]> git.proxmox.com Git - rustc.git/blob - library/std/src/sys/windows/mod.rs
New upstream version 1.68.2+dfsg1
[rustc.git] / library / std / src / sys / windows / mod.rs
1 #![allow(missing_docs, nonstandard_style)]
2
3 use crate::ffi::{CStr, OsStr, OsString};
4 use crate::io::ErrorKind;
5 use crate::mem::MaybeUninit;
6 use crate::os::windows::ffi::{OsStrExt, OsStringExt};
7 use crate::path::PathBuf;
8 use crate::time::Duration;
9
10 pub use self::rand::hashmap_random_keys;
11
12 #[macro_use]
13 pub mod compat;
14
15 pub mod alloc;
16 pub mod args;
17 pub mod c;
18 pub mod cmath;
19 pub mod env;
20 pub mod fs;
21 pub mod handle;
22 pub mod io;
23 pub mod locks;
24 pub mod memchr;
25 pub mod net;
26 pub mod os;
27 pub mod os_str;
28 pub mod path;
29 pub mod pipe;
30 pub mod process;
31 pub mod rand;
32 pub mod stdio;
33 pub mod thread;
34 pub mod thread_local_dtor;
35 pub mod thread_local_key;
36 pub mod thread_parking;
37 pub mod time;
38 cfg_if::cfg_if! {
39 if #[cfg(not(target_vendor = "uwp"))] {
40 pub mod stack_overflow;
41 } else {
42 pub mod stack_overflow_uwp;
43 pub use self::stack_overflow_uwp as stack_overflow;
44 }
45 }
46
47 // SAFETY: must be called only once during runtime initialization.
48 // NOTE: this is not guaranteed to run, for example when Rust code is called externally.
49 pub unsafe fn init(_argc: isize, _argv: *const *const u8, _sigpipe: u8) {
50 stack_overflow::init();
51
52 // Normally, `thread::spawn` will call `Thread::set_name` but since this thread already
53 // exists, we have to call it ourselves.
54 thread::Thread::set_name(&CStr::from_bytes_with_nul_unchecked(b"main\0"));
55 }
56
57 // SAFETY: must be called only once during runtime cleanup.
58 // NOTE: this is not guaranteed to run, for example when the program aborts.
59 pub unsafe fn cleanup() {
60 net::cleanup();
61 }
62
63 pub fn decode_error_kind(errno: i32) -> ErrorKind {
64 use ErrorKind::*;
65
66 match errno as c::DWORD {
67 c::ERROR_ACCESS_DENIED => return PermissionDenied,
68 c::ERROR_ALREADY_EXISTS => return AlreadyExists,
69 c::ERROR_FILE_EXISTS => return AlreadyExists,
70 c::ERROR_BROKEN_PIPE => return BrokenPipe,
71 c::ERROR_FILE_NOT_FOUND => return NotFound,
72 c::ERROR_PATH_NOT_FOUND => return NotFound,
73 c::ERROR_NO_DATA => return BrokenPipe,
74 c::ERROR_INVALID_NAME => return InvalidFilename,
75 c::ERROR_INVALID_PARAMETER => return InvalidInput,
76 c::ERROR_NOT_ENOUGH_MEMORY | c::ERROR_OUTOFMEMORY => return OutOfMemory,
77 c::ERROR_SEM_TIMEOUT
78 | c::WAIT_TIMEOUT
79 | c::ERROR_DRIVER_CANCEL_TIMEOUT
80 | c::ERROR_OPERATION_ABORTED
81 | c::ERROR_SERVICE_REQUEST_TIMEOUT
82 | c::ERROR_COUNTER_TIMEOUT
83 | c::ERROR_TIMEOUT
84 | c::ERROR_RESOURCE_CALL_TIMED_OUT
85 | c::ERROR_CTX_MODEM_RESPONSE_TIMEOUT
86 | c::ERROR_CTX_CLIENT_QUERY_TIMEOUT
87 | c::FRS_ERR_SYSVOL_POPULATE_TIMEOUT
88 | c::ERROR_DS_TIMELIMIT_EXCEEDED
89 | c::DNS_ERROR_RECORD_TIMED_OUT
90 | c::ERROR_IPSEC_IKE_TIMED_OUT
91 | c::ERROR_RUNLEVEL_SWITCH_TIMEOUT
92 | c::ERROR_RUNLEVEL_SWITCH_AGENT_TIMEOUT => return TimedOut,
93 c::ERROR_CALL_NOT_IMPLEMENTED => return Unsupported,
94 c::ERROR_HOST_UNREACHABLE => return HostUnreachable,
95 c::ERROR_NETWORK_UNREACHABLE => return NetworkUnreachable,
96 c::ERROR_DIRECTORY => return NotADirectory,
97 c::ERROR_DIRECTORY_NOT_SUPPORTED => return IsADirectory,
98 c::ERROR_DIR_NOT_EMPTY => return DirectoryNotEmpty,
99 c::ERROR_WRITE_PROTECT => return ReadOnlyFilesystem,
100 c::ERROR_DISK_FULL | c::ERROR_HANDLE_DISK_FULL => return StorageFull,
101 c::ERROR_SEEK_ON_DEVICE => return NotSeekable,
102 c::ERROR_DISK_QUOTA_EXCEEDED => return FilesystemQuotaExceeded,
103 c::ERROR_FILE_TOO_LARGE => return FileTooLarge,
104 c::ERROR_BUSY => return ResourceBusy,
105 c::ERROR_POSSIBLE_DEADLOCK => return Deadlock,
106 c::ERROR_NOT_SAME_DEVICE => return CrossesDevices,
107 c::ERROR_TOO_MANY_LINKS => return TooManyLinks,
108 c::ERROR_FILENAME_EXCED_RANGE => return InvalidFilename,
109 _ => {}
110 }
111
112 match errno {
113 c::WSAEACCES => PermissionDenied,
114 c::WSAEADDRINUSE => AddrInUse,
115 c::WSAEADDRNOTAVAIL => AddrNotAvailable,
116 c::WSAECONNABORTED => ConnectionAborted,
117 c::WSAECONNREFUSED => ConnectionRefused,
118 c::WSAECONNRESET => ConnectionReset,
119 c::WSAEINVAL => InvalidInput,
120 c::WSAENOTCONN => NotConnected,
121 c::WSAEWOULDBLOCK => WouldBlock,
122 c::WSAETIMEDOUT => TimedOut,
123 c::WSAEHOSTUNREACH => HostUnreachable,
124 c::WSAENETDOWN => NetworkDown,
125 c::WSAENETUNREACH => NetworkUnreachable,
126
127 _ => Uncategorized,
128 }
129 }
130
131 pub fn unrolled_find_u16s(needle: u16, haystack: &[u16]) -> Option<usize> {
132 let ptr = haystack.as_ptr();
133 let mut start = &haystack[..];
134
135 // For performance reasons unfold the loop eight times.
136 while start.len() >= 8 {
137 macro_rules! if_return {
138 ($($n:literal,)+) => {
139 $(
140 if start[$n] == needle {
141 return Some(((&start[$n] as *const u16).addr() - ptr.addr()) / 2);
142 }
143 )+
144 }
145 }
146
147 if_return!(0, 1, 2, 3, 4, 5, 6, 7,);
148
149 start = &start[8..];
150 }
151
152 for c in start {
153 if *c == needle {
154 return Some(((c as *const u16).addr() - ptr.addr()) / 2);
155 }
156 }
157 None
158 }
159
160 pub fn to_u16s<S: AsRef<OsStr>>(s: S) -> crate::io::Result<Vec<u16>> {
161 fn inner(s: &OsStr) -> crate::io::Result<Vec<u16>> {
162 // Most paths are ASCII, so reserve capacity for as much as there are bytes
163 // in the OsStr plus one for the null-terminating character. We are not
164 // wasting bytes here as paths created by this function are primarily used
165 // in an ephemeral fashion.
166 let mut maybe_result = Vec::with_capacity(s.len() + 1);
167 maybe_result.extend(s.encode_wide());
168
169 if unrolled_find_u16s(0, &maybe_result).is_some() {
170 return Err(crate::io::const_io_error!(
171 ErrorKind::InvalidInput,
172 "strings passed to WinAPI cannot contain NULs",
173 ));
174 }
175 maybe_result.push(0);
176 Ok(maybe_result)
177 }
178 inner(s.as_ref())
179 }
180
181 // Many Windows APIs follow a pattern of where we hand a buffer and then they
182 // will report back to us how large the buffer should be or how many bytes
183 // currently reside in the buffer. This function is an abstraction over these
184 // functions by making them easier to call.
185 //
186 // The first callback, `f1`, is yielded a (pointer, len) pair which can be
187 // passed to a syscall. The `ptr` is valid for `len` items (u16 in this case).
188 // The closure is expected to return what the syscall returns which will be
189 // interpreted by this function to determine if the syscall needs to be invoked
190 // again (with more buffer space).
191 //
192 // Once the syscall has completed (errors bail out early) the second closure is
193 // yielded the data which has been read from the syscall. The return value
194 // from this closure is then the return value of the function.
195 fn fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> crate::io::Result<T>
196 where
197 F1: FnMut(*mut u16, c::DWORD) -> c::DWORD,
198 F2: FnOnce(&[u16]) -> T,
199 {
200 // Start off with a stack buf but then spill over to the heap if we end up
201 // needing more space.
202 //
203 // This initial size also works around `GetFullPathNameW` returning
204 // incorrect size hints for some short paths:
205 // https://github.com/dylni/normpath/issues/5
206 let mut stack_buf: [MaybeUninit<u16>; 512] = MaybeUninit::uninit_array();
207 let mut heap_buf: Vec<MaybeUninit<u16>> = Vec::new();
208 unsafe {
209 let mut n = stack_buf.len();
210 loop {
211 let buf = if n <= stack_buf.len() {
212 &mut stack_buf[..]
213 } else {
214 let extra = n - heap_buf.len();
215 heap_buf.reserve(extra);
216 // We used `reserve` and not `reserve_exact`, so in theory we
217 // may have gotten more than requested. If so, we'd like to use
218 // it... so long as we won't cause overflow.
219 n = heap_buf.capacity().min(c::DWORD::MAX as usize);
220 // Safety: MaybeUninit<u16> does not need initialization
221 heap_buf.set_len(n);
222 &mut heap_buf[..]
223 };
224
225 // This function is typically called on windows API functions which
226 // will return the correct length of the string, but these functions
227 // also return the `0` on error. In some cases, however, the
228 // returned "correct length" may actually be 0!
229 //
230 // To handle this case we call `SetLastError` to reset it to 0 and
231 // then check it again if we get the "0 error value". If the "last
232 // error" is still 0 then we interpret it as a 0 length buffer and
233 // not an actual error.
234 c::SetLastError(0);
235 let k = match f1(buf.as_mut_ptr().cast::<u16>(), n as c::DWORD) {
236 0 if c::GetLastError() == 0 => 0,
237 0 => return Err(crate::io::Error::last_os_error()),
238 n => n,
239 } as usize;
240 if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER {
241 n = n.saturating_mul(2).min(c::DWORD::MAX as usize);
242 } else if k > n {
243 n = k;
244 } else if k == n {
245 // It is impossible to reach this point.
246 // On success, k is the returned string length excluding the null.
247 // On failure, k is the required buffer length including the null.
248 // Therefore k never equals n.
249 unreachable!();
250 } else {
251 // Safety: First `k` values are initialized.
252 let slice: &[u16] = MaybeUninit::slice_assume_init_ref(&buf[..k]);
253 return Ok(f2(slice));
254 }
255 }
256 }
257 }
258
259 fn os2path(s: &[u16]) -> PathBuf {
260 PathBuf::from(OsString::from_wide(s))
261 }
262
263 pub fn truncate_utf16_at_nul(v: &[u16]) -> &[u16] {
264 match unrolled_find_u16s(0, v) {
265 // don't include the 0
266 Some(i) => &v[..i],
267 None => v,
268 }
269 }
270
271 pub trait IsZero {
272 fn is_zero(&self) -> bool;
273 }
274
275 macro_rules! impl_is_zero {
276 ($($t:ident)*) => ($(impl IsZero for $t {
277 fn is_zero(&self) -> bool {
278 *self == 0
279 }
280 })*)
281 }
282
283 impl_is_zero! { i8 i16 i32 i64 isize u8 u16 u32 u64 usize }
284
285 pub fn cvt<I: IsZero>(i: I) -> crate::io::Result<I> {
286 if i.is_zero() { Err(crate::io::Error::last_os_error()) } else { Ok(i) }
287 }
288
289 pub fn dur2timeout(dur: Duration) -> c::DWORD {
290 // Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the
291 // timeouts in windows APIs are typically u32 milliseconds. To translate, we
292 // have two pieces to take care of:
293 //
294 // * Nanosecond precision is rounded up
295 // * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE
296 // (never time out).
297 dur.as_secs()
298 .checked_mul(1000)
299 .and_then(|ms| ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000))
300 .and_then(|ms| ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 { 1 } else { 0 }))
301 .map(|ms| if ms > <c::DWORD>::MAX as u64 { c::INFINITE } else { ms as c::DWORD })
302 .unwrap_or(c::INFINITE)
303 }
304
305 /// Use `__fastfail` to abort the process
306 ///
307 /// This is the same implementation as in libpanic_abort's `__rust_start_panic`. See
308 /// that function for more information on `__fastfail`
309 #[allow(unreachable_code)]
310 pub fn abort_internal() -> ! {
311 #[allow(unused)]
312 const FAST_FAIL_FATAL_APP_EXIT: usize = 7;
313 #[cfg(not(miri))] // inline assembly does not work in Miri
314 unsafe {
315 cfg_if::cfg_if! {
316 if #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] {
317 core::arch::asm!("int $$0x29", in("ecx") FAST_FAIL_FATAL_APP_EXIT);
318 crate::intrinsics::unreachable();
319 } else if #[cfg(all(target_arch = "arm", target_feature = "thumb-mode"))] {
320 core::arch::asm!(".inst 0xDEFB", in("r0") FAST_FAIL_FATAL_APP_EXIT);
321 crate::intrinsics::unreachable();
322 } else if #[cfg(target_arch = "aarch64")] {
323 core::arch::asm!("brk 0xF003", in("x0") FAST_FAIL_FATAL_APP_EXIT);
324 crate::intrinsics::unreachable();
325 }
326 }
327 }
328 crate::intrinsics::abort();
329 }
330
331 /// Align the inner value to 8 bytes.
332 ///
333 /// This is enough for almost all of the buffers we're likely to work with in
334 /// the Windows APIs we use.
335 #[repr(C, align(8))]
336 #[derive(Copy, Clone)]
337 pub(crate) struct Align8<T: ?Sized>(pub T);