSafe, UnwindSafe};
26 use core::pin::Pin;
27 use core::ptr::{self, NonNull};
28 #[cfg(not(no_global_oom_handling))]
29 use core::slice::from_raw_parts_mut;
30 use core::sync::atomic;
31 use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
32
33 #[cfg(not(no_global_oom_handling))]
34 use crate::alloc::handle_alloc_error;
35 #[cfg(not(no_global_oom_handling))]
36 use crate::alloc::{box_free, WriteCloneIntoRaw};
37 use crate::alloc::{AllocError, Allocator, Global, Layout};
38 use crate::borrow::{Cow, ToOwned};
39 use crate::boxed::Box;
40 use crate::rc::is_dangling;
41 #[cfg(not(no_global_oom_handling))]
42 use crate::string::String;
43 #[cfg(not(no_global_oom_handling))]
44 use crate::vec::Vec;
45
46 #[cfg(test)]
47 mod tests;
48
49 /// A soft limit on the amount of references that may be made to an `Arc`.
50 ///
51 /// Going above this limit will abort your program (although not
52 /// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
53 /// Trying to go above it might call a `panic` (if not actually going above it).
54 ///
55 /// This is a global invariant, and also applies when using a compare-exchange loop.
56 ///
57 /// See comment in `Arc::clone`.
58 const MAX_REFCOUNT: usize = (isize::MAX) as usize;
59
60 /// The error in case either counter reaches above `MAX_REFCOUNT`, and we can `panic` safely.
61 const INTERNAL_OVERFLOW_ERROR: &str = "Arc counter overflow";
62
63 #[cfg(not(sanitize = "thread"))]
64 macro_rules! acquire {
65 ($x:expr) => {
66 atomic::fence(Acquire)
67 };
68 }
69
70 // ThreadSanitizer does not support memory fences. To avoid false positive
71 // reports in Arc / Weak implementation use atomic loads for synchronization
72 // instead.
73 #[cfg(sanitize = "thread")]
74 macro_rules! acquire {
75 ($x:expr) => {
76 $x.load(Acquire)
77 };
78 }
79
80 /// A thread-safe reference-counting pointer. 'Arc' stands for 'Atomically
81 /// Reference Counted'.
82 ///
83 /// The type `Arc<T>` provides shared ownership of a value of type `T`,
84 /// allocated in the heap. Invoking [`clone`][clone] on `Arc` produces
85 /// a new `Arc` instance, which points to the same allocation on the heap as the
86 /// source `Arc`, while increasing a reference count. When the last `Arc`
87 /// pointer to a given allocation is destroyed, the value stored in that allocation (often
88 /// referred to as "inner value") is also dropped.
89 ///
90 /// Shared references in Rust disallow mutation by default, and `Arc` is no
91 /// exception: you cannot generally obtain a mutable reference to something
92 /// inside an `Arc`. If you need to mutate through an `Arc`, use
93 /// [`Mutex`][mutex], [`RwLock`][rwlock], or one of the [`Atomic`][atomic]
94 /// types.
95 ///
96 /// **Note**: This type is only available on platforms that support atomic
97 /// loads and stores of pointers, which includes all platforms that support
98 /// the `std` crate but not all those which only support [`alloc`](crate).
99 /// This may be detected at compile time using `#[cfg(target_has_atomic = "ptr")]`.
100 ///
101 /// ## Thread Safety
102 ///
103 /// Unlike [`Rc<T>`], `Arc<T>` uses atomic operations for its reference
104 /// counting. This means that it is thread-safe. The disadvantage is that
105 /// atomic operations are more expensive than ordinary memory accesses. If you
106 /// are not sharing reference-counted allocations between threads, consider using
107 /// [`Rc<T>`] for lower overhead. [`Rc<T>`] is a safe default, because the
108 /// compiler will catch any attempt to send an [`Rc<T>`] between threads.
109 /// However, a library might choose `Arc<T>` in order to give library consumers
110 /// more flexibility.
111 ///
112 /// `Arc<T>` will implement [`Send`] and [`Sync`] as long as the `T` implements
113 /// [`Send`] and [`Sync`]. Why can't you put a non-thread-safe type `T` in an
114 /// `Arc<T>` to make it thread-safe? This may be a bit counter-intuitive at
115 /// first: after all, isn't the point of `Arc<T>` thread safety? The key is
116 /// this: `Arc<T>` makes it thread safe to have multiple ownership of the same
117 /// data, but it doesn't add thread safety to its data. Consider
118 /// <code>Arc<[RefCell\<T>]></code>. [`RefCell<T>`] isn't [`Sync`], and if `Arc<T>` was always
119 /// [`Send`], <code>Arc<[RefCell\<T>]></code> would be as well. But then we'd have a problem:
120 /// [`RefCell<T>`] is not thread safe; it keeps track of the borrowing count using
121 /// non-atomic operations.
122 ///
123 /// In the end, this means that you may need to pair `Arc<T>` with some sort of
124 /// [`std::sync`] type, usually [`Mutex<T>`][mutex].
125 ///
126 /// ## Breaking cycles with `Weak`
127 ///
128 /// The [`downgrade`][downgrade] method can be used to create a non-owning
129 /// [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
130 /// to an `Arc`, but this will return [`None`] if the value stored in the allocation has
131 /// already been dropped. In other words, `Weak` pointers do not keep the value
132 /// inside the allocation alive; however, they *do* keep the allocation
133 /// (the backing store for the value) alive.
134 ///
135 /// A cycle between `Arc` pointers will never be deallocated. For this reason,
136 /// [`Weak`] is used to break cycles. For example, a tree could have
137 /// strong `Arc` pointers from parent nodes to children, and [`Weak`]
138 /// pointers from children back to their parents.
139 ///
140 /// # Cloning references
141 ///
142 /// Creating a new reference from an existing reference-counted pointer is done using the
143 /// `Clone` trait implemented for [`Arc<T>`][Arc] and [`Weak<T>`][Weak].
144 ///
145 /// ```
146 /// use std::sync::Arc;
147 /// let foo = Arc::new(vec![1.0, 2.0, 3.0]);
148 /// // The two syntaxes below are equivalent.
149 /// let a = foo.clone();
150 /// let b = Arc::clone(&foo);
151 /// // a, b, and foo are all Arcs that point to the same memory location
152 /// ```
153 ///
154 /// ## `Deref` behavior
155 ///
156 /// `Arc<T>` automatically dereferences to `T` (via the [`Deref`][deref] trait),
157 /// so you can call `T`'s methods on a value of type `Arc<T>`. To avoid name
158 /// clashes with `T`'s methods, the methods of `Arc<T>` itself are associated
159 /// functions, called using [fully qualified syntax]:
160 ///
161 /// ```
162 /// use std::sync::Arc;
163 ///
164 /// let my_arc = Arc::new(());
165 /// let my_weak = Arc::downgrade(&my_arc);
166 /// ```
167 ///
168 /// `Arc<T>`'s implementations of traits like `Clone` may also be called using
169 /// fully qualified syntax. Some people prefer to use fully qualified syntax,
170 /// while others prefer using method-call syntax.
171 ///
172 /// ```
173 /// use std::sync::Arc;
174 ///
175 /// let arc = Arc::new(());
176 /// // Method-call syntax
177 /// let arc2 = arc.clone();
178 /// // Fully qualified syntax
179 /// let arc3 = Arc::clone(&arc);
180 /// ```
181 ///
182 /// [`Weak<T>`][Weak] does not auto-dereference to `T`, because the inner value may have
183 /// already been dropped.
184 ///
185 /// [`Rc<T>`]: crate::rc::Rc
186 /// [clone]: Clone::clone
187 /// [mutex]: ../../std/sync/struct.Mutex.html
188 /// [rwlock]: ../../std/sync/struct.RwLock.html
189 /// [atomic]: core::sync::atomic
190 /// [deref]: core::ops::Deref
191 /// [downgrade]: Arc::downgrade
192 /// [upgrade]: Weak::upgrade
193 /// [RefCell\<T>]: core::cell::RefCell
194 /// [`RefCell<T>`]: core::cell::RefCell
195 /// [`std::sync`]: ../../std/sync/index.html
196 /// [`Arc::clone(&from)`]: Arc::clone
197 /// [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name
198 ///
199 /// # Examples
200 ///
201 /// Sharing some immutable data between threads:
202 ///
203 // Note that we **do not** run these tests here. The windows builders get super
204 // unhappy if a thread outlives the main thread and then exits at the same time
205 // (something deadlocks) so we just avoid this entirely by not running these
206 // tests.
207 /// ```no_run
208 /// use std::sync::Arc;
209 /// use std::thread;
210 ///
211 /// let five = Arc::new(5);
212 ///
213 /// for _ in 0..10 {
214 /// let five = Arc::clone(&five);
215 ///
216 /// thread::spawn(move || {
217 /// println!("{five:?}");
218 /// });
219 /// }
220 /// ```
221 ///
222 /// Sharing a mutable [`AtomicUsize`]:
223 ///
224 /// [`AtomicUsize`]: core::sync::atomic::AtomicUsize "sync::atomic::AtomicUsize"
225 ///
226 /// ```no_run
227 /// use std::sync::Arc;
228 /// use std::sync::atomic::{AtomicUsize, Ordering};
229 /// use std::thread;
230 ///
231 /// let val = Arc::new(AtomicUsize::new(5));
232 ///
233 /// for _ in 0..10 {
234 /// let val = Arc::clone(&val);
235 ///
236 /// thread::spawn(move || {
237 /// let v = val.fetch_add(1, Ordering::SeqCst);
238 /// println!("{v:?}");
239 /// });
240 /// }
241 /// ```
242 ///
243 /// See the [`rc` documentation][rc_examples] for more examples of reference
244 /// counting in general.
245 ///
246 /// [rc_examples]: crate::rc#examples
247 #[cfg_attr(not(test), rustc_diagnostic_item = "Arc")]
248 #[stable(feature = "rust1", since = "1.0.0")]
249 pub struct Arc<T: ?Sized> {
250 ptr: NonNull<ArcInner<T>>,
251 phantom: PhantomData<ArcInner<T>>,
252 }
253
254 #[stable(feature = "rust1", since = "1.0.0")]
255 unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
256 #[stable(feature = "rust1", since = "1.0.0")]
257 unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
258
259 #[stable(feature = "catch_unwind", since = "1.9.0")]
260 impl<T: RefUnwindSafe + ?Sized> UnwindSafe for Arc<T> {}
261
262 #[unstable(feature = "coerce_unsized", issue = "18598")]
263 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Arc<U>> for Arc<T> {}
264
265 #[unstable(feature = "dispatch_from_dyn", issue = "none")]
266 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Arc<U>> for Arc<T> {}
267
268 impl<T: ?Sized> Arc<T> {
269 unsafe fn from_inner(ptr: NonNull<ArcInner<T>>) -> Self {
270 Self { ptr, phantom: PhantomData }
271 }
272
273 unsafe fn from_ptr(ptr: *mut ArcInner<T>) -> Self {
274 unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
275 }
276 }
277
278 /// `Weak` is a version of [`Arc`] that holds a non-owning reference to the
279 /// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
280 /// pointer, which returns an <code>[Option]<[Arc]\<T>></code>.
281 ///
282 /// Since a `Weak` reference does not count towards ownership, it will not
283 /// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
284 /// guarantees about the value still being present. Thus it may return [`None`]
285 /// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
286 /// itself (the backing store) from being deallocated.
287 ///
288 /// A `Weak` pointer is useful for keeping a temporary reference to the allocation
289 /// managed by [`Arc`] without preventing its inner value from being dropped. It is also used to
290 /// prevent circular references between [`Arc`] pointers, since mutual owning references
291 /// would never allow either [`Arc`] to be dropped. For example, a tree could
292 /// have strong [`Arc`] pointers from parent nodes to children, and `Weak`
293 /// pointers from children back to their parents.
294 ///
295 /// The typical way to obtain a `Weak` pointer is to call [`Arc::downgrade`].
296 ///
297 /// [`upgrade`]: Weak::upgrade
298 #[stable(feature = "arc_weak", since = "1.4.0")]
299 pub struct Weak<T: ?Sized> {
300 // This is a `NonNull` to allow optimizing the size of this type in enums,
301 // but it is not necessarily a valid pointer.
302 // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
303 // to allocate space on the heap. That's not a value a real pointer
304 // will ever have because RcBox has alignment at least 2.
305 // This is only possible when `T: Sized`; unsized `T` never dangle.
306 ptr: NonNull<ArcInner<T>>,
307 }
308
309 #[stable(feature = "arc_weak", since = "1.4.0")]
310 unsafe impl<T: ?Sized + Sync + Send> Send for Weak<T> {}
311 #[stable(feature = "arc_weak", since = "1.4.0")]
312 unsafe impl<T: ?Sized + Sync + Send> Sync for Weak<T> {}
313
314 #[unstable(feature = "coerce_unsized", issue = "18598")]
315 impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
316 #[unstable(feature = "dispatch_from_dyn", issue = "none")]
317 impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}
318
319 #[stable(feature = "arc_weak", since = "1.4.0")]
320 impl<T: ?Sized> fmt::Debug for Weak<T> {
321 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
322 write!(f, "(Weak)")
323 }
324 }
325
326 // This is repr(C) to future-proof against possible field-reordering, which
327 // would interfere with otherwise safe [into|from]_raw() of transmutable
328 // inner types.
329 #[repr(C)]
330 struct ArcInner<T: ?Sized> {
331 strong: atomic::AtomicUsize,
332
333 // the value usize::MAX acts as a sentinel for temporarily "locking" the
334 // ability to upgrade weak pointers or downgrade strong ones; this is used
335 // to avoid races in `make_mut` and `get_mut`.
336 weak: atomic::AtomicUsize,
337
338 data: T,
339 }
340
341 /// Calculate layout for `ArcInner<T>` using the inner value's layout
342 fn arcinner_layout_for_value_layout(layout: Layout) -> Layout {
343 // Calculate layout using the given value layout.
344 // Previously, layout was calculated on the expression
345 // `&*(ptr as *const ArcInner<T>)`, but this created a misaligned
346 // reference (see #54908).
347 Layout::new::<ArcInner<()>>().extend(layout).unwrap().0.pad_to_align()
348 }
349
350 unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
351 unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
352
353 impl<T> Arc<T> {
354 /// Constructs a new `Arc<T>`.
355 ///
356 /// # Examples
357 ///
358 /// ```
359 /// use std::sync::Arc;
360 ///
361 /// let five = Arc::new(5);
362 /// ```
363 #[cfg(not(no_global_oom_handling))]
364 #[inline]
365 #[stable(feature = "rust1", since = "1.0.0")]
366 pub fn new(data: T) -> Arc<T> {
367 // Start the weak pointer count as 1 which is the weak pointer that's
368 // held by all the strong pointers (kinda), see std/rc.rs for more info
369 let x: Box<_> = Box::new(ArcInner {
370 strong: atomic::AtomicUsize::new(1),
371 weak: atomic::AtomicUsize::new(1),
372 data,
373 });
374 unsafe { Self::from_inner(Box::leak(x).into()) }
375 }
376
377 /// Constructs a new `Arc<T>` while giving you a `Weak<T>` to the allocation,
378 /// to allow you to construct a `T` which holds a weak pointer to itself.
379 ///
380 /// Generally, a structure circularly referencing itself, either directly or
381 /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
382 /// Using this function, you get access to the weak pointer during the
383 /// initialization of `T`, before the `Arc<T>` is created, such that you can
384 /// clone and store it inside the `T`.
385 ///
386 /// `new_cyclic` first allocates the managed allocation for the `Arc<T>`,
387 /// then calls your closure, giving it a `Weak<T>` to this allocation,
388 /// and only afterwards completes the construction of the `Arc<T>` by placing
389 /// the `T` returned from your closure into the allocation.
390 ///
391 /// Since the new `Arc<T>` is not fully-constructed until `Arc<T>::new_cyclic`
392 /// returns, calling [`upgrade`] on the weak reference inside your closure will
393 /// fail and result in a `None` value.
394 ///
395 /// # Panics
396 ///
397 /// If `data_fn` panics, the panic is propagated to the caller, and the
398 /// temporary [`Weak<T>`] is dropped normally.
399 ///
400 /// # Example
401 ///
402 /// ```
403 /// # #![allow(dead_code)]
404 /// use std::sync::{Arc, Weak};
405 ///
406 /// struct Gadget {
407 /// me: Weak<Gadget>,
408 /// }
409 ///
410 /// impl Gadget {
411 /// /// Construct a reference counted Gadget.
412 /// fn new() -> Arc<Self> {
413 /// // `me` is a `Weak<Gadget>` pointing at the new allocation of the
414 /// // `Arc` we're constructing.
415 /// Arc::new_cyclic(|me| {
416 /// // Create the actual struct here.
417 /// Gadget { me: me.clone() }
418 /// })
419 /// }
420 ///
421 /// /// Return a reference counted pointer to Self.
422 /// fn me(&self) -> Arc<Self> {
423 /// self.me.upgrade().unwrap()
424 /// }
425 /// }
426 /// ```
427 /// [`upgrade`]: Weak::upgrade
428 #[cfg(not(no_global_oom_handling))]
429 #[inline]
430 #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
431 pub fn new_cyclic<F>(data_fn: F) -> Arc<T>
432 where
433 F: FnOnce(&Weak<T>) -> T,
434 {
435 // Construct the inner in the "uninitialized" state with a single
436 // weak reference.
437 let uninit_ptr: NonNull<_> = Box::leak(Box::new(ArcInner {
438 strong: atomic::AtomicUsize::new(0),
439 weak: atomic::AtomicUsize::new(1),
440 data: mem::MaybeUninit::<T>::uninit(),
441 }))
442 .into();
443 let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();
444
445 let weak = Weak { ptr: init_ptr };
446
447 // It's important we don't give up ownership of the weak pointer, or
448 // else the memory might be freed by the time `data_fn` returns. If
449 // we really wanted to pass ownership, we could create an additional
450 // weak pointer for ourselves, but this would result in additional
451 // updates to the weak reference count which might not be necessary
452 // otherwise.
453 let data = data_fn(&weak);
454
455 // Now we can properly initialize the inner value and turn our weak
456 // reference into a strong reference.
457 let strong = unsafe {
458 let inner = init_ptr.as_ptr();
459 ptr::write(ptr::addr_of_mut!((*inner).data), data);
460
461 // The above write to the data field must be visible to any threads which
462 // observe a non-zero strong count. Therefore we need at least "Release" ordering
463 // in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
464 //
465 // "Acquire" ordering is not required. When considering the possible behaviours
466 // of `data_fn` we only need to look at what it could do with a reference to a
467 // non-upgradeable `Weak`:
468 // - It can *clone* the `Weak`, increasing the weak reference count.
469 // - It can drop those clones, decreasing the weak reference count (but never to zero).
470 //
471 // These side effects do not impact us in any way, and no other side effects are
472 // possible with safe code alone.
473 let prev_value = (*inner).strong.fetch_add(1, Release);
474 debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
475
476 Arc::from_inner(init_ptr)
477 };
478
479 // Strong references should collectively own a shared weak reference,
480 // so don't run the destructor for our old weak reference.
481 mem::forget(weak);
482 strong
483 }
484
485 /// Constructs a new `Arc` with uninitialized contents.
486 ///
487 /// # Examples
488 ///
489 /// ```
490 /// #![feature(new_uninit)]
491 /// #![feature(get_mut_unchecked)]
492 ///
493 /// use std::sync::Arc;
494 ///
495 /// let mut five = Arc::<u32>::new_uninit();
496 ///
497 /// // Deferred initialization:
498 /// Arc::get_mut(&mut five).unwrap().write(5);
499 ///
500 /// let five = unsafe { five.assume_init() };
501 ///
502 /// assert_eq!(*five, 5)
503 /// ```
504 #[cfg(not(no_global_oom_handling))]
505 #[unstable(feature = "new_uninit", issue = "63291")]
506 #[must_use]
507 pub fn new_uninit() -> Arc<mem::MaybeUninit<T>> {
508 unsafe {
509 Arc::from_ptr(Arc::allocate_for_layout(
510 Layout::new::<T>(),
511 |layout| Global.allocate(layout),
512 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
513 ))
514 }
515 }
516
517 /// Constructs a new `Arc` with uninitialized contents, with the memory
518 /// being filled with `0` bytes.
519 ///
520 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
521 /// of this method.
522 ///
523 /// # Examples
524 ///
525 /// ```
526 /// #![feature(new_uninit)]
527 ///
528 /// use std::sync::Arc;
529 ///
530 /// let zero = Arc::<u32>::new_zeroed();
531 /// let zero = unsafe { zero.assume_init() };
532 ///
533 /// assert_eq!(*zero, 0)
534 /// ```
535 ///
536 /// [zeroed]: mem::MaybeUninit::zeroed
537 #[cfg(not(no_global_oom_handling))]
538 #[unstable(feature = "new_uninit", issue = "63291")]
539 #[must_use]
540 pub fn new_zeroed() -> Arc<mem::MaybeUninit<T>> {
541 unsafe {
542 Arc::from_ptr(Arc::allocate_for_layout(
543 Layout::new::<T>(),
544 |layout| Global.allocate_zeroed(layout),
545 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
546 ))
547 }
548 }
549
550 /// Constructs a new `Pin<Arc<T>>`. If `T` does not implement `Unpin`, then
551 /// `data` will be pinned in memory and unable to be moved.
552 #[cfg(not(no_global_oom_handling))]
553 #[stable(feature = "pin", since = "1.33.0")]
554 #[must_use]
555 pub fn pin(data: T) -> Pin<Arc<T>> {
556 unsafe { Pin::new_unchecked(Arc::new(data)) }
557 }
558
559 /// Constructs a new `Pin<Arc<T>>`, return an error if allocation fails.
560 #[unstable(feature = "allocator_api", issue = "32838")]
561 #[inline]
562 pub fn try_pin(data: T) -> Result<Pin<Arc<T>>, AllocError> {
563 unsafe { Ok(Pin::new_unchecked(Arc::try_new(data)?)) }
564 }
565
566 /// Constructs a new `Arc<T>`, returning an error if allocation fails.
567 ///
568 /// # Examples
569 ///
570 /// ```
571 /// #![feature(allocator_api)]
572 /// use std::sync::Arc;
573 ///
574 /// let five = Arc::try_new(5)?;
575 /// # Ok::<(), std::alloc::AllocError>(())
576 /// ```
577 #[unstable(feature = "allocator_api", issue = "32838")]
578 #[inline]
579 pub fn try_new(data: T) -> Result<Arc<T>, AllocError> {
580 // Start the weak pointer count as 1 which is the weak pointer that's
581 // held by all the strong pointers (kinda), see std/rc.rs for more info
582 let x: Box<_> = Box::try_new(ArcInner {
583 strong: atomic::AtomicUsize::new(1),
584 weak: atomic::AtomicUsize::new(1),
585 data,
586 })?;
587 unsafe { Ok(Self::from_inner(Box::leak(x).into())) }
588 }
589
590 /// Constructs a new `Arc` with uninitialized contents, returning an error
591 /// if allocation fails.
592 ///
593 /// # Examples
594 ///
595 /// ```
596 /// #![feature(new_uninit, allocator_api)]
597 /// #![feature(get_mut_unchecked)]
598 ///
599 /// use std::sync::Arc;
600 ///
601 /// let mut five = Arc::<u32>::try_new_uninit()?;
602 ///
603 /// // Deferred initialization:
604 /// Arc::get_mut(&mut five).unwrap().write(5);
605 ///
606 /// let five = unsafe { five.assume_init() };
607 ///
608 /// assert_eq!(*five, 5);
609 /// # Ok::<(), std::alloc::AllocError>(())
610 /// ```
611 #[unstable(feature = "allocator_api", issue = "32838")]
612 // #[unstable(feature = "new_uninit", issue = "63291")]
613 pub fn try_new_uninit() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
614 unsafe {
615 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
616 Layout::new::<T>(),
617 |layout| Global.allocate(layout),
618 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
619 )?))
620 }
621 }
622
623 /// Constructs a new `Arc` with uninitialized contents, with the memory
624 /// being filled with `0` bytes, returning an error if allocation fails.
625 ///
626 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
627 /// of this method.
628 ///
629 /// # Examples
630 ///
631 /// ```
632 /// #![feature(new_uninit, allocator_api)]
633 ///
634 /// use std::sync::Arc;
635 ///
636 /// let zero = Arc::<u32>::try_new_zeroed()?;
637 /// let zero = unsafe { zero.assume_init() };
638 ///
639 /// assert_eq!(*zero, 0);
640 /// # Ok::<(), std::alloc::AllocError>(())
641 /// ```
642 ///
643 /// [zeroed]: mem::MaybeUninit::zeroed
644 #[unstable(feature = "allocator_api", issue = "32838")]
645 // #[unstable(feature = "new_uninit", issue = "63291")]
646 pub fn try_new_zeroed() -> Result<Arc<mem::MaybeUninit<T>>, AllocError> {
647 unsafe {
648 Ok(Arc::from_ptr(Arc::try_allocate_for_layout(
649 Layout::new::<T>(),
650 |layout| Global.allocate_zeroed(layout),
651 |mem| mem as *mut ArcInner<mem::MaybeUninit<T>>,
652 )?))
653 }
654 }
655 /// Returns the inner value, if the `Arc` has exactly one strong reference.
656 ///
657 /// Otherwise, an [`Err`] is returned with the same `Arc` that was
658 /// passed in.
659 ///
660 /// This will succeed even if there are outstanding weak references.
661 ///
662 /// It is strongly recommended to use [`Arc::into_inner`] instead if you don't
663 /// want to keep the `Arc` in the [`Err`] case.
664 /// Immediately dropping the [`Err`] payload, like in the expression
665 /// `Arc::try_unwrap(this).ok()`, can still cause the strong count to
666 /// drop to zero and the inner value of the `Arc` to be dropped:
667 /// For instance if two threads each execute this expression in parallel, then
668 /// there is a race condition. The threads could first both check whether they
669 /// have the last clone of their `Arc` via `Arc::try_unwrap`, and then
670 /// both drop their `Arc` in the call to [`ok`][`Result::ok`],
671 /// taking the strong count from two down to zero.
672 ///
673 /// # Examples
674 ///
675 /// ```
676 /// use std::sync::Arc;
677 ///
678 /// let x = Arc::new(3);
679 /// assert_eq!(Arc::try_unwrap(x), Ok(3));
680 ///
681 /// let x = Arc::new(4);
682 /// let _y = Arc::clone(&x);
683 /// assert_eq!(*Arc::try_unwrap(x).unwrap_err(), 4);
684 /// ```
685 #[inline]
686 #[stable(feature = "arc_unique", since = "1.4.0")]
687 pub fn try_unwrap(this: Self) -> Result<T, Self> {
688 if this.inner().strong.compare_exchange(1, 0, Relaxed, Relaxed).is_err() {
689 return Err(this);
690 }
691
692 acquire!(this.inner().strong);
693
694 unsafe {
695 let elem = ptr::read(&this.ptr.as_ref().data);
696
697 // Make a weak pointer to clean up the implicit strong-weak reference
698 let _weak = Weak { ptr: this.ptr };
699 mem::forget(this);
700
701 Ok(elem)
702 }
703 }
704
705 /// Returns the inner value, if the `Arc` has exactly one strong reference.
706 ///
707 /// Otherwise, [`None`] is returned and the `Arc` is dropped.
708 ///
709 /// This will succeed even if there are outstanding weak references.
710 ///
711 /// If `Arc::into_inner` is called on every clone of this `Arc`,
712 /// it is guaranteed that exactly one of the calls returns the inner value.
713 /// This means in particular that the inner value is not dropped.
714 ///
715 /// The similar expression `Arc::try_unwrap(this).ok()` does not
716 /// offer such a guarantee. See the last example below
717 /// and the documentation of [`Arc::try_unwrap`].
718 ///
719 /// # Examples
720 ///
721 /// Minimal example demonstrating the guarantee that `Arc::into_inner` gives.
722 /// ```
723 /// use std::sync::Arc;
724 ///
725 /// let x = Arc::new(3);
726 /// let y = Arc::clone(&x);
727 ///
728 /// // Two threads calling `Arc::into_inner` on both clones of an `Arc`:
729 /// let x_thread = std::thread::spawn(|| Arc::into_inner(x));
730 /// let y_thread = std::thread::spawn(|| Arc::into_inner(y));
731 ///
732 /// let x_inner_value = x_thread.join().unwrap();
733 /// let y_inner_value = y_thread.join().unwrap();
734 ///
735 /// // One of the threads is guaranteed to receive the inner value:
736 /// assert!(matches!(
737 /// (x_inner_value, y_inner_value),
738 /// (None, Some(3)) | (Some(3), None)
739 /// ));
740 /// // The result could also be `(None, None)` if the threads called
741 /// // `Arc::try_unwrap(x).ok()` and `Arc::try_unwrap(y).ok()` instead.
742 /// ```
743 ///
744 /// A more practical example demonstrating the need for `Arc::into_inner`:
745 /// ```
746 /// use std::sync::Arc;
747 ///
748 /// // Definition of a simple singly linked list using `Arc`:
749 /// #[derive(Clone)]
750 /// struct LinkedList<T>(Option<Arc<Node<T>>>);
751 /// struct Node<T>(T, Option<Arc<Node<T>>>);
752 ///
753 /// // Dropping a long `LinkedList<T>` relying on the destructor of `Arc`
754 /// // can cause a stack overflow. To prevent this, we can provide a
755 /// // manual `Drop` implementation that does the destruction in a loop:
756 /// impl<T> Drop for LinkedList<T> {
757 /// fn drop(&mut self) {
758 /// let mut link = self.0.take();
759 /// while let Some(arc_node) = link.take() {
760 /// if let Some(Node(_value, next)) = Arc::into_inner(arc_node) {
761 /// link = next;
762 /// }
763 /// }
764 /// }
765 /// }
766 ///
767 /// // Implementation of `new` and `push` omitted
768 /// impl<T> LinkedList<T> {
769 /// /* ... */
770 /// # fn new() -> Self {
771 /// # LinkedList(None)
772 /// # }
773 /// # fn push(&mut self, x: T) {
774 /// # self.0 = Some(Arc::new(Node(x, self.0.take())));
775 /// # }
776 /// }
777 ///
778 /// // The following code could have still caused a stack overflow
779 /// // despite the manual `Drop` impl if that `Drop` impl had used
780 /// // `Arc::try_unwrap(arc).ok()` instead of `Arc::into_inner(arc)`.
781 ///
782 /// // Create a long list and clone it
783 /// let mut x = LinkedList::new();
784 /// for i in 0..100000 {
785 /// x.push(i); // Adds i to the front of x
786 /// }
787 /// let y = x.clone();
788 ///
789 /// // Drop the clones in parallel
790 /// let x_thread = std::thread::spawn(|| drop(x));
791 /// let y_thread = std::thread::spawn(|| drop(y));
792 /// x_thread.join().unwrap();
793 /// y_thread.join().unwrap();
794 /// ```
795 #[inline]
796 #[stable(feature = "arc_into_inner", since = "1.70.0")]
797 pub fn into_inner(this: Self) -> Option<T> {
798 // Make sure that the ordinary `Drop` implementation isn’t called as well
799 let mut this = mem::ManuallyDrop::new(this);
800
801 // Following the implementation of `drop` and `drop_slow`
802 if this.inner().strong.fetch_sub(1, Release) != 1 {
803 return None;
804 }
805
806 acquire!(this.inner().strong);
807
808 // SAFETY: This mirrors the line
809 //
810 // unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
811 //
812 // in `drop_slow`. Instead of dropping the value behind the pointer,
813 // it is read and eventually returned; `ptr::read` has the same
814 // safety conditions as `ptr::drop_in_place`.
815 let inner = unsafe { ptr::read(Self::get_mut_unchecked(&mut this)) };
816
817 drop(Weak { ptr: this.ptr });
818
819 Some(inner)
820 }
821 }
822
823 impl<T> Arc<[T]> {
824 /// Constructs a new atomically reference-counted slice with uninitialized contents.
825 ///
826 /// # Examples
827 ///
828 /// ```
829 /// #![feature(new_uninit)]
830 /// #![feature(get_mut_unchecked)]
831 ///
832 /// use std::sync::Arc;
833 ///
834 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
835 ///
836 /// // Deferred initialization:
837 /// let data = Arc::get_mut(&mut values).unwrap();
838 /// data[0].write(1);
839 /// data[1].write(2);
840 /// data[2].write(3);
841 ///
842 /// let values = unsafe { values.assume_init() };
843 ///
844 /// assert_eq!(*values, [1, 2, 3])
845 /// ```
846 #[cfg(not(no_global_oom_handling))]
847 #[unstable(feature = "new_uninit", issue = "63291")]
848 #[must_use]
849 pub fn new_uninit_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
850 unsafe { Arc::from_ptr(Arc::allocate_for_slice(len)) }
851 }
852
853 /// Constructs a new atomically reference-counted slice with uninitialized contents, with the memory being
854 /// filled with `0` bytes.
855 ///
856 /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
857 /// incorrect usage of this method.
858 ///
859 /// # Examples
860 ///
861 /// ```
862 /// #![feature(new_uninit)]
863 ///
864 /// use std::sync::Arc;
865 ///
866 /// let values = Arc::<[u32]>::new_zeroed_slice(3);
867 /// let values = unsafe { values.assume_init() };
868 ///
869 /// assert_eq!(*values, [0, 0, 0])
870 /// ```
871 ///
872 /// [zeroed]: mem::MaybeUninit::zeroed
873 #[cfg(not(no_global_oom_handling))]
874 #[unstable(feature = "new_uninit", issue = "63291")]
875 #[must_use]
876 pub fn new_zeroed_slice(len: usize) -> Arc<[mem::MaybeUninit<T>]> {
877 unsafe {
878 Arc::from_ptr(Arc::allocate_for_layout(
879 Layout::array::<T>(len).unwrap(),
880 |layout| Global.allocate_zeroed(layout),
881 |mem| {
882 ptr::slice_from_raw_parts_mut(mem as *mut T, len)
883 as *mut ArcInner<[mem::MaybeUninit<T>]>
884 },
885 ))
886 }
887 }
888 }
889
890 impl<T> Arc<mem::MaybeUninit<T>> {
891 /// Converts to `Arc<T>`.
892 ///
893 /// # Safety
894 ///
895 /// As with [`MaybeUninit::assume_init`],
896 /// it is up to the caller to guarantee that the inner value
897 /// really is in an initialized state.
898 /// Calling this when the content is not yet fully initialized
899 /// causes immediate undefined behavior.
900 ///
901 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
902 ///
903 /// # Examples
904 ///
905 /// ```
906 /// #![feature(new_uninit)]
907 /// #![feature(get_mut_unchecked)]
908 ///
909 /// use std::sync::Arc;
910 ///
911 /// let mut five = Arc::<u32>::new_uninit();
912 ///
913 /// // Deferred initialization:
914 /// Arc::get_mut(&mut five).unwrap().write(5);
915 ///
916 /// let five = unsafe { five.assume_init() };
917 ///
918 /// assert_eq!(*five, 5)
919 /// ```
920 #[unstable(feature = "new_uninit", issue = "63291")]
921 #[must_use = "`self` will be dropped if the result is not used"]
922 #[inline]
923 pub unsafe fn assume_init(self) -> Arc<T> {
924 unsafe { Arc::from_inner(mem::ManuallyDrop::new(self).ptr.cast()) }
925 }
926 }
927
928 impl<T> Arc<[mem::MaybeUninit<T>]> {
929 /// Converts to `Arc<[T]>`.
930 ///
931 /// # Safety
932 ///
933 /// As with [`MaybeUninit::assume_init`],
934 /// it is up to the caller to guarantee that the inner value
935 /// really is in an initialized state.
936 /// Calling this when the content is not yet fully initialized
937 /// causes immediate undefined behavior.
938 ///
939 /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
940 ///
941 /// # Examples
942 ///
943 /// ```
944 /// #![feature(new_uninit)]
945 /// #![feature(get_mut_unchecked)]
946 ///
947 /// use std::sync::Arc;
948 ///
949 /// let mut values = Arc::<[u32]>::new_uninit_slice(3);
950 ///
951 /// // Deferred initialization:
952 /// let data = Arc::get_mut(&mut values).unwrap();
953 /// data[0].write(1);
954 /// data[1].write(2);
955 /// data[2].write(3);
956 ///
957 /// let values = unsafe { values.assume_init() };
958 ///
959 /// assert_eq!(*values, [1, 2, 3])
960 /// ```
961 #[unstable(feature = "new_uninit", issue = "63291")]
962 #[must_use = "`self` will be dropped if the result is not used"]
963 #[inline]
964 pub unsafe fn assume_init(self) -> Arc<[T]> {
965 unsafe { Arc::from_ptr(mem::ManuallyDrop::new(self).ptr.as_ptr() as _) }
966 }
967 }
968
969 impl<T: ?Sized> Arc<T> {
970 /// Consumes the `Arc`, returning the wrapped pointer.
971 ///
972 /// To avoid a memory leak the pointer must be converted back to an `Arc` using
973 /// [`Arc::from_raw`].
974 ///
975 /// # Examples
976 ///
977 /// ```
978 /// use std::sync::Arc;
979 ///
980 /// let x = Arc::new("hello".to_owned());
981 /// let x_ptr = Arc::into_raw(x);
982 /// assert_eq!(unsafe { &*x_ptr }, "hello");
983 /// ```
984 #[must_use = "losing the pointer will leak memory"]
985 #[stable(feature = "rc_raw", since = "1.17.0")]
986 pub fn into_raw(this: Self) -> *const T {
987 let ptr = Self::as_ptr(&this);
988 mem::forget(this);
989 ptr
990 }
991
992 /// Provides a raw pointer to the data.
993 ///
994 /// The counts are not affected in any way and the `Arc` is not consumed. The pointer is valid for
995 /// as long as there are strong counts in the `Arc`.
996 ///
997 /// # Examples
998 ///
999 /// ```
1000 /// use std::sync::Arc;
1001 ///
1002 /// let x = Arc::new("hello".to_owned());
1003 /// let y = Arc::clone(&x);
1004 /// let x_ptr = Arc::as_ptr(&x);
1005 /// assert_eq!(x_ptr, Arc::as_ptr(&y));
1006 /// assert_eq!(unsafe { &*x_ptr }, "hello");
1007 /// ```
1008 #[must_use]
1009 #[stable(feature = "rc_as_ptr", since = "1.45.0")]
1010 pub fn as_ptr(this: &Self) -> *const T {
1011 let ptr: *mut ArcInner<T> = NonNull::as_ptr(this.ptr);
1012
1013 // SAFETY: This cannot go through Deref::deref or RcBoxPtr::inner because
1014 // this is required to retain raw/mut provenance such that e.g. `get_mut` can
1015 // write through the pointer after the Rc is recovered through `from_raw`.
1016 unsafe { ptr::addr_of_mut!((*ptr).data) }
1017 }
1018
1019 /// Constructs an `Arc<T>` from a raw pointer.
1020 ///
1021 /// The raw pointer must have been previously returned by a call to
1022 /// [`Arc<U>::into_raw`][into_raw] where `U` must have the same size and
1023 /// alignment as `T`. This is trivially true if `U` is `T`.
1024 /// Note that if `U` is not `T` but has the same size and alignment, this is
1025 /// basically like transmuting references of different types. See
1026 /// [`mem::transmute`][transmute] for more information on what
1027 /// restrictions apply in this case.
1028 ///
1029 /// The user of `from_raw` has to make sure a specific value of `T` is only
1030 /// dropped once.
1031 ///
1032 /// This function is unsafe because improper use may lead to memory unsafety,
1033 /// even if the returned `Arc<T>` is never accessed.
1034 ///
1035 /// [into_raw]: Arc::into_raw
1036 /// [transmute]: core::mem::transmute
1037 ///
1038 /// # Examples
1039 ///
1040 /// ```
1041 /// use std::sync::Arc;
1042 ///
1043 /// let x = Arc::new("hello".to_owned());
1044 /// let x_ptr = Arc::into_raw(x);
1045 ///
1046 /// unsafe {
1047 /// // Convert back to an `Arc` to prevent leak.
1048 /// let x = Arc::from_raw(x_ptr);
1049 /// assert_eq!(&*x, "hello");
1050 ///
1051 /// // Further calls to `Arc::from_raw(x_ptr)` would be memory-unsafe.
1052 /// }
1053 ///
1054 /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
1055 /// ```
1056 #[stable(feature = "rc_raw", since = "1.17.0")]
1057 pub unsafe fn from_raw(ptr: *const T) -> Self {
1058 unsafe {
1059 let offset = data_offset(ptr);
1060
1061 // Reverse the offset to find the original ArcInner.
1062 let arc_ptr = ptr.byte_sub(offset) as *mut ArcInner<T>;
1063
1064 Self::from_ptr(arc_ptr)
1065 }
1066 }
1067
1068 /// Creates a new [`Weak`] pointer to this allocation.
1069 ///
1070 /// # Examples
1071 ///
1072 /// ```
1073 /// use std::sync::Arc;
1074 ///
1075 /// let five = Arc::new(5);
1076 ///
1077 /// let weak_five = Arc::downgrade(&five);
1078 /// ```
1079 #[must_use = "this returns a new `Weak` pointer, \
1080 without modifying the original `Arc`"]
1081 #[stable(feature = "arc_weak", since = "1.4.0")]
1082 pub fn downgrade(this: &Self) -> Weak<T> {
1083 // This Relaxed is OK because we're checking the value in the CAS
1084 // below.
1085 let mut cur = this.inner().weak.load(Relaxed);
1086
1087 loop {
1088 // check if the weak counter is currently "locked"; if so, spin.
1089 if cur == usize::MAX {
1090 hint::spin_loop();
1091 cur = this.inner().weak.load(Relaxed);
1092 continue;
1093 }
1094
1095 // We can't allow the refcount to increase much past `MAX_REFCOUNT`.
1096 assert!(cur <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
1097
1098 // NOTE: this code currently ignores the possibility of overflow
1099 // into usize::MAX; in general both Rc and Arc need to be adjusted
1100 // to deal with overflow.
1101
1102 // Unlike with Clone(), we need this to be an Acquire read to
1103 // synchronize with the write coming from `is_unique`, so that the
1104 // events prior to that write happen before this read.
1105 match this.inner().weak.compare_exchange_weak(cur, cur + 1, Acquire, Relaxed) {
1106 Ok(_) => {
1107 // Make sure we do not create a dangling Weak
1108 debug_assert!(!is_dangling(this.ptr.as_ptr()));
1109 return Weak { ptr: this.ptr };
1110 }
1111 Err(old) => cur = old,
1112 }
1113 }
1114 }
1115
1116 /// Gets the number of [`Weak`] pointers to this allocation.
1117 ///
1118 /// # Safety
1119 ///
1120 /// This method by itself is safe, but using it correctly requires extra care.
1121 /// Another thread can change the weak count at any time,
1122 /// including potentially between calling this method and acting on the result.
1123 ///
1124 /// # Examples
1125 ///
1126 /// ```
1127 /// use std::sync::Arc;
1128 ///
1129 /// let five = Arc::new(5);
1130 /// let _weak_five = Arc::downgrade(&five);
1131 ///
1132 /// // This assertion is deterministic because we haven't shared
1133 /// // the `Arc` or `Weak` between threads.
1134 /// assert_eq!(1, Arc::weak_count(&five));
1135 /// ```
1136 #[inline]
1137 #[must_use]
1138 #[stable(feature = "arc_counts", since = "1.15.0")]
1139 pub fn weak_count(this: &Self) -> usize {
1140 let cnt = this.inner().weak.load(Acquire);
1141 // If the weak count is currently locked, the value of the
1142 // count was 0 just before taking the lock.
1143 if cnt == usize::MAX { 0 } else { cnt - 1 }
1144 }
1145
1146 /// Gets the number of strong (`Arc`) pointers to this allocation.
1147 ///
1148 /// # Safety
1149 ///
1150 /// This method by itself is safe, but using it correctly requires extra care.
1151 /// Another thread can change the strong count at any time,
1152 /// including potentially between calling this method and acting on the result.
1153 ///
1154 /// # Examples
1155 ///
1156 /// ```
1157 /// use std::sync::Arc;
1158 ///
1159 /// let five = Arc::new(5);
1160 /// let _also_five = Arc::clone(&five);
1161 ///
1162 /// // This assertion is deterministic because we haven't shared
1163 /// // the `Arc` between threads.
1164 /// assert_eq!(2, Arc::strong_count(&five));
1165 /// ```
1166 #[inline]
1167 #[must_use]
1168 #[stable(feature = "arc_counts", since = "1.15.0")]
1169 pub fn strong_count(this: &Self) -> usize {
1170 this.inner().strong.load(Acquire)
1171 }
1172
1173 /// Increments the strong reference count on the `Arc<T>` associated with the
1174 /// provided pointer by one.
1175 ///
1176 /// # Safety
1177 ///
1178 /// The pointer must have been obtained through `Arc::into_raw`, and the
1179 /// associated `Arc` instance must be valid (i.e. the strong count must be at
1180 /// least 1) for the duration of this method.
1181 ///
1182 /// # Examples
1183 ///
1184 /// ```
1185 /// use std::sync::Arc;
1186 ///
1187 /// let five = Arc::new(5);
1188 ///
1189 /// unsafe {
1190 /// let ptr = Arc::into_raw(five);
1191 /// Arc::increment_strong_count(ptr);
1192 ///
1193 /// // This assertion is deterministic because we haven't shared
1194 /// // the `Arc` between threads.
1195 /// let five = Arc::from_raw(ptr);
1196 /// assert_eq!(2, Arc::strong_count(&five));
1197 /// }
1198 /// ```
1199 #[inline]
1200 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1201 pub unsafe fn increment_strong_count(ptr: *const T) {
1202 // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
1203 let arc = unsafe { mem::ManuallyDrop::new(Arc::<T>::from_raw(ptr)) };
1204 // Now increase refcount, but don't drop new refcount either
1205 let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
1206 }
1207
1208 /// Decrements the strong reference count on the `Arc<T>` associated with the
1209 /// provided pointer by one.
1210 ///
1211 /// # Safety
1212 ///
1213 /// The pointer must have been obtained through `Arc::into_raw`, and the
1214 /// associated `Arc` instance must be valid (i.e. the strong count must be at
1215 /// least 1) when invoking this method. This method can be used to release the final
1216 /// `Arc` and backing storage, but **should not** be called after the final `Arc` has been
1217 /// released.
1218 ///
1219 /// # Examples
1220 ///
1221 /// ```
1222 /// use std::sync::Arc;
1223 ///
1224 /// let five = Arc::new(5);
1225 ///
1226 /// unsafe {
1227 /// let ptr = Arc::into_raw(five);
1228 /// Arc::increment_strong_count(ptr);
1229 ///
1230 /// // Those assertions are deterministic because we haven't shared
1231 /// // the `Arc` between threads.
1232 /// let five = Arc::from_raw(ptr);
1233 /// assert_eq!(2, Arc::strong_count(&five));
1234 /// Arc::decrement_strong_count(ptr);
1235 /// assert_eq!(1, Arc::strong_count(&five));
1236 /// }
1237 /// ```
1238 #[inline]
1239 #[stable(feature = "arc_mutate_strong_count", since = "1.51.0")]
1240 pub unsafe fn decrement_strong_count(ptr: *const T) {
1241 unsafe { drop(Arc::from_raw(ptr)) };
1242 }
1243
1244 #[inline]
1245 fn inner(&self) -> &ArcInner<T> {
1246 // This unsafety is ok because while this arc is alive we're guaranteed
1247 // that the inner pointer is valid. Furthermore, we know that the
1248 // `ArcInner` structure itself is `Sync` because the inner data is
1249 // `Sync` as well, so we're ok loaning out an immutable pointer to these
1250 // contents.
1251 unsafe { self.ptr.as_ref() }
1252 }
1253
1254 // Non-inlined part of `drop`.
1255 #[inline(never)]
1256 unsafe fn drop_slow(&mut self) {
1257 // Destroy the data at this time, even though we must not free the box
1258 // allocation itself (there might still be weak pointers lying around).
1259 unsafe { ptr::drop_in_place(Self::get_mut_unchecked(self)) };
1260
1261 // Drop the weak ref collectively held by all strong references
1262 drop(Weak { ptr: self.ptr });
1263 }
1264
1265 /// Returns `true` if the two `Arc`s point to the same allocation in a vein similar to
1266 /// [`ptr::eq`]. See [that function][`ptr::eq`] for caveats when comparing `dyn Trait` pointers.
1267 ///
1268 /// # Examples
1269 ///
1270 /// ```
1271 /// use std::sync::Arc;
1272 ///
1273 /// let five = Arc::new(5);
1274 /// let same_five = Arc::clone(&five);
1275 /// let other_five = Arc::new(5);
1276 ///
1277 /// assert!(Arc::ptr_eq(&five, &same_five));
1278 /// assert!(!Arc::ptr_eq(&five, &other_five));
1279 /// ```
1280 ///
1281 /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
1282 #[inline]
1283 #[must_use]
1284 #[stable(feature = "ptr_eq", since = "1.17.0")]
1285 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
1286 this.ptr.as_ptr() == other.ptr.as_ptr()
1287 }
1288 }
1289
1290 impl<T: ?Sized> Arc<T> {
1291 /// Allocates an `ArcInner<T>` with sufficient space for
1292 /// a possibly-unsized inner value where the value has the layout provided.
1293 ///
1294 /// The function `mem_to_arcinner` is called with the data pointer
1295 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1296 #[cfg(not(no_global_oom_handling))]
1297 unsafe fn allocate_for_layout(
1298 value_layout: Layout,
1299 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1300 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1301 ) -> *mut ArcInner<T> {
1302 let layout = arcinner_layout_for_value_layout(value_layout);
1303 unsafe {
1304 Arc::try_allocate_for_layout(value_layout, allocate, mem_to_arcinner)
1305 .unwrap_or_else(|_| handle_alloc_error(layout))
1306 }
1307 }
1308
1309 /// Allocates an `ArcInner<T>` with sufficient space for
1310 /// a possibly-unsized inner value where the value has the layout provided,
1311 /// returning an error if allocation fails.
1312 ///
1313 /// The function `mem_to_arcinner` is called with the data pointer
1314 /// and must return back a (potentially fat)-pointer for the `ArcInner<T>`.
1315 unsafe fn try_allocate_for_layout(
1316 value_layout: Layout,
1317 allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
1318 mem_to_arcinner: impl FnOnce(*mut u8) -> *mut ArcInner<T>,
1319 ) -> Result<*mut ArcInner<T>, AllocError> {
1320 let layout = arcinner_layout_for_value_layout(value_layout);
1321
1322 let ptr = allocate(layout)?;
1323
1324 // Initialize the ArcInner
1325 let inner = mem_to_arcinner(ptr.as_non_null_ptr().as_ptr());
1326 debug_assert_eq!(unsafe { Layout::for_value(&*inner) }, layout);
1327
1328 unsafe {
1329 ptr::write(&mut (*inner).strong, atomic::AtomicUsize::new(1));
1330 ptr::write(&mut (*inner).weak, atomic::AtomicUsize::new(1));
1331 }
1332
1333 Ok(inner)
1334 }
1335
1336 /// Allocates an `ArcInner<T>` with sufficient space for an unsized inner value.
1337 #[cfg(not(no_global_oom_handling))]
1338 unsafe fn allocate_for_ptr(ptr: *const T) -> *mut ArcInner<T> {
1339 // Allocate for the `ArcInner<T>` using the given value.
1340 unsafe {
1341 Self::allocate_for_layout(
1342 Layout::for_value(&*ptr),
1343 |layout| Global.allocate(layout),
1344 |mem| mem.with_metadata_of(ptr as *const ArcInner<T>),
1345 )
1346 }
1347 }
1348
1349 #[cfg(not(no_global_oom_handling))]
1350 fn from_box(v: Box<T>) -> Arc<T> {
1351 unsafe {
1352 let (box_unique, alloc) = Box::into_unique(v);
1353 let bptr = box_unique.as_ptr();
1354
1355 let value_size = size_of_val(&*bptr);
1356 let ptr = Self::allocate_for_ptr(bptr);
1357
1358 // Copy value as bytes
1359 ptr::copy_nonoverlapping(
1360 bptr as *const T as *const u8,
1361 &mut (*ptr).data as *mut _ as *mut u8,
1362 value_size,
1363 );
1364
1365 // Free the allocation without dropping its contents
1366 box_free(box_unique, alloc);
1367
1368 Self::from_ptr(ptr)
1369 }
1370 }
1371 }
1372
1373 impl<T> Arc<[T]> {
1374 /// Allocates an `ArcInner<[T]>` with the given length.
1375 #[cfg(not(no_global_oom_handling))]
1376 unsafe fn allocate_for_slice(len: usize) -> *mut ArcInner<[T]> {
1377 unsafe {
1378 Self::allocate_for_layout(
1379 Layout::array::<T>(len).unwrap(),
1380 |layout| Global.allocate(layout),
1381 |mem| ptr::slice_from_raw_parts_mut(mem as *mut T, len) as *mut ArcInner<[T]>,
1382 )
1383 }
1384 }
1385
1386 /// Copy elements from slice into newly allocated `Arc<[T]>`
1387 ///
1388 /// Unsafe because the caller must either take ownership or bind `T: Copy`.
1389 #[cfg(not(no_global_oom_handling))]
1390 unsafe fn copy_from_slice(v: &[T]) -> Arc<[T]> {
1391 unsafe {
1392 let ptr = Self::allocate_for_slice(v.len());
1393
1394 ptr::copy_nonoverlapping(v.as_ptr(), &mut (*ptr).data as *mut [T] as *mut T, v.len());
1395
1396 Self::from_ptr(ptr)
1397 }
1398 }
1399
1400 /// Constructs an `Arc<[T]>` from an iterator known to be of a certain size.
1401 ///
1402 /// Behavior is undefined should the size be wrong.
1403 #[cfg(not(no_global_oom_handling))]
1404 unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Arc<[T]> {
1405 // Panic guard while cloning T elements.
1406 // In the event of a panic, elements that have been written
1407 // into the new ArcInner will be dropped, then the memory freed.
1408 struct Guard<T> {
1409 mem: NonNull<u8>,
1410 elems: *mut T,
1411 layout: Layout,
1412 n_elems: usize,
1413 }
1414
1415 impl<T> Drop for Guard<T> {
1416 fn drop(&mut self) {
1417 unsafe {
1418 let slice = from_raw_parts_mut(self.elems, self.n_elems);
1419 ptr::drop_in_place(slice);
1420
1421 Global.deallocate(self.mem, self.layout);
1422 }
1423 }
1424 }
1425
1426 unsafe {
1427 let ptr = Self::allocate_for_slice(len);
1428
1429 let mem = ptr as *mut _ as *mut u8;
1430 let layout = Layout::for_value(&*ptr);
1431
1432 // Pointer to first element
1433 let elems = &mut (*ptr).data as *mut [T] as *mut T;
1434
1435 let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };
1436
1437 for (i, item) in iter.enumerate() {
1438 ptr::write(elems.add(i), item);
1439 guard.n_elems += 1;
1440 }
1441
1442 // All clear. Forget the guard so it doesn't free the new ArcInner.
1443 mem::forget(guard);
1444
1445 Self::from_ptr(ptr)
1446 }
1447 }
1448 }
1449
1450 /// Specialization trait used for `From<&[T]>`.
1451 #[cfg(not(no_global_oom_handling))]
1452 trait ArcFromSlice<T> {
1453 fn from_slice(slice: &[T]) -> Self;
1454 }
1455
1456 #[cfg(not(no_global_oom_handling))]
1457 impl<T: Clone> ArcFromSlice<T> for Arc<[T]> {
1458 #[inline]
1459 default fn from_slice(v: &[T]) -> Self {
1460 unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
1461 }
1462 }
1463
1464 #[cfg(not(no_global_oom_handling))]
1465 impl<T: Copy> ArcFromSlice<T> for Arc<[T]> {
1466 #[inline]
1467 fn from_slice(v: &[T]) -> Self {
1468 unsafe { Arc::copy_from_slice(v) }
1469 }
1470 }
1471
1472 #[stable(feature = "rust1", since = "1.0.0")]
1473 impl<T: ?Sized> Clone for Arc<T> {
1474 /// Makes a clone of the `Arc` pointer.
1475 ///
1476 /// This creates another pointer to the same allocation, increasing the
1477 /// strong reference count.
1478 ///
1479 /// # Examples
1480 ///
1481 /// ```
1482 /// use std::sync::Arc;
1483 ///
1484 /// let five = Arc::new(5);
1485 ///
1486 /// let _ = Arc::clone(&five);
1487 /// ```
1488 #[inline]
1489 fn clone(&self) -> Arc<T> {
1490 // Using a relaxed ordering is alright here, as knowledge of the
1491 // original reference prevents other threads from erroneously deleting
1492 // the object.
1493 //
1494 // As explained in the [Boost documentation][1], Increasing the
1495 // reference counter can always be done with memory_order_relaxed: New
1496 // references to an object can only be formed from an existing
1497 // reference, and passing an existing reference from one thread to
1498 // another must already provide any required synchronization.
1499 //
1500 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
1501 let old_size = self.inner().strong.fetch_add(1, Relaxed);
1502
1503 // However we need to guard against massive refcounts in case someone is `mem::forget`ing
1504 // Arcs. If we don't do this the count can overflow and users will use-after free. This
1505 // branch will never be taken in any realistic program. We abort because such a program is
1506 // incredibly degenerate, and we don't care to support it.
1507 //
1508 // This check is not 100% water-proof: we error when the refcount grows beyond `isize::MAX`.
1509 // But we do that check *after* having done the increment, so there is a chance here that
1510 // the worst already happened and we actually do overflow the `usize` counter. However, that
1511 // requires the counter to grow from `isize::MAX` to `usize::MAX` between the increment
1512 // above and the `abort` below, which seems exceedingly unlikely.
1513 //
1514 // This is a global invariant, and also applies when using a compare-exchange loop to increment
1515 // counters in other methods.
1516 // Otherwise, the counter could be brought to an almost-overflow using a compare-exchange loop,
1517 // and then overflow using a few `fetch_add`s.
1518 if old_size > MAX_REFCOUNT {
1519 abort();
1520 }
1521
1522 unsafe { Self::from_inner(self.ptr) }
1523 }
1524 }
1525
1526 #[stable(feature = "rust1", since = "1.0.0")]
1527 impl<T: ?Sized> Deref for Arc<T> {
1528 type Target = T;
1529
1530 #[inline]
1531 fn deref(&self) -> &T {
1532 &self.inner().data
1533 }
1534 }
1535
1536 #[unstable(feature = "receiver_trait", issue = "none")]
1537 impl<T: ?Sized> Receiver for Arc<T> {}
1538
1539 impl<T: Clone> Arc<T> {
1540 /// Makes a mutable reference into the given `Arc`.
1541 ///
1542 /// If there are other `Arc` pointers to the same allocation, then `make_mut` will
1543 /// [`clone`] the inner value to a new allocation to ensure unique ownership. This is also
1544 /// referred to as clone-on-write.
1545 ///
1546 /// However, if there are no other `Arc` pointers to this allocation, but some [`Weak`]
1547 /// pointers, then the [`Weak`] pointers will be dissociated and the inner value will not
1548 /// be cloned.
1549 ///
1550 /// See also [`get_mut`], which will fail rather than cloning the inner value
1551 /// or dissociating [`Weak`] pointers.
1552 ///
1553 /// [`clone`]: Clone::clone
1554 /// [`get_mut`]: Arc::get_mut
1555 ///
1556 /// # Examples
1557 ///
1558 /// ```
1559 /// use std::sync::Arc;
1560 ///
1561 /// let mut data = Arc::new(5);
1562 ///
1563 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
1564 /// let mut other_data = Arc::clone(&data); // Won't clone inner data
1565 /// *Arc::make_mut(&mut data) += 1; // Clones inner data
1566 /// *Arc::make_mut(&mut data) += 1; // Won't clone anything
1567 /// *Arc::make_mut(&mut other_data) *= 2; // Won't clone anything
1568 ///
1569 /// // Now `data` and `other_data` point to different allocations.
1570 /// assert_eq!(*data, 8);
1571 /// assert_eq!(*other_data, 12);
1572 /// ```
1573 ///
1574 /// [`Weak`] pointers will be dissociated:
1575 ///
1576 /// ```
1577 /// use std::sync::Arc;
1578 ///
1579 /// let mut data = Arc::new(75);
1580 /// let weak = Arc::downgrade(&data);
1581 ///
1582 /// assert!(75 == *data);
1583 /// assert!(75 == *weak.upgrade().unwrap());
1584 ///
1585 /// *Arc::make_mut(&mut data) += 1;
1586 ///
1587 /// assert!(76 == *data);
1588 /// assert!(weak.upgrade().is_none());
1589 /// ```
1590 #[cfg(not(no_global_oom_handling))]
1591 #[inline]
1592 #[stable(feature = "arc_unique", since = "1.4.0")]
1593 pub fn make_mut(this: &mut Self) -> &mut T {
1594 // Note that we hold both a strong reference and a weak reference.
1595 // Thus, releasing our strong reference only will not, by itself, cause
1596 // the memory to be deallocated.
1597 //
1598 // Use Acquire to ensure that we see any writes to `weak` that happen
1599 // before release writes (i.e., decrements) to `strong`. Since we hold a
1600 // weak count, there's no chance the ArcInner itself could be
1601 // deallocated.
1602 if this.inner().strong.compare_exchange(1, 0, Acquire, Relaxed).is_err() {
1603 // Another strong pointer exists, so we must clone.
1604 // Pre-allocate memory to allow writing the cloned value directly.
1605 let mut arc = Self::new_uninit();
1606 unsafe {
1607 let data = Arc::get_mut_unchecked(&mut arc);
1608 (**this).write_clone_into_raw(data.as_mut_ptr());
1609 *this = arc.assume_init();
1610 }
1611 } else if this.inner().weak.load(Relaxed) != 1 {
1612 // Relaxed suffices in the above because this is fundamentally an
1613 // optimization: we are always racing with weak pointers being
1614 // dropped. Worst case, we end up allocated a new Arc unnecessarily.
1615
1616 // We removed the last strong ref, but there are additional weak
1617 // refs remaining. We'll move the contents to a new Arc, and
1618 // invalidate the other weak refs.
1619
1620 // Note that it is not possible for the read of `weak` to yield
1621 // usize::MAX (i.e., locked), since the weak count can only be
1622 // locked by a thread with a strong reference.
1623
1624 // Materialize our own implicit weak pointer, so that it can clean
1625 // up the ArcInner as needed.
1626 let _weak = Weak { ptr: this.ptr };
1627
1628 // Can just steal the data, all that's left is Weaks
1629 let mut arc = Self::new_uninit();
1630 unsafe {
1631 let data = Arc::get_mut_unchecked(&mut arc);
1632 data.as_mut_ptr().copy_from_nonoverlapping(&**this, 1);
1633 ptr::write(this, arc.assume_init());
1634 }
1635 } else {
1636 // We were the sole reference of either kind; bump back up the
1637 // strong ref count.
1638 this.inner().strong.store(1, Release);
1639 }
1640
1641 // As with `get_mut()`, the unsafety is ok because our reference was
1642 // either unique to begin with, or became one upon cloning the contents.
1643 unsafe { Self::get_mut_unchecked(this) }
1644 }
1645
1646 /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
1647 /// clone.
1648 ///
1649 /// Assuming `arc_t` is of type `Arc<T>`, this function is functionally equivalent to
1650 /// `(*arc_t).clone()`, but will avoid cloning the inner value where possible.
1651 ///
1652 /// # Examples
1653 ///
1654 /// ```
1655 /// #![feature(arc_unwrap_or_clone)]
1656 /// # use std::{ptr, sync::Arc};
1657 /// let inner = String::from("test");
1658 /// let ptr = inner.as_ptr();
1659 ///
1660 /// let arc = Arc::new(inner);
1661 /// let inner = Arc::unwrap_or_clone(arc);
1662 /// // The inner value was not cloned
1663 /// assert!(ptr::eq(ptr, inner.as_ptr()));
1664 ///
1665 /// let arc = Arc::new(inner);
1666 /// let arc2 = arc.clone();
1667 /// let inner = Arc::unwrap_or_clone(arc);
1668 /// // Because there were 2 references, we had to clone the inner value.
1669 /// assert!(!ptr::eq(ptr, inner.as_ptr()));
1670 /// // `arc2` is the last reference, so when we unwrap it we get back
1671 /// // the original `String`.
1672 /// let inner = Arc::unwrap_or_clone(arc2);
1673 /// assert!(ptr::eq(ptr, inner.as_ptr()));
1674 /// ```
1675 #[inline]
1676 #[unstable(feature = "arc_unwrap_or_clone", issue = "93610")]
1677 pub fn unwrap_or_clone(this: Self) -> T {
1678 Arc::try_unwrap(this).unwrap_or_else(|arc| (*arc).clone())
1679 }
1680 }
1681
1682 impl<T: ?Sized> Arc<T> {
1683 /// Returns a mutable reference into the given `Arc`, if there are
1684 /// no other `Arc` or [`Weak`] pointers to the same allocation.
1685 ///
1686 /// Returns [`None`] otherwise, because it is not safe to
1687 /// mutate a shared value.
1688 ///
1689 /// See also [`make_mut`][make_mut], which will [`clone`][clone]
1690 /// the inner value when there are other `Arc` pointers.
1691 ///
1692 /// [make_mut]: Arc::make_mut
1693 /// [clone]: Clone::clone
1694 ///
1695 /// # Examples
1696 ///
1697 /// ```
1698 /// use std::sync::Arc;
1699 ///
1700 /// let mut x = Arc::new(3);
1701 /// *Arc::get_mut(&mut x).unwrap() = 4;
1702 /// assert_eq!(*x, 4);
1703 ///
1704 /// let _y = Arc::clone(&x);
1705 /// assert!(Arc::get_mut(&mut x).is_none());
1706 /// ```
1707 #[inline]
1708 #[stable(feature = "arc_unique", since = "1.4.0")]
1709 pub fn get_mut(this: &mut Self) -> Option<&mut T> {
1710 if this.is_unique() {
1711 // This unsafety is ok because we're guaranteed that the pointer
1712 // returned is the *only* pointer that will ever be returned to T. Our
1713 // reference count is guaranteed to be 1 at this point, and we required
1714 // the Arc itself to be `mut`, so we're returning the only possible
1715 // reference to the inner data.
1716 unsafe { Some(Arc::get_mut_unchecked(this)) }
1717 } else {
1718 None
1719 }
1720 }
1721
1722 /// Returns a mutable reference into the given `Arc`,
1723 /// without any check.
1724 ///
1725 /// See also [`get_mut`], which is safe and does appropriate checks.
1726 ///
1727 /// [`get_mut`]: Arc::get_mut
1728 ///
1729 /// # Safety
1730 ///
1731 /// If any other `Arc` or [`Weak`] pointers to the same allocation exist, then
1732 /// they must not be dereferenced or have active borrows for the duration
1733 /// of the returned borrow, and their inner type must be exactly the same as the
1734 /// inner type of this Rc (including lifetimes). This is trivially the case if no
1735 /// such pointers exist, for example immediately after `Arc::new`.
1736 ///
1737 /// # Examples
1738 ///
1739 /// ```
1740 /// #![feature(get_mut_unchecked)]
1741 ///
1742 /// use std::sync::Arc;
1743 ///
1744 /// let mut x = Arc::new(String::new());
1745 /// unsafe {
1746 /// Arc::get_mut_unchecked(&mut x).push_str("foo")
1747 /// }
1748 /// assert_eq!(*x, "foo");
1749 /// ```
1750 /// Other `Arc` pointers to the same allocation must be to the same type.
1751 /// ```no_run
1752 /// #![feature(get_mut_unchecked)]
1753 ///
1754 /// use std::sync::Arc;
1755 ///
1756 /// let x: Arc<str> = Arc::from("Hello, world!");
1757 /// let mut y: Arc<[u8]> = x.clone().into();
1758 /// unsafe {
1759 /// // this is Undefined Behavior, because x's inner type is str, not [u8]
1760 /// Arc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
1761 /// }
1762 /// println!("{}", &*x); // Invalid UTF-8 in a str
1763 /// ```
1764 /// Other `Arc` pointers to the same allocation must be to the exact same type, including lifetimes.
1765 /// ```no_run
1766 /// #![feature(get_mut_unchecked)]
1767 ///
1768 /// use std::sync::Arc;
1769 ///
1770 /// let x: Arc<&str> = Arc::new("Hello, world!");
1771 /// {
1772 /// let s = String::from("Oh, no!");
1773 /// let mut y: Arc<&str> = x.clone().into();
1774 /// unsafe {
1775 /// // this is Undefined Behavior, because x's inner type
1776 /// // is &'long str, not &'short str
1777 /// *Arc::get_mut_unchecked(&mut y) = &s;
1778 /// }
1779 /// }
1780 /// println!("{}", &*x); // Use-after-free
1781 /// ```
1782 #[inline]
1783 #[unstable(feature = "get_mut_unchecked", issue = "63292")]
1784 pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
1785 // We are careful to *not* create a reference covering the "count" fields, as
1786 // this would alias with concurrent access to the reference counts (e.g. by `Weak`).
1787 unsafe { &mut (*this.ptr.as_ptr()).data }
1788 }
1789
1790 /// Determine whether this is the unique reference (including weak refs) to
1791 /// the underlying data.
1792 ///
1793 /// Note that this requires locking the weak ref count.
1794 fn is_unique(&mut self) -> bool {
1795 // lock the weak pointer count if we appear to be the sole weak pointer
1796 // holder.
1797 //
1798 // The acquire label here ensures a happens-before relationship with any
1799 // writes to `strong` (in particular in `Weak::upgrade`) prior to decrements
1800 // of the `weak` count (via `Weak::drop`, which uses release). If the upgraded
1801 // weak ref was never dropped, the CAS here will fail so we do not care to synchronize.
1802 if self.inner().weak.compare_exchange(1, usize::MAX, Acquire, Relaxed).is_ok() {
1803 // This needs to be an `Acquire` to synchronize with the decrement of the `strong`
1804 // counter in `drop` -- the only access that happens when any but the last reference
1805 // is being dropped.
1806 let unique = self.inner().strong.load(Acquire) == 1;
1807
1808 // The release write here synchronizes with a read in `downgrade`,
1809 // effectively preventing the above read of `strong` from happening
1810 // after the write.
1811 self.inner().weak.store(1, Release); // release the lock
1812 unique
1813 } else {
1814 false
1815 }
1816 }
1817 }
1818
1819 #[stable(feature = "rust1", since = "1.0.0")]
1820 unsafe impl<#[may_dangle] T: ?Sized> Drop for Arc<T> {
1821 /// Drops the `Arc`.
1822 ///
1823 /// This will decrement the strong reference count. If the strong reference
1824 /// count reaches zero then the only other references (if any) are
1825 /// [`Weak`], so we `drop` the inner value.
1826 ///
1827 /// # Examples
1828 ///
1829 /// ```
1830 /// use std::sync::Arc;
1831 ///
1832 /// struct Foo;
1833 ///
1834 /// impl Drop for Foo {
1835 /// fn drop(&mut self) {
1836 /// println!("dropped!");
1837 /// }
1838 /// }
1839 ///
1840 /// let foo = Arc::new(Foo);
1841 /// let foo2 = Arc::clone(&foo);
1842 ///
1843 /// drop(foo); // Doesn't print anything
1844 /// drop(foo2); // Prints "dropped!"
1845 /// ```
1846 #[inline]
1847 fn drop(&mut self) {
1848 // Because `fetch_sub` is already atomic, we do not need to synchronize
1849 // with other threads unless we are going to delete the object. This
1850 // same logic applies to the below `fetch_sub` to the `weak` count.
1851 if self.inner().strong.fetch_sub(1, Release) != 1 {
1852 return;
1853 }
1854
1855 // This fence is needed to prevent reordering of use of the data and
1856 // deletion of the data. Because it is marked `Release`, the decreasing
1857 // of the reference count synchronizes with this `Acquire` fence. This
1858 // means that use of the data happens before decreasing the reference
1859 // count, which happens before this fence, which happens before the
1860 // deletion of the data.
1861 //
1862 // As explained in the [Boost documentation][1],
1863 //
1864 // > It is important to enforce any possible access to the object in one
1865 // > thread (through an existing reference) to *happen before* deleting
1866 // > the object in a different thread. This is achieved by a "release"
1867 // > operation after dropping a reference (any access to the object
1868 // > through this reference must obviously happened before), and an
1869 // > "acquire" operation before deleting the object.
1870 //
1871 // In particular, while the contents of an Arc are usually immutable, it's
1872 // possible to have interior writes to something like a Mutex<T>. Since a
1873 // Mutex is not acquired when it is deleted, we can't rely on its
1874 // synchronization logic to make writes in thread A visible to a destructor
1875 // running in thread B.
1876 //
1877 // Also note that the Acquire fence here could probably be replaced with an
1878 // Acquire load, which could improve performance in highly-contended
1879 // situations. See [2].
1880 //
1881 // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
1882 // [2]: (https://github.com/rust-lang/rust/pull/41714)
1883 acquire!(self.inner().strong);
1884
1885 unsafe {
1886 self.drop_slow();
1887 }
1888 }
1889 }
1890
1891 impl Arc<dyn Any + Send + Sync> {
1892 /// Attempt to downcast the `Arc<dyn Any + Send + Sync>` to a concrete type.
1893 ///
1894 /// # Examples
1895 ///
1896 /// ```
1897 /// use std::any::Any;
1898 /// use std::sync::Arc;
1899 ///
1900 /// fn print_if_string(value: Arc<dyn Any + Send + Sync>) {
1901 /// if let Ok(string) = value.downcast::<String>() {
1902 /// println!("String ({}): {}", string.len(), string);
1903 /// }
1904 /// }
1905 ///
1906 /// let my_string = "Hello World".to_string();
1907 /// print_if_string(Arc::new(my_string));
1908 /// print_if_string(Arc::new(0i8));
1909 /// ```
1910 #[inline]
1911 #[stable(feature = "rc_downcast", since = "1.29.0")]
1912 pub fn downcast<T>(self) -> Result<Arc<T>, Self>
1913 where
1914 T: Any + Send + Sync,
1915 {
1916 if (*self).is::<T>() {
1917 unsafe {
1918 let ptr = self.ptr.cast::<ArcInner<T>>();
1919 mem::forget(self);
1920 Ok(Arc::from_inner(ptr))
1921 }
1922 } else {
1923 Err(self)
1924 }
1925 }
1926
1927 /// Downcasts the `Arc<dyn Any + Send + Sync>` to a concrete type.
1928 ///
1929 /// For a safe alternative see [`downcast`].
1930 ///
1931 /// # Examples
1932 ///
1933 /// ```
1934 /// #![feature(downcast_unchecked)]
1935 ///
1936 /// use std::any::Any;
1937 /// use std::sync::Arc;
1938 ///
1939 /// let x: Arc<dyn Any + Send + Sync> = Arc::new(1_usize);
1940 ///
1941 /// unsafe {
1942 /// assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1943 /// }
1944 /// ```
1945 ///
1946 /// # Safety
1947 ///
1948 /// The contained value must be of type `T`. Calling this method
1949 /// with the incorrect type is *undefined behavior*.
1950 ///
1951 ///
1952 /// [`downcast`]: Self::downcast
1953 #[inline]
1954 #[unstable(feature = "downcast_unchecked", issue = "90850")]
1955 pub unsafe fn downcast_unchecked<T>(self) -> Arc<T>
1956 where
1957 T: Any + Send + Sync,
1958 {
1959 unsafe {
1960 let ptr = self.ptr.cast::<ArcInner<T>>();
1961 mem::forget(self);
1962 Arc::from_inner(ptr)
1963 }
1964 }
1965 }
1966
1967 impl<T> Weak<T> {
1968 /// Constructs a new `Weak<T>`, without allocating any memory.
1969 /// Calling [`upgrade`] on the return value always gives [`None`].
1970 ///
1971 /// [`upgrade`]: Weak::upgrade
1972 ///
1973 /// # Examples
1974 ///
1975 /// ```
1976 /// use std::sync::Weak;
1977 ///
1978 /// let empty: Weak<i64> = Weak::new();
1979 /// assert!(empty.upgrade().is_none());
1980 /// ```
1981 #[stable(feature = "downgraded_weak", since = "1.10.0")]
1982 #[rustc_const_unstable(feature = "const_weak_new", issue = "95091", reason = "recently added")]
1983 #[must_use]
1984 pub const fn new() -> Weak<T> {
1985 Weak { ptr: unsafe { NonNull::new_unchecked(ptr::invalid_mut::<ArcInner<T>>(usize::MAX)) } }
1986 }
1987 }
1988
1989 /// Helper type to allow accessing the reference counts without
1990 /// making any assertions about the data field.
1991 struct WeakInner<'a> {
1992 weak: &'a atomic::AtomicUsize,
1993 strong: &'a atomic::AtomicUsize,
1994 }
1995
1996 impl<T: ?Sized> Weak<T> {
1997 /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
1998 ///
1999 /// The pointer is valid only if there are some strong references. The pointer may be dangling,
2000 /// unaligned or even [`null`] otherwise.
2001 ///
2002 /// # Examples
2003 ///
2004 /// ```
2005 /// use std::sync::Arc;
2006 /// use std::ptr;
2007 ///
2008 /// let strong = Arc::new("hello".to_owned());
2009 /// let weak = Arc::downgrade(&strong);
2010 /// // Both point to the same object
2011 /// assert!(ptr::eq(&*strong, weak.as_ptr()));
2012 /// // The strong here keeps it alive, so we can still access the object.
2013 /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
2014 ///
2015 /// drop(strong);
2016 /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
2017 /// // undefined behaviour.
2018 /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
2019 /// ```
2020 ///
2021 /// [`null`]: core::ptr::null "ptr::null"
2022 #[must_use]
2023 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2024 pub fn as_ptr(&self) -> *const T {
2025 let ptr: *mut ArcInner<T> = NonNull::as_ptr(self.ptr);
2026
2027 if is_dangling(ptr) {
2028 // If the pointer is dangling, we return the sentinel directly. This cannot be
2029 // a valid payload address, as the payload is at least as aligned as ArcInner (usize).
2030 ptr as *const T
2031 } else {
2032 // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
2033 // The payload may be dropped at this point, and we have to maintain provenance,
2034 // so use raw pointer manipulation.
2035 unsafe { ptr::addr_of_mut!((*ptr).data) }
2036 }
2037 }
2038
2039 /// Consumes the `Weak<T>` and turns it into a raw pointer.
2040 ///
2041 /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
2042 /// one weak reference (the weak count is not modified by this operation). It can be turned
2043 /// back into the `Weak<T>` with [`from_raw`].
2044 ///
2045 /// The same restrictions of accessing the target of the pointer as with
2046 /// [`as_ptr`] apply.
2047 ///
2048 /// # Examples
2049 ///
2050 /// ```
2051 /// use std::sync::{Arc, Weak};
2052 ///
2053 /// let strong = Arc::new("hello".to_owned());
2054 /// let weak = Arc::downgrade(&strong);
2055 /// let raw = weak.into_raw();
2056 ///
2057 /// assert_eq!(1, Arc::weak_count(&strong));
2058 /// assert_eq!("hello", unsafe { &*raw });
2059 ///
2060 /// drop(unsafe { Weak::from_raw(raw) });
2061 /// assert_eq!(0, Arc::weak_count(&strong));
2062 /// ```
2063 ///
2064 /// [`from_raw`]: Weak::from_raw
2065 /// [`as_ptr`]: Weak::as_ptr
2066 #[must_use = "`self` will be dropped if the result is not used"]
2067 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2068 pub fn into_raw(self) -> *const T {
2069 let result = self.as_ptr();
2070 mem::forget(self);
2071 result
2072 }
2073
2074 /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
2075 ///
2076 /// This can be used to safely get a strong reference (by calling [`upgrade`]
2077 /// later) or to deallocate the weak count by dropping the `Weak<T>`.
2078 ///
2079 /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
2080 /// as these don't own anything; the method still works on them).
2081 ///
2082 /// # Safety
2083 ///
2084 /// The pointer must have originated from the [`into_raw`] and must still own its potential
2085 /// weak reference.
2086 ///
2087 /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
2088 /// takes ownership of one weak reference currently represented as a raw pointer (the weak
2089 /// count is not modified by this operation) and therefore it must be paired with a previous
2090 /// call to [`into_raw`].
2091 /// # Examples
2092 ///
2093 /// ```
2094 /// use std::sync::{Arc, Weak};
2095 ///
2096 /// let strong = Arc::new("hello".to_owned());
2097 ///
2098 /// let raw_1 = Arc::downgrade(&strong).into_raw();
2099 /// let raw_2 = Arc::downgrade(&strong).into_raw();
2100 ///
2101 /// assert_eq!(2, Arc::weak_count(&strong));
2102 ///
2103 /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
2104 /// assert_eq!(1, Arc::weak_count(&strong));
2105 ///
2106 /// drop(strong);
2107 ///
2108 /// // Decrement the last weak count.
2109 /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
2110 /// ```
2111 ///
2112 /// [`new`]: Weak::new
2113 /// [`into_raw`]: Weak::into_raw
2114 /// [`upgrade`]: Weak::upgrade
2115 #[stable(feature = "weak_into_raw", since = "1.45.0")]
2116 pub unsafe fn from_raw(ptr: *const T) -> Self {
2117 // See Weak::as_ptr for context on how the input pointer is derived.
2118
2119 let ptr = if is_dangling(ptr as *mut T) {
2120 // This is a dangling Weak.
2121 ptr as *mut ArcInner<T>
2122 } else {
2123 // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
2124 // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
2125 let offset = unsafe { data_offset(ptr) };
2126 // Thus, we reverse the offset to get the whole RcBox.
2127 // SAFETY: the pointer originated from a Weak, so this offset is safe.
2128 unsafe { ptr.byte_sub(offset) as *mut ArcInner<T> }
2129 };
2130
2131 // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
2132 Weak { ptr: unsafe { NonNull::new_unchecked(ptr) } }
2133 }
2134 }
2135
2136 impl<T: ?Sized> Weak<T> {
2137 /// Attempts to upgrade the `Weak` pointer to an [`Arc`], delaying
2138 /// dropping of the inner value if successful.
2139 ///
2140 /// Returns [`None`] if the inner value has since been dropped.
2141 ///
2142 /// # Examples
2143 ///
2144 /// ```
2145 /// use std::sync::Arc;
2146 ///
2147 /// let five = Arc::new(5);
2148 ///
2149 /// let weak_five = Arc::downgrade(&five);
2150 ///
2151 /// let strong_five: Option<Arc<_>> = weak_five.upgrade();
2152 /// assert!(strong_five.is_some());
2153 ///
2154 /// // Destroy all strong pointers.
2155 /// drop(strong_five);
2156 /// drop(five);
2157 ///
2158 /// assert!(weak_five.upgrade().is_none());
2159 /// ```
2160 #[must_use = "this returns a new `Arc`, \
2161 without modifying the original weak pointer"]
2162 #[stable(feature = "arc_weak", since = "1.4.0")]
2163 pub fn upgrade(&self) -> Option<Arc<T>> {
2164 // We use a CAS loop to increment the strong count instead of a
2165 // fetch_add as this function should never take the reference count
2166 // from zero to one.
2167 self.inner()?
2168 .strong
2169 // Relaxed is fine for the failure case because we don't have any expectations about the new state.
2170 // Acquire is necessary for the success case to synchronise with `Arc::new_cyclic`, when the inner
2171 // value can be initialized after `Weak` references have already been created. In that case, we
2172 // expect to observe the fully initialized value.
2173 .fetch_update(Acquire, Relaxed, |n| {
2174 // Any write of 0 we can observe leaves the field in permanently zero state.
2175 if n == 0 {
2176 return None;
2177 }
2178 // See comments in `Arc::clone` for why we do this (for `mem::forget`).
2179 assert!(n <= MAX_REFCOUNT, "{}", INTERNAL_OVERFLOW_ERROR);
2180 Some(n + 1)
2181 })
2182 .ok()
2183 // null checked above
2184 .map(|_| unsafe { Arc::from_inner(self.ptr) })
2185 }
2186
2187 /// Gets the number of strong (`Arc`) pointers pointing to this allocation.
2188 ///
2189 /// If `self` was created using [`Weak::new`], this will return 0.
2190 #[must_use]
2191 #[stable(feature = "weak_counts", since = "1.41.0")]
2192 pub fn strong_count(&self) -> usize {
2193 if let Some(inner) = self.inner() { inner.strong.load(Acquire) } else { 0 }
2194 }
2195
2196 /// Gets an approximation of the number of `Weak` pointers pointing to this
2197 /// allocation.
2198 ///
2199 /// If `self` was created using [`Weak::new`], or if there are no remaining
2200 /// strong pointers, this will return 0.
2201 ///
2202 /// # Accuracy
2203 ///
2204 /// Due to implementation details, the returned value can be off by 1 in
2205 /// either direction when other threads are manipulating any `Arc`s or
2206 /// `Weak`s pointing to the same allocation.
2207 #[must_use]
2208 #[stable(feature = "weak_counts", since = "1.41.0")]
2209 pub fn weak_count(&self) -> usize {
2210 self.inner()
2211 .map(|inner| {
2212 let weak = inner.weak.load(Acquire);
2213 let strong = inner.strong.load(Acquire);
2214 if strong == 0 {
2215 0
2216 } else {
2217 // Since we observed that there was at least one strong pointer
2218 // after reading the weak count, we know that the implicit weak
2219 // reference (present whenever any strong references are alive)
2220 // was still around when we observed the weak count, and can
2221 // therefore safely subtract it.
2222 weak - 1
2223 }
2224 })
2225 .unwrap_or(0)
2226 }
2227
2228 /// Returns `None` when the pointer is dangling and there is no allocated `ArcInner`,
2229 /// (i.e., when this `Weak` was created by `Weak::new`).
2230 #[inline]
2231 fn inner(&self) -> Option<WeakInner<'_>> {
2232 if is_dangling(self.ptr.as_ptr()) {
2233 None
2234 } else {
2235 // We are careful to *not* create a reference covering the "data" field, as
2236 // the field may be mutated concurrently (for example, if the last `Arc`
2237 // is dropped, the data field will be dropped in-place).
2238 Some(unsafe {
2239 let ptr = self.ptr.as_ptr();
2240 WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
2241 })
2242 }
2243 }
2244
2245 /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
2246 /// both don't point to any allocation (because they were created with `Weak::new()`). See [that
2247 /// function][`ptr::eq`] for caveats when comparing `dyn Trait` pointers.
2248 ///
2249 /// # Notes
2250 ///
2251 /// Since this compares pointers it means that `Weak::new()` will equal each
2252 /// other, even though they don't point to any allocation.
2253 ///
2254 /// # Examples
2255 ///
2256 /// ```
2257 /// use std::sync::Arc;
2258 ///
2259 /// let first_rc = Arc::new(5);
2260 /// let first = Arc::downgrade(&first_rc);
2261 /// let second = Arc::downgrade(&first_rc);
2262 ///
2263 /// assert!(first.ptr_eq(&second));
2264 ///
2265 /// let third_rc = Arc::new(5);
2266 /// let third = Arc::downgrade(&third_rc);
2267 ///
2268 /// assert!(!first.ptr_eq(&third));
2269 /// ```
2270 ///
2271 /// Comparing `Weak::new`.
2272 ///
2273 /// ```
2274 /// use std::sync::{Arc, Weak};
2275 ///
2276 /// let first = Weak::new();
2277 /// let second = Weak::new();
2278 /// assert!(first.ptr_eq(&second));
2279 ///
2280 /// let third_rc = Arc::new(());
2281 /// let third = Arc::downgrade(&third_rc);
2282 /// assert!(!first.ptr_eq(&third));
2283 /// ```
2284 ///
2285 /// [`ptr::eq`]: core::ptr::eq "ptr::eq"
2286 #[inline]
2287 #[must_use]
2288 #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
2289 pub fn ptr_eq(&self, other: &Self) -> bool {
2290 self.ptr.as_ptr() == other.ptr.as_ptr()
2291 }
2292 }
2293
2294 #[stable(feature = "arc_weak", since = "1.4.0")]
2295 impl<T: ?Sized> Clone for Weak<T> {
2296 /// Makes a clone of the `Weak` pointer that points to the same allocation.
2297 ///
2298 /// # Examples
2299 ///
2300 /// ```
2301 /// use std::sync::{Arc, Weak};
2302 ///
2303 /// let weak_five = Arc::downgrade(&Arc::new(5));
2304 ///
2305 /// let _ = Weak::clone(&weak_five);
2306 /// ```
2307 #[inline]
2308 fn clone(&self) -> Weak<T> {
2309 let inner = if let Some(inner) = self.inner() {
2310 inner
2311 } else {
2312 return Weak { ptr: self.ptr };
2313 };
2314 // See comments in Arc::clone() for why this is relaxed. This can use a
2315 // fetch_add (ignoring the lock) because the weak count is only locked
2316 // where are *no other* weak pointers in existence. (So we can't be
2317 // running this code in that case).
2318 let old_size = inner.weak.fetch_add(1, Relaxed);
2319
2320 // See comments in Arc::clone() for why we do this (for mem::forget).
2321 if old_size > MAX_REFCOUNT {
2322 abort();
2323 }
2324
2325 Weak { ptr: self.ptr }
2326 }
2327 }
2328
2329 #[stable(feature = "downgraded_weak", since = "1.10.0")]
2330 impl<T> Default for Weak<T> {
2331 /// Constructs a new `Weak<T>`, without allocating memory.
2332 /// Calling [`upgrade`] on the return value always
2333 /// gives [`None`].
2334 ///
2335 /// [`upgrade`]: Weak::upgrade
2336 ///
2337 /// # Examples
2338 ///
2339 /// ```
2340 /// use std::sync::Weak;
2341 ///
2342 /// let empty: Weak<i64> = Default::default();
2343 /// assert!(empty.upgrade().is_none());
2344 /// ```
2345 fn default() -> Weak<T> {
2346 Weak::new()
2347 }
2348 }
2349
2350 #[stable(feature = "arc_weak", since = "1.4.0")]
2351 unsafe impl<#[may_dangle] T: ?Sized> Drop for Weak<T> {
2352 /// Drops the `Weak` pointer.
2353 ///
2354 /// # Examples
2355 ///
2356 /// ```
2357 /// use std::sync::{Arc, Weak};
2358 ///
2359 /// struct Foo;
2360 ///
2361 /// impl Drop for Foo {
2362 /// fn drop(&mut self) {
2363 /// println!("dropped!");
2364 /// }
2365 /// }
2366 ///
2367 /// let foo = Arc::new(Foo);
2368 /// let weak_foo = Arc::downgrade(&foo);
2369 /// let other_weak_foo = Weak::clone(&weak_foo);
2370 ///
2371 /// drop(weak_foo); // Doesn't print anything
2372 /// drop(foo); // Prints "dropped!"
2373 ///
2374 /// assert!(other_weak_foo.upgrade().is_none());
2375 /// ```
2376 fn drop(&mut self) {
2377 // If we find out that we were the last weak pointer, then its time to
2378 // deallocate the data entirely. See the discussion in Arc::drop() about
2379 // the memory orderings
2380 //
2381 // It's not necessary to check for the locked state here, because the
2382 // weak count can only be locked if there was precisely one weak ref,
2383 // meaning that drop could only subsequently run ON that remaining weak
2384 // ref, which can only happen after the lock is released.
2385 let inner = if let Some(inner) = self.inner() { inner } else { return };
2386
2387 if inner.weak.fetch_sub(1, Release) == 1 {
2388 acquire!(inner.weak);
2389 unsafe { Global.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr())) }
2390 }
2391 }
2392 }
2393
2394 #[stable(feature = "rust1", since = "1.0.0")]
2395 trait ArcEqIdent<T: ?Sized + PartialEq> {
2396 fn eq(&self, other: &Arc<T>) -> bool;
2397 fn ne(&self, other: &Arc<T>) -> bool;
2398 }
2399
2400 #[stable(feature = "rust1", since = "1.0.0")]
2401 impl<T: ?Sized + PartialEq> ArcEqIdent<T> for Arc<T> {
2402 #[inline]
2403 default fn eq(&self, other: &Arc<T>) -> bool {
2404 **self == **other
2405 }
2406 #[inline]
2407 default fn ne(&self, other: &Arc<T>) -> bool {
2408 **self != **other
2409 }
2410 }
2411
2412 /// We're doing this specialization here, and not as a more general optimization on `&T`, because it
2413 /// would otherwise add a cost to all equality checks on refs. We assume that `Arc`s are used to
2414 /// store large values, that are slow to clone, but also heavy to check for equality, causing this
2415 /// cost to pay off more easily. It's also more likely to have two `Arc` clones, that point to
2416 /// the same value, than two `&T`s.
2417 ///
2418 /// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
2419 #[stable(feature = "rust1", since = "1.0.0")]
2420 impl<T: ?Sized + crate::rc::MarkerEq> ArcEqIdent<T> for Arc<T> {
2421 #[inline]
2422 fn eq(&self, other: &Arc<T>) -> bool {
2423 Arc::ptr_eq(self, other) || **self == **other
2424 }
2425
2426 #[inline]
2427 fn ne(&self, other: &Arc<T>) -> bool {
2428 !Arc::ptr_eq(self, other) && **self != **other
2429 }
2430 }
2431
2432 #[stable(feature = "rust1", since = "1.0.0")]
2433 impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
2434 /// Equality for two `Arc`s.
2435 ///
2436 /// Two `Arc`s are equal if their inner values are equal, even if they are
2437 /// stored in different allocation.
2438 ///
2439 /// If `T` also implements `Eq` (implying reflexivity of equality),
2440 /// two `Arc`s that point to the same allocation are always equal.
2441 ///
2442 /// # Examples
2443 ///
2444 /// ```
2445 /// use std::sync::Arc;
2446 ///
2447 /// let five = Arc::new(5);
2448 ///
2449 /// assert!(five == Arc::new(5));
2450 /// ```
2451 #[inline]
2452 fn eq(&self, other: &Arc<T>) -> bool {
2453 ArcEqIdent::eq(self, other)
2454 }
2455
2456 /// Inequality for two `Arc`s.
2457 ///
2458 /// Two `Arc`s are not equal if their inner values are not equal.
2459 ///
2460 /// If `T` also implements `Eq` (implying reflexivity of equality),
2461 /// two `Arc`s that point to the same value are always equal.
2462 ///
2463 /// # Examples
2464 ///
2465 /// ```
2466 /// use std::sync::Arc;
2467 ///
2468 /// let five = Arc::new(5);
2469 ///
2470 /// assert!(five != Arc::new(6));
2471 /// ```
2472 #[inline]
2473 fn ne(&self, other: &Arc<T>) -> bool {
2474 ArcEqIdent::ne(self, other)
2475 }
2476 }
2477
2478 #[stable(feature = "rust1", since = "1.0.0")]
2479 impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
2480 /// Partial comparison for two `Arc`s.
2481 ///
2482 /// The two are compared by calling `partial_cmp()` on their inner values.
2483 ///
2484 /// # Examples
2485 ///
2486 /// ```
2487 /// use std::sync::Arc;
2488 /// use std::cmp::Ordering;
2489 ///
2490 /// let five = Arc::new(5);
2491 ///
2492 /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Arc::new(6)));
2493 /// ```
2494 fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
2495 (**self).partial_cmp(&**other)
2496 }
2497
2498 /// Less-than comparison for two `Arc`s.
2499 ///
2500 /// The two are compared by calling `<` on their inner values.
2501 ///
2502 /// # Examples
2503 ///
2504 /// ```
2505 /// use std::sync::Arc;
2506 ///
2507 /// let five = Arc::new(5);
2508 ///
2509 /// assert!(five < Arc::new(6));
2510 /// ```
2511 fn lt(&self, other: &Arc<T>) -> bool {
2512 *(*self) < *(*other)
2513 }
2514
2515 /// 'Less than or equal to' comparison for two `Arc`s.
2516 ///
2517 /// The two are compared by calling `<=` on their inner values.
2518 ///
2519 /// # Examples
2520 ///
2521 /// ```
2522 /// use std::sync::Arc;
2523 ///
2524 /// let five = Arc::new(5);
2525 ///
2526 /// assert!(five <= Arc::new(5));
2527 /// ```
2528 fn le(&self, other: &Arc<T>) -> bool {
2529 *(*self) <= *(*other)
2530 }
2531
2532 /// Greater-than comparison for two `Arc`s.
2533 ///
2534 /// The two are compared by calling `>` on their inner values.
2535 ///
2536 /// # Examples
2537 ///
2538 /// ```
2539 /// use std::sync::Arc;
2540 ///
2541 /// let five = Arc::new(5);
2542 ///
2543 /// assert!(five > Arc::new(4));
2544 /// ```
2545 fn gt(&self, other: &Arc<T>) -> bool {
2546 *(*self) > *(*other)
2547 }
2548
2549 /// 'Greater than or equal to' comparison for two `Arc`s.
2550 ///
2551 /// The two are compared by calling `>=` on their inner values.
2552 ///
2553 /// # Examples
2554 ///
2555 /// ```
2556 /// use std::sync::Arc;
2557 ///
2558 /// let five = Arc::new(5);
2559 ///
2560 /// assert!(five >= Arc::new(5));
2561 /// ```
2562 fn ge(&self, other: &Arc<T>) -> bool {
2563 *(*self) >= *(*other)
2564 }
2565 }
2566 #[stable(feature = "rust1", since = "1.0.0")]
2567 impl<T: ?Sized + Ord> Ord for Arc<T> {
2568 /// Comparison for two `Arc`s.
2569 ///
2570 /// The two are compared by calling `cmp()` on their inner values.
2571 ///
2572 /// # Examples
2573 ///
2574 /// ```
2575 /// use std::sync::Arc;
2576 /// use std::cmp::Ordering;
2577 ///
2578 /// let five = Arc::new(5);
2579 ///
2580 /// assert_eq!(Ordering::Less, five.cmp(&Arc::new(6)));
2581 /// ```
2582 fn cmp(&self, other: &Arc<T>) -> Ordering {
2583 (**self).cmp(&**other)
2584 }
2585 }
2586 #[stable(feature = "rust1", since = "1.0.0")]
2587 impl<T: ?Sized + Eq> Eq for Arc<T> {}
2588
2589 #[stable(feature = "rust1", since = "1.0.0")]
2590 impl<T: ?Sized + fmt::Display> fmt::Display for Arc<T> {
2591 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2592 fmt::Display::fmt(&**self, f)
2593 }
2594 }
2595
2596 #[stable(feature = "rust1", since = "1.0.0")]
2597 impl<T: ?Sized + fmt::Debug> fmt::Debug for Arc<T> {
2598 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2599 fmt::Debug::fmt(&**self, f)
2600 }
2601 }
2602
2603 #[stable(feature = "rust1", since = "1.0.0")]
2604 impl<T: ?Sized> fmt::Pointer for Arc<T> {
2605 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2606 fmt::Pointer::fmt(&(&**self as *const T), f)
2607 }
2608 }
2609
2610 #[cfg(not(no_global_oom_handling))]
2611 #[stable(feature = "rust1", since = "1.0.0")]
2612 impl<T: Default> Default for Arc<T> {
2613 /// Creates a new `Arc<T>`, with the `Default` value for `T`.
2614 ///
2615 /// # Examples
2616 ///
2617 /// ```
2618 /// use std::sync::Arc;
2619 ///
2620 /// let x: Arc<i32> = Default::default();
2621 /// assert_eq!(*x, 0);
2622 /// ```
2623 fn default() -> Arc<T> {
2624 Arc::new(Default::default())
2625 }
2626 }
2627
2628 #[stable(feature = "rust1", since = "1.0.0")]
2629 impl<T: ?Sized + Hash> Hash for Arc<T> {
2630 fn hash<H: Hasher>(&self, state: &mut H) {
2631 (**self).hash(state)
2632 }
2633 }
2634
2635 #[cfg(not(no_global_oom_handling))]
2636 #[stable(feature = "from_for_ptrs", since = "1.6.0")]
2637 impl<T> From<T> for Arc<T> {
2638 /// Converts a `T` into an `Arc<T>`
2639 ///
2640 /// The conversion moves the value into a
2641 /// newly allocated `Arc`. It is equivalent to
2642 /// calling `Arc::new(t)`.
2643 ///
2644 /// # Example
2645 /// ```rust
2646 /// # use std::sync::Arc;
2647 /// let x = 5;
2648 /// let arc = Arc::new(5);
2649 ///
2650 /// assert_eq!(Arc::from(x), arc);
2651 /// ```
2652 fn from(t: T) -> Self {
2653 Arc::new(t)
2654 }
2655 }
2656
2657 #[cfg(not(no_global_oom_handling))]
2658 #[stable(feature = "shared_from_slice", since = "1.21.0")]
2659 impl<T: Clone> From<&[T]> for Arc<[T]> {
2660 /// Allocate a reference-counted slice and fill it by cloning `v`'s items.
2661 ///
2662 /// # Example
2663 ///
2664 /// ```
2665 /// # use std::sync::Arc;
2666 /// let original: &[i32] = &[1, 2, 3];
2667 /// let shared: Arc<[i32]> = Arc::from(original);
2668 /// assert_eq!(&[1, 2, 3], &shared[..]);
2669 /// ```
2670 #[inline]
2671 fn from(v: &[T]) -> Arc<[T]> {
2672 <Self as ArcFromSlice<T>>::from_slice(v)
2673 }
2674 }
2675
2676 #[cfg(not(no_global_oom_handling))]
2677 #[stable(feature = "shared_from_slice", since = "1.21.0")]
2678 impl From<&str> for Arc<str> {
2679 /// Allocate a reference-counted `str` and copy `v` into it.
2680 ///
2681 /// # Example
2682 ///
2683 /// ```
2684 /// # use std::sync::Arc;
2685 /// let shared: Arc<str> = Arc::from("eggplant");
2686 /// assert_eq!("eggplant", &shared[..]);
2687 /// ```
2688 #[inline]
2689 fn from(v: &str) -> Arc<str> {
2690 let arc = Arc::<[u8]>::from(v.as_bytes());
2691 unsafe { Arc::from_raw(Arc::into_raw(arc) as *const str) }
2692 }
2693 }
2694
2695 #[cfg(not(no_global_oom_handling))]
2696 #[stable(feature = "shared_from_slice", since = "1.21.0")]
2697 impl From<String> for Arc<str> {
2698 /// Allocate a reference-counted `str` and copy `v` into it.
2699 ///
2700 /// # Example
2701 ///
2702 /// ```
2703 /// # use std::sync::Arc;
2704 /// let unique: String = "eggplant".to_owned();
2705 /// let shared: Arc<str> = Arc::from(unique);
2706 /// assert_eq!("eggplant", &shared[..]);
2707 /// ```
2708 #[inline]
2709 fn from(v: String) -> Arc<str> {
2710 Arc::from(&v[..])
2711 }
2712 }
2713
2714 #[cfg(not(no_global_oom_handling))]
2715 #[stable(feature = "shared_from_slice", since = "1.21.0")]
2716 impl<T: ?Sized> From<Box<T>> for Arc<T> {
2717 /// Move a boxed object to a new, reference-counted allocation.
2718 ///
2719 /// # Example
2720 ///
2721 /// ```
2722 /// # use std::sync::Arc;
2723 /// let unique: Box<str> = Box::from("eggplant");
2724 /// let shared: Arc<str> = Arc::from(unique);
2725 /// assert_eq!("eggplant", &shared[..]);
2726 /// ```
2727 #[inline]
2728 fn from(v: Box<T>) -> Arc<T> {
2729 Arc::from_box(v)
2730 }
2731 }
2732
2733 #[cfg(not(no_global_oom_handling))]
2734 #[stable(feature = "shared_from_slice", since = "1.21.0")]
2735 impl<T> From<Vec<T>> for Arc<[T]> {
2736 /// Allocate a reference-counted slice and move `v`'s items into it.
2737 ///
2738 /// # Example
2739 ///
2740 /// ```
2741 /// # use std::sync::Arc;
2742 /// let unique: Vec<i32> = vec![1, 2, 3];
2743 /// let shared: Arc<[i32]> = Arc::from(unique);
2744 /// assert_eq!(&[1, 2, 3], &shared[..]);
2745 /// ```
2746 #[inline]
2747 fn from(mut v: Vec<T>) -> Arc<[T]> {
2748 unsafe {
2749 let rc = Arc::copy_from_slice(&v);
2750 // Allow the Vec to free its memory, but not destroy its contents
2751 v.set_len(0);
2752 rc
2753 }
2754 }
2755 }
2756
2757 #[stable(feature = "shared_from_cow", since = "1.45.0")]
2758 impl<'a, B> From<Cow<'a, B>> for Arc<B>
2759 where
2760 B: ToOwned + ?Sized,
2761 Arc<B>: From<&'a B> + From<B::Owned>,
2762 {
2763 /// Create an atomically reference-counted pointer from
2764 /// a clone-on-write pointer by copying its content.
2765 ///
2766 /// # Example
2767 ///
2768 /// ```rust
2769 /// # use std::sync::Arc;
2770 /// # use std::borrow::Cow;
2771 /// let cow: Cow<str> = Cow::Borrowed("eggplant");
2772 /// let shared: Arc<str> = Arc::from(cow);
2773 /// assert_eq!("eggplant", &shared[..]);
2774 /// ```
2775 #[inline]
2776 fn from(cow: Cow<'a, B>) -> Arc<B> {
2777 match cow {
2778 Cow::Borrowed(s) => Arc::from(s),
2779 Cow::Owned(s) => Arc::from(s),
2780 }
2781 }
2782 }
2783
2784 #[stable(feature = "shared_from_str", since = "1.62.0")]
2785 impl From<Arc<str>> for Arc<[u8]> {
2786 /// Converts an atomically reference-counted string slice into a byte slice.
2787 ///
2788 /// # Example
2789 ///
2790 /// ```
2791 /// # use std::sync::Arc;
2792 /// let string: Arc<str> = Arc::from("eggplant");
2793 /// let bytes: Arc<[u8]> = Arc::from(string);
2794 /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
2795 /// ```
2796 #[inline]
2797 fn from(rc: Arc<str>) -> Self {
2798 // SAFETY: `str` has the same layout as `[u8]`.
2799 unsafe { Arc::from_raw(Arc::into_raw(rc) as *const [u8]) }
2800 }
2801 }
2802
2803 #[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
2804 impl<T, const N: usize> TryFrom<Arc<[T]>> for Arc<[T; N]> {
2805 type Error = Arc<[T]>;
2806
2807 fn try_from(boxed_slice: Arc<[T]>) -> Result<Self, Self::Error> {
2808 if boxed_slice.len() == N {
2809 Ok(unsafe { Arc::from_raw(Arc::into_raw(boxed_slice) as *mut [T; N]) })
2810 } else {
2811 Err(boxed_slice)
2812 }
2813 }
2814 }
2815
2816 #[cfg(not(no_global_oom_handling))]
2817 #[stable(feature = "shared_from_iter", since = "1.37.0")]
2818 impl<T> FromIterator<T> for Arc<[T]> {
2819 /// Takes each element in the `Iterator` and collects it into an `Arc<[T]>`.
2820 ///
2821 /// # Performance characteristics
2822 ///
2823 /// ## The general case
2824 ///
2825 /// In the general case, collecting into `Arc<[T]>` is done by first
2826 /// collecting into a `Vec<T>`. That is, when writing the following:
2827 ///
2828 /// ```rust
2829 /// # use std::sync::Arc;
2830 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
2831 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2832 /// ```
2833 ///
2834 /// this behaves as if we wrote:
2835 ///
2836 /// ```rust
2837 /// # use std::sync::Arc;
2838 /// let evens: Arc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
2839 /// .collect::<Vec<_>>() // The first set of allocations happens here.
2840 /// .into(); // A second allocation for `Arc<[T]>` happens here.
2841 /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
2842 /// ```
2843 ///
2844 /// This will allocate as many times as needed for constructing the `Vec<T>`
2845 /// and then it will allocate once for turning the `Vec<T>` into the `Arc<[T]>`.
2846 ///
2847 /// ## Iterators of known length
2848 ///
2849 /// When your `Iterator` implements `TrustedLen` and is of an exact size,
2850 /// a single allocation will be made for the `Arc<[T]>`. For example:
2851 ///
2852 /// ```rust
2853 /// # use std::sync::Arc;
2854 /// let evens: Arc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
2855 /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
2856 /// ```
2857 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
2858 ToArcSlice::to_arc_slice(iter.into_iter())
2859 }
2860 }
2861
2862 /// Specialization trait used for collecting into `Arc<[T]>`.
2863 trait ToArcSlice<T>: Iterator<Item = T> + Sized {
2864 fn to_arc_slice(self) -> Arc<[T]>;
2865 }
2866
2867 #[cfg(not(no_global_oom_handling))]
2868 impl<T, I: Iterator<Item = T>> ToArcSlice<T> for I {
2869 default fn to_arc_slice(self) -> Arc<[T]> {
2870 self.collect::<Vec<T>>().into()
2871 }
2872 }
2873
2874 #[cfg(not(no_global_oom_handling))]
2875 impl<T, I: iter::TrustedLen<Item = T>> ToArcSlice<T> for I {
2876 fn to_arc_slice(self) -> Arc<[T]> {
2877 // This is the case for a `TrustedLen` iterator.
2878 let (low, high) = self.size_hint();
2879 if let Some(high) = high {
2880 debug_assert_eq!(
2881 low,
2882 high,
2883 "TrustedLen iterator's size hint is not exact: {:?}",
2884 (low, high)
2885 );
2886
2887 unsafe {
2888 // SAFETY: We need to ensure that the iterator has an exact length and we have.
2889 Arc::from_iter_exact(self, low)
2890 }
2891 } else {
2892 // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
2893 // length exceeding `usize::MAX`.
2894 // The default implementation would collect into a vec which would panic.
2895 // Thus we panic here immediately without invoking `Vec` code.
2896 panic!("capacity overflow");
2897 }
2898 }
2899 }
2900
2901 #[stable(feature = "rust1", since = "1.0.0")]
2902 impl<T: ?Sized> borrow::Borrow<T> for Arc<T> {
2903 fn borrow(&self) -> &T {
2904 &**self
2905 }
2906 }
2907
2908 #[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
2909 impl<T: ?Sized> AsRef<T> for Arc<T> {
2910 fn as_ref(&self) -> &T {
2911 &**self
2912 }
2913 }
2914
2915 #[stable(feature = "pin", since = "1.33.0")]
2916 impl<T: ?Sized> Unpin for Arc<T> {}
2917
2918 /// Get the offset within an `ArcInner` for the payload behind a pointer.
2919 ///
2920 /// # Safety
2921 ///
2922 /// The pointer must point to (and have valid metadata for) a previously
2923 /// valid instance of T, but the T is allowed to be dropped.
2924 unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
2925 // Align the unsized value to the end of the ArcInner.
2926 // Because RcBox is repr(C), it will always be the last field in memory.
2927 // SAFETY: since the only unsized types possible are slices, trait objects,
2928 // and extern types, the input safety requirement is currently enough to
2929 // satisfy the requirements of align_of_val_raw; this is an implementation
2930 // detail of the language that must not be relied upon outside of std.
2931 unsafe { data_offset_align(align_of_val_raw(ptr)) }
2932 }
2933
2934 #[inline]
2935 fn data_offset_align(align: usize) -> usize {
2936 let layout = Layout::new::<ArcInner<()>>();
2937 layout.size() + layout.padding_needed_for(align)
2938 }
2939
2940 #[stable(feature = "arc_error", since = "1.52.0")]
2941 impl<T: core::error::Error + ?Sized> core::error::Error for Arc<T> {
2942 #[allow(deprecated, deprecated_in_future)]
2943 fn description(&self) -> &str {
2944 core::error::Error::description(&**self)
2945 }
2946
2947 #[allow(deprecated)]
2948 fn cause(&self) -> Option<&dyn core::error::Error> {
2949 core::error::Error::cause(&**self)
2950 }
2951
2952 fn source(&self) -> Option<&(dyn core::error::Error + 'static)> {
2953 core::error::Error::source(&**self)
2954 }
2955
2956 fn provide<'a>(&'a self, req: &mut core::any::Demand<'a>) {
2957 core::error::Error::provide(&**self, req);
2958 }
2959 }