]> git.proxmox.com Git - rustc.git/blob - library/core/src/cmp.rs
New upstream version 1.51.0+dfsg1
[rustc.git] / library / core / src / cmp.rs
1 //! Functionality for ordering and comparison.
2 //!
3 //! This module contains various tools for ordering and comparing values. In
4 //! summary:
5 //!
6 //! * [`Eq`] and [`PartialEq`] are traits that allow you to define total and
7 //! partial equality between values, respectively. Implementing them overloads
8 //! the `==` and `!=` operators.
9 //! * [`Ord`] and [`PartialOrd`] are traits that allow you to define total and
10 //! partial orderings between values, respectively. Implementing them overloads
11 //! the `<`, `<=`, `>`, and `>=` operators.
12 //! * [`Ordering`] is an enum returned by the main functions of [`Ord`] and
13 //! [`PartialOrd`], and describes an ordering.
14 //! * [`Reverse`] is a struct that allows you to easily reverse an ordering.
15 //! * [`max`] and [`min`] are functions that build off of [`Ord`] and allow you
16 //! to find the maximum or minimum of two values.
17 //!
18 //! For more details, see the respective documentation of each item in the list.
19 //!
20 //! [`max`]: Ord::max
21 //! [`min`]: Ord::min
22
23 #![stable(feature = "rust1", since = "1.0.0")]
24
25 use self::Ordering::*;
26
27 /// Trait for equality comparisons which are [partial equivalence
28 /// relations](https://en.wikipedia.org/wiki/Partial_equivalence_relation).
29 ///
30 /// This trait allows for partial equality, for types that do not have a full
31 /// equivalence relation. For example, in floating point numbers `NaN != NaN`,
32 /// so floating point types implement `PartialEq` but not [`trait@Eq`].
33 ///
34 /// Formally, the equality must be (for all `a`, `b`, `c` of type `A`, `B`,
35 /// `C`):
36 ///
37 /// - **Symmetric**: if `A: PartialEq<B>` and `B: PartialEq<A>`, then **`a == b`
38 /// implies `b == a`**; and
39 ///
40 /// - **Transitive**: if `A: PartialEq<B>` and `B: PartialEq<C>` and `A:
41 /// PartialEq<C>`, then **`a == b` and `b == c` implies `a == c`**.
42 ///
43 /// Note that the `B: PartialEq<A>` (symmetric) and `A: PartialEq<C>`
44 /// (transitive) impls are not forced to exist, but these requirements apply
45 /// whenever they do exist.
46 ///
47 /// ## Derivable
48 ///
49 /// This trait can be used with `#[derive]`. When `derive`d on structs, two
50 /// instances are equal if all fields are equal, and not equal if any fields
51 /// are not equal. When `derive`d on enums, each variant is equal to itself
52 /// and not equal to the other variants.
53 ///
54 /// ## How can I implement `PartialEq`?
55 ///
56 /// `PartialEq` only requires the [`eq`] method to be implemented; [`ne`] is defined
57 /// in terms of it by default. Any manual implementation of [`ne`] *must* respect
58 /// the rule that [`eq`] is a strict inverse of [`ne`]; that is, `!(a == b)` if and
59 /// only if `a != b`.
60 ///
61 /// Implementations of `PartialEq`, [`PartialOrd`], and [`Ord`] *must* agree with
62 /// each other. It's easy to accidentally make them disagree by deriving some
63 /// of the traits and manually implementing others.
64 ///
65 /// An example implementation for a domain in which two books are considered
66 /// the same book if their ISBN matches, even if the formats differ:
67 ///
68 /// ```
69 /// enum BookFormat {
70 /// Paperback,
71 /// Hardback,
72 /// Ebook,
73 /// }
74 ///
75 /// struct Book {
76 /// isbn: i32,
77 /// format: BookFormat,
78 /// }
79 ///
80 /// impl PartialEq for Book {
81 /// fn eq(&self, other: &Self) -> bool {
82 /// self.isbn == other.isbn
83 /// }
84 /// }
85 ///
86 /// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
87 /// let b2 = Book { isbn: 3, format: BookFormat::Ebook };
88 /// let b3 = Book { isbn: 10, format: BookFormat::Paperback };
89 ///
90 /// assert!(b1 == b2);
91 /// assert!(b1 != b3);
92 /// ```
93 ///
94 /// ## How can I compare two different types?
95 ///
96 /// The type you can compare with is controlled by `PartialEq`'s type parameter.
97 /// For example, let's tweak our previous code a bit:
98 ///
99 /// ```
100 /// // The derive implements <BookFormat> == <BookFormat> comparisons
101 /// #[derive(PartialEq)]
102 /// enum BookFormat {
103 /// Paperback,
104 /// Hardback,
105 /// Ebook,
106 /// }
107 ///
108 /// struct Book {
109 /// isbn: i32,
110 /// format: BookFormat,
111 /// }
112 ///
113 /// // Implement <Book> == <BookFormat> comparisons
114 /// impl PartialEq<BookFormat> for Book {
115 /// fn eq(&self, other: &BookFormat) -> bool {
116 /// self.format == *other
117 /// }
118 /// }
119 ///
120 /// // Implement <BookFormat> == <Book> comparisons
121 /// impl PartialEq<Book> for BookFormat {
122 /// fn eq(&self, other: &Book) -> bool {
123 /// *self == other.format
124 /// }
125 /// }
126 ///
127 /// let b1 = Book { isbn: 3, format: BookFormat::Paperback };
128 ///
129 /// assert!(b1 == BookFormat::Paperback);
130 /// assert!(BookFormat::Ebook != b1);
131 /// ```
132 ///
133 /// By changing `impl PartialEq for Book` to `impl PartialEq<BookFormat> for Book`,
134 /// we allow `BookFormat`s to be compared with `Book`s.
135 ///
136 /// A comparison like the one above, which ignores some fields of the struct,
137 /// can be dangerous. It can easily lead to an unintended violation of the
138 /// requirements for a partial equivalence relation. For example, if we kept
139 /// the above implementation of `PartialEq<Book>` for `BookFormat` and added an
140 /// implementation of `PartialEq<Book>` for `Book` (either via a `#[derive]` or
141 /// via the manual implementation from the first example) then the result would
142 /// violate transitivity:
143 ///
144 /// ```should_panic
145 /// #[derive(PartialEq)]
146 /// enum BookFormat {
147 /// Paperback,
148 /// Hardback,
149 /// Ebook,
150 /// }
151 ///
152 /// #[derive(PartialEq)]
153 /// struct Book {
154 /// isbn: i32,
155 /// format: BookFormat,
156 /// }
157 ///
158 /// impl PartialEq<BookFormat> for Book {
159 /// fn eq(&self, other: &BookFormat) -> bool {
160 /// self.format == *other
161 /// }
162 /// }
163 ///
164 /// impl PartialEq<Book> for BookFormat {
165 /// fn eq(&self, other: &Book) -> bool {
166 /// *self == other.format
167 /// }
168 /// }
169 ///
170 /// fn main() {
171 /// let b1 = Book { isbn: 1, format: BookFormat::Paperback };
172 /// let b2 = Book { isbn: 2, format: BookFormat::Paperback };
173 ///
174 /// assert!(b1 == BookFormat::Paperback);
175 /// assert!(BookFormat::Paperback == b2);
176 ///
177 /// // The following should hold by transitivity but doesn't.
178 /// assert!(b1 == b2); // <-- PANICS
179 /// }
180 /// ```
181 ///
182 /// # Examples
183 ///
184 /// ```
185 /// let x: u32 = 0;
186 /// let y: u32 = 1;
187 ///
188 /// assert_eq!(x == y, false);
189 /// assert_eq!(x.eq(&y), false);
190 /// ```
191 ///
192 /// [`eq`]: PartialEq::eq
193 /// [`ne`]: PartialEq::ne
194 #[lang = "eq"]
195 #[stable(feature = "rust1", since = "1.0.0")]
196 #[doc(alias = "==")]
197 #[doc(alias = "!=")]
198 #[rustc_on_unimplemented(
199 message = "can't compare `{Self}` with `{Rhs}`",
200 label = "no implementation for `{Self} == {Rhs}`"
201 )]
202 pub trait PartialEq<Rhs: ?Sized = Self> {
203 /// This method tests for `self` and `other` values to be equal, and is used
204 /// by `==`.
205 #[must_use]
206 #[stable(feature = "rust1", since = "1.0.0")]
207 fn eq(&self, other: &Rhs) -> bool;
208
209 /// This method tests for `!=`.
210 #[inline]
211 #[must_use]
212 #[stable(feature = "rust1", since = "1.0.0")]
213 fn ne(&self, other: &Rhs) -> bool {
214 !self.eq(other)
215 }
216 }
217
218 /// Derive macro generating an impl of the trait `PartialEq`.
219 #[rustc_builtin_macro]
220 #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
221 #[allow_internal_unstable(core_intrinsics, structural_match)]
222 pub macro PartialEq($item:item) {
223 /* compiler built-in */
224 }
225
226 /// Trait for equality comparisons which are [equivalence relations](
227 /// https://en.wikipedia.org/wiki/Equivalence_relation).
228 ///
229 /// This means, that in addition to `a == b` and `a != b` being strict inverses, the equality must
230 /// be (for all `a`, `b` and `c`):
231 ///
232 /// - reflexive: `a == a`;
233 /// - symmetric: `a == b` implies `b == a`; and
234 /// - transitive: `a == b` and `b == c` implies `a == c`.
235 ///
236 /// This property cannot be checked by the compiler, and therefore `Eq` implies
237 /// [`PartialEq`], and has no extra methods.
238 ///
239 /// ## Derivable
240 ///
241 /// This trait can be used with `#[derive]`. When `derive`d, because `Eq` has
242 /// no extra methods, it is only informing the compiler that this is an
243 /// equivalence relation rather than a partial equivalence relation. Note that
244 /// the `derive` strategy requires all fields are `Eq`, which isn't
245 /// always desired.
246 ///
247 /// ## How can I implement `Eq`?
248 ///
249 /// If you cannot use the `derive` strategy, specify that your type implements
250 /// `Eq`, which has no methods:
251 ///
252 /// ```
253 /// enum BookFormat { Paperback, Hardback, Ebook }
254 /// struct Book {
255 /// isbn: i32,
256 /// format: BookFormat,
257 /// }
258 /// impl PartialEq for Book {
259 /// fn eq(&self, other: &Self) -> bool {
260 /// self.isbn == other.isbn
261 /// }
262 /// }
263 /// impl Eq for Book {}
264 /// ```
265 #[doc(alias = "==")]
266 #[doc(alias = "!=")]
267 #[stable(feature = "rust1", since = "1.0.0")]
268 pub trait Eq: PartialEq<Self> {
269 // this method is used solely by #[deriving] to assert
270 // that every component of a type implements #[deriving]
271 // itself, the current deriving infrastructure means doing this
272 // assertion without using a method on this trait is nearly
273 // impossible.
274 //
275 // This should never be implemented by hand.
276 #[doc(hidden)]
277 #[inline]
278 #[stable(feature = "rust1", since = "1.0.0")]
279 fn assert_receiver_is_total_eq(&self) {}
280 }
281
282 /// Derive macro generating an impl of the trait `Eq`.
283 #[rustc_builtin_macro]
284 #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
285 #[allow_internal_unstable(core_intrinsics, derive_eq, structural_match)]
286 pub macro Eq($item:item) {
287 /* compiler built-in */
288 }
289
290 // FIXME: this struct is used solely by #[derive] to
291 // assert that every component of a type implements Eq.
292 //
293 // This struct should never appear in user code.
294 #[doc(hidden)]
295 #[allow(missing_debug_implementations)]
296 #[unstable(feature = "derive_eq", reason = "deriving hack, should not be public", issue = "none")]
297 pub struct AssertParamIsEq<T: Eq + ?Sized> {
298 _field: crate::marker::PhantomData<T>,
299 }
300
301 /// An `Ordering` is the result of a comparison between two values.
302 ///
303 /// # Examples
304 ///
305 /// ```
306 /// use std::cmp::Ordering;
307 ///
308 /// let result = 1.cmp(&2);
309 /// assert_eq!(Ordering::Less, result);
310 ///
311 /// let result = 1.cmp(&1);
312 /// assert_eq!(Ordering::Equal, result);
313 ///
314 /// let result = 2.cmp(&1);
315 /// assert_eq!(Ordering::Greater, result);
316 /// ```
317 #[derive(Clone, Copy, PartialEq, Debug, Hash)]
318 #[stable(feature = "rust1", since = "1.0.0")]
319 pub enum Ordering {
320 /// An ordering where a compared value is less than another.
321 #[stable(feature = "rust1", since = "1.0.0")]
322 Less = -1,
323 /// An ordering where a compared value is equal to another.
324 #[stable(feature = "rust1", since = "1.0.0")]
325 Equal = 0,
326 /// An ordering where a compared value is greater than another.
327 #[stable(feature = "rust1", since = "1.0.0")]
328 Greater = 1,
329 }
330
331 impl Ordering {
332 /// Returns `true` if the ordering is the `Equal` variant.
333 ///
334 /// # Examples
335 ///
336 /// ```
337 /// #![feature(ordering_helpers)]
338 /// use std::cmp::Ordering;
339 ///
340 /// assert_eq!(Ordering::Less.is_eq(), false);
341 /// assert_eq!(Ordering::Equal.is_eq(), true);
342 /// assert_eq!(Ordering::Greater.is_eq(), false);
343 /// ```
344 #[inline]
345 #[must_use]
346 #[unstable(feature = "ordering_helpers", issue = "79885")]
347 pub const fn is_eq(self) -> bool {
348 matches!(self, Equal)
349 }
350
351 /// Returns `true` if the ordering is not the `Equal` variant.
352 ///
353 /// # Examples
354 ///
355 /// ```
356 /// #![feature(ordering_helpers)]
357 /// use std::cmp::Ordering;
358 ///
359 /// assert_eq!(Ordering::Less.is_ne(), true);
360 /// assert_eq!(Ordering::Equal.is_ne(), false);
361 /// assert_eq!(Ordering::Greater.is_ne(), true);
362 /// ```
363 #[inline]
364 #[must_use]
365 #[unstable(feature = "ordering_helpers", issue = "79885")]
366 pub const fn is_ne(self) -> bool {
367 !matches!(self, Equal)
368 }
369
370 /// Returns `true` if the ordering is the `Less` variant.
371 ///
372 /// # Examples
373 ///
374 /// ```
375 /// #![feature(ordering_helpers)]
376 /// use std::cmp::Ordering;
377 ///
378 /// assert_eq!(Ordering::Less.is_lt(), true);
379 /// assert_eq!(Ordering::Equal.is_lt(), false);
380 /// assert_eq!(Ordering::Greater.is_lt(), false);
381 /// ```
382 #[inline]
383 #[must_use]
384 #[unstable(feature = "ordering_helpers", issue = "79885")]
385 pub const fn is_lt(self) -> bool {
386 matches!(self, Less)
387 }
388
389 /// Returns `true` if the ordering is the `Greater` variant.
390 ///
391 /// # Examples
392 ///
393 /// ```
394 /// #![feature(ordering_helpers)]
395 /// use std::cmp::Ordering;
396 ///
397 /// assert_eq!(Ordering::Less.is_gt(), false);
398 /// assert_eq!(Ordering::Equal.is_gt(), false);
399 /// assert_eq!(Ordering::Greater.is_gt(), true);
400 /// ```
401 #[inline]
402 #[must_use]
403 #[unstable(feature = "ordering_helpers", issue = "79885")]
404 pub const fn is_gt(self) -> bool {
405 matches!(self, Greater)
406 }
407
408 /// Returns `true` if the ordering is either the `Less` or `Equal` variant.
409 ///
410 /// # Examples
411 ///
412 /// ```
413 /// #![feature(ordering_helpers)]
414 /// use std::cmp::Ordering;
415 ///
416 /// assert_eq!(Ordering::Less.is_le(), true);
417 /// assert_eq!(Ordering::Equal.is_le(), true);
418 /// assert_eq!(Ordering::Greater.is_le(), false);
419 /// ```
420 #[inline]
421 #[must_use]
422 #[unstable(feature = "ordering_helpers", issue = "79885")]
423 pub const fn is_le(self) -> bool {
424 !matches!(self, Greater)
425 }
426
427 /// Returns `true` if the ordering is either the `Greater` or `Equal` variant.
428 ///
429 /// # Examples
430 ///
431 /// ```
432 /// #![feature(ordering_helpers)]
433 /// use std::cmp::Ordering;
434 ///
435 /// assert_eq!(Ordering::Less.is_ge(), false);
436 /// assert_eq!(Ordering::Equal.is_ge(), true);
437 /// assert_eq!(Ordering::Greater.is_ge(), true);
438 /// ```
439 #[inline]
440 #[must_use]
441 #[unstable(feature = "ordering_helpers", issue = "79885")]
442 pub const fn is_ge(self) -> bool {
443 !matches!(self, Less)
444 }
445
446 /// Reverses the `Ordering`.
447 ///
448 /// * `Less` becomes `Greater`.
449 /// * `Greater` becomes `Less`.
450 /// * `Equal` becomes `Equal`.
451 ///
452 /// # Examples
453 ///
454 /// Basic behavior:
455 ///
456 /// ```
457 /// use std::cmp::Ordering;
458 ///
459 /// assert_eq!(Ordering::Less.reverse(), Ordering::Greater);
460 /// assert_eq!(Ordering::Equal.reverse(), Ordering::Equal);
461 /// assert_eq!(Ordering::Greater.reverse(), Ordering::Less);
462 /// ```
463 ///
464 /// This method can be used to reverse a comparison:
465 ///
466 /// ```
467 /// let data: &mut [_] = &mut [2, 10, 5, 8];
468 ///
469 /// // sort the array from largest to smallest.
470 /// data.sort_by(|a, b| a.cmp(b).reverse());
471 ///
472 /// let b: &mut [_] = &mut [10, 8, 5, 2];
473 /// assert!(data == b);
474 /// ```
475 #[inline]
476 #[must_use]
477 #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
478 #[stable(feature = "rust1", since = "1.0.0")]
479 pub const fn reverse(self) -> Ordering {
480 match self {
481 Less => Greater,
482 Equal => Equal,
483 Greater => Less,
484 }
485 }
486
487 /// Chains two orderings.
488 ///
489 /// Returns `self` when it's not `Equal`. Otherwise returns `other`.
490 ///
491 /// # Examples
492 ///
493 /// ```
494 /// use std::cmp::Ordering;
495 ///
496 /// let result = Ordering::Equal.then(Ordering::Less);
497 /// assert_eq!(result, Ordering::Less);
498 ///
499 /// let result = Ordering::Less.then(Ordering::Equal);
500 /// assert_eq!(result, Ordering::Less);
501 ///
502 /// let result = Ordering::Less.then(Ordering::Greater);
503 /// assert_eq!(result, Ordering::Less);
504 ///
505 /// let result = Ordering::Equal.then(Ordering::Equal);
506 /// assert_eq!(result, Ordering::Equal);
507 ///
508 /// let x: (i64, i64, i64) = (1, 2, 7);
509 /// let y: (i64, i64, i64) = (1, 5, 3);
510 /// let result = x.0.cmp(&y.0).then(x.1.cmp(&y.1)).then(x.2.cmp(&y.2));
511 ///
512 /// assert_eq!(result, Ordering::Less);
513 /// ```
514 #[inline]
515 #[must_use]
516 #[rustc_const_stable(feature = "const_ordering", since = "1.48.0")]
517 #[stable(feature = "ordering_chaining", since = "1.17.0")]
518 pub const fn then(self, other: Ordering) -> Ordering {
519 match self {
520 Equal => other,
521 _ => self,
522 }
523 }
524
525 /// Chains the ordering with the given function.
526 ///
527 /// Returns `self` when it's not `Equal`. Otherwise calls `f` and returns
528 /// the result.
529 ///
530 /// # Examples
531 ///
532 /// ```
533 /// use std::cmp::Ordering;
534 ///
535 /// let result = Ordering::Equal.then_with(|| Ordering::Less);
536 /// assert_eq!(result, Ordering::Less);
537 ///
538 /// let result = Ordering::Less.then_with(|| Ordering::Equal);
539 /// assert_eq!(result, Ordering::Less);
540 ///
541 /// let result = Ordering::Less.then_with(|| Ordering::Greater);
542 /// assert_eq!(result, Ordering::Less);
543 ///
544 /// let result = Ordering::Equal.then_with(|| Ordering::Equal);
545 /// assert_eq!(result, Ordering::Equal);
546 ///
547 /// let x: (i64, i64, i64) = (1, 2, 7);
548 /// let y: (i64, i64, i64) = (1, 5, 3);
549 /// let result = x.0.cmp(&y.0).then_with(|| x.1.cmp(&y.1)).then_with(|| x.2.cmp(&y.2));
550 ///
551 /// assert_eq!(result, Ordering::Less);
552 /// ```
553 #[inline]
554 #[must_use]
555 #[stable(feature = "ordering_chaining", since = "1.17.0")]
556 pub fn then_with<F: FnOnce() -> Ordering>(self, f: F) -> Ordering {
557 match self {
558 Equal => f(),
559 _ => self,
560 }
561 }
562 }
563
564 /// A helper struct for reverse ordering.
565 ///
566 /// This struct is a helper to be used with functions like [`Vec::sort_by_key`] and
567 /// can be used to reverse order a part of a key.
568 ///
569 /// [`Vec::sort_by_key`]: ../../std/vec/struct.Vec.html#method.sort_by_key
570 ///
571 /// # Examples
572 ///
573 /// ```
574 /// use std::cmp::Reverse;
575 ///
576 /// let mut v = vec![1, 2, 3, 4, 5, 6];
577 /// v.sort_by_key(|&num| (num > 3, Reverse(num)));
578 /// assert_eq!(v, vec![3, 2, 1, 6, 5, 4]);
579 /// ```
580 #[derive(PartialEq, Eq, Debug, Copy, Clone, Default, Hash)]
581 #[stable(feature = "reverse_cmp_key", since = "1.19.0")]
582 pub struct Reverse<T>(#[stable(feature = "reverse_cmp_key", since = "1.19.0")] pub T);
583
584 #[stable(feature = "reverse_cmp_key", since = "1.19.0")]
585 impl<T: PartialOrd> PartialOrd for Reverse<T> {
586 #[inline]
587 fn partial_cmp(&self, other: &Reverse<T>) -> Option<Ordering> {
588 other.0.partial_cmp(&self.0)
589 }
590
591 #[inline]
592 fn lt(&self, other: &Self) -> bool {
593 other.0 < self.0
594 }
595 #[inline]
596 fn le(&self, other: &Self) -> bool {
597 other.0 <= self.0
598 }
599 #[inline]
600 fn gt(&self, other: &Self) -> bool {
601 other.0 > self.0
602 }
603 #[inline]
604 fn ge(&self, other: &Self) -> bool {
605 other.0 >= self.0
606 }
607 }
608
609 #[stable(feature = "reverse_cmp_key", since = "1.19.0")]
610 impl<T: Ord> Ord for Reverse<T> {
611 #[inline]
612 fn cmp(&self, other: &Reverse<T>) -> Ordering {
613 other.0.cmp(&self.0)
614 }
615 }
616
617 /// Trait for types that form a [total order](https://en.wikipedia.org/wiki/Total_order).
618 ///
619 /// An order is a total order if it is (for all `a`, `b` and `c`):
620 ///
621 /// - total and asymmetric: exactly one of `a < b`, `a == b` or `a > b` is true; and
622 /// - transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
623 ///
624 /// ## Derivable
625 ///
626 /// This trait can be used with `#[derive]`. When `derive`d on structs, it will produce a
627 /// [lexicographic](https://en.wikipedia.org/wiki/Lexicographic_order) ordering based on the top-to-bottom declaration order of the struct's members.
628 /// When `derive`d on enums, variants are ordered by their top-to-bottom discriminant order.
629 ///
630 /// ## Lexicographical comparison
631 ///
632 /// Lexicographical comparison is an operation with the following properties:
633 /// - Two sequences are compared element by element.
634 /// - The first mismatching element defines which sequence is lexicographically less or greater than the other.
635 /// - If one sequence is a prefix of another, the shorter sequence is lexicographically less than the other.
636 /// - If two sequence have equivalent elements and are of the same length, then the sequences are lexicographically equal.
637 /// - An empty sequence is lexicographically less than any non-empty sequence.
638 /// - Two empty sequences are lexicographically equal.
639 ///
640 /// ## How can I implement `Ord`?
641 ///
642 /// `Ord` requires that the type also be [`PartialOrd`] and [`Eq`] (which requires [`PartialEq`]).
643 ///
644 /// Then you must define an implementation for [`cmp`]. You may find it useful to use
645 /// [`cmp`] on your type's fields.
646 ///
647 /// Implementations of [`PartialEq`], [`PartialOrd`], and `Ord` *must*
648 /// agree with each other. That is, `a.cmp(b) == Ordering::Equal` if
649 /// and only if `a == b` and `Some(a.cmp(b)) == a.partial_cmp(b)` for
650 /// all `a` and `b`. It's easy to accidentally make them disagree by
651 /// deriving some of the traits and manually implementing others.
652 ///
653 /// Here's an example where you want to sort people by height only, disregarding `id`
654 /// and `name`:
655 ///
656 /// ```
657 /// use std::cmp::Ordering;
658 ///
659 /// #[derive(Eq)]
660 /// struct Person {
661 /// id: u32,
662 /// name: String,
663 /// height: u32,
664 /// }
665 ///
666 /// impl Ord for Person {
667 /// fn cmp(&self, other: &Self) -> Ordering {
668 /// self.height.cmp(&other.height)
669 /// }
670 /// }
671 ///
672 /// impl PartialOrd for Person {
673 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
674 /// Some(self.cmp(other))
675 /// }
676 /// }
677 ///
678 /// impl PartialEq for Person {
679 /// fn eq(&self, other: &Self) -> bool {
680 /// self.height == other.height
681 /// }
682 /// }
683 /// ```
684 ///
685 /// [`cmp`]: Ord::cmp
686 #[doc(alias = "<")]
687 #[doc(alias = ">")]
688 #[doc(alias = "<=")]
689 #[doc(alias = ">=")]
690 #[stable(feature = "rust1", since = "1.0.0")]
691 pub trait Ord: Eq + PartialOrd<Self> {
692 /// This method returns an [`Ordering`] between `self` and `other`.
693 ///
694 /// By convention, `self.cmp(&other)` returns the ordering matching the expression
695 /// `self <operator> other` if true.
696 ///
697 /// # Examples
698 ///
699 /// ```
700 /// use std::cmp::Ordering;
701 ///
702 /// assert_eq!(5.cmp(&10), Ordering::Less);
703 /// assert_eq!(10.cmp(&5), Ordering::Greater);
704 /// assert_eq!(5.cmp(&5), Ordering::Equal);
705 /// ```
706 #[must_use]
707 #[stable(feature = "rust1", since = "1.0.0")]
708 fn cmp(&self, other: &Self) -> Ordering;
709
710 /// Compares and returns the maximum of two values.
711 ///
712 /// Returns the second argument if the comparison determines them to be equal.
713 ///
714 /// # Examples
715 ///
716 /// ```
717 /// assert_eq!(2, 1.max(2));
718 /// assert_eq!(2, 2.max(2));
719 /// ```
720 #[stable(feature = "ord_max_min", since = "1.21.0")]
721 #[inline]
722 #[must_use]
723 fn max(self, other: Self) -> Self
724 where
725 Self: Sized,
726 {
727 max_by(self, other, Ord::cmp)
728 }
729
730 /// Compares and returns the minimum of two values.
731 ///
732 /// Returns the first argument if the comparison determines them to be equal.
733 ///
734 /// # Examples
735 ///
736 /// ```
737 /// assert_eq!(1, 1.min(2));
738 /// assert_eq!(2, 2.min(2));
739 /// ```
740 #[stable(feature = "ord_max_min", since = "1.21.0")]
741 #[inline]
742 #[must_use]
743 fn min(self, other: Self) -> Self
744 where
745 Self: Sized,
746 {
747 min_by(self, other, Ord::cmp)
748 }
749
750 /// Restrict a value to a certain interval.
751 ///
752 /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
753 /// less than `min`. Otherwise this returns `self`.
754 ///
755 /// # Panics
756 ///
757 /// Panics if `min > max`.
758 ///
759 /// # Examples
760 ///
761 /// ```
762 /// assert!((-3).clamp(-2, 1) == -2);
763 /// assert!(0.clamp(-2, 1) == 0);
764 /// assert!(2.clamp(-2, 1) == 1);
765 /// ```
766 #[must_use]
767 #[stable(feature = "clamp", since = "1.50.0")]
768 fn clamp(self, min: Self, max: Self) -> Self
769 where
770 Self: Sized,
771 {
772 assert!(min <= max);
773 if self < min {
774 min
775 } else if self > max {
776 max
777 } else {
778 self
779 }
780 }
781 }
782
783 /// Derive macro generating an impl of the trait `Ord`.
784 #[rustc_builtin_macro]
785 #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
786 #[allow_internal_unstable(core_intrinsics)]
787 pub macro Ord($item:item) {
788 /* compiler built-in */
789 }
790
791 #[stable(feature = "rust1", since = "1.0.0")]
792 impl Eq for Ordering {}
793
794 #[stable(feature = "rust1", since = "1.0.0")]
795 impl Ord for Ordering {
796 #[inline]
797 fn cmp(&self, other: &Ordering) -> Ordering {
798 (*self as i32).cmp(&(*other as i32))
799 }
800 }
801
802 #[stable(feature = "rust1", since = "1.0.0")]
803 impl PartialOrd for Ordering {
804 #[inline]
805 fn partial_cmp(&self, other: &Ordering) -> Option<Ordering> {
806 (*self as i32).partial_cmp(&(*other as i32))
807 }
808 }
809
810 /// Trait for values that can be compared for a sort-order.
811 ///
812 /// The comparison must satisfy, for all `a`, `b` and `c`:
813 ///
814 /// - asymmetry: if `a < b` then `!(a > b)`, as well as `a > b` implying `!(a < b)`; and
815 /// - transitivity: `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
816 ///
817 /// Note that these requirements mean that the trait itself must be implemented symmetrically and
818 /// transitively: if `T: PartialOrd<U>` and `U: PartialOrd<V>` then `U: PartialOrd<T>` and `T:
819 /// PartialOrd<V>`.
820 ///
821 /// ## Derivable
822 ///
823 /// This trait can be used with `#[derive]`. When `derive`d on structs, it will produce a
824 /// lexicographic ordering based on the top-to-bottom declaration order of the struct's members.
825 /// When `derive`d on enums, variants are ordered by their top-to-bottom discriminant order.
826 ///
827 /// ## How can I implement `PartialOrd`?
828 ///
829 /// `PartialOrd` only requires implementation of the [`partial_cmp`] method, with the others
830 /// generated from default implementations.
831 ///
832 /// However it remains possible to implement the others separately for types which do not have a
833 /// total order. For example, for floating point numbers, `NaN < 0 == false` and `NaN >= 0 ==
834 /// false` (cf. IEEE 754-2008 section 5.11).
835 ///
836 /// `PartialOrd` requires your type to be [`PartialEq`].
837 ///
838 /// Implementations of [`PartialEq`], `PartialOrd`, and [`Ord`] *must* agree with each other. It's
839 /// easy to accidentally make them disagree by deriving some of the traits and manually
840 /// implementing others.
841 ///
842 /// If your type is [`Ord`], you can implement [`partial_cmp`] by using [`cmp`]:
843 ///
844 /// ```
845 /// use std::cmp::Ordering;
846 ///
847 /// #[derive(Eq)]
848 /// struct Person {
849 /// id: u32,
850 /// name: String,
851 /// height: u32,
852 /// }
853 ///
854 /// impl PartialOrd for Person {
855 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
856 /// Some(self.cmp(other))
857 /// }
858 /// }
859 ///
860 /// impl Ord for Person {
861 /// fn cmp(&self, other: &Self) -> Ordering {
862 /// self.height.cmp(&other.height)
863 /// }
864 /// }
865 ///
866 /// impl PartialEq for Person {
867 /// fn eq(&self, other: &Self) -> bool {
868 /// self.height == other.height
869 /// }
870 /// }
871 /// ```
872 ///
873 /// You may also find it useful to use [`partial_cmp`] on your type's fields. Here
874 /// is an example of `Person` types who have a floating-point `height` field that
875 /// is the only field to be used for sorting:
876 ///
877 /// ```
878 /// use std::cmp::Ordering;
879 ///
880 /// struct Person {
881 /// id: u32,
882 /// name: String,
883 /// height: f64,
884 /// }
885 ///
886 /// impl PartialOrd for Person {
887 /// fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
888 /// self.height.partial_cmp(&other.height)
889 /// }
890 /// }
891 ///
892 /// impl PartialEq for Person {
893 /// fn eq(&self, other: &Self) -> bool {
894 /// self.height == other.height
895 /// }
896 /// }
897 /// ```
898 ///
899 /// # Examples
900 ///
901 /// ```
902 /// let x : u32 = 0;
903 /// let y : u32 = 1;
904 ///
905 /// assert_eq!(x < y, true);
906 /// assert_eq!(x.lt(&y), true);
907 /// ```
908 ///
909 /// [`partial_cmp`]: PartialOrd::partial_cmp
910 /// [`cmp`]: Ord::cmp
911 #[lang = "partial_ord"]
912 #[stable(feature = "rust1", since = "1.0.0")]
913 #[doc(alias = ">")]
914 #[doc(alias = "<")]
915 #[doc(alias = "<=")]
916 #[doc(alias = ">=")]
917 #[rustc_on_unimplemented(
918 message = "can't compare `{Self}` with `{Rhs}`",
919 label = "no implementation for `{Self} < {Rhs}` and `{Self} > {Rhs}`"
920 )]
921 pub trait PartialOrd<Rhs: ?Sized = Self>: PartialEq<Rhs> {
922 /// This method returns an ordering between `self` and `other` values if one exists.
923 ///
924 /// # Examples
925 ///
926 /// ```
927 /// use std::cmp::Ordering;
928 ///
929 /// let result = 1.0.partial_cmp(&2.0);
930 /// assert_eq!(result, Some(Ordering::Less));
931 ///
932 /// let result = 1.0.partial_cmp(&1.0);
933 /// assert_eq!(result, Some(Ordering::Equal));
934 ///
935 /// let result = 2.0.partial_cmp(&1.0);
936 /// assert_eq!(result, Some(Ordering::Greater));
937 /// ```
938 ///
939 /// When comparison is impossible:
940 ///
941 /// ```
942 /// let result = f64::NAN.partial_cmp(&1.0);
943 /// assert_eq!(result, None);
944 /// ```
945 #[must_use]
946 #[stable(feature = "rust1", since = "1.0.0")]
947 fn partial_cmp(&self, other: &Rhs) -> Option<Ordering>;
948
949 /// This method tests less than (for `self` and `other`) and is used by the `<` operator.
950 ///
951 /// # Examples
952 ///
953 /// ```
954 /// let result = 1.0 < 2.0;
955 /// assert_eq!(result, true);
956 ///
957 /// let result = 2.0 < 1.0;
958 /// assert_eq!(result, false);
959 /// ```
960 #[inline]
961 #[must_use]
962 #[stable(feature = "rust1", since = "1.0.0")]
963 fn lt(&self, other: &Rhs) -> bool {
964 matches!(self.partial_cmp(other), Some(Less))
965 }
966
967 /// This method tests less than or equal to (for `self` and `other`) and is used by the `<=`
968 /// operator.
969 ///
970 /// # Examples
971 ///
972 /// ```
973 /// let result = 1.0 <= 2.0;
974 /// assert_eq!(result, true);
975 ///
976 /// let result = 2.0 <= 2.0;
977 /// assert_eq!(result, true);
978 /// ```
979 #[inline]
980 #[must_use]
981 #[stable(feature = "rust1", since = "1.0.0")]
982 fn le(&self, other: &Rhs) -> bool {
983 matches!(self.partial_cmp(other), Some(Less | Equal))
984 }
985
986 /// This method tests greater than (for `self` and `other`) and is used by the `>` operator.
987 ///
988 /// # Examples
989 ///
990 /// ```
991 /// let result = 1.0 > 2.0;
992 /// assert_eq!(result, false);
993 ///
994 /// let result = 2.0 > 2.0;
995 /// assert_eq!(result, false);
996 /// ```
997 #[inline]
998 #[must_use]
999 #[stable(feature = "rust1", since = "1.0.0")]
1000 fn gt(&self, other: &Rhs) -> bool {
1001 matches!(self.partial_cmp(other), Some(Greater))
1002 }
1003
1004 /// This method tests greater than or equal to (for `self` and `other`) and is used by the `>=`
1005 /// operator.
1006 ///
1007 /// # Examples
1008 ///
1009 /// ```
1010 /// let result = 2.0 >= 1.0;
1011 /// assert_eq!(result, true);
1012 ///
1013 /// let result = 2.0 >= 2.0;
1014 /// assert_eq!(result, true);
1015 /// ```
1016 #[inline]
1017 #[must_use]
1018 #[stable(feature = "rust1", since = "1.0.0")]
1019 fn ge(&self, other: &Rhs) -> bool {
1020 matches!(self.partial_cmp(other), Some(Greater | Equal))
1021 }
1022 }
1023
1024 /// Derive macro generating an impl of the trait `PartialOrd`.
1025 #[rustc_builtin_macro]
1026 #[stable(feature = "builtin_macro_prelude", since = "1.38.0")]
1027 #[allow_internal_unstable(core_intrinsics)]
1028 pub macro PartialOrd($item:item) {
1029 /* compiler built-in */
1030 }
1031
1032 /// Compares and returns the minimum of two values.
1033 ///
1034 /// Returns the first argument if the comparison determines them to be equal.
1035 ///
1036 /// Internally uses an alias to [`Ord::min`].
1037 ///
1038 /// # Examples
1039 ///
1040 /// ```
1041 /// use std::cmp;
1042 ///
1043 /// assert_eq!(1, cmp::min(1, 2));
1044 /// assert_eq!(2, cmp::min(2, 2));
1045 /// ```
1046 #[inline]
1047 #[must_use]
1048 #[stable(feature = "rust1", since = "1.0.0")]
1049 pub fn min<T: Ord>(v1: T, v2: T) -> T {
1050 v1.min(v2)
1051 }
1052
1053 /// Returns the minimum of two values with respect to the specified comparison function.
1054 ///
1055 /// Returns the first argument if the comparison determines them to be equal.
1056 ///
1057 /// # Examples
1058 ///
1059 /// ```
1060 /// #![feature(cmp_min_max_by)]
1061 ///
1062 /// use std::cmp;
1063 ///
1064 /// assert_eq!(cmp::min_by(-2, 1, |x: &i32, y: &i32| x.abs().cmp(&y.abs())), 1);
1065 /// assert_eq!(cmp::min_by(-2, 2, |x: &i32, y: &i32| x.abs().cmp(&y.abs())), -2);
1066 /// ```
1067 #[inline]
1068 #[must_use]
1069 #[unstable(feature = "cmp_min_max_by", issue = "64460")]
1070 pub fn min_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T {
1071 match compare(&v1, &v2) {
1072 Ordering::Less | Ordering::Equal => v1,
1073 Ordering::Greater => v2,
1074 }
1075 }
1076
1077 /// Returns the element that gives the minimum value from the specified function.
1078 ///
1079 /// Returns the first argument if the comparison determines them to be equal.
1080 ///
1081 /// # Examples
1082 ///
1083 /// ```
1084 /// #![feature(cmp_min_max_by)]
1085 ///
1086 /// use std::cmp;
1087 ///
1088 /// assert_eq!(cmp::min_by_key(-2, 1, |x: &i32| x.abs()), 1);
1089 /// assert_eq!(cmp::min_by_key(-2, 2, |x: &i32| x.abs()), -2);
1090 /// ```
1091 #[inline]
1092 #[must_use]
1093 #[unstable(feature = "cmp_min_max_by", issue = "64460")]
1094 pub fn min_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T {
1095 min_by(v1, v2, |v1, v2| f(v1).cmp(&f(v2)))
1096 }
1097
1098 /// Compares and returns the maximum of two values.
1099 ///
1100 /// Returns the second argument if the comparison determines them to be equal.
1101 ///
1102 /// Internally uses an alias to [`Ord::max`].
1103 ///
1104 /// # Examples
1105 ///
1106 /// ```
1107 /// use std::cmp;
1108 ///
1109 /// assert_eq!(2, cmp::max(1, 2));
1110 /// assert_eq!(2, cmp::max(2, 2));
1111 /// ```
1112 #[inline]
1113 #[must_use]
1114 #[stable(feature = "rust1", since = "1.0.0")]
1115 pub fn max<T: Ord>(v1: T, v2: T) -> T {
1116 v1.max(v2)
1117 }
1118
1119 /// Returns the maximum of two values with respect to the specified comparison function.
1120 ///
1121 /// Returns the second argument if the comparison determines them to be equal.
1122 ///
1123 /// # Examples
1124 ///
1125 /// ```
1126 /// #![feature(cmp_min_max_by)]
1127 ///
1128 /// use std::cmp;
1129 ///
1130 /// assert_eq!(cmp::max_by(-2, 1, |x: &i32, y: &i32| x.abs().cmp(&y.abs())), -2);
1131 /// assert_eq!(cmp::max_by(-2, 2, |x: &i32, y: &i32| x.abs().cmp(&y.abs())), 2);
1132 /// ```
1133 #[inline]
1134 #[must_use]
1135 #[unstable(feature = "cmp_min_max_by", issue = "64460")]
1136 pub fn max_by<T, F: FnOnce(&T, &T) -> Ordering>(v1: T, v2: T, compare: F) -> T {
1137 match compare(&v1, &v2) {
1138 Ordering::Less | Ordering::Equal => v2,
1139 Ordering::Greater => v1,
1140 }
1141 }
1142
1143 /// Returns the element that gives the maximum value from the specified function.
1144 ///
1145 /// Returns the second argument if the comparison determines them to be equal.
1146 ///
1147 /// # Examples
1148 ///
1149 /// ```
1150 /// #![feature(cmp_min_max_by)]
1151 ///
1152 /// use std::cmp;
1153 ///
1154 /// assert_eq!(cmp::max_by_key(-2, 1, |x: &i32| x.abs()), -2);
1155 /// assert_eq!(cmp::max_by_key(-2, 2, |x: &i32| x.abs()), 2);
1156 /// ```
1157 #[inline]
1158 #[must_use]
1159 #[unstable(feature = "cmp_min_max_by", issue = "64460")]
1160 pub fn max_by_key<T, F: FnMut(&T) -> K, K: Ord>(v1: T, v2: T, mut f: F) -> T {
1161 max_by(v1, v2, |v1, v2| f(v1).cmp(&f(v2)))
1162 }
1163
1164 // Implementation of PartialEq, Eq, PartialOrd and Ord for primitive types
1165 mod impls {
1166 use crate::cmp::Ordering::{self, Equal, Greater, Less};
1167 use crate::hint::unreachable_unchecked;
1168
1169 macro_rules! partial_eq_impl {
1170 ($($t:ty)*) => ($(
1171 #[stable(feature = "rust1", since = "1.0.0")]
1172 impl PartialEq for $t {
1173 #[inline]
1174 fn eq(&self, other: &$t) -> bool { (*self) == (*other) }
1175 #[inline]
1176 fn ne(&self, other: &$t) -> bool { (*self) != (*other) }
1177 }
1178 )*)
1179 }
1180
1181 #[stable(feature = "rust1", since = "1.0.0")]
1182 impl PartialEq for () {
1183 #[inline]
1184 fn eq(&self, _other: &()) -> bool {
1185 true
1186 }
1187 #[inline]
1188 fn ne(&self, _other: &()) -> bool {
1189 false
1190 }
1191 }
1192
1193 partial_eq_impl! {
1194 bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64
1195 }
1196
1197 macro_rules! eq_impl {
1198 ($($t:ty)*) => ($(
1199 #[stable(feature = "rust1", since = "1.0.0")]
1200 impl Eq for $t {}
1201 )*)
1202 }
1203
1204 eq_impl! { () bool char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1205
1206 macro_rules! partial_ord_impl {
1207 ($($t:ty)*) => ($(
1208 #[stable(feature = "rust1", since = "1.0.0")]
1209 impl PartialOrd for $t {
1210 #[inline]
1211 fn partial_cmp(&self, other: &$t) -> Option<Ordering> {
1212 match (self <= other, self >= other) {
1213 (false, false) => None,
1214 (false, true) => Some(Greater),
1215 (true, false) => Some(Less),
1216 (true, true) => Some(Equal),
1217 }
1218 }
1219 #[inline]
1220 fn lt(&self, other: &$t) -> bool { (*self) < (*other) }
1221 #[inline]
1222 fn le(&self, other: &$t) -> bool { (*self) <= (*other) }
1223 #[inline]
1224 fn ge(&self, other: &$t) -> bool { (*self) >= (*other) }
1225 #[inline]
1226 fn gt(&self, other: &$t) -> bool { (*self) > (*other) }
1227 }
1228 )*)
1229 }
1230
1231 #[stable(feature = "rust1", since = "1.0.0")]
1232 impl PartialOrd for () {
1233 #[inline]
1234 fn partial_cmp(&self, _: &()) -> Option<Ordering> {
1235 Some(Equal)
1236 }
1237 }
1238
1239 #[stable(feature = "rust1", since = "1.0.0")]
1240 impl PartialOrd for bool {
1241 #[inline]
1242 fn partial_cmp(&self, other: &bool) -> Option<Ordering> {
1243 Some(self.cmp(other))
1244 }
1245 }
1246
1247 partial_ord_impl! { f32 f64 }
1248
1249 macro_rules! ord_impl {
1250 ($($t:ty)*) => ($(
1251 #[stable(feature = "rust1", since = "1.0.0")]
1252 impl PartialOrd for $t {
1253 #[inline]
1254 fn partial_cmp(&self, other: &$t) -> Option<Ordering> {
1255 Some(self.cmp(other))
1256 }
1257 #[inline]
1258 fn lt(&self, other: &$t) -> bool { (*self) < (*other) }
1259 #[inline]
1260 fn le(&self, other: &$t) -> bool { (*self) <= (*other) }
1261 #[inline]
1262 fn ge(&self, other: &$t) -> bool { (*self) >= (*other) }
1263 #[inline]
1264 fn gt(&self, other: &$t) -> bool { (*self) > (*other) }
1265 }
1266
1267 #[stable(feature = "rust1", since = "1.0.0")]
1268 impl Ord for $t {
1269 #[inline]
1270 fn cmp(&self, other: &$t) -> Ordering {
1271 // The order here is important to generate more optimal assembly.
1272 // See <https://github.com/rust-lang/rust/issues/63758> for more info.
1273 if *self < *other { Less }
1274 else if *self == *other { Equal }
1275 else { Greater }
1276 }
1277 }
1278 )*)
1279 }
1280
1281 #[stable(feature = "rust1", since = "1.0.0")]
1282 impl Ord for () {
1283 #[inline]
1284 fn cmp(&self, _other: &()) -> Ordering {
1285 Equal
1286 }
1287 }
1288
1289 #[stable(feature = "rust1", since = "1.0.0")]
1290 impl Ord for bool {
1291 #[inline]
1292 fn cmp(&self, other: &bool) -> Ordering {
1293 // Casting to i8's and converting the difference to an Ordering generates
1294 // more optimal assembly.
1295 // See <https://github.com/rust-lang/rust/issues/66780> for more info.
1296 match (*self as i8) - (*other as i8) {
1297 -1 => Less,
1298 0 => Equal,
1299 1 => Greater,
1300 // SAFETY: bool as i8 returns 0 or 1, so the difference can't be anything else
1301 _ => unsafe { unreachable_unchecked() },
1302 }
1303 }
1304 }
1305
1306 ord_impl! { char usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 }
1307
1308 #[unstable(feature = "never_type", issue = "35121")]
1309 impl PartialEq for ! {
1310 fn eq(&self, _: &!) -> bool {
1311 *self
1312 }
1313 }
1314
1315 #[unstable(feature = "never_type", issue = "35121")]
1316 impl Eq for ! {}
1317
1318 #[unstable(feature = "never_type", issue = "35121")]
1319 impl PartialOrd for ! {
1320 fn partial_cmp(&self, _: &!) -> Option<Ordering> {
1321 *self
1322 }
1323 }
1324
1325 #[unstable(feature = "never_type", issue = "35121")]
1326 impl Ord for ! {
1327 fn cmp(&self, _: &!) -> Ordering {
1328 *self
1329 }
1330 }
1331
1332 // & pointers
1333
1334 #[stable(feature = "rust1", since = "1.0.0")]
1335 impl<A: ?Sized, B: ?Sized> PartialEq<&B> for &A
1336 where
1337 A: PartialEq<B>,
1338 {
1339 #[inline]
1340 fn eq(&self, other: &&B) -> bool {
1341 PartialEq::eq(*self, *other)
1342 }
1343 #[inline]
1344 fn ne(&self, other: &&B) -> bool {
1345 PartialEq::ne(*self, *other)
1346 }
1347 }
1348 #[stable(feature = "rust1", since = "1.0.0")]
1349 impl<A: ?Sized, B: ?Sized> PartialOrd<&B> for &A
1350 where
1351 A: PartialOrd<B>,
1352 {
1353 #[inline]
1354 fn partial_cmp(&self, other: &&B) -> Option<Ordering> {
1355 PartialOrd::partial_cmp(*self, *other)
1356 }
1357 #[inline]
1358 fn lt(&self, other: &&B) -> bool {
1359 PartialOrd::lt(*self, *other)
1360 }
1361 #[inline]
1362 fn le(&self, other: &&B) -> bool {
1363 PartialOrd::le(*self, *other)
1364 }
1365 #[inline]
1366 fn gt(&self, other: &&B) -> bool {
1367 PartialOrd::gt(*self, *other)
1368 }
1369 #[inline]
1370 fn ge(&self, other: &&B) -> bool {
1371 PartialOrd::ge(*self, *other)
1372 }
1373 }
1374 #[stable(feature = "rust1", since = "1.0.0")]
1375 impl<A: ?Sized> Ord for &A
1376 where
1377 A: Ord,
1378 {
1379 #[inline]
1380 fn cmp(&self, other: &Self) -> Ordering {
1381 Ord::cmp(*self, *other)
1382 }
1383 }
1384 #[stable(feature = "rust1", since = "1.0.0")]
1385 impl<A: ?Sized> Eq for &A where A: Eq {}
1386
1387 // &mut pointers
1388
1389 #[stable(feature = "rust1", since = "1.0.0")]
1390 impl<A: ?Sized, B: ?Sized> PartialEq<&mut B> for &mut A
1391 where
1392 A: PartialEq<B>,
1393 {
1394 #[inline]
1395 fn eq(&self, other: &&mut B) -> bool {
1396 PartialEq::eq(*self, *other)
1397 }
1398 #[inline]
1399 fn ne(&self, other: &&mut B) -> bool {
1400 PartialEq::ne(*self, *other)
1401 }
1402 }
1403 #[stable(feature = "rust1", since = "1.0.0")]
1404 impl<A: ?Sized, B: ?Sized> PartialOrd<&mut B> for &mut A
1405 where
1406 A: PartialOrd<B>,
1407 {
1408 #[inline]
1409 fn partial_cmp(&self, other: &&mut B) -> Option<Ordering> {
1410 PartialOrd::partial_cmp(*self, *other)
1411 }
1412 #[inline]
1413 fn lt(&self, other: &&mut B) -> bool {
1414 PartialOrd::lt(*self, *other)
1415 }
1416 #[inline]
1417 fn le(&self, other: &&mut B) -> bool {
1418 PartialOrd::le(*self, *other)
1419 }
1420 #[inline]
1421 fn gt(&self, other: &&mut B) -> bool {
1422 PartialOrd::gt(*self, *other)
1423 }
1424 #[inline]
1425 fn ge(&self, other: &&mut B) -> bool {
1426 PartialOrd::ge(*self, *other)
1427 }
1428 }
1429 #[stable(feature = "rust1", since = "1.0.0")]
1430 impl<A: ?Sized> Ord for &mut A
1431 where
1432 A: Ord,
1433 {
1434 #[inline]
1435 fn cmp(&self, other: &Self) -> Ordering {
1436 Ord::cmp(*self, *other)
1437 }
1438 }
1439 #[stable(feature = "rust1", since = "1.0.0")]
1440 impl<A: ?Sized> Eq for &mut A where A: Eq {}
1441
1442 #[stable(feature = "rust1", since = "1.0.0")]
1443 impl<A: ?Sized, B: ?Sized> PartialEq<&mut B> for &A
1444 where
1445 A: PartialEq<B>,
1446 {
1447 #[inline]
1448 fn eq(&self, other: &&mut B) -> bool {
1449 PartialEq::eq(*self, *other)
1450 }
1451 #[inline]
1452 fn ne(&self, other: &&mut B) -> bool {
1453 PartialEq::ne(*self, *other)
1454 }
1455 }
1456
1457 #[stable(feature = "rust1", since = "1.0.0")]
1458 impl<A: ?Sized, B: ?Sized> PartialEq<&B> for &mut A
1459 where
1460 A: PartialEq<B>,
1461 {
1462 #[inline]
1463 fn eq(&self, other: &&B) -> bool {
1464 PartialEq::eq(*self, *other)
1465 }
1466 #[inline]
1467 fn ne(&self, other: &&B) -> bool {
1468 PartialEq::ne(*self, *other)
1469 }
1470 }
1471 }