]> git.proxmox.com Git - rustc.git/blob - library/core/src/ffi/c_str.rs
bump version to 1.79.0+dfsg1-1~bpo12+pve2
[rustc.git] / library / core / src / ffi / c_str.rs
1 //! [`CStr`] and its related types.
2
3 use crate::cmp::Ordering;
4 use crate::error::Error;
5 use crate::ffi::c_char;
6 use crate::fmt;
7 use crate::intrinsics;
8 use crate::iter::FusedIterator;
9 use crate::marker::PhantomData;
10 use crate::ops;
11 use crate::ptr::addr_of;
12 use crate::ptr::NonNull;
13 use crate::slice;
14 use crate::slice::memchr;
15 use crate::str;
16
17 // FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link
18 // depends on where the item is being documented. however, since this is libcore, we can't
19 // actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the
20 // links to `CString` and `String` for now until a solution is developed
21
22 /// Representation of a borrowed C string.
23 ///
24 /// This type represents a borrowed reference to a nul-terminated
25 /// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
26 /// slice, or unsafely from a raw `*const c_char`. It can then be
27 /// converted to a Rust <code>&[str]</code> by performing UTF-8 validation, or
28 /// into an owned `CString`.
29 ///
30 /// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
31 /// in each pair are borrowed references; the latter are owned
32 /// strings.
33 ///
34 /// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)`
35 /// notwithstanding) and is not recommended to be placed in the signatures of FFI functions.
36 /// Instead, safe wrappers of FFI functions may leverage the unsafe [`CStr::from_ptr`] constructor
37 /// to provide a safe interface to other consumers.
38 ///
39 /// # Examples
40 ///
41 /// Inspecting a foreign C string:
42 ///
43 /// ```ignore (extern-declaration)
44 /// use std::ffi::CStr;
45 /// use std::os::raw::c_char;
46 ///
47 /// extern "C" { fn my_string() -> *const c_char; }
48 ///
49 /// unsafe {
50 /// let slice = CStr::from_ptr(my_string());
51 /// println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
52 /// }
53 /// ```
54 ///
55 /// Passing a Rust-originating C string:
56 ///
57 /// ```ignore (extern-declaration)
58 /// use std::ffi::{CString, CStr};
59 /// use std::os::raw::c_char;
60 ///
61 /// fn work(data: &CStr) {
62 /// extern "C" { fn work_with(data: *const c_char); }
63 ///
64 /// unsafe { work_with(data.as_ptr()) }
65 /// }
66 ///
67 /// let s = CString::new("data data data data").expect("CString::new failed");
68 /// work(&s);
69 /// ```
70 ///
71 /// Converting a foreign C string into a Rust `String`:
72 ///
73 /// ```ignore (extern-declaration)
74 /// use std::ffi::CStr;
75 /// use std::os::raw::c_char;
76 ///
77 /// extern "C" { fn my_string() -> *const c_char; }
78 ///
79 /// fn my_string_safe() -> String {
80 /// let cstr = unsafe { CStr::from_ptr(my_string()) };
81 /// // Get copy-on-write Cow<'_, str>, then guarantee a freshly-owned String allocation
82 /// String::from_utf8_lossy(cstr.to_bytes()).to_string()
83 /// }
84 ///
85 /// println!("string: {}", my_string_safe());
86 /// ```
87 ///
88 /// [str]: prim@str "str"
89 #[derive(Hash)]
90 #[stable(feature = "core_c_str", since = "1.64.0")]
91 #[rustc_has_incoherent_inherent_impls]
92 #[lang = "CStr"]
93 // `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
94 // on `CStr` being layout-compatible with `[u8]`.
95 // However, `CStr` layout is considered an implementation detail and must not be relied upon. We
96 // want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under
97 // `cfg(doc)`. This is an ad-hoc implementation of attribute privacy.
98 #[cfg_attr(not(doc), repr(transparent))]
99 #[allow(clippy::derived_hash_with_manual_eq)]
100 pub struct CStr {
101 // FIXME: this should not be represented with a DST slice but rather with
102 // just a raw `c_char` along with some form of marker to make
103 // this an unsized type. Essentially `sizeof(&CStr)` should be the
104 // same as `sizeof(&c_char)` but `CStr` should be an unsized type.
105 inner: [c_char],
106 }
107
108 /// An error indicating that a nul byte was not in the expected position.
109 ///
110 /// The slice used to create a [`CStr`] must have one and only one nul byte,
111 /// positioned at the end.
112 ///
113 /// This error is created by the [`CStr::from_bytes_with_nul`] method.
114 /// See its documentation for more.
115 ///
116 /// # Examples
117 ///
118 /// ```
119 /// use std::ffi::{CStr, FromBytesWithNulError};
120 ///
121 /// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
122 /// ```
123 #[derive(Clone, PartialEq, Eq, Debug)]
124 #[stable(feature = "core_c_str", since = "1.64.0")]
125 pub struct FromBytesWithNulError {
126 kind: FromBytesWithNulErrorKind,
127 }
128
129 #[derive(Clone, PartialEq, Eq, Debug)]
130 enum FromBytesWithNulErrorKind {
131 InteriorNul(usize),
132 NotNulTerminated,
133 }
134
135 // FIXME: const stability attributes should not be required here, I think
136 impl FromBytesWithNulError {
137 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
138 const fn interior_nul(pos: usize) -> FromBytesWithNulError {
139 FromBytesWithNulError { kind: FromBytesWithNulErrorKind::InteriorNul(pos) }
140 }
141 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
142 const fn not_nul_terminated() -> FromBytesWithNulError {
143 FromBytesWithNulError { kind: FromBytesWithNulErrorKind::NotNulTerminated }
144 }
145 }
146
147 #[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
148 impl Error for FromBytesWithNulError {
149 #[allow(deprecated)]
150 fn description(&self) -> &str {
151 match self.kind {
152 FromBytesWithNulErrorKind::InteriorNul(..) => {
153 "data provided contains an interior nul byte"
154 }
155 FromBytesWithNulErrorKind::NotNulTerminated => "data provided is not nul terminated",
156 }
157 }
158 }
159
160 /// An error indicating that no nul byte was present.
161 ///
162 /// A slice used to create a [`CStr`] must contain a nul byte somewhere
163 /// within the slice.
164 ///
165 /// This error is created by the [`CStr::from_bytes_until_nul`] method.
166 ///
167 #[derive(Clone, PartialEq, Eq, Debug)]
168 #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
169 pub struct FromBytesUntilNulError(());
170
171 #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
172 impl fmt::Display for FromBytesUntilNulError {
173 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
174 write!(f, "data provided does not contain a nul")
175 }
176 }
177
178 #[stable(feature = "cstr_debug", since = "1.3.0")]
179 impl fmt::Debug for CStr {
180 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
181 write!(f, "\"{}\"", self.to_bytes().escape_ascii())
182 }
183 }
184
185 #[stable(feature = "cstr_default", since = "1.10.0")]
186 impl Default for &CStr {
187 #[inline]
188 fn default() -> Self {
189 const SLICE: &[c_char] = &[0];
190 // SAFETY: `SLICE` is indeed pointing to a valid nul-terminated string.
191 unsafe { CStr::from_ptr(SLICE.as_ptr()) }
192 }
193 }
194
195 #[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
196 impl fmt::Display for FromBytesWithNulError {
197 #[allow(deprecated, deprecated_in_future)]
198 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
199 f.write_str(self.description())?;
200 if let FromBytesWithNulErrorKind::InteriorNul(pos) = self.kind {
201 write!(f, " at byte pos {pos}")?;
202 }
203 Ok(())
204 }
205 }
206
207 impl CStr {
208 /// Wraps a raw C string with a safe C string wrapper.
209 ///
210 /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
211 /// allows inspection and interoperation of non-owned C strings. The total
212 /// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes**
213 /// in memory (a restriction from [`slice::from_raw_parts`]).
214 ///
215 /// # Safety
216 ///
217 /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
218 /// end of the string.
219 ///
220 /// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator.
221 /// This means in particular:
222 ///
223 /// * The entire memory range of this `CStr` must be contained within a single allocated object!
224 /// * `ptr` must be non-null even for a zero-length cstr.
225 ///
226 /// * The memory referenced by the returned `CStr` must not be mutated for
227 /// the duration of lifetime `'a`.
228 ///
229 /// * The nul terminator must be within `isize::MAX` from `ptr`
230 ///
231 /// > **Note**: This operation is intended to be a 0-cost cast but it is
232 /// > currently implemented with an up-front calculation of the length of
233 /// > the string. This is not guaranteed to always be the case.
234 ///
235 /// # Caveat
236 ///
237 /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
238 /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
239 /// such as by providing a helper function taking the lifetime of a host value for the slice,
240 /// or by explicit annotation.
241 ///
242 /// # Examples
243 ///
244 /// ```ignore (extern-declaration)
245 /// use std::ffi::{c_char, CStr};
246 ///
247 /// extern "C" {
248 /// fn my_string() -> *const c_char;
249 /// }
250 ///
251 /// unsafe {
252 /// let slice = CStr::from_ptr(my_string());
253 /// println!("string returned: {}", slice.to_str().unwrap());
254 /// }
255 /// ```
256 ///
257 /// ```
258 /// #![feature(const_cstr_from_ptr)]
259 ///
260 /// use std::ffi::{c_char, CStr};
261 ///
262 /// const HELLO_PTR: *const c_char = {
263 /// const BYTES: &[u8] = b"Hello, world!\0";
264 /// BYTES.as_ptr().cast()
265 /// };
266 /// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) };
267 /// ```
268 ///
269 /// [valid]: core::ptr#safety
270 #[inline] // inline is necessary for codegen to see strlen.
271 #[must_use]
272 #[stable(feature = "rust1", since = "1.0.0")]
273 #[rustc_const_unstable(feature = "const_cstr_from_ptr", issue = "113219")]
274 pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
275 // SAFETY: The caller has provided a pointer that points to a valid C
276 // string with a NUL terminator less than `isize::MAX` from `ptr`.
277 let len = unsafe { const_strlen(ptr) };
278
279 // SAFETY: The caller has provided a valid pointer with length less than
280 // `isize::MAX`, so `from_raw_parts` is safe. The content remains valid
281 // and doesn't change for the lifetime of the returned `CStr`. This
282 // means the call to `from_bytes_with_nul_unchecked` is correct.
283 //
284 // The cast from c_char to u8 is ok because a c_char is always one byte.
285 unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) }
286 }
287
288 /// Creates a C string wrapper from a byte slice with any number of nuls.
289 ///
290 /// This method will create a `CStr` from any byte slice that contains at
291 /// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller
292 /// does not need to know where the nul byte is located.
293 ///
294 /// If the first byte is a nul character, this method will return an
295 /// empty `CStr`. If multiple nul characters are present, the `CStr` will
296 /// end at the first one.
297 ///
298 /// If the slice only has a single nul byte at the end, this method is
299 /// equivalent to [`CStr::from_bytes_with_nul`].
300 ///
301 /// # Examples
302 /// ```
303 /// use std::ffi::CStr;
304 ///
305 /// let mut buffer = [0u8; 16];
306 /// unsafe {
307 /// // Here we might call an unsafe C function that writes a string
308 /// // into the buffer.
309 /// let buf_ptr = buffer.as_mut_ptr();
310 /// buf_ptr.write_bytes(b'A', 8);
311 /// }
312 /// // Attempt to extract a C nul-terminated string from the buffer.
313 /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
314 /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
315 /// ```
316 ///
317 #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
318 #[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
319 pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
320 let nul_pos = memchr::memchr(0, bytes);
321 match nul_pos {
322 Some(nul_pos) => {
323 // FIXME(const-hack) replace with range index
324 // SAFETY: nul_pos + 1 <= bytes.len()
325 let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) };
326 // SAFETY: We know there is a nul byte at nul_pos, so this slice
327 // (ending at the nul byte) is a well-formed C string.
328 Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
329 }
330 None => Err(FromBytesUntilNulError(())),
331 }
332 }
333
334 /// Creates a C string wrapper from a byte slice with exactly one nul
335 /// terminator.
336 ///
337 /// This function will cast the provided `bytes` to a `CStr`
338 /// wrapper after ensuring that the byte slice is nul-terminated
339 /// and does not contain any interior nul bytes.
340 ///
341 /// If the nul byte may not be at the end,
342 /// [`CStr::from_bytes_until_nul`] can be used instead.
343 ///
344 /// # Examples
345 ///
346 /// ```
347 /// use std::ffi::CStr;
348 ///
349 /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
350 /// assert!(cstr.is_ok());
351 /// ```
352 ///
353 /// Creating a `CStr` without a trailing nul terminator is an error:
354 ///
355 /// ```
356 /// use std::ffi::CStr;
357 ///
358 /// let cstr = CStr::from_bytes_with_nul(b"hello");
359 /// assert!(cstr.is_err());
360 /// ```
361 ///
362 /// Creating a `CStr` with an interior nul byte is an error:
363 ///
364 /// ```
365 /// use std::ffi::CStr;
366 ///
367 /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
368 /// assert!(cstr.is_err());
369 /// ```
370 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
371 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
372 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
373 let nul_pos = memchr::memchr(0, bytes);
374 match nul_pos {
375 Some(nul_pos) if nul_pos + 1 == bytes.len() => {
376 // SAFETY: We know there is only one nul byte, at the end
377 // of the byte slice.
378 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
379 }
380 Some(nul_pos) => Err(FromBytesWithNulError::interior_nul(nul_pos)),
381 None => Err(FromBytesWithNulError::not_nul_terminated()),
382 }
383 }
384
385 /// Unsafely creates a C string wrapper from a byte slice.
386 ///
387 /// This function will cast the provided `bytes` to a `CStr` wrapper without
388 /// performing any sanity checks.
389 ///
390 /// # Safety
391 /// The provided slice **must** be nul-terminated and not contain any interior
392 /// nul bytes.
393 ///
394 /// # Examples
395 ///
396 /// ```
397 /// use std::ffi::{CStr, CString};
398 ///
399 /// unsafe {
400 /// let cstring = CString::new("hello").expect("CString::new failed");
401 /// let cstr = CStr::from_bytes_with_nul_unchecked(cstring.to_bytes_with_nul());
402 /// assert_eq!(cstr, &*cstring);
403 /// }
404 /// ```
405 #[inline]
406 #[must_use]
407 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
408 #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
409 #[rustc_allow_const_fn_unstable(const_eval_select)]
410 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
411 #[inline]
412 fn rt_impl(bytes: &[u8]) -> &CStr {
413 // Chance at catching some UB at runtime with debug builds.
414 debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
415
416 // SAFETY: Casting to CStr is safe because its internal representation
417 // is a [u8] too (safe only inside std).
418 // Dereferencing the obtained pointer is safe because it comes from a
419 // reference. Making a reference is then safe because its lifetime
420 // is bound by the lifetime of the given `bytes`.
421 unsafe { &*(bytes as *const [u8] as *const CStr) }
422 }
423
424 const fn const_impl(bytes: &[u8]) -> &CStr {
425 // Saturating so that an empty slice panics in the assert with a good
426 // message, not here due to underflow.
427 let mut i = bytes.len().saturating_sub(1);
428 assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
429
430 // Ending nul byte exists, skip to the rest.
431 while i != 0 {
432 i -= 1;
433 let byte = bytes[i];
434 assert!(byte != 0, "input contained interior nul");
435 }
436
437 // SAFETY: See `rt_impl` cast.
438 unsafe { &*(bytes as *const [u8] as *const CStr) }
439 }
440
441 intrinsics::const_eval_select((bytes,), const_impl, rt_impl)
442 }
443
444 /// Returns the inner pointer to this C string.
445 ///
446 /// The returned pointer will be valid for as long as `self` is, and points
447 /// to a contiguous region of memory terminated with a 0 byte to represent
448 /// the end of the string.
449 ///
450 /// The type of the returned pointer is
451 /// [`*const c_char`][crate::ffi::c_char], and whether it's
452 /// an alias for `*const i8` or `*const u8` is platform-specific.
453 ///
454 /// **WARNING**
455 ///
456 /// The returned pointer is read-only; writing to it (including passing it
457 /// to C code that writes to it) causes undefined behavior.
458 ///
459 /// It is your responsibility to make sure that the underlying memory is not
460 /// freed too early. For example, the following code will cause undefined
461 /// behavior when `ptr` is used inside the `unsafe` block:
462 ///
463 /// ```no_run
464 /// # #![allow(unused_must_use)] #![allow(temporary_cstring_as_ptr)]
465 /// use std::ffi::CString;
466 ///
467 /// // Do not do this:
468 /// let ptr = CString::new("Hello").expect("CString::new failed").as_ptr();
469 /// unsafe {
470 /// // `ptr` is dangling
471 /// *ptr;
472 /// }
473 /// ```
474 ///
475 /// This happens because the pointer returned by `as_ptr` does not carry any
476 /// lifetime information and the `CString` is deallocated immediately after
477 /// the `CString::new("Hello").expect("CString::new failed").as_ptr()`
478 /// expression is evaluated.
479 /// To fix the problem, bind the `CString` to a local variable:
480 ///
481 /// ```no_run
482 /// # #![allow(unused_must_use)]
483 /// use std::ffi::CString;
484 ///
485 /// let hello = CString::new("Hello").expect("CString::new failed");
486 /// let ptr = hello.as_ptr();
487 /// unsafe {
488 /// // `ptr` is valid because `hello` is in scope
489 /// *ptr;
490 /// }
491 /// ```
492 ///
493 /// This way, the lifetime of the `CString` in `hello` encompasses
494 /// the lifetime of `ptr` and the `unsafe` block.
495 #[inline]
496 #[must_use]
497 #[stable(feature = "rust1", since = "1.0.0")]
498 #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
499 #[rustc_never_returns_null_ptr]
500 pub const fn as_ptr(&self) -> *const c_char {
501 self.inner.as_ptr()
502 }
503
504 /// We could eventually expose this publicly, if we wanted.
505 #[inline]
506 #[must_use]
507 const fn as_non_null_ptr(&self) -> NonNull<c_char> {
508 NonNull::from(&self.inner).as_non_null_ptr()
509 }
510
511 /// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator.
512 ///
513 /// > **Note**: This method is currently implemented as a constant-time
514 /// > cast, but it is planned to alter its definition in the future to
515 /// > perform the length calculation whenever this method is called.
516 ///
517 /// # Examples
518 ///
519 /// ```
520 /// use std::ffi::CStr;
521 ///
522 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
523 /// assert_eq!(cstr.count_bytes(), 3);
524 ///
525 /// let cstr = CStr::from_bytes_with_nul(b"\0").unwrap();
526 /// assert_eq!(cstr.count_bytes(), 0);
527 /// ```
528 #[inline]
529 #[must_use]
530 #[doc(alias("len", "strlen"))]
531 #[stable(feature = "cstr_count_bytes", since = "1.79.0")]
532 #[rustc_const_unstable(feature = "const_cstr_from_ptr", issue = "113219")]
533 pub const fn count_bytes(&self) -> usize {
534 self.inner.len() - 1
535 }
536
537 /// Returns `true` if `self.to_bytes()` has a length of 0.
538 ///
539 /// # Examples
540 ///
541 /// ```
542 /// use std::ffi::CStr;
543 /// # use std::ffi::FromBytesWithNulError;
544 ///
545 /// # fn main() { test().unwrap(); }
546 /// # fn test() -> Result<(), FromBytesWithNulError> {
547 /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
548 /// assert!(!cstr.is_empty());
549 ///
550 /// let empty_cstr = CStr::from_bytes_with_nul(b"\0")?;
551 /// assert!(empty_cstr.is_empty());
552 /// # Ok(())
553 /// # }
554 /// ```
555 #[inline]
556 #[stable(feature = "cstr_is_empty", since = "1.71.0")]
557 #[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")]
558 pub const fn is_empty(&self) -> bool {
559 // SAFETY: We know there is at least one byte; for empty strings it
560 // is the NUL terminator.
561 // FIXME(const-hack): use get_unchecked
562 unsafe { *self.inner.as_ptr() == 0 }
563 }
564
565 /// Converts this C string to a byte slice.
566 ///
567 /// The returned slice will **not** contain the trailing nul terminator that this C
568 /// string has.
569 ///
570 /// > **Note**: This method is currently implemented as a constant-time
571 /// > cast, but it is planned to alter its definition in the future to
572 /// > perform the length calculation whenever this method is called.
573 ///
574 /// # Examples
575 ///
576 /// ```
577 /// use std::ffi::CStr;
578 ///
579 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
580 /// assert_eq!(cstr.to_bytes(), b"foo");
581 /// ```
582 #[inline]
583 #[must_use = "this returns the result of the operation, \
584 without modifying the original"]
585 #[stable(feature = "rust1", since = "1.0.0")]
586 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
587 pub const fn to_bytes(&self) -> &[u8] {
588 let bytes = self.to_bytes_with_nul();
589 // FIXME(const-hack) replace with range index
590 // SAFETY: to_bytes_with_nul returns slice with length at least 1
591 unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) }
592 }
593
594 /// Converts this C string to a byte slice containing the trailing 0 byte.
595 ///
596 /// This function is the equivalent of [`CStr::to_bytes`] except that it
597 /// will retain the trailing nul terminator instead of chopping it off.
598 ///
599 /// > **Note**: This method is currently implemented as a 0-cost cast, but
600 /// > it is planned to alter its definition in the future to perform the
601 /// > length calculation whenever this method is called.
602 ///
603 /// # Examples
604 ///
605 /// ```
606 /// use std::ffi::CStr;
607 ///
608 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
609 /// assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
610 /// ```
611 #[inline]
612 #[must_use = "this returns the result of the operation, \
613 without modifying the original"]
614 #[stable(feature = "rust1", since = "1.0.0")]
615 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
616 pub const fn to_bytes_with_nul(&self) -> &[u8] {
617 // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
618 // is safe on all supported targets.
619 unsafe { &*(addr_of!(self.inner) as *const [u8]) }
620 }
621
622 /// Iterates over the bytes in this C string.
623 ///
624 /// The returned iterator will **not** contain the trailing nul terminator
625 /// that this C string has.
626 ///
627 /// # Examples
628 ///
629 /// ```
630 /// #![feature(cstr_bytes)]
631 /// use std::ffi::CStr;
632 ///
633 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
634 /// assert!(cstr.bytes().eq(*b"foo"));
635 /// ```
636 #[inline]
637 #[unstable(feature = "cstr_bytes", issue = "112115")]
638 pub fn bytes(&self) -> Bytes<'_> {
639 Bytes::new(self)
640 }
641
642 /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
643 ///
644 /// If the contents of the `CStr` are valid UTF-8 data, this
645 /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
646 /// it will return an error with details of where UTF-8 validation failed.
647 ///
648 /// [str]: prim@str "str"
649 ///
650 /// # Examples
651 ///
652 /// ```
653 /// use std::ffi::CStr;
654 ///
655 /// let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
656 /// assert_eq!(cstr.to_str(), Ok("foo"));
657 /// ```
658 #[stable(feature = "cstr_to_str", since = "1.4.0")]
659 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
660 pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
661 // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
662 // instead of in `from_ptr()`, it may be worth considering if this should
663 // be rewritten to do the UTF-8 check inline with the length calculation
664 // instead of doing it afterwards.
665 str::from_utf8(self.to_bytes())
666 }
667 }
668
669 #[stable(feature = "rust1", since = "1.0.0")]
670 impl PartialEq for CStr {
671 #[inline]
672 fn eq(&self, other: &CStr) -> bool {
673 self.to_bytes().eq(other.to_bytes())
674 }
675 }
676 #[stable(feature = "rust1", since = "1.0.0")]
677 impl Eq for CStr {}
678 #[stable(feature = "rust1", since = "1.0.0")]
679 impl PartialOrd for CStr {
680 #[inline]
681 fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
682 self.to_bytes().partial_cmp(&other.to_bytes())
683 }
684 }
685 #[stable(feature = "rust1", since = "1.0.0")]
686 impl Ord for CStr {
687 #[inline]
688 fn cmp(&self, other: &CStr) -> Ordering {
689 self.to_bytes().cmp(&other.to_bytes())
690 }
691 }
692
693 #[stable(feature = "cstr_range_from", since = "1.47.0")]
694 impl ops::Index<ops::RangeFrom<usize>> for CStr {
695 type Output = CStr;
696
697 #[inline]
698 fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
699 let bytes = self.to_bytes_with_nul();
700 // we need to manually check the starting index to account for the null
701 // byte, since otherwise we could get an empty string that doesn't end
702 // in a null.
703 if index.start < bytes.len() {
704 // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
705 unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
706 } else {
707 panic!(
708 "index out of bounds: the len is {} but the index is {}",
709 bytes.len(),
710 index.start
711 );
712 }
713 }
714 }
715
716 #[stable(feature = "cstring_asref", since = "1.7.0")]
717 impl AsRef<CStr> for CStr {
718 #[inline]
719 fn as_ref(&self) -> &CStr {
720 self
721 }
722 }
723
724 /// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible.
725 ///
726 /// # Safety
727 ///
728 /// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be
729 /// located within `isize::MAX` from `ptr`.
730 #[inline]
731 const unsafe fn const_strlen(ptr: *const c_char) -> usize {
732 const fn strlen_ct(s: *const c_char) -> usize {
733 let mut len = 0;
734
735 // SAFETY: Outer caller has provided a pointer to a valid C string.
736 while unsafe { *s.add(len) } != 0 {
737 len += 1;
738 }
739
740 len
741 }
742
743 #[inline]
744 fn strlen_rt(s: *const c_char) -> usize {
745 extern "C" {
746 /// Provided by libc or compiler_builtins.
747 fn strlen(s: *const c_char) -> usize;
748 }
749
750 // SAFETY: Outer caller has provided a pointer to a valid C string.
751 unsafe { strlen(s) }
752 }
753
754 intrinsics::const_eval_select((ptr,), strlen_ct, strlen_rt)
755 }
756
757 /// An iterator over the bytes of a [`CStr`], without the nul terminator.
758 ///
759 /// This struct is created by the [`bytes`] method on [`CStr`].
760 /// See its documentation for more.
761 ///
762 /// [`bytes`]: CStr::bytes
763 #[must_use = "iterators are lazy and do nothing unless consumed"]
764 #[unstable(feature = "cstr_bytes", issue = "112115")]
765 #[derive(Clone, Debug)]
766 pub struct Bytes<'a> {
767 // since we know the string is nul-terminated, we only need one pointer
768 ptr: NonNull<u8>,
769 phantom: PhantomData<&'a u8>,
770 }
771 impl<'a> Bytes<'a> {
772 #[inline]
773 fn new(s: &'a CStr) -> Self {
774 Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData }
775 }
776
777 #[inline]
778 fn is_empty(&self) -> bool {
779 // SAFETY: We uphold that the pointer is always valid to dereference
780 // by starting with a valid C string and then never incrementing beyond
781 // the nul terminator.
782 unsafe { self.ptr.read() == 0 }
783 }
784 }
785
786 #[unstable(feature = "cstr_bytes", issue = "112115")]
787 impl Iterator for Bytes<'_> {
788 type Item = u8;
789
790 #[inline]
791 fn next(&mut self) -> Option<u8> {
792 // SAFETY: We only choose a pointer from a valid C string, which must
793 // be non-null and contain at least one value. Since we always stop at
794 // the nul terminator, which is guaranteed to exist, we can assume that
795 // the pointer is non-null and valid. This lets us safely dereference
796 // it and assume that adding 1 will create a new, non-null, valid
797 // pointer.
798 unsafe {
799 let ret = self.ptr.read();
800 if ret == 0 {
801 None
802 } else {
803 self.ptr = self.ptr.offset(1);
804 Some(ret)
805 }
806 }
807 }
808
809 #[inline]
810 fn size_hint(&self) -> (usize, Option<usize>) {
811 if self.is_empty() { (0, Some(0)) } else { (1, None) }
812 }
813 }
814
815 #[unstable(feature = "cstr_bytes", issue = "112115")]
816 impl FusedIterator for Bytes<'_> {}