]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
crypto: move common bits for all emulators to libqemuutil
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13
14 #ifdef _ARCH_PPC64
15 #undef ARCH_DLINFO
16 #undef ELF_PLATFORM
17 #undef ELF_HWCAP
18 #undef ELF_HWCAP2
19 #undef ELF_CLASS
20 #undef ELF_DATA
21 #undef ELF_ARCH
22 #endif
23
24 #define ELF_OSABI ELFOSABI_SYSV
25
26 /* from personality.h */
27
28 /*
29 * Flags for bug emulation.
30 *
31 * These occupy the top three bytes.
32 */
33 enum {
34 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
35 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
36 descriptors (signal handling) */
37 MMAP_PAGE_ZERO = 0x0100000,
38 ADDR_COMPAT_LAYOUT = 0x0200000,
39 READ_IMPLIES_EXEC = 0x0400000,
40 ADDR_LIMIT_32BIT = 0x0800000,
41 SHORT_INODE = 0x1000000,
42 WHOLE_SECONDS = 0x2000000,
43 STICKY_TIMEOUTS = 0x4000000,
44 ADDR_LIMIT_3GB = 0x8000000,
45 };
46
47 /*
48 * Personality types.
49 *
50 * These go in the low byte. Avoid using the top bit, it will
51 * conflict with error returns.
52 */
53 enum {
54 PER_LINUX = 0x0000,
55 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
56 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
57 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
58 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
60 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
61 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
62 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
63 PER_BSD = 0x0006,
64 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
65 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_LINUX32 = 0x0008,
67 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
68 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
69 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
70 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
71 PER_RISCOS = 0x000c,
72 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
73 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
74 PER_OSF4 = 0x000f, /* OSF/1 v4 */
75 PER_HPUX = 0x0010,
76 PER_MASK = 0x00ff,
77 };
78
79 /*
80 * Return the base personality without flags.
81 */
82 #define personality(pers) (pers & PER_MASK)
83
84 int info_is_fdpic(struct image_info *info)
85 {
86 return info->personality == PER_LINUX_FDPIC;
87 }
88
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA ELFDATA2MSB
101 #else
102 #define ELF_DATA ELFDATA2LSB
103 #endif
104
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong target_elf_greg_t;
107 #define tswapreg(ptr) tswap64(ptr)
108 #else
109 typedef abi_ulong target_elf_greg_t;
110 #define tswapreg(ptr) tswapal(ptr)
111 #endif
112
113 #ifdef USE_UID16
114 typedef abi_ushort target_uid_t;
115 typedef abi_ushort target_gid_t;
116 #else
117 typedef abi_uint target_uid_t;
118 typedef abi_uint target_gid_t;
119 #endif
120 typedef abi_int target_pid_t;
121
122 #ifdef TARGET_I386
123
124 #define ELF_PLATFORM get_elf_platform()
125
126 static const char *get_elf_platform(void)
127 {
128 static char elf_platform[] = "i386";
129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130 if (family > 6)
131 family = 6;
132 if (family >= 3)
133 elf_platform[1] = '0' + family;
134 return elf_platform;
135 }
136
137 #define ELF_HWCAP get_elf_hwcap()
138
139 static uint32_t get_elf_hwcap(void)
140 {
141 X86CPU *cpu = X86_CPU(thread_cpu);
142
143 return cpu->env.features[FEAT_1_EDX];
144 }
145
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148
149 #define ELF_CLASS ELFCLASS64
150 #define ELF_ARCH EM_X86_64
151
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154 regs->rax = 0;
155 regs->rsp = infop->start_stack;
156 regs->rip = infop->entry;
157 }
158
159 #define ELF_NREG 27
160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
161
162 /*
163 * Note that ELF_NREG should be 29 as there should be place for
164 * TRAPNO and ERR "registers" as well but linux doesn't dump
165 * those.
166 *
167 * See linux kernel: arch/x86/include/asm/elf.h
168 */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171 (*regs)[0] = env->regs[15];
172 (*regs)[1] = env->regs[14];
173 (*regs)[2] = env->regs[13];
174 (*regs)[3] = env->regs[12];
175 (*regs)[4] = env->regs[R_EBP];
176 (*regs)[5] = env->regs[R_EBX];
177 (*regs)[6] = env->regs[11];
178 (*regs)[7] = env->regs[10];
179 (*regs)[8] = env->regs[9];
180 (*regs)[9] = env->regs[8];
181 (*regs)[10] = env->regs[R_EAX];
182 (*regs)[11] = env->regs[R_ECX];
183 (*regs)[12] = env->regs[R_EDX];
184 (*regs)[13] = env->regs[R_ESI];
185 (*regs)[14] = env->regs[R_EDI];
186 (*regs)[15] = env->regs[R_EAX]; /* XXX */
187 (*regs)[16] = env->eip;
188 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189 (*regs)[18] = env->eflags;
190 (*regs)[19] = env->regs[R_ESP];
191 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
198 }
199
200 #else
201
202 #define ELF_START_MMAP 0x80000000
203
204 /*
205 * This is used to ensure we don't load something for the wrong architecture.
206 */
207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208
209 /*
210 * These are used to set parameters in the core dumps.
211 */
212 #define ELF_CLASS ELFCLASS32
213 #define ELF_ARCH EM_386
214
215 static inline void init_thread(struct target_pt_regs *regs,
216 struct image_info *infop)
217 {
218 regs->esp = infop->start_stack;
219 regs->eip = infop->entry;
220
221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222 starts %edx contains a pointer to a function which might be
223 registered using `atexit'. This provides a mean for the
224 dynamic linker to call DT_FINI functions for shared libraries
225 that have been loaded before the code runs.
226
227 A value of 0 tells we have no such handler. */
228 regs->edx = 0;
229 }
230
231 #define ELF_NREG 17
232 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
233
234 /*
235 * Note that ELF_NREG should be 19 as there should be place for
236 * TRAPNO and ERR "registers" as well but linux doesn't dump
237 * those.
238 *
239 * See linux kernel: arch/x86/include/asm/elf.h
240 */
241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
242 {
243 (*regs)[0] = env->regs[R_EBX];
244 (*regs)[1] = env->regs[R_ECX];
245 (*regs)[2] = env->regs[R_EDX];
246 (*regs)[3] = env->regs[R_ESI];
247 (*regs)[4] = env->regs[R_EDI];
248 (*regs)[5] = env->regs[R_EBP];
249 (*regs)[6] = env->regs[R_EAX];
250 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254 (*regs)[11] = env->regs[R_EAX]; /* XXX */
255 (*regs)[12] = env->eip;
256 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257 (*regs)[14] = env->eflags;
258 (*regs)[15] = env->regs[R_ESP];
259 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
260 }
261 #endif
262
263 #define USE_ELF_CORE_DUMP
264 #define ELF_EXEC_PAGESIZE 4096
265
266 #endif
267
268 #ifdef TARGET_ARM
269
270 #ifndef TARGET_AARCH64
271 /* 32 bit ARM definitions */
272
273 #define ELF_START_MMAP 0x80000000
274
275 #define ELF_ARCH EM_ARM
276 #define ELF_CLASS ELFCLASS32
277
278 static inline void init_thread(struct target_pt_regs *regs,
279 struct image_info *infop)
280 {
281 abi_long stack = infop->start_stack;
282 memset(regs, 0, sizeof(*regs));
283
284 regs->uregs[16] = ARM_CPU_MODE_USR;
285 if (infop->entry & 1) {
286 regs->uregs[16] |= CPSR_T;
287 }
288 regs->uregs[15] = infop->entry & 0xfffffffe;
289 regs->uregs[13] = infop->start_stack;
290 /* FIXME - what to for failure of get_user()? */
291 get_user_ual(regs->uregs[2], stack + 8); /* envp */
292 get_user_ual(regs->uregs[1], stack + 4); /* envp */
293 /* XXX: it seems that r0 is zeroed after ! */
294 regs->uregs[0] = 0;
295 /* For uClinux PIC binaries. */
296 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
297 regs->uregs[10] = infop->start_data;
298
299 /* Support ARM FDPIC. */
300 if (info_is_fdpic(infop)) {
301 /* As described in the ABI document, r7 points to the loadmap info
302 * prepared by the kernel. If an interpreter is needed, r8 points
303 * to the interpreter loadmap and r9 points to the interpreter
304 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
305 * r9 points to the main program PT_DYNAMIC info.
306 */
307 regs->uregs[7] = infop->loadmap_addr;
308 if (infop->interpreter_loadmap_addr) {
309 /* Executable is dynamically loaded. */
310 regs->uregs[8] = infop->interpreter_loadmap_addr;
311 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
312 } else {
313 regs->uregs[8] = 0;
314 regs->uregs[9] = infop->pt_dynamic_addr;
315 }
316 }
317 }
318
319 #define ELF_NREG 18
320 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
321
322 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
323 {
324 (*regs)[0] = tswapreg(env->regs[0]);
325 (*regs)[1] = tswapreg(env->regs[1]);
326 (*regs)[2] = tswapreg(env->regs[2]);
327 (*regs)[3] = tswapreg(env->regs[3]);
328 (*regs)[4] = tswapreg(env->regs[4]);
329 (*regs)[5] = tswapreg(env->regs[5]);
330 (*regs)[6] = tswapreg(env->regs[6]);
331 (*regs)[7] = tswapreg(env->regs[7]);
332 (*regs)[8] = tswapreg(env->regs[8]);
333 (*regs)[9] = tswapreg(env->regs[9]);
334 (*regs)[10] = tswapreg(env->regs[10]);
335 (*regs)[11] = tswapreg(env->regs[11]);
336 (*regs)[12] = tswapreg(env->regs[12]);
337 (*regs)[13] = tswapreg(env->regs[13]);
338 (*regs)[14] = tswapreg(env->regs[14]);
339 (*regs)[15] = tswapreg(env->regs[15]);
340
341 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
342 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
343 }
344
345 #define USE_ELF_CORE_DUMP
346 #define ELF_EXEC_PAGESIZE 4096
347
348 enum
349 {
350 ARM_HWCAP_ARM_SWP = 1 << 0,
351 ARM_HWCAP_ARM_HALF = 1 << 1,
352 ARM_HWCAP_ARM_THUMB = 1 << 2,
353 ARM_HWCAP_ARM_26BIT = 1 << 3,
354 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
355 ARM_HWCAP_ARM_FPA = 1 << 5,
356 ARM_HWCAP_ARM_VFP = 1 << 6,
357 ARM_HWCAP_ARM_EDSP = 1 << 7,
358 ARM_HWCAP_ARM_JAVA = 1 << 8,
359 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
360 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
361 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
362 ARM_HWCAP_ARM_NEON = 1 << 12,
363 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
364 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
365 ARM_HWCAP_ARM_TLS = 1 << 15,
366 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
367 ARM_HWCAP_ARM_IDIVA = 1 << 17,
368 ARM_HWCAP_ARM_IDIVT = 1 << 18,
369 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
370 ARM_HWCAP_ARM_LPAE = 1 << 20,
371 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
372 };
373
374 enum {
375 ARM_HWCAP2_ARM_AES = 1 << 0,
376 ARM_HWCAP2_ARM_PMULL = 1 << 1,
377 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
378 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
379 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
380 };
381
382 /* The commpage only exists for 32 bit kernels */
383
384 /* Return 1 if the proposed guest space is suitable for the guest.
385 * Return 0 if the proposed guest space isn't suitable, but another
386 * address space should be tried.
387 * Return -1 if there is no way the proposed guest space can be
388 * valid regardless of the base.
389 * The guest code may leave a page mapped and populate it if the
390 * address is suitable.
391 */
392 static int init_guest_commpage(unsigned long guest_base,
393 unsigned long guest_size)
394 {
395 unsigned long real_start, test_page_addr;
396
397 /* We need to check that we can force a fault on access to the
398 * commpage at 0xffff0fxx
399 */
400 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
401
402 /* If the commpage lies within the already allocated guest space,
403 * then there is no way we can allocate it.
404 *
405 * You may be thinking that that this check is redundant because
406 * we already validated the guest size against MAX_RESERVED_VA;
407 * but if qemu_host_page_mask is unusually large, then
408 * test_page_addr may be lower.
409 */
410 if (test_page_addr >= guest_base
411 && test_page_addr < (guest_base + guest_size)) {
412 return -1;
413 }
414
415 /* Note it needs to be writeable to let us initialise it */
416 real_start = (unsigned long)
417 mmap((void *)test_page_addr, qemu_host_page_size,
418 PROT_READ | PROT_WRITE,
419 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
420
421 /* If we can't map it then try another address */
422 if (real_start == -1ul) {
423 return 0;
424 }
425
426 if (real_start != test_page_addr) {
427 /* OS didn't put the page where we asked - unmap and reject */
428 munmap((void *)real_start, qemu_host_page_size);
429 return 0;
430 }
431
432 /* Leave the page mapped
433 * Populate it (mmap should have left it all 0'd)
434 */
435
436 /* Kernel helper versions */
437 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
438
439 /* Now it's populated make it RO */
440 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
441 perror("Protecting guest commpage");
442 exit(-1);
443 }
444
445 return 1; /* All good */
446 }
447
448 #define ELF_HWCAP get_elf_hwcap()
449 #define ELF_HWCAP2 get_elf_hwcap2()
450
451 static uint32_t get_elf_hwcap(void)
452 {
453 ARMCPU *cpu = ARM_CPU(thread_cpu);
454 uint32_t hwcaps = 0;
455
456 hwcaps |= ARM_HWCAP_ARM_SWP;
457 hwcaps |= ARM_HWCAP_ARM_HALF;
458 hwcaps |= ARM_HWCAP_ARM_THUMB;
459 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
460
461 /* probe for the extra features */
462 #define GET_FEATURE(feat, hwcap) \
463 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
464
465 #define GET_FEATURE_ID(feat, hwcap) \
466 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
467
468 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
469 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
470 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
471 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
472 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
473 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
474 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
475 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
476 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
477 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
478 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
479 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
480 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
481 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
482 * to our VFP_FP16 feature bit.
483 */
484 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
485 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
486
487 return hwcaps;
488 }
489
490 static uint32_t get_elf_hwcap2(void)
491 {
492 ARMCPU *cpu = ARM_CPU(thread_cpu);
493 uint32_t hwcaps = 0;
494
495 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
496 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
497 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
498 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
499 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
500 return hwcaps;
501 }
502
503 #undef GET_FEATURE
504 #undef GET_FEATURE_ID
505
506 #define ELF_PLATFORM get_elf_platform()
507
508 static const char *get_elf_platform(void)
509 {
510 CPUARMState *env = thread_cpu->env_ptr;
511
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define END "b"
514 #else
515 # define END "l"
516 #endif
517
518 if (arm_feature(env, ARM_FEATURE_V8)) {
519 return "v8" END;
520 } else if (arm_feature(env, ARM_FEATURE_V7)) {
521 if (arm_feature(env, ARM_FEATURE_M)) {
522 return "v7m" END;
523 } else {
524 return "v7" END;
525 }
526 } else if (arm_feature(env, ARM_FEATURE_V6)) {
527 return "v6" END;
528 } else if (arm_feature(env, ARM_FEATURE_V5)) {
529 return "v5" END;
530 } else {
531 return "v4" END;
532 }
533
534 #undef END
535 }
536
537 #else
538 /* 64 bit ARM definitions */
539 #define ELF_START_MMAP 0x80000000
540
541 #define ELF_ARCH EM_AARCH64
542 #define ELF_CLASS ELFCLASS64
543 #ifdef TARGET_WORDS_BIGENDIAN
544 # define ELF_PLATFORM "aarch64_be"
545 #else
546 # define ELF_PLATFORM "aarch64"
547 #endif
548
549 static inline void init_thread(struct target_pt_regs *regs,
550 struct image_info *infop)
551 {
552 abi_long stack = infop->start_stack;
553 memset(regs, 0, sizeof(*regs));
554
555 regs->pc = infop->entry & ~0x3ULL;
556 regs->sp = stack;
557 }
558
559 #define ELF_NREG 34
560 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
561
562 static void elf_core_copy_regs(target_elf_gregset_t *regs,
563 const CPUARMState *env)
564 {
565 int i;
566
567 for (i = 0; i < 32; i++) {
568 (*regs)[i] = tswapreg(env->xregs[i]);
569 }
570 (*regs)[32] = tswapreg(env->pc);
571 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
572 }
573
574 #define USE_ELF_CORE_DUMP
575 #define ELF_EXEC_PAGESIZE 4096
576
577 enum {
578 ARM_HWCAP_A64_FP = 1 << 0,
579 ARM_HWCAP_A64_ASIMD = 1 << 1,
580 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
581 ARM_HWCAP_A64_AES = 1 << 3,
582 ARM_HWCAP_A64_PMULL = 1 << 4,
583 ARM_HWCAP_A64_SHA1 = 1 << 5,
584 ARM_HWCAP_A64_SHA2 = 1 << 6,
585 ARM_HWCAP_A64_CRC32 = 1 << 7,
586 ARM_HWCAP_A64_ATOMICS = 1 << 8,
587 ARM_HWCAP_A64_FPHP = 1 << 9,
588 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
589 ARM_HWCAP_A64_CPUID = 1 << 11,
590 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
591 ARM_HWCAP_A64_JSCVT = 1 << 13,
592 ARM_HWCAP_A64_FCMA = 1 << 14,
593 ARM_HWCAP_A64_LRCPC = 1 << 15,
594 ARM_HWCAP_A64_DCPOP = 1 << 16,
595 ARM_HWCAP_A64_SHA3 = 1 << 17,
596 ARM_HWCAP_A64_SM3 = 1 << 18,
597 ARM_HWCAP_A64_SM4 = 1 << 19,
598 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
599 ARM_HWCAP_A64_SHA512 = 1 << 21,
600 ARM_HWCAP_A64_SVE = 1 << 22,
601 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
602 ARM_HWCAP_A64_DIT = 1 << 24,
603 ARM_HWCAP_A64_USCAT = 1 << 25,
604 ARM_HWCAP_A64_ILRCPC = 1 << 26,
605 ARM_HWCAP_A64_FLAGM = 1 << 27,
606 ARM_HWCAP_A64_SSBS = 1 << 28,
607 ARM_HWCAP_A64_SB = 1 << 29,
608 ARM_HWCAP_A64_PACA = 1 << 30,
609 ARM_HWCAP_A64_PACG = 1UL << 31,
610
611 ARM_HWCAP2_A64_DCPODP = 1 << 0,
612 ARM_HWCAP2_A64_SVE2 = 1 << 1,
613 ARM_HWCAP2_A64_SVEAES = 1 << 2,
614 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
615 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
616 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
617 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
618 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
619 ARM_HWCAP2_A64_FRINT = 1 << 8,
620 };
621
622 #define ELF_HWCAP get_elf_hwcap()
623 #define ELF_HWCAP2 get_elf_hwcap2()
624
625 #define GET_FEATURE_ID(feat, hwcap) \
626 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
627
628 static uint32_t get_elf_hwcap(void)
629 {
630 ARMCPU *cpu = ARM_CPU(thread_cpu);
631 uint32_t hwcaps = 0;
632
633 hwcaps |= ARM_HWCAP_A64_FP;
634 hwcaps |= ARM_HWCAP_A64_ASIMD;
635 hwcaps |= ARM_HWCAP_A64_CPUID;
636
637 /* probe for the extra features */
638
639 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
640 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
641 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
642 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
643 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
644 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
645 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
646 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
647 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
648 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
649 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
650 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
651 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
652 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
653 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
654 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
655 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
656 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
657 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
658 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
659 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
660
661 return hwcaps;
662 }
663
664 static uint32_t get_elf_hwcap2(void)
665 {
666 ARMCPU *cpu = ARM_CPU(thread_cpu);
667 uint32_t hwcaps = 0;
668
669 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
670 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
671 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
672
673 return hwcaps;
674 }
675
676 #undef GET_FEATURE_ID
677
678 #endif /* not TARGET_AARCH64 */
679 #endif /* TARGET_ARM */
680
681 #ifdef TARGET_SPARC
682 #ifdef TARGET_SPARC64
683
684 #define ELF_START_MMAP 0x80000000
685 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
686 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
687 #ifndef TARGET_ABI32
688 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
689 #else
690 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
691 #endif
692
693 #define ELF_CLASS ELFCLASS64
694 #define ELF_ARCH EM_SPARCV9
695
696 #define STACK_BIAS 2047
697
698 static inline void init_thread(struct target_pt_regs *regs,
699 struct image_info *infop)
700 {
701 #ifndef TARGET_ABI32
702 regs->tstate = 0;
703 #endif
704 regs->pc = infop->entry;
705 regs->npc = regs->pc + 4;
706 regs->y = 0;
707 #ifdef TARGET_ABI32
708 regs->u_regs[14] = infop->start_stack - 16 * 4;
709 #else
710 if (personality(infop->personality) == PER_LINUX32)
711 regs->u_regs[14] = infop->start_stack - 16 * 4;
712 else
713 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
714 #endif
715 }
716
717 #else
718 #define ELF_START_MMAP 0x80000000
719 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
720 | HWCAP_SPARC_MULDIV)
721
722 #define ELF_CLASS ELFCLASS32
723 #define ELF_ARCH EM_SPARC
724
725 static inline void init_thread(struct target_pt_regs *regs,
726 struct image_info *infop)
727 {
728 regs->psr = 0;
729 regs->pc = infop->entry;
730 regs->npc = regs->pc + 4;
731 regs->y = 0;
732 regs->u_regs[14] = infop->start_stack - 16 * 4;
733 }
734
735 #endif
736 #endif
737
738 #ifdef TARGET_PPC
739
740 #define ELF_MACHINE PPC_ELF_MACHINE
741 #define ELF_START_MMAP 0x80000000
742
743 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
744
745 #define elf_check_arch(x) ( (x) == EM_PPC64 )
746
747 #define ELF_CLASS ELFCLASS64
748
749 #else
750
751 #define ELF_CLASS ELFCLASS32
752
753 #endif
754
755 #define ELF_ARCH EM_PPC
756
757 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
758 See arch/powerpc/include/asm/cputable.h. */
759 enum {
760 QEMU_PPC_FEATURE_32 = 0x80000000,
761 QEMU_PPC_FEATURE_64 = 0x40000000,
762 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
763 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
764 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
765 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
766 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
767 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
768 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
769 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
770 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
771 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
772 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
773 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
774 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
775 QEMU_PPC_FEATURE_CELL = 0x00010000,
776 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
777 QEMU_PPC_FEATURE_SMT = 0x00004000,
778 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
779 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
780 QEMU_PPC_FEATURE_PA6T = 0x00000800,
781 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
782 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
783 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
784 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
785 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
786
787 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
788 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
789
790 /* Feature definitions in AT_HWCAP2. */
791 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
792 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
793 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
794 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
795 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
796 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
797 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
798 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
799 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
800 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
801 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
802 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
803 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
804 };
805
806 #define ELF_HWCAP get_elf_hwcap()
807
808 static uint32_t get_elf_hwcap(void)
809 {
810 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
811 uint32_t features = 0;
812
813 /* We don't have to be terribly complete here; the high points are
814 Altivec/FP/SPE support. Anything else is just a bonus. */
815 #define GET_FEATURE(flag, feature) \
816 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
817 #define GET_FEATURE2(flags, feature) \
818 do { \
819 if ((cpu->env.insns_flags2 & flags) == flags) { \
820 features |= feature; \
821 } \
822 } while (0)
823 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
824 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
825 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
826 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
827 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
828 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
829 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
830 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
831 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
832 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
833 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
834 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
835 QEMU_PPC_FEATURE_ARCH_2_06);
836 #undef GET_FEATURE
837 #undef GET_FEATURE2
838
839 return features;
840 }
841
842 #define ELF_HWCAP2 get_elf_hwcap2()
843
844 static uint32_t get_elf_hwcap2(void)
845 {
846 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
847 uint32_t features = 0;
848
849 #define GET_FEATURE(flag, feature) \
850 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
851 #define GET_FEATURE2(flag, feature) \
852 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
853
854 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
855 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
856 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
857 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
858 QEMU_PPC_FEATURE2_VEC_CRYPTO);
859 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
860 QEMU_PPC_FEATURE2_DARN);
861
862 #undef GET_FEATURE
863 #undef GET_FEATURE2
864
865 return features;
866 }
867
868 /*
869 * The requirements here are:
870 * - keep the final alignment of sp (sp & 0xf)
871 * - make sure the 32-bit value at the first 16 byte aligned position of
872 * AUXV is greater than 16 for glibc compatibility.
873 * AT_IGNOREPPC is used for that.
874 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
875 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
876 */
877 #define DLINFO_ARCH_ITEMS 5
878 #define ARCH_DLINFO \
879 do { \
880 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
881 /* \
882 * Handle glibc compatibility: these magic entries must \
883 * be at the lowest addresses in the final auxv. \
884 */ \
885 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
886 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
887 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
888 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
889 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
890 } while (0)
891
892 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
893 {
894 _regs->gpr[1] = infop->start_stack;
895 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
896 if (get_ppc64_abi(infop) < 2) {
897 uint64_t val;
898 get_user_u64(val, infop->entry + 8);
899 _regs->gpr[2] = val + infop->load_bias;
900 get_user_u64(val, infop->entry);
901 infop->entry = val + infop->load_bias;
902 } else {
903 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
904 }
905 #endif
906 _regs->nip = infop->entry;
907 }
908
909 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
910 #define ELF_NREG 48
911 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
912
913 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
914 {
915 int i;
916 target_ulong ccr = 0;
917
918 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
919 (*regs)[i] = tswapreg(env->gpr[i]);
920 }
921
922 (*regs)[32] = tswapreg(env->nip);
923 (*regs)[33] = tswapreg(env->msr);
924 (*regs)[35] = tswapreg(env->ctr);
925 (*regs)[36] = tswapreg(env->lr);
926 (*regs)[37] = tswapreg(env->xer);
927
928 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
929 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
930 }
931 (*regs)[38] = tswapreg(ccr);
932 }
933
934 #define USE_ELF_CORE_DUMP
935 #define ELF_EXEC_PAGESIZE 4096
936
937 #endif
938
939 #ifdef TARGET_MIPS
940
941 #define ELF_START_MMAP 0x80000000
942
943 #ifdef TARGET_MIPS64
944 #define ELF_CLASS ELFCLASS64
945 #else
946 #define ELF_CLASS ELFCLASS32
947 #endif
948 #define ELF_ARCH EM_MIPS
949
950 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
951
952 static inline void init_thread(struct target_pt_regs *regs,
953 struct image_info *infop)
954 {
955 regs->cp0_status = 2 << CP0St_KSU;
956 regs->cp0_epc = infop->entry;
957 regs->regs[29] = infop->start_stack;
958 }
959
960 /* See linux kernel: arch/mips/include/asm/elf.h. */
961 #define ELF_NREG 45
962 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
963
964 /* See linux kernel: arch/mips/include/asm/reg.h. */
965 enum {
966 #ifdef TARGET_MIPS64
967 TARGET_EF_R0 = 0,
968 #else
969 TARGET_EF_R0 = 6,
970 #endif
971 TARGET_EF_R26 = TARGET_EF_R0 + 26,
972 TARGET_EF_R27 = TARGET_EF_R0 + 27,
973 TARGET_EF_LO = TARGET_EF_R0 + 32,
974 TARGET_EF_HI = TARGET_EF_R0 + 33,
975 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
976 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
977 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
978 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
979 };
980
981 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
982 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
983 {
984 int i;
985
986 for (i = 0; i < TARGET_EF_R0; i++) {
987 (*regs)[i] = 0;
988 }
989 (*regs)[TARGET_EF_R0] = 0;
990
991 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
992 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
993 }
994
995 (*regs)[TARGET_EF_R26] = 0;
996 (*regs)[TARGET_EF_R27] = 0;
997 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
998 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
999 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1000 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1001 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1002 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1003 }
1004
1005 #define USE_ELF_CORE_DUMP
1006 #define ELF_EXEC_PAGESIZE 4096
1007
1008 /* See arch/mips/include/uapi/asm/hwcap.h. */
1009 enum {
1010 HWCAP_MIPS_R6 = (1 << 0),
1011 HWCAP_MIPS_MSA = (1 << 1),
1012 };
1013
1014 #define ELF_HWCAP get_elf_hwcap()
1015
1016 static uint32_t get_elf_hwcap(void)
1017 {
1018 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1019 uint32_t hwcaps = 0;
1020
1021 #define GET_FEATURE(flag, hwcap) \
1022 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
1023
1024 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
1025 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1026
1027 #undef GET_FEATURE
1028
1029 return hwcaps;
1030 }
1031
1032 #endif /* TARGET_MIPS */
1033
1034 #ifdef TARGET_MICROBLAZE
1035
1036 #define ELF_START_MMAP 0x80000000
1037
1038 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1039
1040 #define ELF_CLASS ELFCLASS32
1041 #define ELF_ARCH EM_MICROBLAZE
1042
1043 static inline void init_thread(struct target_pt_regs *regs,
1044 struct image_info *infop)
1045 {
1046 regs->pc = infop->entry;
1047 regs->r1 = infop->start_stack;
1048
1049 }
1050
1051 #define ELF_EXEC_PAGESIZE 4096
1052
1053 #define USE_ELF_CORE_DUMP
1054 #define ELF_NREG 38
1055 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1056
1057 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1058 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1059 {
1060 int i, pos = 0;
1061
1062 for (i = 0; i < 32; i++) {
1063 (*regs)[pos++] = tswapreg(env->regs[i]);
1064 }
1065
1066 for (i = 0; i < 6; i++) {
1067 (*regs)[pos++] = tswapreg(env->sregs[i]);
1068 }
1069 }
1070
1071 #endif /* TARGET_MICROBLAZE */
1072
1073 #ifdef TARGET_NIOS2
1074
1075 #define ELF_START_MMAP 0x80000000
1076
1077 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1078
1079 #define ELF_CLASS ELFCLASS32
1080 #define ELF_ARCH EM_ALTERA_NIOS2
1081
1082 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1083 {
1084 regs->ea = infop->entry;
1085 regs->sp = infop->start_stack;
1086 regs->estatus = 0x3;
1087 }
1088
1089 #define ELF_EXEC_PAGESIZE 4096
1090
1091 #define USE_ELF_CORE_DUMP
1092 #define ELF_NREG 49
1093 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1094
1095 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1096 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1097 const CPUNios2State *env)
1098 {
1099 int i;
1100
1101 (*regs)[0] = -1;
1102 for (i = 1; i < 8; i++) /* r0-r7 */
1103 (*regs)[i] = tswapreg(env->regs[i + 7]);
1104
1105 for (i = 8; i < 16; i++) /* r8-r15 */
1106 (*regs)[i] = tswapreg(env->regs[i - 8]);
1107
1108 for (i = 16; i < 24; i++) /* r16-r23 */
1109 (*regs)[i] = tswapreg(env->regs[i + 7]);
1110 (*regs)[24] = -1; /* R_ET */
1111 (*regs)[25] = -1; /* R_BT */
1112 (*regs)[26] = tswapreg(env->regs[R_GP]);
1113 (*regs)[27] = tswapreg(env->regs[R_SP]);
1114 (*regs)[28] = tswapreg(env->regs[R_FP]);
1115 (*regs)[29] = tswapreg(env->regs[R_EA]);
1116 (*regs)[30] = -1; /* R_SSTATUS */
1117 (*regs)[31] = tswapreg(env->regs[R_RA]);
1118
1119 (*regs)[32] = tswapreg(env->regs[R_PC]);
1120
1121 (*regs)[33] = -1; /* R_STATUS */
1122 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1123
1124 for (i = 35; i < 49; i++) /* ... */
1125 (*regs)[i] = -1;
1126 }
1127
1128 #endif /* TARGET_NIOS2 */
1129
1130 #ifdef TARGET_OPENRISC
1131
1132 #define ELF_START_MMAP 0x08000000
1133
1134 #define ELF_ARCH EM_OPENRISC
1135 #define ELF_CLASS ELFCLASS32
1136 #define ELF_DATA ELFDATA2MSB
1137
1138 static inline void init_thread(struct target_pt_regs *regs,
1139 struct image_info *infop)
1140 {
1141 regs->pc = infop->entry;
1142 regs->gpr[1] = infop->start_stack;
1143 }
1144
1145 #define USE_ELF_CORE_DUMP
1146 #define ELF_EXEC_PAGESIZE 8192
1147
1148 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1149 #define ELF_NREG 34 /* gprs and pc, sr */
1150 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1151
1152 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1153 const CPUOpenRISCState *env)
1154 {
1155 int i;
1156
1157 for (i = 0; i < 32; i++) {
1158 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1159 }
1160 (*regs)[32] = tswapreg(env->pc);
1161 (*regs)[33] = tswapreg(cpu_get_sr(env));
1162 }
1163 #define ELF_HWCAP 0
1164 #define ELF_PLATFORM NULL
1165
1166 #endif /* TARGET_OPENRISC */
1167
1168 #ifdef TARGET_SH4
1169
1170 #define ELF_START_MMAP 0x80000000
1171
1172 #define ELF_CLASS ELFCLASS32
1173 #define ELF_ARCH EM_SH
1174
1175 static inline void init_thread(struct target_pt_regs *regs,
1176 struct image_info *infop)
1177 {
1178 /* Check other registers XXXXX */
1179 regs->pc = infop->entry;
1180 regs->regs[15] = infop->start_stack;
1181 }
1182
1183 /* See linux kernel: arch/sh/include/asm/elf.h. */
1184 #define ELF_NREG 23
1185 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1186
1187 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1188 enum {
1189 TARGET_REG_PC = 16,
1190 TARGET_REG_PR = 17,
1191 TARGET_REG_SR = 18,
1192 TARGET_REG_GBR = 19,
1193 TARGET_REG_MACH = 20,
1194 TARGET_REG_MACL = 21,
1195 TARGET_REG_SYSCALL = 22
1196 };
1197
1198 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1199 const CPUSH4State *env)
1200 {
1201 int i;
1202
1203 for (i = 0; i < 16; i++) {
1204 (*regs)[i] = tswapreg(env->gregs[i]);
1205 }
1206
1207 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1208 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1209 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1210 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1211 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1212 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1213 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1214 }
1215
1216 #define USE_ELF_CORE_DUMP
1217 #define ELF_EXEC_PAGESIZE 4096
1218
1219 enum {
1220 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1221 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1222 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1223 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1224 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1225 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1226 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1227 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1228 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1229 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1230 };
1231
1232 #define ELF_HWCAP get_elf_hwcap()
1233
1234 static uint32_t get_elf_hwcap(void)
1235 {
1236 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1237 uint32_t hwcap = 0;
1238
1239 hwcap |= SH_CPU_HAS_FPU;
1240
1241 if (cpu->env.features & SH_FEATURE_SH4A) {
1242 hwcap |= SH_CPU_HAS_LLSC;
1243 }
1244
1245 return hwcap;
1246 }
1247
1248 #endif
1249
1250 #ifdef TARGET_CRIS
1251
1252 #define ELF_START_MMAP 0x80000000
1253
1254 #define ELF_CLASS ELFCLASS32
1255 #define ELF_ARCH EM_CRIS
1256
1257 static inline void init_thread(struct target_pt_regs *regs,
1258 struct image_info *infop)
1259 {
1260 regs->erp = infop->entry;
1261 }
1262
1263 #define ELF_EXEC_PAGESIZE 8192
1264
1265 #endif
1266
1267 #ifdef TARGET_M68K
1268
1269 #define ELF_START_MMAP 0x80000000
1270
1271 #define ELF_CLASS ELFCLASS32
1272 #define ELF_ARCH EM_68K
1273
1274 /* ??? Does this need to do anything?
1275 #define ELF_PLAT_INIT(_r) */
1276
1277 static inline void init_thread(struct target_pt_regs *regs,
1278 struct image_info *infop)
1279 {
1280 regs->usp = infop->start_stack;
1281 regs->sr = 0;
1282 regs->pc = infop->entry;
1283 }
1284
1285 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1286 #define ELF_NREG 20
1287 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1288
1289 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1290 {
1291 (*regs)[0] = tswapreg(env->dregs[1]);
1292 (*regs)[1] = tswapreg(env->dregs[2]);
1293 (*regs)[2] = tswapreg(env->dregs[3]);
1294 (*regs)[3] = tswapreg(env->dregs[4]);
1295 (*regs)[4] = tswapreg(env->dregs[5]);
1296 (*regs)[5] = tswapreg(env->dregs[6]);
1297 (*regs)[6] = tswapreg(env->dregs[7]);
1298 (*regs)[7] = tswapreg(env->aregs[0]);
1299 (*regs)[8] = tswapreg(env->aregs[1]);
1300 (*regs)[9] = tswapreg(env->aregs[2]);
1301 (*regs)[10] = tswapreg(env->aregs[3]);
1302 (*regs)[11] = tswapreg(env->aregs[4]);
1303 (*regs)[12] = tswapreg(env->aregs[5]);
1304 (*regs)[13] = tswapreg(env->aregs[6]);
1305 (*regs)[14] = tswapreg(env->dregs[0]);
1306 (*regs)[15] = tswapreg(env->aregs[7]);
1307 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1308 (*regs)[17] = tswapreg(env->sr);
1309 (*regs)[18] = tswapreg(env->pc);
1310 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1311 }
1312
1313 #define USE_ELF_CORE_DUMP
1314 #define ELF_EXEC_PAGESIZE 8192
1315
1316 #endif
1317
1318 #ifdef TARGET_ALPHA
1319
1320 #define ELF_START_MMAP (0x30000000000ULL)
1321
1322 #define ELF_CLASS ELFCLASS64
1323 #define ELF_ARCH EM_ALPHA
1324
1325 static inline void init_thread(struct target_pt_regs *regs,
1326 struct image_info *infop)
1327 {
1328 regs->pc = infop->entry;
1329 regs->ps = 8;
1330 regs->usp = infop->start_stack;
1331 }
1332
1333 #define ELF_EXEC_PAGESIZE 8192
1334
1335 #endif /* TARGET_ALPHA */
1336
1337 #ifdef TARGET_S390X
1338
1339 #define ELF_START_MMAP (0x20000000000ULL)
1340
1341 #define ELF_CLASS ELFCLASS64
1342 #define ELF_DATA ELFDATA2MSB
1343 #define ELF_ARCH EM_S390
1344
1345 #include "elf.h"
1346
1347 #define ELF_HWCAP get_elf_hwcap()
1348
1349 #define GET_FEATURE(_feat, _hwcap) \
1350 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1351
1352 static uint32_t get_elf_hwcap(void)
1353 {
1354 /*
1355 * Let's assume we always have esan3 and zarch.
1356 * 31-bit processes can use 64-bit registers (high gprs).
1357 */
1358 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1359
1360 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1361 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1362 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1363 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1364 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1365 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1366 hwcap |= HWCAP_S390_ETF3EH;
1367 }
1368 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1369
1370 return hwcap;
1371 }
1372
1373 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1374 {
1375 regs->psw.addr = infop->entry;
1376 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1377 regs->gprs[15] = infop->start_stack;
1378 }
1379
1380 #endif /* TARGET_S390X */
1381
1382 #ifdef TARGET_TILEGX
1383
1384 /* 42 bits real used address, a half for user mode */
1385 #define ELF_START_MMAP (0x00000020000000000ULL)
1386
1387 #define elf_check_arch(x) ((x) == EM_TILEGX)
1388
1389 #define ELF_CLASS ELFCLASS64
1390 #define ELF_DATA ELFDATA2LSB
1391 #define ELF_ARCH EM_TILEGX
1392
1393 static inline void init_thread(struct target_pt_regs *regs,
1394 struct image_info *infop)
1395 {
1396 regs->pc = infop->entry;
1397 regs->sp = infop->start_stack;
1398
1399 }
1400
1401 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1402
1403 #endif /* TARGET_TILEGX */
1404
1405 #ifdef TARGET_RISCV
1406
1407 #define ELF_START_MMAP 0x80000000
1408 #define ELF_ARCH EM_RISCV
1409
1410 #ifdef TARGET_RISCV32
1411 #define ELF_CLASS ELFCLASS32
1412 #else
1413 #define ELF_CLASS ELFCLASS64
1414 #endif
1415
1416 static inline void init_thread(struct target_pt_regs *regs,
1417 struct image_info *infop)
1418 {
1419 regs->sepc = infop->entry;
1420 regs->sp = infop->start_stack;
1421 }
1422
1423 #define ELF_EXEC_PAGESIZE 4096
1424
1425 #endif /* TARGET_RISCV */
1426
1427 #ifdef TARGET_HPPA
1428
1429 #define ELF_START_MMAP 0x80000000
1430 #define ELF_CLASS ELFCLASS32
1431 #define ELF_ARCH EM_PARISC
1432 #define ELF_PLATFORM "PARISC"
1433 #define STACK_GROWS_DOWN 0
1434 #define STACK_ALIGNMENT 64
1435
1436 static inline void init_thread(struct target_pt_regs *regs,
1437 struct image_info *infop)
1438 {
1439 regs->iaoq[0] = infop->entry;
1440 regs->iaoq[1] = infop->entry + 4;
1441 regs->gr[23] = 0;
1442 regs->gr[24] = infop->arg_start;
1443 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1444 /* The top-of-stack contains a linkage buffer. */
1445 regs->gr[30] = infop->start_stack + 64;
1446 regs->gr[31] = infop->entry;
1447 }
1448
1449 #endif /* TARGET_HPPA */
1450
1451 #ifdef TARGET_XTENSA
1452
1453 #define ELF_START_MMAP 0x20000000
1454
1455 #define ELF_CLASS ELFCLASS32
1456 #define ELF_ARCH EM_XTENSA
1457
1458 static inline void init_thread(struct target_pt_regs *regs,
1459 struct image_info *infop)
1460 {
1461 regs->windowbase = 0;
1462 regs->windowstart = 1;
1463 regs->areg[1] = infop->start_stack;
1464 regs->pc = infop->entry;
1465 }
1466
1467 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1468 #define ELF_NREG 128
1469 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1470
1471 enum {
1472 TARGET_REG_PC,
1473 TARGET_REG_PS,
1474 TARGET_REG_LBEG,
1475 TARGET_REG_LEND,
1476 TARGET_REG_LCOUNT,
1477 TARGET_REG_SAR,
1478 TARGET_REG_WINDOWSTART,
1479 TARGET_REG_WINDOWBASE,
1480 TARGET_REG_THREADPTR,
1481 TARGET_REG_AR0 = 64,
1482 };
1483
1484 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1485 const CPUXtensaState *env)
1486 {
1487 unsigned i;
1488
1489 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1490 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1491 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1492 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1493 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1494 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1495 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1496 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1497 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1498 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1499 for (i = 0; i < env->config->nareg; ++i) {
1500 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1501 }
1502 }
1503
1504 #define USE_ELF_CORE_DUMP
1505 #define ELF_EXEC_PAGESIZE 4096
1506
1507 #endif /* TARGET_XTENSA */
1508
1509 #ifndef ELF_PLATFORM
1510 #define ELF_PLATFORM (NULL)
1511 #endif
1512
1513 #ifndef ELF_MACHINE
1514 #define ELF_MACHINE ELF_ARCH
1515 #endif
1516
1517 #ifndef elf_check_arch
1518 #define elf_check_arch(x) ((x) == ELF_ARCH)
1519 #endif
1520
1521 #ifndef ELF_HWCAP
1522 #define ELF_HWCAP 0
1523 #endif
1524
1525 #ifndef STACK_GROWS_DOWN
1526 #define STACK_GROWS_DOWN 1
1527 #endif
1528
1529 #ifndef STACK_ALIGNMENT
1530 #define STACK_ALIGNMENT 16
1531 #endif
1532
1533 #ifdef TARGET_ABI32
1534 #undef ELF_CLASS
1535 #define ELF_CLASS ELFCLASS32
1536 #undef bswaptls
1537 #define bswaptls(ptr) bswap32s(ptr)
1538 #endif
1539
1540 #include "elf.h"
1541
1542 struct exec
1543 {
1544 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1545 unsigned int a_text; /* length of text, in bytes */
1546 unsigned int a_data; /* length of data, in bytes */
1547 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1548 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1549 unsigned int a_entry; /* start address */
1550 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1551 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1552 };
1553
1554
1555 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1556 #define OMAGIC 0407
1557 #define NMAGIC 0410
1558 #define ZMAGIC 0413
1559 #define QMAGIC 0314
1560
1561 /* Necessary parameters */
1562 #define TARGET_ELF_EXEC_PAGESIZE \
1563 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1564 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1565 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1566 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1567 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1568 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1569
1570 #define DLINFO_ITEMS 15
1571
1572 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1573 {
1574 memcpy(to, from, n);
1575 }
1576
1577 #ifdef BSWAP_NEEDED
1578 static void bswap_ehdr(struct elfhdr *ehdr)
1579 {
1580 bswap16s(&ehdr->e_type); /* Object file type */
1581 bswap16s(&ehdr->e_machine); /* Architecture */
1582 bswap32s(&ehdr->e_version); /* Object file version */
1583 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1584 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1585 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1586 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1587 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1588 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1589 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1590 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1591 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1592 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1593 }
1594
1595 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1596 {
1597 int i;
1598 for (i = 0; i < phnum; ++i, ++phdr) {
1599 bswap32s(&phdr->p_type); /* Segment type */
1600 bswap32s(&phdr->p_flags); /* Segment flags */
1601 bswaptls(&phdr->p_offset); /* Segment file offset */
1602 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1603 bswaptls(&phdr->p_paddr); /* Segment physical address */
1604 bswaptls(&phdr->p_filesz); /* Segment size in file */
1605 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1606 bswaptls(&phdr->p_align); /* Segment alignment */
1607 }
1608 }
1609
1610 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1611 {
1612 int i;
1613 for (i = 0; i < shnum; ++i, ++shdr) {
1614 bswap32s(&shdr->sh_name);
1615 bswap32s(&shdr->sh_type);
1616 bswaptls(&shdr->sh_flags);
1617 bswaptls(&shdr->sh_addr);
1618 bswaptls(&shdr->sh_offset);
1619 bswaptls(&shdr->sh_size);
1620 bswap32s(&shdr->sh_link);
1621 bswap32s(&shdr->sh_info);
1622 bswaptls(&shdr->sh_addralign);
1623 bswaptls(&shdr->sh_entsize);
1624 }
1625 }
1626
1627 static void bswap_sym(struct elf_sym *sym)
1628 {
1629 bswap32s(&sym->st_name);
1630 bswaptls(&sym->st_value);
1631 bswaptls(&sym->st_size);
1632 bswap16s(&sym->st_shndx);
1633 }
1634
1635 #ifdef TARGET_MIPS
1636 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1637 {
1638 bswap16s(&abiflags->version);
1639 bswap32s(&abiflags->ases);
1640 bswap32s(&abiflags->isa_ext);
1641 bswap32s(&abiflags->flags1);
1642 bswap32s(&abiflags->flags2);
1643 }
1644 #endif
1645 #else
1646 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1647 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1648 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1649 static inline void bswap_sym(struct elf_sym *sym) { }
1650 #ifdef TARGET_MIPS
1651 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1652 #endif
1653 #endif
1654
1655 #ifdef USE_ELF_CORE_DUMP
1656 static int elf_core_dump(int, const CPUArchState *);
1657 #endif /* USE_ELF_CORE_DUMP */
1658 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1659
1660 /* Verify the portions of EHDR within E_IDENT for the target.
1661 This can be performed before bswapping the entire header. */
1662 static bool elf_check_ident(struct elfhdr *ehdr)
1663 {
1664 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1665 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1666 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1667 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1668 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1669 && ehdr->e_ident[EI_DATA] == ELF_DATA
1670 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1671 }
1672
1673 /* Verify the portions of EHDR outside of E_IDENT for the target.
1674 This has to wait until after bswapping the header. */
1675 static bool elf_check_ehdr(struct elfhdr *ehdr)
1676 {
1677 return (elf_check_arch(ehdr->e_machine)
1678 && ehdr->e_ehsize == sizeof(struct elfhdr)
1679 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1680 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1681 }
1682
1683 /*
1684 * 'copy_elf_strings()' copies argument/envelope strings from user
1685 * memory to free pages in kernel mem. These are in a format ready
1686 * to be put directly into the top of new user memory.
1687 *
1688 */
1689 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1690 abi_ulong p, abi_ulong stack_limit)
1691 {
1692 char *tmp;
1693 int len, i;
1694 abi_ulong top = p;
1695
1696 if (!p) {
1697 return 0; /* bullet-proofing */
1698 }
1699
1700 if (STACK_GROWS_DOWN) {
1701 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1702 for (i = argc - 1; i >= 0; --i) {
1703 tmp = argv[i];
1704 if (!tmp) {
1705 fprintf(stderr, "VFS: argc is wrong");
1706 exit(-1);
1707 }
1708 len = strlen(tmp) + 1;
1709 tmp += len;
1710
1711 if (len > (p - stack_limit)) {
1712 return 0;
1713 }
1714 while (len) {
1715 int bytes_to_copy = (len > offset) ? offset : len;
1716 tmp -= bytes_to_copy;
1717 p -= bytes_to_copy;
1718 offset -= bytes_to_copy;
1719 len -= bytes_to_copy;
1720
1721 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1722
1723 if (offset == 0) {
1724 memcpy_to_target(p, scratch, top - p);
1725 top = p;
1726 offset = TARGET_PAGE_SIZE;
1727 }
1728 }
1729 }
1730 if (p != top) {
1731 memcpy_to_target(p, scratch + offset, top - p);
1732 }
1733 } else {
1734 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1735 for (i = 0; i < argc; ++i) {
1736 tmp = argv[i];
1737 if (!tmp) {
1738 fprintf(stderr, "VFS: argc is wrong");
1739 exit(-1);
1740 }
1741 len = strlen(tmp) + 1;
1742 if (len > (stack_limit - p)) {
1743 return 0;
1744 }
1745 while (len) {
1746 int bytes_to_copy = (len > remaining) ? remaining : len;
1747
1748 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1749
1750 tmp += bytes_to_copy;
1751 remaining -= bytes_to_copy;
1752 p += bytes_to_copy;
1753 len -= bytes_to_copy;
1754
1755 if (remaining == 0) {
1756 memcpy_to_target(top, scratch, p - top);
1757 top = p;
1758 remaining = TARGET_PAGE_SIZE;
1759 }
1760 }
1761 }
1762 if (p != top) {
1763 memcpy_to_target(top, scratch, p - top);
1764 }
1765 }
1766
1767 return p;
1768 }
1769
1770 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1771 * argument/environment space. Newer kernels (>2.6.33) allow more,
1772 * dependent on stack size, but guarantee at least 32 pages for
1773 * backwards compatibility.
1774 */
1775 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1776
1777 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1778 struct image_info *info)
1779 {
1780 abi_ulong size, error, guard;
1781
1782 size = guest_stack_size;
1783 if (size < STACK_LOWER_LIMIT) {
1784 size = STACK_LOWER_LIMIT;
1785 }
1786 guard = TARGET_PAGE_SIZE;
1787 if (guard < qemu_real_host_page_size) {
1788 guard = qemu_real_host_page_size;
1789 }
1790
1791 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1792 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1793 if (error == -1) {
1794 perror("mmap stack");
1795 exit(-1);
1796 }
1797
1798 /* We reserve one extra page at the top of the stack as guard. */
1799 if (STACK_GROWS_DOWN) {
1800 target_mprotect(error, guard, PROT_NONE);
1801 info->stack_limit = error + guard;
1802 return info->stack_limit + size - sizeof(void *);
1803 } else {
1804 target_mprotect(error + size, guard, PROT_NONE);
1805 info->stack_limit = error + size;
1806 return error;
1807 }
1808 }
1809
1810 /* Map and zero the bss. We need to explicitly zero any fractional pages
1811 after the data section (i.e. bss). */
1812 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1813 {
1814 uintptr_t host_start, host_map_start, host_end;
1815
1816 last_bss = TARGET_PAGE_ALIGN(last_bss);
1817
1818 /* ??? There is confusion between qemu_real_host_page_size and
1819 qemu_host_page_size here and elsewhere in target_mmap, which
1820 may lead to the end of the data section mapping from the file
1821 not being mapped. At least there was an explicit test and
1822 comment for that here, suggesting that "the file size must
1823 be known". The comment probably pre-dates the introduction
1824 of the fstat system call in target_mmap which does in fact
1825 find out the size. What isn't clear is if the workaround
1826 here is still actually needed. For now, continue with it,
1827 but merge it with the "normal" mmap that would allocate the bss. */
1828
1829 host_start = (uintptr_t) g2h(elf_bss);
1830 host_end = (uintptr_t) g2h(last_bss);
1831 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1832
1833 if (host_map_start < host_end) {
1834 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1835 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1836 if (p == MAP_FAILED) {
1837 perror("cannot mmap brk");
1838 exit(-1);
1839 }
1840 }
1841
1842 /* Ensure that the bss page(s) are valid */
1843 if ((page_get_flags(last_bss-1) & prot) != prot) {
1844 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1845 }
1846
1847 if (host_start < host_map_start) {
1848 memset((void *)host_start, 0, host_map_start - host_start);
1849 }
1850 }
1851
1852 #ifdef TARGET_ARM
1853 static int elf_is_fdpic(struct elfhdr *exec)
1854 {
1855 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1856 }
1857 #else
1858 /* Default implementation, always false. */
1859 static int elf_is_fdpic(struct elfhdr *exec)
1860 {
1861 return 0;
1862 }
1863 #endif
1864
1865 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1866 {
1867 uint16_t n;
1868 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1869
1870 /* elf32_fdpic_loadseg */
1871 n = info->nsegs;
1872 while (n--) {
1873 sp -= 12;
1874 put_user_u32(loadsegs[n].addr, sp+0);
1875 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1876 put_user_u32(loadsegs[n].p_memsz, sp+8);
1877 }
1878
1879 /* elf32_fdpic_loadmap */
1880 sp -= 4;
1881 put_user_u16(0, sp+0); /* version */
1882 put_user_u16(info->nsegs, sp+2); /* nsegs */
1883
1884 info->personality = PER_LINUX_FDPIC;
1885 info->loadmap_addr = sp;
1886
1887 return sp;
1888 }
1889
1890 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1891 struct elfhdr *exec,
1892 struct image_info *info,
1893 struct image_info *interp_info)
1894 {
1895 abi_ulong sp;
1896 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1897 int size;
1898 int i;
1899 abi_ulong u_rand_bytes;
1900 uint8_t k_rand_bytes[16];
1901 abi_ulong u_platform;
1902 const char *k_platform;
1903 const int n = sizeof(elf_addr_t);
1904
1905 sp = p;
1906
1907 /* Needs to be before we load the env/argc/... */
1908 if (elf_is_fdpic(exec)) {
1909 /* Need 4 byte alignment for these structs */
1910 sp &= ~3;
1911 sp = loader_build_fdpic_loadmap(info, sp);
1912 info->other_info = interp_info;
1913 if (interp_info) {
1914 interp_info->other_info = info;
1915 sp = loader_build_fdpic_loadmap(interp_info, sp);
1916 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1917 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1918 } else {
1919 info->interpreter_loadmap_addr = 0;
1920 info->interpreter_pt_dynamic_addr = 0;
1921 }
1922 }
1923
1924 u_platform = 0;
1925 k_platform = ELF_PLATFORM;
1926 if (k_platform) {
1927 size_t len = strlen(k_platform) + 1;
1928 if (STACK_GROWS_DOWN) {
1929 sp -= (len + n - 1) & ~(n - 1);
1930 u_platform = sp;
1931 /* FIXME - check return value of memcpy_to_target() for failure */
1932 memcpy_to_target(sp, k_platform, len);
1933 } else {
1934 memcpy_to_target(sp, k_platform, len);
1935 u_platform = sp;
1936 sp += len + 1;
1937 }
1938 }
1939
1940 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1941 * the argv and envp pointers.
1942 */
1943 if (STACK_GROWS_DOWN) {
1944 sp = QEMU_ALIGN_DOWN(sp, 16);
1945 } else {
1946 sp = QEMU_ALIGN_UP(sp, 16);
1947 }
1948
1949 /*
1950 * Generate 16 random bytes for userspace PRNG seeding.
1951 */
1952 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1953 if (STACK_GROWS_DOWN) {
1954 sp -= 16;
1955 u_rand_bytes = sp;
1956 /* FIXME - check return value of memcpy_to_target() for failure */
1957 memcpy_to_target(sp, k_rand_bytes, 16);
1958 } else {
1959 memcpy_to_target(sp, k_rand_bytes, 16);
1960 u_rand_bytes = sp;
1961 sp += 16;
1962 }
1963
1964 size = (DLINFO_ITEMS + 1) * 2;
1965 if (k_platform)
1966 size += 2;
1967 #ifdef DLINFO_ARCH_ITEMS
1968 size += DLINFO_ARCH_ITEMS * 2;
1969 #endif
1970 #ifdef ELF_HWCAP2
1971 size += 2;
1972 #endif
1973 info->auxv_len = size * n;
1974
1975 size += envc + argc + 2;
1976 size += 1; /* argc itself */
1977 size *= n;
1978
1979 /* Allocate space and finalize stack alignment for entry now. */
1980 if (STACK_GROWS_DOWN) {
1981 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1982 sp = u_argc;
1983 } else {
1984 u_argc = sp;
1985 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1986 }
1987
1988 u_argv = u_argc + n;
1989 u_envp = u_argv + (argc + 1) * n;
1990 u_auxv = u_envp + (envc + 1) * n;
1991 info->saved_auxv = u_auxv;
1992 info->arg_start = u_argv;
1993 info->arg_end = u_argv + argc * n;
1994
1995 /* This is correct because Linux defines
1996 * elf_addr_t as Elf32_Off / Elf64_Off
1997 */
1998 #define NEW_AUX_ENT(id, val) do { \
1999 put_user_ual(id, u_auxv); u_auxv += n; \
2000 put_user_ual(val, u_auxv); u_auxv += n; \
2001 } while(0)
2002
2003 #ifdef ARCH_DLINFO
2004 /*
2005 * ARCH_DLINFO must come first so platform specific code can enforce
2006 * special alignment requirements on the AUXV if necessary (eg. PPC).
2007 */
2008 ARCH_DLINFO;
2009 #endif
2010 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2011 * on info->auxv_len will trigger.
2012 */
2013 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2014 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2015 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2016 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2017 /* Target doesn't support host page size alignment */
2018 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2019 } else {
2020 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2021 qemu_host_page_size)));
2022 }
2023 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2024 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2025 NEW_AUX_ENT(AT_ENTRY, info->entry);
2026 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2027 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2028 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2029 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2030 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2031 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2032 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2033 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2034
2035 #ifdef ELF_HWCAP2
2036 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2037 #endif
2038
2039 if (u_platform) {
2040 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2041 }
2042 NEW_AUX_ENT (AT_NULL, 0);
2043 #undef NEW_AUX_ENT
2044
2045 /* Check that our initial calculation of the auxv length matches how much
2046 * we actually put into it.
2047 */
2048 assert(info->auxv_len == u_auxv - info->saved_auxv);
2049
2050 put_user_ual(argc, u_argc);
2051
2052 p = info->arg_strings;
2053 for (i = 0; i < argc; ++i) {
2054 put_user_ual(p, u_argv);
2055 u_argv += n;
2056 p += target_strlen(p) + 1;
2057 }
2058 put_user_ual(0, u_argv);
2059
2060 p = info->env_strings;
2061 for (i = 0; i < envc; ++i) {
2062 put_user_ual(p, u_envp);
2063 u_envp += n;
2064 p += target_strlen(p) + 1;
2065 }
2066 put_user_ual(0, u_envp);
2067
2068 return sp;
2069 }
2070
2071 unsigned long init_guest_space(unsigned long host_start,
2072 unsigned long host_size,
2073 unsigned long guest_start,
2074 bool fixed)
2075 {
2076 /* In order to use host shmat, we must be able to honor SHMLBA. */
2077 unsigned long align = MAX(SHMLBA, qemu_host_page_size);
2078 unsigned long current_start, aligned_start;
2079 int flags;
2080
2081 assert(host_start || host_size);
2082
2083 /* If just a starting address is given, then just verify that
2084 * address. */
2085 if (host_start && !host_size) {
2086 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2087 if (init_guest_commpage(host_start, host_size) != 1) {
2088 return (unsigned long)-1;
2089 }
2090 #endif
2091 return host_start;
2092 }
2093
2094 /* Setup the initial flags and start address. */
2095 current_start = host_start & -align;
2096 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2097 if (fixed) {
2098 flags |= MAP_FIXED;
2099 }
2100
2101 /* Otherwise, a non-zero size region of memory needs to be mapped
2102 * and validated. */
2103
2104 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2105 /* On 32-bit ARM, we need to map not just the usable memory, but
2106 * also the commpage. Try to find a suitable place by allocating
2107 * a big chunk for all of it. If host_start, then the naive
2108 * strategy probably does good enough.
2109 */
2110 if (!host_start) {
2111 unsigned long guest_full_size, host_full_size, real_start;
2112
2113 guest_full_size =
2114 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2115 host_full_size = guest_full_size - guest_start;
2116 real_start = (unsigned long)
2117 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2118 if (real_start == (unsigned long)-1) {
2119 if (host_size < host_full_size - qemu_host_page_size) {
2120 /* We failed to map a continous segment, but we're
2121 * allowed to have a gap between the usable memory and
2122 * the commpage where other things can be mapped.
2123 * This sparseness gives us more flexibility to find
2124 * an address range.
2125 */
2126 goto naive;
2127 }
2128 return (unsigned long)-1;
2129 }
2130 munmap((void *)real_start, host_full_size);
2131 if (real_start & (align - 1)) {
2132 /* The same thing again, but with extra
2133 * so that we can shift around alignment.
2134 */
2135 unsigned long real_size = host_full_size + qemu_host_page_size;
2136 real_start = (unsigned long)
2137 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2138 if (real_start == (unsigned long)-1) {
2139 if (host_size < host_full_size - qemu_host_page_size) {
2140 goto naive;
2141 }
2142 return (unsigned long)-1;
2143 }
2144 munmap((void *)real_start, real_size);
2145 real_start = ROUND_UP(real_start, align);
2146 }
2147 current_start = real_start;
2148 }
2149 naive:
2150 #endif
2151
2152 while (1) {
2153 unsigned long real_start, real_size, aligned_size;
2154 aligned_size = real_size = host_size;
2155
2156 /* Do not use mmap_find_vma here because that is limited to the
2157 * guest address space. We are going to make the
2158 * guest address space fit whatever we're given.
2159 */
2160 real_start = (unsigned long)
2161 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2162 if (real_start == (unsigned long)-1) {
2163 return (unsigned long)-1;
2164 }
2165
2166 /* Check to see if the address is valid. */
2167 if (host_start && real_start != current_start) {
2168 goto try_again;
2169 }
2170
2171 /* Ensure the address is properly aligned. */
2172 if (real_start & (align - 1)) {
2173 /* Ideally, we adjust like
2174 *
2175 * pages: [ ][ ][ ][ ][ ]
2176 * old: [ real ]
2177 * [ aligned ]
2178 * new: [ real ]
2179 * [ aligned ]
2180 *
2181 * But if there is something else mapped right after it,
2182 * then obviously it won't have room to grow, and the
2183 * kernel will put the new larger real someplace else with
2184 * unknown alignment (if we made it to here, then
2185 * fixed=false). Which is why we grow real by a full page
2186 * size, instead of by part of one; so that even if we get
2187 * moved, we can still guarantee alignment. But this does
2188 * mean that there is a padding of < 1 page both before
2189 * and after the aligned range; the "after" could could
2190 * cause problems for ARM emulation where it could butt in
2191 * to where we need to put the commpage.
2192 */
2193 munmap((void *)real_start, host_size);
2194 real_size = aligned_size + qemu_host_page_size;
2195 real_start = (unsigned long)
2196 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2197 if (real_start == (unsigned long)-1) {
2198 return (unsigned long)-1;
2199 }
2200 aligned_start = ROUND_UP(real_start, align);
2201 } else {
2202 aligned_start = real_start;
2203 }
2204
2205 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2206 /* On 32-bit ARM, we need to also be able to map the commpage. */
2207 int valid = init_guest_commpage(aligned_start - guest_start,
2208 aligned_size + guest_start);
2209 if (valid == -1) {
2210 munmap((void *)real_start, real_size);
2211 return (unsigned long)-1;
2212 } else if (valid == 0) {
2213 goto try_again;
2214 }
2215 #endif
2216
2217 /* If nothing has said `return -1` or `goto try_again` yet,
2218 * then the address we have is good.
2219 */
2220 break;
2221
2222 try_again:
2223 /* That address didn't work. Unmap and try a different one.
2224 * The address the host picked because is typically right at
2225 * the top of the host address space and leaves the guest with
2226 * no usable address space. Resort to a linear search. We
2227 * already compensated for mmap_min_addr, so this should not
2228 * happen often. Probably means we got unlucky and host
2229 * address space randomization put a shared library somewhere
2230 * inconvenient.
2231 *
2232 * This is probably a good strategy if host_start, but is
2233 * probably a bad strategy if not, which means we got here
2234 * because of trouble with ARM commpage setup.
2235 */
2236 munmap((void *)real_start, real_size);
2237 current_start += align;
2238 if (host_start == current_start) {
2239 /* Theoretically possible if host doesn't have any suitably
2240 * aligned areas. Normally the first mmap will fail.
2241 */
2242 return (unsigned long)-1;
2243 }
2244 }
2245
2246 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2247
2248 return aligned_start;
2249 }
2250
2251 static void probe_guest_base(const char *image_name,
2252 abi_ulong loaddr, abi_ulong hiaddr)
2253 {
2254 /* Probe for a suitable guest base address, if the user has not set
2255 * it explicitly, and set guest_base appropriately.
2256 * In case of error we will print a suitable message and exit.
2257 */
2258 const char *errmsg;
2259 if (!have_guest_base && !reserved_va) {
2260 unsigned long host_start, real_start, host_size;
2261
2262 /* Round addresses to page boundaries. */
2263 loaddr &= qemu_host_page_mask;
2264 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2265
2266 if (loaddr < mmap_min_addr) {
2267 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2268 } else {
2269 host_start = loaddr;
2270 if (host_start != loaddr) {
2271 errmsg = "Address overflow loading ELF binary";
2272 goto exit_errmsg;
2273 }
2274 }
2275 host_size = hiaddr - loaddr;
2276
2277 /* Setup the initial guest memory space with ranges gleaned from
2278 * the ELF image that is being loaded.
2279 */
2280 real_start = init_guest_space(host_start, host_size, loaddr, false);
2281 if (real_start == (unsigned long)-1) {
2282 errmsg = "Unable to find space for application";
2283 goto exit_errmsg;
2284 }
2285 guest_base = real_start - loaddr;
2286
2287 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2288 TARGET_ABI_FMT_lx " to 0x%lx\n",
2289 loaddr, real_start);
2290 }
2291 return;
2292
2293 exit_errmsg:
2294 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2295 exit(-1);
2296 }
2297
2298
2299 /* Load an ELF image into the address space.
2300
2301 IMAGE_NAME is the filename of the image, to use in error messages.
2302 IMAGE_FD is the open file descriptor for the image.
2303
2304 BPRM_BUF is a copy of the beginning of the file; this of course
2305 contains the elf file header at offset 0. It is assumed that this
2306 buffer is sufficiently aligned to present no problems to the host
2307 in accessing data at aligned offsets within the buffer.
2308
2309 On return: INFO values will be filled in, as necessary or available. */
2310
2311 static void load_elf_image(const char *image_name, int image_fd,
2312 struct image_info *info, char **pinterp_name,
2313 char bprm_buf[BPRM_BUF_SIZE])
2314 {
2315 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2316 struct elf_phdr *phdr;
2317 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2318 int i, retval;
2319 const char *errmsg;
2320
2321 /* First of all, some simple consistency checks */
2322 errmsg = "Invalid ELF image for this architecture";
2323 if (!elf_check_ident(ehdr)) {
2324 goto exit_errmsg;
2325 }
2326 bswap_ehdr(ehdr);
2327 if (!elf_check_ehdr(ehdr)) {
2328 goto exit_errmsg;
2329 }
2330
2331 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2332 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2333 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2334 } else {
2335 phdr = (struct elf_phdr *) alloca(i);
2336 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2337 if (retval != i) {
2338 goto exit_read;
2339 }
2340 }
2341 bswap_phdr(phdr, ehdr->e_phnum);
2342
2343 info->nsegs = 0;
2344 info->pt_dynamic_addr = 0;
2345
2346 mmap_lock();
2347
2348 /* Find the maximum size of the image and allocate an appropriate
2349 amount of memory to handle that. */
2350 loaddr = -1, hiaddr = 0;
2351 info->alignment = 0;
2352 for (i = 0; i < ehdr->e_phnum; ++i) {
2353 if (phdr[i].p_type == PT_LOAD) {
2354 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2355 if (a < loaddr) {
2356 loaddr = a;
2357 }
2358 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2359 if (a > hiaddr) {
2360 hiaddr = a;
2361 }
2362 ++info->nsegs;
2363 info->alignment |= phdr[i].p_align;
2364 }
2365 }
2366
2367 load_addr = loaddr;
2368 if (ehdr->e_type == ET_DYN) {
2369 /* The image indicates that it can be loaded anywhere. Find a
2370 location that can hold the memory space required. If the
2371 image is pre-linked, LOADDR will be non-zero. Since we do
2372 not supply MAP_FIXED here we'll use that address if and
2373 only if it remains available. */
2374 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2375 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2376 -1, 0);
2377 if (load_addr == -1) {
2378 goto exit_perror;
2379 }
2380 } else if (pinterp_name != NULL) {
2381 /* This is the main executable. Make sure that the low
2382 address does not conflict with MMAP_MIN_ADDR or the
2383 QEMU application itself. */
2384 probe_guest_base(image_name, loaddr, hiaddr);
2385 }
2386 load_bias = load_addr - loaddr;
2387
2388 if (elf_is_fdpic(ehdr)) {
2389 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2390 g_malloc(sizeof(*loadsegs) * info->nsegs);
2391
2392 for (i = 0; i < ehdr->e_phnum; ++i) {
2393 switch (phdr[i].p_type) {
2394 case PT_DYNAMIC:
2395 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2396 break;
2397 case PT_LOAD:
2398 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2399 loadsegs->p_vaddr = phdr[i].p_vaddr;
2400 loadsegs->p_memsz = phdr[i].p_memsz;
2401 ++loadsegs;
2402 break;
2403 }
2404 }
2405 }
2406
2407 info->load_bias = load_bias;
2408 info->code_offset = load_bias;
2409 info->data_offset = load_bias;
2410 info->load_addr = load_addr;
2411 info->entry = ehdr->e_entry + load_bias;
2412 info->start_code = -1;
2413 info->end_code = 0;
2414 info->start_data = -1;
2415 info->end_data = 0;
2416 info->brk = 0;
2417 info->elf_flags = ehdr->e_flags;
2418
2419 for (i = 0; i < ehdr->e_phnum; i++) {
2420 struct elf_phdr *eppnt = phdr + i;
2421 if (eppnt->p_type == PT_LOAD) {
2422 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2423 int elf_prot = 0;
2424
2425 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2426 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2427 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2428
2429 vaddr = load_bias + eppnt->p_vaddr;
2430 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2431 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2432 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2433
2434 /*
2435 * Some segments may be completely empty without any backing file
2436 * segment, in that case just let zero_bss allocate an empty buffer
2437 * for it.
2438 */
2439 if (eppnt->p_filesz != 0) {
2440 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2441 MAP_PRIVATE | MAP_FIXED,
2442 image_fd, eppnt->p_offset - vaddr_po);
2443
2444 if (error == -1) {
2445 goto exit_perror;
2446 }
2447 }
2448
2449 vaddr_ef = vaddr + eppnt->p_filesz;
2450 vaddr_em = vaddr + eppnt->p_memsz;
2451
2452 /* If the load segment requests extra zeros (e.g. bss), map it. */
2453 if (vaddr_ef < vaddr_em) {
2454 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2455 }
2456
2457 /* Find the full program boundaries. */
2458 if (elf_prot & PROT_EXEC) {
2459 if (vaddr < info->start_code) {
2460 info->start_code = vaddr;
2461 }
2462 if (vaddr_ef > info->end_code) {
2463 info->end_code = vaddr_ef;
2464 }
2465 }
2466 if (elf_prot & PROT_WRITE) {
2467 if (vaddr < info->start_data) {
2468 info->start_data = vaddr;
2469 }
2470 if (vaddr_ef > info->end_data) {
2471 info->end_data = vaddr_ef;
2472 }
2473 if (vaddr_em > info->brk) {
2474 info->brk = vaddr_em;
2475 }
2476 }
2477 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2478 char *interp_name;
2479
2480 if (*pinterp_name) {
2481 errmsg = "Multiple PT_INTERP entries";
2482 goto exit_errmsg;
2483 }
2484 interp_name = malloc(eppnt->p_filesz);
2485 if (!interp_name) {
2486 goto exit_perror;
2487 }
2488
2489 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2490 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2491 eppnt->p_filesz);
2492 } else {
2493 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2494 eppnt->p_offset);
2495 if (retval != eppnt->p_filesz) {
2496 goto exit_perror;
2497 }
2498 }
2499 if (interp_name[eppnt->p_filesz - 1] != 0) {
2500 errmsg = "Invalid PT_INTERP entry";
2501 goto exit_errmsg;
2502 }
2503 *pinterp_name = interp_name;
2504 #ifdef TARGET_MIPS
2505 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2506 Mips_elf_abiflags_v0 abiflags;
2507 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2508 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2509 goto exit_errmsg;
2510 }
2511 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2512 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2513 sizeof(Mips_elf_abiflags_v0));
2514 } else {
2515 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2516 eppnt->p_offset);
2517 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2518 goto exit_perror;
2519 }
2520 }
2521 bswap_mips_abiflags(&abiflags);
2522 info->fp_abi = abiflags.fp_abi;
2523 #endif
2524 }
2525 }
2526
2527 if (info->end_data == 0) {
2528 info->start_data = info->end_code;
2529 info->end_data = info->end_code;
2530 info->brk = info->end_code;
2531 }
2532
2533 if (qemu_log_enabled()) {
2534 load_symbols(ehdr, image_fd, load_bias);
2535 }
2536
2537 mmap_unlock();
2538
2539 close(image_fd);
2540 return;
2541
2542 exit_read:
2543 if (retval >= 0) {
2544 errmsg = "Incomplete read of file header";
2545 goto exit_errmsg;
2546 }
2547 exit_perror:
2548 errmsg = strerror(errno);
2549 exit_errmsg:
2550 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2551 exit(-1);
2552 }
2553
2554 static void load_elf_interp(const char *filename, struct image_info *info,
2555 char bprm_buf[BPRM_BUF_SIZE])
2556 {
2557 int fd, retval;
2558
2559 fd = open(path(filename), O_RDONLY);
2560 if (fd < 0) {
2561 goto exit_perror;
2562 }
2563
2564 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2565 if (retval < 0) {
2566 goto exit_perror;
2567 }
2568 if (retval < BPRM_BUF_SIZE) {
2569 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2570 }
2571
2572 load_elf_image(filename, fd, info, NULL, bprm_buf);
2573 return;
2574
2575 exit_perror:
2576 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2577 exit(-1);
2578 }
2579
2580 static int symfind(const void *s0, const void *s1)
2581 {
2582 target_ulong addr = *(target_ulong *)s0;
2583 struct elf_sym *sym = (struct elf_sym *)s1;
2584 int result = 0;
2585 if (addr < sym->st_value) {
2586 result = -1;
2587 } else if (addr >= sym->st_value + sym->st_size) {
2588 result = 1;
2589 }
2590 return result;
2591 }
2592
2593 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2594 {
2595 #if ELF_CLASS == ELFCLASS32
2596 struct elf_sym *syms = s->disas_symtab.elf32;
2597 #else
2598 struct elf_sym *syms = s->disas_symtab.elf64;
2599 #endif
2600
2601 // binary search
2602 struct elf_sym *sym;
2603
2604 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2605 if (sym != NULL) {
2606 return s->disas_strtab + sym->st_name;
2607 }
2608
2609 return "";
2610 }
2611
2612 /* FIXME: This should use elf_ops.h */
2613 static int symcmp(const void *s0, const void *s1)
2614 {
2615 struct elf_sym *sym0 = (struct elf_sym *)s0;
2616 struct elf_sym *sym1 = (struct elf_sym *)s1;
2617 return (sym0->st_value < sym1->st_value)
2618 ? -1
2619 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2620 }
2621
2622 /* Best attempt to load symbols from this ELF object. */
2623 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2624 {
2625 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2626 uint64_t segsz;
2627 struct elf_shdr *shdr;
2628 char *strings = NULL;
2629 struct syminfo *s = NULL;
2630 struct elf_sym *new_syms, *syms = NULL;
2631
2632 shnum = hdr->e_shnum;
2633 i = shnum * sizeof(struct elf_shdr);
2634 shdr = (struct elf_shdr *)alloca(i);
2635 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2636 return;
2637 }
2638
2639 bswap_shdr(shdr, shnum);
2640 for (i = 0; i < shnum; ++i) {
2641 if (shdr[i].sh_type == SHT_SYMTAB) {
2642 sym_idx = i;
2643 str_idx = shdr[i].sh_link;
2644 goto found;
2645 }
2646 }
2647
2648 /* There will be no symbol table if the file was stripped. */
2649 return;
2650
2651 found:
2652 /* Now know where the strtab and symtab are. Snarf them. */
2653 s = g_try_new(struct syminfo, 1);
2654 if (!s) {
2655 goto give_up;
2656 }
2657
2658 segsz = shdr[str_idx].sh_size;
2659 s->disas_strtab = strings = g_try_malloc(segsz);
2660 if (!strings ||
2661 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2662 goto give_up;
2663 }
2664
2665 segsz = shdr[sym_idx].sh_size;
2666 syms = g_try_malloc(segsz);
2667 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2668 goto give_up;
2669 }
2670
2671 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2672 /* Implausibly large symbol table: give up rather than ploughing
2673 * on with the number of symbols calculation overflowing
2674 */
2675 goto give_up;
2676 }
2677 nsyms = segsz / sizeof(struct elf_sym);
2678 for (i = 0; i < nsyms; ) {
2679 bswap_sym(syms + i);
2680 /* Throw away entries which we do not need. */
2681 if (syms[i].st_shndx == SHN_UNDEF
2682 || syms[i].st_shndx >= SHN_LORESERVE
2683 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2684 if (i < --nsyms) {
2685 syms[i] = syms[nsyms];
2686 }
2687 } else {
2688 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2689 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2690 syms[i].st_value &= ~(target_ulong)1;
2691 #endif
2692 syms[i].st_value += load_bias;
2693 i++;
2694 }
2695 }
2696
2697 /* No "useful" symbol. */
2698 if (nsyms == 0) {
2699 goto give_up;
2700 }
2701
2702 /* Attempt to free the storage associated with the local symbols
2703 that we threw away. Whether or not this has any effect on the
2704 memory allocation depends on the malloc implementation and how
2705 many symbols we managed to discard. */
2706 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2707 if (new_syms == NULL) {
2708 goto give_up;
2709 }
2710 syms = new_syms;
2711
2712 qsort(syms, nsyms, sizeof(*syms), symcmp);
2713
2714 s->disas_num_syms = nsyms;
2715 #if ELF_CLASS == ELFCLASS32
2716 s->disas_symtab.elf32 = syms;
2717 #else
2718 s->disas_symtab.elf64 = syms;
2719 #endif
2720 s->lookup_symbol = lookup_symbolxx;
2721 s->next = syminfos;
2722 syminfos = s;
2723
2724 return;
2725
2726 give_up:
2727 g_free(s);
2728 g_free(strings);
2729 g_free(syms);
2730 }
2731
2732 uint32_t get_elf_eflags(int fd)
2733 {
2734 struct elfhdr ehdr;
2735 off_t offset;
2736 int ret;
2737
2738 /* Read ELF header */
2739 offset = lseek(fd, 0, SEEK_SET);
2740 if (offset == (off_t) -1) {
2741 return 0;
2742 }
2743 ret = read(fd, &ehdr, sizeof(ehdr));
2744 if (ret < sizeof(ehdr)) {
2745 return 0;
2746 }
2747 offset = lseek(fd, offset, SEEK_SET);
2748 if (offset == (off_t) -1) {
2749 return 0;
2750 }
2751
2752 /* Check ELF signature */
2753 if (!elf_check_ident(&ehdr)) {
2754 return 0;
2755 }
2756
2757 /* check header */
2758 bswap_ehdr(&ehdr);
2759 if (!elf_check_ehdr(&ehdr)) {
2760 return 0;
2761 }
2762
2763 /* return architecture id */
2764 return ehdr.e_flags;
2765 }
2766
2767 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2768 {
2769 struct image_info interp_info;
2770 struct elfhdr elf_ex;
2771 char *elf_interpreter = NULL;
2772 char *scratch;
2773
2774 memset(&interp_info, 0, sizeof(interp_info));
2775 #ifdef TARGET_MIPS
2776 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2777 #endif
2778
2779 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2780
2781 load_elf_image(bprm->filename, bprm->fd, info,
2782 &elf_interpreter, bprm->buf);
2783
2784 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2785 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2786 when we load the interpreter. */
2787 elf_ex = *(struct elfhdr *)bprm->buf;
2788
2789 /* Do this so that we can load the interpreter, if need be. We will
2790 change some of these later */
2791 bprm->p = setup_arg_pages(bprm, info);
2792
2793 scratch = g_new0(char, TARGET_PAGE_SIZE);
2794 if (STACK_GROWS_DOWN) {
2795 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2796 bprm->p, info->stack_limit);
2797 info->file_string = bprm->p;
2798 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2799 bprm->p, info->stack_limit);
2800 info->env_strings = bprm->p;
2801 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2802 bprm->p, info->stack_limit);
2803 info->arg_strings = bprm->p;
2804 } else {
2805 info->arg_strings = bprm->p;
2806 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2807 bprm->p, info->stack_limit);
2808 info->env_strings = bprm->p;
2809 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2810 bprm->p, info->stack_limit);
2811 info->file_string = bprm->p;
2812 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2813 bprm->p, info->stack_limit);
2814 }
2815
2816 g_free(scratch);
2817
2818 if (!bprm->p) {
2819 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2820 exit(-1);
2821 }
2822
2823 if (elf_interpreter) {
2824 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2825
2826 /* If the program interpreter is one of these two, then assume
2827 an iBCS2 image. Otherwise assume a native linux image. */
2828
2829 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2830 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2831 info->personality = PER_SVR4;
2832
2833 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2834 and some applications "depend" upon this behavior. Since
2835 we do not have the power to recompile these, we emulate
2836 the SVr4 behavior. Sigh. */
2837 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2838 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2839 }
2840 #ifdef TARGET_MIPS
2841 info->interp_fp_abi = interp_info.fp_abi;
2842 #endif
2843 }
2844
2845 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2846 info, (elf_interpreter ? &interp_info : NULL));
2847 info->start_stack = bprm->p;
2848
2849 /* If we have an interpreter, set that as the program's entry point.
2850 Copy the load_bias as well, to help PPC64 interpret the entry
2851 point as a function descriptor. Do this after creating elf tables
2852 so that we copy the original program entry point into the AUXV. */
2853 if (elf_interpreter) {
2854 info->load_bias = interp_info.load_bias;
2855 info->entry = interp_info.entry;
2856 free(elf_interpreter);
2857 }
2858
2859 #ifdef USE_ELF_CORE_DUMP
2860 bprm->core_dump = &elf_core_dump;
2861 #endif
2862
2863 return 0;
2864 }
2865
2866 #ifdef USE_ELF_CORE_DUMP
2867 /*
2868 * Definitions to generate Intel SVR4-like core files.
2869 * These mostly have the same names as the SVR4 types with "target_elf_"
2870 * tacked on the front to prevent clashes with linux definitions,
2871 * and the typedef forms have been avoided. This is mostly like
2872 * the SVR4 structure, but more Linuxy, with things that Linux does
2873 * not support and which gdb doesn't really use excluded.
2874 *
2875 * Fields we don't dump (their contents is zero) in linux-user qemu
2876 * are marked with XXX.
2877 *
2878 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2879 *
2880 * Porting ELF coredump for target is (quite) simple process. First you
2881 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2882 * the target resides):
2883 *
2884 * #define USE_ELF_CORE_DUMP
2885 *
2886 * Next you define type of register set used for dumping. ELF specification
2887 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2888 *
2889 * typedef <target_regtype> target_elf_greg_t;
2890 * #define ELF_NREG <number of registers>
2891 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2892 *
2893 * Last step is to implement target specific function that copies registers
2894 * from given cpu into just specified register set. Prototype is:
2895 *
2896 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2897 * const CPUArchState *env);
2898 *
2899 * Parameters:
2900 * regs - copy register values into here (allocated and zeroed by caller)
2901 * env - copy registers from here
2902 *
2903 * Example for ARM target is provided in this file.
2904 */
2905
2906 /* An ELF note in memory */
2907 struct memelfnote {
2908 const char *name;
2909 size_t namesz;
2910 size_t namesz_rounded;
2911 int type;
2912 size_t datasz;
2913 size_t datasz_rounded;
2914 void *data;
2915 size_t notesz;
2916 };
2917
2918 struct target_elf_siginfo {
2919 abi_int si_signo; /* signal number */
2920 abi_int si_code; /* extra code */
2921 abi_int si_errno; /* errno */
2922 };
2923
2924 struct target_elf_prstatus {
2925 struct target_elf_siginfo pr_info; /* Info associated with signal */
2926 abi_short pr_cursig; /* Current signal */
2927 abi_ulong pr_sigpend; /* XXX */
2928 abi_ulong pr_sighold; /* XXX */
2929 target_pid_t pr_pid;
2930 target_pid_t pr_ppid;
2931 target_pid_t pr_pgrp;
2932 target_pid_t pr_sid;
2933 struct target_timeval pr_utime; /* XXX User time */
2934 struct target_timeval pr_stime; /* XXX System time */
2935 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2936 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2937 target_elf_gregset_t pr_reg; /* GP registers */
2938 abi_int pr_fpvalid; /* XXX */
2939 };
2940
2941 #define ELF_PRARGSZ (80) /* Number of chars for args */
2942
2943 struct target_elf_prpsinfo {
2944 char pr_state; /* numeric process state */
2945 char pr_sname; /* char for pr_state */
2946 char pr_zomb; /* zombie */
2947 char pr_nice; /* nice val */
2948 abi_ulong pr_flag; /* flags */
2949 target_uid_t pr_uid;
2950 target_gid_t pr_gid;
2951 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2952 /* Lots missing */
2953 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
2954 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2955 };
2956
2957 /* Here is the structure in which status of each thread is captured. */
2958 struct elf_thread_status {
2959 QTAILQ_ENTRY(elf_thread_status) ets_link;
2960 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2961 #if 0
2962 elf_fpregset_t fpu; /* NT_PRFPREG */
2963 struct task_struct *thread;
2964 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2965 #endif
2966 struct memelfnote notes[1];
2967 int num_notes;
2968 };
2969
2970 struct elf_note_info {
2971 struct memelfnote *notes;
2972 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2973 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2974
2975 QTAILQ_HEAD(, elf_thread_status) thread_list;
2976 #if 0
2977 /*
2978 * Current version of ELF coredump doesn't support
2979 * dumping fp regs etc.
2980 */
2981 elf_fpregset_t *fpu;
2982 elf_fpxregset_t *xfpu;
2983 int thread_status_size;
2984 #endif
2985 int notes_size;
2986 int numnote;
2987 };
2988
2989 struct vm_area_struct {
2990 target_ulong vma_start; /* start vaddr of memory region */
2991 target_ulong vma_end; /* end vaddr of memory region */
2992 abi_ulong vma_flags; /* protection etc. flags for the region */
2993 QTAILQ_ENTRY(vm_area_struct) vma_link;
2994 };
2995
2996 struct mm_struct {
2997 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2998 int mm_count; /* number of mappings */
2999 };
3000
3001 static struct mm_struct *vma_init(void);
3002 static void vma_delete(struct mm_struct *);
3003 static int vma_add_mapping(struct mm_struct *, target_ulong,
3004 target_ulong, abi_ulong);
3005 static int vma_get_mapping_count(const struct mm_struct *);
3006 static struct vm_area_struct *vma_first(const struct mm_struct *);
3007 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3008 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3009 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3010 unsigned long flags);
3011
3012 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3013 static void fill_note(struct memelfnote *, const char *, int,
3014 unsigned int, void *);
3015 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3016 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3017 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3018 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3019 static size_t note_size(const struct memelfnote *);
3020 static void free_note_info(struct elf_note_info *);
3021 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3022 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3023 static int core_dump_filename(const TaskState *, char *, size_t);
3024
3025 static int dump_write(int, const void *, size_t);
3026 static int write_note(struct memelfnote *, int);
3027 static int write_note_info(struct elf_note_info *, int);
3028
3029 #ifdef BSWAP_NEEDED
3030 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3031 {
3032 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3033 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3034 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3035 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3036 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3037 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3038 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3039 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3040 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3041 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3042 /* cpu times are not filled, so we skip them */
3043 /* regs should be in correct format already */
3044 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3045 }
3046
3047 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3048 {
3049 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3050 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3051 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3052 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3053 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3054 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3055 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3056 }
3057
3058 static void bswap_note(struct elf_note *en)
3059 {
3060 bswap32s(&en->n_namesz);
3061 bswap32s(&en->n_descsz);
3062 bswap32s(&en->n_type);
3063 }
3064 #else
3065 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3066 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3067 static inline void bswap_note(struct elf_note *en) { }
3068 #endif /* BSWAP_NEEDED */
3069
3070 /*
3071 * Minimal support for linux memory regions. These are needed
3072 * when we are finding out what memory exactly belongs to
3073 * emulated process. No locks needed here, as long as
3074 * thread that received the signal is stopped.
3075 */
3076
3077 static struct mm_struct *vma_init(void)
3078 {
3079 struct mm_struct *mm;
3080
3081 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3082 return (NULL);
3083
3084 mm->mm_count = 0;
3085 QTAILQ_INIT(&mm->mm_mmap);
3086
3087 return (mm);
3088 }
3089
3090 static void vma_delete(struct mm_struct *mm)
3091 {
3092 struct vm_area_struct *vma;
3093
3094 while ((vma = vma_first(mm)) != NULL) {
3095 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3096 g_free(vma);
3097 }
3098 g_free(mm);
3099 }
3100
3101 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3102 target_ulong end, abi_ulong flags)
3103 {
3104 struct vm_area_struct *vma;
3105
3106 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3107 return (-1);
3108
3109 vma->vma_start = start;
3110 vma->vma_end = end;
3111 vma->vma_flags = flags;
3112
3113 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3114 mm->mm_count++;
3115
3116 return (0);
3117 }
3118
3119 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3120 {
3121 return (QTAILQ_FIRST(&mm->mm_mmap));
3122 }
3123
3124 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3125 {
3126 return (QTAILQ_NEXT(vma, vma_link));
3127 }
3128
3129 static int vma_get_mapping_count(const struct mm_struct *mm)
3130 {
3131 return (mm->mm_count);
3132 }
3133
3134 /*
3135 * Calculate file (dump) size of given memory region.
3136 */
3137 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3138 {
3139 /* if we cannot even read the first page, skip it */
3140 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3141 return (0);
3142
3143 /*
3144 * Usually we don't dump executable pages as they contain
3145 * non-writable code that debugger can read directly from
3146 * target library etc. However, thread stacks are marked
3147 * also executable so we read in first page of given region
3148 * and check whether it contains elf header. If there is
3149 * no elf header, we dump it.
3150 */
3151 if (vma->vma_flags & PROT_EXEC) {
3152 char page[TARGET_PAGE_SIZE];
3153
3154 copy_from_user(page, vma->vma_start, sizeof (page));
3155 if ((page[EI_MAG0] == ELFMAG0) &&
3156 (page[EI_MAG1] == ELFMAG1) &&
3157 (page[EI_MAG2] == ELFMAG2) &&
3158 (page[EI_MAG3] == ELFMAG3)) {
3159 /*
3160 * Mappings are possibly from ELF binary. Don't dump
3161 * them.
3162 */
3163 return (0);
3164 }
3165 }
3166
3167 return (vma->vma_end - vma->vma_start);
3168 }
3169
3170 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3171 unsigned long flags)
3172 {
3173 struct mm_struct *mm = (struct mm_struct *)priv;
3174
3175 vma_add_mapping(mm, start, end, flags);
3176 return (0);
3177 }
3178
3179 static void fill_note(struct memelfnote *note, const char *name, int type,
3180 unsigned int sz, void *data)
3181 {
3182 unsigned int namesz;
3183
3184 namesz = strlen(name) + 1;
3185 note->name = name;
3186 note->namesz = namesz;
3187 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3188 note->type = type;
3189 note->datasz = sz;
3190 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3191
3192 note->data = data;
3193
3194 /*
3195 * We calculate rounded up note size here as specified by
3196 * ELF document.
3197 */
3198 note->notesz = sizeof (struct elf_note) +
3199 note->namesz_rounded + note->datasz_rounded;
3200 }
3201
3202 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3203 uint32_t flags)
3204 {
3205 (void) memset(elf, 0, sizeof(*elf));
3206
3207 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3208 elf->e_ident[EI_CLASS] = ELF_CLASS;
3209 elf->e_ident[EI_DATA] = ELF_DATA;
3210 elf->e_ident[EI_VERSION] = EV_CURRENT;
3211 elf->e_ident[EI_OSABI] = ELF_OSABI;
3212
3213 elf->e_type = ET_CORE;
3214 elf->e_machine = machine;
3215 elf->e_version = EV_CURRENT;
3216 elf->e_phoff = sizeof(struct elfhdr);
3217 elf->e_flags = flags;
3218 elf->e_ehsize = sizeof(struct elfhdr);
3219 elf->e_phentsize = sizeof(struct elf_phdr);
3220 elf->e_phnum = segs;
3221
3222 bswap_ehdr(elf);
3223 }
3224
3225 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3226 {
3227 phdr->p_type = PT_NOTE;
3228 phdr->p_offset = offset;
3229 phdr->p_vaddr = 0;
3230 phdr->p_paddr = 0;
3231 phdr->p_filesz = sz;
3232 phdr->p_memsz = 0;
3233 phdr->p_flags = 0;
3234 phdr->p_align = 0;
3235
3236 bswap_phdr(phdr, 1);
3237 }
3238
3239 static size_t note_size(const struct memelfnote *note)
3240 {
3241 return (note->notesz);
3242 }
3243
3244 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3245 const TaskState *ts, int signr)
3246 {
3247 (void) memset(prstatus, 0, sizeof (*prstatus));
3248 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3249 prstatus->pr_pid = ts->ts_tid;
3250 prstatus->pr_ppid = getppid();
3251 prstatus->pr_pgrp = getpgrp();
3252 prstatus->pr_sid = getsid(0);
3253
3254 bswap_prstatus(prstatus);
3255 }
3256
3257 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3258 {
3259 char *base_filename;
3260 unsigned int i, len;
3261
3262 (void) memset(psinfo, 0, sizeof (*psinfo));
3263
3264 len = ts->info->arg_end - ts->info->arg_start;
3265 if (len >= ELF_PRARGSZ)
3266 len = ELF_PRARGSZ - 1;
3267 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3268 return -EFAULT;
3269 for (i = 0; i < len; i++)
3270 if (psinfo->pr_psargs[i] == 0)
3271 psinfo->pr_psargs[i] = ' ';
3272 psinfo->pr_psargs[len] = 0;
3273
3274 psinfo->pr_pid = getpid();
3275 psinfo->pr_ppid = getppid();
3276 psinfo->pr_pgrp = getpgrp();
3277 psinfo->pr_sid = getsid(0);
3278 psinfo->pr_uid = getuid();
3279 psinfo->pr_gid = getgid();
3280
3281 base_filename = g_path_get_basename(ts->bprm->filename);
3282 /*
3283 * Using strncpy here is fine: at max-length,
3284 * this field is not NUL-terminated.
3285 */
3286 (void) strncpy(psinfo->pr_fname, base_filename,
3287 sizeof(psinfo->pr_fname));
3288
3289 g_free(base_filename);
3290 bswap_psinfo(psinfo);
3291 return (0);
3292 }
3293
3294 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3295 {
3296 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3297 elf_addr_t orig_auxv = auxv;
3298 void *ptr;
3299 int len = ts->info->auxv_len;
3300
3301 /*
3302 * Auxiliary vector is stored in target process stack. It contains
3303 * {type, value} pairs that we need to dump into note. This is not
3304 * strictly necessary but we do it here for sake of completeness.
3305 */
3306
3307 /* read in whole auxv vector and copy it to memelfnote */
3308 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3309 if (ptr != NULL) {
3310 fill_note(note, "CORE", NT_AUXV, len, ptr);
3311 unlock_user(ptr, auxv, len);
3312 }
3313 }
3314
3315 /*
3316 * Constructs name of coredump file. We have following convention
3317 * for the name:
3318 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3319 *
3320 * Returns 0 in case of success, -1 otherwise (errno is set).
3321 */
3322 static int core_dump_filename(const TaskState *ts, char *buf,
3323 size_t bufsize)
3324 {
3325 char timestamp[64];
3326 char *base_filename = NULL;
3327 struct timeval tv;
3328 struct tm tm;
3329
3330 assert(bufsize >= PATH_MAX);
3331
3332 if (gettimeofday(&tv, NULL) < 0) {
3333 (void) fprintf(stderr, "unable to get current timestamp: %s",
3334 strerror(errno));
3335 return (-1);
3336 }
3337
3338 base_filename = g_path_get_basename(ts->bprm->filename);
3339 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3340 localtime_r(&tv.tv_sec, &tm));
3341 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3342 base_filename, timestamp, (int)getpid());
3343 g_free(base_filename);
3344
3345 return (0);
3346 }
3347
3348 static int dump_write(int fd, const void *ptr, size_t size)
3349 {
3350 const char *bufp = (const char *)ptr;
3351 ssize_t bytes_written, bytes_left;
3352 struct rlimit dumpsize;
3353 off_t pos;
3354
3355 bytes_written = 0;
3356 getrlimit(RLIMIT_CORE, &dumpsize);
3357 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3358 if (errno == ESPIPE) { /* not a seekable stream */
3359 bytes_left = size;
3360 } else {
3361 return pos;
3362 }
3363 } else {
3364 if (dumpsize.rlim_cur <= pos) {
3365 return -1;
3366 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3367 bytes_left = size;
3368 } else {
3369 size_t limit_left=dumpsize.rlim_cur - pos;
3370 bytes_left = limit_left >= size ? size : limit_left ;
3371 }
3372 }
3373
3374 /*
3375 * In normal conditions, single write(2) should do but
3376 * in case of socket etc. this mechanism is more portable.
3377 */
3378 do {
3379 bytes_written = write(fd, bufp, bytes_left);
3380 if (bytes_written < 0) {
3381 if (errno == EINTR)
3382 continue;
3383 return (-1);
3384 } else if (bytes_written == 0) { /* eof */
3385 return (-1);
3386 }
3387 bufp += bytes_written;
3388 bytes_left -= bytes_written;
3389 } while (bytes_left > 0);
3390
3391 return (0);
3392 }
3393
3394 static int write_note(struct memelfnote *men, int fd)
3395 {
3396 struct elf_note en;
3397
3398 en.n_namesz = men->namesz;
3399 en.n_type = men->type;
3400 en.n_descsz = men->datasz;
3401
3402 bswap_note(&en);
3403
3404 if (dump_write(fd, &en, sizeof(en)) != 0)
3405 return (-1);
3406 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3407 return (-1);
3408 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3409 return (-1);
3410
3411 return (0);
3412 }
3413
3414 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3415 {
3416 CPUState *cpu = env_cpu((CPUArchState *)env);
3417 TaskState *ts = (TaskState *)cpu->opaque;
3418 struct elf_thread_status *ets;
3419
3420 ets = g_malloc0(sizeof (*ets));
3421 ets->num_notes = 1; /* only prstatus is dumped */
3422 fill_prstatus(&ets->prstatus, ts, 0);
3423 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3424 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3425 &ets->prstatus);
3426
3427 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3428
3429 info->notes_size += note_size(&ets->notes[0]);
3430 }
3431
3432 static void init_note_info(struct elf_note_info *info)
3433 {
3434 /* Initialize the elf_note_info structure so that it is at
3435 * least safe to call free_note_info() on it. Must be
3436 * called before calling fill_note_info().
3437 */
3438 memset(info, 0, sizeof (*info));
3439 QTAILQ_INIT(&info->thread_list);
3440 }
3441
3442 static int fill_note_info(struct elf_note_info *info,
3443 long signr, const CPUArchState *env)
3444 {
3445 #define NUMNOTES 3
3446 CPUState *cpu = env_cpu((CPUArchState *)env);
3447 TaskState *ts = (TaskState *)cpu->opaque;
3448 int i;
3449
3450 info->notes = g_new0(struct memelfnote, NUMNOTES);
3451 if (info->notes == NULL)
3452 return (-ENOMEM);
3453 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3454 if (info->prstatus == NULL)
3455 return (-ENOMEM);
3456 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3457 if (info->prstatus == NULL)
3458 return (-ENOMEM);
3459
3460 /*
3461 * First fill in status (and registers) of current thread
3462 * including process info & aux vector.
3463 */
3464 fill_prstatus(info->prstatus, ts, signr);
3465 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3466 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3467 sizeof (*info->prstatus), info->prstatus);
3468 fill_psinfo(info->psinfo, ts);
3469 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3470 sizeof (*info->psinfo), info->psinfo);
3471 fill_auxv_note(&info->notes[2], ts);
3472 info->numnote = 3;
3473
3474 info->notes_size = 0;
3475 for (i = 0; i < info->numnote; i++)
3476 info->notes_size += note_size(&info->notes[i]);
3477
3478 /* read and fill status of all threads */
3479 cpu_list_lock();
3480 CPU_FOREACH(cpu) {
3481 if (cpu == thread_cpu) {
3482 continue;
3483 }
3484 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3485 }
3486 cpu_list_unlock();
3487
3488 return (0);
3489 }
3490
3491 static void free_note_info(struct elf_note_info *info)
3492 {
3493 struct elf_thread_status *ets;
3494
3495 while (!QTAILQ_EMPTY(&info->thread_list)) {
3496 ets = QTAILQ_FIRST(&info->thread_list);
3497 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3498 g_free(ets);
3499 }
3500
3501 g_free(info->prstatus);
3502 g_free(info->psinfo);
3503 g_free(info->notes);
3504 }
3505
3506 static int write_note_info(struct elf_note_info *info, int fd)
3507 {
3508 struct elf_thread_status *ets;
3509 int i, error = 0;
3510
3511 /* write prstatus, psinfo and auxv for current thread */
3512 for (i = 0; i < info->numnote; i++)
3513 if ((error = write_note(&info->notes[i], fd)) != 0)
3514 return (error);
3515
3516 /* write prstatus for each thread */
3517 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3518 if ((error = write_note(&ets->notes[0], fd)) != 0)
3519 return (error);
3520 }
3521
3522 return (0);
3523 }
3524
3525 /*
3526 * Write out ELF coredump.
3527 *
3528 * See documentation of ELF object file format in:
3529 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3530 *
3531 * Coredump format in linux is following:
3532 *
3533 * 0 +----------------------+ \
3534 * | ELF header | ET_CORE |
3535 * +----------------------+ |
3536 * | ELF program headers | |--- headers
3537 * | - NOTE section | |
3538 * | - PT_LOAD sections | |
3539 * +----------------------+ /
3540 * | NOTEs: |
3541 * | - NT_PRSTATUS |
3542 * | - NT_PRSINFO |
3543 * | - NT_AUXV |
3544 * +----------------------+ <-- aligned to target page
3545 * | Process memory dump |
3546 * : :
3547 * . .
3548 * : :
3549 * | |
3550 * +----------------------+
3551 *
3552 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3553 * NT_PRSINFO -> struct elf_prpsinfo
3554 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3555 *
3556 * Format follows System V format as close as possible. Current
3557 * version limitations are as follows:
3558 * - no floating point registers are dumped
3559 *
3560 * Function returns 0 in case of success, negative errno otherwise.
3561 *
3562 * TODO: make this work also during runtime: it should be
3563 * possible to force coredump from running process and then
3564 * continue processing. For example qemu could set up SIGUSR2
3565 * handler (provided that target process haven't registered
3566 * handler for that) that does the dump when signal is received.
3567 */
3568 static int elf_core_dump(int signr, const CPUArchState *env)
3569 {
3570 const CPUState *cpu = env_cpu((CPUArchState *)env);
3571 const TaskState *ts = (const TaskState *)cpu->opaque;
3572 struct vm_area_struct *vma = NULL;
3573 char corefile[PATH_MAX];
3574 struct elf_note_info info;
3575 struct elfhdr elf;
3576 struct elf_phdr phdr;
3577 struct rlimit dumpsize;
3578 struct mm_struct *mm = NULL;
3579 off_t offset = 0, data_offset = 0;
3580 int segs = 0;
3581 int fd = -1;
3582
3583 init_note_info(&info);
3584
3585 errno = 0;
3586 getrlimit(RLIMIT_CORE, &dumpsize);
3587 if (dumpsize.rlim_cur == 0)
3588 return 0;
3589
3590 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3591 return (-errno);
3592
3593 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3594 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3595 return (-errno);
3596
3597 /*
3598 * Walk through target process memory mappings and
3599 * set up structure containing this information. After
3600 * this point vma_xxx functions can be used.
3601 */
3602 if ((mm = vma_init()) == NULL)
3603 goto out;
3604
3605 walk_memory_regions(mm, vma_walker);
3606 segs = vma_get_mapping_count(mm);
3607
3608 /*
3609 * Construct valid coredump ELF header. We also
3610 * add one more segment for notes.
3611 */
3612 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3613 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3614 goto out;
3615
3616 /* fill in the in-memory version of notes */
3617 if (fill_note_info(&info, signr, env) < 0)
3618 goto out;
3619
3620 offset += sizeof (elf); /* elf header */
3621 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3622
3623 /* write out notes program header */
3624 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3625
3626 offset += info.notes_size;
3627 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3628 goto out;
3629
3630 /*
3631 * ELF specification wants data to start at page boundary so
3632 * we align it here.
3633 */
3634 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3635
3636 /*
3637 * Write program headers for memory regions mapped in
3638 * the target process.
3639 */
3640 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3641 (void) memset(&phdr, 0, sizeof (phdr));
3642
3643 phdr.p_type = PT_LOAD;
3644 phdr.p_offset = offset;
3645 phdr.p_vaddr = vma->vma_start;
3646 phdr.p_paddr = 0;
3647 phdr.p_filesz = vma_dump_size(vma);
3648 offset += phdr.p_filesz;
3649 phdr.p_memsz = vma->vma_end - vma->vma_start;
3650 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3651 if (vma->vma_flags & PROT_WRITE)
3652 phdr.p_flags |= PF_W;
3653 if (vma->vma_flags & PROT_EXEC)
3654 phdr.p_flags |= PF_X;
3655 phdr.p_align = ELF_EXEC_PAGESIZE;
3656
3657 bswap_phdr(&phdr, 1);
3658 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3659 goto out;
3660 }
3661 }
3662
3663 /*
3664 * Next we write notes just after program headers. No
3665 * alignment needed here.
3666 */
3667 if (write_note_info(&info, fd) < 0)
3668 goto out;
3669
3670 /* align data to page boundary */
3671 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3672 goto out;
3673
3674 /*
3675 * Finally we can dump process memory into corefile as well.
3676 */
3677 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3678 abi_ulong addr;
3679 abi_ulong end;
3680
3681 end = vma->vma_start + vma_dump_size(vma);
3682
3683 for (addr = vma->vma_start; addr < end;
3684 addr += TARGET_PAGE_SIZE) {
3685 char page[TARGET_PAGE_SIZE];
3686 int error;
3687
3688 /*
3689 * Read in page from target process memory and
3690 * write it to coredump file.
3691 */
3692 error = copy_from_user(page, addr, sizeof (page));
3693 if (error != 0) {
3694 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3695 addr);
3696 errno = -error;
3697 goto out;
3698 }
3699 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3700 goto out;
3701 }
3702 }
3703
3704 out:
3705 free_note_info(&info);
3706 if (mm != NULL)
3707 vma_delete(mm);
3708 (void) close(fd);
3709
3710 if (errno != 0)
3711 return (-errno);
3712 return (0);
3713 }
3714 #endif /* USE_ELF_CORE_DUMP */
3715
3716 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3717 {
3718 init_thread(regs, infop);
3719 }