]> git.proxmox.com Git - rustc.git/blob - library/core/src/convert/mod.rs
New upstream version 1.52.0~beta.3+dfsg1
[rustc.git] / library / core / src / convert / mod.rs
1 //! Traits for conversions between types.
2 //!
3 //! The traits in this module provide a way to convert from one type to another type.
4 //! Each trait serves a different purpose:
5 //!
6 //! - Implement the [`AsRef`] trait for cheap reference-to-reference conversions
7 //! - Implement the [`AsMut`] trait for cheap mutable-to-mutable conversions
8 //! - Implement the [`From`] trait for consuming value-to-value conversions
9 //! - Implement the [`Into`] trait for consuming value-to-value conversions to types
10 //! outside the current crate
11 //! - The [`TryFrom`] and [`TryInto`] traits behave like [`From`] and [`Into`],
12 //! but should be implemented when the conversion can fail.
13 //!
14 //! The traits in this module are often used as trait bounds for generic functions such that to
15 //! arguments of multiple types are supported. See the documentation of each trait for examples.
16 //!
17 //! As a library author, you should always prefer implementing [`From<T>`][`From`] or
18 //! [`TryFrom<T>`][`TryFrom`] rather than [`Into<U>`][`Into`] or [`TryInto<U>`][`TryInto`],
19 //! as [`From`] and [`TryFrom`] provide greater flexibility and offer
20 //! equivalent [`Into`] or [`TryInto`] implementations for free, thanks to a
21 //! blanket implementation in the standard library. When targeting a version prior to Rust 1.41, it
22 //! may be necessary to implement [`Into`] or [`TryInto`] directly when converting to a type
23 //! outside the current crate.
24 //!
25 //! # Generic Implementations
26 //!
27 //! - [`AsRef`] and [`AsMut`] auto-dereference if the inner type is a reference
28 //! - [`From`]`<U> for T` implies [`Into`]`<T> for U`
29 //! - [`TryFrom`]`<U> for T` implies [`TryInto`]`<T> for U`
30 //! - [`From`] and [`Into`] are reflexive, which means that all types can
31 //! `into` themselves and `from` themselves
32 //!
33 //! See each trait for usage examples.
34
35 #![stable(feature = "rust1", since = "1.0.0")]
36
37 use crate::fmt;
38 use crate::hash::{Hash, Hasher};
39
40 mod num;
41
42 #[unstable(feature = "convert_float_to_int", issue = "67057")]
43 pub use num::FloatToInt;
44
45 /// The identity function.
46 ///
47 /// Two things are important to note about this function:
48 ///
49 /// - It is not always equivalent to a closure like `|x| x`, since the
50 /// closure may coerce `x` into a different type.
51 ///
52 /// - It moves the input `x` passed to the function.
53 ///
54 /// While it might seem strange to have a function that just returns back the
55 /// input, there are some interesting uses.
56 ///
57 /// # Examples
58 ///
59 /// Using `identity` to do nothing in a sequence of other, interesting,
60 /// functions:
61 ///
62 /// ```rust
63 /// use std::convert::identity;
64 ///
65 /// fn manipulation(x: u32) -> u32 {
66 /// // Let's pretend that adding one is an interesting function.
67 /// x + 1
68 /// }
69 ///
70 /// let _arr = &[identity, manipulation];
71 /// ```
72 ///
73 /// Using `identity` as a "do nothing" base case in a conditional:
74 ///
75 /// ```rust
76 /// use std::convert::identity;
77 ///
78 /// # let condition = true;
79 /// #
80 /// # fn manipulation(x: u32) -> u32 { x + 1 }
81 /// #
82 /// let do_stuff = if condition { manipulation } else { identity };
83 ///
84 /// // Do more interesting stuff...
85 ///
86 /// let _results = do_stuff(42);
87 /// ```
88 ///
89 /// Using `identity` to keep the `Some` variants of an iterator of `Option<T>`:
90 ///
91 /// ```rust
92 /// use std::convert::identity;
93 ///
94 /// let iter = vec![Some(1), None, Some(3)].into_iter();
95 /// let filtered = iter.filter_map(identity).collect::<Vec<_>>();
96 /// assert_eq!(vec![1, 3], filtered);
97 /// ```
98 #[stable(feature = "convert_id", since = "1.33.0")]
99 #[rustc_const_stable(feature = "const_identity", since = "1.33.0")]
100 #[inline]
101 pub const fn identity<T>(x: T) -> T {
102 x
103 }
104
105 /// Used to do a cheap reference-to-reference conversion.
106 ///
107 /// This trait is similar to [`AsMut`] which is used for converting between mutable references.
108 /// If you need to do a costly conversion it is better to implement [`From`] with type
109 /// `&T` or write a custom function.
110 ///
111 /// `AsRef` has the same signature as [`Borrow`], but [`Borrow`] is different in few aspects:
112 ///
113 /// - Unlike `AsRef`, [`Borrow`] has a blanket impl for any `T`, and can be used to accept either
114 /// a reference or a value.
115 /// - [`Borrow`] also requires that [`Hash`], [`Eq`] and [`Ord`] for borrowed value are
116 /// equivalent to those of the owned value. For this reason, if you want to
117 /// borrow only a single field of a struct you can implement `AsRef`, but not [`Borrow`].
118 ///
119 /// **Note: This trait must not fail**. If the conversion can fail, use a
120 /// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
121 ///
122 /// # Generic Implementations
123 ///
124 /// - `AsRef` auto-dereferences if the inner type is a reference or a mutable
125 /// reference (e.g.: `foo.as_ref()` will work the same if `foo` has type
126 /// `&mut Foo` or `&&mut Foo`)
127 ///
128 /// # Examples
129 ///
130 /// By using trait bounds we can accept arguments of different types as long as they can be
131 /// converted to the specified type `T`.
132 ///
133 /// For example: By creating a generic function that takes an `AsRef<str>` we express that we
134 /// want to accept all references that can be converted to [`&str`] as an argument.
135 /// Since both [`String`] and [`&str`] implement `AsRef<str>` we can accept both as input argument.
136 ///
137 /// [`&str`]: primitive@str
138 /// [`Borrow`]: crate::borrow::Borrow
139 /// [`Eq`]: crate::cmp::Eq
140 /// [`Ord`]: crate::cmp::Ord
141 /// [`String`]: ../../std/string/struct.String.html
142 ///
143 /// ```
144 /// fn is_hello<T: AsRef<str>>(s: T) {
145 /// assert_eq!("hello", s.as_ref());
146 /// }
147 ///
148 /// let s = "hello";
149 /// is_hello(s);
150 ///
151 /// let s = "hello".to_string();
152 /// is_hello(s);
153 /// ```
154 #[stable(feature = "rust1", since = "1.0.0")]
155 pub trait AsRef<T: ?Sized> {
156 /// Performs the conversion.
157 #[stable(feature = "rust1", since = "1.0.0")]
158 fn as_ref(&self) -> &T;
159 }
160
161 /// Used to do a cheap mutable-to-mutable reference conversion.
162 ///
163 /// This trait is similar to [`AsRef`] but used for converting between mutable
164 /// references. If you need to do a costly conversion it is better to
165 /// implement [`From`] with type `&mut T` or write a custom function.
166 ///
167 /// **Note: This trait must not fail**. If the conversion can fail, use a
168 /// dedicated method which returns an [`Option<T>`] or a [`Result<T, E>`].
169 ///
170 /// # Generic Implementations
171 ///
172 /// - `AsMut` auto-dereferences if the inner type is a mutable reference
173 /// (e.g.: `foo.as_mut()` will work the same if `foo` has type `&mut Foo`
174 /// or `&mut &mut Foo`)
175 ///
176 /// # Examples
177 ///
178 /// Using `AsMut` as trait bound for a generic function we can accept all mutable references
179 /// that can be converted to type `&mut T`. Because [`Box<T>`] implements `AsMut<T>` we can
180 /// write a function `add_one` that takes all arguments that can be converted to `&mut u64`.
181 /// Because [`Box<T>`] implements `AsMut<T>`, `add_one` accepts arguments of type
182 /// `&mut Box<u64>` as well:
183 ///
184 /// ```
185 /// fn add_one<T: AsMut<u64>>(num: &mut T) {
186 /// *num.as_mut() += 1;
187 /// }
188 ///
189 /// let mut boxed_num = Box::new(0);
190 /// add_one(&mut boxed_num);
191 /// assert_eq!(*boxed_num, 1);
192 /// ```
193 ///
194 /// [`Box<T>`]: ../../std/boxed/struct.Box.html
195 #[stable(feature = "rust1", since = "1.0.0")]
196 pub trait AsMut<T: ?Sized> {
197 /// Performs the conversion.
198 #[stable(feature = "rust1", since = "1.0.0")]
199 fn as_mut(&mut self) -> &mut T;
200 }
201
202 /// A value-to-value conversion that consumes the input value. The
203 /// opposite of [`From`].
204 ///
205 /// One should avoid implementing [`Into`] and implement [`From`] instead.
206 /// Implementing [`From`] automatically provides one with an implementation of [`Into`]
207 /// thanks to the blanket implementation in the standard library.
208 ///
209 /// Prefer using [`Into`] over [`From`] when specifying trait bounds on a generic function
210 /// to ensure that types that only implement [`Into`] can be used as well.
211 ///
212 /// **Note: This trait must not fail**. If the conversion can fail, use [`TryInto`].
213 ///
214 /// # Generic Implementations
215 ///
216 /// - [`From`]`<T> for U` implies `Into<U> for T`
217 /// - [`Into`] is reflexive, which means that `Into<T> for T` is implemented
218 ///
219 /// # Implementing [`Into`] for conversions to external types in old versions of Rust
220 ///
221 /// Prior to Rust 1.41, if the destination type was not part of the current crate
222 /// then you couldn't implement [`From`] directly.
223 /// For example, take this code:
224 ///
225 /// ```
226 /// struct Wrapper<T>(Vec<T>);
227 /// impl<T> From<Wrapper<T>> for Vec<T> {
228 /// fn from(w: Wrapper<T>) -> Vec<T> {
229 /// w.0
230 /// }
231 /// }
232 /// ```
233 /// This will fail to compile in older versions of the language because Rust's orphaning rules
234 /// used to be a little bit more strict. To bypass this, you could implement [`Into`] directly:
235 ///
236 /// ```
237 /// struct Wrapper<T>(Vec<T>);
238 /// impl<T> Into<Vec<T>> for Wrapper<T> {
239 /// fn into(self) -> Vec<T> {
240 /// self.0
241 /// }
242 /// }
243 /// ```
244 ///
245 /// It is important to understand that [`Into`] does not provide a [`From`] implementation
246 /// (as [`From`] does with [`Into`]). Therefore, you should always try to implement [`From`]
247 /// and then fall back to [`Into`] if [`From`] can't be implemented.
248 ///
249 /// # Examples
250 ///
251 /// [`String`] implements [`Into`]`<`[`Vec`]`<`[`u8`]`>>`:
252 ///
253 /// In order to express that we want a generic function to take all arguments that can be
254 /// converted to a specified type `T`, we can use a trait bound of [`Into`]`<T>`.
255 /// For example: The function `is_hello` takes all arguments that can be converted into a
256 /// [`Vec`]`<`[`u8`]`>`.
257 ///
258 /// ```
259 /// fn is_hello<T: Into<Vec<u8>>>(s: T) {
260 /// let bytes = b"hello".to_vec();
261 /// assert_eq!(bytes, s.into());
262 /// }
263 ///
264 /// let s = "hello".to_string();
265 /// is_hello(s);
266 /// ```
267 ///
268 /// [`String`]: ../../std/string/struct.String.html
269 /// [`Vec`]: ../../std/vec/struct.Vec.html
270 #[rustc_diagnostic_item = "into_trait"]
271 #[stable(feature = "rust1", since = "1.0.0")]
272 pub trait Into<T>: Sized {
273 /// Performs the conversion.
274 #[stable(feature = "rust1", since = "1.0.0")]
275 fn into(self) -> T;
276 }
277
278 /// Used to do value-to-value conversions while consuming the input value. It is the reciprocal of
279 /// [`Into`].
280 ///
281 /// One should always prefer implementing `From` over [`Into`]
282 /// because implementing `From` automatically provides one with an implementation of [`Into`]
283 /// thanks to the blanket implementation in the standard library.
284 ///
285 /// Only implement [`Into`] when targeting a version prior to Rust 1.41 and converting to a type
286 /// outside the current crate.
287 /// `From` was not able to do these types of conversions in earlier versions because of Rust's
288 /// orphaning rules.
289 /// See [`Into`] for more details.
290 ///
291 /// Prefer using [`Into`] over using `From` when specifying trait bounds on a generic function.
292 /// This way, types that directly implement [`Into`] can be used as arguments as well.
293 ///
294 /// The `From` is also very useful when performing error handling. When constructing a function
295 /// that is capable of failing, the return type will generally be of the form `Result<T, E>`.
296 /// The `From` trait simplifies error handling by allowing a function to return a single error type
297 /// that encapsulate multiple error types. See the "Examples" section and [the book][book] for more
298 /// details.
299 ///
300 /// **Note: This trait must not fail**. If the conversion can fail, use [`TryFrom`].
301 ///
302 /// # Generic Implementations
303 ///
304 /// - `From<T> for U` implies [`Into`]`<U> for T`
305 /// - `From` is reflexive, which means that `From<T> for T` is implemented
306 ///
307 /// # Examples
308 ///
309 /// [`String`] implements `From<&str>`:
310 ///
311 /// An explicit conversion from a `&str` to a String is done as follows:
312 ///
313 /// ```
314 /// let string = "hello".to_string();
315 /// let other_string = String::from("hello");
316 ///
317 /// assert_eq!(string, other_string);
318 /// ```
319 ///
320 /// While performing error handling it is often useful to implement `From` for your own error type.
321 /// By converting underlying error types to our own custom error type that encapsulates the
322 /// underlying error type, we can return a single error type without losing information on the
323 /// underlying cause. The '?' operator automatically converts the underlying error type to our
324 /// custom error type by calling `Into<CliError>::into` which is automatically provided when
325 /// implementing `From`. The compiler then infers which implementation of `Into` should be used.
326 ///
327 /// ```
328 /// use std::fs;
329 /// use std::io;
330 /// use std::num;
331 ///
332 /// enum CliError {
333 /// IoError(io::Error),
334 /// ParseError(num::ParseIntError),
335 /// }
336 ///
337 /// impl From<io::Error> for CliError {
338 /// fn from(error: io::Error) -> Self {
339 /// CliError::IoError(error)
340 /// }
341 /// }
342 ///
343 /// impl From<num::ParseIntError> for CliError {
344 /// fn from(error: num::ParseIntError) -> Self {
345 /// CliError::ParseError(error)
346 /// }
347 /// }
348 ///
349 /// fn open_and_parse_file(file_name: &str) -> Result<i32, CliError> {
350 /// let mut contents = fs::read_to_string(&file_name)?;
351 /// let num: i32 = contents.trim().parse()?;
352 /// Ok(num)
353 /// }
354 /// ```
355 ///
356 /// [`String`]: ../../std/string/struct.String.html
357 /// [`from`]: From::from
358 /// [book]: ../../book/ch09-00-error-handling.html
359 #[rustc_diagnostic_item = "from_trait"]
360 #[stable(feature = "rust1", since = "1.0.0")]
361 #[rustc_on_unimplemented(on(
362 all(_Self = "&str", T = "std::string::String"),
363 note = "to coerce a `{T}` into a `{Self}`, use `&*` as a prefix",
364 ))]
365 pub trait From<T>: Sized {
366 /// Performs the conversion.
367 #[lang = "from"]
368 #[stable(feature = "rust1", since = "1.0.0")]
369 fn from(_: T) -> Self;
370 }
371
372 /// An attempted conversion that consumes `self`, which may or may not be
373 /// expensive.
374 ///
375 /// Library authors should usually not directly implement this trait,
376 /// but should prefer implementing the [`TryFrom`] trait, which offers
377 /// greater flexibility and provides an equivalent `TryInto`
378 /// implementation for free, thanks to a blanket implementation in the
379 /// standard library. For more information on this, see the
380 /// documentation for [`Into`].
381 ///
382 /// # Implementing `TryInto`
383 ///
384 /// This suffers the same restrictions and reasoning as implementing
385 /// [`Into`], see there for details.
386 #[rustc_diagnostic_item = "try_into_trait"]
387 #[stable(feature = "try_from", since = "1.34.0")]
388 pub trait TryInto<T>: Sized {
389 /// The type returned in the event of a conversion error.
390 #[stable(feature = "try_from", since = "1.34.0")]
391 type Error;
392
393 /// Performs the conversion.
394 #[stable(feature = "try_from", since = "1.34.0")]
395 fn try_into(self) -> Result<T, Self::Error>;
396 }
397
398 /// Simple and safe type conversions that may fail in a controlled
399 /// way under some circumstances. It is the reciprocal of [`TryInto`].
400 ///
401 /// This is useful when you are doing a type conversion that may
402 /// trivially succeed but may also need special handling.
403 /// For example, there is no way to convert an [`i64`] into an [`i32`]
404 /// using the [`From`] trait, because an [`i64`] may contain a value
405 /// that an [`i32`] cannot represent and so the conversion would lose data.
406 /// This might be handled by truncating the [`i64`] to an [`i32`] (essentially
407 /// giving the [`i64`]'s value modulo [`i32::MAX`]) or by simply returning
408 /// [`i32::MAX`], or by some other method. The [`From`] trait is intended
409 /// for perfect conversions, so the `TryFrom` trait informs the
410 /// programmer when a type conversion could go bad and lets them
411 /// decide how to handle it.
412 ///
413 /// # Generic Implementations
414 ///
415 /// - `TryFrom<T> for U` implies [`TryInto`]`<U> for T`
416 /// - [`try_from`] is reflexive, which means that `TryFrom<T> for T`
417 /// is implemented and cannot fail -- the associated `Error` type for
418 /// calling `T::try_from()` on a value of type `T` is [`Infallible`].
419 /// When the [`!`] type is stabilized [`Infallible`] and [`!`] will be
420 /// equivalent.
421 ///
422 /// `TryFrom<T>` can be implemented as follows:
423 ///
424 /// ```
425 /// use std::convert::TryFrom;
426 ///
427 /// struct GreaterThanZero(i32);
428 ///
429 /// impl TryFrom<i32> for GreaterThanZero {
430 /// type Error = &'static str;
431 ///
432 /// fn try_from(value: i32) -> Result<Self, Self::Error> {
433 /// if value <= 0 {
434 /// Err("GreaterThanZero only accepts value superior than zero!")
435 /// } else {
436 /// Ok(GreaterThanZero(value))
437 /// }
438 /// }
439 /// }
440 /// ```
441 ///
442 /// # Examples
443 ///
444 /// As described, [`i32`] implements `TryFrom<`[`i64`]`>`:
445 ///
446 /// ```
447 /// use std::convert::TryFrom;
448 ///
449 /// let big_number = 1_000_000_000_000i64;
450 /// // Silently truncates `big_number`, requires detecting
451 /// // and handling the truncation after the fact.
452 /// let smaller_number = big_number as i32;
453 /// assert_eq!(smaller_number, -727379968);
454 ///
455 /// // Returns an error because `big_number` is too big to
456 /// // fit in an `i32`.
457 /// let try_smaller_number = i32::try_from(big_number);
458 /// assert!(try_smaller_number.is_err());
459 ///
460 /// // Returns `Ok(3)`.
461 /// let try_successful_smaller_number = i32::try_from(3);
462 /// assert!(try_successful_smaller_number.is_ok());
463 /// ```
464 ///
465 /// [`try_from`]: TryFrom::try_from
466 #[rustc_diagnostic_item = "try_from_trait"]
467 #[stable(feature = "try_from", since = "1.34.0")]
468 pub trait TryFrom<T>: Sized {
469 /// The type returned in the event of a conversion error.
470 #[stable(feature = "try_from", since = "1.34.0")]
471 type Error;
472
473 /// Performs the conversion.
474 #[stable(feature = "try_from", since = "1.34.0")]
475 fn try_from(value: T) -> Result<Self, Self::Error>;
476 }
477
478 ////////////////////////////////////////////////////////////////////////////////
479 // GENERIC IMPLS
480 ////////////////////////////////////////////////////////////////////////////////
481
482 // As lifts over &
483 #[stable(feature = "rust1", since = "1.0.0")]
484 impl<T: ?Sized, U: ?Sized> AsRef<U> for &T
485 where
486 T: AsRef<U>,
487 {
488 fn as_ref(&self) -> &U {
489 <T as AsRef<U>>::as_ref(*self)
490 }
491 }
492
493 // As lifts over &mut
494 #[stable(feature = "rust1", since = "1.0.0")]
495 impl<T: ?Sized, U: ?Sized> AsRef<U> for &mut T
496 where
497 T: AsRef<U>,
498 {
499 fn as_ref(&self) -> &U {
500 <T as AsRef<U>>::as_ref(*self)
501 }
502 }
503
504 // FIXME (#45742): replace the above impls for &/&mut with the following more general one:
505 // // As lifts over Deref
506 // impl<D: ?Sized + Deref<Target: AsRef<U>>, U: ?Sized> AsRef<U> for D {
507 // fn as_ref(&self) -> &U {
508 // self.deref().as_ref()
509 // }
510 // }
511
512 // AsMut lifts over &mut
513 #[stable(feature = "rust1", since = "1.0.0")]
514 impl<T: ?Sized, U: ?Sized> AsMut<U> for &mut T
515 where
516 T: AsMut<U>,
517 {
518 fn as_mut(&mut self) -> &mut U {
519 (*self).as_mut()
520 }
521 }
522
523 // FIXME (#45742): replace the above impl for &mut with the following more general one:
524 // // AsMut lifts over DerefMut
525 // impl<D: ?Sized + Deref<Target: AsMut<U>>, U: ?Sized> AsMut<U> for D {
526 // fn as_mut(&mut self) -> &mut U {
527 // self.deref_mut().as_mut()
528 // }
529 // }
530
531 // From implies Into
532 #[stable(feature = "rust1", since = "1.0.0")]
533 impl<T, U> Into<U> for T
534 where
535 U: From<T>,
536 {
537 fn into(self) -> U {
538 U::from(self)
539 }
540 }
541
542 // From (and thus Into) is reflexive
543 #[stable(feature = "rust1", since = "1.0.0")]
544 impl<T> From<T> for T {
545 fn from(t: T) -> T {
546 t
547 }
548 }
549
550 /// **Stability note:** This impl does not yet exist, but we are
551 /// "reserving space" to add it in the future. See
552 /// [rust-lang/rust#64715][#64715] for details.
553 ///
554 /// [#64715]: https://github.com/rust-lang/rust/issues/64715
555 #[stable(feature = "convert_infallible", since = "1.34.0")]
556 #[allow(unused_attributes)] // FIXME(#58633): do a principled fix instead.
557 #[rustc_reservation_impl = "permitting this impl would forbid us from adding \
558 `impl<T> From<!> for T` later; see rust-lang/rust#64715 for details"]
559 impl<T> From<!> for T {
560 fn from(t: !) -> T {
561 t
562 }
563 }
564
565 // TryFrom implies TryInto
566 #[stable(feature = "try_from", since = "1.34.0")]
567 impl<T, U> TryInto<U> for T
568 where
569 U: TryFrom<T>,
570 {
571 type Error = U::Error;
572
573 fn try_into(self) -> Result<U, U::Error> {
574 U::try_from(self)
575 }
576 }
577
578 // Infallible conversions are semantically equivalent to fallible conversions
579 // with an uninhabited error type.
580 #[stable(feature = "try_from", since = "1.34.0")]
581 impl<T, U> TryFrom<U> for T
582 where
583 U: Into<T>,
584 {
585 type Error = Infallible;
586
587 fn try_from(value: U) -> Result<Self, Self::Error> {
588 Ok(U::into(value))
589 }
590 }
591
592 ////////////////////////////////////////////////////////////////////////////////
593 // CONCRETE IMPLS
594 ////////////////////////////////////////////////////////////////////////////////
595
596 #[stable(feature = "rust1", since = "1.0.0")]
597 impl<T> AsRef<[T]> for [T] {
598 fn as_ref(&self) -> &[T] {
599 self
600 }
601 }
602
603 #[stable(feature = "rust1", since = "1.0.0")]
604 impl<T> AsMut<[T]> for [T] {
605 fn as_mut(&mut self) -> &mut [T] {
606 self
607 }
608 }
609
610 #[stable(feature = "rust1", since = "1.0.0")]
611 impl AsRef<str> for str {
612 #[inline]
613 fn as_ref(&self) -> &str {
614 self
615 }
616 }
617
618 #[stable(feature = "as_mut_str_for_str", since = "1.51.0")]
619 impl AsMut<str> for str {
620 #[inline]
621 fn as_mut(&mut self) -> &mut str {
622 self
623 }
624 }
625
626 ////////////////////////////////////////////////////////////////////////////////
627 // THE NO-ERROR ERROR TYPE
628 ////////////////////////////////////////////////////////////////////////////////
629
630 /// The error type for errors that can never happen.
631 ///
632 /// Since this enum has no variant, a value of this type can never actually exist.
633 /// This can be useful for generic APIs that use [`Result`] and parameterize the error type,
634 /// to indicate that the result is always [`Ok`].
635 ///
636 /// For example, the [`TryFrom`] trait (conversion that returns a [`Result`])
637 /// has a blanket implementation for all types where a reverse [`Into`] implementation exists.
638 ///
639 /// ```ignore (illustrates std code, duplicating the impl in a doctest would be an error)
640 /// impl<T, U> TryFrom<U> for T where U: Into<T> {
641 /// type Error = Infallible;
642 ///
643 /// fn try_from(value: U) -> Result<Self, Infallible> {
644 /// Ok(U::into(value)) // Never returns `Err`
645 /// }
646 /// }
647 /// ```
648 ///
649 /// # Future compatibility
650 ///
651 /// This enum has the same role as [the `!` “never” type][never],
652 /// which is unstable in this version of Rust.
653 /// When `!` is stabilized, we plan to make `Infallible` a type alias to it:
654 ///
655 /// ```ignore (illustrates future std change)
656 /// pub type Infallible = !;
657 /// ```
658 ///
659 /// … and eventually deprecate `Infallible`.
660 ///
661 /// However there is one case where `!` syntax can be used
662 /// before `!` is stabilized as a full-fledged type: in the position of a function’s return type.
663 /// Specifically, it is possible implementations for two different function pointer types:
664 ///
665 /// ```
666 /// trait MyTrait {}
667 /// impl MyTrait for fn() -> ! {}
668 /// impl MyTrait for fn() -> std::convert::Infallible {}
669 /// ```
670 ///
671 /// With `Infallible` being an enum, this code is valid.
672 /// However when `Infallible` becomes an alias for the never type,
673 /// the two `impl`s will start to overlap
674 /// and therefore will be disallowed by the language’s trait coherence rules.
675 #[stable(feature = "convert_infallible", since = "1.34.0")]
676 #[derive(Copy)]
677 pub enum Infallible {}
678
679 #[stable(feature = "convert_infallible", since = "1.34.0")]
680 impl Clone for Infallible {
681 fn clone(&self) -> Infallible {
682 match *self {}
683 }
684 }
685
686 #[stable(feature = "convert_infallible", since = "1.34.0")]
687 impl fmt::Debug for Infallible {
688 fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
689 match *self {}
690 }
691 }
692
693 #[stable(feature = "convert_infallible", since = "1.34.0")]
694 impl fmt::Display for Infallible {
695 fn fmt(&self, _: &mut fmt::Formatter<'_>) -> fmt::Result {
696 match *self {}
697 }
698 }
699
700 #[stable(feature = "convert_infallible", since = "1.34.0")]
701 impl PartialEq for Infallible {
702 fn eq(&self, _: &Infallible) -> bool {
703 match *self {}
704 }
705 }
706
707 #[stable(feature = "convert_infallible", since = "1.34.0")]
708 impl Eq for Infallible {}
709
710 #[stable(feature = "convert_infallible", since = "1.34.0")]
711 impl PartialOrd for Infallible {
712 fn partial_cmp(&self, _other: &Self) -> Option<crate::cmp::Ordering> {
713 match *self {}
714 }
715 }
716
717 #[stable(feature = "convert_infallible", since = "1.34.0")]
718 impl Ord for Infallible {
719 fn cmp(&self, _other: &Self) -> crate::cmp::Ordering {
720 match *self {}
721 }
722 }
723
724 #[stable(feature = "convert_infallible", since = "1.34.0")]
725 impl From<!> for Infallible {
726 fn from(x: !) -> Self {
727 x
728 }
729 }
730
731 #[stable(feature = "convert_infallible_hash", since = "1.44.0")]
732 impl Hash for Infallible {
733 fn hash<H: Hasher>(&self, _: &mut H) {
734 match *self {}
735 }
736 }