]> git.proxmox.com Git - rustc.git/blob - library/core/tests/num/dec2flt/rawfp.rs
New upstream version 1.54.0+dfsg1
[rustc.git] / library / core / tests / num / dec2flt / rawfp.rs
1 use core::num::dec2flt::rawfp::RawFloat;
2 use core::num::dec2flt::rawfp::{fp_to_float, next_float, prev_float, round_normal};
3 use core::num::diy_float::Fp;
4
5 fn integer_decode(f: f64) -> (u64, i16, i8) {
6 RawFloat::integer_decode(f)
7 }
8
9 #[test]
10 fn fp_to_float_half_to_even() {
11 fn is_normalized(sig: u64) -> bool {
12 // intentionally written without {min,max}_sig() as a sanity check
13 sig >> 52 == 1 && sig >> 53 == 0
14 }
15
16 fn conv(sig: u64) -> u64 {
17 // The significands are perfectly in range, so the exponent should not matter
18 let (m1, e1, _) = integer_decode(fp_to_float::<f64>(Fp { f: sig, e: 0 }));
19 assert_eq!(e1, 0 + 64 - 53);
20 let (m2, e2, _) = integer_decode(fp_to_float::<f64>(Fp { f: sig, e: 55 }));
21 assert_eq!(e2, 55 + 64 - 53);
22 assert_eq!(m2, m1);
23 let (m3, e3, _) = integer_decode(fp_to_float::<f64>(Fp { f: sig, e: -78 }));
24 assert_eq!(e3, -78 + 64 - 53);
25 assert_eq!(m3, m2);
26 m3
27 }
28
29 let odd = 0x1F_EDCB_A012_345F;
30 let even = odd - 1;
31 assert!(is_normalized(odd));
32 assert!(is_normalized(even));
33 assert_eq!(conv(odd << 11), odd);
34 assert_eq!(conv(even << 11), even);
35 assert_eq!(conv(odd << 11 | 1 << 10), odd + 1);
36 assert_eq!(conv(even << 11 | 1 << 10), even);
37 assert_eq!(conv(even << 11 | 1 << 10 | 1), even + 1);
38 assert_eq!(conv(odd << 11 | 1 << 9), odd);
39 assert_eq!(conv(even << 11 | 1 << 9), even);
40 assert_eq!(conv(odd << 11 | 0x7FF), odd + 1);
41 assert_eq!(conv(even << 11 | 0x7FF), even + 1);
42 assert_eq!(conv(odd << 11 | 0x3FF), odd);
43 assert_eq!(conv(even << 11 | 0x3FF), even);
44 }
45
46 #[test]
47 fn integers_to_f64() {
48 assert_eq!(fp_to_float::<f64>(Fp { f: 1, e: 0 }), 1.0);
49 assert_eq!(fp_to_float::<f64>(Fp { f: 42, e: 7 }), (42 << 7) as f64);
50 assert_eq!(fp_to_float::<f64>(Fp { f: 1 << 20, e: 30 }), (1u64 << 50) as f64);
51 assert_eq!(fp_to_float::<f64>(Fp { f: 4, e: -3 }), 0.5);
52 }
53
54 const SOME_FLOATS: [f64; 9] = [
55 0.1f64,
56 33.568,
57 42.1e-5,
58 777.0e9,
59 1.1111,
60 0.347997,
61 9843579834.35892,
62 12456.0e-150,
63 54389573.0e-150,
64 ];
65
66 #[test]
67 fn human_f64_roundtrip() {
68 for &x in &SOME_FLOATS {
69 let (f, e, _) = integer_decode(x);
70 let fp = Fp { f: f, e: e };
71 assert_eq!(fp_to_float::<f64>(fp), x);
72 }
73 }
74
75 #[test]
76 fn rounding_overflow() {
77 let x = Fp { f: 0xFF_FF_FF_FF_FF_FF_FF_00u64, e: 42 };
78 let rounded = round_normal::<f64>(x);
79 let adjusted_k = x.e + 64 - 53;
80 assert_eq!(rounded.sig, 1 << 52);
81 assert_eq!(rounded.k, adjusted_k + 1);
82 }
83
84 #[test]
85 fn prev_float_monotonic() {
86 let mut x = 1.0;
87 for _ in 0..100 {
88 let x1 = prev_float(x);
89 assert!(x1 < x);
90 assert!(x - x1 < 1e-15);
91 x = x1;
92 }
93 }
94
95 const MIN_SUBNORMAL: f64 = 5e-324;
96
97 #[test]
98 fn next_float_zero() {
99 let tiny = next_float(0.0);
100 assert_eq!(tiny, MIN_SUBNORMAL);
101 assert!(tiny != 0.0);
102 }
103
104 #[test]
105 fn next_float_subnormal() {
106 let second = next_float(MIN_SUBNORMAL);
107 // For subnormals, MIN_SUBNORMAL is the ULP
108 assert!(second != MIN_SUBNORMAL);
109 assert!(second > 0.0);
110 assert_eq!(second - MIN_SUBNORMAL, MIN_SUBNORMAL);
111 }
112
113 #[test]
114 fn next_float_inf() {
115 assert_eq!(next_float(f64::MAX), f64::INFINITY);
116 assert_eq!(next_float(f64::INFINITY), f64::INFINITY);
117 }
118
119 #[test]
120 fn next_prev_identity() {
121 for &x in &SOME_FLOATS {
122 assert_eq!(prev_float(next_float(x)), x);
123 assert_eq!(prev_float(prev_float(next_float(next_float(x)))), x);
124 assert_eq!(next_float(prev_float(x)), x);
125 assert_eq!(next_float(next_float(prev_float(prev_float(x)))), x);
126 }
127 }
128
129 #[test]
130 fn next_float_monotonic() {
131 let mut x = 0.49999999999999;
132 assert!(x < 0.5);
133 for _ in 0..200 {
134 let x1 = next_float(x);
135 assert!(x1 > x);
136 assert!(x1 - x < 1e-15, "next_float_monotonic: delta = {:?}", x1 - x);
137 x = x1;
138 }
139 assert!(x > 0.5);
140 }
141
142 #[test]
143 fn test_f32_integer_decode() {
144 assert_eq!(3.14159265359f32.integer_decode(), (13176795, -22, 1));
145 assert_eq!((-8573.5918555f32).integer_decode(), (8779358, -10, -1));
146 assert_eq!(2f32.powf(100.0).integer_decode(), (8388608, 77, 1));
147 assert_eq!(0f32.integer_decode(), (0, -150, 1));
148 assert_eq!((-0f32).integer_decode(), (0, -150, -1));
149 assert_eq!(f32::INFINITY.integer_decode(), (8388608, 105, 1));
150 assert_eq!(f32::NEG_INFINITY.integer_decode(), (8388608, 105, -1));
151
152 // Ignore the "sign" (quiet / signalling flag) of NAN.
153 // It can vary between runtime operations and LLVM folding.
154 let (nan_m, nan_e, _nan_s) = f32::NAN.integer_decode();
155 assert_eq!((nan_m, nan_e), (12582912, 105));
156 }
157
158 #[test]
159 fn test_f64_integer_decode() {
160 assert_eq!(3.14159265359f64.integer_decode(), (7074237752028906, -51, 1));
161 assert_eq!((-8573.5918555f64).integer_decode(), (4713381968463931, -39, -1));
162 assert_eq!(2f64.powf(100.0).integer_decode(), (4503599627370496, 48, 1));
163 assert_eq!(0f64.integer_decode(), (0, -1075, 1));
164 assert_eq!((-0f64).integer_decode(), (0, -1075, -1));
165 assert_eq!(f64::INFINITY.integer_decode(), (4503599627370496, 972, 1));
166 assert_eq!(f64::NEG_INFINITY.integer_decode(), (4503599627370496, 972, -1));
167
168 // Ignore the "sign" (quiet / signalling flag) of NAN.
169 // It can vary between runtime operations and LLVM folding.
170 let (nan_m, nan_e, _nan_s) = f64::NAN.integer_decode();
171 assert_eq!((nan_m, nan_e), (6755399441055744, 972));
172 }