]> git.proxmox.com Git - rustc.git/blob - library/core/tests/slice.rs
New upstream version 1.65.0+dfsg1
[rustc.git] / library / core / tests / slice.rs
1 use core::cell::Cell;
2 use core::cmp::Ordering;
3 use core::mem::MaybeUninit;
4 use core::result::Result::{Err, Ok};
5 use core::slice;
6
7 #[test]
8 fn test_position() {
9 let b = [1, 2, 3, 5, 5];
10 assert_eq!(b.iter().position(|&v| v == 9), None);
11 assert_eq!(b.iter().position(|&v| v == 5), Some(3));
12 assert_eq!(b.iter().position(|&v| v == 3), Some(2));
13 assert_eq!(b.iter().position(|&v| v == 0), None);
14 }
15
16 #[test]
17 fn test_rposition() {
18 let b = [1, 2, 3, 5, 5];
19 assert_eq!(b.iter().rposition(|&v| v == 9), None);
20 assert_eq!(b.iter().rposition(|&v| v == 5), Some(4));
21 assert_eq!(b.iter().rposition(|&v| v == 3), Some(2));
22 assert_eq!(b.iter().rposition(|&v| v == 0), None);
23 }
24
25 #[test]
26 fn test_binary_search() {
27 let b: [i32; 0] = [];
28 assert_eq!(b.binary_search(&5), Err(0));
29
30 let b = [4];
31 assert_eq!(b.binary_search(&3), Err(0));
32 assert_eq!(b.binary_search(&4), Ok(0));
33 assert_eq!(b.binary_search(&5), Err(1));
34
35 let b = [1, 2, 4, 6, 8, 9];
36 assert_eq!(b.binary_search(&5), Err(3));
37 assert_eq!(b.binary_search(&6), Ok(3));
38 assert_eq!(b.binary_search(&7), Err(4));
39 assert_eq!(b.binary_search(&8), Ok(4));
40
41 let b = [1, 2, 4, 5, 6, 8];
42 assert_eq!(b.binary_search(&9), Err(6));
43
44 let b = [1, 2, 4, 6, 7, 8, 9];
45 assert_eq!(b.binary_search(&6), Ok(3));
46 assert_eq!(b.binary_search(&5), Err(3));
47 assert_eq!(b.binary_search(&8), Ok(5));
48
49 let b = [1, 2, 4, 5, 6, 8, 9];
50 assert_eq!(b.binary_search(&7), Err(5));
51 assert_eq!(b.binary_search(&0), Err(0));
52
53 let b = [1, 3, 3, 3, 7];
54 assert_eq!(b.binary_search(&0), Err(0));
55 assert_eq!(b.binary_search(&1), Ok(0));
56 assert_eq!(b.binary_search(&2), Err(1));
57 assert!(match b.binary_search(&3) {
58 Ok(1..=3) => true,
59 _ => false,
60 });
61 assert!(match b.binary_search(&3) {
62 Ok(1..=3) => true,
63 _ => false,
64 });
65 assert_eq!(b.binary_search(&4), Err(4));
66 assert_eq!(b.binary_search(&5), Err(4));
67 assert_eq!(b.binary_search(&6), Err(4));
68 assert_eq!(b.binary_search(&7), Ok(4));
69 assert_eq!(b.binary_search(&8), Err(5));
70
71 let b = [(); usize::MAX];
72 assert_eq!(b.binary_search(&()), Ok(usize::MAX / 2));
73 }
74
75 #[test]
76 fn test_binary_search_by_overflow() {
77 let b = [(); usize::MAX];
78 assert_eq!(b.binary_search_by(|_| Ordering::Equal), Ok(usize::MAX / 2));
79 assert_eq!(b.binary_search_by(|_| Ordering::Greater), Err(0));
80 assert_eq!(b.binary_search_by(|_| Ordering::Less), Err(usize::MAX));
81 }
82
83 #[test]
84 // Test implementation specific behavior when finding equivalent elements.
85 // It is ok to break this test but when you do a crater run is highly advisable.
86 fn test_binary_search_implementation_details() {
87 let b = [1, 1, 2, 2, 3, 3, 3];
88 assert_eq!(b.binary_search(&1), Ok(1));
89 assert_eq!(b.binary_search(&2), Ok(3));
90 assert_eq!(b.binary_search(&3), Ok(5));
91 let b = [1, 1, 1, 1, 1, 3, 3, 3, 3];
92 assert_eq!(b.binary_search(&1), Ok(4));
93 assert_eq!(b.binary_search(&3), Ok(7));
94 let b = [1, 1, 1, 1, 3, 3, 3, 3, 3];
95 assert_eq!(b.binary_search(&1), Ok(2));
96 assert_eq!(b.binary_search(&3), Ok(4));
97 }
98
99 #[test]
100 fn test_partition_point() {
101 let b: [i32; 0] = [];
102 assert_eq!(b.partition_point(|&x| x < 5), 0);
103
104 let b = [4];
105 assert_eq!(b.partition_point(|&x| x < 3), 0);
106 assert_eq!(b.partition_point(|&x| x < 4), 0);
107 assert_eq!(b.partition_point(|&x| x < 5), 1);
108
109 let b = [1, 2, 4, 6, 8, 9];
110 assert_eq!(b.partition_point(|&x| x < 5), 3);
111 assert_eq!(b.partition_point(|&x| x < 6), 3);
112 assert_eq!(b.partition_point(|&x| x < 7), 4);
113 assert_eq!(b.partition_point(|&x| x < 8), 4);
114
115 let b = [1, 2, 4, 5, 6, 8];
116 assert_eq!(b.partition_point(|&x| x < 9), 6);
117
118 let b = [1, 2, 4, 6, 7, 8, 9];
119 assert_eq!(b.partition_point(|&x| x < 6), 3);
120 assert_eq!(b.partition_point(|&x| x < 5), 3);
121 assert_eq!(b.partition_point(|&x| x < 8), 5);
122
123 let b = [1, 2, 4, 5, 6, 8, 9];
124 assert_eq!(b.partition_point(|&x| x < 7), 5);
125 assert_eq!(b.partition_point(|&x| x < 0), 0);
126
127 let b = [1, 3, 3, 3, 7];
128 assert_eq!(b.partition_point(|&x| x < 0), 0);
129 assert_eq!(b.partition_point(|&x| x < 1), 0);
130 assert_eq!(b.partition_point(|&x| x < 2), 1);
131 assert_eq!(b.partition_point(|&x| x < 3), 1);
132 assert_eq!(b.partition_point(|&x| x < 4), 4);
133 assert_eq!(b.partition_point(|&x| x < 5), 4);
134 assert_eq!(b.partition_point(|&x| x < 6), 4);
135 assert_eq!(b.partition_point(|&x| x < 7), 4);
136 assert_eq!(b.partition_point(|&x| x < 8), 5);
137 }
138
139 #[test]
140 fn test_iterator_advance_by() {
141 let v = &[0, 1, 2, 3, 4];
142
143 for i in 0..=v.len() {
144 let mut iter = v.iter();
145 iter.advance_by(i).unwrap();
146 assert_eq!(iter.as_slice(), &v[i..]);
147 }
148
149 let mut iter = v.iter();
150 assert_eq!(iter.advance_by(v.len() + 1), Err(v.len()));
151 assert_eq!(iter.as_slice(), &[]);
152
153 let mut iter = v.iter();
154 iter.advance_by(3).unwrap();
155 assert_eq!(iter.as_slice(), &v[3..]);
156 iter.advance_by(2).unwrap();
157 assert_eq!(iter.as_slice(), &[]);
158 iter.advance_by(0).unwrap();
159 }
160
161 #[test]
162 fn test_iterator_advance_back_by() {
163 let v = &[0, 1, 2, 3, 4];
164
165 for i in 0..=v.len() {
166 let mut iter = v.iter();
167 iter.advance_back_by(i).unwrap();
168 assert_eq!(iter.as_slice(), &v[..v.len() - i]);
169 }
170
171 let mut iter = v.iter();
172 assert_eq!(iter.advance_back_by(v.len() + 1), Err(v.len()));
173 assert_eq!(iter.as_slice(), &[]);
174
175 let mut iter = v.iter();
176 iter.advance_back_by(3).unwrap();
177 assert_eq!(iter.as_slice(), &v[..v.len() - 3]);
178 iter.advance_back_by(2).unwrap();
179 assert_eq!(iter.as_slice(), &[]);
180 iter.advance_back_by(0).unwrap();
181 }
182
183 #[test]
184 fn test_iterator_nth() {
185 let v: &[_] = &[0, 1, 2, 3, 4];
186 for i in 0..v.len() {
187 assert_eq!(v.iter().nth(i).unwrap(), &v[i]);
188 }
189 assert_eq!(v.iter().nth(v.len()), None);
190
191 let mut iter = v.iter();
192 assert_eq!(iter.nth(2).unwrap(), &v[2]);
193 assert_eq!(iter.nth(1).unwrap(), &v[4]);
194 }
195
196 #[test]
197 fn test_iterator_nth_back() {
198 let v: &[_] = &[0, 1, 2, 3, 4];
199 for i in 0..v.len() {
200 assert_eq!(v.iter().nth_back(i).unwrap(), &v[v.len() - i - 1]);
201 }
202 assert_eq!(v.iter().nth_back(v.len()), None);
203
204 let mut iter = v.iter();
205 assert_eq!(iter.nth_back(2).unwrap(), &v[2]);
206 assert_eq!(iter.nth_back(1).unwrap(), &v[0]);
207 }
208
209 #[test]
210 fn test_iterator_last() {
211 let v: &[_] = &[0, 1, 2, 3, 4];
212 assert_eq!(v.iter().last().unwrap(), &4);
213 assert_eq!(v[..1].iter().last().unwrap(), &0);
214 }
215
216 #[test]
217 fn test_iterator_count() {
218 let v: &[_] = &[0, 1, 2, 3, 4];
219 assert_eq!(v.iter().count(), 5);
220
221 let mut iter2 = v.iter();
222 iter2.next();
223 iter2.next();
224 assert_eq!(iter2.count(), 3);
225 }
226
227 #[test]
228 fn test_chunks_count() {
229 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
230 let c = v.chunks(3);
231 assert_eq!(c.count(), 2);
232
233 let v2: &[i32] = &[0, 1, 2, 3, 4];
234 let c2 = v2.chunks(2);
235 assert_eq!(c2.count(), 3);
236
237 let v3: &[i32] = &[];
238 let c3 = v3.chunks(2);
239 assert_eq!(c3.count(), 0);
240 }
241
242 #[test]
243 fn test_chunks_nth() {
244 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
245 let mut c = v.chunks(2);
246 assert_eq!(c.nth(1).unwrap(), &[2, 3]);
247 assert_eq!(c.next().unwrap(), &[4, 5]);
248
249 let v2: &[i32] = &[0, 1, 2, 3, 4];
250 let mut c2 = v2.chunks(3);
251 assert_eq!(c2.nth(1).unwrap(), &[3, 4]);
252 assert_eq!(c2.next(), None);
253 }
254
255 #[test]
256 fn test_chunks_next() {
257 let v = [0, 1, 2, 3, 4, 5];
258 let mut c = v.chunks(2);
259 assert_eq!(c.next().unwrap(), &[0, 1]);
260 assert_eq!(c.next().unwrap(), &[2, 3]);
261 assert_eq!(c.next().unwrap(), &[4, 5]);
262 assert_eq!(c.next(), None);
263
264 let v = [0, 1, 2, 3, 4, 5, 6, 7];
265 let mut c = v.chunks(3);
266 assert_eq!(c.next().unwrap(), &[0, 1, 2]);
267 assert_eq!(c.next().unwrap(), &[3, 4, 5]);
268 assert_eq!(c.next().unwrap(), &[6, 7]);
269 assert_eq!(c.next(), None);
270 }
271
272 #[test]
273 fn test_chunks_next_back() {
274 let v = [0, 1, 2, 3, 4, 5];
275 let mut c = v.chunks(2);
276 assert_eq!(c.next_back().unwrap(), &[4, 5]);
277 assert_eq!(c.next_back().unwrap(), &[2, 3]);
278 assert_eq!(c.next_back().unwrap(), &[0, 1]);
279 assert_eq!(c.next_back(), None);
280
281 let v = [0, 1, 2, 3, 4, 5, 6, 7];
282 let mut c = v.chunks(3);
283 assert_eq!(c.next_back().unwrap(), &[6, 7]);
284 assert_eq!(c.next_back().unwrap(), &[3, 4, 5]);
285 assert_eq!(c.next_back().unwrap(), &[0, 1, 2]);
286 assert_eq!(c.next_back(), None);
287 }
288
289 #[test]
290 fn test_chunks_nth_back() {
291 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
292 let mut c = v.chunks(2);
293 assert_eq!(c.nth_back(1).unwrap(), &[2, 3]);
294 assert_eq!(c.next().unwrap(), &[0, 1]);
295 assert_eq!(c.next(), None);
296
297 let v2: &[i32] = &[0, 1, 2, 3, 4];
298 let mut c2 = v2.chunks(3);
299 assert_eq!(c2.nth_back(1).unwrap(), &[0, 1, 2]);
300 assert_eq!(c2.next(), None);
301 assert_eq!(c2.next_back(), None);
302
303 let v3: &[i32] = &[0, 1, 2, 3, 4];
304 let mut c3 = v3.chunks(10);
305 assert_eq!(c3.nth_back(0).unwrap(), &[0, 1, 2, 3, 4]);
306 assert_eq!(c3.next(), None);
307
308 let v4: &[i32] = &[0, 1, 2];
309 let mut c4 = v4.chunks(10);
310 assert_eq!(c4.nth_back(1_000_000_000usize), None);
311 }
312
313 #[test]
314 fn test_chunks_last() {
315 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
316 let c = v.chunks(2);
317 assert_eq!(c.last().unwrap()[1], 5);
318
319 let v2: &[i32] = &[0, 1, 2, 3, 4];
320 let c2 = v2.chunks(2);
321 assert_eq!(c2.last().unwrap()[0], 4);
322 }
323
324 #[test]
325 fn test_chunks_zip() {
326 let v1: &[i32] = &[0, 1, 2, 3, 4];
327 let v2: &[i32] = &[6, 7, 8, 9, 10];
328
329 let res = v1
330 .chunks(2)
331 .zip(v2.chunks(2))
332 .map(|(a, b)| a.iter().sum::<i32>() + b.iter().sum::<i32>())
333 .collect::<Vec<_>>();
334 assert_eq!(res, vec![14, 22, 14]);
335 }
336
337 #[test]
338 fn test_chunks_mut_count() {
339 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
340 let c = v.chunks_mut(3);
341 assert_eq!(c.count(), 2);
342
343 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
344 let c2 = v2.chunks_mut(2);
345 assert_eq!(c2.count(), 3);
346
347 let v3: &mut [i32] = &mut [];
348 let c3 = v3.chunks_mut(2);
349 assert_eq!(c3.count(), 0);
350 }
351
352 #[test]
353 fn test_chunks_mut_nth() {
354 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
355 let mut c = v.chunks_mut(2);
356 assert_eq!(c.nth(1).unwrap(), &[2, 3]);
357 assert_eq!(c.next().unwrap(), &[4, 5]);
358
359 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
360 let mut c2 = v2.chunks_mut(3);
361 assert_eq!(c2.nth(1).unwrap(), &[3, 4]);
362 assert_eq!(c2.next(), None);
363 }
364
365 #[test]
366 fn test_chunks_mut_nth_back() {
367 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
368 let mut c = v.chunks_mut(2);
369 assert_eq!(c.nth_back(1).unwrap(), &[2, 3]);
370 assert_eq!(c.next().unwrap(), &[0, 1]);
371
372 let v1: &mut [i32] = &mut [0, 1, 2, 3, 4];
373 let mut c1 = v1.chunks_mut(3);
374 assert_eq!(c1.nth_back(1).unwrap(), &[0, 1, 2]);
375 assert_eq!(c1.next(), None);
376
377 let v3: &mut [i32] = &mut [0, 1, 2, 3, 4];
378 let mut c3 = v3.chunks_mut(10);
379 assert_eq!(c3.nth_back(0).unwrap(), &[0, 1, 2, 3, 4]);
380 assert_eq!(c3.next(), None);
381
382 let v4: &mut [i32] = &mut [0, 1, 2];
383 let mut c4 = v4.chunks_mut(10);
384 assert_eq!(c4.nth_back(1_000_000_000usize), None);
385 }
386
387 #[test]
388 fn test_chunks_mut_last() {
389 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
390 let c = v.chunks_mut(2);
391 assert_eq!(c.last().unwrap(), &[4, 5]);
392
393 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
394 let c2 = v2.chunks_mut(2);
395 assert_eq!(c2.last().unwrap(), &[4]);
396 }
397
398 #[test]
399 fn test_chunks_mut_zip() {
400 let v1: &mut [i32] = &mut [0, 1, 2, 3, 4];
401 let v2: &[i32] = &[6, 7, 8, 9, 10];
402
403 for (a, b) in v1.chunks_mut(2).zip(v2.chunks(2)) {
404 let sum = b.iter().sum::<i32>();
405 for v in a {
406 *v += sum;
407 }
408 }
409 assert_eq!(v1, [13, 14, 19, 20, 14]);
410 }
411
412 #[test]
413 fn test_chunks_mut_zip_aliasing() {
414 let v1: &mut [i32] = &mut [0, 1, 2, 3, 4];
415 let v2: &[i32] = &[6, 7, 8, 9, 10];
416
417 let mut it = v1.chunks_mut(2).zip(v2.chunks(2));
418 let first = it.next().unwrap();
419 let _ = it.next().unwrap();
420 assert_eq!(first, (&mut [0, 1][..], &[6, 7][..]));
421 }
422
423 #[test]
424 fn test_chunks_exact_mut_zip_aliasing() {
425 let v1: &mut [i32] = &mut [0, 1, 2, 3, 4];
426 let v2: &[i32] = &[6, 7, 8, 9, 10];
427
428 let mut it = v1.chunks_exact_mut(2).zip(v2.chunks(2));
429 let first = it.next().unwrap();
430 let _ = it.next().unwrap();
431 assert_eq!(first, (&mut [0, 1][..], &[6, 7][..]));
432 }
433
434 #[test]
435 fn test_rchunks_mut_zip_aliasing() {
436 let v1: &mut [i32] = &mut [0, 1, 2, 3, 4];
437 let v2: &[i32] = &[6, 7, 8, 9, 10];
438
439 let mut it = v1.rchunks_mut(2).zip(v2.chunks(2));
440 let first = it.next().unwrap();
441 let _ = it.next().unwrap();
442 assert_eq!(first, (&mut [3, 4][..], &[6, 7][..]));
443 }
444
445 #[test]
446 fn test_rchunks_exact_mut_zip_aliasing() {
447 let v1: &mut [i32] = &mut [0, 1, 2, 3, 4];
448 let v2: &[i32] = &[6, 7, 8, 9, 10];
449
450 let mut it = v1.rchunks_exact_mut(2).zip(v2.chunks(2));
451 let first = it.next().unwrap();
452 let _ = it.next().unwrap();
453 assert_eq!(first, (&mut [3, 4][..], &[6, 7][..]));
454 }
455
456 #[test]
457 fn test_chunks_exact_count() {
458 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
459 let c = v.chunks_exact(3);
460 assert_eq!(c.count(), 2);
461
462 let v2: &[i32] = &[0, 1, 2, 3, 4];
463 let c2 = v2.chunks_exact(2);
464 assert_eq!(c2.count(), 2);
465
466 let v3: &[i32] = &[];
467 let c3 = v3.chunks_exact(2);
468 assert_eq!(c3.count(), 0);
469 }
470
471 #[test]
472 fn test_chunks_exact_nth() {
473 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
474 let mut c = v.chunks_exact(2);
475 assert_eq!(c.nth(1).unwrap(), &[2, 3]);
476 assert_eq!(c.next().unwrap(), &[4, 5]);
477
478 let v2: &[i32] = &[0, 1, 2, 3, 4, 5, 6];
479 let mut c2 = v2.chunks_exact(3);
480 assert_eq!(c2.nth(1).unwrap(), &[3, 4, 5]);
481 assert_eq!(c2.next(), None);
482 }
483
484 #[test]
485 fn test_chunks_exact_nth_back() {
486 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
487 let mut c = v.chunks_exact(2);
488 assert_eq!(c.nth_back(1).unwrap(), &[2, 3]);
489 assert_eq!(c.next().unwrap(), &[0, 1]);
490 assert_eq!(c.next(), None);
491
492 let v2: &[i32] = &[0, 1, 2, 3, 4];
493 let mut c2 = v2.chunks_exact(3);
494 assert_eq!(c2.nth_back(0).unwrap(), &[0, 1, 2]);
495 assert_eq!(c2.next(), None);
496 assert_eq!(c2.next_back(), None);
497
498 let v3: &[i32] = &[0, 1, 2, 3, 4];
499 let mut c3 = v3.chunks_exact(10);
500 assert_eq!(c3.nth_back(0), None);
501 }
502
503 #[test]
504 fn test_chunks_exact_last() {
505 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
506 let c = v.chunks_exact(2);
507 assert_eq!(c.last().unwrap(), &[4, 5]);
508
509 let v2: &[i32] = &[0, 1, 2, 3, 4];
510 let c2 = v2.chunks_exact(2);
511 assert_eq!(c2.last().unwrap(), &[2, 3]);
512 }
513
514 #[test]
515 fn test_chunks_exact_remainder() {
516 let v: &[i32] = &[0, 1, 2, 3, 4];
517 let c = v.chunks_exact(2);
518 assert_eq!(c.remainder(), &[4]);
519 }
520
521 #[test]
522 fn test_chunks_exact_zip() {
523 let v1: &[i32] = &[0, 1, 2, 3, 4];
524 let v2: &[i32] = &[6, 7, 8, 9, 10];
525
526 let res = v1
527 .chunks_exact(2)
528 .zip(v2.chunks_exact(2))
529 .map(|(a, b)| a.iter().sum::<i32>() + b.iter().sum::<i32>())
530 .collect::<Vec<_>>();
531 assert_eq!(res, vec![14, 22]);
532 }
533
534 #[test]
535 fn test_chunks_exact_mut_count() {
536 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
537 let c = v.chunks_exact_mut(3);
538 assert_eq!(c.count(), 2);
539
540 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
541 let c2 = v2.chunks_exact_mut(2);
542 assert_eq!(c2.count(), 2);
543
544 let v3: &mut [i32] = &mut [];
545 let c3 = v3.chunks_exact_mut(2);
546 assert_eq!(c3.count(), 0);
547 }
548
549 #[test]
550 fn test_chunks_exact_mut_nth() {
551 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
552 let mut c = v.chunks_exact_mut(2);
553 assert_eq!(c.nth(1).unwrap(), &[2, 3]);
554 assert_eq!(c.next().unwrap(), &[4, 5]);
555
556 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4, 5, 6];
557 let mut c2 = v2.chunks_exact_mut(3);
558 assert_eq!(c2.nth(1).unwrap(), &[3, 4, 5]);
559 assert_eq!(c2.next(), None);
560 }
561
562 #[test]
563 fn test_chunks_exact_mut_nth_back() {
564 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
565 let mut c = v.chunks_exact_mut(2);
566 assert_eq!(c.nth_back(1).unwrap(), &[2, 3]);
567 assert_eq!(c.next().unwrap(), &[0, 1]);
568 assert_eq!(c.next(), None);
569
570 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
571 let mut c2 = v2.chunks_exact_mut(3);
572 assert_eq!(c2.nth_back(0).unwrap(), &[0, 1, 2]);
573 assert_eq!(c2.next(), None);
574 assert_eq!(c2.next_back(), None);
575
576 let v3: &mut [i32] = &mut [0, 1, 2, 3, 4];
577 let mut c3 = v3.chunks_exact_mut(10);
578 assert_eq!(c3.nth_back(0), None);
579 }
580
581 #[test]
582 fn test_chunks_exact_mut_last() {
583 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
584 let c = v.chunks_exact_mut(2);
585 assert_eq!(c.last().unwrap(), &[4, 5]);
586
587 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
588 let c2 = v2.chunks_exact_mut(2);
589 assert_eq!(c2.last().unwrap(), &[2, 3]);
590 }
591
592 #[test]
593 fn test_chunks_exact_mut_remainder() {
594 let v: &mut [i32] = &mut [0, 1, 2, 3, 4];
595 let c = v.chunks_exact_mut(2);
596 assert_eq!(c.into_remainder(), &[4]);
597 }
598
599 #[test]
600 fn test_chunks_exact_mut_zip() {
601 let v1: &mut [i32] = &mut [0, 1, 2, 3, 4];
602 let v2: &[i32] = &[6, 7, 8, 9, 10];
603
604 for (a, b) in v1.chunks_exact_mut(2).zip(v2.chunks_exact(2)) {
605 let sum = b.iter().sum::<i32>();
606 for v in a {
607 *v += sum;
608 }
609 }
610 assert_eq!(v1, [13, 14, 19, 20, 4]);
611 }
612
613 #[test]
614 fn test_array_chunks_infer() {
615 let v: &[i32] = &[0, 1, 2, 3, 4, -4];
616 let c = v.array_chunks();
617 for &[a, b, c] in c {
618 assert_eq!(a + b + c, 3);
619 }
620
621 let v2: &[i32] = &[0, 1, 2, 3, 4, 5, 6];
622 let total = v2.array_chunks().map(|&[a, b]| a * b).sum::<i32>();
623 assert_eq!(total, 2 * 3 + 4 * 5);
624 }
625
626 #[test]
627 fn test_array_chunks_count() {
628 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
629 let c = v.array_chunks::<3>();
630 assert_eq!(c.count(), 2);
631
632 let v2: &[i32] = &[0, 1, 2, 3, 4];
633 let c2 = v2.array_chunks::<2>();
634 assert_eq!(c2.count(), 2);
635
636 let v3: &[i32] = &[];
637 let c3 = v3.array_chunks::<2>();
638 assert_eq!(c3.count(), 0);
639 }
640
641 #[test]
642 fn test_array_chunks_nth() {
643 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
644 let mut c = v.array_chunks::<2>();
645 assert_eq!(c.nth(1).unwrap(), &[2, 3]);
646 assert_eq!(c.next().unwrap(), &[4, 5]);
647
648 let v2: &[i32] = &[0, 1, 2, 3, 4, 5, 6];
649 let mut c2 = v2.array_chunks::<3>();
650 assert_eq!(c2.nth(1).unwrap(), &[3, 4, 5]);
651 assert_eq!(c2.next(), None);
652 }
653
654 #[test]
655 fn test_array_chunks_nth_back() {
656 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
657 let mut c = v.array_chunks::<2>();
658 assert_eq!(c.nth_back(1).unwrap(), &[2, 3]);
659 assert_eq!(c.next().unwrap(), &[0, 1]);
660 assert_eq!(c.next(), None);
661
662 let v2: &[i32] = &[0, 1, 2, 3, 4];
663 let mut c2 = v2.array_chunks::<3>();
664 assert_eq!(c2.nth_back(0).unwrap(), &[0, 1, 2]);
665 assert_eq!(c2.next(), None);
666 assert_eq!(c2.next_back(), None);
667
668 let v3: &[i32] = &[0, 1, 2, 3, 4];
669 let mut c3 = v3.array_chunks::<10>();
670 assert_eq!(c3.nth_back(0), None);
671 }
672
673 #[test]
674 fn test_array_chunks_last() {
675 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
676 let c = v.array_chunks::<2>();
677 assert_eq!(c.last().unwrap(), &[4, 5]);
678
679 let v2: &[i32] = &[0, 1, 2, 3, 4];
680 let c2 = v2.array_chunks::<2>();
681 assert_eq!(c2.last().unwrap(), &[2, 3]);
682 }
683
684 #[test]
685 fn test_array_chunks_remainder() {
686 let v: &[i32] = &[0, 1, 2, 3, 4];
687 let c = v.array_chunks::<2>();
688 assert_eq!(c.remainder(), &[4]);
689 }
690
691 #[test]
692 fn test_array_chunks_zip() {
693 let v1: &[i32] = &[0, 1, 2, 3, 4];
694 let v2: &[i32] = &[6, 7, 8, 9, 10];
695
696 let res = v1
697 .array_chunks::<2>()
698 .zip(v2.array_chunks::<2>())
699 .map(|(a, b)| a.iter().sum::<i32>() + b.iter().sum::<i32>())
700 .collect::<Vec<_>>();
701 assert_eq!(res, vec![14, 22]);
702 }
703
704 #[test]
705 fn test_array_chunks_mut_infer() {
706 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5, 6];
707 for a in v.array_chunks_mut() {
708 let sum = a.iter().sum::<i32>();
709 *a = [sum; 3];
710 }
711 assert_eq!(v, &[3, 3, 3, 12, 12, 12, 6]);
712
713 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4, 5, 6];
714 v2.array_chunks_mut().for_each(|[a, b]| core::mem::swap(a, b));
715 assert_eq!(v2, &[1, 0, 3, 2, 5, 4, 6]);
716 }
717
718 #[test]
719 fn test_array_chunks_mut_count() {
720 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
721 let c = v.array_chunks_mut::<3>();
722 assert_eq!(c.count(), 2);
723
724 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
725 let c2 = v2.array_chunks_mut::<2>();
726 assert_eq!(c2.count(), 2);
727
728 let v3: &mut [i32] = &mut [];
729 let c3 = v3.array_chunks_mut::<2>();
730 assert_eq!(c3.count(), 0);
731 }
732
733 #[test]
734 fn test_array_chunks_mut_nth() {
735 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
736 let mut c = v.array_chunks_mut::<2>();
737 assert_eq!(c.nth(1).unwrap(), &[2, 3]);
738 assert_eq!(c.next().unwrap(), &[4, 5]);
739
740 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4, 5, 6];
741 let mut c2 = v2.array_chunks_mut::<3>();
742 assert_eq!(c2.nth(1).unwrap(), &[3, 4, 5]);
743 assert_eq!(c2.next(), None);
744 }
745
746 #[test]
747 fn test_array_chunks_mut_nth_back() {
748 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
749 let mut c = v.array_chunks_mut::<2>();
750 assert_eq!(c.nth_back(1).unwrap(), &[2, 3]);
751 assert_eq!(c.next().unwrap(), &[0, 1]);
752 assert_eq!(c.next(), None);
753
754 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
755 let mut c2 = v2.array_chunks_mut::<3>();
756 assert_eq!(c2.nth_back(0).unwrap(), &[0, 1, 2]);
757 assert_eq!(c2.next(), None);
758 assert_eq!(c2.next_back(), None);
759
760 let v3: &mut [i32] = &mut [0, 1, 2, 3, 4];
761 let mut c3 = v3.array_chunks_mut::<10>();
762 assert_eq!(c3.nth_back(0), None);
763 }
764
765 #[test]
766 fn test_array_chunks_mut_last() {
767 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
768 let c = v.array_chunks_mut::<2>();
769 assert_eq!(c.last().unwrap(), &[4, 5]);
770
771 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
772 let c2 = v2.array_chunks_mut::<2>();
773 assert_eq!(c2.last().unwrap(), &[2, 3]);
774 }
775
776 #[test]
777 fn test_array_chunks_mut_remainder() {
778 let v: &mut [i32] = &mut [0, 1, 2, 3, 4];
779 let c = v.array_chunks_mut::<2>();
780 assert_eq!(c.into_remainder(), &[4]);
781 }
782
783 #[test]
784 fn test_array_chunks_mut_zip() {
785 let v1: &mut [i32] = &mut [0, 1, 2, 3, 4];
786 let v2: &[i32] = &[6, 7, 8, 9, 10];
787
788 for (a, b) in v1.array_chunks_mut::<2>().zip(v2.array_chunks::<2>()) {
789 let sum = b.iter().sum::<i32>();
790 for v in a {
791 *v += sum;
792 }
793 }
794 assert_eq!(v1, [13, 14, 19, 20, 4]);
795 }
796
797 #[test]
798 fn test_array_windows_infer() {
799 let v: &[i32] = &[0, 1, 0, 1];
800 assert_eq!(v.array_windows::<2>().count(), 3);
801 let c = v.array_windows();
802 for &[a, b] in c {
803 assert_eq!(a + b, 1);
804 }
805
806 let v2: &[i32] = &[0, 1, 2, 3, 4, 5, 6];
807 let total = v2.array_windows().map(|&[a, b, c]| a + b + c).sum::<i32>();
808 assert_eq!(total, 3 + 6 + 9 + 12 + 15);
809 }
810
811 #[test]
812 fn test_array_windows_count() {
813 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
814 let c = v.array_windows::<3>();
815 assert_eq!(c.count(), 4);
816
817 let v2: &[i32] = &[0, 1, 2, 3, 4];
818 let c2 = v2.array_windows::<6>();
819 assert_eq!(c2.count(), 0);
820
821 let v3: &[i32] = &[];
822 let c3 = v3.array_windows::<2>();
823 assert_eq!(c3.count(), 0);
824
825 let v4: &[()] = &[(); usize::MAX];
826 let c4 = v4.array_windows::<1>();
827 assert_eq!(c4.count(), usize::MAX);
828 }
829
830 #[test]
831 fn test_array_windows_nth() {
832 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
833 let snd = v.array_windows::<4>().nth(1);
834 assert_eq!(snd, Some(&[1, 2, 3, 4]));
835 let mut arr_windows = v.array_windows::<2>();
836 assert_ne!(arr_windows.nth(0), arr_windows.nth(0));
837 let last = v.array_windows::<3>().last();
838 assert_eq!(last, Some(&[3, 4, 5]));
839 }
840
841 #[test]
842 fn test_array_windows_nth_back() {
843 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
844 let snd = v.array_windows::<4>().nth_back(1);
845 assert_eq!(snd, Some(&[1, 2, 3, 4]));
846 let mut arr_windows = v.array_windows::<2>();
847 assert_ne!(arr_windows.nth_back(0), arr_windows.nth_back(0));
848 }
849
850 #[test]
851 fn test_rchunks_count() {
852 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
853 let c = v.rchunks(3);
854 assert_eq!(c.count(), 2);
855
856 let v2: &[i32] = &[0, 1, 2, 3, 4];
857 let c2 = v2.rchunks(2);
858 assert_eq!(c2.count(), 3);
859
860 let v3: &[i32] = &[];
861 let c3 = v3.rchunks(2);
862 assert_eq!(c3.count(), 0);
863 }
864
865 #[test]
866 fn test_rchunks_nth() {
867 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
868 let mut c = v.rchunks(2);
869 assert_eq!(c.nth(1).unwrap(), &[2, 3]);
870 assert_eq!(c.next().unwrap(), &[0, 1]);
871
872 let v2: &[i32] = &[0, 1, 2, 3, 4];
873 let mut c2 = v2.rchunks(3);
874 assert_eq!(c2.nth(1).unwrap(), &[0, 1]);
875 assert_eq!(c2.next(), None);
876 }
877
878 #[test]
879 fn test_rchunks_nth_back() {
880 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
881 let mut c = v.rchunks(2);
882 assert_eq!(c.nth_back(1).unwrap(), &[2, 3]);
883 assert_eq!(c.next_back().unwrap(), &[4, 5]);
884
885 let v2: &[i32] = &[0, 1, 2, 3, 4];
886 let mut c2 = v2.rchunks(3);
887 assert_eq!(c2.nth_back(1).unwrap(), &[2, 3, 4]);
888 assert_eq!(c2.next_back(), None);
889 }
890
891 #[test]
892 fn test_rchunks_next() {
893 let v = [0, 1, 2, 3, 4, 5];
894 let mut c = v.rchunks(2);
895 assert_eq!(c.next().unwrap(), &[4, 5]);
896 assert_eq!(c.next().unwrap(), &[2, 3]);
897 assert_eq!(c.next().unwrap(), &[0, 1]);
898 assert_eq!(c.next(), None);
899
900 let v = [0, 1, 2, 3, 4, 5, 6, 7];
901 let mut c = v.rchunks(3);
902 assert_eq!(c.next().unwrap(), &[5, 6, 7]);
903 assert_eq!(c.next().unwrap(), &[2, 3, 4]);
904 assert_eq!(c.next().unwrap(), &[0, 1]);
905 assert_eq!(c.next(), None);
906 }
907
908 #[test]
909 fn test_rchunks_next_back() {
910 let v = [0, 1, 2, 3, 4, 5];
911 let mut c = v.rchunks(2);
912 assert_eq!(c.next_back().unwrap(), &[0, 1]);
913 assert_eq!(c.next_back().unwrap(), &[2, 3]);
914 assert_eq!(c.next_back().unwrap(), &[4, 5]);
915 assert_eq!(c.next_back(), None);
916
917 let v = [0, 1, 2, 3, 4, 5, 6, 7];
918 let mut c = v.rchunks(3);
919 assert_eq!(c.next_back().unwrap(), &[0, 1]);
920 assert_eq!(c.next_back().unwrap(), &[2, 3, 4]);
921 assert_eq!(c.next_back().unwrap(), &[5, 6, 7]);
922 assert_eq!(c.next_back(), None);
923 }
924
925 #[test]
926 fn test_rchunks_last() {
927 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
928 let c = v.rchunks(2);
929 assert_eq!(c.last().unwrap()[1], 1);
930
931 let v2: &[i32] = &[0, 1, 2, 3, 4];
932 let c2 = v2.rchunks(2);
933 assert_eq!(c2.last().unwrap()[0], 0);
934 }
935
936 #[test]
937 fn test_rchunks_zip() {
938 let v1: &[i32] = &[0, 1, 2, 3, 4];
939 let v2: &[i32] = &[6, 7, 8, 9, 10];
940
941 let res = v1
942 .rchunks(2)
943 .zip(v2.rchunks(2))
944 .map(|(a, b)| a.iter().sum::<i32>() + b.iter().sum::<i32>())
945 .collect::<Vec<_>>();
946 assert_eq!(res, vec![26, 18, 6]);
947 }
948
949 #[test]
950 fn test_rchunks_mut_count() {
951 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
952 let c = v.rchunks_mut(3);
953 assert_eq!(c.count(), 2);
954
955 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
956 let c2 = v2.rchunks_mut(2);
957 assert_eq!(c2.count(), 3);
958
959 let v3: &mut [i32] = &mut [];
960 let c3 = v3.rchunks_mut(2);
961 assert_eq!(c3.count(), 0);
962 }
963
964 #[test]
965 fn test_rchunks_mut_nth() {
966 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
967 let mut c = v.rchunks_mut(2);
968 assert_eq!(c.nth(1).unwrap(), &[2, 3]);
969 assert_eq!(c.next().unwrap(), &[0, 1]);
970
971 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
972 let mut c2 = v2.rchunks_mut(3);
973 assert_eq!(c2.nth(1).unwrap(), &[0, 1]);
974 assert_eq!(c2.next(), None);
975 }
976
977 #[test]
978 fn test_rchunks_mut_nth_back() {
979 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
980 let mut c = v.rchunks_mut(2);
981 assert_eq!(c.nth_back(1).unwrap(), &[2, 3]);
982 assert_eq!(c.next_back().unwrap(), &[4, 5]);
983
984 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
985 let mut c2 = v2.rchunks_mut(3);
986 assert_eq!(c2.nth_back(1).unwrap(), &[2, 3, 4]);
987 assert_eq!(c2.next_back(), None);
988 }
989
990 #[test]
991 fn test_rchunks_mut_next() {
992 let mut v = [0, 1, 2, 3, 4, 5];
993 let mut c = v.rchunks_mut(2);
994 assert_eq!(c.next().unwrap(), &mut [4, 5]);
995 assert_eq!(c.next().unwrap(), &mut [2, 3]);
996 assert_eq!(c.next().unwrap(), &mut [0, 1]);
997 assert_eq!(c.next(), None);
998
999 let mut v = [0, 1, 2, 3, 4, 5, 6, 7];
1000 let mut c = v.rchunks_mut(3);
1001 assert_eq!(c.next().unwrap(), &mut [5, 6, 7]);
1002 assert_eq!(c.next().unwrap(), &mut [2, 3, 4]);
1003 assert_eq!(c.next().unwrap(), &mut [0, 1]);
1004 assert_eq!(c.next(), None);
1005 }
1006
1007 #[test]
1008 fn test_rchunks_mut_next_back() {
1009 let mut v = [0, 1, 2, 3, 4, 5];
1010 let mut c = v.rchunks_mut(2);
1011 assert_eq!(c.next_back().unwrap(), &mut [0, 1]);
1012 assert_eq!(c.next_back().unwrap(), &mut [2, 3]);
1013 assert_eq!(c.next_back().unwrap(), &mut [4, 5]);
1014 assert_eq!(c.next_back(), None);
1015
1016 let mut v = [0, 1, 2, 3, 4, 5, 6, 7];
1017 let mut c = v.rchunks_mut(3);
1018 assert_eq!(c.next_back().unwrap(), &mut [0, 1]);
1019 assert_eq!(c.next_back().unwrap(), &mut [2, 3, 4]);
1020 assert_eq!(c.next_back().unwrap(), &mut [5, 6, 7]);
1021 assert_eq!(c.next_back(), None);
1022 }
1023
1024 #[test]
1025 fn test_rchunks_mut_last() {
1026 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
1027 let c = v.rchunks_mut(2);
1028 assert_eq!(c.last().unwrap(), &[0, 1]);
1029
1030 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
1031 let c2 = v2.rchunks_mut(2);
1032 assert_eq!(c2.last().unwrap(), &[0]);
1033 }
1034
1035 #[test]
1036 fn test_rchunks_mut_zip() {
1037 let v1: &mut [i32] = &mut [0, 1, 2, 3, 4];
1038 let v2: &[i32] = &[6, 7, 8, 9, 10];
1039
1040 for (a, b) in v1.rchunks_mut(2).zip(v2.rchunks(2)) {
1041 let sum = b.iter().sum::<i32>();
1042 for v in a {
1043 *v += sum;
1044 }
1045 }
1046 assert_eq!(v1, [6, 16, 17, 22, 23]);
1047 }
1048
1049 #[test]
1050 fn test_rchunks_exact_count() {
1051 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
1052 let c = v.rchunks_exact(3);
1053 assert_eq!(c.count(), 2);
1054
1055 let v2: &[i32] = &[0, 1, 2, 3, 4];
1056 let c2 = v2.rchunks_exact(2);
1057 assert_eq!(c2.count(), 2);
1058
1059 let v3: &[i32] = &[];
1060 let c3 = v3.rchunks_exact(2);
1061 assert_eq!(c3.count(), 0);
1062 }
1063
1064 #[test]
1065 fn test_rchunks_exact_nth() {
1066 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
1067 let mut c = v.rchunks_exact(2);
1068 assert_eq!(c.nth(1).unwrap(), &[2, 3]);
1069 assert_eq!(c.next().unwrap(), &[0, 1]);
1070
1071 let v2: &[i32] = &[0, 1, 2, 3, 4, 5, 6];
1072 let mut c2 = v2.rchunks_exact(3);
1073 assert_eq!(c2.nth(1).unwrap(), &[1, 2, 3]);
1074 assert_eq!(c2.next(), None);
1075 }
1076
1077 #[test]
1078 fn test_rchunks_exact_nth_back() {
1079 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
1080 let mut c = v.rchunks_exact(2);
1081 assert_eq!(c.nth_back(1).unwrap(), &[2, 3]);
1082 assert_eq!(c.next_back().unwrap(), &[4, 5]);
1083
1084 let v2: &[i32] = &[0, 1, 2, 3, 4, 5, 6];
1085 let mut c2 = v2.rchunks_exact(3);
1086 assert_eq!(c2.nth_back(1).unwrap(), &[4, 5, 6]);
1087 assert_eq!(c2.next(), None);
1088 }
1089
1090 #[test]
1091 fn test_rchunks_exact_last() {
1092 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
1093 let c = v.rchunks_exact(2);
1094 assert_eq!(c.last().unwrap(), &[0, 1]);
1095
1096 let v2: &[i32] = &[0, 1, 2, 3, 4];
1097 let c2 = v2.rchunks_exact(2);
1098 assert_eq!(c2.last().unwrap(), &[1, 2]);
1099 }
1100
1101 #[test]
1102 fn test_rchunks_exact_remainder() {
1103 let v: &[i32] = &[0, 1, 2, 3, 4];
1104 let c = v.rchunks_exact(2);
1105 assert_eq!(c.remainder(), &[0]);
1106 }
1107
1108 #[test]
1109 fn test_rchunks_exact_zip() {
1110 let v1: &[i32] = &[0, 1, 2, 3, 4];
1111 let v2: &[i32] = &[6, 7, 8, 9, 10];
1112
1113 let res = v1
1114 .rchunks_exact(2)
1115 .zip(v2.rchunks_exact(2))
1116 .map(|(a, b)| a.iter().sum::<i32>() + b.iter().sum::<i32>())
1117 .collect::<Vec<_>>();
1118 assert_eq!(res, vec![26, 18]);
1119 }
1120
1121 #[test]
1122 fn test_rchunks_exact_mut_count() {
1123 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
1124 let c = v.rchunks_exact_mut(3);
1125 assert_eq!(c.count(), 2);
1126
1127 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
1128 let c2 = v2.rchunks_exact_mut(2);
1129 assert_eq!(c2.count(), 2);
1130
1131 let v3: &mut [i32] = &mut [];
1132 let c3 = v3.rchunks_exact_mut(2);
1133 assert_eq!(c3.count(), 0);
1134 }
1135
1136 #[test]
1137 fn test_rchunks_exact_mut_nth() {
1138 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
1139 let mut c = v.rchunks_exact_mut(2);
1140 assert_eq!(c.nth(1).unwrap(), &[2, 3]);
1141 assert_eq!(c.next().unwrap(), &[0, 1]);
1142
1143 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4, 5, 6];
1144 let mut c2 = v2.rchunks_exact_mut(3);
1145 assert_eq!(c2.nth(1).unwrap(), &[1, 2, 3]);
1146 assert_eq!(c2.next(), None);
1147 }
1148
1149 #[test]
1150 fn test_rchunks_exact_mut_nth_back() {
1151 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
1152 let mut c = v.rchunks_exact_mut(2);
1153 assert_eq!(c.nth_back(1).unwrap(), &[2, 3]);
1154 assert_eq!(c.next_back().unwrap(), &[4, 5]);
1155
1156 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4, 5, 6];
1157 let mut c2 = v2.rchunks_exact_mut(3);
1158 assert_eq!(c2.nth_back(1).unwrap(), &[4, 5, 6]);
1159 assert_eq!(c2.next(), None);
1160 }
1161
1162 #[test]
1163 fn test_rchunks_exact_mut_last() {
1164 let v: &mut [i32] = &mut [0, 1, 2, 3, 4, 5];
1165 let c = v.rchunks_exact_mut(2);
1166 assert_eq!(c.last().unwrap(), &[0, 1]);
1167
1168 let v2: &mut [i32] = &mut [0, 1, 2, 3, 4];
1169 let c2 = v2.rchunks_exact_mut(2);
1170 assert_eq!(c2.last().unwrap(), &[1, 2]);
1171 }
1172
1173 #[test]
1174 fn test_rchunks_exact_mut_remainder() {
1175 let v: &mut [i32] = &mut [0, 1, 2, 3, 4];
1176 let c = v.rchunks_exact_mut(2);
1177 assert_eq!(c.into_remainder(), &[0]);
1178 }
1179
1180 #[test]
1181 fn test_rchunks_exact_mut_zip() {
1182 let v1: &mut [i32] = &mut [0, 1, 2, 3, 4];
1183 let v2: &[i32] = &[6, 7, 8, 9, 10];
1184
1185 for (a, b) in v1.rchunks_exact_mut(2).zip(v2.rchunks_exact(2)) {
1186 let sum = b.iter().sum::<i32>();
1187 for v in a {
1188 *v += sum;
1189 }
1190 }
1191 assert_eq!(v1, [0, 16, 17, 22, 23]);
1192 }
1193
1194 #[test]
1195 fn chunks_mut_are_send_and_sync() {
1196 use std::cell::Cell;
1197 use std::slice::{ChunksExactMut, ChunksMut, RChunksExactMut, RChunksMut};
1198 use std::sync::MutexGuard;
1199
1200 fn assert_send_and_sync()
1201 where
1202 ChunksMut<'static, Cell<i32>>: Send,
1203 ChunksMut<'static, MutexGuard<'static, u32>>: Sync,
1204 ChunksExactMut<'static, Cell<i32>>: Send,
1205 ChunksExactMut<'static, MutexGuard<'static, u32>>: Sync,
1206 RChunksMut<'static, Cell<i32>>: Send,
1207 RChunksMut<'static, MutexGuard<'static, u32>>: Sync,
1208 RChunksExactMut<'static, Cell<i32>>: Send,
1209 RChunksExactMut<'static, MutexGuard<'static, u32>>: Sync,
1210 {
1211 }
1212
1213 assert_send_and_sync();
1214 }
1215
1216 #[test]
1217 fn test_windows_count() {
1218 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
1219 let c = v.windows(3);
1220 assert_eq!(c.count(), 4);
1221
1222 let v2: &[i32] = &[0, 1, 2, 3, 4];
1223 let c2 = v2.windows(6);
1224 assert_eq!(c2.count(), 0);
1225
1226 let v3: &[i32] = &[];
1227 let c3 = v3.windows(2);
1228 assert_eq!(c3.count(), 0);
1229
1230 let v4 = &[(); usize::MAX];
1231 let c4 = v4.windows(1);
1232 assert_eq!(c4.count(), usize::MAX);
1233 }
1234
1235 #[test]
1236 fn test_windows_nth() {
1237 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
1238 let mut c = v.windows(2);
1239 assert_eq!(c.nth(2).unwrap()[1], 3);
1240 assert_eq!(c.next().unwrap()[0], 3);
1241
1242 let v2: &[i32] = &[0, 1, 2, 3, 4];
1243 let mut c2 = v2.windows(4);
1244 assert_eq!(c2.nth(1).unwrap()[1], 2);
1245 assert_eq!(c2.next(), None);
1246 }
1247
1248 #[test]
1249 fn test_windows_nth_back() {
1250 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
1251 let mut c = v.windows(2);
1252 assert_eq!(c.nth_back(2).unwrap()[0], 2);
1253 assert_eq!(c.next_back().unwrap()[1], 2);
1254
1255 let v2: &[i32] = &[0, 1, 2, 3, 4];
1256 let mut c2 = v2.windows(4);
1257 assert_eq!(c2.nth_back(1).unwrap()[1], 1);
1258 assert_eq!(c2.next_back(), None);
1259 }
1260
1261 #[test]
1262 fn test_windows_last() {
1263 let v: &[i32] = &[0, 1, 2, 3, 4, 5];
1264 let c = v.windows(2);
1265 assert_eq!(c.last().unwrap()[1], 5);
1266
1267 let v2: &[i32] = &[0, 1, 2, 3, 4];
1268 let c2 = v2.windows(2);
1269 assert_eq!(c2.last().unwrap()[0], 3);
1270 }
1271
1272 #[test]
1273 fn test_windows_zip() {
1274 let v1: &[i32] = &[0, 1, 2, 3, 4];
1275 let v2: &[i32] = &[6, 7, 8, 9, 10];
1276
1277 let res = v1
1278 .windows(2)
1279 .zip(v2.windows(2))
1280 .map(|(a, b)| a.iter().sum::<i32>() + b.iter().sum::<i32>())
1281 .collect::<Vec<_>>();
1282
1283 assert_eq!(res, [14, 18, 22, 26]);
1284 }
1285
1286 #[test]
1287 #[allow(const_err)]
1288 fn test_iter_ref_consistency() {
1289 use std::fmt::Debug;
1290
1291 fn test<T: Copy + Debug + PartialEq>(x: T) {
1292 let v: &[T] = &[x, x, x];
1293 let v_ptrs: [*const T; 3] = match v {
1294 [ref v1, ref v2, ref v3] => [v1 as *const _, v2 as *const _, v3 as *const _],
1295 _ => unreachable!(),
1296 };
1297 let len = v.len();
1298
1299 // nth(i)
1300 for i in 0..len {
1301 assert_eq!(&v[i] as *const _, v_ptrs[i]); // check the v_ptrs array, just to be sure
1302 let nth = v.iter().nth(i).unwrap();
1303 assert_eq!(nth as *const _, v_ptrs[i]);
1304 }
1305 assert_eq!(v.iter().nth(len), None, "nth(len) should return None");
1306
1307 // stepping through with nth(0)
1308 {
1309 let mut it = v.iter();
1310 for i in 0..len {
1311 let next = it.nth(0).unwrap();
1312 assert_eq!(next as *const _, v_ptrs[i]);
1313 }
1314 assert_eq!(it.nth(0), None);
1315 }
1316
1317 // next()
1318 {
1319 let mut it = v.iter();
1320 for i in 0..len {
1321 let remaining = len - i;
1322 assert_eq!(it.size_hint(), (remaining, Some(remaining)));
1323
1324 let next = it.next().unwrap();
1325 assert_eq!(next as *const _, v_ptrs[i]);
1326 }
1327 assert_eq!(it.size_hint(), (0, Some(0)));
1328 assert_eq!(it.next(), None, "The final call to next() should return None");
1329 }
1330
1331 // next_back()
1332 {
1333 let mut it = v.iter();
1334 for i in 0..len {
1335 let remaining = len - i;
1336 assert_eq!(it.size_hint(), (remaining, Some(remaining)));
1337
1338 let prev = it.next_back().unwrap();
1339 assert_eq!(prev as *const _, v_ptrs[remaining - 1]);
1340 }
1341 assert_eq!(it.size_hint(), (0, Some(0)));
1342 assert_eq!(it.next_back(), None, "The final call to next_back() should return None");
1343 }
1344 }
1345
1346 fn test_mut<T: Copy + Debug + PartialEq>(x: T) {
1347 let v: &mut [T] = &mut [x, x, x];
1348 let v_ptrs: [*mut T; 3] = match v {
1349 [ref v1, ref v2, ref v3] => {
1350 [v1 as *const _ as *mut _, v2 as *const _ as *mut _, v3 as *const _ as *mut _]
1351 }
1352 _ => unreachable!(),
1353 };
1354 let len = v.len();
1355
1356 // nth(i)
1357 for i in 0..len {
1358 assert_eq!(&mut v[i] as *mut _, v_ptrs[i]); // check the v_ptrs array, just to be sure
1359 let nth = v.iter_mut().nth(i).unwrap();
1360 assert_eq!(nth as *mut _, v_ptrs[i]);
1361 }
1362 assert_eq!(v.iter().nth(len), None, "nth(len) should return None");
1363
1364 // stepping through with nth(0)
1365 {
1366 let mut it = v.iter();
1367 for i in 0..len {
1368 let next = it.nth(0).unwrap();
1369 assert_eq!(next as *const _, v_ptrs[i]);
1370 }
1371 assert_eq!(it.nth(0), None);
1372 }
1373
1374 // next()
1375 {
1376 let mut it = v.iter_mut();
1377 for i in 0..len {
1378 let remaining = len - i;
1379 assert_eq!(it.size_hint(), (remaining, Some(remaining)));
1380
1381 let next = it.next().unwrap();
1382 assert_eq!(next as *mut _, v_ptrs[i]);
1383 }
1384 assert_eq!(it.size_hint(), (0, Some(0)));
1385 assert_eq!(it.next(), None, "The final call to next() should return None");
1386 }
1387
1388 // next_back()
1389 {
1390 let mut it = v.iter_mut();
1391 for i in 0..len {
1392 let remaining = len - i;
1393 assert_eq!(it.size_hint(), (remaining, Some(remaining)));
1394
1395 let prev = it.next_back().unwrap();
1396 assert_eq!(prev as *mut _, v_ptrs[remaining - 1]);
1397 }
1398 assert_eq!(it.size_hint(), (0, Some(0)));
1399 assert_eq!(it.next_back(), None, "The final call to next_back() should return None");
1400 }
1401 }
1402
1403 // Make sure iterators and slice patterns yield consistent addresses for various types,
1404 // including ZSTs.
1405 test(0u32);
1406 test(());
1407 test([0u32; 0]); // ZST with alignment > 0
1408 test_mut(0u32);
1409 test_mut(());
1410 test_mut([0u32; 0]); // ZST with alignment > 0
1411 }
1412
1413 // The current implementation of SliceIndex fails to handle methods
1414 // orthogonally from range types; therefore, it is worth testing
1415 // all of the indexing operations on each input.
1416 mod slice_index {
1417 // This checks all six indexing methods, given an input range that
1418 // should succeed. (it is NOT suitable for testing invalid inputs)
1419 macro_rules! assert_range_eq {
1420 ($arr:expr, $range:expr, $expected:expr) => {
1421 let mut arr = $arr;
1422 let mut expected = $expected;
1423 {
1424 let s: &[_] = &arr;
1425 let expected: &[_] = &expected;
1426
1427 assert_eq!(&s[$range], expected, "(in assertion for: index)");
1428 assert_eq!(s.get($range), Some(expected), "(in assertion for: get)");
1429 unsafe {
1430 assert_eq!(
1431 s.get_unchecked($range),
1432 expected,
1433 "(in assertion for: get_unchecked)",
1434 );
1435 }
1436 }
1437 {
1438 let s: &mut [_] = &mut arr;
1439 let expected: &mut [_] = &mut expected;
1440
1441 assert_eq!(&mut s[$range], expected, "(in assertion for: index_mut)",);
1442 assert_eq!(
1443 s.get_mut($range),
1444 Some(&mut expected[..]),
1445 "(in assertion for: get_mut)",
1446 );
1447 unsafe {
1448 assert_eq!(
1449 s.get_unchecked_mut($range),
1450 expected,
1451 "(in assertion for: get_unchecked_mut)",
1452 );
1453 }
1454 }
1455 };
1456 }
1457
1458 // Make sure the macro can actually detect bugs,
1459 // because if it can't, then what are we even doing here?
1460 //
1461 // (Be aware this only demonstrates the ability to detect bugs
1462 // in the FIRST method that panics, as the macro is not designed
1463 // to be used in `should_panic`)
1464 #[test]
1465 #[should_panic(expected = "out of range")]
1466 fn assert_range_eq_can_fail_by_panic() {
1467 assert_range_eq!([0, 1, 2], 0..5, [0, 1, 2]);
1468 }
1469
1470 // (Be aware this only demonstrates the ability to detect bugs
1471 // in the FIRST method it calls, as the macro is not designed
1472 // to be used in `should_panic`)
1473 #[test]
1474 #[should_panic(expected = "==")]
1475 fn assert_range_eq_can_fail_by_inequality() {
1476 assert_range_eq!([0, 1, 2], 0..2, [0, 1, 2]);
1477 }
1478
1479 // Test cases for bad index operations.
1480 //
1481 // This generates `should_panic` test cases for Index/IndexMut
1482 // and `None` test cases for get/get_mut.
1483 macro_rules! panic_cases {
1484 ($(
1485 // each test case needs a unique name to namespace the tests
1486 in mod $case_name:ident {
1487 data: $data:expr;
1488
1489 // optional:
1490 //
1491 // one or more similar inputs for which data[input] succeeds,
1492 // and the corresponding output as an array. This helps validate
1493 // "critical points" where an input range straddles the boundary
1494 // between valid and invalid.
1495 // (such as the input `len..len`, which is just barely valid)
1496 $(
1497 good: data[$good:expr] == $output:expr;
1498 )*
1499
1500 bad: data[$bad:expr];
1501 message: $expect_msg:expr;
1502 }
1503 )*) => {$(
1504 mod $case_name {
1505 #[allow(unused_imports)]
1506 use core::ops::Bound;
1507
1508 #[test]
1509 fn pass() {
1510 let mut v = $data;
1511
1512 $( assert_range_eq!($data, $good, $output); )*
1513
1514 {
1515 let v: &[_] = &v;
1516 assert_eq!(v.get($bad), None, "(in None assertion for get)");
1517 }
1518
1519 {
1520 let v: &mut [_] = &mut v;
1521 assert_eq!(v.get_mut($bad), None, "(in None assertion for get_mut)");
1522 }
1523 }
1524
1525 #[test]
1526 #[should_panic(expected = $expect_msg)]
1527 fn index_fail() {
1528 let v = $data;
1529 let v: &[_] = &v;
1530 let _v = &v[$bad];
1531 }
1532
1533 #[test]
1534 #[should_panic(expected = $expect_msg)]
1535 fn index_mut_fail() {
1536 let mut v = $data;
1537 let v: &mut [_] = &mut v;
1538 let _v = &mut v[$bad];
1539 }
1540 }
1541 )*};
1542 }
1543
1544 #[test]
1545 fn simple() {
1546 let v = [0, 1, 2, 3, 4, 5];
1547
1548 assert_range_eq!(v, .., [0, 1, 2, 3, 4, 5]);
1549 assert_range_eq!(v, ..2, [0, 1]);
1550 assert_range_eq!(v, ..=1, [0, 1]);
1551 assert_range_eq!(v, 2.., [2, 3, 4, 5]);
1552 assert_range_eq!(v, 1..4, [1, 2, 3]);
1553 assert_range_eq!(v, 1..=3, [1, 2, 3]);
1554 }
1555
1556 panic_cases! {
1557 in mod rangefrom_len {
1558 data: [0, 1, 2, 3, 4, 5];
1559
1560 good: data[6..] == [];
1561 bad: data[7..];
1562 message: "out of range";
1563 }
1564
1565 in mod rangeto_len {
1566 data: [0, 1, 2, 3, 4, 5];
1567
1568 good: data[..6] == [0, 1, 2, 3, 4, 5];
1569 bad: data[..7];
1570 message: "out of range";
1571 }
1572
1573 in mod rangetoinclusive_len {
1574 data: [0, 1, 2, 3, 4, 5];
1575
1576 good: data[..=5] == [0, 1, 2, 3, 4, 5];
1577 bad: data[..=6];
1578 message: "out of range";
1579 }
1580
1581 in mod rangeinclusive_len {
1582 data: [0, 1, 2, 3, 4, 5];
1583
1584 good: data[0..=5] == [0, 1, 2, 3, 4, 5];
1585 bad: data[0..=6];
1586 message: "out of range";
1587 }
1588
1589 in mod range_len_len {
1590 data: [0, 1, 2, 3, 4, 5];
1591
1592 good: data[6..6] == [];
1593 bad: data[7..7];
1594 message: "out of range";
1595 }
1596
1597 in mod rangeinclusive_len_len {
1598 data: [0, 1, 2, 3, 4, 5];
1599
1600 good: data[6..=5] == [];
1601 bad: data[7..=6];
1602 message: "out of range";
1603 }
1604
1605 in mod boundpair_len {
1606 data: [0, 1, 2, 3, 4, 5];
1607
1608 good: data[(Bound::Included(6), Bound::Unbounded)] == [];
1609 good: data[(Bound::Unbounded, Bound::Included(5))] == [0, 1, 2, 3, 4, 5];
1610 good: data[(Bound::Unbounded, Bound::Excluded(6))] == [0, 1, 2, 3, 4, 5];
1611 good: data[(Bound::Included(0), Bound::Included(5))] == [0, 1, 2, 3, 4, 5];
1612 good: data[(Bound::Included(0), Bound::Excluded(6))] == [0, 1, 2, 3, 4, 5];
1613 good: data[(Bound::Included(2), Bound::Excluded(4))] == [2, 3];
1614 good: data[(Bound::Excluded(1), Bound::Included(4))] == [2, 3, 4];
1615 good: data[(Bound::Excluded(5), Bound::Excluded(6))] == [];
1616 good: data[(Bound::Included(6), Bound::Excluded(6))] == [];
1617 good: data[(Bound::Excluded(5), Bound::Included(5))] == [];
1618 good: data[(Bound::Included(6), Bound::Included(5))] == [];
1619 bad: data[(Bound::Unbounded, Bound::Included(6))];
1620 message: "out of range";
1621 }
1622 }
1623
1624 panic_cases! {
1625 in mod rangeinclusive_exhausted {
1626 data: [0, 1, 2, 3, 4, 5];
1627
1628 good: data[0..=5] == [0, 1, 2, 3, 4, 5];
1629 good: data[{
1630 let mut iter = 0..=5;
1631 iter.by_ref().count(); // exhaust it
1632 iter
1633 }] == [];
1634
1635 // 0..=6 is out of range before exhaustion, so it
1636 // stands to reason that it still would be after.
1637 bad: data[{
1638 let mut iter = 0..=6;
1639 iter.by_ref().count(); // exhaust it
1640 iter
1641 }];
1642 message: "out of range";
1643 }
1644 }
1645
1646 panic_cases! {
1647 in mod range_neg_width {
1648 data: [0, 1, 2, 3, 4, 5];
1649
1650 good: data[4..4] == [];
1651 bad: data[4..3];
1652 message: "but ends at";
1653 }
1654
1655 in mod rangeinclusive_neg_width {
1656 data: [0, 1, 2, 3, 4, 5];
1657
1658 good: data[4..=3] == [];
1659 bad: data[4..=2];
1660 message: "but ends at";
1661 }
1662
1663 in mod boundpair_neg_width {
1664 data: [0, 1, 2, 3, 4, 5];
1665
1666 good: data[(Bound::Included(4), Bound::Excluded(4))] == [];
1667 bad: data[(Bound::Included(4), Bound::Excluded(3))];
1668 message: "but ends at";
1669 }
1670 }
1671
1672 panic_cases! {
1673 in mod rangeinclusive_overflow {
1674 data: [0, 1];
1675
1676 // note: using 0 specifically ensures that the result of overflowing is 0..0,
1677 // so that `get` doesn't simply return None for the wrong reason.
1678 bad: data[0 ..= usize::MAX];
1679 message: "maximum usize";
1680 }
1681
1682 in mod rangetoinclusive_overflow {
1683 data: [0, 1];
1684
1685 bad: data[..= usize::MAX];
1686 message: "maximum usize";
1687 }
1688
1689 in mod boundpair_overflow_end {
1690 data: [0; 1];
1691
1692 bad: data[(Bound::Unbounded, Bound::Included(usize::MAX))];
1693 message: "maximum usize";
1694 }
1695
1696 in mod boundpair_overflow_start {
1697 data: [0; 1];
1698
1699 bad: data[(Bound::Excluded(usize::MAX), Bound::Unbounded)];
1700 message: "maximum usize";
1701 }
1702 } // panic_cases!
1703 }
1704
1705 #[test]
1706 fn test_find_rfind() {
1707 let v = [0, 1, 2, 3, 4, 5];
1708 let mut iter = v.iter();
1709 let mut i = v.len();
1710 while let Some(&elt) = iter.rfind(|_| true) {
1711 i -= 1;
1712 assert_eq!(elt, v[i]);
1713 }
1714 assert_eq!(i, 0);
1715 assert_eq!(v.iter().rfind(|&&x| x <= 3), Some(&3));
1716 }
1717
1718 #[test]
1719 fn test_iter_folds() {
1720 let a = [1, 2, 3, 4, 5]; // len>4 so the unroll is used
1721 assert_eq!(a.iter().fold(0, |acc, &x| 2 * acc + x), 57);
1722 assert_eq!(a.iter().rfold(0, |acc, &x| 2 * acc + x), 129);
1723 let fold = |acc: i32, &x| acc.checked_mul(2)?.checked_add(x);
1724 assert_eq!(a.iter().try_fold(0, &fold), Some(57));
1725 assert_eq!(a.iter().try_rfold(0, &fold), Some(129));
1726
1727 // short-circuiting try_fold, through other methods
1728 let a = [0, 1, 2, 3, 5, 5, 5, 7, 8, 9];
1729 let mut iter = a.iter();
1730 assert_eq!(iter.position(|&x| x == 3), Some(3));
1731 assert_eq!(iter.rfind(|&&x| x == 5), Some(&5));
1732 assert_eq!(iter.len(), 2);
1733 }
1734
1735 #[test]
1736 fn test_rotate_left() {
1737 const N: usize = 600;
1738 let a: &mut [_] = &mut [0; N];
1739 for i in 0..N {
1740 a[i] = i;
1741 }
1742
1743 a.rotate_left(42);
1744 let k = N - 42;
1745
1746 for i in 0..N {
1747 assert_eq!(a[(i + k) % N], i);
1748 }
1749 }
1750
1751 #[test]
1752 fn test_rotate_right() {
1753 const N: usize = 600;
1754 let a: &mut [_] = &mut [0; N];
1755 for i in 0..N {
1756 a[i] = i;
1757 }
1758
1759 a.rotate_right(42);
1760
1761 for i in 0..N {
1762 assert_eq!(a[(i + 42) % N], i);
1763 }
1764 }
1765
1766 #[test]
1767 #[cfg_attr(miri, ignore)] // Miri is too slow
1768 fn brute_force_rotate_test_0() {
1769 // In case of edge cases involving multiple algorithms
1770 let n = 300;
1771 for len in 0..n {
1772 for s in 0..len {
1773 let mut v = Vec::with_capacity(len);
1774 for i in 0..len {
1775 v.push(i);
1776 }
1777 v[..].rotate_right(s);
1778 for i in 0..v.len() {
1779 assert_eq!(v[i], v.len().wrapping_add(i.wrapping_sub(s)) % v.len());
1780 }
1781 }
1782 }
1783 }
1784
1785 #[test]
1786 fn brute_force_rotate_test_1() {
1787 // `ptr_rotate` covers so many kinds of pointer usage, that this is just a good test for
1788 // pointers in general. This uses a `[usize; 4]` to hit all algorithms without overwhelming miri
1789 let n = 30;
1790 for len in 0..n {
1791 for s in 0..len {
1792 let mut v: Vec<[usize; 4]> = Vec::with_capacity(len);
1793 for i in 0..len {
1794 v.push([i, 0, 0, 0]);
1795 }
1796 v[..].rotate_right(s);
1797 for i in 0..v.len() {
1798 assert_eq!(v[i][0], v.len().wrapping_add(i.wrapping_sub(s)) % v.len());
1799 }
1800 }
1801 }
1802 }
1803
1804 #[test]
1805 #[cfg(not(target_arch = "wasm32"))]
1806 fn sort_unstable() {
1807 use core::cmp::Ordering::{Equal, Greater, Less};
1808 use core::slice::heapsort;
1809 use rand::{rngs::StdRng, seq::SliceRandom, Rng, SeedableRng};
1810
1811 // Miri is too slow (but still need to `chain` to make the types match)
1812 let lens = if cfg!(miri) { (2..20).chain(0..0) } else { (2..25).chain(500..510) };
1813 let rounds = if cfg!(miri) { 1 } else { 100 };
1814
1815 let mut v = [0; 600];
1816 let mut tmp = [0; 600];
1817 let mut rng = StdRng::from_entropy();
1818
1819 for len in lens {
1820 let v = &mut v[0..len];
1821 let tmp = &mut tmp[0..len];
1822
1823 for &modulus in &[5, 10, 100, 1000] {
1824 for _ in 0..rounds {
1825 for i in 0..len {
1826 v[i] = rng.gen::<i32>() % modulus;
1827 }
1828
1829 // Sort in default order.
1830 tmp.copy_from_slice(v);
1831 tmp.sort_unstable();
1832 assert!(tmp.windows(2).all(|w| w[0] <= w[1]));
1833
1834 // Sort in ascending order.
1835 tmp.copy_from_slice(v);
1836 tmp.sort_unstable_by(|a, b| a.cmp(b));
1837 assert!(tmp.windows(2).all(|w| w[0] <= w[1]));
1838
1839 // Sort in descending order.
1840 tmp.copy_from_slice(v);
1841 tmp.sort_unstable_by(|a, b| b.cmp(a));
1842 assert!(tmp.windows(2).all(|w| w[0] >= w[1]));
1843
1844 // Test heapsort using `<` operator.
1845 tmp.copy_from_slice(v);
1846 heapsort(tmp, |a, b| a < b);
1847 assert!(tmp.windows(2).all(|w| w[0] <= w[1]));
1848
1849 // Test heapsort using `>` operator.
1850 tmp.copy_from_slice(v);
1851 heapsort(tmp, |a, b| a > b);
1852 assert!(tmp.windows(2).all(|w| w[0] >= w[1]));
1853 }
1854 }
1855 }
1856
1857 // Sort using a completely random comparison function.
1858 // This will reorder the elements *somehow*, but won't panic.
1859 for i in 0..v.len() {
1860 v[i] = i as i32;
1861 }
1862 v.sort_unstable_by(|_, _| *[Less, Equal, Greater].choose(&mut rng).unwrap());
1863 v.sort_unstable();
1864 for i in 0..v.len() {
1865 assert_eq!(v[i], i as i32);
1866 }
1867
1868 // Should not panic.
1869 [0i32; 0].sort_unstable();
1870 [(); 10].sort_unstable();
1871 [(); 100].sort_unstable();
1872
1873 let mut v = [0xDEADBEEFu64];
1874 v.sort_unstable();
1875 assert!(v == [0xDEADBEEF]);
1876 }
1877
1878 #[test]
1879 #[cfg(not(target_arch = "wasm32"))]
1880 #[cfg_attr(miri, ignore)] // Miri is too slow
1881 fn select_nth_unstable() {
1882 use core::cmp::Ordering::{Equal, Greater, Less};
1883 use rand::rngs::StdRng;
1884 use rand::seq::SliceRandom;
1885 use rand::{Rng, SeedableRng};
1886
1887 let mut rng = StdRng::from_entropy();
1888
1889 for len in (2..21).chain(500..501) {
1890 let mut orig = vec![0; len];
1891
1892 for &modulus in &[5, 10, 1000] {
1893 for _ in 0..10 {
1894 for i in 0..len {
1895 orig[i] = rng.gen::<i32>() % modulus;
1896 }
1897
1898 let v_sorted = {
1899 let mut v = orig.clone();
1900 v.sort();
1901 v
1902 };
1903
1904 // Sort in default order.
1905 for pivot in 0..len {
1906 let mut v = orig.clone();
1907 v.select_nth_unstable(pivot);
1908
1909 assert_eq!(v_sorted[pivot], v[pivot]);
1910 for i in 0..pivot {
1911 for j in pivot..len {
1912 assert!(v[i] <= v[j]);
1913 }
1914 }
1915 }
1916
1917 // Sort in ascending order.
1918 for pivot in 0..len {
1919 let mut v = orig.clone();
1920 let (left, pivot, right) = v.select_nth_unstable_by(pivot, |a, b| a.cmp(b));
1921
1922 assert_eq!(left.len() + right.len(), len - 1);
1923
1924 for l in left {
1925 assert!(l <= pivot);
1926 for r in right.iter_mut() {
1927 assert!(l <= r);
1928 assert!(pivot <= r);
1929 }
1930 }
1931 }
1932
1933 // Sort in descending order.
1934 let sort_descending_comparator = |a: &i32, b: &i32| b.cmp(a);
1935 let v_sorted_descending = {
1936 let mut v = orig.clone();
1937 v.sort_by(sort_descending_comparator);
1938 v
1939 };
1940
1941 for pivot in 0..len {
1942 let mut v = orig.clone();
1943 v.select_nth_unstable_by(pivot, sort_descending_comparator);
1944
1945 assert_eq!(v_sorted_descending[pivot], v[pivot]);
1946 for i in 0..pivot {
1947 for j in pivot..len {
1948 assert!(v[j] <= v[i]);
1949 }
1950 }
1951 }
1952 }
1953 }
1954 }
1955
1956 // Sort at index using a completely random comparison function.
1957 // This will reorder the elements *somehow*, but won't panic.
1958 let mut v = [0; 500];
1959 for i in 0..v.len() {
1960 v[i] = i as i32;
1961 }
1962
1963 for pivot in 0..v.len() {
1964 v.select_nth_unstable_by(pivot, |_, _| *[Less, Equal, Greater].choose(&mut rng).unwrap());
1965 v.sort();
1966 for i in 0..v.len() {
1967 assert_eq!(v[i], i as i32);
1968 }
1969 }
1970
1971 // Should not panic.
1972 [(); 10].select_nth_unstable(0);
1973 [(); 10].select_nth_unstable(5);
1974 [(); 10].select_nth_unstable(9);
1975 [(); 100].select_nth_unstable(0);
1976 [(); 100].select_nth_unstable(50);
1977 [(); 100].select_nth_unstable(99);
1978
1979 let mut v = [0xDEADBEEFu64];
1980 v.select_nth_unstable(0);
1981 assert!(v == [0xDEADBEEF]);
1982 }
1983
1984 #[test]
1985 #[should_panic(expected = "index 0 greater than length of slice")]
1986 fn select_nth_unstable_zero_length() {
1987 [0i32; 0].select_nth_unstable(0);
1988 }
1989
1990 #[test]
1991 #[should_panic(expected = "index 20 greater than length of slice")]
1992 fn select_nth_unstable_past_length() {
1993 [0i32; 10].select_nth_unstable(20);
1994 }
1995
1996 pub mod memchr {
1997 use core::slice::memchr::{memchr, memrchr};
1998
1999 // test fallback implementations on all platforms
2000 #[test]
2001 fn matches_one() {
2002 assert_eq!(Some(0), memchr(b'a', b"a"));
2003 }
2004
2005 #[test]
2006 fn matches_begin() {
2007 assert_eq!(Some(0), memchr(b'a', b"aaaa"));
2008 }
2009
2010 #[test]
2011 fn matches_end() {
2012 assert_eq!(Some(4), memchr(b'z', b"aaaaz"));
2013 }
2014
2015 #[test]
2016 fn matches_nul() {
2017 assert_eq!(Some(4), memchr(b'\x00', b"aaaa\x00"));
2018 }
2019
2020 #[test]
2021 fn matches_past_nul() {
2022 assert_eq!(Some(5), memchr(b'z', b"aaaa\x00z"));
2023 }
2024
2025 #[test]
2026 fn no_match_empty() {
2027 assert_eq!(None, memchr(b'a', b""));
2028 }
2029
2030 #[test]
2031 fn no_match() {
2032 assert_eq!(None, memchr(b'a', b"xyz"));
2033 }
2034
2035 #[test]
2036 fn matches_one_reversed() {
2037 assert_eq!(Some(0), memrchr(b'a', b"a"));
2038 }
2039
2040 #[test]
2041 fn matches_begin_reversed() {
2042 assert_eq!(Some(3), memrchr(b'a', b"aaaa"));
2043 }
2044
2045 #[test]
2046 fn matches_end_reversed() {
2047 assert_eq!(Some(0), memrchr(b'z', b"zaaaa"));
2048 }
2049
2050 #[test]
2051 fn matches_nul_reversed() {
2052 assert_eq!(Some(4), memrchr(b'\x00', b"aaaa\x00"));
2053 }
2054
2055 #[test]
2056 fn matches_past_nul_reversed() {
2057 assert_eq!(Some(0), memrchr(b'z', b"z\x00aaaa"));
2058 }
2059
2060 #[test]
2061 fn no_match_empty_reversed() {
2062 assert_eq!(None, memrchr(b'a', b""));
2063 }
2064
2065 #[test]
2066 fn no_match_reversed() {
2067 assert_eq!(None, memrchr(b'a', b"xyz"));
2068 }
2069
2070 #[test]
2071 fn each_alignment_reversed() {
2072 let mut data = [1u8; 64];
2073 let needle = 2;
2074 let pos = 40;
2075 data[pos] = needle;
2076 for start in 0..16 {
2077 assert_eq!(Some(pos - start), memrchr(needle, &data[start..]));
2078 }
2079 }
2080 }
2081
2082 #[test]
2083 fn test_align_to_simple() {
2084 let bytes = [1u8, 2, 3, 4, 5, 6, 7];
2085 let (prefix, aligned, suffix) = unsafe { bytes.align_to::<u16>() };
2086 assert_eq!(aligned.len(), 3);
2087 assert!(prefix == [1] || suffix == [7]);
2088 let expect1 = [1 << 8 | 2, 3 << 8 | 4, 5 << 8 | 6];
2089 let expect2 = [1 | 2 << 8, 3 | 4 << 8, 5 | 6 << 8];
2090 let expect3 = [2 << 8 | 3, 4 << 8 | 5, 6 << 8 | 7];
2091 let expect4 = [2 | 3 << 8, 4 | 5 << 8, 6 | 7 << 8];
2092 assert!(
2093 aligned == expect1 || aligned == expect2 || aligned == expect3 || aligned == expect4,
2094 "aligned={:?} expected={:?} || {:?} || {:?} || {:?}",
2095 aligned,
2096 expect1,
2097 expect2,
2098 expect3,
2099 expect4
2100 );
2101 }
2102
2103 #[test]
2104 fn test_align_to_zst() {
2105 let bytes = [1, 2, 3, 4, 5, 6, 7];
2106 let (prefix, aligned, suffix) = unsafe { bytes.align_to::<()>() };
2107 assert_eq!(aligned.len(), 0);
2108 assert!(prefix == [1, 2, 3, 4, 5, 6, 7] || suffix == [1, 2, 3, 4, 5, 6, 7]);
2109 }
2110
2111 #[test]
2112 fn test_align_to_non_trivial() {
2113 #[repr(align(8))]
2114 struct U64(u64, u64);
2115 #[repr(align(8))]
2116 struct U64U64U32(u64, u64, u32);
2117 let data = [
2118 U64(1, 2),
2119 U64(3, 4),
2120 U64(5, 6),
2121 U64(7, 8),
2122 U64(9, 10),
2123 U64(11, 12),
2124 U64(13, 14),
2125 U64(15, 16),
2126 ];
2127 let (prefix, aligned, suffix) = unsafe { data.align_to::<U64U64U32>() };
2128 assert_eq!(aligned.len(), 4);
2129 assert_eq!(prefix.len() + suffix.len(), 2);
2130 }
2131
2132 #[test]
2133 fn test_align_to_empty_mid() {
2134 use core::mem;
2135
2136 // Make sure that we do not create empty unaligned slices for the mid part, even when the
2137 // overall slice is too short to contain an aligned address.
2138 let bytes = [1, 2, 3, 4, 5, 6, 7];
2139 type Chunk = u32;
2140 for offset in 0..4 {
2141 let (_, mid, _) = unsafe { bytes[offset..offset + 1].align_to::<Chunk>() };
2142 assert_eq!(mid.as_ptr() as usize % mem::align_of::<Chunk>(), 0);
2143 }
2144 }
2145
2146 #[test]
2147 fn test_align_to_mut_aliasing() {
2148 let mut val = [1u8, 2, 3, 4, 5];
2149 // `align_to_mut` used to create `mid` in a way that there was some intermediate
2150 // incorrect aliasing, invalidating the resulting `mid` slice.
2151 let (begin, mid, end) = unsafe { val.align_to_mut::<[u8; 2]>() };
2152 assert!(begin.len() == 0);
2153 assert!(end.len() == 1);
2154 mid[0] = mid[1];
2155 assert_eq!(val, [3, 4, 3, 4, 5])
2156 }
2157
2158 #[test]
2159 fn test_slice_partition_dedup_by() {
2160 let mut slice: [i32; 9] = [1, -1, 2, 3, 1, -5, 5, -2, 2];
2161
2162 let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.abs() == b.abs());
2163
2164 assert_eq!(dedup, [1, 2, 3, 1, -5, -2]);
2165 assert_eq!(duplicates, [5, -1, 2]);
2166 }
2167
2168 #[test]
2169 fn test_slice_partition_dedup_empty() {
2170 let mut slice: [i32; 0] = [];
2171
2172 let (dedup, duplicates) = slice.partition_dedup();
2173
2174 assert_eq!(dedup, []);
2175 assert_eq!(duplicates, []);
2176 }
2177
2178 #[test]
2179 fn test_slice_partition_dedup_one() {
2180 let mut slice = [12];
2181
2182 let (dedup, duplicates) = slice.partition_dedup();
2183
2184 assert_eq!(dedup, [12]);
2185 assert_eq!(duplicates, []);
2186 }
2187
2188 #[test]
2189 fn test_slice_partition_dedup_multiple_ident() {
2190 let mut slice = [12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11];
2191
2192 let (dedup, duplicates) = slice.partition_dedup();
2193
2194 assert_eq!(dedup, [12, 11]);
2195 assert_eq!(duplicates, [12, 12, 12, 12, 11, 11, 11, 11, 11]);
2196 }
2197
2198 #[test]
2199 fn test_slice_partition_dedup_partialeq() {
2200 #[derive(Debug)]
2201 struct Foo(i32, i32);
2202
2203 impl PartialEq for Foo {
2204 fn eq(&self, other: &Foo) -> bool {
2205 self.0 == other.0
2206 }
2207 }
2208
2209 let mut slice = [Foo(0, 1), Foo(0, 5), Foo(1, 7), Foo(1, 9)];
2210
2211 let (dedup, duplicates) = slice.partition_dedup();
2212
2213 assert_eq!(dedup, [Foo(0, 1), Foo(1, 7)]);
2214 assert_eq!(duplicates, [Foo(0, 5), Foo(1, 9)]);
2215 }
2216
2217 #[test]
2218 fn test_copy_within() {
2219 // Start to end, with a RangeTo.
2220 let mut bytes = *b"Hello, World!";
2221 bytes.copy_within(..3, 10);
2222 assert_eq!(&bytes, b"Hello, WorHel");
2223
2224 // End to start, with a RangeFrom.
2225 let mut bytes = *b"Hello, World!";
2226 bytes.copy_within(10.., 0);
2227 assert_eq!(&bytes, b"ld!lo, World!");
2228
2229 // Overlapping, with a RangeInclusive.
2230 let mut bytes = *b"Hello, World!";
2231 bytes.copy_within(0..=11, 1);
2232 assert_eq!(&bytes, b"HHello, World");
2233
2234 // Whole slice, with a RangeFull.
2235 let mut bytes = *b"Hello, World!";
2236 bytes.copy_within(.., 0);
2237 assert_eq!(&bytes, b"Hello, World!");
2238
2239 // Ensure that copying at the end of slice won't cause UB.
2240 let mut bytes = *b"Hello, World!";
2241 bytes.copy_within(13..13, 5);
2242 assert_eq!(&bytes, b"Hello, World!");
2243 bytes.copy_within(5..5, 13);
2244 assert_eq!(&bytes, b"Hello, World!");
2245 }
2246
2247 #[test]
2248 #[should_panic(expected = "range end index 14 out of range for slice of length 13")]
2249 fn test_copy_within_panics_src_too_long() {
2250 let mut bytes = *b"Hello, World!";
2251 // The length is only 13, so 14 is out of bounds.
2252 bytes.copy_within(10..14, 0);
2253 }
2254
2255 #[test]
2256 #[should_panic(expected = "dest is out of bounds")]
2257 fn test_copy_within_panics_dest_too_long() {
2258 let mut bytes = *b"Hello, World!";
2259 // The length is only 13, so a slice of length 4 starting at index 10 is out of bounds.
2260 bytes.copy_within(0..4, 10);
2261 }
2262
2263 #[test]
2264 #[should_panic(expected = "slice index starts at 2 but ends at 1")]
2265 fn test_copy_within_panics_src_inverted() {
2266 let mut bytes = *b"Hello, World!";
2267 // 2 is greater than 1, so this range is invalid.
2268 bytes.copy_within(2..1, 0);
2269 }
2270 #[test]
2271 #[should_panic(expected = "attempted to index slice up to maximum usize")]
2272 fn test_copy_within_panics_src_out_of_bounds() {
2273 let mut bytes = *b"Hello, World!";
2274 // an inclusive range ending at usize::MAX would make src_end overflow
2275 bytes.copy_within(usize::MAX..=usize::MAX, 0);
2276 }
2277
2278 #[test]
2279 fn test_is_sorted() {
2280 let empty: [i32; 0] = [];
2281
2282 assert!([1, 2, 2, 9].is_sorted());
2283 assert!(![1, 3, 2].is_sorted());
2284 assert!([0].is_sorted());
2285 assert!(empty.is_sorted());
2286 assert!(![0.0, 1.0, f32::NAN].is_sorted());
2287 assert!([-2, -1, 0, 3].is_sorted());
2288 assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
2289 assert!(!["c", "bb", "aaa"].is_sorted());
2290 assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
2291 }
2292
2293 #[test]
2294 fn test_slice_run_destructors() {
2295 // Make sure that destructors get run on slice literals
2296 struct Foo<'a> {
2297 x: &'a Cell<isize>,
2298 }
2299
2300 impl<'a> Drop for Foo<'a> {
2301 fn drop(&mut self) {
2302 self.x.set(self.x.get() + 1);
2303 }
2304 }
2305
2306 fn foo(x: &Cell<isize>) -> Foo<'_> {
2307 Foo { x }
2308 }
2309
2310 let x = &Cell::new(0);
2311
2312 {
2313 let l = &[foo(x)];
2314 assert_eq!(l[0].x.get(), 0);
2315 }
2316
2317 assert_eq!(x.get(), 1);
2318 }
2319
2320 #[test]
2321 fn test_const_from_ref() {
2322 const VALUE: &i32 = &1;
2323 const SLICE: &[i32] = core::slice::from_ref(VALUE);
2324
2325 assert!(core::ptr::eq(VALUE, &SLICE[0]))
2326 }
2327
2328 #[test]
2329 fn test_slice_fill_with_uninit() {
2330 // This should not UB. See #87891
2331 let mut a = [MaybeUninit::<u8>::uninit(); 10];
2332 a.fill(MaybeUninit::uninit());
2333 }
2334
2335 #[test]
2336 fn test_swap() {
2337 let mut x = ["a", "b", "c", "d"];
2338 x.swap(1, 3);
2339 assert_eq!(x, ["a", "d", "c", "b"]);
2340 x.swap(0, 3);
2341 assert_eq!(x, ["b", "d", "c", "a"]);
2342 }
2343
2344 mod swap_panics {
2345 #[test]
2346 #[should_panic(expected = "index out of bounds: the len is 4 but the index is 4")]
2347 fn index_a_equals_len() {
2348 let mut x = ["a", "b", "c", "d"];
2349 x.swap(4, 2);
2350 }
2351
2352 #[test]
2353 #[should_panic(expected = "index out of bounds: the len is 4 but the index is 4")]
2354 fn index_b_equals_len() {
2355 let mut x = ["a", "b", "c", "d"];
2356 x.swap(2, 4);
2357 }
2358
2359 #[test]
2360 #[should_panic(expected = "index out of bounds: the len is 4 but the index is 5")]
2361 fn index_a_greater_than_len() {
2362 let mut x = ["a", "b", "c", "d"];
2363 x.swap(5, 2);
2364 }
2365
2366 #[test]
2367 #[should_panic(expected = "index out of bounds: the len is 4 but the index is 5")]
2368 fn index_b_greater_than_len() {
2369 let mut x = ["a", "b", "c", "d"];
2370 x.swap(2, 5);
2371 }
2372 }
2373
2374 #[test]
2375 fn slice_split_array_mut() {
2376 let v = &mut [1, 2, 3, 4, 5, 6][..];
2377
2378 {
2379 let (left, right) = v.split_array_mut::<0>();
2380 assert_eq!(left, &mut []);
2381 assert_eq!(right, [1, 2, 3, 4, 5, 6]);
2382 }
2383
2384 {
2385 let (left, right) = v.split_array_mut::<6>();
2386 assert_eq!(left, &mut [1, 2, 3, 4, 5, 6]);
2387 assert_eq!(right, []);
2388 }
2389 }
2390
2391 #[test]
2392 fn slice_rsplit_array_mut() {
2393 let v = &mut [1, 2, 3, 4, 5, 6][..];
2394
2395 {
2396 let (left, right) = v.rsplit_array_mut::<0>();
2397 assert_eq!(left, [1, 2, 3, 4, 5, 6]);
2398 assert_eq!(right, &mut []);
2399 }
2400
2401 {
2402 let (left, right) = v.rsplit_array_mut::<6>();
2403 assert_eq!(left, []);
2404 assert_eq!(right, &mut [1, 2, 3, 4, 5, 6]);
2405 }
2406 }
2407
2408 #[test]
2409 fn split_as_slice() {
2410 let arr = [1, 2, 3, 4, 5, 6];
2411 let mut split = arr.split(|v| v % 2 == 0);
2412 assert_eq!(split.as_slice(), &[1, 2, 3, 4, 5, 6]);
2413 assert!(split.next().is_some());
2414 assert_eq!(split.as_slice(), &[3, 4, 5, 6]);
2415 assert!(split.next().is_some());
2416 assert!(split.next().is_some());
2417 assert_eq!(split.as_slice(), &[]);
2418 }
2419
2420 #[should_panic]
2421 #[test]
2422 fn slice_split_array_ref_out_of_bounds() {
2423 let v = &[1, 2, 3, 4, 5, 6][..];
2424
2425 let _ = v.split_array_ref::<7>();
2426 }
2427
2428 #[should_panic]
2429 #[test]
2430 fn slice_split_array_mut_out_of_bounds() {
2431 let v = &mut [1, 2, 3, 4, 5, 6][..];
2432
2433 let _ = v.split_array_mut::<7>();
2434 }
2435
2436 #[should_panic]
2437 #[test]
2438 fn slice_rsplit_array_ref_out_of_bounds() {
2439 let v = &[1, 2, 3, 4, 5, 6][..];
2440
2441 let _ = v.rsplit_array_ref::<7>();
2442 }
2443
2444 #[should_panic]
2445 #[test]
2446 fn slice_rsplit_array_mut_out_of_bounds() {
2447 let v = &mut [1, 2, 3, 4, 5, 6][..];
2448
2449 let _ = v.rsplit_array_mut::<7>();
2450 }
2451
2452 macro_rules! take_tests {
2453 (slice: &[], $($tts:tt)*) => {
2454 take_tests!(ty: &[()], slice: &[], $($tts)*);
2455 };
2456 (slice: &mut [], $($tts:tt)*) => {
2457 take_tests!(ty: &mut [()], slice: &mut [], $($tts)*);
2458 };
2459 (slice: &$slice:expr, $($tts:tt)*) => {
2460 take_tests!(ty: &[_], slice: &$slice, $($tts)*);
2461 };
2462 (slice: &mut $slice:expr, $($tts:tt)*) => {
2463 take_tests!(ty: &mut [_], slice: &mut $slice, $($tts)*);
2464 };
2465 (ty: $ty:ty, slice: $slice:expr, method: $method:ident, $(($test_name:ident, ($($args:expr),*), $output:expr, $remaining:expr),)*) => {
2466 $(
2467 #[test]
2468 fn $test_name() {
2469 let mut slice: $ty = $slice;
2470 assert_eq!($output, slice.$method($($args)*));
2471 let remaining: $ty = $remaining;
2472 assert_eq!(remaining, slice);
2473 }
2474 )*
2475 };
2476 }
2477
2478 take_tests! {
2479 slice: &[0, 1, 2, 3], method: take,
2480 (take_in_bounds_range_to, (..1), Some(&[0] as _), &[1, 2, 3]),
2481 (take_in_bounds_range_to_inclusive, (..=0), Some(&[0] as _), &[1, 2, 3]),
2482 (take_in_bounds_range_from, (2..), Some(&[2, 3] as _), &[0, 1]),
2483 (take_oob_range_to, (..5), None, &[0, 1, 2, 3]),
2484 (take_oob_range_to_inclusive, (..=4), None, &[0, 1, 2, 3]),
2485 (take_oob_range_from, (5..), None, &[0, 1, 2, 3]),
2486 }
2487
2488 take_tests! {
2489 slice: &mut [0, 1, 2, 3], method: take_mut,
2490 (take_mut_in_bounds_range_to, (..1), Some(&mut [0] as _), &mut [1, 2, 3]),
2491 (take_mut_in_bounds_range_to_inclusive, (..=0), Some(&mut [0] as _), &mut [1, 2, 3]),
2492 (take_mut_in_bounds_range_from, (2..), Some(&mut [2, 3] as _), &mut [0, 1]),
2493 (take_mut_oob_range_to, (..5), None, &mut [0, 1, 2, 3]),
2494 (take_mut_oob_range_to_inclusive, (..=4), None, &mut [0, 1, 2, 3]),
2495 (take_mut_oob_range_from, (5..), None, &mut [0, 1, 2, 3]),
2496 }
2497
2498 take_tests! {
2499 slice: &[1, 2], method: take_first,
2500 (take_first_nonempty, (), Some(&1), &[2]),
2501 }
2502
2503 take_tests! {
2504 slice: &mut [1, 2], method: take_first_mut,
2505 (take_first_mut_nonempty, (), Some(&mut 1), &mut [2]),
2506 }
2507
2508 take_tests! {
2509 slice: &[1, 2], method: take_last,
2510 (take_last_nonempty, (), Some(&2), &[1]),
2511 }
2512
2513 take_tests! {
2514 slice: &mut [1, 2], method: take_last_mut,
2515 (take_last_mut_nonempty, (), Some(&mut 2), &mut [1]),
2516 }
2517
2518 take_tests! {
2519 slice: &[], method: take_first,
2520 (take_first_empty, (), None, &[]),
2521 }
2522
2523 take_tests! {
2524 slice: &mut [], method: take_first_mut,
2525 (take_first_mut_empty, (), None, &mut []),
2526 }
2527
2528 take_tests! {
2529 slice: &[], method: take_last,
2530 (take_last_empty, (), None, &[]),
2531 }
2532
2533 take_tests! {
2534 slice: &mut [], method: take_last_mut,
2535 (take_last_mut_empty, (), None, &mut []),
2536 }
2537
2538 #[cfg(not(miri))] // unused in Miri
2539 const EMPTY_MAX: &'static [()] = &[(); usize::MAX];
2540
2541 // can't be a constant due to const mutability rules
2542 #[cfg(not(miri))] // unused in Miri
2543 macro_rules! empty_max_mut {
2544 () => {
2545 &mut [(); usize::MAX] as _
2546 };
2547 }
2548
2549 #[cfg(not(miri))] // Comparing usize::MAX many elements takes forever in Miri (and in rustc without optimizations)
2550 take_tests! {
2551 slice: &[(); usize::MAX], method: take,
2552 (take_in_bounds_max_range_to, (..usize::MAX), Some(EMPTY_MAX), &[(); 0]),
2553 (take_oob_max_range_to_inclusive, (..=usize::MAX), None, EMPTY_MAX),
2554 (take_in_bounds_max_range_from, (usize::MAX..), Some(&[] as _), EMPTY_MAX),
2555 }
2556
2557 #[cfg(not(miri))] // Comparing usize::MAX many elements takes forever in Miri (and in rustc without optimizations)
2558 take_tests! {
2559 slice: &mut [(); usize::MAX], method: take_mut,
2560 (take_mut_in_bounds_max_range_to, (..usize::MAX), Some(empty_max_mut!()), &mut [(); 0]),
2561 (take_mut_oob_max_range_to_inclusive, (..=usize::MAX), None, empty_max_mut!()),
2562 (take_mut_in_bounds_max_range_from, (usize::MAX..), Some(&mut [] as _), empty_max_mut!()),
2563 }
2564
2565 #[test]
2566 fn test_slice_from_ptr_range() {
2567 let arr = ["foo".to_owned(), "bar".to_owned()];
2568 let range = arr.as_ptr_range();
2569 unsafe {
2570 assert_eq!(slice::from_ptr_range(range), &arr);
2571 }
2572
2573 let mut arr = [1, 2, 3];
2574 let range = arr.as_mut_ptr_range();
2575 unsafe {
2576 assert_eq!(slice::from_mut_ptr_range(range), &mut [1, 2, 3]);
2577 }
2578
2579 let arr: [Vec<String>; 0] = [];
2580 let range = arr.as_ptr_range();
2581 unsafe {
2582 assert_eq!(slice::from_ptr_range(range), &arr);
2583 }
2584 }
2585
2586 #[test]
2587 #[should_panic = "slice len overflow"]
2588 fn test_flatten_size_overflow() {
2589 let x = &[[(); usize::MAX]; 2][..];
2590 let _ = x.flatten();
2591 }
2592
2593 #[test]
2594 #[should_panic = "slice len overflow"]
2595 fn test_flatten_mut_size_overflow() {
2596 let x = &mut [[(); usize::MAX]; 2][..];
2597 let _ = x.flatten_mut();
2598 }