]> git.proxmox.com Git - rustc.git/blob - library/std/src/f64.rs
New upstream version 1.62.1+dfsg1
[rustc.git] / library / std / src / f64.rs
1 //! Constants specific to the `f64` double-precision floating point type.
2 //!
3 //! *[See also the `f64` primitive type](primitive@f64).*
4 //!
5 //! Mathematically significant numbers are provided in the `consts` sub-module.
6 //!
7 //! For the constants defined directly in this module
8 //! (as distinct from those defined in the `consts` sub-module),
9 //! new code should instead use the associated constants
10 //! defined directly on the `f64` type.
11
12 #![stable(feature = "rust1", since = "1.0.0")]
13 #![allow(missing_docs)]
14
15 #[cfg(test)]
16 mod tests;
17
18 #[cfg(not(test))]
19 use crate::intrinsics;
20 #[cfg(not(test))]
21 use crate::sys::cmath;
22
23 #[stable(feature = "rust1", since = "1.0.0")]
24 #[allow(deprecated, deprecated_in_future)]
25 pub use core::f64::{
26 consts, DIGITS, EPSILON, INFINITY, MANTISSA_DIGITS, MAX, MAX_10_EXP, MAX_EXP, MIN, MIN_10_EXP,
27 MIN_EXP, MIN_POSITIVE, NAN, NEG_INFINITY, RADIX,
28 };
29
30 #[cfg(not(test))]
31 impl f64 {
32 /// Returns the largest integer less than or equal to `self`.
33 ///
34 /// # Examples
35 ///
36 /// ```
37 /// let f = 3.7_f64;
38 /// let g = 3.0_f64;
39 /// let h = -3.7_f64;
40 ///
41 /// assert_eq!(f.floor(), 3.0);
42 /// assert_eq!(g.floor(), 3.0);
43 /// assert_eq!(h.floor(), -4.0);
44 /// ```
45 #[rustc_allow_incoherent_impl]
46 #[must_use = "method returns a new number and does not mutate the original value"]
47 #[stable(feature = "rust1", since = "1.0.0")]
48 #[inline]
49 pub fn floor(self) -> f64 {
50 unsafe { intrinsics::floorf64(self) }
51 }
52
53 /// Returns the smallest integer greater than or equal to `self`.
54 ///
55 /// # Examples
56 ///
57 /// ```
58 /// let f = 3.01_f64;
59 /// let g = 4.0_f64;
60 ///
61 /// assert_eq!(f.ceil(), 4.0);
62 /// assert_eq!(g.ceil(), 4.0);
63 /// ```
64 #[rustc_allow_incoherent_impl]
65 #[must_use = "method returns a new number and does not mutate the original value"]
66 #[stable(feature = "rust1", since = "1.0.0")]
67 #[inline]
68 pub fn ceil(self) -> f64 {
69 unsafe { intrinsics::ceilf64(self) }
70 }
71
72 /// Returns the nearest integer to `self`. Round half-way cases away from
73 /// `0.0`.
74 ///
75 /// # Examples
76 ///
77 /// ```
78 /// let f = 3.3_f64;
79 /// let g = -3.3_f64;
80 ///
81 /// assert_eq!(f.round(), 3.0);
82 /// assert_eq!(g.round(), -3.0);
83 /// ```
84 #[rustc_allow_incoherent_impl]
85 #[must_use = "method returns a new number and does not mutate the original value"]
86 #[stable(feature = "rust1", since = "1.0.0")]
87 #[inline]
88 pub fn round(self) -> f64 {
89 unsafe { intrinsics::roundf64(self) }
90 }
91
92 /// Returns the integer part of `self`.
93 /// This means that non-integer numbers are always truncated towards zero.
94 ///
95 /// # Examples
96 ///
97 /// ```
98 /// let f = 3.7_f64;
99 /// let g = 3.0_f64;
100 /// let h = -3.7_f64;
101 ///
102 /// assert_eq!(f.trunc(), 3.0);
103 /// assert_eq!(g.trunc(), 3.0);
104 /// assert_eq!(h.trunc(), -3.0);
105 /// ```
106 #[rustc_allow_incoherent_impl]
107 #[must_use = "method returns a new number and does not mutate the original value"]
108 #[stable(feature = "rust1", since = "1.0.0")]
109 #[inline]
110 pub fn trunc(self) -> f64 {
111 unsafe { intrinsics::truncf64(self) }
112 }
113
114 /// Returns the fractional part of `self`.
115 ///
116 /// # Examples
117 ///
118 /// ```
119 /// let x = 3.6_f64;
120 /// let y = -3.6_f64;
121 /// let abs_difference_x = (x.fract() - 0.6).abs();
122 /// let abs_difference_y = (y.fract() - (-0.6)).abs();
123 ///
124 /// assert!(abs_difference_x < 1e-10);
125 /// assert!(abs_difference_y < 1e-10);
126 /// ```
127 #[rustc_allow_incoherent_impl]
128 #[must_use = "method returns a new number and does not mutate the original value"]
129 #[stable(feature = "rust1", since = "1.0.0")]
130 #[inline]
131 pub fn fract(self) -> f64 {
132 self - self.trunc()
133 }
134
135 /// Computes the absolute value of `self`.
136 ///
137 /// # Examples
138 ///
139 /// ```
140 /// let x = 3.5_f64;
141 /// let y = -3.5_f64;
142 ///
143 /// let abs_difference_x = (x.abs() - x).abs();
144 /// let abs_difference_y = (y.abs() - (-y)).abs();
145 ///
146 /// assert!(abs_difference_x < 1e-10);
147 /// assert!(abs_difference_y < 1e-10);
148 ///
149 /// assert!(f64::NAN.abs().is_nan());
150 /// ```
151 #[rustc_allow_incoherent_impl]
152 #[must_use = "method returns a new number and does not mutate the original value"]
153 #[stable(feature = "rust1", since = "1.0.0")]
154 #[inline]
155 pub fn abs(self) -> f64 {
156 unsafe { intrinsics::fabsf64(self) }
157 }
158
159 /// Returns a number that represents the sign of `self`.
160 ///
161 /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
162 /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
163 /// - NaN if the number is NaN
164 ///
165 /// # Examples
166 ///
167 /// ```
168 /// let f = 3.5_f64;
169 ///
170 /// assert_eq!(f.signum(), 1.0);
171 /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
172 ///
173 /// assert!(f64::NAN.signum().is_nan());
174 /// ```
175 #[rustc_allow_incoherent_impl]
176 #[must_use = "method returns a new number and does not mutate the original value"]
177 #[stable(feature = "rust1", since = "1.0.0")]
178 #[inline]
179 pub fn signum(self) -> f64 {
180 if self.is_nan() { Self::NAN } else { 1.0_f64.copysign(self) }
181 }
182
183 /// Returns a number composed of the magnitude of `self` and the sign of
184 /// `sign`.
185 ///
186 /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise
187 /// equal to `-self`. If `self` is a NaN, then a NaN with the sign bit of
188 /// `sign` is returned. Note, however, that conserving the sign bit on NaN
189 /// across arithmetical operations is not generally guaranteed.
190 /// See [explanation of NaN as a special value](primitive@f32) for more info.
191 ///
192 /// # Examples
193 ///
194 /// ```
195 /// let f = 3.5_f64;
196 ///
197 /// assert_eq!(f.copysign(0.42), 3.5_f64);
198 /// assert_eq!(f.copysign(-0.42), -3.5_f64);
199 /// assert_eq!((-f).copysign(0.42), 3.5_f64);
200 /// assert_eq!((-f).copysign(-0.42), -3.5_f64);
201 ///
202 /// assert!(f64::NAN.copysign(1.0).is_nan());
203 /// ```
204 #[rustc_allow_incoherent_impl]
205 #[must_use = "method returns a new number and does not mutate the original value"]
206 #[stable(feature = "copysign", since = "1.35.0")]
207 #[inline]
208 pub fn copysign(self, sign: f64) -> f64 {
209 unsafe { intrinsics::copysignf64(self, sign) }
210 }
211
212 /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
213 /// error, yielding a more accurate result than an unfused multiply-add.
214 ///
215 /// Using `mul_add` *may* be more performant than an unfused multiply-add if
216 /// the target architecture has a dedicated `fma` CPU instruction. However,
217 /// this is not always true, and will be heavily dependant on designing
218 /// algorithms with specific target hardware in mind.
219 ///
220 /// # Examples
221 ///
222 /// ```
223 /// let m = 10.0_f64;
224 /// let x = 4.0_f64;
225 /// let b = 60.0_f64;
226 ///
227 /// // 100.0
228 /// let abs_difference = (m.mul_add(x, b) - ((m * x) + b)).abs();
229 ///
230 /// assert!(abs_difference < 1e-10);
231 /// ```
232 #[rustc_allow_incoherent_impl]
233 #[must_use = "method returns a new number and does not mutate the original value"]
234 #[stable(feature = "rust1", since = "1.0.0")]
235 #[inline]
236 pub fn mul_add(self, a: f64, b: f64) -> f64 {
237 unsafe { intrinsics::fmaf64(self, a, b) }
238 }
239
240 /// Calculates Euclidean division, the matching method for `rem_euclid`.
241 ///
242 /// This computes the integer `n` such that
243 /// `self = n * rhs + self.rem_euclid(rhs)`.
244 /// In other words, the result is `self / rhs` rounded to the integer `n`
245 /// such that `self >= n * rhs`.
246 ///
247 /// # Examples
248 ///
249 /// ```
250 /// let a: f64 = 7.0;
251 /// let b = 4.0;
252 /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
253 /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
254 /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
255 /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
256 /// ```
257 #[rustc_allow_incoherent_impl]
258 #[must_use = "method returns a new number and does not mutate the original value"]
259 #[inline]
260 #[stable(feature = "euclidean_division", since = "1.38.0")]
261 pub fn div_euclid(self, rhs: f64) -> f64 {
262 let q = (self / rhs).trunc();
263 if self % rhs < 0.0 {
264 return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
265 }
266 q
267 }
268
269 /// Calculates the least nonnegative remainder of `self (mod rhs)`.
270 ///
271 /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
272 /// most cases. However, due to a floating point round-off error it can
273 /// result in `r == rhs.abs()`, violating the mathematical definition, if
274 /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
275 /// This result is not an element of the function's codomain, but it is the
276 /// closest floating point number in the real numbers and thus fulfills the
277 /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
278 /// approximatively.
279 ///
280 /// # Examples
281 ///
282 /// ```
283 /// let a: f64 = 7.0;
284 /// let b = 4.0;
285 /// assert_eq!(a.rem_euclid(b), 3.0);
286 /// assert_eq!((-a).rem_euclid(b), 1.0);
287 /// assert_eq!(a.rem_euclid(-b), 3.0);
288 /// assert_eq!((-a).rem_euclid(-b), 1.0);
289 /// // limitation due to round-off error
290 /// assert!((-f64::EPSILON).rem_euclid(3.0) != 0.0);
291 /// ```
292 #[rustc_allow_incoherent_impl]
293 #[must_use = "method returns a new number and does not mutate the original value"]
294 #[inline]
295 #[stable(feature = "euclidean_division", since = "1.38.0")]
296 pub fn rem_euclid(self, rhs: f64) -> f64 {
297 let r = self % rhs;
298 if r < 0.0 { r + rhs.abs() } else { r }
299 }
300
301 /// Raises a number to an integer power.
302 ///
303 /// Using this function is generally faster than using `powf`.
304 /// It might have a different sequence of rounding operations than `powf`,
305 /// so the results are not guaranteed to agree.
306 ///
307 /// # Examples
308 ///
309 /// ```
310 /// let x = 2.0_f64;
311 /// let abs_difference = (x.powi(2) - (x * x)).abs();
312 ///
313 /// assert!(abs_difference < 1e-10);
314 /// ```
315 #[rustc_allow_incoherent_impl]
316 #[must_use = "method returns a new number and does not mutate the original value"]
317 #[stable(feature = "rust1", since = "1.0.0")]
318 #[inline]
319 pub fn powi(self, n: i32) -> f64 {
320 unsafe { intrinsics::powif64(self, n) }
321 }
322
323 /// Raises a number to a floating point power.
324 ///
325 /// # Examples
326 ///
327 /// ```
328 /// let x = 2.0_f64;
329 /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
330 ///
331 /// assert!(abs_difference < 1e-10);
332 /// ```
333 #[rustc_allow_incoherent_impl]
334 #[must_use = "method returns a new number and does not mutate the original value"]
335 #[stable(feature = "rust1", since = "1.0.0")]
336 #[inline]
337 pub fn powf(self, n: f64) -> f64 {
338 unsafe { intrinsics::powf64(self, n) }
339 }
340
341 /// Returns the square root of a number.
342 ///
343 /// Returns NaN if `self` is a negative number other than `-0.0`.
344 ///
345 /// # Examples
346 ///
347 /// ```
348 /// let positive = 4.0_f64;
349 /// let negative = -4.0_f64;
350 /// let negative_zero = -0.0_f64;
351 ///
352 /// let abs_difference = (positive.sqrt() - 2.0).abs();
353 ///
354 /// assert!(abs_difference < 1e-10);
355 /// assert!(negative.sqrt().is_nan());
356 /// assert!(negative_zero.sqrt() == negative_zero);
357 /// ```
358 #[rustc_allow_incoherent_impl]
359 #[must_use = "method returns a new number and does not mutate the original value"]
360 #[stable(feature = "rust1", since = "1.0.0")]
361 #[inline]
362 pub fn sqrt(self) -> f64 {
363 unsafe { intrinsics::sqrtf64(self) }
364 }
365
366 /// Returns `e^(self)`, (the exponential function).
367 ///
368 /// # Examples
369 ///
370 /// ```
371 /// let one = 1.0_f64;
372 /// // e^1
373 /// let e = one.exp();
374 ///
375 /// // ln(e) - 1 == 0
376 /// let abs_difference = (e.ln() - 1.0).abs();
377 ///
378 /// assert!(abs_difference < 1e-10);
379 /// ```
380 #[rustc_allow_incoherent_impl]
381 #[must_use = "method returns a new number and does not mutate the original value"]
382 #[stable(feature = "rust1", since = "1.0.0")]
383 #[inline]
384 pub fn exp(self) -> f64 {
385 unsafe { intrinsics::expf64(self) }
386 }
387
388 /// Returns `2^(self)`.
389 ///
390 /// # Examples
391 ///
392 /// ```
393 /// let f = 2.0_f64;
394 ///
395 /// // 2^2 - 4 == 0
396 /// let abs_difference = (f.exp2() - 4.0).abs();
397 ///
398 /// assert!(abs_difference < 1e-10);
399 /// ```
400 #[rustc_allow_incoherent_impl]
401 #[must_use = "method returns a new number and does not mutate the original value"]
402 #[stable(feature = "rust1", since = "1.0.0")]
403 #[inline]
404 pub fn exp2(self) -> f64 {
405 unsafe { intrinsics::exp2f64(self) }
406 }
407
408 /// Returns the natural logarithm of the number.
409 ///
410 /// # Examples
411 ///
412 /// ```
413 /// let one = 1.0_f64;
414 /// // e^1
415 /// let e = one.exp();
416 ///
417 /// // ln(e) - 1 == 0
418 /// let abs_difference = (e.ln() - 1.0).abs();
419 ///
420 /// assert!(abs_difference < 1e-10);
421 /// ```
422 #[rustc_allow_incoherent_impl]
423 #[must_use = "method returns a new number and does not mutate the original value"]
424 #[stable(feature = "rust1", since = "1.0.0")]
425 #[inline]
426 pub fn ln(self) -> f64 {
427 self.log_wrapper(|n| unsafe { intrinsics::logf64(n) })
428 }
429
430 /// Returns the logarithm of the number with respect to an arbitrary base.
431 ///
432 /// The result might not be correctly rounded owing to implementation details;
433 /// `self.log2()` can produce more accurate results for base 2, and
434 /// `self.log10()` can produce more accurate results for base 10.
435 ///
436 /// # Examples
437 ///
438 /// ```
439 /// let twenty_five = 25.0_f64;
440 ///
441 /// // log5(25) - 2 == 0
442 /// let abs_difference = (twenty_five.log(5.0) - 2.0).abs();
443 ///
444 /// assert!(abs_difference < 1e-10);
445 /// ```
446 #[rustc_allow_incoherent_impl]
447 #[must_use = "method returns a new number and does not mutate the original value"]
448 #[stable(feature = "rust1", since = "1.0.0")]
449 #[inline]
450 pub fn log(self, base: f64) -> f64 {
451 self.ln() / base.ln()
452 }
453
454 /// Returns the base 2 logarithm of the number.
455 ///
456 /// # Examples
457 ///
458 /// ```
459 /// let four = 4.0_f64;
460 ///
461 /// // log2(4) - 2 == 0
462 /// let abs_difference = (four.log2() - 2.0).abs();
463 ///
464 /// assert!(abs_difference < 1e-10);
465 /// ```
466 #[rustc_allow_incoherent_impl]
467 #[must_use = "method returns a new number and does not mutate the original value"]
468 #[stable(feature = "rust1", since = "1.0.0")]
469 #[inline]
470 pub fn log2(self) -> f64 {
471 self.log_wrapper(|n| {
472 #[cfg(target_os = "android")]
473 return crate::sys::android::log2f64(n);
474 #[cfg(not(target_os = "android"))]
475 return unsafe { intrinsics::log2f64(n) };
476 })
477 }
478
479 /// Returns the base 10 logarithm of the number.
480 ///
481 /// # Examples
482 ///
483 /// ```
484 /// let hundred = 100.0_f64;
485 ///
486 /// // log10(100) - 2 == 0
487 /// let abs_difference = (hundred.log10() - 2.0).abs();
488 ///
489 /// assert!(abs_difference < 1e-10);
490 /// ```
491 #[rustc_allow_incoherent_impl]
492 #[must_use = "method returns a new number and does not mutate the original value"]
493 #[stable(feature = "rust1", since = "1.0.0")]
494 #[inline]
495 pub fn log10(self) -> f64 {
496 self.log_wrapper(|n| unsafe { intrinsics::log10f64(n) })
497 }
498
499 /// The positive difference of two numbers.
500 ///
501 /// * If `self <= other`: `0:0`
502 /// * Else: `self - other`
503 ///
504 /// # Examples
505 ///
506 /// ```
507 /// let x = 3.0_f64;
508 /// let y = -3.0_f64;
509 ///
510 /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
511 /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
512 ///
513 /// assert!(abs_difference_x < 1e-10);
514 /// assert!(abs_difference_y < 1e-10);
515 /// ```
516 #[rustc_allow_incoherent_impl]
517 #[must_use = "method returns a new number and does not mutate the original value"]
518 #[stable(feature = "rust1", since = "1.0.0")]
519 #[inline]
520 #[deprecated(
521 since = "1.10.0",
522 note = "you probably meant `(self - other).abs()`: \
523 this operation is `(self - other).max(0.0)` \
524 except that `abs_sub` also propagates NaNs (also \
525 known as `fdim` in C). If you truly need the positive \
526 difference, consider using that expression or the C function \
527 `fdim`, depending on how you wish to handle NaN (please consider \
528 filing an issue describing your use-case too)."
529 )]
530 pub fn abs_sub(self, other: f64) -> f64 {
531 unsafe { cmath::fdim(self, other) }
532 }
533
534 /// Returns the cube root of a number.
535 ///
536 /// # Examples
537 ///
538 /// ```
539 /// let x = 8.0_f64;
540 ///
541 /// // x^(1/3) - 2 == 0
542 /// let abs_difference = (x.cbrt() - 2.0).abs();
543 ///
544 /// assert!(abs_difference < 1e-10);
545 /// ```
546 #[rustc_allow_incoherent_impl]
547 #[must_use = "method returns a new number and does not mutate the original value"]
548 #[stable(feature = "rust1", since = "1.0.0")]
549 #[inline]
550 pub fn cbrt(self) -> f64 {
551 unsafe { cmath::cbrt(self) }
552 }
553
554 /// Calculates the length of the hypotenuse of a right-angle triangle given
555 /// legs of length `x` and `y`.
556 ///
557 /// # Examples
558 ///
559 /// ```
560 /// let x = 2.0_f64;
561 /// let y = 3.0_f64;
562 ///
563 /// // sqrt(x^2 + y^2)
564 /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
565 ///
566 /// assert!(abs_difference < 1e-10);
567 /// ```
568 #[rustc_allow_incoherent_impl]
569 #[must_use = "method returns a new number and does not mutate the original value"]
570 #[stable(feature = "rust1", since = "1.0.0")]
571 #[inline]
572 pub fn hypot(self, other: f64) -> f64 {
573 unsafe { cmath::hypot(self, other) }
574 }
575
576 /// Computes the sine of a number (in radians).
577 ///
578 /// # Examples
579 ///
580 /// ```
581 /// let x = std::f64::consts::FRAC_PI_2;
582 ///
583 /// let abs_difference = (x.sin() - 1.0).abs();
584 ///
585 /// assert!(abs_difference < 1e-10);
586 /// ```
587 #[rustc_allow_incoherent_impl]
588 #[must_use = "method returns a new number and does not mutate the original value"]
589 #[stable(feature = "rust1", since = "1.0.0")]
590 #[inline]
591 pub fn sin(self) -> f64 {
592 unsafe { intrinsics::sinf64(self) }
593 }
594
595 /// Computes the cosine of a number (in radians).
596 ///
597 /// # Examples
598 ///
599 /// ```
600 /// let x = 2.0 * std::f64::consts::PI;
601 ///
602 /// let abs_difference = (x.cos() - 1.0).abs();
603 ///
604 /// assert!(abs_difference < 1e-10);
605 /// ```
606 #[rustc_allow_incoherent_impl]
607 #[must_use = "method returns a new number and does not mutate the original value"]
608 #[stable(feature = "rust1", since = "1.0.0")]
609 #[inline]
610 pub fn cos(self) -> f64 {
611 unsafe { intrinsics::cosf64(self) }
612 }
613
614 /// Computes the tangent of a number (in radians).
615 ///
616 /// # Examples
617 ///
618 /// ```
619 /// let x = std::f64::consts::FRAC_PI_4;
620 /// let abs_difference = (x.tan() - 1.0).abs();
621 ///
622 /// assert!(abs_difference < 1e-14);
623 /// ```
624 #[rustc_allow_incoherent_impl]
625 #[must_use = "method returns a new number and does not mutate the original value"]
626 #[stable(feature = "rust1", since = "1.0.0")]
627 #[inline]
628 pub fn tan(self) -> f64 {
629 unsafe { cmath::tan(self) }
630 }
631
632 /// Computes the arcsine of a number. Return value is in radians in
633 /// the range [-pi/2, pi/2] or NaN if the number is outside the range
634 /// [-1, 1].
635 ///
636 /// # Examples
637 ///
638 /// ```
639 /// let f = std::f64::consts::FRAC_PI_2;
640 ///
641 /// // asin(sin(pi/2))
642 /// let abs_difference = (f.sin().asin() - std::f64::consts::FRAC_PI_2).abs();
643 ///
644 /// assert!(abs_difference < 1e-10);
645 /// ```
646 #[rustc_allow_incoherent_impl]
647 #[must_use = "method returns a new number and does not mutate the original value"]
648 #[stable(feature = "rust1", since = "1.0.0")]
649 #[inline]
650 pub fn asin(self) -> f64 {
651 unsafe { cmath::asin(self) }
652 }
653
654 /// Computes the arccosine of a number. Return value is in radians in
655 /// the range [0, pi] or NaN if the number is outside the range
656 /// [-1, 1].
657 ///
658 /// # Examples
659 ///
660 /// ```
661 /// let f = std::f64::consts::FRAC_PI_4;
662 ///
663 /// // acos(cos(pi/4))
664 /// let abs_difference = (f.cos().acos() - std::f64::consts::FRAC_PI_4).abs();
665 ///
666 /// assert!(abs_difference < 1e-10);
667 /// ```
668 #[rustc_allow_incoherent_impl]
669 #[must_use = "method returns a new number and does not mutate the original value"]
670 #[stable(feature = "rust1", since = "1.0.0")]
671 #[inline]
672 pub fn acos(self) -> f64 {
673 unsafe { cmath::acos(self) }
674 }
675
676 /// Computes the arctangent of a number. Return value is in radians in the
677 /// range [-pi/2, pi/2];
678 ///
679 /// # Examples
680 ///
681 /// ```
682 /// let f = 1.0_f64;
683 ///
684 /// // atan(tan(1))
685 /// let abs_difference = (f.tan().atan() - 1.0).abs();
686 ///
687 /// assert!(abs_difference < 1e-10);
688 /// ```
689 #[rustc_allow_incoherent_impl]
690 #[must_use = "method returns a new number and does not mutate the original value"]
691 #[stable(feature = "rust1", since = "1.0.0")]
692 #[inline]
693 pub fn atan(self) -> f64 {
694 unsafe { cmath::atan(self) }
695 }
696
697 /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
698 ///
699 /// * `x = 0`, `y = 0`: `0`
700 /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
701 /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
702 /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
703 ///
704 /// # Examples
705 ///
706 /// ```
707 /// // Positive angles measured counter-clockwise
708 /// // from positive x axis
709 /// // -pi/4 radians (45 deg clockwise)
710 /// let x1 = 3.0_f64;
711 /// let y1 = -3.0_f64;
712 ///
713 /// // 3pi/4 radians (135 deg counter-clockwise)
714 /// let x2 = -3.0_f64;
715 /// let y2 = 3.0_f64;
716 ///
717 /// let abs_difference_1 = (y1.atan2(x1) - (-std::f64::consts::FRAC_PI_4)).abs();
718 /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f64::consts::FRAC_PI_4)).abs();
719 ///
720 /// assert!(abs_difference_1 < 1e-10);
721 /// assert!(abs_difference_2 < 1e-10);
722 /// ```
723 #[rustc_allow_incoherent_impl]
724 #[must_use = "method returns a new number and does not mutate the original value"]
725 #[stable(feature = "rust1", since = "1.0.0")]
726 #[inline]
727 pub fn atan2(self, other: f64) -> f64 {
728 unsafe { cmath::atan2(self, other) }
729 }
730
731 /// Simultaneously computes the sine and cosine of the number, `x`. Returns
732 /// `(sin(x), cos(x))`.
733 ///
734 /// # Examples
735 ///
736 /// ```
737 /// let x = std::f64::consts::FRAC_PI_4;
738 /// let f = x.sin_cos();
739 ///
740 /// let abs_difference_0 = (f.0 - x.sin()).abs();
741 /// let abs_difference_1 = (f.1 - x.cos()).abs();
742 ///
743 /// assert!(abs_difference_0 < 1e-10);
744 /// assert!(abs_difference_1 < 1e-10);
745 /// ```
746 #[rustc_allow_incoherent_impl]
747 #[stable(feature = "rust1", since = "1.0.0")]
748 #[inline]
749 pub fn sin_cos(self) -> (f64, f64) {
750 (self.sin(), self.cos())
751 }
752
753 /// Returns `e^(self) - 1` in a way that is accurate even if the
754 /// number is close to zero.
755 ///
756 /// # Examples
757 ///
758 /// ```
759 /// let x = 1e-16_f64;
760 ///
761 /// // for very small x, e^x is approximately 1 + x + x^2 / 2
762 /// let approx = x + x * x / 2.0;
763 /// let abs_difference = (x.exp_m1() - approx).abs();
764 ///
765 /// assert!(abs_difference < 1e-20);
766 /// ```
767 #[rustc_allow_incoherent_impl]
768 #[must_use = "method returns a new number and does not mutate the original value"]
769 #[stable(feature = "rust1", since = "1.0.0")]
770 #[inline]
771 pub fn exp_m1(self) -> f64 {
772 unsafe { cmath::expm1(self) }
773 }
774
775 /// Returns `ln(1+n)` (natural logarithm) more accurately than if
776 /// the operations were performed separately.
777 ///
778 /// # Examples
779 ///
780 /// ```
781 /// let x = 1e-16_f64;
782 ///
783 /// // for very small x, ln(1 + x) is approximately x - x^2 / 2
784 /// let approx = x - x * x / 2.0;
785 /// let abs_difference = (x.ln_1p() - approx).abs();
786 ///
787 /// assert!(abs_difference < 1e-20);
788 /// ```
789 #[rustc_allow_incoherent_impl]
790 #[must_use = "method returns a new number and does not mutate the original value"]
791 #[stable(feature = "rust1", since = "1.0.0")]
792 #[inline]
793 pub fn ln_1p(self) -> f64 {
794 unsafe { cmath::log1p(self) }
795 }
796
797 /// Hyperbolic sine function.
798 ///
799 /// # Examples
800 ///
801 /// ```
802 /// let e = std::f64::consts::E;
803 /// let x = 1.0_f64;
804 ///
805 /// let f = x.sinh();
806 /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
807 /// let g = ((e * e) - 1.0) / (2.0 * e);
808 /// let abs_difference = (f - g).abs();
809 ///
810 /// assert!(abs_difference < 1e-10);
811 /// ```
812 #[rustc_allow_incoherent_impl]
813 #[must_use = "method returns a new number and does not mutate the original value"]
814 #[stable(feature = "rust1", since = "1.0.0")]
815 #[inline]
816 pub fn sinh(self) -> f64 {
817 unsafe { cmath::sinh(self) }
818 }
819
820 /// Hyperbolic cosine function.
821 ///
822 /// # Examples
823 ///
824 /// ```
825 /// let e = std::f64::consts::E;
826 /// let x = 1.0_f64;
827 /// let f = x.cosh();
828 /// // Solving cosh() at 1 gives this result
829 /// let g = ((e * e) + 1.0) / (2.0 * e);
830 /// let abs_difference = (f - g).abs();
831 ///
832 /// // Same result
833 /// assert!(abs_difference < 1.0e-10);
834 /// ```
835 #[rustc_allow_incoherent_impl]
836 #[must_use = "method returns a new number and does not mutate the original value"]
837 #[stable(feature = "rust1", since = "1.0.0")]
838 #[inline]
839 pub fn cosh(self) -> f64 {
840 unsafe { cmath::cosh(self) }
841 }
842
843 /// Hyperbolic tangent function.
844 ///
845 /// # Examples
846 ///
847 /// ```
848 /// let e = std::f64::consts::E;
849 /// let x = 1.0_f64;
850 ///
851 /// let f = x.tanh();
852 /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
853 /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
854 /// let abs_difference = (f - g).abs();
855 ///
856 /// assert!(abs_difference < 1.0e-10);
857 /// ```
858 #[rustc_allow_incoherent_impl]
859 #[must_use = "method returns a new number and does not mutate the original value"]
860 #[stable(feature = "rust1", since = "1.0.0")]
861 #[inline]
862 pub fn tanh(self) -> f64 {
863 unsafe { cmath::tanh(self) }
864 }
865
866 /// Inverse hyperbolic sine function.
867 ///
868 /// # Examples
869 ///
870 /// ```
871 /// let x = 1.0_f64;
872 /// let f = x.sinh().asinh();
873 ///
874 /// let abs_difference = (f - x).abs();
875 ///
876 /// assert!(abs_difference < 1.0e-10);
877 /// ```
878 #[rustc_allow_incoherent_impl]
879 #[must_use = "method returns a new number and does not mutate the original value"]
880 #[stable(feature = "rust1", since = "1.0.0")]
881 #[inline]
882 pub fn asinh(self) -> f64 {
883 (self.abs() + ((self * self) + 1.0).sqrt()).ln().copysign(self)
884 }
885
886 /// Inverse hyperbolic cosine function.
887 ///
888 /// # Examples
889 ///
890 /// ```
891 /// let x = 1.0_f64;
892 /// let f = x.cosh().acosh();
893 ///
894 /// let abs_difference = (f - x).abs();
895 ///
896 /// assert!(abs_difference < 1.0e-10);
897 /// ```
898 #[rustc_allow_incoherent_impl]
899 #[must_use = "method returns a new number and does not mutate the original value"]
900 #[stable(feature = "rust1", since = "1.0.0")]
901 #[inline]
902 pub fn acosh(self) -> f64 {
903 if self < 1.0 { Self::NAN } else { (self + ((self * self) - 1.0).sqrt()).ln() }
904 }
905
906 /// Inverse hyperbolic tangent function.
907 ///
908 /// # Examples
909 ///
910 /// ```
911 /// let e = std::f64::consts::E;
912 /// let f = e.tanh().atanh();
913 ///
914 /// let abs_difference = (f - e).abs();
915 ///
916 /// assert!(abs_difference < 1.0e-10);
917 /// ```
918 #[rustc_allow_incoherent_impl]
919 #[must_use = "method returns a new number and does not mutate the original value"]
920 #[stable(feature = "rust1", since = "1.0.0")]
921 #[inline]
922 pub fn atanh(self) -> f64 {
923 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
924 }
925
926 // Solaris/Illumos requires a wrapper around log, log2, and log10 functions
927 // because of their non-standard behavior (e.g., log(-n) returns -Inf instead
928 // of expected NaN).
929 #[rustc_allow_incoherent_impl]
930 fn log_wrapper<F: Fn(f64) -> f64>(self, log_fn: F) -> f64 {
931 if !cfg!(any(target_os = "solaris", target_os = "illumos")) {
932 log_fn(self)
933 } else if self.is_finite() {
934 if self > 0.0 {
935 log_fn(self)
936 } else if self == 0.0 {
937 Self::NEG_INFINITY // log(0) = -Inf
938 } else {
939 Self::NAN // log(-n) = NaN
940 }
941 } else if self.is_nan() {
942 self // log(NaN) = NaN
943 } else if self > 0.0 {
944 self // log(Inf) = Inf
945 } else {
946 Self::NAN // log(-Inf) = NaN
947 }
948 }
949 }