]> git.proxmox.com Git - rustc.git/blob - library/stdarch/crates/std_detect/src/detect/os/x86.rs
New upstream version 1.58.1+dfsg1
[rustc.git] / library / stdarch / crates / std_detect / src / detect / os / x86.rs
1 //! x86 run-time feature detection is OS independent.
2
3 #[cfg(target_arch = "x86")]
4 use core::arch::x86::*;
5 #[cfg(target_arch = "x86_64")]
6 use core::arch::x86_64::*;
7
8 use core::mem;
9
10 use crate::detect::{bit, cache, Feature};
11
12 /// Run-time feature detection on x86 works by using the CPUID instruction.
13 ///
14 /// The [CPUID Wikipedia page][wiki_cpuid] contains
15 /// all the information about which flags to set to query which values, and in
16 /// which registers these are reported.
17 ///
18 /// The definitive references are:
19 /// - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2:
20 /// Instruction Set Reference, A-Z][intel64_ref].
21 /// - [AMD64 Architecture Programmer's Manual, Volume 3: General-Purpose and
22 /// System Instructions][amd64_ref].
23 ///
24 /// [wiki_cpuid]: https://en.wikipedia.org/wiki/CPUID
25 /// [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
26 /// [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf
27 #[allow(clippy::similar_names)]
28 pub(crate) fn detect_features() -> cache::Initializer {
29 let mut value = cache::Initializer::default();
30
31 // If the x86 CPU does not support the CPUID instruction then it is too
32 // old to support any of the currently-detectable features.
33 if !has_cpuid() {
34 return value;
35 }
36
37 // Calling `__cpuid`/`__cpuid_count` from here on is safe because the CPU
38 // has `cpuid` support.
39
40 // 0. EAX = 0: Basic Information:
41 // - EAX returns the "Highest Function Parameter", that is, the maximum
42 // leaf value for subsequent calls of `cpuinfo` in range [0,
43 // 0x8000_0000]. - The vendor ID is stored in 12 u8 ascii chars,
44 // returned in EBX, EDX, and ECX (in that order):
45 let (max_basic_leaf, vendor_id) = unsafe {
46 let CpuidResult {
47 eax: max_basic_leaf,
48 ebx,
49 ecx,
50 edx,
51 } = __cpuid(0);
52 let vendor_id: [[u8; 4]; 3] = [
53 mem::transmute(ebx),
54 mem::transmute(edx),
55 mem::transmute(ecx),
56 ];
57 let vendor_id: [u8; 12] = mem::transmute(vendor_id);
58 (max_basic_leaf, vendor_id)
59 };
60
61 if max_basic_leaf < 1 {
62 // Earlier Intel 486, CPUID not implemented
63 return value;
64 }
65
66 // EAX = 1, ECX = 0: Queries "Processor Info and Feature Bits";
67 // Contains information about most x86 features.
68 let CpuidResult {
69 ecx: proc_info_ecx,
70 edx: proc_info_edx,
71 ..
72 } = unsafe { __cpuid(0x0000_0001_u32) };
73
74 // EAX = 7, ECX = 0: Queries "Extended Features";
75 // Contains information about bmi,bmi2, and avx2 support.
76 let (extended_features_ebx, extended_features_ecx) = if max_basic_leaf >= 7 {
77 let CpuidResult { ebx, ecx, .. } = unsafe { __cpuid(0x0000_0007_u32) };
78 (ebx, ecx)
79 } else {
80 (0, 0) // CPUID does not support "Extended Features"
81 };
82
83 // EAX = 0x8000_0000, ECX = 0: Get Highest Extended Function Supported
84 // - EAX returns the max leaf value for extended information, that is,
85 // `cpuid` calls in range [0x8000_0000; u32::MAX]:
86 let CpuidResult {
87 eax: extended_max_basic_leaf,
88 ..
89 } = unsafe { __cpuid(0x8000_0000_u32) };
90
91 // EAX = 0x8000_0001, ECX=0: Queries "Extended Processor Info and Feature
92 // Bits"
93 let extended_proc_info_ecx = if extended_max_basic_leaf >= 1 {
94 let CpuidResult { ecx, .. } = unsafe { __cpuid(0x8000_0001_u32) };
95 ecx
96 } else {
97 0
98 };
99
100 {
101 // borrows value till the end of this scope:
102 let mut enable = |r, rb, f| {
103 if bit::test(r as usize, rb) {
104 value.set(f as u32);
105 }
106 };
107
108 enable(proc_info_ecx, 0, Feature::sse3);
109 enable(proc_info_ecx, 1, Feature::pclmulqdq);
110 enable(proc_info_ecx, 9, Feature::ssse3);
111 enable(proc_info_ecx, 13, Feature::cmpxchg16b);
112 enable(proc_info_ecx, 19, Feature::sse4_1);
113 enable(proc_info_ecx, 20, Feature::sse4_2);
114 enable(proc_info_ecx, 23, Feature::popcnt);
115 enable(proc_info_ecx, 25, Feature::aes);
116 enable(proc_info_ecx, 29, Feature::f16c);
117 enable(proc_info_ecx, 30, Feature::rdrand);
118 enable(extended_features_ebx, 18, Feature::rdseed);
119 enable(extended_features_ebx, 19, Feature::adx);
120 enable(extended_features_ebx, 11, Feature::rtm);
121 enable(proc_info_edx, 4, Feature::tsc);
122 enable(proc_info_edx, 23, Feature::mmx);
123 enable(proc_info_edx, 24, Feature::fxsr);
124 enable(proc_info_edx, 25, Feature::sse);
125 enable(proc_info_edx, 26, Feature::sse2);
126 enable(extended_features_ebx, 29, Feature::sha);
127
128 enable(extended_features_ebx, 3, Feature::bmi1);
129 enable(extended_features_ebx, 8, Feature::bmi2);
130
131 // `XSAVE` and `AVX` support:
132 let cpu_xsave = bit::test(proc_info_ecx as usize, 26);
133 if cpu_xsave {
134 // 0. Here the CPU supports `XSAVE`.
135
136 // 1. Detect `OSXSAVE`, that is, whether the OS is AVX enabled and
137 // supports saving the state of the AVX/AVX2 vector registers on
138 // context-switches, see:
139 //
140 // - [intel: is avx enabled?][is_avx_enabled],
141 // - [mozilla: sse.cpp][mozilla_sse_cpp].
142 //
143 // [is_avx_enabled]: https://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
144 // [mozilla_sse_cpp]: https://hg.mozilla.org/mozilla-central/file/64bab5cbb9b6/mozglue/build/SSE.cpp#l190
145 let cpu_osxsave = bit::test(proc_info_ecx as usize, 27);
146
147 if cpu_osxsave {
148 // 2. The OS must have signaled the CPU that it supports saving and
149 // restoring the:
150 //
151 // * SSE -> `XCR0.SSE[1]`
152 // * AVX -> `XCR0.AVX[2]`
153 // * AVX-512 -> `XCR0.AVX-512[7:5]`.
154 //
155 // by setting the corresponding bits of `XCR0` to `1`.
156 //
157 // This is safe because the CPU supports `xsave`
158 // and the OS has set `osxsave`.
159 let xcr0 = unsafe { _xgetbv(0) };
160 // Test `XCR0.SSE[1]` and `XCR0.AVX[2]` with the mask `0b110 == 6`:
161 let os_avx_support = xcr0 & 6 == 6;
162 // Test `XCR0.AVX-512[7:5]` with the mask `0b1110_0000 == 224`:
163 let os_avx512_support = xcr0 & 224 == 224;
164
165 // Only if the OS and the CPU support saving/restoring the AVX
166 // registers we enable `xsave` support:
167 if os_avx_support {
168 // See "13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED
169 // FEATURES" in the "Intel® 64 and IA-32 Architectures Software
170 // Developer’s Manual, Volume 1: Basic Architecture":
171 //
172 // "Software enables the XSAVE feature set by setting
173 // CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4
174 // instruction). If this bit is 0, execution of any of XGETBV,
175 // XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV
176 // causes an invalid-opcode exception (#UD)"
177 //
178 enable(proc_info_ecx, 26, Feature::xsave);
179
180 // For `xsaveopt`, `xsavec`, and `xsaves` we need to query:
181 // Processor Extended State Enumeration Sub-leaf (EAX = 0DH,
182 // ECX = 1):
183 if max_basic_leaf >= 0xd {
184 let CpuidResult {
185 eax: proc_extended_state1_eax,
186 ..
187 } = unsafe { __cpuid_count(0xd_u32, 1) };
188 enable(proc_extended_state1_eax, 0, Feature::xsaveopt);
189 enable(proc_extended_state1_eax, 1, Feature::xsavec);
190 enable(proc_extended_state1_eax, 3, Feature::xsaves);
191 }
192
193 // FMA (uses 256-bit wide registers):
194 enable(proc_info_ecx, 12, Feature::fma);
195
196 // And AVX/AVX2:
197 enable(proc_info_ecx, 28, Feature::avx);
198 enable(extended_features_ebx, 5, Feature::avx2);
199
200 // For AVX-512 the OS also needs to support saving/restoring
201 // the extended state, only then we enable AVX-512 support:
202 if os_avx512_support {
203 enable(extended_features_ebx, 16, Feature::avx512f);
204 enable(extended_features_ebx, 17, Feature::avx512dq);
205 enable(extended_features_ebx, 21, Feature::avx512ifma);
206 enable(extended_features_ebx, 26, Feature::avx512pf);
207 enable(extended_features_ebx, 27, Feature::avx512er);
208 enable(extended_features_ebx, 28, Feature::avx512cd);
209 enable(extended_features_ebx, 30, Feature::avx512bw);
210 enable(extended_features_ebx, 31, Feature::avx512vl);
211 enable(extended_features_ecx, 1, Feature::avx512vbmi);
212 enable(extended_features_ecx, 5, Feature::avx512bf16);
213 enable(extended_features_ecx, 6, Feature::avx512vbmi2);
214 enable(extended_features_ecx, 8, Feature::avx512gfni);
215 enable(extended_features_ecx, 8, Feature::avx512vp2intersect);
216 enable(extended_features_ecx, 9, Feature::avx512vaes);
217 enable(extended_features_ecx, 10, Feature::avx512vpclmulqdq);
218 enable(extended_features_ecx, 11, Feature::avx512vnni);
219 enable(extended_features_ecx, 12, Feature::avx512bitalg);
220 enable(extended_features_ecx, 14, Feature::avx512vpopcntdq);
221 }
222 }
223 }
224 }
225
226 // This detects ABM on AMD CPUs and LZCNT on Intel CPUs.
227 // On intel CPUs with popcnt, lzcnt implements the
228 // "missing part" of ABM, so we map both to the same
229 // internal feature.
230 //
231 // The `is_x86_feature_detected!("lzcnt")` macro then
232 // internally maps to Feature::abm.
233 enable(extended_proc_info_ecx, 5, Feature::lzcnt);
234
235 // As Hygon Dhyana originates from AMD technology and shares most of the architecture with
236 // AMD's family 17h, but with different CPU Vendor ID("HygonGenuine")/Family series
237 // number(Family 18h).
238 //
239 // For CPUID feature bits, Hygon Dhyana(family 18h) share the same definition with AMD
240 // family 17h.
241 //
242 // Related AMD CPUID specification is https://www.amd.com/system/files/TechDocs/25481.pdf.
243 // Related Hygon kernel patch can be found on
244 // http://lkml.kernel.org/r/5ce86123a7b9dad925ac583d88d2f921040e859b.1538583282.git.puwen@hygon.cn
245 if vendor_id == *b"AuthenticAMD" || vendor_id == *b"HygonGenuine" {
246 // These features are available on AMD arch CPUs:
247 enable(extended_proc_info_ecx, 6, Feature::sse4a);
248 enable(extended_proc_info_ecx, 21, Feature::tbm);
249 }
250 }
251
252 // Unfortunately, some Skylake chips erroneously report support for BMI1 and
253 // BMI2 without actual support. These chips don't support AVX, and it seems
254 // that all Intel chips with non-erroneous support BMI do (I didn't check
255 // other vendors), so we can disable these flags for chips that don't also
256 // report support for AVX.
257 //
258 // It's possible this will pessimize future chips that do support BMI and
259 // not AVX, but this seems minor compared to a hard crash you get when
260 // executing an unsupported instruction (to put it another way, it's safe
261 // for us to under-report CPU features, but not to over-report them). Still,
262 // to limit any impact this may have in the future, we only do this for
263 // Intel chips, as it's a bug only present in their chips.
264 //
265 // This bug is documented as `SKL052` in the errata section of this document:
266 // http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf
267 if vendor_id == *b"GenuineIntel" && !value.test(Feature::avx as u32) {
268 value.unset(Feature::bmi1 as u32);
269 value.unset(Feature::bmi2 as u32);
270 }
271
272 value
273 }