]> git.proxmox.com Git - rustc.git/blob - library/std/src/sys/windows/process.rs
New upstream version 1.73.0+dfsg1
[rustc.git] / library / std / src / sys / windows / process.rs
1 #![unstable(feature = "process_internals", issue = "none")]
2
3 #[cfg(test)]
4 mod tests;
5
6 use crate::cmp;
7 use crate::collections::BTreeMap;
8 use crate::env;
9 use crate::env::consts::{EXE_EXTENSION, EXE_SUFFIX};
10 use crate::ffi::{OsStr, OsString};
11 use crate::fmt;
12 use crate::io::{self, Error, ErrorKind};
13 use crate::mem;
14 use crate::num::NonZeroI32;
15 use crate::os::windows::ffi::{OsStrExt, OsStringExt};
16 use crate::os::windows::io::{AsHandle, AsRawHandle, BorrowedHandle, FromRawHandle, IntoRawHandle};
17 use crate::path::{Path, PathBuf};
18 use crate::ptr;
19 use crate::sync::Mutex;
20 use crate::sys::args::{self, Arg};
21 use crate::sys::c;
22 use crate::sys::c::NonZeroDWORD;
23 use crate::sys::cvt;
24 use crate::sys::fs::{File, OpenOptions};
25 use crate::sys::handle::Handle;
26 use crate::sys::path;
27 use crate::sys::pipe::{self, AnonPipe};
28 use crate::sys::stdio;
29 use crate::sys_common::process::{CommandEnv, CommandEnvs};
30 use crate::sys_common::IntoInner;
31
32 use libc::{c_void, EXIT_FAILURE, EXIT_SUCCESS};
33
34 ////////////////////////////////////////////////////////////////////////////////
35 // Command
36 ////////////////////////////////////////////////////////////////////////////////
37
38 #[derive(Clone, Debug, Eq)]
39 #[doc(hidden)]
40 pub struct EnvKey {
41 os_string: OsString,
42 // This stores a UTF-16 encoded string to workaround the mismatch between
43 // Rust's OsString (WTF-8) and the Windows API string type (UTF-16).
44 // Normally converting on every API call is acceptable but here
45 // `c::CompareStringOrdinal` will be called for every use of `==`.
46 utf16: Vec<u16>,
47 }
48
49 impl EnvKey {
50 fn new<T: Into<OsString>>(key: T) -> Self {
51 EnvKey::from(key.into())
52 }
53 }
54
55 // Comparing Windows environment variable keys[1] are behaviourally the
56 // composition of two operations[2]:
57 //
58 // 1. Case-fold both strings. This is done using a language-independent
59 // uppercase mapping that's unique to Windows (albeit based on data from an
60 // older Unicode spec). It only operates on individual UTF-16 code units so
61 // surrogates are left unchanged. This uppercase mapping can potentially change
62 // between Windows versions.
63 //
64 // 2. Perform an ordinal comparison of the strings. A comparison using ordinal
65 // is just a comparison based on the numerical value of each UTF-16 code unit[3].
66 //
67 // Because the case-folding mapping is unique to Windows and not guaranteed to
68 // be stable, we ask the OS to compare the strings for us. This is done by
69 // calling `CompareStringOrdinal`[4] with `bIgnoreCase` set to `TRUE`.
70 //
71 // [1] https://docs.microsoft.com/en-us/dotnet/standard/base-types/best-practices-strings#choosing-a-stringcomparison-member-for-your-method-call
72 // [2] https://docs.microsoft.com/en-us/dotnet/standard/base-types/best-practices-strings#stringtoupper-and-stringtolower
73 // [3] https://docs.microsoft.com/en-us/dotnet/api/system.stringcomparison?view=net-5.0#System_StringComparison_Ordinal
74 // [4] https://docs.microsoft.com/en-us/windows/win32/api/stringapiset/nf-stringapiset-comparestringordinal
75 impl Ord for EnvKey {
76 fn cmp(&self, other: &Self) -> cmp::Ordering {
77 unsafe {
78 let result = c::CompareStringOrdinal(
79 self.utf16.as_ptr(),
80 self.utf16.len() as _,
81 other.utf16.as_ptr(),
82 other.utf16.len() as _,
83 c::TRUE,
84 );
85 match result {
86 c::CSTR_LESS_THAN => cmp::Ordering::Less,
87 c::CSTR_EQUAL => cmp::Ordering::Equal,
88 c::CSTR_GREATER_THAN => cmp::Ordering::Greater,
89 // `CompareStringOrdinal` should never fail so long as the parameters are correct.
90 _ => panic!("comparing environment keys failed: {}", Error::last_os_error()),
91 }
92 }
93 }
94 }
95 impl PartialOrd for EnvKey {
96 fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
97 Some(self.cmp(other))
98 }
99 }
100 impl PartialEq for EnvKey {
101 fn eq(&self, other: &Self) -> bool {
102 if self.utf16.len() != other.utf16.len() {
103 false
104 } else {
105 self.cmp(other) == cmp::Ordering::Equal
106 }
107 }
108 }
109 impl PartialOrd<str> for EnvKey {
110 fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
111 Some(self.cmp(&EnvKey::new(other)))
112 }
113 }
114 impl PartialEq<str> for EnvKey {
115 fn eq(&self, other: &str) -> bool {
116 if self.os_string.len() != other.len() {
117 false
118 } else {
119 self.cmp(&EnvKey::new(other)) == cmp::Ordering::Equal
120 }
121 }
122 }
123
124 // Environment variable keys should preserve their original case even though
125 // they are compared using a caseless string mapping.
126 impl From<OsString> for EnvKey {
127 fn from(k: OsString) -> Self {
128 EnvKey { utf16: k.encode_wide().collect(), os_string: k }
129 }
130 }
131
132 impl From<EnvKey> for OsString {
133 fn from(k: EnvKey) -> Self {
134 k.os_string
135 }
136 }
137
138 impl From<&OsStr> for EnvKey {
139 fn from(k: &OsStr) -> Self {
140 Self::from(k.to_os_string())
141 }
142 }
143
144 impl AsRef<OsStr> for EnvKey {
145 fn as_ref(&self) -> &OsStr {
146 &self.os_string
147 }
148 }
149
150 pub(crate) fn ensure_no_nuls<T: AsRef<OsStr>>(str: T) -> io::Result<T> {
151 if str.as_ref().encode_wide().any(|b| b == 0) {
152 Err(io::const_io_error!(ErrorKind::InvalidInput, "nul byte found in provided data"))
153 } else {
154 Ok(str)
155 }
156 }
157
158 pub struct Command {
159 program: OsString,
160 args: Vec<Arg>,
161 env: CommandEnv,
162 cwd: Option<OsString>,
163 flags: u32,
164 detach: bool, // not currently exposed in std::process
165 stdin: Option<Stdio>,
166 stdout: Option<Stdio>,
167 stderr: Option<Stdio>,
168 force_quotes_enabled: bool,
169 }
170
171 pub enum Stdio {
172 Inherit,
173 Null,
174 MakePipe,
175 Pipe(AnonPipe),
176 Handle(Handle),
177 }
178
179 pub struct StdioPipes {
180 pub stdin: Option<AnonPipe>,
181 pub stdout: Option<AnonPipe>,
182 pub stderr: Option<AnonPipe>,
183 }
184
185 impl Command {
186 pub fn new(program: &OsStr) -> Command {
187 Command {
188 program: program.to_os_string(),
189 args: Vec::new(),
190 env: Default::default(),
191 cwd: None,
192 flags: 0,
193 detach: false,
194 stdin: None,
195 stdout: None,
196 stderr: None,
197 force_quotes_enabled: false,
198 }
199 }
200
201 pub fn arg(&mut self, arg: &OsStr) {
202 self.args.push(Arg::Regular(arg.to_os_string()))
203 }
204 pub fn env_mut(&mut self) -> &mut CommandEnv {
205 &mut self.env
206 }
207 pub fn cwd(&mut self, dir: &OsStr) {
208 self.cwd = Some(dir.to_os_string())
209 }
210 pub fn stdin(&mut self, stdin: Stdio) {
211 self.stdin = Some(stdin);
212 }
213 pub fn stdout(&mut self, stdout: Stdio) {
214 self.stdout = Some(stdout);
215 }
216 pub fn stderr(&mut self, stderr: Stdio) {
217 self.stderr = Some(stderr);
218 }
219 pub fn creation_flags(&mut self, flags: u32) {
220 self.flags = flags;
221 }
222
223 pub fn force_quotes(&mut self, enabled: bool) {
224 self.force_quotes_enabled = enabled;
225 }
226
227 pub fn raw_arg(&mut self, command_str_to_append: &OsStr) {
228 self.args.push(Arg::Raw(command_str_to_append.to_os_string()))
229 }
230
231 pub fn get_program(&self) -> &OsStr {
232 &self.program
233 }
234
235 pub fn get_args(&self) -> CommandArgs<'_> {
236 let iter = self.args.iter();
237 CommandArgs { iter }
238 }
239
240 pub fn get_envs(&self) -> CommandEnvs<'_> {
241 self.env.iter()
242 }
243
244 pub fn get_current_dir(&self) -> Option<&Path> {
245 self.cwd.as_ref().map(|cwd| Path::new(cwd))
246 }
247
248 pub fn spawn(
249 &mut self,
250 default: Stdio,
251 needs_stdin: bool,
252 ) -> io::Result<(Process, StdioPipes)> {
253 let maybe_env = self.env.capture_if_changed();
254
255 let child_paths = if let Some(env) = maybe_env.as_ref() {
256 env.get(&EnvKey::new("PATH")).map(|s| s.as_os_str())
257 } else {
258 None
259 };
260 let program = resolve_exe(&self.program, || env::var_os("PATH"), child_paths)?;
261 // Case insensitive "ends_with" of UTF-16 encoded ".bat" or ".cmd"
262 let is_batch_file = matches!(
263 program.len().checked_sub(5).and_then(|i| program.get(i..)),
264 Some([46, 98 | 66, 97 | 65, 116 | 84, 0] | [46, 99 | 67, 109 | 77, 100 | 68, 0])
265 );
266 let (program, mut cmd_str) = if is_batch_file {
267 (
268 command_prompt()?,
269 args::make_bat_command_line(&program, &self.args, self.force_quotes_enabled)?,
270 )
271 } else {
272 let cmd_str = make_command_line(&self.program, &self.args, self.force_quotes_enabled)?;
273 (program, cmd_str)
274 };
275 cmd_str.push(0); // add null terminator
276
277 // stolen from the libuv code.
278 let mut flags = self.flags | c::CREATE_UNICODE_ENVIRONMENT;
279 if self.detach {
280 flags |= c::DETACHED_PROCESS | c::CREATE_NEW_PROCESS_GROUP;
281 }
282
283 let (envp, _data) = make_envp(maybe_env)?;
284 let (dirp, _data) = make_dirp(self.cwd.as_ref())?;
285 let mut pi = zeroed_process_information();
286
287 // Prepare all stdio handles to be inherited by the child. This
288 // currently involves duplicating any existing ones with the ability to
289 // be inherited by child processes. Note, however, that once an
290 // inheritable handle is created, *any* spawned child will inherit that
291 // handle. We only want our own child to inherit this handle, so we wrap
292 // the remaining portion of this spawn in a mutex.
293 //
294 // For more information, msdn also has an article about this race:
295 // https://support.microsoft.com/kb/315939
296 static CREATE_PROCESS_LOCK: Mutex<()> = Mutex::new(());
297
298 let _guard = CREATE_PROCESS_LOCK.lock();
299
300 let mut pipes = StdioPipes { stdin: None, stdout: None, stderr: None };
301 let null = Stdio::Null;
302 let default_stdin = if needs_stdin { &default } else { &null };
303 let stdin = self.stdin.as_ref().unwrap_or(default_stdin);
304 let stdout = self.stdout.as_ref().unwrap_or(&default);
305 let stderr = self.stderr.as_ref().unwrap_or(&default);
306 let stdin = stdin.to_handle(c::STD_INPUT_HANDLE, &mut pipes.stdin)?;
307 let stdout = stdout.to_handle(c::STD_OUTPUT_HANDLE, &mut pipes.stdout)?;
308 let stderr = stderr.to_handle(c::STD_ERROR_HANDLE, &mut pipes.stderr)?;
309
310 let mut si = zeroed_startupinfo();
311 si.cb = mem::size_of::<c::STARTUPINFOW>() as c::DWORD;
312
313 // If at least one of stdin, stdout or stderr are set (i.e. are non null)
314 // then set the `hStd` fields in `STARTUPINFO`.
315 // Otherwise skip this and allow the OS to apply its default behaviour.
316 // This provides more consistent behaviour between Win7 and Win8+.
317 let is_set = |stdio: &Handle| !stdio.as_raw_handle().is_null();
318 if is_set(&stderr) || is_set(&stdout) || is_set(&stdin) {
319 si.dwFlags |= c::STARTF_USESTDHANDLES;
320 si.hStdInput = stdin.as_raw_handle();
321 si.hStdOutput = stdout.as_raw_handle();
322 si.hStdError = stderr.as_raw_handle();
323 }
324
325 unsafe {
326 cvt(c::CreateProcessW(
327 program.as_ptr(),
328 cmd_str.as_mut_ptr(),
329 ptr::null_mut(),
330 ptr::null_mut(),
331 c::TRUE,
332 flags,
333 envp,
334 dirp,
335 &si,
336 &mut pi,
337 ))
338 }?;
339
340 unsafe {
341 Ok((
342 Process {
343 handle: Handle::from_raw_handle(pi.hProcess),
344 main_thread_handle: Handle::from_raw_handle(pi.hThread),
345 },
346 pipes,
347 ))
348 }
349 }
350
351 pub fn output(&mut self) -> io::Result<(ExitStatus, Vec<u8>, Vec<u8>)> {
352 let (proc, pipes) = self.spawn(Stdio::MakePipe, false)?;
353 crate::sys_common::process::wait_with_output(proc, pipes)
354 }
355 }
356
357 impl fmt::Debug for Command {
358 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
359 self.program.fmt(f)?;
360 for arg in &self.args {
361 f.write_str(" ")?;
362 match arg {
363 Arg::Regular(s) => s.fmt(f),
364 Arg::Raw(s) => f.write_str(&s.to_string_lossy()),
365 }?;
366 }
367 Ok(())
368 }
369 }
370
371 // Resolve `exe_path` to the executable name.
372 //
373 // * If the path is simply a file name then use the paths given by `search_paths` to find the executable.
374 // * Otherwise use the `exe_path` as given.
375 //
376 // This function may also append `.exe` to the name. The rationale for doing so is as follows:
377 //
378 // It is a very strong convention that Windows executables have the `exe` extension.
379 // In Rust, it is common to omit this extension.
380 // Therefore this functions first assumes `.exe` was intended.
381 // It falls back to the plain file name if a full path is given and the extension is omitted
382 // or if only a file name is given and it already contains an extension.
383 fn resolve_exe<'a>(
384 exe_path: &'a OsStr,
385 parent_paths: impl FnOnce() -> Option<OsString>,
386 child_paths: Option<&OsStr>,
387 ) -> io::Result<Vec<u16>> {
388 // Early return if there is no filename.
389 if exe_path.is_empty() || path::has_trailing_slash(exe_path) {
390 return Err(io::const_io_error!(
391 io::ErrorKind::InvalidInput,
392 "program path has no file name",
393 ));
394 }
395 // Test if the file name has the `exe` extension.
396 // This does a case-insensitive `ends_with`.
397 let has_exe_suffix = if exe_path.len() >= EXE_SUFFIX.len() {
398 exe_path.as_os_str_bytes()[exe_path.len() - EXE_SUFFIX.len()..]
399 .eq_ignore_ascii_case(EXE_SUFFIX.as_bytes())
400 } else {
401 false
402 };
403
404 // If `exe_path` is an absolute path or a sub-path then don't search `PATH` for it.
405 if !path::is_file_name(exe_path) {
406 if has_exe_suffix {
407 // The application name is a path to a `.exe` file.
408 // Let `CreateProcessW` figure out if it exists or not.
409 return args::to_user_path(Path::new(exe_path));
410 }
411 let mut path = PathBuf::from(exe_path);
412
413 // Append `.exe` if not already there.
414 path = path::append_suffix(path, EXE_SUFFIX.as_ref());
415 if let Some(path) = program_exists(&path) {
416 return Ok(path);
417 } else {
418 // It's ok to use `set_extension` here because the intent is to
419 // remove the extension that was just added.
420 path.set_extension("");
421 return args::to_user_path(&path);
422 }
423 } else {
424 ensure_no_nuls(exe_path)?;
425 // From the `CreateProcessW` docs:
426 // > If the file name does not contain an extension, .exe is appended.
427 // Note that this rule only applies when searching paths.
428 let has_extension = exe_path.as_os_str_bytes().contains(&b'.');
429
430 // Search the directories given by `search_paths`.
431 let result = search_paths(parent_paths, child_paths, |mut path| {
432 path.push(&exe_path);
433 if !has_extension {
434 path.set_extension(EXE_EXTENSION);
435 }
436 program_exists(&path)
437 });
438 if let Some(path) = result {
439 return Ok(path);
440 }
441 }
442 // If we get here then the executable cannot be found.
443 Err(io::const_io_error!(io::ErrorKind::NotFound, "program not found"))
444 }
445
446 // Calls `f` for every path that should be used to find an executable.
447 // Returns once `f` returns the path to an executable or all paths have been searched.
448 fn search_paths<Paths, Exists>(
449 parent_paths: Paths,
450 child_paths: Option<&OsStr>,
451 mut exists: Exists,
452 ) -> Option<Vec<u16>>
453 where
454 Paths: FnOnce() -> Option<OsString>,
455 Exists: FnMut(PathBuf) -> Option<Vec<u16>>,
456 {
457 // 1. Child paths
458 // This is for consistency with Rust's historic behaviour.
459 if let Some(paths) = child_paths {
460 for path in env::split_paths(paths).filter(|p| !p.as_os_str().is_empty()) {
461 if let Some(path) = exists(path) {
462 return Some(path);
463 }
464 }
465 }
466
467 // 2. Application path
468 if let Ok(mut app_path) = env::current_exe() {
469 app_path.pop();
470 if let Some(path) = exists(app_path) {
471 return Some(path);
472 }
473 }
474
475 // 3 & 4. System paths
476 // SAFETY: This uses `fill_utf16_buf` to safely call the OS functions.
477 unsafe {
478 if let Ok(Some(path)) = super::fill_utf16_buf(
479 |buf, size| c::GetSystemDirectoryW(buf, size),
480 |buf| exists(PathBuf::from(OsString::from_wide(buf))),
481 ) {
482 return Some(path);
483 }
484 #[cfg(not(target_vendor = "uwp"))]
485 {
486 if let Ok(Some(path)) = super::fill_utf16_buf(
487 |buf, size| c::GetWindowsDirectoryW(buf, size),
488 |buf| exists(PathBuf::from(OsString::from_wide(buf))),
489 ) {
490 return Some(path);
491 }
492 }
493 }
494
495 // 5. Parent paths
496 if let Some(parent_paths) = parent_paths() {
497 for path in env::split_paths(&parent_paths).filter(|p| !p.as_os_str().is_empty()) {
498 if let Some(path) = exists(path) {
499 return Some(path);
500 }
501 }
502 }
503 None
504 }
505
506 /// Check if a file exists without following symlinks.
507 fn program_exists(path: &Path) -> Option<Vec<u16>> {
508 unsafe {
509 let path = args::to_user_path(path).ok()?;
510 // Getting attributes using `GetFileAttributesW` does not follow symlinks
511 // and it will almost always be successful if the link exists.
512 // There are some exceptions for special system files (e.g. the pagefile)
513 // but these are not executable.
514 if c::GetFileAttributesW(path.as_ptr()) == c::INVALID_FILE_ATTRIBUTES {
515 None
516 } else {
517 Some(path)
518 }
519 }
520 }
521
522 impl Stdio {
523 fn to_handle(&self, stdio_id: c::DWORD, pipe: &mut Option<AnonPipe>) -> io::Result<Handle> {
524 match *self {
525 Stdio::Inherit => match stdio::get_handle(stdio_id) {
526 Ok(io) => unsafe {
527 let io = Handle::from_raw_handle(io);
528 let ret = io.duplicate(0, true, c::DUPLICATE_SAME_ACCESS);
529 io.into_raw_handle();
530 ret
531 },
532 // If no stdio handle is available, then propagate the null value.
533 Err(..) => unsafe { Ok(Handle::from_raw_handle(ptr::null_mut())) },
534 },
535
536 Stdio::MakePipe => {
537 let ours_readable = stdio_id != c::STD_INPUT_HANDLE;
538 let pipes = pipe::anon_pipe(ours_readable, true)?;
539 *pipe = Some(pipes.ours);
540 Ok(pipes.theirs.into_handle())
541 }
542
543 Stdio::Pipe(ref source) => {
544 let ours_readable = stdio_id != c::STD_INPUT_HANDLE;
545 pipe::spawn_pipe_relay(source, ours_readable, true).map(AnonPipe::into_handle)
546 }
547
548 Stdio::Handle(ref handle) => handle.duplicate(0, true, c::DUPLICATE_SAME_ACCESS),
549
550 // Open up a reference to NUL with appropriate read/write
551 // permissions as well as the ability to be inherited to child
552 // processes (as this is about to be inherited).
553 Stdio::Null => {
554 let size = mem::size_of::<c::SECURITY_ATTRIBUTES>();
555 let mut sa = c::SECURITY_ATTRIBUTES {
556 nLength: size as c::DWORD,
557 lpSecurityDescriptor: ptr::null_mut(),
558 bInheritHandle: 1,
559 };
560 let mut opts = OpenOptions::new();
561 opts.read(stdio_id == c::STD_INPUT_HANDLE);
562 opts.write(stdio_id != c::STD_INPUT_HANDLE);
563 opts.security_attributes(&mut sa);
564 File::open(Path::new("NUL"), &opts).map(|file| file.into_inner())
565 }
566 }
567 }
568 }
569
570 impl From<AnonPipe> for Stdio {
571 fn from(pipe: AnonPipe) -> Stdio {
572 Stdio::Pipe(pipe)
573 }
574 }
575
576 impl From<File> for Stdio {
577 fn from(file: File) -> Stdio {
578 Stdio::Handle(file.into_inner())
579 }
580 }
581
582 ////////////////////////////////////////////////////////////////////////////////
583 // Processes
584 ////////////////////////////////////////////////////////////////////////////////
585
586 /// A value representing a child process.
587 ///
588 /// The lifetime of this value is linked to the lifetime of the actual
589 /// process - the Process destructor calls self.finish() which waits
590 /// for the process to terminate.
591 pub struct Process {
592 handle: Handle,
593 main_thread_handle: Handle,
594 }
595
596 impl Process {
597 pub fn kill(&mut self) -> io::Result<()> {
598 let result = unsafe { c::TerminateProcess(self.handle.as_raw_handle(), 1) };
599 if result == c::FALSE {
600 let error = unsafe { c::GetLastError() };
601 // TerminateProcess returns ERROR_ACCESS_DENIED if the process has already been
602 // terminated (by us, or for any other reason). So check if the process was actually
603 // terminated, and if so, do not return an error.
604 if error != c::ERROR_ACCESS_DENIED || self.try_wait().is_err() {
605 return Err(crate::io::Error::from_raw_os_error(error as i32));
606 }
607 }
608 Ok(())
609 }
610
611 pub fn id(&self) -> u32 {
612 unsafe { c::GetProcessId(self.handle.as_raw_handle()) as u32 }
613 }
614
615 pub fn main_thread_handle(&self) -> BorrowedHandle<'_> {
616 self.main_thread_handle.as_handle()
617 }
618
619 pub fn wait(&mut self) -> io::Result<ExitStatus> {
620 unsafe {
621 let res = c::WaitForSingleObject(self.handle.as_raw_handle(), c::INFINITE);
622 if res != c::WAIT_OBJECT_0 {
623 return Err(Error::last_os_error());
624 }
625 let mut status = 0;
626 cvt(c::GetExitCodeProcess(self.handle.as_raw_handle(), &mut status))?;
627 Ok(ExitStatus(status))
628 }
629 }
630
631 pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> {
632 unsafe {
633 match c::WaitForSingleObject(self.handle.as_raw_handle(), 0) {
634 c::WAIT_OBJECT_0 => {}
635 c::WAIT_TIMEOUT => {
636 return Ok(None);
637 }
638 _ => return Err(io::Error::last_os_error()),
639 }
640 let mut status = 0;
641 cvt(c::GetExitCodeProcess(self.handle.as_raw_handle(), &mut status))?;
642 Ok(Some(ExitStatus(status)))
643 }
644 }
645
646 pub fn handle(&self) -> &Handle {
647 &self.handle
648 }
649
650 pub fn into_handle(self) -> Handle {
651 self.handle
652 }
653 }
654
655 #[derive(PartialEq, Eq, Clone, Copy, Debug, Default)]
656 pub struct ExitStatus(c::DWORD);
657
658 impl ExitStatus {
659 pub fn exit_ok(&self) -> Result<(), ExitStatusError> {
660 match NonZeroDWORD::try_from(self.0) {
661 /* was nonzero */ Ok(failure) => Err(ExitStatusError(failure)),
662 /* was zero, couldn't convert */ Err(_) => Ok(()),
663 }
664 }
665 pub fn code(&self) -> Option<i32> {
666 Some(self.0 as i32)
667 }
668 }
669
670 /// Converts a raw `c::DWORD` to a type-safe `ExitStatus` by wrapping it without copying.
671 impl From<c::DWORD> for ExitStatus {
672 fn from(u: c::DWORD) -> ExitStatus {
673 ExitStatus(u)
674 }
675 }
676
677 impl fmt::Display for ExitStatus {
678 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
679 // Windows exit codes with the high bit set typically mean some form of
680 // unhandled exception or warning. In this scenario printing the exit
681 // code in decimal doesn't always make sense because it's a very large
682 // and somewhat gibberish number. The hex code is a bit more
683 // recognizable and easier to search for, so print that.
684 if self.0 & 0x80000000 != 0 {
685 write!(f, "exit code: {:#x}", self.0)
686 } else {
687 write!(f, "exit code: {}", self.0)
688 }
689 }
690 }
691
692 #[derive(PartialEq, Eq, Clone, Copy, Debug)]
693 pub struct ExitStatusError(c::NonZeroDWORD);
694
695 impl Into<ExitStatus> for ExitStatusError {
696 fn into(self) -> ExitStatus {
697 ExitStatus(self.0.into())
698 }
699 }
700
701 impl ExitStatusError {
702 pub fn code(self) -> Option<NonZeroI32> {
703 Some((u32::from(self.0) as i32).try_into().unwrap())
704 }
705 }
706
707 #[derive(PartialEq, Eq, Clone, Copy, Debug)]
708 pub struct ExitCode(c::DWORD);
709
710 impl ExitCode {
711 pub const SUCCESS: ExitCode = ExitCode(EXIT_SUCCESS as _);
712 pub const FAILURE: ExitCode = ExitCode(EXIT_FAILURE as _);
713
714 #[inline]
715 pub fn as_i32(&self) -> i32 {
716 self.0 as i32
717 }
718 }
719
720 impl From<u8> for ExitCode {
721 fn from(code: u8) -> Self {
722 ExitCode(c::DWORD::from(code))
723 }
724 }
725
726 impl From<u32> for ExitCode {
727 fn from(code: u32) -> Self {
728 ExitCode(c::DWORD::from(code))
729 }
730 }
731
732 fn zeroed_startupinfo() -> c::STARTUPINFOW {
733 c::STARTUPINFOW {
734 cb: 0,
735 lpReserved: ptr::null_mut(),
736 lpDesktop: ptr::null_mut(),
737 lpTitle: ptr::null_mut(),
738 dwX: 0,
739 dwY: 0,
740 dwXSize: 0,
741 dwYSize: 0,
742 dwXCountChars: 0,
743 dwYCountChars: 0,
744 dwFillAttribute: 0,
745 dwFlags: 0,
746 wShowWindow: 0,
747 cbReserved2: 0,
748 lpReserved2: ptr::null_mut(),
749 hStdInput: ptr::null_mut(),
750 hStdOutput: ptr::null_mut(),
751 hStdError: ptr::null_mut(),
752 }
753 }
754
755 fn zeroed_process_information() -> c::PROCESS_INFORMATION {
756 c::PROCESS_INFORMATION {
757 hProcess: ptr::null_mut(),
758 hThread: ptr::null_mut(),
759 dwProcessId: 0,
760 dwThreadId: 0,
761 }
762 }
763
764 // Produces a wide string *without terminating null*; returns an error if
765 // `prog` or any of the `args` contain a nul.
766 fn make_command_line(argv0: &OsStr, args: &[Arg], force_quotes: bool) -> io::Result<Vec<u16>> {
767 // Encode the command and arguments in a command line string such
768 // that the spawned process may recover them using CommandLineToArgvW.
769 let mut cmd: Vec<u16> = Vec::new();
770
771 // Always quote the program name so CreateProcess to avoid ambiguity when
772 // the child process parses its arguments.
773 // Note that quotes aren't escaped here because they can't be used in arg0.
774 // But that's ok because file paths can't contain quotes.
775 cmd.push(b'"' as u16);
776 cmd.extend(argv0.encode_wide());
777 cmd.push(b'"' as u16);
778
779 for arg in args {
780 cmd.push(' ' as u16);
781 args::append_arg(&mut cmd, arg, force_quotes)?;
782 }
783 Ok(cmd)
784 }
785
786 // Get `cmd.exe` for use with bat scripts, encoded as a UTF-16 string.
787 fn command_prompt() -> io::Result<Vec<u16>> {
788 let mut system: Vec<u16> = super::fill_utf16_buf(
789 |buf, size| unsafe { c::GetSystemDirectoryW(buf, size) },
790 |buf| buf.into(),
791 )?;
792 system.extend("\\cmd.exe".encode_utf16().chain([0]));
793 Ok(system)
794 }
795
796 fn make_envp(maybe_env: Option<BTreeMap<EnvKey, OsString>>) -> io::Result<(*mut c_void, Vec<u16>)> {
797 // On Windows we pass an "environment block" which is not a char**, but
798 // rather a concatenation of null-terminated k=v\0 sequences, with a final
799 // \0 to terminate.
800 if let Some(env) = maybe_env {
801 let mut blk = Vec::new();
802
803 // If there are no environment variables to set then signal this by
804 // pushing a null.
805 if env.is_empty() {
806 blk.push(0);
807 }
808
809 for (k, v) in env {
810 ensure_no_nuls(k.os_string)?;
811 blk.extend(k.utf16);
812 blk.push('=' as u16);
813 blk.extend(ensure_no_nuls(v)?.encode_wide());
814 blk.push(0);
815 }
816 blk.push(0);
817 Ok((blk.as_mut_ptr() as *mut c_void, blk))
818 } else {
819 Ok((ptr::null_mut(), Vec::new()))
820 }
821 }
822
823 fn make_dirp(d: Option<&OsString>) -> io::Result<(*const u16, Vec<u16>)> {
824 match d {
825 Some(dir) => {
826 let mut dir_str: Vec<u16> = ensure_no_nuls(dir)?.encode_wide().collect();
827 dir_str.push(0);
828 Ok((dir_str.as_ptr(), dir_str))
829 }
830 None => Ok((ptr::null(), Vec::new())),
831 }
832 }
833
834 pub struct CommandArgs<'a> {
835 iter: crate::slice::Iter<'a, Arg>,
836 }
837
838 impl<'a> Iterator for CommandArgs<'a> {
839 type Item = &'a OsStr;
840 fn next(&mut self) -> Option<&'a OsStr> {
841 self.iter.next().map(|arg| match arg {
842 Arg::Regular(s) | Arg::Raw(s) => s.as_ref(),
843 })
844 }
845 fn size_hint(&self) -> (usize, Option<usize>) {
846 self.iter.size_hint()
847 }
848 }
849
850 impl<'a> ExactSizeIterator for CommandArgs<'a> {
851 fn len(&self) -> usize {
852 self.iter.len()
853 }
854 fn is_empty(&self) -> bool {
855 self.iter.is_empty()
856 }
857 }
858
859 impl<'a> fmt::Debug for CommandArgs<'a> {
860 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
861 f.debug_list().entries(self.iter.clone()).finish()
862 }
863 }