]> git.proxmox.com Git - rustc.git/blob - library/core/src/cell.rs
New upstream version 1.49.0~beta.4+dfsg1
[rustc.git] / library / core / src / cell.rs
1 //! Shareable mutable containers.
2 //!
3 //! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4 //! have one of the following:
5 //!
6 //! - Having several immutable references (`&T`) to the object (also known as **aliasing**).
7 //! - Having one mutable reference (`&mut T`) to the object (also known as **mutability**).
8 //!
9 //! This is enforced by the Rust compiler. However, there are situations where this rule is not
10 //! flexible enough. Sometimes it is required to have multiple references to an object and yet
11 //! mutate it.
12 //!
13 //! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14 //! presence of aliasing. Both `Cell<T>` and `RefCell<T>` allow doing this in a single-threaded
15 //! way. However, neither `Cell<T>` nor `RefCell<T>` are thread safe (they do not implement
16 //! `Sync`). If you need to do aliasing and mutation between multiple threads it is possible to
17 //! use [`Mutex`](../../std/sync/struct.Mutex.html),
18 //! [`RwLock`](../../std/sync/struct.RwLock.html) or
19 //! [`atomic`](../../core/sync/atomic/index.html) types.
20 //!
21 //! Values of the `Cell<T>` and `RefCell<T>` types may be mutated through shared references (i.e.
22 //! the common `&T` type), whereas most Rust types can only be mutated through unique (`&mut T`)
23 //! references. We say that `Cell<T>` and `RefCell<T>` provide 'interior mutability', in contrast
24 //! with typical Rust types that exhibit 'inherited mutability'.
25 //!
26 //! Cell types come in two flavors: `Cell<T>` and `RefCell<T>`. `Cell<T>` implements interior
27 //! mutability by moving values in and out of the `Cell<T>`. To use references instead of values,
28 //! one must use the `RefCell<T>` type, acquiring a write lock before mutating. `Cell<T>` provides
29 //! methods to retrieve and change the current interior value:
30 //!
31 //! - For types that implement `Copy`, the `get` method retrieves the current interior value.
32 //! - For types that implement `Default`, the `take` method replaces the current interior value
33 //! with `Default::default()` and returns the replaced value.
34 //! - For all types, the `replace` method replaces the current interior value and returns the
35 //! replaced value and the `into_inner` method consumes the `Cell<T>` and returns the interior
36 //! value. Additionally, the `set` method replaces the interior value, dropping the replaced
37 //! value.
38 //!
39 //! `RefCell<T>` uses Rust's lifetimes to implement 'dynamic borrowing', a process whereby one can
40 //! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
41 //! tracked 'at runtime', unlike Rust's native reference types which are entirely tracked
42 //! statically, at compile time. Because `RefCell<T>` borrows are dynamic it is possible to attempt
43 //! to borrow a value that is already mutably borrowed; when this happens it results in thread
44 //! panic.
45 //!
46 //! # When to choose interior mutability
47 //!
48 //! The more common inherited mutability, where one must have unique access to mutate a value, is
49 //! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
50 //! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
51 //! interior mutability is something of a last resort. Since cell types enable mutation where it
52 //! would otherwise be disallowed though, there are occasions when interior mutability might be
53 //! appropriate, or even *must* be used, e.g.
54 //!
55 //! * Introducing mutability 'inside' of something immutable
56 //! * Implementation details of logically-immutable methods.
57 //! * Mutating implementations of `Clone`.
58 //!
59 //! ## Introducing mutability 'inside' of something immutable
60 //!
61 //! Many shared smart pointer types, including `Rc<T>` and `Arc<T>`, provide containers that can be
62 //! cloned and shared between multiple parties. Because the contained values may be
63 //! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
64 //! impossible to mutate data inside of these smart pointers at all.
65 //!
66 //! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
67 //! mutability:
68 //!
69 //! ```
70 //! use std::cell::{RefCell, RefMut};
71 //! use std::collections::HashMap;
72 //! use std::rc::Rc;
73 //!
74 //! fn main() {
75 //! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
76 //! // Create a new block to limit the scope of the dynamic borrow
77 //! {
78 //! let mut map: RefMut<_> = shared_map.borrow_mut();
79 //! map.insert("africa", 92388);
80 //! map.insert("kyoto", 11837);
81 //! map.insert("piccadilly", 11826);
82 //! map.insert("marbles", 38);
83 //! }
84 //!
85 //! // Note that if we had not let the previous borrow of the cache fall out
86 //! // of scope then the subsequent borrow would cause a dynamic thread panic.
87 //! // This is the major hazard of using `RefCell`.
88 //! let total: i32 = shared_map.borrow().values().sum();
89 //! println!("{}", total);
90 //! }
91 //! ```
92 //!
93 //! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
94 //! scenarios. Consider using `RwLock<T>` or `Mutex<T>` if you need shared mutability in a
95 //! multi-threaded situation.
96 //!
97 //! ## Implementation details of logically-immutable methods
98 //!
99 //! Occasionally it may be desirable not to expose in an API that there is mutation happening
100 //! "under the hood". This may be because logically the operation is immutable, but e.g., caching
101 //! forces the implementation to perform mutation; or because you must employ mutation to implement
102 //! a trait method that was originally defined to take `&self`.
103 //!
104 //! ```
105 //! # #![allow(dead_code)]
106 //! use std::cell::RefCell;
107 //!
108 //! struct Graph {
109 //! edges: Vec<(i32, i32)>,
110 //! span_tree_cache: RefCell<Option<Vec<(i32, i32)>>>
111 //! }
112 //!
113 //! impl Graph {
114 //! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
115 //! self.span_tree_cache.borrow_mut()
116 //! .get_or_insert_with(|| self.calc_span_tree())
117 //! .clone()
118 //! }
119 //!
120 //! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
121 //! // Expensive computation goes here
122 //! vec![]
123 //! }
124 //! }
125 //! ```
126 //!
127 //! ## Mutating implementations of `Clone`
128 //!
129 //! This is simply a special - but common - case of the previous: hiding mutability for operations
130 //! that appear to be immutable. The `clone` method is expected to not change the source value, and
131 //! is declared to take `&self`, not `&mut self`. Therefore, any mutation that happens in the
132 //! `clone` method must use cell types. For example, `Rc<T>` maintains its reference counts within a
133 //! `Cell<T>`.
134 //!
135 //! ```
136 //! use std::cell::Cell;
137 //! use std::ptr::NonNull;
138 //! use std::process::abort;
139 //! use std::marker::PhantomData;
140 //!
141 //! struct Rc<T: ?Sized> {
142 //! ptr: NonNull<RcBox<T>>,
143 //! phantom: PhantomData<RcBox<T>>,
144 //! }
145 //!
146 //! struct RcBox<T: ?Sized> {
147 //! strong: Cell<usize>,
148 //! refcount: Cell<usize>,
149 //! value: T,
150 //! }
151 //!
152 //! impl<T: ?Sized> Clone for Rc<T> {
153 //! fn clone(&self) -> Rc<T> {
154 //! self.inc_strong();
155 //! Rc {
156 //! ptr: self.ptr,
157 //! phantom: PhantomData,
158 //! }
159 //! }
160 //! }
161 //!
162 //! trait RcBoxPtr<T: ?Sized> {
163 //!
164 //! fn inner(&self) -> &RcBox<T>;
165 //!
166 //! fn strong(&self) -> usize {
167 //! self.inner().strong.get()
168 //! }
169 //!
170 //! fn inc_strong(&self) {
171 //! self.inner()
172 //! .strong
173 //! .set(self.strong()
174 //! .checked_add(1)
175 //! .unwrap_or_else(|| abort() ));
176 //! }
177 //! }
178 //!
179 //! impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
180 //! fn inner(&self) -> &RcBox<T> {
181 //! unsafe {
182 //! self.ptr.as_ref()
183 //! }
184 //! }
185 //! }
186 //! ```
187 //!
188
189 #![stable(feature = "rust1", since = "1.0.0")]
190
191 use crate::cmp::Ordering;
192 use crate::fmt::{self, Debug, Display};
193 use crate::marker::Unsize;
194 use crate::mem;
195 use crate::ops::{CoerceUnsized, Deref, DerefMut};
196 use crate::ptr;
197
198 /// A mutable memory location.
199 ///
200 /// # Examples
201 ///
202 /// In this example, you can see that `Cell<T>` enables mutation inside an
203 /// immutable struct. In other words, it enables "interior mutability".
204 ///
205 /// ```
206 /// use std::cell::Cell;
207 ///
208 /// struct SomeStruct {
209 /// regular_field: u8,
210 /// special_field: Cell<u8>,
211 /// }
212 ///
213 /// let my_struct = SomeStruct {
214 /// regular_field: 0,
215 /// special_field: Cell::new(1),
216 /// };
217 ///
218 /// let new_value = 100;
219 ///
220 /// // ERROR: `my_struct` is immutable
221 /// // my_struct.regular_field = new_value;
222 ///
223 /// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
224 /// // which can always be mutated
225 /// my_struct.special_field.set(new_value);
226 /// assert_eq!(my_struct.special_field.get(), new_value);
227 /// ```
228 ///
229 /// See the [module-level documentation](self) for more.
230 #[stable(feature = "rust1", since = "1.0.0")]
231 #[repr(transparent)]
232 pub struct Cell<T: ?Sized> {
233 value: UnsafeCell<T>,
234 }
235
236 #[stable(feature = "rust1", since = "1.0.0")]
237 unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
238
239 #[stable(feature = "rust1", since = "1.0.0")]
240 impl<T: ?Sized> !Sync for Cell<T> {}
241
242 #[stable(feature = "rust1", since = "1.0.0")]
243 impl<T: Copy> Clone for Cell<T> {
244 #[inline]
245 fn clone(&self) -> Cell<T> {
246 Cell::new(self.get())
247 }
248 }
249
250 #[stable(feature = "rust1", since = "1.0.0")]
251 impl<T: Default> Default for Cell<T> {
252 /// Creates a `Cell<T>`, with the `Default` value for T.
253 #[inline]
254 fn default() -> Cell<T> {
255 Cell::new(Default::default())
256 }
257 }
258
259 #[stable(feature = "rust1", since = "1.0.0")]
260 impl<T: PartialEq + Copy> PartialEq for Cell<T> {
261 #[inline]
262 fn eq(&self, other: &Cell<T>) -> bool {
263 self.get() == other.get()
264 }
265 }
266
267 #[stable(feature = "cell_eq", since = "1.2.0")]
268 impl<T: Eq + Copy> Eq for Cell<T> {}
269
270 #[stable(feature = "cell_ord", since = "1.10.0")]
271 impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
272 #[inline]
273 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
274 self.get().partial_cmp(&other.get())
275 }
276
277 #[inline]
278 fn lt(&self, other: &Cell<T>) -> bool {
279 self.get() < other.get()
280 }
281
282 #[inline]
283 fn le(&self, other: &Cell<T>) -> bool {
284 self.get() <= other.get()
285 }
286
287 #[inline]
288 fn gt(&self, other: &Cell<T>) -> bool {
289 self.get() > other.get()
290 }
291
292 #[inline]
293 fn ge(&self, other: &Cell<T>) -> bool {
294 self.get() >= other.get()
295 }
296 }
297
298 #[stable(feature = "cell_ord", since = "1.10.0")]
299 impl<T: Ord + Copy> Ord for Cell<T> {
300 #[inline]
301 fn cmp(&self, other: &Cell<T>) -> Ordering {
302 self.get().cmp(&other.get())
303 }
304 }
305
306 #[stable(feature = "cell_from", since = "1.12.0")]
307 impl<T> From<T> for Cell<T> {
308 fn from(t: T) -> Cell<T> {
309 Cell::new(t)
310 }
311 }
312
313 impl<T> Cell<T> {
314 /// Creates a new `Cell` containing the given value.
315 ///
316 /// # Examples
317 ///
318 /// ```
319 /// use std::cell::Cell;
320 ///
321 /// let c = Cell::new(5);
322 /// ```
323 #[stable(feature = "rust1", since = "1.0.0")]
324 #[rustc_const_stable(feature = "const_cell_new", since = "1.32.0")]
325 #[inline]
326 pub const fn new(value: T) -> Cell<T> {
327 Cell { value: UnsafeCell::new(value) }
328 }
329
330 /// Sets the contained value.
331 ///
332 /// # Examples
333 ///
334 /// ```
335 /// use std::cell::Cell;
336 ///
337 /// let c = Cell::new(5);
338 ///
339 /// c.set(10);
340 /// ```
341 #[inline]
342 #[stable(feature = "rust1", since = "1.0.0")]
343 pub fn set(&self, val: T) {
344 let old = self.replace(val);
345 drop(old);
346 }
347
348 /// Swaps the values of two Cells.
349 /// Difference with `std::mem::swap` is that this function doesn't require `&mut` reference.
350 ///
351 /// # Examples
352 ///
353 /// ```
354 /// use std::cell::Cell;
355 ///
356 /// let c1 = Cell::new(5i32);
357 /// let c2 = Cell::new(10i32);
358 /// c1.swap(&c2);
359 /// assert_eq!(10, c1.get());
360 /// assert_eq!(5, c2.get());
361 /// ```
362 #[inline]
363 #[stable(feature = "move_cell", since = "1.17.0")]
364 pub fn swap(&self, other: &Self) {
365 if ptr::eq(self, other) {
366 return;
367 }
368 // SAFETY: This can be risky if called from separate threads, but `Cell`
369 // is `!Sync` so this won't happen. This also won't invalidate any
370 // pointers since `Cell` makes sure nothing else will be pointing into
371 // either of these `Cell`s.
372 unsafe {
373 ptr::swap(self.value.get(), other.value.get());
374 }
375 }
376
377 /// Replaces the contained value, and returns it.
378 ///
379 /// # Examples
380 ///
381 /// ```
382 /// use std::cell::Cell;
383 ///
384 /// let cell = Cell::new(5);
385 /// assert_eq!(cell.get(), 5);
386 /// assert_eq!(cell.replace(10), 5);
387 /// assert_eq!(cell.get(), 10);
388 /// ```
389 #[stable(feature = "move_cell", since = "1.17.0")]
390 pub fn replace(&self, val: T) -> T {
391 // SAFETY: This can cause data races if called from a separate thread,
392 // but `Cell` is `!Sync` so this won't happen.
393 mem::replace(unsafe { &mut *self.value.get() }, val)
394 }
395
396 /// Unwraps the value.
397 ///
398 /// # Examples
399 ///
400 /// ```
401 /// use std::cell::Cell;
402 ///
403 /// let c = Cell::new(5);
404 /// let five = c.into_inner();
405 ///
406 /// assert_eq!(five, 5);
407 /// ```
408 #[stable(feature = "move_cell", since = "1.17.0")]
409 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
410 pub const fn into_inner(self) -> T {
411 self.value.into_inner()
412 }
413 }
414
415 impl<T: Copy> Cell<T> {
416 /// Returns a copy of the contained value.
417 ///
418 /// # Examples
419 ///
420 /// ```
421 /// use std::cell::Cell;
422 ///
423 /// let c = Cell::new(5);
424 ///
425 /// let five = c.get();
426 /// ```
427 #[inline]
428 #[stable(feature = "rust1", since = "1.0.0")]
429 pub fn get(&self) -> T {
430 // SAFETY: This can cause data races if called from a separate thread,
431 // but `Cell` is `!Sync` so this won't happen.
432 unsafe { *self.value.get() }
433 }
434
435 /// Updates the contained value using a function and returns the new value.
436 ///
437 /// # Examples
438 ///
439 /// ```
440 /// #![feature(cell_update)]
441 ///
442 /// use std::cell::Cell;
443 ///
444 /// let c = Cell::new(5);
445 /// let new = c.update(|x| x + 1);
446 ///
447 /// assert_eq!(new, 6);
448 /// assert_eq!(c.get(), 6);
449 /// ```
450 #[inline]
451 #[unstable(feature = "cell_update", issue = "50186")]
452 pub fn update<F>(&self, f: F) -> T
453 where
454 F: FnOnce(T) -> T,
455 {
456 let old = self.get();
457 let new = f(old);
458 self.set(new);
459 new
460 }
461 }
462
463 impl<T: ?Sized> Cell<T> {
464 /// Returns a raw pointer to the underlying data in this cell.
465 ///
466 /// # Examples
467 ///
468 /// ```
469 /// use std::cell::Cell;
470 ///
471 /// let c = Cell::new(5);
472 ///
473 /// let ptr = c.as_ptr();
474 /// ```
475 #[inline]
476 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
477 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
478 pub const fn as_ptr(&self) -> *mut T {
479 self.value.get()
480 }
481
482 /// Returns a mutable reference to the underlying data.
483 ///
484 /// This call borrows `Cell` mutably (at compile-time) which guarantees
485 /// that we possess the only reference.
486 ///
487 /// # Examples
488 ///
489 /// ```
490 /// use std::cell::Cell;
491 ///
492 /// let mut c = Cell::new(5);
493 /// *c.get_mut() += 1;
494 ///
495 /// assert_eq!(c.get(), 6);
496 /// ```
497 #[inline]
498 #[stable(feature = "cell_get_mut", since = "1.11.0")]
499 pub fn get_mut(&mut self) -> &mut T {
500 self.value.get_mut()
501 }
502
503 /// Returns a `&Cell<T>` from a `&mut T`
504 ///
505 /// # Examples
506 ///
507 /// ```
508 /// use std::cell::Cell;
509 ///
510 /// let slice: &mut [i32] = &mut [1, 2, 3];
511 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
512 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
513 ///
514 /// assert_eq!(slice_cell.len(), 3);
515 /// ```
516 #[inline]
517 #[stable(feature = "as_cell", since = "1.37.0")]
518 pub fn from_mut(t: &mut T) -> &Cell<T> {
519 // SAFETY: `&mut` ensures unique access.
520 unsafe { &*(t as *mut T as *const Cell<T>) }
521 }
522 }
523
524 impl<T: Default> Cell<T> {
525 /// Takes the value of the cell, leaving `Default::default()` in its place.
526 ///
527 /// # Examples
528 ///
529 /// ```
530 /// use std::cell::Cell;
531 ///
532 /// let c = Cell::new(5);
533 /// let five = c.take();
534 ///
535 /// assert_eq!(five, 5);
536 /// assert_eq!(c.into_inner(), 0);
537 /// ```
538 #[stable(feature = "move_cell", since = "1.17.0")]
539 pub fn take(&self) -> T {
540 self.replace(Default::default())
541 }
542 }
543
544 #[unstable(feature = "coerce_unsized", issue = "27732")]
545 impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
546
547 impl<T> Cell<[T]> {
548 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
549 ///
550 /// # Examples
551 ///
552 /// ```
553 /// use std::cell::Cell;
554 ///
555 /// let slice: &mut [i32] = &mut [1, 2, 3];
556 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
557 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
558 ///
559 /// assert_eq!(slice_cell.len(), 3);
560 /// ```
561 #[stable(feature = "as_cell", since = "1.37.0")]
562 pub fn as_slice_of_cells(&self) -> &[Cell<T>] {
563 // SAFETY: `Cell<T>` has the same memory layout as `T`.
564 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
565 }
566 }
567
568 /// A mutable memory location with dynamically checked borrow rules
569 ///
570 /// See the [module-level documentation](self) for more.
571 #[stable(feature = "rust1", since = "1.0.0")]
572 pub struct RefCell<T: ?Sized> {
573 borrow: Cell<BorrowFlag>,
574 value: UnsafeCell<T>,
575 }
576
577 /// An error returned by [`RefCell::try_borrow`].
578 #[stable(feature = "try_borrow", since = "1.13.0")]
579 pub struct BorrowError {
580 _private: (),
581 }
582
583 #[stable(feature = "try_borrow", since = "1.13.0")]
584 impl Debug for BorrowError {
585 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
586 f.debug_struct("BorrowError").finish()
587 }
588 }
589
590 #[stable(feature = "try_borrow", since = "1.13.0")]
591 impl Display for BorrowError {
592 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
593 Display::fmt("already mutably borrowed", f)
594 }
595 }
596
597 /// An error returned by [`RefCell::try_borrow_mut`].
598 #[stable(feature = "try_borrow", since = "1.13.0")]
599 pub struct BorrowMutError {
600 _private: (),
601 }
602
603 #[stable(feature = "try_borrow", since = "1.13.0")]
604 impl Debug for BorrowMutError {
605 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
606 f.debug_struct("BorrowMutError").finish()
607 }
608 }
609
610 #[stable(feature = "try_borrow", since = "1.13.0")]
611 impl Display for BorrowMutError {
612 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
613 Display::fmt("already borrowed", f)
614 }
615 }
616
617 // Positive values represent the number of `Ref` active. Negative values
618 // represent the number of `RefMut` active. Multiple `RefMut`s can only be
619 // active at a time if they refer to distinct, nonoverlapping components of a
620 // `RefCell` (e.g., different ranges of a slice).
621 //
622 // `Ref` and `RefMut` are both two words in size, and so there will likely never
623 // be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
624 // range. Thus, a `BorrowFlag` will probably never overflow or underflow.
625 // However, this is not a guarantee, as a pathological program could repeatedly
626 // create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
627 // explicitly check for overflow and underflow in order to avoid unsafety, or at
628 // least behave correctly in the event that overflow or underflow happens (e.g.,
629 // see BorrowRef::new).
630 type BorrowFlag = isize;
631 const UNUSED: BorrowFlag = 0;
632
633 #[inline(always)]
634 fn is_writing(x: BorrowFlag) -> bool {
635 x < UNUSED
636 }
637
638 #[inline(always)]
639 fn is_reading(x: BorrowFlag) -> bool {
640 x > UNUSED
641 }
642
643 impl<T> RefCell<T> {
644 /// Creates a new `RefCell` containing `value`.
645 ///
646 /// # Examples
647 ///
648 /// ```
649 /// use std::cell::RefCell;
650 ///
651 /// let c = RefCell::new(5);
652 /// ```
653 #[stable(feature = "rust1", since = "1.0.0")]
654 #[rustc_const_stable(feature = "const_refcell_new", since = "1.32.0")]
655 #[inline]
656 pub const fn new(value: T) -> RefCell<T> {
657 RefCell { value: UnsafeCell::new(value), borrow: Cell::new(UNUSED) }
658 }
659
660 /// Consumes the `RefCell`, returning the wrapped value.
661 ///
662 /// # Examples
663 ///
664 /// ```
665 /// use std::cell::RefCell;
666 ///
667 /// let c = RefCell::new(5);
668 ///
669 /// let five = c.into_inner();
670 /// ```
671 #[stable(feature = "rust1", since = "1.0.0")]
672 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
673 #[inline]
674 pub const fn into_inner(self) -> T {
675 // Since this function takes `self` (the `RefCell`) by value, the
676 // compiler statically verifies that it is not currently borrowed.
677 self.value.into_inner()
678 }
679
680 /// Replaces the wrapped value with a new one, returning the old value,
681 /// without deinitializing either one.
682 ///
683 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
684 ///
685 /// # Panics
686 ///
687 /// Panics if the value is currently borrowed.
688 ///
689 /// # Examples
690 ///
691 /// ```
692 /// use std::cell::RefCell;
693 /// let cell = RefCell::new(5);
694 /// let old_value = cell.replace(6);
695 /// assert_eq!(old_value, 5);
696 /// assert_eq!(cell, RefCell::new(6));
697 /// ```
698 #[inline]
699 #[stable(feature = "refcell_replace", since = "1.24.0")]
700 #[track_caller]
701 pub fn replace(&self, t: T) -> T {
702 mem::replace(&mut *self.borrow_mut(), t)
703 }
704
705 /// Replaces the wrapped value with a new one computed from `f`, returning
706 /// the old value, without deinitializing either one.
707 ///
708 /// # Panics
709 ///
710 /// Panics if the value is currently borrowed.
711 ///
712 /// # Examples
713 ///
714 /// ```
715 /// use std::cell::RefCell;
716 /// let cell = RefCell::new(5);
717 /// let old_value = cell.replace_with(|&mut old| old + 1);
718 /// assert_eq!(old_value, 5);
719 /// assert_eq!(cell, RefCell::new(6));
720 /// ```
721 #[inline]
722 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
723 #[track_caller]
724 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
725 let mut_borrow = &mut *self.borrow_mut();
726 let replacement = f(mut_borrow);
727 mem::replace(mut_borrow, replacement)
728 }
729
730 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
731 /// without deinitializing either one.
732 ///
733 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
734 ///
735 /// # Panics
736 ///
737 /// Panics if the value in either `RefCell` is currently borrowed.
738 ///
739 /// # Examples
740 ///
741 /// ```
742 /// use std::cell::RefCell;
743 /// let c = RefCell::new(5);
744 /// let d = RefCell::new(6);
745 /// c.swap(&d);
746 /// assert_eq!(c, RefCell::new(6));
747 /// assert_eq!(d, RefCell::new(5));
748 /// ```
749 #[inline]
750 #[stable(feature = "refcell_swap", since = "1.24.0")]
751 pub fn swap(&self, other: &Self) {
752 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
753 }
754 }
755
756 impl<T: ?Sized> RefCell<T> {
757 /// Immutably borrows the wrapped value.
758 ///
759 /// The borrow lasts until the returned `Ref` exits scope. Multiple
760 /// immutable borrows can be taken out at the same time.
761 ///
762 /// # Panics
763 ///
764 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
765 /// [`try_borrow`](#method.try_borrow).
766 ///
767 /// # Examples
768 ///
769 /// ```
770 /// use std::cell::RefCell;
771 ///
772 /// let c = RefCell::new(5);
773 ///
774 /// let borrowed_five = c.borrow();
775 /// let borrowed_five2 = c.borrow();
776 /// ```
777 ///
778 /// An example of panic:
779 ///
780 /// ```should_panic
781 /// use std::cell::RefCell;
782 ///
783 /// let c = RefCell::new(5);
784 ///
785 /// let m = c.borrow_mut();
786 /// let b = c.borrow(); // this causes a panic
787 /// ```
788 #[stable(feature = "rust1", since = "1.0.0")]
789 #[inline]
790 #[track_caller]
791 pub fn borrow(&self) -> Ref<'_, T> {
792 self.try_borrow().expect("already mutably borrowed")
793 }
794
795 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
796 /// borrowed.
797 ///
798 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
799 /// taken out at the same time.
800 ///
801 /// This is the non-panicking variant of [`borrow`](#method.borrow).
802 ///
803 /// # Examples
804 ///
805 /// ```
806 /// use std::cell::RefCell;
807 ///
808 /// let c = RefCell::new(5);
809 ///
810 /// {
811 /// let m = c.borrow_mut();
812 /// assert!(c.try_borrow().is_err());
813 /// }
814 ///
815 /// {
816 /// let m = c.borrow();
817 /// assert!(c.try_borrow().is_ok());
818 /// }
819 /// ```
820 #[stable(feature = "try_borrow", since = "1.13.0")]
821 #[inline]
822 pub fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
823 match BorrowRef::new(&self.borrow) {
824 // SAFETY: `BorrowRef` ensures that there is only immutable access
825 // to the value while borrowed.
826 Some(b) => Ok(Ref { value: unsafe { &*self.value.get() }, borrow: b }),
827 None => Err(BorrowError { _private: () }),
828 }
829 }
830
831 /// Mutably borrows the wrapped value.
832 ///
833 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
834 /// from it exit scope. The value cannot be borrowed while this borrow is
835 /// active.
836 ///
837 /// # Panics
838 ///
839 /// Panics if the value is currently borrowed. For a non-panicking variant, use
840 /// [`try_borrow_mut`](#method.try_borrow_mut).
841 ///
842 /// # Examples
843 ///
844 /// ```
845 /// use std::cell::RefCell;
846 ///
847 /// let c = RefCell::new("hello".to_owned());
848 ///
849 /// *c.borrow_mut() = "bonjour".to_owned();
850 ///
851 /// assert_eq!(&*c.borrow(), "bonjour");
852 /// ```
853 ///
854 /// An example of panic:
855 ///
856 /// ```should_panic
857 /// use std::cell::RefCell;
858 ///
859 /// let c = RefCell::new(5);
860 /// let m = c.borrow();
861 ///
862 /// let b = c.borrow_mut(); // this causes a panic
863 /// ```
864 #[stable(feature = "rust1", since = "1.0.0")]
865 #[inline]
866 #[track_caller]
867 pub fn borrow_mut(&self) -> RefMut<'_, T> {
868 self.try_borrow_mut().expect("already borrowed")
869 }
870
871 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
872 ///
873 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
874 /// from it exit scope. The value cannot be borrowed while this borrow is
875 /// active.
876 ///
877 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
878 ///
879 /// # Examples
880 ///
881 /// ```
882 /// use std::cell::RefCell;
883 ///
884 /// let c = RefCell::new(5);
885 ///
886 /// {
887 /// let m = c.borrow();
888 /// assert!(c.try_borrow_mut().is_err());
889 /// }
890 ///
891 /// assert!(c.try_borrow_mut().is_ok());
892 /// ```
893 #[stable(feature = "try_borrow", since = "1.13.0")]
894 #[inline]
895 pub fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
896 match BorrowRefMut::new(&self.borrow) {
897 // SAFETY: `BorrowRef` guarantees unique access.
898 Some(b) => Ok(RefMut { value: unsafe { &mut *self.value.get() }, borrow: b }),
899 None => Err(BorrowMutError { _private: () }),
900 }
901 }
902
903 /// Returns a raw pointer to the underlying data in this cell.
904 ///
905 /// # Examples
906 ///
907 /// ```
908 /// use std::cell::RefCell;
909 ///
910 /// let c = RefCell::new(5);
911 ///
912 /// let ptr = c.as_ptr();
913 /// ```
914 #[inline]
915 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
916 pub fn as_ptr(&self) -> *mut T {
917 self.value.get()
918 }
919
920 /// Returns a mutable reference to the underlying data.
921 ///
922 /// This call borrows `RefCell` mutably (at compile-time) so there is no
923 /// need for dynamic checks.
924 ///
925 /// However be cautious: this method expects `self` to be mutable, which is
926 /// generally not the case when using a `RefCell`. Take a look at the
927 /// [`borrow_mut`] method instead if `self` isn't mutable.
928 ///
929 /// Also, please be aware that this method is only for special circumstances and is usually
930 /// not what you want. In case of doubt, use [`borrow_mut`] instead.
931 ///
932 /// [`borrow_mut`]: #method.borrow_mut
933 ///
934 /// # Examples
935 ///
936 /// ```
937 /// use std::cell::RefCell;
938 ///
939 /// let mut c = RefCell::new(5);
940 /// *c.get_mut() += 1;
941 ///
942 /// assert_eq!(c, RefCell::new(6));
943 /// ```
944 #[inline]
945 #[stable(feature = "cell_get_mut", since = "1.11.0")]
946 pub fn get_mut(&mut self) -> &mut T {
947 self.value.get_mut()
948 }
949
950 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
951 ///
952 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
953 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
954 /// if some `Ref` or `RefMut` borrows have been leaked.
955 ///
956 /// [`get_mut`]: #method.get_mut
957 ///
958 /// # Examples
959 ///
960 /// ```
961 /// #![feature(cell_leak)]
962 /// use std::cell::RefCell;
963 ///
964 /// let mut c = RefCell::new(0);
965 /// std::mem::forget(c.borrow_mut());
966 ///
967 /// assert!(c.try_borrow().is_err());
968 /// c.undo_leak();
969 /// assert!(c.try_borrow().is_ok());
970 /// ```
971 #[unstable(feature = "cell_leak", issue = "69099")]
972 pub fn undo_leak(&mut self) -> &mut T {
973 *self.borrow.get_mut() = UNUSED;
974 self.get_mut()
975 }
976
977 /// Immutably borrows the wrapped value, returning an error if the value is
978 /// currently mutably borrowed.
979 ///
980 /// # Safety
981 ///
982 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
983 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
984 /// borrowing the `RefCell` while the reference returned by this method
985 /// is alive is undefined behaviour.
986 ///
987 /// # Examples
988 ///
989 /// ```
990 /// use std::cell::RefCell;
991 ///
992 /// let c = RefCell::new(5);
993 ///
994 /// {
995 /// let m = c.borrow_mut();
996 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
997 /// }
998 ///
999 /// {
1000 /// let m = c.borrow();
1001 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1002 /// }
1003 /// ```
1004 #[stable(feature = "borrow_state", since = "1.37.0")]
1005 #[inline]
1006 pub unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1007 if !is_writing(self.borrow.get()) {
1008 // SAFETY: We check that nobody is actively writing now, but it is
1009 // the caller's responsibility to ensure that nobody writes until
1010 // the returned reference is no longer in use.
1011 // Also, `self.value.get()` refers to the value owned by `self`
1012 // and is thus guaranteed to be valid for the lifetime of `self`.
1013 Ok(unsafe { &*self.value.get() })
1014 } else {
1015 Err(BorrowError { _private: () })
1016 }
1017 }
1018 }
1019
1020 impl<T: Default> RefCell<T> {
1021 /// Takes the wrapped value, leaving `Default::default()` in its place.
1022 ///
1023 /// # Panics
1024 ///
1025 /// Panics if the value is currently borrowed.
1026 ///
1027 /// # Examples
1028 ///
1029 /// ```
1030 /// #![feature(refcell_take)]
1031 /// use std::cell::RefCell;
1032 ///
1033 /// let c = RefCell::new(5);
1034 /// let five = c.take();
1035 ///
1036 /// assert_eq!(five, 5);
1037 /// assert_eq!(c.into_inner(), 0);
1038 /// ```
1039 #[unstable(feature = "refcell_take", issue = "71395")]
1040 pub fn take(&self) -> T {
1041 self.replace(Default::default())
1042 }
1043 }
1044
1045 #[stable(feature = "rust1", since = "1.0.0")]
1046 unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1047
1048 #[stable(feature = "rust1", since = "1.0.0")]
1049 impl<T: ?Sized> !Sync for RefCell<T> {}
1050
1051 #[stable(feature = "rust1", since = "1.0.0")]
1052 impl<T: Clone> Clone for RefCell<T> {
1053 /// # Panics
1054 ///
1055 /// Panics if the value is currently mutably borrowed.
1056 #[inline]
1057 #[track_caller]
1058 fn clone(&self) -> RefCell<T> {
1059 RefCell::new(self.borrow().clone())
1060 }
1061 }
1062
1063 #[stable(feature = "rust1", since = "1.0.0")]
1064 impl<T: Default> Default for RefCell<T> {
1065 /// Creates a `RefCell<T>`, with the `Default` value for T.
1066 #[inline]
1067 fn default() -> RefCell<T> {
1068 RefCell::new(Default::default())
1069 }
1070 }
1071
1072 #[stable(feature = "rust1", since = "1.0.0")]
1073 impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1074 /// # Panics
1075 ///
1076 /// Panics if the value in either `RefCell` is currently borrowed.
1077 #[inline]
1078 fn eq(&self, other: &RefCell<T>) -> bool {
1079 *self.borrow() == *other.borrow()
1080 }
1081 }
1082
1083 #[stable(feature = "cell_eq", since = "1.2.0")]
1084 impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1085
1086 #[stable(feature = "cell_ord", since = "1.10.0")]
1087 impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1088 /// # Panics
1089 ///
1090 /// Panics if the value in either `RefCell` is currently borrowed.
1091 #[inline]
1092 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1093 self.borrow().partial_cmp(&*other.borrow())
1094 }
1095
1096 /// # Panics
1097 ///
1098 /// Panics if the value in either `RefCell` is currently borrowed.
1099 #[inline]
1100 fn lt(&self, other: &RefCell<T>) -> bool {
1101 *self.borrow() < *other.borrow()
1102 }
1103
1104 /// # Panics
1105 ///
1106 /// Panics if the value in either `RefCell` is currently borrowed.
1107 #[inline]
1108 fn le(&self, other: &RefCell<T>) -> bool {
1109 *self.borrow() <= *other.borrow()
1110 }
1111
1112 /// # Panics
1113 ///
1114 /// Panics if the value in either `RefCell` is currently borrowed.
1115 #[inline]
1116 fn gt(&self, other: &RefCell<T>) -> bool {
1117 *self.borrow() > *other.borrow()
1118 }
1119
1120 /// # Panics
1121 ///
1122 /// Panics if the value in either `RefCell` is currently borrowed.
1123 #[inline]
1124 fn ge(&self, other: &RefCell<T>) -> bool {
1125 *self.borrow() >= *other.borrow()
1126 }
1127 }
1128
1129 #[stable(feature = "cell_ord", since = "1.10.0")]
1130 impl<T: ?Sized + Ord> Ord for RefCell<T> {
1131 /// # Panics
1132 ///
1133 /// Panics if the value in either `RefCell` is currently borrowed.
1134 #[inline]
1135 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1136 self.borrow().cmp(&*other.borrow())
1137 }
1138 }
1139
1140 #[stable(feature = "cell_from", since = "1.12.0")]
1141 impl<T> From<T> for RefCell<T> {
1142 fn from(t: T) -> RefCell<T> {
1143 RefCell::new(t)
1144 }
1145 }
1146
1147 #[unstable(feature = "coerce_unsized", issue = "27732")]
1148 impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1149
1150 struct BorrowRef<'b> {
1151 borrow: &'b Cell<BorrowFlag>,
1152 }
1153
1154 impl<'b> BorrowRef<'b> {
1155 #[inline]
1156 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {
1157 let b = borrow.get().wrapping_add(1);
1158 if !is_reading(b) {
1159 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1160 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1161 // due to Rust's reference aliasing rules
1162 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1163 // into isize::MIN (the max amount of writing borrows) so we can't allow
1164 // an additional read borrow because isize can't represent so many read borrows
1165 // (this can only happen if you mem::forget more than a small constant amount of
1166 // `Ref`s, which is not good practice)
1167 None
1168 } else {
1169 // Incrementing borrow can result in a reading value (> 0) in these cases:
1170 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1171 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1172 // is large enough to represent having one more read borrow
1173 borrow.set(b);
1174 Some(BorrowRef { borrow })
1175 }
1176 }
1177 }
1178
1179 impl Drop for BorrowRef<'_> {
1180 #[inline]
1181 fn drop(&mut self) {
1182 let borrow = self.borrow.get();
1183 debug_assert!(is_reading(borrow));
1184 self.borrow.set(borrow - 1);
1185 }
1186 }
1187
1188 impl Clone for BorrowRef<'_> {
1189 #[inline]
1190 fn clone(&self) -> Self {
1191 // Since this Ref exists, we know the borrow flag
1192 // is a reading borrow.
1193 let borrow = self.borrow.get();
1194 debug_assert!(is_reading(borrow));
1195 // Prevent the borrow counter from overflowing into
1196 // a writing borrow.
1197 assert!(borrow != isize::MAX);
1198 self.borrow.set(borrow + 1);
1199 BorrowRef { borrow: self.borrow }
1200 }
1201 }
1202
1203 /// Wraps a borrowed reference to a value in a `RefCell` box.
1204 /// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1205 ///
1206 /// See the [module-level documentation](self) for more.
1207 #[stable(feature = "rust1", since = "1.0.0")]
1208 pub struct Ref<'b, T: ?Sized + 'b> {
1209 value: &'b T,
1210 borrow: BorrowRef<'b>,
1211 }
1212
1213 #[stable(feature = "rust1", since = "1.0.0")]
1214 impl<T: ?Sized> Deref for Ref<'_, T> {
1215 type Target = T;
1216
1217 #[inline]
1218 fn deref(&self) -> &T {
1219 self.value
1220 }
1221 }
1222
1223 impl<'b, T: ?Sized> Ref<'b, T> {
1224 /// Copies a `Ref`.
1225 ///
1226 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1227 ///
1228 /// This is an associated function that needs to be used as
1229 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1230 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1231 /// a `RefCell`.
1232 #[stable(feature = "cell_extras", since = "1.15.0")]
1233 #[inline]
1234 pub fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1235 Ref { value: orig.value, borrow: orig.borrow.clone() }
1236 }
1237
1238 /// Makes a new `Ref` for a component of the borrowed data.
1239 ///
1240 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1241 ///
1242 /// This is an associated function that needs to be used as `Ref::map(...)`.
1243 /// A method would interfere with methods of the same name on the contents
1244 /// of a `RefCell` used through `Deref`.
1245 ///
1246 /// # Examples
1247 ///
1248 /// ```
1249 /// use std::cell::{RefCell, Ref};
1250 ///
1251 /// let c = RefCell::new((5, 'b'));
1252 /// let b1: Ref<(u32, char)> = c.borrow();
1253 /// let b2: Ref<u32> = Ref::map(b1, |t| &t.0);
1254 /// assert_eq!(*b2, 5)
1255 /// ```
1256 #[stable(feature = "cell_map", since = "1.8.0")]
1257 #[inline]
1258 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1259 where
1260 F: FnOnce(&T) -> &U,
1261 {
1262 Ref { value: f(orig.value), borrow: orig.borrow }
1263 }
1264
1265 /// Splits a `Ref` into multiple `Ref`s for different components of the
1266 /// borrowed data.
1267 ///
1268 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1269 ///
1270 /// This is an associated function that needs to be used as
1271 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1272 /// name on the contents of a `RefCell` used through `Deref`.
1273 ///
1274 /// # Examples
1275 ///
1276 /// ```
1277 /// use std::cell::{Ref, RefCell};
1278 ///
1279 /// let cell = RefCell::new([1, 2, 3, 4]);
1280 /// let borrow = cell.borrow();
1281 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1282 /// assert_eq!(*begin, [1, 2]);
1283 /// assert_eq!(*end, [3, 4]);
1284 /// ```
1285 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1286 #[inline]
1287 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1288 where
1289 F: FnOnce(&T) -> (&U, &V),
1290 {
1291 let (a, b) = f(orig.value);
1292 let borrow = orig.borrow.clone();
1293 (Ref { value: a, borrow }, Ref { value: b, borrow: orig.borrow })
1294 }
1295
1296 /// Convert into a reference to the underlying data.
1297 ///
1298 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1299 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1300 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1301 /// have occurred in total.
1302 ///
1303 /// This is an associated function that needs to be used as
1304 /// `Ref::leak(...)`. A method would interfere with methods of the
1305 /// same name on the contents of a `RefCell` used through `Deref`.
1306 ///
1307 /// # Examples
1308 ///
1309 /// ```
1310 /// #![feature(cell_leak)]
1311 /// use std::cell::{RefCell, Ref};
1312 /// let cell = RefCell::new(0);
1313 ///
1314 /// let value = Ref::leak(cell.borrow());
1315 /// assert_eq!(*value, 0);
1316 ///
1317 /// assert!(cell.try_borrow().is_ok());
1318 /// assert!(cell.try_borrow_mut().is_err());
1319 /// ```
1320 #[unstable(feature = "cell_leak", issue = "69099")]
1321 pub fn leak(orig: Ref<'b, T>) -> &'b T {
1322 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1323 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1324 // unique reference to the borrowed RefCell. No further mutable references can be created
1325 // from the original cell.
1326 mem::forget(orig.borrow);
1327 orig.value
1328 }
1329 }
1330
1331 #[unstable(feature = "coerce_unsized", issue = "27732")]
1332 impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1333
1334 #[stable(feature = "std_guard_impls", since = "1.20.0")]
1335 impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1336 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1337 self.value.fmt(f)
1338 }
1339 }
1340
1341 impl<'b, T: ?Sized> RefMut<'b, T> {
1342 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1343 /// variant.
1344 ///
1345 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1346 ///
1347 /// This is an associated function that needs to be used as
1348 /// `RefMut::map(...)`. A method would interfere with methods of the same
1349 /// name on the contents of a `RefCell` used through `Deref`.
1350 ///
1351 /// # Examples
1352 ///
1353 /// ```
1354 /// use std::cell::{RefCell, RefMut};
1355 ///
1356 /// let c = RefCell::new((5, 'b'));
1357 /// {
1358 /// let b1: RefMut<(u32, char)> = c.borrow_mut();
1359 /// let mut b2: RefMut<u32> = RefMut::map(b1, |t| &mut t.0);
1360 /// assert_eq!(*b2, 5);
1361 /// *b2 = 42;
1362 /// }
1363 /// assert_eq!(*c.borrow(), (42, 'b'));
1364 /// ```
1365 #[stable(feature = "cell_map", since = "1.8.0")]
1366 #[inline]
1367 pub fn map<U: ?Sized, F>(orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1368 where
1369 F: FnOnce(&mut T) -> &mut U,
1370 {
1371 // FIXME(nll-rfc#40): fix borrow-check
1372 let RefMut { value, borrow } = orig;
1373 RefMut { value: f(value), borrow }
1374 }
1375
1376 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1377 /// borrowed data.
1378 ///
1379 /// The underlying `RefCell` will remain mutably borrowed until both
1380 /// returned `RefMut`s go out of scope.
1381 ///
1382 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1383 ///
1384 /// This is an associated function that needs to be used as
1385 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1386 /// same name on the contents of a `RefCell` used through `Deref`.
1387 ///
1388 /// # Examples
1389 ///
1390 /// ```
1391 /// use std::cell::{RefCell, RefMut};
1392 ///
1393 /// let cell = RefCell::new([1, 2, 3, 4]);
1394 /// let borrow = cell.borrow_mut();
1395 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1396 /// assert_eq!(*begin, [1, 2]);
1397 /// assert_eq!(*end, [3, 4]);
1398 /// begin.copy_from_slice(&[4, 3]);
1399 /// end.copy_from_slice(&[2, 1]);
1400 /// ```
1401 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1402 #[inline]
1403 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1404 orig: RefMut<'b, T>,
1405 f: F,
1406 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1407 where
1408 F: FnOnce(&mut T) -> (&mut U, &mut V),
1409 {
1410 let (a, b) = f(orig.value);
1411 let borrow = orig.borrow.clone();
1412 (RefMut { value: a, borrow }, RefMut { value: b, borrow: orig.borrow })
1413 }
1414
1415 /// Convert into a mutable reference to the underlying data.
1416 ///
1417 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1418 /// mutably borrowed, making the returned reference the only to the interior.
1419 ///
1420 /// This is an associated function that needs to be used as
1421 /// `RefMut::leak(...)`. A method would interfere with methods of the
1422 /// same name on the contents of a `RefCell` used through `Deref`.
1423 ///
1424 /// # Examples
1425 ///
1426 /// ```
1427 /// #![feature(cell_leak)]
1428 /// use std::cell::{RefCell, RefMut};
1429 /// let cell = RefCell::new(0);
1430 ///
1431 /// let value = RefMut::leak(cell.borrow_mut());
1432 /// assert_eq!(*value, 0);
1433 /// *value = 1;
1434 ///
1435 /// assert!(cell.try_borrow_mut().is_err());
1436 /// ```
1437 #[unstable(feature = "cell_leak", issue = "69099")]
1438 pub fn leak(orig: RefMut<'b, T>) -> &'b mut T {
1439 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1440 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1441 // require a unique reference to the borrowed RefCell. No further references can be created
1442 // from the original cell within that lifetime, making the current borrow the only
1443 // reference for the remaining lifetime.
1444 mem::forget(orig.borrow);
1445 orig.value
1446 }
1447 }
1448
1449 struct BorrowRefMut<'b> {
1450 borrow: &'b Cell<BorrowFlag>,
1451 }
1452
1453 impl Drop for BorrowRefMut<'_> {
1454 #[inline]
1455 fn drop(&mut self) {
1456 let borrow = self.borrow.get();
1457 debug_assert!(is_writing(borrow));
1458 self.borrow.set(borrow + 1);
1459 }
1460 }
1461
1462 impl<'b> BorrowRefMut<'b> {
1463 #[inline]
1464 fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
1465 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1466 // mutable reference, and so there must currently be no existing
1467 // references. Thus, while clone increments the mutable refcount, here
1468 // we explicitly only allow going from UNUSED to UNUSED - 1.
1469 match borrow.get() {
1470 UNUSED => {
1471 borrow.set(UNUSED - 1);
1472 Some(BorrowRefMut { borrow })
1473 }
1474 _ => None,
1475 }
1476 }
1477
1478 // Clones a `BorrowRefMut`.
1479 //
1480 // This is only valid if each `BorrowRefMut` is used to track a mutable
1481 // reference to a distinct, nonoverlapping range of the original object.
1482 // This isn't in a Clone impl so that code doesn't call this implicitly.
1483 #[inline]
1484 fn clone(&self) -> BorrowRefMut<'b> {
1485 let borrow = self.borrow.get();
1486 debug_assert!(is_writing(borrow));
1487 // Prevent the borrow counter from underflowing.
1488 assert!(borrow != isize::MIN);
1489 self.borrow.set(borrow - 1);
1490 BorrowRefMut { borrow: self.borrow }
1491 }
1492 }
1493
1494 /// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1495 ///
1496 /// See the [module-level documentation](self) for more.
1497 #[stable(feature = "rust1", since = "1.0.0")]
1498 pub struct RefMut<'b, T: ?Sized + 'b> {
1499 value: &'b mut T,
1500 borrow: BorrowRefMut<'b>,
1501 }
1502
1503 #[stable(feature = "rust1", since = "1.0.0")]
1504 impl<T: ?Sized> Deref for RefMut<'_, T> {
1505 type Target = T;
1506
1507 #[inline]
1508 fn deref(&self) -> &T {
1509 self.value
1510 }
1511 }
1512
1513 #[stable(feature = "rust1", since = "1.0.0")]
1514 impl<T: ?Sized> DerefMut for RefMut<'_, T> {
1515 #[inline]
1516 fn deref_mut(&mut self) -> &mut T {
1517 self.value
1518 }
1519 }
1520
1521 #[unstable(feature = "coerce_unsized", issue = "27732")]
1522 impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1523
1524 #[stable(feature = "std_guard_impls", since = "1.20.0")]
1525 impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
1526 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1527 self.value.fmt(f)
1528 }
1529 }
1530
1531 /// The core primitive for interior mutability in Rust.
1532 ///
1533 /// `UnsafeCell<T>` is a type that wraps some `T` and indicates unsafe interior operations on the
1534 /// wrapped type. Types with an `UnsafeCell<T>` field are considered to have an 'unsafe interior'.
1535 /// The `UnsafeCell<T>` type is the only legal way to obtain aliasable data that is considered
1536 /// mutable. In general, transmuting an `&T` type into an `&mut T` is considered undefined behavior.
1537 ///
1538 /// If you have a reference `&SomeStruct`, then normally in Rust all fields of `SomeStruct` are
1539 /// immutable. The compiler makes optimizations based on the knowledge that `&T` is not mutably
1540 /// aliased or mutated, and that `&mut T` is unique. `UnsafeCell<T>` is the only core language
1541 /// feature to work around the restriction that `&T` may not be mutated. All other types that
1542 /// allow internal mutability, such as `Cell<T>` and `RefCell<T>`, use `UnsafeCell` to wrap their
1543 /// internal data. There is *no* legal way to obtain aliasing `&mut`, not even with `UnsafeCell<T>`.
1544 ///
1545 /// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1546 /// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1547 /// correctly.
1548 ///
1549 /// [`.get()`]: `UnsafeCell::get`
1550 ///
1551 /// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1552 ///
1553 /// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T`
1554 /// reference) that is accessible by safe code (for example, because you returned it),
1555 /// then you must not access the data in any way that contradicts that reference for the
1556 /// remainder of `'a`. For example, this means that if you take the `*mut T` from an
1557 /// `UnsafeCell<T>` and cast it to an `&T`, then the data in `T` must remain immutable
1558 /// (modulo any `UnsafeCell` data found within `T`, of course) until that reference's
1559 /// lifetime expires. Similarly, if you create a `&mut T` reference that is released to
1560 /// safe code, then you must not access the data within the `UnsafeCell` until that
1561 /// reference expires.
1562 ///
1563 /// - At all times, you must avoid data races. If multiple threads have access to
1564 /// the same `UnsafeCell`, then any writes must have a proper happens-before relation to all other
1565 /// accesses (or use atomics).
1566 ///
1567 /// To assist with proper design, the following scenarios are explicitly declared legal
1568 /// for single-threaded code:
1569 ///
1570 /// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
1571 /// references, but not with a `&mut T`
1572 ///
1573 /// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
1574 /// co-exist with it. A `&mut T` must always be unique.
1575 ///
1576 /// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1577 /// `&UnsafeCell<T>` references alias the cell) is
1578 /// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1579 /// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1580 /// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1581 /// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1582 /// accesses (_e.g._, through an `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1583 /// may be aliased for the duration of that `&mut` borrow.
1584 /// This is showcased by the [`.get_mut()`] accessor, which is a non-`unsafe` getter that yields
1585 /// a `&mut T`.
1586 ///
1587 /// [`.get_mut()`]: `UnsafeCell::get_mut`
1588 ///
1589 /// # Examples
1590 ///
1591 /// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
1592 /// there being multiple references aliasing the cell:
1593 ///
1594 /// ```
1595 /// use std::cell::UnsafeCell;
1596 ///
1597 /// let x: UnsafeCell<i32> = 42.into();
1598 /// // Get multiple / concurrent / shared references to the same `x`.
1599 /// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
1600 ///
1601 /// unsafe {
1602 /// // SAFETY: within this scope there are no other references to `x`'s contents,
1603 /// // so ours is effectively unique.
1604 /// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
1605 /// *p1_exclusive += 27; // |
1606 /// } // <---------- cannot go beyond this point -------------------+
1607 ///
1608 /// unsafe {
1609 /// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
1610 /// // so we can have multiple shared accesses concurrently.
1611 /// let p2_shared: &i32 = &*p2.get();
1612 /// assert_eq!(*p2_shared, 42 + 27);
1613 /// let p1_shared: &i32 = &*p1.get();
1614 /// assert_eq!(*p1_shared, *p2_shared);
1615 /// }
1616 /// ```
1617 ///
1618 /// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
1619 /// implies exclusive access to its `T`:
1620 ///
1621 /// ```rust
1622 /// #![feature(unsafe_cell_get_mut)]
1623 /// #![forbid(unsafe_code)] // with exclusive accesses,
1624 /// // `UnsafeCell` is a transparent no-op wrapper,
1625 /// // so no need for `unsafe` here.
1626 /// use std::cell::UnsafeCell;
1627 ///
1628 /// let mut x: UnsafeCell<i32> = 42.into();
1629 ///
1630 /// // Get a compile-time-checked unique reference to `x`.
1631 /// let p_unique: &mut UnsafeCell<i32> = &mut x;
1632 /// // With an exclusive reference, we can mutate the contents for free.
1633 /// *p_unique.get_mut() = 0;
1634 /// // Or, equivalently:
1635 /// x = UnsafeCell::new(0);
1636 ///
1637 /// // When we own the value, we can extract the contents for free.
1638 /// let contents: i32 = x.into_inner();
1639 /// assert_eq!(contents, 0);
1640 /// ```
1641 #[lang = "unsafe_cell"]
1642 #[stable(feature = "rust1", since = "1.0.0")]
1643 #[repr(transparent)]
1644 #[repr(no_niche)] // rust-lang/rust#68303.
1645 pub struct UnsafeCell<T: ?Sized> {
1646 value: T,
1647 }
1648
1649 #[stable(feature = "rust1", since = "1.0.0")]
1650 impl<T: ?Sized> !Sync for UnsafeCell<T> {}
1651
1652 impl<T> UnsafeCell<T> {
1653 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
1654 /// value.
1655 ///
1656 /// All access to the inner value through methods is `unsafe`.
1657 ///
1658 /// # Examples
1659 ///
1660 /// ```
1661 /// use std::cell::UnsafeCell;
1662 ///
1663 /// let uc = UnsafeCell::new(5);
1664 /// ```
1665 #[stable(feature = "rust1", since = "1.0.0")]
1666 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
1667 #[inline]
1668 pub const fn new(value: T) -> UnsafeCell<T> {
1669 UnsafeCell { value }
1670 }
1671
1672 /// Unwraps the value.
1673 ///
1674 /// # Examples
1675 ///
1676 /// ```
1677 /// use std::cell::UnsafeCell;
1678 ///
1679 /// let uc = UnsafeCell::new(5);
1680 ///
1681 /// let five = uc.into_inner();
1682 /// ```
1683 #[inline]
1684 #[stable(feature = "rust1", since = "1.0.0")]
1685 #[rustc_const_unstable(feature = "const_cell_into_inner", issue = "78729")]
1686 pub const fn into_inner(self) -> T {
1687 self.value
1688 }
1689 }
1690
1691 impl<T: ?Sized> UnsafeCell<T> {
1692 /// Gets a mutable pointer to the wrapped value.
1693 ///
1694 /// This can be cast to a pointer of any kind.
1695 /// Ensure that the access is unique (no active references, mutable or not)
1696 /// when casting to `&mut T`, and ensure that there are no mutations
1697 /// or mutable aliases going on when casting to `&T`
1698 ///
1699 /// # Examples
1700 ///
1701 /// ```
1702 /// use std::cell::UnsafeCell;
1703 ///
1704 /// let uc = UnsafeCell::new(5);
1705 ///
1706 /// let five = uc.get();
1707 /// ```
1708 #[inline]
1709 #[stable(feature = "rust1", since = "1.0.0")]
1710 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
1711 pub const fn get(&self) -> *mut T {
1712 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
1713 // #[repr(transparent)]. This exploits libstd's special status, there is
1714 // no guarantee for user code that this will work in future versions of the compiler!
1715 self as *const UnsafeCell<T> as *const T as *mut T
1716 }
1717
1718 /// Returns a mutable reference to the underlying data.
1719 ///
1720 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1721 /// guarantees that we possess the only reference.
1722 ///
1723 /// # Examples
1724 ///
1725 /// ```
1726 /// #![feature(unsafe_cell_get_mut)]
1727 /// use std::cell::UnsafeCell;
1728 ///
1729 /// let mut c = UnsafeCell::new(5);
1730 /// *c.get_mut() += 1;
1731 ///
1732 /// assert_eq!(*c.get_mut(), 6);
1733 /// ```
1734 #[inline]
1735 #[unstable(feature = "unsafe_cell_get_mut", issue = "76943")]
1736 pub fn get_mut(&mut self) -> &mut T {
1737 &mut self.value
1738 }
1739
1740 /// Gets a mutable pointer to the wrapped value.
1741 /// The difference to [`get`] is that this function accepts a raw pointer,
1742 /// which is useful to avoid the creation of temporary references.
1743 ///
1744 /// The result can be cast to a pointer of any kind.
1745 /// Ensure that the access is unique (no active references, mutable or not)
1746 /// when casting to `&mut T`, and ensure that there are no mutations
1747 /// or mutable aliases going on when casting to `&T`.
1748 ///
1749 /// [`get`]: #method.get
1750 ///
1751 /// # Examples
1752 ///
1753 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
1754 /// calling `get` would require creating a reference to uninitialized data:
1755 ///
1756 /// ```
1757 /// #![feature(unsafe_cell_raw_get)]
1758 /// use std::cell::UnsafeCell;
1759 /// use std::mem::MaybeUninit;
1760 ///
1761 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
1762 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
1763 /// let uc = unsafe { m.assume_init() };
1764 ///
1765 /// assert_eq!(uc.into_inner(), 5);
1766 /// ```
1767 #[inline]
1768 #[unstable(feature = "unsafe_cell_raw_get", issue = "66358")]
1769 pub const fn raw_get(this: *const Self) -> *mut T {
1770 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
1771 // #[repr(transparent)]. This exploits libstd's special status, there is
1772 // no guarantee for user code that this will work in future versions of the compiler!
1773 this as *const T as *mut T
1774 }
1775 }
1776
1777 #[stable(feature = "unsafe_cell_default", since = "1.10.0")]
1778 impl<T: Default> Default for UnsafeCell<T> {
1779 /// Creates an `UnsafeCell`, with the `Default` value for T.
1780 fn default() -> UnsafeCell<T> {
1781 UnsafeCell::new(Default::default())
1782 }
1783 }
1784
1785 #[stable(feature = "cell_from", since = "1.12.0")]
1786 impl<T> From<T> for UnsafeCell<T> {
1787 fn from(t: T) -> UnsafeCell<T> {
1788 UnsafeCell::new(t)
1789 }
1790 }
1791
1792 #[unstable(feature = "coerce_unsized", issue = "27732")]
1793 impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
1794
1795 #[allow(unused)]
1796 fn assert_coerce_unsized(a: UnsafeCell<&i32>, b: Cell<&i32>, c: RefCell<&i32>) {
1797 let _: UnsafeCell<&dyn Send> = a;
1798 let _: Cell<&dyn Send> = b;
1799 let _: RefCell<&dyn Send> = c;
1800 }