]> git.proxmox.com Git - rustc.git/blob - library/core/src/ffi/c_str.rs
New upstream version 1.65.0+dfsg1
[rustc.git] / library / core / src / ffi / c_str.rs
1 use crate::cmp::Ordering;
2 use crate::ffi::c_char;
3 use crate::fmt;
4 use crate::intrinsics;
5 use crate::ops;
6 use crate::slice;
7 use crate::slice::memchr;
8 use crate::str;
9
10 /// Representation of a borrowed C string.
11 ///
12 /// This type represents a borrowed reference to a nul-terminated
13 /// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
14 /// slice, or unsafely from a raw `*const c_char`. It can then be
15 /// converted to a Rust <code>&[str]</code> by performing UTF-8 validation, or
16 /// into an owned `CString`.
17 ///
18 /// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
19 /// in each pair are borrowed references; the latter are owned
20 /// strings.
21 ///
22 /// Note that this structure is **not** `repr(C)` and is not recommended to be
23 /// placed in the signatures of FFI functions. Instead, safe wrappers of FFI
24 /// functions may leverage the unsafe [`CStr::from_ptr`] constructor to provide
25 /// a safe interface to other consumers.
26 ///
27 /// # Examples
28 ///
29 /// Inspecting a foreign C string:
30 ///
31 /// ```ignore (extern-declaration)
32 /// use std::ffi::CStr;
33 /// use std::os::raw::c_char;
34 ///
35 /// extern "C" { fn my_string() -> *const c_char; }
36 ///
37 /// unsafe {
38 /// let slice = CStr::from_ptr(my_string());
39 /// println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
40 /// }
41 /// ```
42 ///
43 /// Passing a Rust-originating C string:
44 ///
45 /// ```ignore (extern-declaration)
46 /// use std::ffi::{CString, CStr};
47 /// use std::os::raw::c_char;
48 ///
49 /// fn work(data: &CStr) {
50 /// extern "C" { fn work_with(data: *const c_char); }
51 ///
52 /// unsafe { work_with(data.as_ptr()) }
53 /// }
54 ///
55 /// let s = CString::new("data data data data").expect("CString::new failed");
56 /// work(&s);
57 /// ```
58 ///
59 /// Converting a foreign C string into a Rust `String`:
60 ///
61 /// ```ignore (extern-declaration)
62 /// use std::ffi::CStr;
63 /// use std::os::raw::c_char;
64 ///
65 /// extern "C" { fn my_string() -> *const c_char; }
66 ///
67 /// fn my_string_safe() -> String {
68 /// let cstr = unsafe { CStr::from_ptr(my_string()) };
69 /// // Get copy-on-write Cow<'_, str>, then guarantee a freshly-owned String allocation
70 /// String::from_utf8_lossy(cstr.to_bytes()).to_string()
71 /// }
72 ///
73 /// println!("string: {}", my_string_safe());
74 /// ```
75 ///
76 /// [str]: prim@str "str"
77 #[derive(Hash)]
78 #[cfg_attr(not(test), rustc_diagnostic_item = "CStr")]
79 #[stable(feature = "core_c_str", since = "1.64.0")]
80 #[rustc_has_incoherent_inherent_impls]
81 // FIXME:
82 // `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
83 // on `CStr` being layout-compatible with `[u8]`.
84 // When attribute privacy is implemented, `CStr` should be annotated as `#[repr(transparent)]`.
85 // Anyway, `CStr` representation and layout are considered implementation detail, are
86 // not documented and must not be relied upon.
87 pub struct CStr {
88 // FIXME: this should not be represented with a DST slice but rather with
89 // just a raw `c_char` along with some form of marker to make
90 // this an unsized type. Essentially `sizeof(&CStr)` should be the
91 // same as `sizeof(&c_char)` but `CStr` should be an unsized type.
92 inner: [c_char],
93 }
94
95 /// An error indicating that a nul byte was not in the expected position.
96 ///
97 /// The slice used to create a [`CStr`] must have one and only one nul byte,
98 /// positioned at the end.
99 ///
100 /// This error is created by the [`CStr::from_bytes_with_nul`] method.
101 /// See its documentation for more.
102 ///
103 /// # Examples
104 ///
105 /// ```
106 /// use std::ffi::{CStr, FromBytesWithNulError};
107 ///
108 /// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
109 /// ```
110 #[derive(Clone, PartialEq, Eq, Debug)]
111 #[stable(feature = "core_c_str", since = "1.64.0")]
112 pub struct FromBytesWithNulError {
113 kind: FromBytesWithNulErrorKind,
114 }
115
116 #[derive(Clone, PartialEq, Eq, Debug)]
117 enum FromBytesWithNulErrorKind {
118 InteriorNul(usize),
119 NotNulTerminated,
120 }
121
122 impl FromBytesWithNulError {
123 const fn interior_nul(pos: usize) -> FromBytesWithNulError {
124 FromBytesWithNulError { kind: FromBytesWithNulErrorKind::InteriorNul(pos) }
125 }
126 const fn not_nul_terminated() -> FromBytesWithNulError {
127 FromBytesWithNulError { kind: FromBytesWithNulErrorKind::NotNulTerminated }
128 }
129
130 #[doc(hidden)]
131 #[unstable(feature = "cstr_internals", issue = "none")]
132 pub fn __description(&self) -> &str {
133 match self.kind {
134 FromBytesWithNulErrorKind::InteriorNul(..) => {
135 "data provided contains an interior nul byte"
136 }
137 FromBytesWithNulErrorKind::NotNulTerminated => "data provided is not nul terminated",
138 }
139 }
140 }
141
142 /// An error indicating that no nul byte was present.
143 ///
144 /// A slice used to create a [`CStr`] must contain a nul byte somewhere
145 /// within the slice.
146 ///
147 /// This error is created by the [`CStr::from_bytes_until_nul`] method.
148 ///
149 #[derive(Clone, PartialEq, Eq, Debug)]
150 #[unstable(feature = "cstr_from_bytes_until_nul", issue = "95027")]
151 pub struct FromBytesUntilNulError(());
152
153 #[unstable(feature = "cstr_from_bytes_until_nul", issue = "95027")]
154 impl fmt::Display for FromBytesUntilNulError {
155 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
156 write!(f, "data provided does not contain a nul")
157 }
158 }
159
160 #[stable(feature = "cstr_debug", since = "1.3.0")]
161 impl fmt::Debug for CStr {
162 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
163 write!(f, "\"{}\"", self.to_bytes().escape_ascii())
164 }
165 }
166
167 #[stable(feature = "cstr_default", since = "1.10.0")]
168 impl Default for &CStr {
169 fn default() -> Self {
170 const SLICE: &[c_char] = &[0];
171 // SAFETY: `SLICE` is indeed pointing to a valid nul-terminated string.
172 unsafe { CStr::from_ptr(SLICE.as_ptr()) }
173 }
174 }
175
176 #[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
177 impl fmt::Display for FromBytesWithNulError {
178 #[allow(deprecated, deprecated_in_future)]
179 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
180 f.write_str(self.__description())?;
181 if let FromBytesWithNulErrorKind::InteriorNul(pos) = self.kind {
182 write!(f, " at byte pos {pos}")?;
183 }
184 Ok(())
185 }
186 }
187
188 impl CStr {
189 /// Wraps a raw C string with a safe C string wrapper.
190 ///
191 /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
192 /// allows inspection and interoperation of non-owned C strings. The total
193 /// size of the raw C string must be smaller than `isize::MAX` **bytes**
194 /// in memory due to calling the `slice::from_raw_parts` function.
195 ///
196 /// # Safety
197 ///
198 /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
199 /// end of the string.
200 ///
201 /// * `ptr` must be [valid] for reads of bytes up to and including the null terminator.
202 /// This means in particular:
203 ///
204 /// * The entire memory range of this `CStr` must be contained within a single allocated object!
205 /// * `ptr` must be non-null even for a zero-length cstr.
206 ///
207 /// * The memory referenced by the returned `CStr` must not be mutated for
208 /// the duration of lifetime `'a`.
209 ///
210 /// > **Note**: This operation is intended to be a 0-cost cast but it is
211 /// > currently implemented with an up-front calculation of the length of
212 /// > the string. This is not guaranteed to always be the case.
213 ///
214 /// # Caveat
215 ///
216 /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
217 /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
218 /// such as by providing a helper function taking the lifetime of a host value for the slice,
219 /// or by explicit annotation.
220 ///
221 /// # Examples
222 ///
223 /// ```ignore (extern-declaration)
224 /// # fn main() {
225 /// use std::ffi::CStr;
226 /// use std::os::raw::c_char;
227 ///
228 /// extern "C" {
229 /// fn my_string() -> *const c_char;
230 /// }
231 ///
232 /// unsafe {
233 /// let slice = CStr::from_ptr(my_string());
234 /// println!("string returned: {}", slice.to_str().unwrap());
235 /// }
236 /// # }
237 /// ```
238 ///
239 /// [valid]: core::ptr#safety
240 #[inline]
241 #[must_use]
242 #[stable(feature = "rust1", since = "1.0.0")]
243 pub unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
244 // SAFETY: The caller has provided a pointer that points to a valid C
245 // string with a NUL terminator of size less than `isize::MAX`, whose
246 // content remain valid and doesn't change for the lifetime of the
247 // returned `CStr`.
248 //
249 // Thus computing the length is fine (a NUL byte exists), the call to
250 // from_raw_parts is safe because we know the length is at most `isize::MAX`, meaning
251 // the call to `from_bytes_with_nul_unchecked` is correct.
252 //
253 // The cast from c_char to u8 is ok because a c_char is always one byte.
254 unsafe {
255 extern "C" {
256 /// Provided by libc or compiler_builtins.
257 fn strlen(s: *const c_char) -> usize;
258 }
259 let len = strlen(ptr);
260 let ptr = ptr as *const u8;
261 CStr::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr, len as usize + 1))
262 }
263 }
264
265 /// Creates a C string wrapper from a byte slice.
266 ///
267 /// This method will create a `CStr` from any byte slice that contains at
268 /// least one nul byte. The caller does not need to know or specify where
269 /// the nul byte is located.
270 ///
271 /// If the first byte is a nul character, this method will return an
272 /// empty `CStr`. If multiple nul characters are present, the `CStr` will
273 /// end at the first one.
274 ///
275 /// If the slice only has a single nul byte at the end, this method is
276 /// equivalent to [`CStr::from_bytes_with_nul`].
277 ///
278 /// # Examples
279 /// ```
280 /// #![feature(cstr_from_bytes_until_nul)]
281 ///
282 /// use std::ffi::CStr;
283 ///
284 /// let mut buffer = [0u8; 16];
285 /// unsafe {
286 /// // Here we might call an unsafe C function that writes a string
287 /// // into the buffer.
288 /// let buf_ptr = buffer.as_mut_ptr();
289 /// buf_ptr.write_bytes(b'A', 8);
290 /// }
291 /// // Attempt to extract a C nul-terminated string from the buffer.
292 /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
293 /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
294 /// ```
295 ///
296 #[unstable(feature = "cstr_from_bytes_until_nul", issue = "95027")]
297 #[rustc_const_unstable(feature = "cstr_from_bytes_until_nul", issue = "95027")]
298 pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
299 let nul_pos = memchr::memchr(0, bytes);
300 match nul_pos {
301 Some(nul_pos) => {
302 let subslice = &bytes[..nul_pos + 1];
303 // SAFETY: We know there is a nul byte at nul_pos, so this slice
304 // (ending at the nul byte) is a well-formed C string.
305 Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
306 }
307 None => Err(FromBytesUntilNulError(())),
308 }
309 }
310
311 /// Creates a C string wrapper from a byte slice.
312 ///
313 /// This function will cast the provided `bytes` to a `CStr`
314 /// wrapper after ensuring that the byte slice is nul-terminated
315 /// and does not contain any interior nul bytes.
316 ///
317 /// If the nul byte may not be at the end,
318 /// [`CStr::from_bytes_until_nul`] can be used instead.
319 ///
320 /// # Examples
321 ///
322 /// ```
323 /// use std::ffi::CStr;
324 ///
325 /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
326 /// assert!(cstr.is_ok());
327 /// ```
328 ///
329 /// Creating a `CStr` without a trailing nul terminator is an error:
330 ///
331 /// ```
332 /// use std::ffi::CStr;
333 ///
334 /// let cstr = CStr::from_bytes_with_nul(b"hello");
335 /// assert!(cstr.is_err());
336 /// ```
337 ///
338 /// Creating a `CStr` with an interior nul byte is an error:
339 ///
340 /// ```
341 /// use std::ffi::CStr;
342 ///
343 /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
344 /// assert!(cstr.is_err());
345 /// ```
346 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
347 #[rustc_const_unstable(feature = "const_cstr_methods", issue = "101719")]
348 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
349 let nul_pos = memchr::memchr(0, bytes);
350 match nul_pos {
351 Some(nul_pos) if nul_pos + 1 == bytes.len() => {
352 // SAFETY: We know there is only one nul byte, at the end
353 // of the byte slice.
354 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
355 }
356 Some(nul_pos) => Err(FromBytesWithNulError::interior_nul(nul_pos)),
357 None => Err(FromBytesWithNulError::not_nul_terminated()),
358 }
359 }
360
361 /// Unsafely creates a C string wrapper from a byte slice.
362 ///
363 /// This function will cast the provided `bytes` to a `CStr` wrapper without
364 /// performing any sanity checks.
365 ///
366 /// # Safety
367 /// The provided slice **must** be nul-terminated and not contain any interior
368 /// nul bytes.
369 ///
370 /// # Examples
371 ///
372 /// ```
373 /// use std::ffi::{CStr, CString};
374 ///
375 /// unsafe {
376 /// let cstring = CString::new("hello").expect("CString::new failed");
377 /// let cstr = CStr::from_bytes_with_nul_unchecked(cstring.to_bytes_with_nul());
378 /// assert_eq!(cstr, &*cstring);
379 /// }
380 /// ```
381 #[inline]
382 #[must_use]
383 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
384 #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
385 #[rustc_allow_const_fn_unstable(const_eval_select)]
386 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
387 #[inline]
388 fn rt_impl(bytes: &[u8]) -> &CStr {
389 // Chance at catching some UB at runtime with debug builds.
390 debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
391
392 // SAFETY: Casting to CStr is safe because its internal representation
393 // is a [u8] too (safe only inside std).
394 // Dereferencing the obtained pointer is safe because it comes from a
395 // reference. Making a reference is then safe because its lifetime
396 // is bound by the lifetime of the given `bytes`.
397 unsafe { &*(bytes as *const [u8] as *const CStr) }
398 }
399
400 const fn const_impl(bytes: &[u8]) -> &CStr {
401 // Saturating so that an empty slice panics in the assert with a good
402 // message, not here due to underflow.
403 let mut i = bytes.len().saturating_sub(1);
404 assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
405
406 // Ending null byte exists, skip to the rest.
407 while i != 0 {
408 i -= 1;
409 let byte = bytes[i];
410 assert!(byte != 0, "input contained interior nul");
411 }
412
413 // SAFETY: See `rt_impl` cast.
414 unsafe { &*(bytes as *const [u8] as *const CStr) }
415 }
416
417 // SAFETY: The const and runtime versions have identical behavior
418 // unless the safety contract of `from_bytes_with_nul_unchecked` is
419 // violated, which is UB.
420 unsafe { intrinsics::const_eval_select((bytes,), const_impl, rt_impl) }
421 }
422
423 /// Returns the inner pointer to this C string.
424 ///
425 /// The returned pointer will be valid for as long as `self` is, and points
426 /// to a contiguous region of memory terminated with a 0 byte to represent
427 /// the end of the string.
428 ///
429 /// **WARNING**
430 ///
431 /// The returned pointer is read-only; writing to it (including passing it
432 /// to C code that writes to it) causes undefined behavior.
433 ///
434 /// It is your responsibility to make sure that the underlying memory is not
435 /// freed too early. For example, the following code will cause undefined
436 /// behavior when `ptr` is used inside the `unsafe` block:
437 ///
438 /// ```no_run
439 /// # #![allow(unused_must_use)] #![allow(temporary_cstring_as_ptr)]
440 /// use std::ffi::CString;
441 ///
442 /// let ptr = CString::new("Hello").expect("CString::new failed").as_ptr();
443 /// unsafe {
444 /// // `ptr` is dangling
445 /// *ptr;
446 /// }
447 /// ```
448 ///
449 /// This happens because the pointer returned by `as_ptr` does not carry any
450 /// lifetime information and the `CString` is deallocated immediately after
451 /// the `CString::new("Hello").expect("CString::new failed").as_ptr()`
452 /// expression is evaluated.
453 /// To fix the problem, bind the `CString` to a local variable:
454 ///
455 /// ```no_run
456 /// # #![allow(unused_must_use)]
457 /// use std::ffi::CString;
458 ///
459 /// let hello = CString::new("Hello").expect("CString::new failed");
460 /// let ptr = hello.as_ptr();
461 /// unsafe {
462 /// // `ptr` is valid because `hello` is in scope
463 /// *ptr;
464 /// }
465 /// ```
466 ///
467 /// This way, the lifetime of the `CString` in `hello` encompasses
468 /// the lifetime of `ptr` and the `unsafe` block.
469 #[inline]
470 #[must_use]
471 #[stable(feature = "rust1", since = "1.0.0")]
472 #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
473 pub const fn as_ptr(&self) -> *const c_char {
474 self.inner.as_ptr()
475 }
476
477 /// Converts this C string to a byte slice.
478 ///
479 /// The returned slice will **not** contain the trailing nul terminator that this C
480 /// string has.
481 ///
482 /// > **Note**: This method is currently implemented as a constant-time
483 /// > cast, but it is planned to alter its definition in the future to
484 /// > perform the length calculation whenever this method is called.
485 ///
486 /// # Examples
487 ///
488 /// ```
489 /// use std::ffi::CStr;
490 ///
491 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
492 /// assert_eq!(cstr.to_bytes(), b"foo");
493 /// ```
494 #[inline]
495 #[must_use = "this returns the result of the operation, \
496 without modifying the original"]
497 #[stable(feature = "rust1", since = "1.0.0")]
498 #[rustc_const_unstable(feature = "const_cstr_methods", issue = "101719")]
499 pub const fn to_bytes(&self) -> &[u8] {
500 let bytes = self.to_bytes_with_nul();
501 // SAFETY: to_bytes_with_nul returns slice with length at least 1
502 unsafe { bytes.get_unchecked(..bytes.len() - 1) }
503 }
504
505 /// Converts this C string to a byte slice containing the trailing 0 byte.
506 ///
507 /// This function is the equivalent of [`CStr::to_bytes`] except that it
508 /// will retain the trailing nul terminator instead of chopping it off.
509 ///
510 /// > **Note**: This method is currently implemented as a 0-cost cast, but
511 /// > it is planned to alter its definition in the future to perform the
512 /// > length calculation whenever this method is called.
513 ///
514 /// # Examples
515 ///
516 /// ```
517 /// use std::ffi::CStr;
518 ///
519 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
520 /// assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
521 /// ```
522 #[inline]
523 #[must_use = "this returns the result of the operation, \
524 without modifying the original"]
525 #[stable(feature = "rust1", since = "1.0.0")]
526 #[rustc_const_unstable(feature = "const_cstr_methods", issue = "101719")]
527 pub const fn to_bytes_with_nul(&self) -> &[u8] {
528 // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
529 // is safe on all supported targets.
530 unsafe { &*(&self.inner as *const [c_char] as *const [u8]) }
531 }
532
533 /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
534 ///
535 /// If the contents of the `CStr` are valid UTF-8 data, this
536 /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
537 /// it will return an error with details of where UTF-8 validation failed.
538 ///
539 /// [str]: prim@str "str"
540 ///
541 /// # Examples
542 ///
543 /// ```
544 /// use std::ffi::CStr;
545 ///
546 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
547 /// assert_eq!(cstr.to_str(), Ok("foo"));
548 /// ```
549 #[stable(feature = "cstr_to_str", since = "1.4.0")]
550 #[rustc_const_unstable(feature = "const_cstr_methods", issue = "101719")]
551 pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
552 // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
553 // instead of in `from_ptr()`, it may be worth considering if this should
554 // be rewritten to do the UTF-8 check inline with the length calculation
555 // instead of doing it afterwards.
556 str::from_utf8(self.to_bytes())
557 }
558 }
559
560 #[stable(feature = "rust1", since = "1.0.0")]
561 impl PartialEq for CStr {
562 fn eq(&self, other: &CStr) -> bool {
563 self.to_bytes().eq(other.to_bytes())
564 }
565 }
566 #[stable(feature = "rust1", since = "1.0.0")]
567 impl Eq for CStr {}
568 #[stable(feature = "rust1", since = "1.0.0")]
569 impl PartialOrd for CStr {
570 fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
571 self.to_bytes().partial_cmp(&other.to_bytes())
572 }
573 }
574 #[stable(feature = "rust1", since = "1.0.0")]
575 impl Ord for CStr {
576 fn cmp(&self, other: &CStr) -> Ordering {
577 self.to_bytes().cmp(&other.to_bytes())
578 }
579 }
580
581 #[stable(feature = "cstr_range_from", since = "1.47.0")]
582 impl ops::Index<ops::RangeFrom<usize>> for CStr {
583 type Output = CStr;
584
585 fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
586 let bytes = self.to_bytes_with_nul();
587 // we need to manually check the starting index to account for the null
588 // byte, since otherwise we could get an empty string that doesn't end
589 // in a null.
590 if index.start < bytes.len() {
591 // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
592 unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
593 } else {
594 panic!(
595 "index out of bounds: the len is {} but the index is {}",
596 bytes.len(),
597 index.start
598 );
599 }
600 }
601 }
602
603 #[stable(feature = "cstring_asref", since = "1.7.0")]
604 impl AsRef<CStr> for CStr {
605 #[inline]
606 fn as_ref(&self) -> &CStr {
607 self
608 }
609 }