]> git.proxmox.com Git - rustc.git/blob - library/core/src/cell.rs
New upstream version 1.52.0~beta.3+dfsg1
[rustc.git] / library / core / src / cell.rs
1 //! Shareable mutable containers.
2 //!
3 //! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4 //! have one of the following:
5 //!
6 //! - Having several immutable references (`&T`) to the object (also known as **aliasing**).
7 //! - Having one mutable reference (`&mut T`) to the object (also known as **mutability**).
8 //!
9 //! This is enforced by the Rust compiler. However, there are situations where this rule is not
10 //! flexible enough. Sometimes it is required to have multiple references to an object and yet
11 //! mutate it.
12 //!
13 //! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14 //! presence of aliasing. Both [`Cell<T>`] and [`RefCell<T>`] allow doing this in a single-threaded
15 //! way. However, neither `Cell<T>` nor `RefCell<T>` are thread safe (they do not implement
16 //! [`Sync`]). If you need to do aliasing and mutation between multiple threads it is possible to
17 //! use [`Mutex<T>`], [`RwLock<T>`] or [`atomic`] types.
18 //!
19 //! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
20 //! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
21 //! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
22 //! with typical Rust types that exhibit 'inherited mutability'.
23 //!
24 //! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` implements interior
25 //! mutability by moving values in and out of the `Cell<T>`. To use references instead of values,
26 //! one must use the `RefCell<T>` type, acquiring a write lock before mutating. `Cell<T>` provides
27 //! methods to retrieve and change the current interior value:
28 //!
29 //! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
30 //! interior value.
31 //! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
32 //! interior value with [`Default::default()`] and returns the replaced value.
33 //! - For all types, the [`replace`](Cell::replace) method replaces the current interior value and
34 //! returns the replaced value and the [`into_inner`](Cell::into_inner) method consumes the
35 //! `Cell<T>` and returns the interior value. Additionally, the [`set`](Cell::set) method
36 //! replaces the interior value, dropping the replaced value.
37 //!
38 //! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
39 //! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
40 //! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
41 //! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
42 //! to borrow a value that is already mutably borrowed; when this happens it results in thread
43 //! panic.
44 //!
45 //! # When to choose interior mutability
46 //!
47 //! The more common inherited mutability, where one must have unique access to mutate a value, is
48 //! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
49 //! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
50 //! interior mutability is something of a last resort. Since cell types enable mutation where it
51 //! would otherwise be disallowed though, there are occasions when interior mutability might be
52 //! appropriate, or even *must* be used, e.g.
53 //!
54 //! * Introducing mutability 'inside' of something immutable
55 //! * Implementation details of logically-immutable methods.
56 //! * Mutating implementations of [`Clone`].
57 //!
58 //! ## Introducing mutability 'inside' of something immutable
59 //!
60 //! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
61 //! be cloned and shared between multiple parties. Because the contained values may be
62 //! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
63 //! impossible to mutate data inside of these smart pointers at all.
64 //!
65 //! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
66 //! mutability:
67 //!
68 //! ```
69 //! use std::cell::{RefCell, RefMut};
70 //! use std::collections::HashMap;
71 //! use std::rc::Rc;
72 //!
73 //! fn main() {
74 //! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
75 //! // Create a new block to limit the scope of the dynamic borrow
76 //! {
77 //! let mut map: RefMut<_> = shared_map.borrow_mut();
78 //! map.insert("africa", 92388);
79 //! map.insert("kyoto", 11837);
80 //! map.insert("piccadilly", 11826);
81 //! map.insert("marbles", 38);
82 //! }
83 //!
84 //! // Note that if we had not let the previous borrow of the cache fall out
85 //! // of scope then the subsequent borrow would cause a dynamic thread panic.
86 //! // This is the major hazard of using `RefCell`.
87 //! let total: i32 = shared_map.borrow().values().sum();
88 //! println!("{}", total);
89 //! }
90 //! ```
91 //!
92 //! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
93 //! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
94 //! multi-threaded situation.
95 //!
96 //! ## Implementation details of logically-immutable methods
97 //!
98 //! Occasionally it may be desirable not to expose in an API that there is mutation happening
99 //! "under the hood". This may be because logically the operation is immutable, but e.g., caching
100 //! forces the implementation to perform mutation; or because you must employ mutation to implement
101 //! a trait method that was originally defined to take `&self`.
102 //!
103 //! ```
104 //! # #![allow(dead_code)]
105 //! use std::cell::RefCell;
106 //!
107 //! struct Graph {
108 //! edges: Vec<(i32, i32)>,
109 //! span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
110 //! }
111 //!
112 //! impl Graph {
113 //! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
114 //! self.span_tree_cache.borrow_mut()
115 //! .get_or_insert_with(|| self.calc_span_tree())
116 //! .clone()
117 //! }
118 //!
119 //! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
120 //! // Expensive computation goes here
121 //! vec![]
122 //! }
123 //! }
124 //! ```
125 //!
126 //! ## Mutating implementations of `Clone`
127 //!
128 //! This is simply a special - but common - case of the previous: hiding mutability for operations
129 //! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
130 //! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
131 //! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
132 //! reference counts within a `Cell<T>`.
133 //!
134 //! ```
135 //! use std::cell::Cell;
136 //! use std::ptr::NonNull;
137 //! use std::process::abort;
138 //! use std::marker::PhantomData;
139 //!
140 //! struct Rc<T: ?Sized> {
141 //! ptr: NonNull<RcBox<T>>,
142 //! phantom: PhantomData<RcBox<T>>,
143 //! }
144 //!
145 //! struct RcBox<T: ?Sized> {
146 //! strong: Cell<usize>,
147 //! refcount: Cell<usize>,
148 //! value: T,
149 //! }
150 //!
151 //! impl<T: ?Sized> Clone for Rc<T> {
152 //! fn clone(&self) -> Rc<T> {
153 //! self.inc_strong();
154 //! Rc {
155 //! ptr: self.ptr,
156 //! phantom: PhantomData,
157 //! }
158 //! }
159 //! }
160 //!
161 //! trait RcBoxPtr<T: ?Sized> {
162 //!
163 //! fn inner(&self) -> &RcBox<T>;
164 //!
165 //! fn strong(&self) -> usize {
166 //! self.inner().strong.get()
167 //! }
168 //!
169 //! fn inc_strong(&self) {
170 //! self.inner()
171 //! .strong
172 //! .set(self.strong()
173 //! .checked_add(1)
174 //! .unwrap_or_else(|| abort() ));
175 //! }
176 //! }
177 //!
178 //! impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
179 //! fn inner(&self) -> &RcBox<T> {
180 //! unsafe {
181 //! self.ptr.as_ref()
182 //! }
183 //! }
184 //! }
185 //! ```
186 //!
187 //! [`Arc<T>`]: ../../std/sync/struct.Arc.html
188 //! [`Rc<T>`]: ../../std/rc/struct.Rc.html
189 //! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
190 //! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
191 //! [`atomic`]: ../../core/sync/atomic/index.html
192
193 #![stable(feature = "rust1", since = "1.0.0")]
194
195 use crate::cmp::Ordering;
196 use crate::fmt::{self, Debug, Display};
197 use crate::marker::Unsize;
198 use crate::mem;
199 use crate::ops::{CoerceUnsized, Deref, DerefMut};
200 use crate::ptr;
201
202 /// A mutable memory location.
203 ///
204 /// # Examples
205 ///
206 /// In this example, you can see that `Cell<T>` enables mutation inside an
207 /// immutable struct. In other words, it enables "interior mutability".
208 ///
209 /// ```
210 /// use std::cell::Cell;
211 ///
212 /// struct SomeStruct {
213 /// regular_field: u8,
214 /// special_field: Cell<u8>,
215 /// }
216 ///
217 /// let my_struct = SomeStruct {
218 /// regular_field: 0,
219 /// special_field: Cell::new(1),
220 /// };
221 ///
222 /// let new_value = 100;
223 ///
224 /// // ERROR: `my_struct` is immutable
225 /// // my_struct.regular_field = new_value;
226 ///
227 /// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
228 /// // which can always be mutated
229 /// my_struct.special_field.set(new_value);
230 /// assert_eq!(my_struct.special_field.get(), new_value);
231 /// ```
232 ///
233 /// See the [module-level documentation](self) for more.
234 #[stable(feature = "rust1", since = "1.0.0")]
235 #[repr(transparent)]
236 pub struct Cell<T: ?Sized> {
237 value: UnsafeCell<T>,
238 }
239
240 #[stable(feature = "rust1", since = "1.0.0")]
241 unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
242
243 #[stable(feature = "rust1", since = "1.0.0")]
244 impl<T: ?Sized> !Sync for Cell<T> {}
245
246 #[stable(feature = "rust1", since = "1.0.0")]
247 impl<T: Copy> Clone for Cell<T> {
248 #[inline]
249 fn clone(&self) -> Cell<T> {
250 Cell::new(self.get())
251 }
252 }
253
254 #[stable(feature = "rust1", since = "1.0.0")]
255 impl<T: Default> Default for Cell<T> {
256 /// Creates a `Cell<T>`, with the `Default` value for T.
257 #[inline]
258 fn default() -> Cell<T> {
259 Cell::new(Default::default())
260 }
261 }
262
263 #[stable(feature = "rust1", since = "1.0.0")]
264 impl<T: PartialEq + Copy> PartialEq for Cell<T> {
265 #[inline]
266 fn eq(&self, other: &Cell<T>) -> bool {
267 self.get() == other.get()
268 }
269 }
270
271 #[stable(feature = "cell_eq", since = "1.2.0")]
272 impl<T: Eq + Copy> Eq for Cell<T> {}
273
274 #[stable(feature = "cell_ord", since = "1.10.0")]
275 impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
276 #[inline]
277 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
278 self.get().partial_cmp(&other.get())
279 }
280
281 #[inline]
282 fn lt(&self, other: &Cell<T>) -> bool {
283 self.get() < other.get()
284 }
285
286 #[inline]
287 fn le(&self, other: &Cell<T>) -> bool {
288 self.get() <= other.get()
289 }
290
291 #[inline]
292 fn gt(&self, other: &Cell<T>) -> bool {
293 self.get() > other.get()
294 }
295
296 #[inline]
297 fn ge(&self, other: &Cell<T>) -> bool {
298 self.get() >= other.get()
299 }
300 }
301
302 #[stable(feature = "cell_ord", since = "1.10.0")]
303 impl<T: Ord + Copy> Ord for Cell<T> {
304 #[inline]
305 fn cmp(&self, other: &Cell<T>) -> Ordering {
306 self.get().cmp(&other.get())
307 }
308 }
309
310 #[stable(feature = "cell_from", since = "1.12.0")]
311 impl<T> From<T> for Cell<T> {
312 fn from(t: T) -> Cell<T> {
313 Cell::new(t)
314 }
315 }
316
317 impl<T> Cell<T> {
318 /// Creates a new `Cell` containing the given value.
319 ///
320 /// # Examples
321 ///
322 /// ```
323 /// use std::cell::Cell;
324 ///
325 /// let c = Cell::new(5);
326 /// ```
327 #[stable(feature = "rust1", since = "1.0.0")]
328 #[rustc_const_stable(feature = "const_cell_new", since = "1.32.0")]
329 #[inline]
330 pub const fn new(value: T) -> Cell<T> {
331 Cell { value: UnsafeCell::new(value) }
332 }
333
334 /// Sets the contained value.
335 ///
336 /// # Examples
337 ///
338 /// ```
339 /// use std::cell::Cell;
340 ///
341 /// let c = Cell::new(5);
342 ///
343 /// c.set(10);
344 /// ```
345 #[inline]
346 #[stable(feature = "rust1", since = "1.0.0")]
347 pub fn set(&self, val: T) {
348 let old = self.replace(val);
349 drop(old);
350 }
351
352 /// Swaps the values of two Cells.
353 /// Difference with `std::mem::swap` is that this function doesn't require `&mut` reference.
354 ///
355 /// # Examples
356 ///
357 /// ```
358 /// use std::cell::Cell;
359 ///
360 /// let c1 = Cell::new(5i32);
361 /// let c2 = Cell::new(10i32);
362 /// c1.swap(&c2);
363 /// assert_eq!(10, c1.get());
364 /// assert_eq!(5, c2.get());
365 /// ```
366 #[inline]
367 #[stable(feature = "move_cell", since = "1.17.0")]
368 pub fn swap(&self, other: &Self) {
369 if ptr::eq(self, other) {
370 return;
371 }
372 // SAFETY: This can be risky if called from separate threads, but `Cell`
373 // is `!Sync` so this won't happen. This also won't invalidate any
374 // pointers since `Cell` makes sure nothing else will be pointing into
375 // either of these `Cell`s.
376 unsafe {
377 ptr::swap(self.value.get(), other.value.get());
378 }
379 }
380
381 /// Replaces the contained value with `val`, and returns the old contained value.
382 ///
383 /// # Examples
384 ///
385 /// ```
386 /// use std::cell::Cell;
387 ///
388 /// let cell = Cell::new(5);
389 /// assert_eq!(cell.get(), 5);
390 /// assert_eq!(cell.replace(10), 5);
391 /// assert_eq!(cell.get(), 10);
392 /// ```
393 #[stable(feature = "move_cell", since = "1.17.0")]
394 pub fn replace(&self, val: T) -> T {
395 // SAFETY: This can cause data races if called from a separate thread,
396 // but `Cell` is `!Sync` so this won't happen.
397 mem::replace(unsafe { &mut *self.value.get() }, val)
398 }
399
400 /// Unwraps the value.
401 ///
402 /// # Examples
403 ///
404 /// ```
405 /// use std::cell::Cell;
406 ///
407 /// let c = Cell::new(5);
408 /// let five = c.into_inner();
409 ///
410 /// assert_eq!(five, 5);
411 /// ```
412 #[stable(feature = "move_cell", since = "1.17.0")]
413 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
414 pub const fn into_inner(self) -> T {
415 self.value.into_inner()
416 }
417 }
418
419 impl<T: Copy> Cell<T> {
420 /// Returns a copy of the contained value.
421 ///
422 /// # Examples
423 ///
424 /// ```
425 /// use std::cell::Cell;
426 ///
427 /// let c = Cell::new(5);
428 ///
429 /// let five = c.get();
430 /// ```
431 #[inline]
432 #[stable(feature = "rust1", since = "1.0.0")]
433 pub fn get(&self) -> T {
434 // SAFETY: This can cause data races if called from a separate thread,
435 // but `Cell` is `!Sync` so this won't happen.
436 unsafe { *self.value.get() }
437 }
438
439 /// Updates the contained value using a function and returns the new value.
440 ///
441 /// # Examples
442 ///
443 /// ```
444 /// #![feature(cell_update)]
445 ///
446 /// use std::cell::Cell;
447 ///
448 /// let c = Cell::new(5);
449 /// let new = c.update(|x| x + 1);
450 ///
451 /// assert_eq!(new, 6);
452 /// assert_eq!(c.get(), 6);
453 /// ```
454 #[inline]
455 #[unstable(feature = "cell_update", issue = "50186")]
456 pub fn update<F>(&self, f: F) -> T
457 where
458 F: FnOnce(T) -> T,
459 {
460 let old = self.get();
461 let new = f(old);
462 self.set(new);
463 new
464 }
465 }
466
467 impl<T: ?Sized> Cell<T> {
468 /// Returns a raw pointer to the underlying data in this cell.
469 ///
470 /// # Examples
471 ///
472 /// ```
473 /// use std::cell::Cell;
474 ///
475 /// let c = Cell::new(5);
476 ///
477 /// let ptr = c.as_ptr();
478 /// ```
479 #[inline]
480 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
481 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
482 pub const fn as_ptr(&self) -> *mut T {
483 self.value.get()
484 }
485
486 /// Returns a mutable reference to the underlying data.
487 ///
488 /// This call borrows `Cell` mutably (at compile-time) which guarantees
489 /// that we possess the only reference.
490 ///
491 /// # Examples
492 ///
493 /// ```
494 /// use std::cell::Cell;
495 ///
496 /// let mut c = Cell::new(5);
497 /// *c.get_mut() += 1;
498 ///
499 /// assert_eq!(c.get(), 6);
500 /// ```
501 #[inline]
502 #[stable(feature = "cell_get_mut", since = "1.11.0")]
503 pub fn get_mut(&mut self) -> &mut T {
504 self.value.get_mut()
505 }
506
507 /// Returns a `&Cell<T>` from a `&mut T`
508 ///
509 /// # Examples
510 ///
511 /// ```
512 /// use std::cell::Cell;
513 ///
514 /// let slice: &mut [i32] = &mut [1, 2, 3];
515 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
516 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
517 ///
518 /// assert_eq!(slice_cell.len(), 3);
519 /// ```
520 #[inline]
521 #[stable(feature = "as_cell", since = "1.37.0")]
522 pub fn from_mut(t: &mut T) -> &Cell<T> {
523 // SAFETY: `&mut` ensures unique access.
524 unsafe { &*(t as *mut T as *const Cell<T>) }
525 }
526 }
527
528 impl<T: Default> Cell<T> {
529 /// Takes the value of the cell, leaving `Default::default()` in its place.
530 ///
531 /// # Examples
532 ///
533 /// ```
534 /// use std::cell::Cell;
535 ///
536 /// let c = Cell::new(5);
537 /// let five = c.take();
538 ///
539 /// assert_eq!(five, 5);
540 /// assert_eq!(c.into_inner(), 0);
541 /// ```
542 #[stable(feature = "move_cell", since = "1.17.0")]
543 pub fn take(&self) -> T {
544 self.replace(Default::default())
545 }
546 }
547
548 #[unstable(feature = "coerce_unsized", issue = "27732")]
549 impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
550
551 impl<T> Cell<[T]> {
552 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
553 ///
554 /// # Examples
555 ///
556 /// ```
557 /// use std::cell::Cell;
558 ///
559 /// let slice: &mut [i32] = &mut [1, 2, 3];
560 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
561 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
562 ///
563 /// assert_eq!(slice_cell.len(), 3);
564 /// ```
565 #[stable(feature = "as_cell", since = "1.37.0")]
566 pub fn as_slice_of_cells(&self) -> &[Cell<T>] {
567 // SAFETY: `Cell<T>` has the same memory layout as `T`.
568 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
569 }
570 }
571
572 /// A mutable memory location with dynamically checked borrow rules
573 ///
574 /// See the [module-level documentation](self) for more.
575 #[stable(feature = "rust1", since = "1.0.0")]
576 pub struct RefCell<T: ?Sized> {
577 borrow: Cell<BorrowFlag>,
578 value: UnsafeCell<T>,
579 }
580
581 /// An error returned by [`RefCell::try_borrow`].
582 #[stable(feature = "try_borrow", since = "1.13.0")]
583 pub struct BorrowError {
584 _private: (),
585 }
586
587 #[stable(feature = "try_borrow", since = "1.13.0")]
588 impl Debug for BorrowError {
589 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
590 f.debug_struct("BorrowError").finish()
591 }
592 }
593
594 #[stable(feature = "try_borrow", since = "1.13.0")]
595 impl Display for BorrowError {
596 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
597 Display::fmt("already mutably borrowed", f)
598 }
599 }
600
601 /// An error returned by [`RefCell::try_borrow_mut`].
602 #[stable(feature = "try_borrow", since = "1.13.0")]
603 pub struct BorrowMutError {
604 _private: (),
605 }
606
607 #[stable(feature = "try_borrow", since = "1.13.0")]
608 impl Debug for BorrowMutError {
609 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
610 f.debug_struct("BorrowMutError").finish()
611 }
612 }
613
614 #[stable(feature = "try_borrow", since = "1.13.0")]
615 impl Display for BorrowMutError {
616 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
617 Display::fmt("already borrowed", f)
618 }
619 }
620
621 // Positive values represent the number of `Ref` active. Negative values
622 // represent the number of `RefMut` active. Multiple `RefMut`s can only be
623 // active at a time if they refer to distinct, nonoverlapping components of a
624 // `RefCell` (e.g., different ranges of a slice).
625 //
626 // `Ref` and `RefMut` are both two words in size, and so there will likely never
627 // be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
628 // range. Thus, a `BorrowFlag` will probably never overflow or underflow.
629 // However, this is not a guarantee, as a pathological program could repeatedly
630 // create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
631 // explicitly check for overflow and underflow in order to avoid unsafety, or at
632 // least behave correctly in the event that overflow or underflow happens (e.g.,
633 // see BorrowRef::new).
634 type BorrowFlag = isize;
635 const UNUSED: BorrowFlag = 0;
636
637 #[inline(always)]
638 fn is_writing(x: BorrowFlag) -> bool {
639 x < UNUSED
640 }
641
642 #[inline(always)]
643 fn is_reading(x: BorrowFlag) -> bool {
644 x > UNUSED
645 }
646
647 impl<T> RefCell<T> {
648 /// Creates a new `RefCell` containing `value`.
649 ///
650 /// # Examples
651 ///
652 /// ```
653 /// use std::cell::RefCell;
654 ///
655 /// let c = RefCell::new(5);
656 /// ```
657 #[stable(feature = "rust1", since = "1.0.0")]
658 #[rustc_const_stable(feature = "const_refcell_new", since = "1.32.0")]
659 #[inline]
660 pub const fn new(value: T) -> RefCell<T> {
661 RefCell { value: UnsafeCell::new(value), borrow: Cell::new(UNUSED) }
662 }
663
664 /// Consumes the `RefCell`, returning the wrapped value.
665 ///
666 /// # Examples
667 ///
668 /// ```
669 /// use std::cell::RefCell;
670 ///
671 /// let c = RefCell::new(5);
672 ///
673 /// let five = c.into_inner();
674 /// ```
675 #[stable(feature = "rust1", since = "1.0.0")]
676 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
677 #[inline]
678 pub const fn into_inner(self) -> T {
679 // Since this function takes `self` (the `RefCell`) by value, the
680 // compiler statically verifies that it is not currently borrowed.
681 self.value.into_inner()
682 }
683
684 /// Replaces the wrapped value with a new one, returning the old value,
685 /// without deinitializing either one.
686 ///
687 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
688 ///
689 /// # Panics
690 ///
691 /// Panics if the value is currently borrowed.
692 ///
693 /// # Examples
694 ///
695 /// ```
696 /// use std::cell::RefCell;
697 /// let cell = RefCell::new(5);
698 /// let old_value = cell.replace(6);
699 /// assert_eq!(old_value, 5);
700 /// assert_eq!(cell, RefCell::new(6));
701 /// ```
702 #[inline]
703 #[stable(feature = "refcell_replace", since = "1.24.0")]
704 #[track_caller]
705 pub fn replace(&self, t: T) -> T {
706 mem::replace(&mut *self.borrow_mut(), t)
707 }
708
709 /// Replaces the wrapped value with a new one computed from `f`, returning
710 /// the old value, without deinitializing either one.
711 ///
712 /// # Panics
713 ///
714 /// Panics if the value is currently borrowed.
715 ///
716 /// # Examples
717 ///
718 /// ```
719 /// use std::cell::RefCell;
720 /// let cell = RefCell::new(5);
721 /// let old_value = cell.replace_with(|&mut old| old + 1);
722 /// assert_eq!(old_value, 5);
723 /// assert_eq!(cell, RefCell::new(6));
724 /// ```
725 #[inline]
726 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
727 #[track_caller]
728 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
729 let mut_borrow = &mut *self.borrow_mut();
730 let replacement = f(mut_borrow);
731 mem::replace(mut_borrow, replacement)
732 }
733
734 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
735 /// without deinitializing either one.
736 ///
737 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
738 ///
739 /// # Panics
740 ///
741 /// Panics if the value in either `RefCell` is currently borrowed.
742 ///
743 /// # Examples
744 ///
745 /// ```
746 /// use std::cell::RefCell;
747 /// let c = RefCell::new(5);
748 /// let d = RefCell::new(6);
749 /// c.swap(&d);
750 /// assert_eq!(c, RefCell::new(6));
751 /// assert_eq!(d, RefCell::new(5));
752 /// ```
753 #[inline]
754 #[stable(feature = "refcell_swap", since = "1.24.0")]
755 pub fn swap(&self, other: &Self) {
756 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
757 }
758 }
759
760 impl<T: ?Sized> RefCell<T> {
761 /// Immutably borrows the wrapped value.
762 ///
763 /// The borrow lasts until the returned `Ref` exits scope. Multiple
764 /// immutable borrows can be taken out at the same time.
765 ///
766 /// # Panics
767 ///
768 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
769 /// [`try_borrow`](#method.try_borrow).
770 ///
771 /// # Examples
772 ///
773 /// ```
774 /// use std::cell::RefCell;
775 ///
776 /// let c = RefCell::new(5);
777 ///
778 /// let borrowed_five = c.borrow();
779 /// let borrowed_five2 = c.borrow();
780 /// ```
781 ///
782 /// An example of panic:
783 ///
784 /// ```should_panic
785 /// use std::cell::RefCell;
786 ///
787 /// let c = RefCell::new(5);
788 ///
789 /// let m = c.borrow_mut();
790 /// let b = c.borrow(); // this causes a panic
791 /// ```
792 #[stable(feature = "rust1", since = "1.0.0")]
793 #[inline]
794 #[track_caller]
795 pub fn borrow(&self) -> Ref<'_, T> {
796 self.try_borrow().expect("already mutably borrowed")
797 }
798
799 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
800 /// borrowed.
801 ///
802 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
803 /// taken out at the same time.
804 ///
805 /// This is the non-panicking variant of [`borrow`](#method.borrow).
806 ///
807 /// # Examples
808 ///
809 /// ```
810 /// use std::cell::RefCell;
811 ///
812 /// let c = RefCell::new(5);
813 ///
814 /// {
815 /// let m = c.borrow_mut();
816 /// assert!(c.try_borrow().is_err());
817 /// }
818 ///
819 /// {
820 /// let m = c.borrow();
821 /// assert!(c.try_borrow().is_ok());
822 /// }
823 /// ```
824 #[stable(feature = "try_borrow", since = "1.13.0")]
825 #[inline]
826 pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
827 match BorrowRef::new(&self.borrow) {
828 // SAFETY: `BorrowRef` ensures that there is only immutable access
829 // to the value while borrowed.
830 Some(b) => Ok(Ref { value: unsafe { &*self.value.get() }, borrow: b }),
831 None => Err(BorrowError { _private: () }),
832 }
833 }
834
835 /// Mutably borrows the wrapped value.
836 ///
837 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
838 /// from it exit scope. The value cannot be borrowed while this borrow is
839 /// active.
840 ///
841 /// # Panics
842 ///
843 /// Panics if the value is currently borrowed. For a non-panicking variant, use
844 /// [`try_borrow_mut`](#method.try_borrow_mut).
845 ///
846 /// # Examples
847 ///
848 /// ```
849 /// use std::cell::RefCell;
850 ///
851 /// let c = RefCell::new("hello".to_owned());
852 ///
853 /// *c.borrow_mut() = "bonjour".to_owned();
854 ///
855 /// assert_eq!(&*c.borrow(), "bonjour");
856 /// ```
857 ///
858 /// An example of panic:
859 ///
860 /// ```should_panic
861 /// use std::cell::RefCell;
862 ///
863 /// let c = RefCell::new(5);
864 /// let m = c.borrow();
865 ///
866 /// let b = c.borrow_mut(); // this causes a panic
867 /// ```
868 #[stable(feature = "rust1", since = "1.0.0")]
869 #[inline]
870 #[track_caller]
871 pub fn borrow_mut(&self) -> RefMut<'_, T> {
872 self.try_borrow_mut().expect("already borrowed")
873 }
874
875 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
876 ///
877 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
878 /// from it exit scope. The value cannot be borrowed while this borrow is
879 /// active.
880 ///
881 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
882 ///
883 /// # Examples
884 ///
885 /// ```
886 /// use std::cell::RefCell;
887 ///
888 /// let c = RefCell::new(5);
889 ///
890 /// {
891 /// let m = c.borrow();
892 /// assert!(c.try_borrow_mut().is_err());
893 /// }
894 ///
895 /// assert!(c.try_borrow_mut().is_ok());
896 /// ```
897 #[stable(feature = "try_borrow", since = "1.13.0")]
898 #[inline]
899 pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
900 match BorrowRefMut::new(&self.borrow) {
901 // SAFETY: `BorrowRef` guarantees unique access.
902 Some(b) => Ok(RefMut { value: unsafe { &mut *self.value.get() }, borrow: b }),
903 None => Err(BorrowMutError { _private: () }),
904 }
905 }
906
907 /// Returns a raw pointer to the underlying data in this cell.
908 ///
909 /// # Examples
910 ///
911 /// ```
912 /// use std::cell::RefCell;
913 ///
914 /// let c = RefCell::new(5);
915 ///
916 /// let ptr = c.as_ptr();
917 /// ```
918 #[inline]
919 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
920 pub fn as_ptr(&self) -> *mut T {
921 self.value.get()
922 }
923
924 /// Returns a mutable reference to the underlying data.
925 ///
926 /// This call borrows `RefCell` mutably (at compile-time) so there is no
927 /// need for dynamic checks.
928 ///
929 /// However be cautious: this method expects `self` to be mutable, which is
930 /// generally not the case when using a `RefCell`. Take a look at the
931 /// [`borrow_mut`] method instead if `self` isn't mutable.
932 ///
933 /// Also, please be aware that this method is only for special circumstances and is usually
934 /// not what you want. In case of doubt, use [`borrow_mut`] instead.
935 ///
936 /// [`borrow_mut`]: RefCell::borrow_mut()
937 ///
938 /// # Examples
939 ///
940 /// ```
941 /// use std::cell::RefCell;
942 ///
943 /// let mut c = RefCell::new(5);
944 /// *c.get_mut() += 1;
945 ///
946 /// assert_eq!(c, RefCell::new(6));
947 /// ```
948 #[inline]
949 #[stable(feature = "cell_get_mut", since = "1.11.0")]
950 pub fn get_mut(&mut self) -> &mut T {
951 self.value.get_mut()
952 }
953
954 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
955 ///
956 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
957 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
958 /// if some `Ref` or `RefMut` borrows have been leaked.
959 ///
960 /// [`get_mut`]: RefCell::get_mut()
961 ///
962 /// # Examples
963 ///
964 /// ```
965 /// #![feature(cell_leak)]
966 /// use std::cell::RefCell;
967 ///
968 /// let mut c = RefCell::new(0);
969 /// std::mem::forget(c.borrow_mut());
970 ///
971 /// assert!(c.try_borrow().is_err());
972 /// c.undo_leak();
973 /// assert!(c.try_borrow().is_ok());
974 /// ```
975 #[unstable(feature = "cell_leak", issue = "69099")]
976 pub fn undo_leak(&mut self) -> &mut T {
977 *self.borrow.get_mut() = UNUSED;
978 self.get_mut()
979 }
980
981 /// Immutably borrows the wrapped value, returning an error if the value is
982 /// currently mutably borrowed.
983 ///
984 /// # Safety
985 ///
986 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
987 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
988 /// borrowing the `RefCell` while the reference returned by this method
989 /// is alive is undefined behaviour.
990 ///
991 /// # Examples
992 ///
993 /// ```
994 /// use std::cell::RefCell;
995 ///
996 /// let c = RefCell::new(5);
997 ///
998 /// {
999 /// let m = c.borrow_mut();
1000 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1001 /// }
1002 ///
1003 /// {
1004 /// let m = c.borrow();
1005 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1006 /// }
1007 /// ```
1008 #[stable(feature = "borrow_state", since = "1.37.0")]
1009 #[inline]
1010 pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1011 if !is_writing(self.borrow.get()) {
1012 // SAFETY: We check that nobody is actively writing now, but it is
1013 // the caller's responsibility to ensure that nobody writes until
1014 // the returned reference is no longer in use.
1015 // Also, `self.value.get()` refers to the value owned by `self`
1016 // and is thus guaranteed to be valid for the lifetime of `self`.
1017 Ok(unsafe { &*self.value.get() })
1018 } else {
1019 Err(BorrowError { _private: () })
1020 }
1021 }
1022 }
1023
1024 impl<T: Default> RefCell<T> {
1025 /// Takes the wrapped value, leaving `Default::default()` in its place.
1026 ///
1027 /// # Panics
1028 ///
1029 /// Panics if the value is currently borrowed.
1030 ///
1031 /// # Examples
1032 ///
1033 /// ```
1034 /// use std::cell::RefCell;
1035 ///
1036 /// let c = RefCell::new(5);
1037 /// let five = c.take();
1038 ///
1039 /// assert_eq!(five, 5);
1040 /// assert_eq!(c.into_inner(), 0);
1041 /// ```
1042 #[stable(feature = "refcell_take", since = "1.50.0")]
1043 pub fn take(&self) -> T {
1044 self.replace(Default::default())
1045 }
1046 }
1047
1048 #[stable(feature = "rust1", since = "1.0.0")]
1049 unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1050
1051 #[stable(feature = "rust1", since = "1.0.0")]
1052 impl<T: ?Sized> !Sync for RefCell<T> {}
1053
1054 #[stable(feature = "rust1", since = "1.0.0")]
1055 impl<T: Clone> Clone for RefCell<T> {
1056 /// # Panics
1057 ///
1058 /// Panics if the value is currently mutably borrowed.
1059 #[inline]
1060 #[track_caller]
1061 fn clone(&self) -> RefCell<T> {
1062 RefCell::new(self.borrow().clone())
1063 }
1064 }
1065
1066 #[stable(feature = "rust1", since = "1.0.0")]
1067 impl<T: Default> Default for RefCell<T> {
1068 /// Creates a `RefCell<T>`, with the `Default` value for T.
1069 #[inline]
1070 fn default() -> RefCell<T> {
1071 RefCell::new(Default::default())
1072 }
1073 }
1074
1075 #[stable(feature = "rust1", since = "1.0.0")]
1076 impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1077 /// # Panics
1078 ///
1079 /// Panics if the value in either `RefCell` is currently borrowed.
1080 #[inline]
1081 fn eq(&self, other: &RefCell<T>) -> bool {
1082 *self.borrow() == *other.borrow()
1083 }
1084 }
1085
1086 #[stable(feature = "cell_eq", since = "1.2.0")]
1087 impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1088
1089 #[stable(feature = "cell_ord", since = "1.10.0")]
1090 impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1091 /// # Panics
1092 ///
1093 /// Panics if the value in either `RefCell` is currently borrowed.
1094 #[inline]
1095 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1096 self.borrow().partial_cmp(&*other.borrow())
1097 }
1098
1099 /// # Panics
1100 ///
1101 /// Panics if the value in either `RefCell` is currently borrowed.
1102 #[inline]
1103 fn lt(&self, other: &RefCell<T>) -> bool {
1104 *self.borrow() < *other.borrow()
1105 }
1106
1107 /// # Panics
1108 ///
1109 /// Panics if the value in either `RefCell` is currently borrowed.
1110 #[inline]
1111 fn le(&self, other: &RefCell<T>) -> bool {
1112 *self.borrow() <= *other.borrow()
1113 }
1114
1115 /// # Panics
1116 ///
1117 /// Panics if the value in either `RefCell` is currently borrowed.
1118 #[inline]
1119 fn gt(&self, other: &RefCell<T>) -> bool {
1120 *self.borrow() > *other.borrow()
1121 }
1122
1123 /// # Panics
1124 ///
1125 /// Panics if the value in either `RefCell` is currently borrowed.
1126 #[inline]
1127 fn ge(&self, other: &RefCell<T>) -> bool {
1128 *self.borrow() >= *other.borrow()
1129 }
1130 }
1131
1132 #[stable(feature = "cell_ord", since = "1.10.0")]
1133 impl<T: ?Sized + Ord> Ord for RefCell<T> {
1134 /// # Panics
1135 ///
1136 /// Panics if the value in either `RefCell` is currently borrowed.
1137 #[inline]
1138 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1139 self.borrow().cmp(&*other.borrow())
1140 }
1141 }
1142
1143 #[stable(feature = "cell_from", since = "1.12.0")]
1144 impl<T> From<T> for RefCell<T> {
1145 fn from(t: T) -> RefCell<T> {
1146 RefCell::new(t)
1147 }
1148 }
1149
1150 #[unstable(feature = "coerce_unsized", issue = "27732")]
1151 impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1152
1153 struct BorrowRef<'b> {
1154 borrow: &'b Cell<BorrowFlag>,
1155 }
1156
1157 impl<'b> BorrowRef<'b> {
1158 #[inline]
1159 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
1160 let b = borrow.get().wrapping_add(1);
1161 if !is_reading(b) {
1162 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1163 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1164 // due to Rust's reference aliasing rules
1165 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1166 // into isize::MIN (the max amount of writing borrows) so we can't allow
1167 // an additional read borrow because isize can't represent so many read borrows
1168 // (this can only happen if you mem::forget more than a small constant amount of
1169 // `Ref`s, which is not good practice)
1170 None
1171 } else {
1172 // Incrementing borrow can result in a reading value (> 0) in these cases:
1173 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1174 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1175 // is large enough to represent having one more read borrow
1176 borrow.set(b);
1177 Some(BorrowRef { borrow })
1178 }
1179 }
1180 }
1181
1182 impl Drop for BorrowRef<'_> {
1183 #[inline]
1184 fn drop(&mut self) {
1185 let borrow = self.borrow.get();
1186 debug_assert!(is_reading(borrow));
1187 self.borrow.set(borrow - 1);
1188 }
1189 }
1190
1191 impl Clone for BorrowRef<'_> {
1192 #[inline]
1193 fn clone(&self) -> Self {
1194 // Since this Ref exists, we know the borrow flag
1195 // is a reading borrow.
1196 let borrow = self.borrow.get();
1197 debug_assert!(is_reading(borrow));
1198 // Prevent the borrow counter from overflowing into
1199 // a writing borrow.
1200 assert!(borrow != isize::MAX);
1201 self.borrow.set(borrow + 1);
1202 BorrowRef { borrow: self.borrow }
1203 }
1204 }
1205
1206 /// Wraps a borrowed reference to a value in a `RefCell` box.
1207 /// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1208 ///
1209 /// See the [module-level documentation](self) for more.
1210 #[stable(feature = "rust1", since = "1.0.0")]
1211 pub struct Ref<'b, T: ?Sized + 'b> {
1212 value: &'b T,
1213 borrow: BorrowRef<'b>,
1214 }
1215
1216 #[stable(feature = "rust1", since = "1.0.0")]
1217 impl<T: ?Sized> Deref for Ref<'_, T> {
1218 type Target = T;
1219
1220 #[inline]
1221 fn deref(&self) -> &T {
1222 self.value
1223 }
1224 }
1225
1226 impl<'b, T: ?Sized> Ref<'b, T> {
1227 /// Copies a `Ref`.
1228 ///
1229 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1230 ///
1231 /// This is an associated function that needs to be used as
1232 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1233 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1234 /// a `RefCell`.
1235 #[stable(feature = "cell_extras", since = "1.15.0")]
1236 #[inline]
1237 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1238 Ref { value: orig.value, borrow: orig.borrow.clone() }
1239 }
1240
1241 /// Makes a new `Ref` for a component of the borrowed data.
1242 ///
1243 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1244 ///
1245 /// This is an associated function that needs to be used as `Ref::map(...)`.
1246 /// A method would interfere with methods of the same name on the contents
1247 /// of a `RefCell` used through `Deref`.
1248 ///
1249 /// # Examples
1250 ///
1251 /// ```
1252 /// use std::cell::{RefCell, Ref};
1253 ///
1254 /// let c = RefCell::new((5, 'b'));
1255 /// let b1: Ref<(u32, char)> = c.borrow();
1256 /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
1257 /// assert_eq!(*b2, 5)
1258 /// ```
1259 #[stable(feature = "cell_map", since = "1.8.0")]
1260 #[inline]
1261 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1262 where
1263 F: FnOnce(&T) -> &U,
1264 {
1265 Ref { value: f(orig.value), borrow: orig.borrow }
1266 }
1267
1268 /// Makes a new `Ref` for an optional component of the borrowed data. The
1269 /// original guard is returned as an `Err(..)` if the closure returns
1270 /// `None`.
1271 ///
1272 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1273 ///
1274 /// This is an associated function that needs to be used as
1275 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1276 /// name on the contents of a `RefCell` used through `Deref`.
1277 ///
1278 /// # Examples
1279 ///
1280 /// ```
1281 /// #![feature(cell_filter_map)]
1282 ///
1283 /// use std::cell::{RefCell, Ref};
1284 ///
1285 /// let c = RefCell::new(vec![1, 2, 3]);
1286 /// let b1: Ref<Vec<u32>> = c.borrow();
1287 /// let b2: Result<Ref<u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1288 /// assert_eq!(*b2.unwrap(), 2);
1289 /// ```
1290 #[unstable(feature = "cell_filter_map", reason = "recently added", issue = "81061")]
1291 #[inline]
1292 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1293 where
1294 F: FnOnce(&T) -> Option<&U>,
1295 {
1296 match f(orig.value) {
1297 Some(value) => Ok(Ref { value, borrow: orig.borrow }),
1298 None => Err(orig),
1299 }
1300 }
1301
1302 /// Splits a `Ref` into multiple `Ref`s for different components of the
1303 /// borrowed data.
1304 ///
1305 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1306 ///
1307 /// This is an associated function that needs to be used as
1308 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1309 /// name on the contents of a `RefCell` used through `Deref`.
1310 ///
1311 /// # Examples
1312 ///
1313 /// ```
1314 /// use std::cell::{Ref, RefCell};
1315 ///
1316 /// let cell = RefCell::new([1, 2, 3, 4]);
1317 /// let borrow = cell.borrow();
1318 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1319 /// assert_eq!(*begin, [1, 2]);
1320 /// assert_eq!(*end, [3, 4]);
1321 /// ```
1322 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1323 #[inline]
1324 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1325 where
1326 F: FnOnce(&T) -> (&U, &V),
1327 {
1328 let (a, b) = f(orig.value);
1329 let borrow = orig.borrow.clone();
1330 (Ref { value: a, borrow }, Ref { value: b, borrow: orig.borrow })
1331 }
1332
1333 /// Convert into a reference to the underlying data.
1334 ///
1335 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1336 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1337 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1338 /// have occurred in total.
1339 ///
1340 /// This is an associated function that needs to be used as
1341 /// `Ref::leak(...)`. A method would interfere with methods of the
1342 /// same name on the contents of a `RefCell` used through `Deref`.
1343 ///
1344 /// # Examples
1345 ///
1346 /// ```
1347 /// #![feature(cell_leak)]
1348 /// use std::cell::{RefCell, Ref};
1349 /// let cell = RefCell::new(0);
1350 ///
1351 /// let value = Ref::leak(cell.borrow());
1352 /// assert_eq!(*value, 0);
1353 ///
1354 /// assert!(cell.try_borrow().is_ok());
1355 /// assert!(cell.try_borrow_mut().is_err());
1356 /// ```
1357 #[unstable(feature = "cell_leak", issue = "69099")]
1358 pub fn leak(orig: Ref<'b, T>) -> &'b T {
1359 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1360 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1361 // unique reference to the borrowed RefCell. No further mutable references can be created
1362 // from the original cell.
1363 mem::forget(orig.borrow);
1364 orig.value
1365 }
1366 }
1367
1368 #[unstable(feature = "coerce_unsized", issue = "27732")]
1369 impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1370
1371 #[stable(feature = "std_guard_impls", since = "1.20.0")]
1372 impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1373 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1374 self.value.fmt(f)
1375 }
1376 }
1377
1378 impl<'b, T: ?Sized> RefMut<'b, T> {
1379 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1380 /// variant.
1381 ///
1382 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1383 ///
1384 /// This is an associated function that needs to be used as
1385 /// `RefMut::map(...)`. A method would interfere with methods of the same
1386 /// name on the contents of a `RefCell` used through `Deref`.
1387 ///
1388 /// # Examples
1389 ///
1390 /// ```
1391 /// use std::cell::{RefCell, RefMut};
1392 ///
1393 /// let c = RefCell::new((5, 'b'));
1394 /// {
1395 /// let b1: RefMut<(u32, char)> = c.borrow_mut();
1396 /// let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
1397 /// assert_eq!(*b2, 5);
1398 /// *b2 = 42;
1399 /// }
1400 /// assert_eq!(*c.borrow(), (42, 'b'));
1401 /// ```
1402 #[stable(feature = "cell_map", since = "1.8.0")]
1403 #[inline]
1404 pub fn map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1405 where
1406 F: FnOnce(&mut T) -> &mut U,
1407 {
1408 // FIXME(nll-rfc#40): fix borrow-check
1409 let RefMut { value, borrow } = orig;
1410 RefMut { value: f(value), borrow }
1411 }
1412
1413 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1414 /// original guard is returned as an `Err(..)` if the closure returns
1415 /// `None`.
1416 ///
1417 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1418 ///
1419 /// This is an associated function that needs to be used as
1420 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1421 /// same name on the contents of a `RefCell` used through `Deref`.
1422 ///
1423 /// # Examples
1424 ///
1425 /// ```
1426 /// #![feature(cell_filter_map)]
1427 ///
1428 /// use std::cell::{RefCell, RefMut};
1429 ///
1430 /// let c = RefCell::new(vec![1, 2, 3]);
1431 ///
1432 /// {
1433 /// let b1: RefMut<Vec<u32>> = c.borrow_mut();
1434 /// let mut b2: Result<RefMut<u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1435 ///
1436 /// if let Ok(mut b2) = b2 {
1437 /// *b2 += 2;
1438 /// }
1439 /// }
1440 ///
1441 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1442 /// ```
1443 #[unstable(feature = "cell_filter_map", reason = "recently added", issue = "81061")]
1444 #[inline]
1445 pub fn filter_map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1446 where
1447 F: FnOnce(&mut T) -> Option<&mut U>,
1448 {
1449 // FIXME(nll-rfc#40): fix borrow-check
1450 let RefMut { value, borrow } = orig;
1451 let value = value as *mut T;
1452 // SAFETY: function holds onto an exclusive reference for the duration
1453 // of its call through `orig`, and the pointer is only de-referenced
1454 // inside of the function call never allowing the exclusive reference to
1455 // escape.
1456 match f(unsafe { &mut *value }) {
1457 Some(value) => Ok(RefMut { value, borrow }),
1458 None => {
1459 // SAFETY: same as above.
1460 Err(RefMut { value: unsafe { &mut *value }, borrow })
1461 }
1462 }
1463 }
1464
1465 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1466 /// borrowed data.
1467 ///
1468 /// The underlying `RefCell` will remain mutably borrowed until both
1469 /// returned `RefMut`s go out of scope.
1470 ///
1471 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1472 ///
1473 /// This is an associated function that needs to be used as
1474 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1475 /// same name on the contents of a `RefCell` used through `Deref`.
1476 ///
1477 /// # Examples
1478 ///
1479 /// ```
1480 /// use std::cell::{RefCell, RefMut};
1481 ///
1482 /// let cell = RefCell::new([1, 2, 3, 4]);
1483 /// let borrow = cell.borrow_mut();
1484 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1485 /// assert_eq!(*begin, [1, 2]);
1486 /// assert_eq!(*end, [3, 4]);
1487 /// begin.copy_from_slice(&[4, 3]);
1488 /// end.copy_from_slice(&[2, 1]);
1489 /// ```
1490 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1491 #[inline]
1492 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1493 orig: RefMut<'b, T>,
1494 f: F,
1495 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1496 where
1497 F: FnOnce(&mut T) -> (&mut U, &mut V),
1498 {
1499 let (a, b) = f(orig.value);
1500 let borrow = orig.borrow.clone();
1501 (RefMut { value: a, borrow }, RefMut { value: b, borrow: orig.borrow })
1502 }
1503
1504 /// Convert into a mutable reference to the underlying data.
1505 ///
1506 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1507 /// mutably borrowed, making the returned reference the only to the interior.
1508 ///
1509 /// This is an associated function that needs to be used as
1510 /// `RefMut::leak(...)`. A method would interfere with methods of the
1511 /// same name on the contents of a `RefCell` used through `Deref`.
1512 ///
1513 /// # Examples
1514 ///
1515 /// ```
1516 /// #![feature(cell_leak)]
1517 /// use std::cell::{RefCell, RefMut};
1518 /// let cell = RefCell::new(0);
1519 ///
1520 /// let value = RefMut::leak(cell.borrow_mut());
1521 /// assert_eq!(*value, 0);
1522 /// *value = 1;
1523 ///
1524 /// assert!(cell.try_borrow_mut().is_err());
1525 /// ```
1526 #[unstable(feature = "cell_leak", issue = "69099")]
1527 pub fn leak(orig: RefMut<'b, T>) -> &'b mut T {
1528 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1529 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1530 // require a unique reference to the borrowed RefCell. No further references can be created
1531 // from the original cell within that lifetime, making the current borrow the only
1532 // reference for the remaining lifetime.
1533 mem::forget(orig.borrow);
1534 orig.value
1535 }
1536 }
1537
1538 struct BorrowRefMut<'b> {
1539 borrow: &'b Cell<BorrowFlag>,
1540 }
1541
1542 impl Drop for BorrowRefMut<'_> {
1543 #[inline]
1544 fn drop(&mut self) {
1545 let borrow = self.borrow.get();
1546 debug_assert!(is_writing(borrow));
1547 self.borrow.set(borrow + 1);
1548 }
1549 }
1550
1551 impl<'b> BorrowRefMut<'b> {
1552 #[inline]
1553 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
1554 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1555 // mutable reference, and so there must currently be no existing
1556 // references. Thus, while clone increments the mutable refcount, here
1557 // we explicitly only allow going from UNUSED to UNUSED - 1.
1558 match borrow.get() {
1559 UNUSED => {
1560 borrow.set(UNUSED - 1);
1561 Some(BorrowRefMut { borrow })
1562 }
1563 _ => None,
1564 }
1565 }
1566
1567 // Clones a `BorrowRefMut`.
1568 //
1569 // This is only valid if each `BorrowRefMut` is used to track a mutable
1570 // reference to a distinct, nonoverlapping range of the original object.
1571 // This isn't in a Clone impl so that code doesn't call this implicitly.
1572 #[inline]
1573 fn clone(&self) -> BorrowRefMut<'b> {
1574 let borrow = self.borrow.get();
1575 debug_assert!(is_writing(borrow));
1576 // Prevent the borrow counter from underflowing.
1577 assert!(borrow != isize::MIN);
1578 self.borrow.set(borrow - 1);
1579 BorrowRefMut { borrow: self.borrow }
1580 }
1581 }
1582
1583 /// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1584 ///
1585 /// See the [module-level documentation](self) for more.
1586 #[stable(feature = "rust1", since = "1.0.0")]
1587 pub struct RefMut<'b, T: ?Sized + 'b> {
1588 value: &'b mut T,
1589 borrow: BorrowRefMut<'b>,
1590 }
1591
1592 #[stable(feature = "rust1", since = "1.0.0")]
1593 impl<T: ?Sized> Deref for RefMut<'_, T> {
1594 type Target = T;
1595
1596 #[inline]
1597 fn deref(&self) -> &T {
1598 self.value
1599 }
1600 }
1601
1602 #[stable(feature = "rust1", since = "1.0.0")]
1603 impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1604 #[inline]
1605 fn deref_mut(&mut self) -> &mut T {
1606 self.value
1607 }
1608 }
1609
1610 #[unstable(feature = "coerce_unsized", issue = "27732")]
1611 impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1612
1613 #[stable(feature = "std_guard_impls", since = "1.20.0")]
1614 impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
1615 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1616 self.value.fmt(f)
1617 }
1618 }
1619
1620 /// The core primitive for interior mutability in Rust.
1621 ///
1622 /// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1623 /// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1624 /// alias or by transmuting an `&T` into an `&mut T`, is considered undefined behavior.
1625 /// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1626 /// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1627 ///
1628 /// All other types that allow internal mutability, such as `Cell<T>` and `RefCell<T>`, internally
1629 /// use `UnsafeCell` to wrap their data.
1630 ///
1631 /// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1632 /// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1633 /// aliasing `&mut`, not even with `UnsafeCell<T>`.
1634 ///
1635 /// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1636 /// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1637 /// correctly.
1638 ///
1639 /// [`.get()`]: `UnsafeCell::get`
1640 ///
1641 /// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1642 ///
1643 /// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T`
1644 /// reference) that is accessible by safe code (for example, because you returned it),
1645 /// then you must not access the data in any way that contradicts that reference for the
1646 /// remainder of `'a`. For example, this means that if you take the `*mut T` from an
1647 /// `UnsafeCell<T>` and cast it to an `&T`, then the data in `T` must remain immutable
1648 /// (modulo any `UnsafeCell` data found within `T`, of course) until that reference's
1649 /// lifetime expires. Similarly, if you create a `&mut T` reference that is released to
1650 /// safe code, then you must not access the data within the `UnsafeCell` until that
1651 /// reference expires.
1652 ///
1653 /// - At all times, you must avoid data races. If multiple threads have access to
1654 /// the same `UnsafeCell`, then any writes must have a proper happens-before relation to all other
1655 /// accesses (or use atomics).
1656 ///
1657 /// To assist with proper design, the following scenarios are explicitly declared legal
1658 /// for single-threaded code:
1659 ///
1660 /// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
1661 /// references, but not with a `&mut T`
1662 ///
1663 /// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
1664 /// co-exist with it. A `&mut T` must always be unique.
1665 ///
1666 /// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1667 /// `&UnsafeCell<T>` references alias the cell) is
1668 /// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1669 /// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1670 /// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1671 /// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1672 /// accesses (_e.g._, through an `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1673 /// may be aliased for the duration of that `&mut` borrow.
1674 /// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
1675 /// a `&mut T`.
1676 ///
1677 /// [`.get_mut()`]: `UnsafeCell::get_mut`
1678 ///
1679 /// # Examples
1680 ///
1681 /// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
1682 /// there being multiple references aliasing the cell:
1683 ///
1684 /// ```
1685 /// use std::cell::UnsafeCell;
1686 ///
1687 /// let x: UnsafeCell<i32> = 42.into();
1688 /// // Get multiple / concurrent / shared references to the same `x`.
1689 /// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
1690 ///
1691 /// unsafe {
1692 /// // SAFETY: within this scope there are no other references to `x`'s contents,
1693 /// // so ours is effectively unique.
1694 /// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
1695 /// *p1_exclusive += 27; // |
1696 /// } // <---------- cannot go beyond this point -------------------+
1697 ///
1698 /// unsafe {
1699 /// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
1700 /// // so we can have multiple shared accesses concurrently.
1701 /// let p2_shared: &i32 = &*p2.get();
1702 /// assert_eq!(*p2_shared, 42 + 27);
1703 /// let p1_shared: &i32 = &*p1.get();
1704 /// assert_eq!(*p1_shared, *p2_shared);
1705 /// }
1706 /// ```
1707 ///
1708 /// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
1709 /// implies exclusive access to its `T`:
1710 ///
1711 /// ```rust
1712 /// #![forbid(unsafe_code)] // with exclusive accesses,
1713 /// // `UnsafeCell` is a transparent no-op wrapper,
1714 /// // so no need for `unsafe` here.
1715 /// use std::cell::UnsafeCell;
1716 ///
1717 /// let mut x: UnsafeCell<i32> = 42.into();
1718 ///
1719 /// // Get a compile-time-checked unique reference to `x`.
1720 /// let p_unique: &mut UnsafeCell<i32> = &mut x;
1721 /// // With an exclusive reference, we can mutate the contents for free.
1722 /// *p_unique.get_mut() = 0;
1723 /// // Or, equivalently:
1724 /// x = UnsafeCell::new(0);
1725 ///
1726 /// // When we own the value, we can extract the contents for free.
1727 /// let contents: i32 = x.into_inner();
1728 /// assert_eq!(contents, 0);
1729 /// ```
1730 #[lang = "unsafe_cell"]
1731 #[stable(feature = "rust1", since = "1.0.0")]
1732 #[repr(transparent)]
1733 #[repr(no_niche)] // rust-lang/rust#68303.
1734 pub struct UnsafeCell<T: ?Sized> {
1735 value: T,
1736 }
1737
1738 #[stable(feature = "rust1", since = "1.0.0")]
1739 impl<T: ?Sized> !Sync for UnsafeCell<T> {}
1740
1741 impl<T> UnsafeCell<T> {
1742 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
1743 /// value.
1744 ///
1745 /// All access to the inner value through methods is `unsafe`.
1746 ///
1747 /// # Examples
1748 ///
1749 /// ```
1750 /// use std::cell::UnsafeCell;
1751 ///
1752 /// let uc = UnsafeCell::new(5);
1753 /// ```
1754 #[stable(feature = "rust1", since = "1.0.0")]
1755 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
1756 #[inline]
1757 pub const fn new(value: T) -> UnsafeCell<T> {
1758 UnsafeCell { value }
1759 }
1760
1761 /// Unwraps the value.
1762 ///
1763 /// # Examples
1764 ///
1765 /// ```
1766 /// use std::cell::UnsafeCell;
1767 ///
1768 /// let uc = UnsafeCell::new(5);
1769 ///
1770 /// let five = uc.into_inner();
1771 /// ```
1772 #[inline]
1773 #[stable(feature = "rust1", since = "1.0.0")]
1774 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
1775 pub const fn into_inner(self) -> T {
1776 self.value
1777 }
1778 }
1779
1780 impl<T: ?Sized> UnsafeCell<T> {
1781 /// Gets a mutable pointer to the wrapped value.
1782 ///
1783 /// This can be cast to a pointer of any kind.
1784 /// Ensure that the access is unique (no active references, mutable or not)
1785 /// when casting to `&mut T`, and ensure that there are no mutations
1786 /// or mutable aliases going on when casting to `&T`
1787 ///
1788 /// # Examples
1789 ///
1790 /// ```
1791 /// use std::cell::UnsafeCell;
1792 ///
1793 /// let uc = UnsafeCell::new(5);
1794 ///
1795 /// let five = uc.get();
1796 /// ```
1797 #[inline]
1798 #[stable(feature = "rust1", since = "1.0.0")]
1799 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
1800 pub const fn get(&self) -> *mut T {
1801 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
1802 // #[repr(transparent)]. This exploits libstd's special status, there is
1803 // no guarantee for user code that this will work in future versions of the compiler!
1804 self as *const UnsafeCell<T> as *const T as *mut T
1805 }
1806
1807 /// Returns a mutable reference to the underlying data.
1808 ///
1809 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1810 /// guarantees that we possess the only reference.
1811 ///
1812 /// # Examples
1813 ///
1814 /// ```
1815 /// use std::cell::UnsafeCell;
1816 ///
1817 /// let mut c = UnsafeCell::new(5);
1818 /// *c.get_mut() += 1;
1819 ///
1820 /// assert_eq!(*c.get_mut(), 6);
1821 /// ```
1822 #[inline]
1823 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
1824 pub fn get_mut(&mut self) -> &mut T {
1825 &mut self.value
1826 }
1827
1828 /// Gets a mutable pointer to the wrapped value.
1829 /// The difference to [`get`] is that this function accepts a raw pointer,
1830 /// which is useful to avoid the creation of temporary references.
1831 ///
1832 /// The result can be cast to a pointer of any kind.
1833 /// Ensure that the access is unique (no active references, mutable or not)
1834 /// when casting to `&mut T`, and ensure that there are no mutations
1835 /// or mutable aliases going on when casting to `&T`.
1836 ///
1837 /// [`get`]: UnsafeCell::get()
1838 ///
1839 /// # Examples
1840 ///
1841 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
1842 /// calling `get` would require creating a reference to uninitialized data:
1843 ///
1844 /// ```
1845 /// #![feature(unsafe_cell_raw_get)]
1846 /// use std::cell::UnsafeCell;
1847 /// use std::mem::MaybeUninit;
1848 ///
1849 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
1850 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
1851 /// let uc = unsafe { m.assume_init() };
1852 ///
1853 /// assert_eq!(uc.into_inner(), 5);
1854 /// ```
1855 #[inline]
1856 #[unstable(feature = "unsafe_cell_raw_get", issue = "66358")]
1857 pub const fn raw_get(this: *const Self) -> *mut T {
1858 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
1859 // #[repr(transparent)]. This exploits libstd's special status, there is
1860 // no guarantee for user code that this will work in future versions of the compiler!
1861 this as *const T as *mut T
1862 }
1863 }
1864
1865 #[stable(feature = "unsafe_cell_default", since = "1.10.0")]
1866 impl<T: Default> Default for UnsafeCell<T> {
1867 /// Creates an `UnsafeCell`, with the `Default` value for T.
1868 fn default() -> UnsafeCell<T> {
1869 UnsafeCell::new(Default::default())
1870 }
1871 }
1872
1873 #[stable(feature = "cell_from", since = "1.12.0")]
1874 impl<T> From<T> for UnsafeCell<T> {
1875 fn from(t: T) -> UnsafeCell<T> {
1876 UnsafeCell::new(t)
1877 }
1878 }
1879
1880 #[unstable(feature = "coerce_unsized", issue = "27732")]
1881 impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
1882
1883 #[allow(unused)]
1884 fn assert_coerce_unsized(a: UnsafeCell<&i32>, b: Cell<&i32>, c: RefCell<&i32>) {
1885 let _: UnsafeCell<&dyn Send> = a;
1886 let _: Cell<&dyn Send> = b;
1887 let _: RefCell<&dyn Send> = c;
1888 }