]> git.proxmox.com Git - rustc.git/blob - library/panic_unwind/src/gcc.rs
New upstream version 1.48.0~beta.8+dfsg1
[rustc.git] / library / panic_unwind / src / gcc.rs
1 //! Implementation of panics backed by libgcc/libunwind (in some form).
2 //!
3 //! For background on exception handling and stack unwinding please see
4 //! "Exception Handling in LLVM" (llvm.org/docs/ExceptionHandling.html) and
5 //! documents linked from it.
6 //! These are also good reads:
7 //! https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
8 //! http://monoinfinito.wordpress.com/series/exception-handling-in-c/
9 //! http://www.airs.com/blog/index.php?s=exception+frames
10 //!
11 //! ## A brief summary
12 //!
13 //! Exception handling happens in two phases: a search phase and a cleanup
14 //! phase.
15 //!
16 //! In both phases the unwinder walks stack frames from top to bottom using
17 //! information from the stack frame unwind sections of the current process's
18 //! modules ("module" here refers to an OS module, i.e., an executable or a
19 //! dynamic library).
20 //!
21 //! For each stack frame, it invokes the associated "personality routine", whose
22 //! address is also stored in the unwind info section.
23 //!
24 //! In the search phase, the job of a personality routine is to examine
25 //! exception object being thrown, and to decide whether it should be caught at
26 //! that stack frame. Once the handler frame has been identified, cleanup phase
27 //! begins.
28 //!
29 //! In the cleanup phase, the unwinder invokes each personality routine again.
30 //! This time it decides which (if any) cleanup code needs to be run for
31 //! the current stack frame. If so, the control is transferred to a special
32 //! branch in the function body, the "landing pad", which invokes destructors,
33 //! frees memory, etc. At the end of the landing pad, control is transferred
34 //! back to the unwinder and unwinding resumes.
35 //!
36 //! Once stack has been unwound down to the handler frame level, unwinding stops
37 //! and the last personality routine transfers control to the catch block.
38
39 use alloc::boxed::Box;
40 use core::any::Any;
41
42 use crate::dwarf::eh::{self, EHAction, EHContext};
43 use libc::{c_int, uintptr_t};
44 use unwind as uw;
45
46 #[repr(C)]
47 struct Exception {
48 _uwe: uw::_Unwind_Exception,
49 cause: Box<dyn Any + Send>,
50 }
51
52 pub unsafe fn panic(data: Box<dyn Any + Send>) -> u32 {
53 let exception = Box::new(Exception {
54 _uwe: uw::_Unwind_Exception {
55 exception_class: rust_exception_class(),
56 exception_cleanup,
57 private: [0; uw::unwinder_private_data_size],
58 },
59 cause: data,
60 });
61 let exception_param = Box::into_raw(exception) as *mut uw::_Unwind_Exception;
62 return uw::_Unwind_RaiseException(exception_param) as u32;
63
64 extern "C" fn exception_cleanup(
65 _unwind_code: uw::_Unwind_Reason_Code,
66 exception: *mut uw::_Unwind_Exception,
67 ) {
68 unsafe {
69 let _: Box<Exception> = Box::from_raw(exception as *mut Exception);
70 super::__rust_drop_panic();
71 }
72 }
73 }
74
75 pub unsafe fn cleanup(ptr: *mut u8) -> Box<dyn Any + Send> {
76 let exception = ptr as *mut uw::_Unwind_Exception;
77 if (*exception).exception_class != rust_exception_class() {
78 uw::_Unwind_DeleteException(exception);
79 super::__rust_foreign_exception();
80 } else {
81 let exception = Box::from_raw(exception as *mut Exception);
82 exception.cause
83 }
84 }
85
86 // Rust's exception class identifier. This is used by personality routines to
87 // determine whether the exception was thrown by their own runtime.
88 fn rust_exception_class() -> uw::_Unwind_Exception_Class {
89 // M O Z \0 R U S T -- vendor, language
90 0x4d4f5a_00_52555354
91 }
92
93 // Register ids were lifted from LLVM's TargetLowering::getExceptionPointerRegister()
94 // and TargetLowering::getExceptionSelectorRegister() for each architecture,
95 // then mapped to DWARF register numbers via register definition tables
96 // (typically <arch>RegisterInfo.td, search for "DwarfRegNum").
97 // See also http://llvm.org/docs/WritingAnLLVMBackend.html#defining-a-register.
98
99 #[cfg(target_arch = "x86")]
100 const UNWIND_DATA_REG: (i32, i32) = (0, 2); // EAX, EDX
101
102 #[cfg(target_arch = "x86_64")]
103 const UNWIND_DATA_REG: (i32, i32) = (0, 1); // RAX, RDX
104
105 #[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
106 const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1 / X0, X1
107
108 #[cfg(any(target_arch = "mips", target_arch = "mips64"))]
109 const UNWIND_DATA_REG: (i32, i32) = (4, 5); // A0, A1
110
111 #[cfg(any(target_arch = "powerpc", target_arch = "powerpc64"))]
112 const UNWIND_DATA_REG: (i32, i32) = (3, 4); // R3, R4 / X3, X4
113
114 #[cfg(target_arch = "s390x")]
115 const UNWIND_DATA_REG: (i32, i32) = (6, 7); // R6, R7
116
117 #[cfg(any(target_arch = "sparc", target_arch = "sparc64"))]
118 const UNWIND_DATA_REG: (i32, i32) = (24, 25); // I0, I1
119
120 #[cfg(target_arch = "hexagon")]
121 const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1
122
123 #[cfg(any(target_arch = "riscv64", target_arch = "riscv32"))]
124 const UNWIND_DATA_REG: (i32, i32) = (10, 11); // x10, x11
125
126 // The following code is based on GCC's C and C++ personality routines. For reference, see:
127 // https://github.com/gcc-mirror/gcc/blob/master/libstdc++-v3/libsupc++/eh_personality.cc
128 // https://github.com/gcc-mirror/gcc/blob/trunk/libgcc/unwind-c.c
129
130 cfg_if::cfg_if! {
131 if #[cfg(all(target_arch = "arm", not(target_os = "ios"), not(target_os = "netbsd")))] {
132 // ARM EHABI personality routine.
133 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038b/IHI0038B_ehabi.pdf
134 //
135 // iOS uses the default routine instead since it uses SjLj unwinding.
136 #[lang = "eh_personality"]
137 unsafe extern "C" fn rust_eh_personality(state: uw::_Unwind_State,
138 exception_object: *mut uw::_Unwind_Exception,
139 context: *mut uw::_Unwind_Context)
140 -> uw::_Unwind_Reason_Code {
141 let state = state as c_int;
142 let action = state & uw::_US_ACTION_MASK as c_int;
143 let search_phase = if action == uw::_US_VIRTUAL_UNWIND_FRAME as c_int {
144 // Backtraces on ARM will call the personality routine with
145 // state == _US_VIRTUAL_UNWIND_FRAME | _US_FORCE_UNWIND. In those cases
146 // we want to continue unwinding the stack, otherwise all our backtraces
147 // would end at __rust_try
148 if state & uw::_US_FORCE_UNWIND as c_int != 0 {
149 return continue_unwind(exception_object, context);
150 }
151 true
152 } else if action == uw::_US_UNWIND_FRAME_STARTING as c_int {
153 false
154 } else if action == uw::_US_UNWIND_FRAME_RESUME as c_int {
155 return continue_unwind(exception_object, context);
156 } else {
157 return uw::_URC_FAILURE;
158 };
159
160 // The DWARF unwinder assumes that _Unwind_Context holds things like the function
161 // and LSDA pointers, however ARM EHABI places them into the exception object.
162 // To preserve signatures of functions like _Unwind_GetLanguageSpecificData(), which
163 // take only the context pointer, GCC personality routines stash a pointer to
164 // exception_object in the context, using location reserved for ARM's
165 // "scratch register" (r12).
166 uw::_Unwind_SetGR(context,
167 uw::UNWIND_POINTER_REG,
168 exception_object as uw::_Unwind_Ptr);
169 // ...A more principled approach would be to provide the full definition of ARM's
170 // _Unwind_Context in our libunwind bindings and fetch the required data from there
171 // directly, bypassing DWARF compatibility functions.
172
173 let eh_action = match find_eh_action(context) {
174 Ok(action) => action,
175 Err(_) => return uw::_URC_FAILURE,
176 };
177 if search_phase {
178 match eh_action {
179 EHAction::None |
180 EHAction::Cleanup(_) => return continue_unwind(exception_object, context),
181 EHAction::Catch(_) => {
182 // EHABI requires the personality routine to update the
183 // SP value in the barrier cache of the exception object.
184 (*exception_object).private[5] =
185 uw::_Unwind_GetGR(context, uw::UNWIND_SP_REG);
186 return uw::_URC_HANDLER_FOUND;
187 }
188 EHAction::Terminate => return uw::_URC_FAILURE,
189 }
190 } else {
191 match eh_action {
192 EHAction::None => return continue_unwind(exception_object, context),
193 EHAction::Cleanup(lpad) |
194 EHAction::Catch(lpad) => {
195 uw::_Unwind_SetGR(context, UNWIND_DATA_REG.0,
196 exception_object as uintptr_t);
197 uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, 0);
198 uw::_Unwind_SetIP(context, lpad);
199 return uw::_URC_INSTALL_CONTEXT;
200 }
201 EHAction::Terminate => return uw::_URC_FAILURE,
202 }
203 }
204
205 // On ARM EHABI the personality routine is responsible for actually
206 // unwinding a single stack frame before returning (ARM EHABI Sec. 6.1).
207 unsafe fn continue_unwind(exception_object: *mut uw::_Unwind_Exception,
208 context: *mut uw::_Unwind_Context)
209 -> uw::_Unwind_Reason_Code {
210 if __gnu_unwind_frame(exception_object, context) == uw::_URC_NO_REASON {
211 uw::_URC_CONTINUE_UNWIND
212 } else {
213 uw::_URC_FAILURE
214 }
215 }
216 // defined in libgcc
217 extern "C" {
218 fn __gnu_unwind_frame(exception_object: *mut uw::_Unwind_Exception,
219 context: *mut uw::_Unwind_Context)
220 -> uw::_Unwind_Reason_Code;
221 }
222 }
223 } else {
224 // Default personality routine, which is used directly on most targets
225 // and indirectly on Windows x86_64 via SEH.
226 unsafe extern "C" fn rust_eh_personality_impl(version: c_int,
227 actions: uw::_Unwind_Action,
228 _exception_class: uw::_Unwind_Exception_Class,
229 exception_object: *mut uw::_Unwind_Exception,
230 context: *mut uw::_Unwind_Context)
231 -> uw::_Unwind_Reason_Code {
232 if version != 1 {
233 return uw::_URC_FATAL_PHASE1_ERROR;
234 }
235 let eh_action = match find_eh_action(context) {
236 Ok(action) => action,
237 Err(_) => return uw::_URC_FATAL_PHASE1_ERROR,
238 };
239 if actions as i32 & uw::_UA_SEARCH_PHASE as i32 != 0 {
240 match eh_action {
241 EHAction::None |
242 EHAction::Cleanup(_) => uw::_URC_CONTINUE_UNWIND,
243 EHAction::Catch(_) => uw::_URC_HANDLER_FOUND,
244 EHAction::Terminate => uw::_URC_FATAL_PHASE1_ERROR,
245 }
246 } else {
247 match eh_action {
248 EHAction::None => uw::_URC_CONTINUE_UNWIND,
249 EHAction::Cleanup(lpad) |
250 EHAction::Catch(lpad) => {
251 uw::_Unwind_SetGR(context, UNWIND_DATA_REG.0,
252 exception_object as uintptr_t);
253 uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, 0);
254 uw::_Unwind_SetIP(context, lpad);
255 uw::_URC_INSTALL_CONTEXT
256 }
257 EHAction::Terminate => uw::_URC_FATAL_PHASE2_ERROR,
258 }
259 }
260 }
261
262 cfg_if::cfg_if! {
263 if #[cfg(all(windows, target_arch = "x86_64", target_env = "gnu"))] {
264 // On x86_64 MinGW targets, the unwinding mechanism is SEH however the unwind
265 // handler data (aka LSDA) uses GCC-compatible encoding.
266 #[lang = "eh_personality"]
267 #[allow(nonstandard_style)]
268 unsafe extern "C" fn rust_eh_personality(exceptionRecord: *mut uw::EXCEPTION_RECORD,
269 establisherFrame: uw::LPVOID,
270 contextRecord: *mut uw::CONTEXT,
271 dispatcherContext: *mut uw::DISPATCHER_CONTEXT)
272 -> uw::EXCEPTION_DISPOSITION {
273 uw::_GCC_specific_handler(exceptionRecord,
274 establisherFrame,
275 contextRecord,
276 dispatcherContext,
277 rust_eh_personality_impl)
278 }
279 } else {
280 // The personality routine for most of our targets.
281 #[lang = "eh_personality"]
282 unsafe extern "C" fn rust_eh_personality(version: c_int,
283 actions: uw::_Unwind_Action,
284 exception_class: uw::_Unwind_Exception_Class,
285 exception_object: *mut uw::_Unwind_Exception,
286 context: *mut uw::_Unwind_Context)
287 -> uw::_Unwind_Reason_Code {
288 rust_eh_personality_impl(version,
289 actions,
290 exception_class,
291 exception_object,
292 context)
293 }
294 }
295 }
296 }
297 }
298
299 unsafe fn find_eh_action(context: *mut uw::_Unwind_Context) -> Result<EHAction, ()> {
300 let lsda = uw::_Unwind_GetLanguageSpecificData(context) as *const u8;
301 let mut ip_before_instr: c_int = 0;
302 let ip = uw::_Unwind_GetIPInfo(context, &mut ip_before_instr);
303 let eh_context = EHContext {
304 // The return address points 1 byte past the call instruction,
305 // which could be in the next IP range in LSDA range table.
306 ip: if ip_before_instr != 0 { ip } else { ip - 1 },
307 func_start: uw::_Unwind_GetRegionStart(context),
308 get_text_start: &|| uw::_Unwind_GetTextRelBase(context),
309 get_data_start: &|| uw::_Unwind_GetDataRelBase(context),
310 };
311 eh::find_eh_action(lsda, &eh_context)
312 }
313
314 // Frame unwind info registration
315 //
316 // Each module's image contains a frame unwind info section (usually
317 // ".eh_frame"). When a module is loaded/unloaded into the process, the
318 // unwinder must be informed about the location of this section in memory. The
319 // methods of achieving that vary by the platform. On some (e.g., Linux), the
320 // unwinder can discover unwind info sections on its own (by dynamically
321 // enumerating currently loaded modules via the dl_iterate_phdr() API and
322 // finding their ".eh_frame" sections); Others, like Windows, require modules
323 // to actively register their unwind info sections via unwinder API.
324 //
325 // This module defines two symbols which are referenced and called from
326 // rsbegin.rs to register our information with the GCC runtime. The
327 // implementation of stack unwinding is (for now) deferred to libgcc_eh, however
328 // Rust crates use these Rust-specific entry points to avoid potential clashes
329 // with any GCC runtime.
330 #[cfg(all(target_os = "windows", target_arch = "x86", target_env = "gnu"))]
331 pub mod eh_frame_registry {
332 extern "C" {
333 fn __register_frame_info(eh_frame_begin: *const u8, object: *mut u8);
334 fn __deregister_frame_info(eh_frame_begin: *const u8, object: *mut u8);
335 }
336
337 #[rustc_std_internal_symbol]
338 pub unsafe extern "C" fn rust_eh_register_frames(eh_frame_begin: *const u8, object: *mut u8) {
339 __register_frame_info(eh_frame_begin, object);
340 }
341
342 #[rustc_std_internal_symbol]
343 pub unsafe extern "C" fn rust_eh_unregister_frames(eh_frame_begin: *const u8, object: *mut u8) {
344 __deregister_frame_info(eh_frame_begin, object);
345 }
346 }