]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
linux-user: Add HPPA target_syscall.h
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20
21 #define ELF_OSABI ELFOSABI_SYSV
22
23 /* from personality.h */
24
25 /*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
42 };
43
44 /*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
74 };
75
76 /*
77 * Return the base personality without flags.
78 */
79 #define personality(pers) (pers & PER_MASK)
80
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
85
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
90
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
96
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
104
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
113
114 #ifdef TARGET_I386
115
116 #define ELF_PLATFORM get_elf_platform()
117
118 static const char *get_elf_platform(void)
119 {
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127 }
128
129 #define ELF_HWCAP get_elf_hwcap()
130
131 static uint32_t get_elf_hwcap(void)
132 {
133 X86CPU *cpu = X86_CPU(thread_cpu);
134
135 return cpu->env.features[FEAT_1_EDX];
136 }
137
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
140
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
143
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145 {
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
149 }
150
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
153
154 /*
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
158 *
159 * See linux kernel: arch/x86/include/asm/elf.h
160 */
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
162 {
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190 }
191
192 #else
193
194 #define ELF_START_MMAP 0x80000000
195
196 /*
197 * This is used to ensure we don't load something for the wrong architecture.
198 */
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200
201 /*
202 * These are used to set parameters in the core dumps.
203 */
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
206
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
209 {
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
212
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
218
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
221 }
222
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
225
226 /*
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
230 *
231 * See linux kernel: arch/x86/include/asm/elf.h
232 */
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
234 {
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252 }
253 #endif
254
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
257
258 #endif
259
260 #ifdef TARGET_ARM
261
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
264
265 #define ELF_START_MMAP 0x80000000
266
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
269
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
272 {
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
275
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
279 }
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
290 }
291
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
294
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
296 {
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
313
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
316 }
317
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
320
321 enum
322 {
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
345 };
346
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
353 };
354
355 /* The commpage only exists for 32 bit kernels */
356
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
365 */
366 static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
368 {
369 unsigned long real_start, test_page_addr;
370
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
373 */
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
375
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
378 */
379 if (test_page_addr >= guest_base
380 && test_page_addr <= (guest_base + guest_size)) {
381 return -1;
382 }
383
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
393 }
394
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
399 }
400
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
403 */
404
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
412 }
413
414 return 1; /* All good */
415 }
416
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
419
420 static uint32_t get_elf_hwcap(void)
421 {
422 ARMCPU *cpu = ARM_CPU(thread_cpu);
423 uint32_t hwcaps = 0;
424
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
429
430 /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
448 */
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
451
452 return hwcaps;
453 }
454
455 static uint32_t get_elf_hwcap2(void)
456 {
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
459
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
466 }
467
468 #undef GET_FEATURE
469
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
473
474 #define ELF_ARCH EM_AARCH64
475 #define ELF_CLASS ELFCLASS64
476 #define ELF_PLATFORM "aarch64"
477
478 static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
480 {
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
483
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
486 }
487
488 #define ELF_NREG 34
489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
490
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
493 {
494 int i;
495
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
498 }
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501 }
502
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE 4096
505
506 enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515 };
516
517 #define ELF_HWCAP get_elf_hwcap()
518
519 static uint32_t get_elf_hwcap(void)
520 {
521 ARMCPU *cpu = ARM_CPU(thread_cpu);
522 uint32_t hwcaps = 0;
523
524 hwcaps |= ARM_HWCAP_A64_FP;
525 hwcaps |= ARM_HWCAP_A64_ASIMD;
526
527 /* probe for the extra features */
528 #define GET_FEATURE(feat, hwcap) \
529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
535 #undef GET_FEATURE
536
537 return hwcaps;
538 }
539
540 #endif /* not TARGET_AARCH64 */
541 #endif /* TARGET_ARM */
542
543 #ifdef TARGET_UNICORE32
544
545 #define ELF_START_MMAP 0x80000000
546
547 #define ELF_CLASS ELFCLASS32
548 #define ELF_DATA ELFDATA2LSB
549 #define ELF_ARCH EM_UNICORE32
550
551 static inline void init_thread(struct target_pt_regs *regs,
552 struct image_info *infop)
553 {
554 abi_long stack = infop->start_stack;
555 memset(regs, 0, sizeof(*regs));
556 regs->UC32_REG_asr = 0x10;
557 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558 regs->UC32_REG_sp = infop->start_stack;
559 /* FIXME - what to for failure of get_user()? */
560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562 /* XXX: it seems that r0 is zeroed after ! */
563 regs->UC32_REG_00 = 0;
564 }
565
566 #define ELF_NREG 34
567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
568
569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
570 {
571 (*regs)[0] = env->regs[0];
572 (*regs)[1] = env->regs[1];
573 (*regs)[2] = env->regs[2];
574 (*regs)[3] = env->regs[3];
575 (*regs)[4] = env->regs[4];
576 (*regs)[5] = env->regs[5];
577 (*regs)[6] = env->regs[6];
578 (*regs)[7] = env->regs[7];
579 (*regs)[8] = env->regs[8];
580 (*regs)[9] = env->regs[9];
581 (*regs)[10] = env->regs[10];
582 (*regs)[11] = env->regs[11];
583 (*regs)[12] = env->regs[12];
584 (*regs)[13] = env->regs[13];
585 (*regs)[14] = env->regs[14];
586 (*regs)[15] = env->regs[15];
587 (*regs)[16] = env->regs[16];
588 (*regs)[17] = env->regs[17];
589 (*regs)[18] = env->regs[18];
590 (*regs)[19] = env->regs[19];
591 (*regs)[20] = env->regs[20];
592 (*regs)[21] = env->regs[21];
593 (*regs)[22] = env->regs[22];
594 (*regs)[23] = env->regs[23];
595 (*regs)[24] = env->regs[24];
596 (*regs)[25] = env->regs[25];
597 (*regs)[26] = env->regs[26];
598 (*regs)[27] = env->regs[27];
599 (*regs)[28] = env->regs[28];
600 (*regs)[29] = env->regs[29];
601 (*regs)[30] = env->regs[30];
602 (*regs)[31] = env->regs[31];
603
604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
605 (*regs)[33] = env->regs[0]; /* XXX */
606 }
607
608 #define USE_ELF_CORE_DUMP
609 #define ELF_EXEC_PAGESIZE 4096
610
611 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
612
613 #endif
614
615 #ifdef TARGET_SPARC
616 #ifdef TARGET_SPARC64
617
618 #define ELF_START_MMAP 0x80000000
619 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
621 #ifndef TARGET_ABI32
622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
623 #else
624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625 #endif
626
627 #define ELF_CLASS ELFCLASS64
628 #define ELF_ARCH EM_SPARCV9
629
630 #define STACK_BIAS 2047
631
632 static inline void init_thread(struct target_pt_regs *regs,
633 struct image_info *infop)
634 {
635 #ifndef TARGET_ABI32
636 regs->tstate = 0;
637 #endif
638 regs->pc = infop->entry;
639 regs->npc = regs->pc + 4;
640 regs->y = 0;
641 #ifdef TARGET_ABI32
642 regs->u_regs[14] = infop->start_stack - 16 * 4;
643 #else
644 if (personality(infop->personality) == PER_LINUX32)
645 regs->u_regs[14] = infop->start_stack - 16 * 4;
646 else
647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
648 #endif
649 }
650
651 #else
652 #define ELF_START_MMAP 0x80000000
653 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654 | HWCAP_SPARC_MULDIV)
655
656 #define ELF_CLASS ELFCLASS32
657 #define ELF_ARCH EM_SPARC
658
659 static inline void init_thread(struct target_pt_regs *regs,
660 struct image_info *infop)
661 {
662 regs->psr = 0;
663 regs->pc = infop->entry;
664 regs->npc = regs->pc + 4;
665 regs->y = 0;
666 regs->u_regs[14] = infop->start_stack - 16 * 4;
667 }
668
669 #endif
670 #endif
671
672 #ifdef TARGET_PPC
673
674 #define ELF_MACHINE PPC_ELF_MACHINE
675 #define ELF_START_MMAP 0x80000000
676
677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
678
679 #define elf_check_arch(x) ( (x) == EM_PPC64 )
680
681 #define ELF_CLASS ELFCLASS64
682
683 #else
684
685 #define ELF_CLASS ELFCLASS32
686
687 #endif
688
689 #define ELF_ARCH EM_PPC
690
691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692 See arch/powerpc/include/asm/cputable.h. */
693 enum {
694 QEMU_PPC_FEATURE_32 = 0x80000000,
695 QEMU_PPC_FEATURE_64 = 0x40000000,
696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709 QEMU_PPC_FEATURE_CELL = 0x00010000,
710 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711 QEMU_PPC_FEATURE_SMT = 0x00004000,
712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714 QEMU_PPC_FEATURE_PA6T = 0x00000800,
715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
720
721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
723
724 /* Feature definitions in AT_HWCAP2. */
725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
731 };
732
733 #define ELF_HWCAP get_elf_hwcap()
734
735 static uint32_t get_elf_hwcap(void)
736 {
737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
738 uint32_t features = 0;
739
740 /* We don't have to be terribly complete here; the high points are
741 Altivec/FP/SPE support. Anything else is just a bonus. */
742 #define GET_FEATURE(flag, feature) \
743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
744 #define GET_FEATURE2(flags, feature) \
745 do { \
746 if ((cpu->env.insns_flags2 & flags) == flags) { \
747 features |= feature; \
748 } \
749 } while (0)
750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762 QEMU_PPC_FEATURE_ARCH_2_06);
763 #undef GET_FEATURE
764 #undef GET_FEATURE2
765
766 return features;
767 }
768
769 #define ELF_HWCAP2 get_elf_hwcap2()
770
771 static uint32_t get_elf_hwcap2(void)
772 {
773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774 uint32_t features = 0;
775
776 #define GET_FEATURE(flag, feature) \
777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778 #define GET_FEATURE2(flag, feature) \
779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
780
781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
785
786 #undef GET_FEATURE
787 #undef GET_FEATURE2
788
789 return features;
790 }
791
792 /*
793 * The requirements here are:
794 * - keep the final alignment of sp (sp & 0xf)
795 * - make sure the 32-bit value at the first 16 byte aligned position of
796 * AUXV is greater than 16 for glibc compatibility.
797 * AT_IGNOREPPC is used for that.
798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
800 */
801 #define DLINFO_ARCH_ITEMS 5
802 #define ARCH_DLINFO \
803 do { \
804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
805 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
806 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
807 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
808 /* \
809 * Now handle glibc compatibility. \
810 */ \
811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
813 } while (0)
814
815 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
816 {
817 _regs->gpr[1] = infop->start_stack;
818 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
819 if (get_ppc64_abi(infop) < 2) {
820 uint64_t val;
821 get_user_u64(val, infop->entry + 8);
822 _regs->gpr[2] = val + infop->load_bias;
823 get_user_u64(val, infop->entry);
824 infop->entry = val + infop->load_bias;
825 } else {
826 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
827 }
828 #endif
829 _regs->nip = infop->entry;
830 }
831
832 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
833 #define ELF_NREG 48
834 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
835
836 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
837 {
838 int i;
839 target_ulong ccr = 0;
840
841 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
842 (*regs)[i] = tswapreg(env->gpr[i]);
843 }
844
845 (*regs)[32] = tswapreg(env->nip);
846 (*regs)[33] = tswapreg(env->msr);
847 (*regs)[35] = tswapreg(env->ctr);
848 (*regs)[36] = tswapreg(env->lr);
849 (*regs)[37] = tswapreg(env->xer);
850
851 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
852 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
853 }
854 (*regs)[38] = tswapreg(ccr);
855 }
856
857 #define USE_ELF_CORE_DUMP
858 #define ELF_EXEC_PAGESIZE 4096
859
860 #endif
861
862 #ifdef TARGET_MIPS
863
864 #define ELF_START_MMAP 0x80000000
865
866 #ifdef TARGET_MIPS64
867 #define ELF_CLASS ELFCLASS64
868 #else
869 #define ELF_CLASS ELFCLASS32
870 #endif
871 #define ELF_ARCH EM_MIPS
872
873 static inline void init_thread(struct target_pt_regs *regs,
874 struct image_info *infop)
875 {
876 regs->cp0_status = 2 << CP0St_KSU;
877 regs->cp0_epc = infop->entry;
878 regs->regs[29] = infop->start_stack;
879 }
880
881 /* See linux kernel: arch/mips/include/asm/elf.h. */
882 #define ELF_NREG 45
883 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
884
885 /* See linux kernel: arch/mips/include/asm/reg.h. */
886 enum {
887 #ifdef TARGET_MIPS64
888 TARGET_EF_R0 = 0,
889 #else
890 TARGET_EF_R0 = 6,
891 #endif
892 TARGET_EF_R26 = TARGET_EF_R0 + 26,
893 TARGET_EF_R27 = TARGET_EF_R0 + 27,
894 TARGET_EF_LO = TARGET_EF_R0 + 32,
895 TARGET_EF_HI = TARGET_EF_R0 + 33,
896 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
897 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
898 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
899 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
900 };
901
902 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
903 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
904 {
905 int i;
906
907 for (i = 0; i < TARGET_EF_R0; i++) {
908 (*regs)[i] = 0;
909 }
910 (*regs)[TARGET_EF_R0] = 0;
911
912 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
913 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
914 }
915
916 (*regs)[TARGET_EF_R26] = 0;
917 (*regs)[TARGET_EF_R27] = 0;
918 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
919 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
920 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
921 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
922 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
923 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
924 }
925
926 #define USE_ELF_CORE_DUMP
927 #define ELF_EXEC_PAGESIZE 4096
928
929 #endif /* TARGET_MIPS */
930
931 #ifdef TARGET_MICROBLAZE
932
933 #define ELF_START_MMAP 0x80000000
934
935 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
936
937 #define ELF_CLASS ELFCLASS32
938 #define ELF_ARCH EM_MICROBLAZE
939
940 static inline void init_thread(struct target_pt_regs *regs,
941 struct image_info *infop)
942 {
943 regs->pc = infop->entry;
944 regs->r1 = infop->start_stack;
945
946 }
947
948 #define ELF_EXEC_PAGESIZE 4096
949
950 #define USE_ELF_CORE_DUMP
951 #define ELF_NREG 38
952 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
953
954 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
955 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
956 {
957 int i, pos = 0;
958
959 for (i = 0; i < 32; i++) {
960 (*regs)[pos++] = tswapreg(env->regs[i]);
961 }
962
963 for (i = 0; i < 6; i++) {
964 (*regs)[pos++] = tswapreg(env->sregs[i]);
965 }
966 }
967
968 #endif /* TARGET_MICROBLAZE */
969
970 #ifdef TARGET_OPENRISC
971
972 #define ELF_START_MMAP 0x08000000
973
974 #define ELF_ARCH EM_OPENRISC
975 #define ELF_CLASS ELFCLASS32
976 #define ELF_DATA ELFDATA2MSB
977
978 static inline void init_thread(struct target_pt_regs *regs,
979 struct image_info *infop)
980 {
981 regs->pc = infop->entry;
982 regs->gpr[1] = infop->start_stack;
983 }
984
985 #define USE_ELF_CORE_DUMP
986 #define ELF_EXEC_PAGESIZE 8192
987
988 /* See linux kernel arch/openrisc/include/asm/elf.h. */
989 #define ELF_NREG 34 /* gprs and pc, sr */
990 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
991
992 static void elf_core_copy_regs(target_elf_gregset_t *regs,
993 const CPUOpenRISCState *env)
994 {
995 int i;
996
997 for (i = 0; i < 32; i++) {
998 (*regs)[i] = tswapreg(env->gpr[i]);
999 }
1000
1001 (*regs)[32] = tswapreg(env->pc);
1002 (*regs)[33] = tswapreg(env->sr);
1003 }
1004 #define ELF_HWCAP 0
1005 #define ELF_PLATFORM NULL
1006
1007 #endif /* TARGET_OPENRISC */
1008
1009 #ifdef TARGET_SH4
1010
1011 #define ELF_START_MMAP 0x80000000
1012
1013 #define ELF_CLASS ELFCLASS32
1014 #define ELF_ARCH EM_SH
1015
1016 static inline void init_thread(struct target_pt_regs *regs,
1017 struct image_info *infop)
1018 {
1019 /* Check other registers XXXXX */
1020 regs->pc = infop->entry;
1021 regs->regs[15] = infop->start_stack;
1022 }
1023
1024 /* See linux kernel: arch/sh/include/asm/elf.h. */
1025 #define ELF_NREG 23
1026 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1027
1028 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1029 enum {
1030 TARGET_REG_PC = 16,
1031 TARGET_REG_PR = 17,
1032 TARGET_REG_SR = 18,
1033 TARGET_REG_GBR = 19,
1034 TARGET_REG_MACH = 20,
1035 TARGET_REG_MACL = 21,
1036 TARGET_REG_SYSCALL = 22
1037 };
1038
1039 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1040 const CPUSH4State *env)
1041 {
1042 int i;
1043
1044 for (i = 0; i < 16; i++) {
1045 (*regs[i]) = tswapreg(env->gregs[i]);
1046 }
1047
1048 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1049 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1050 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1051 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1052 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1053 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1054 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1055 }
1056
1057 #define USE_ELF_CORE_DUMP
1058 #define ELF_EXEC_PAGESIZE 4096
1059
1060 enum {
1061 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1062 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1063 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1064 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1065 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1066 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1067 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1068 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1069 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1070 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1071 };
1072
1073 #define ELF_HWCAP get_elf_hwcap()
1074
1075 static uint32_t get_elf_hwcap(void)
1076 {
1077 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1078 uint32_t hwcap = 0;
1079
1080 hwcap |= SH_CPU_HAS_FPU;
1081
1082 if (cpu->env.features & SH_FEATURE_SH4A) {
1083 hwcap |= SH_CPU_HAS_LLSC;
1084 }
1085
1086 return hwcap;
1087 }
1088
1089 #endif
1090
1091 #ifdef TARGET_CRIS
1092
1093 #define ELF_START_MMAP 0x80000000
1094
1095 #define ELF_CLASS ELFCLASS32
1096 #define ELF_ARCH EM_CRIS
1097
1098 static inline void init_thread(struct target_pt_regs *regs,
1099 struct image_info *infop)
1100 {
1101 regs->erp = infop->entry;
1102 }
1103
1104 #define ELF_EXEC_PAGESIZE 8192
1105
1106 #endif
1107
1108 #ifdef TARGET_M68K
1109
1110 #define ELF_START_MMAP 0x80000000
1111
1112 #define ELF_CLASS ELFCLASS32
1113 #define ELF_ARCH EM_68K
1114
1115 /* ??? Does this need to do anything?
1116 #define ELF_PLAT_INIT(_r) */
1117
1118 static inline void init_thread(struct target_pt_regs *regs,
1119 struct image_info *infop)
1120 {
1121 regs->usp = infop->start_stack;
1122 regs->sr = 0;
1123 regs->pc = infop->entry;
1124 }
1125
1126 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1127 #define ELF_NREG 20
1128 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1129
1130 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1131 {
1132 (*regs)[0] = tswapreg(env->dregs[1]);
1133 (*regs)[1] = tswapreg(env->dregs[2]);
1134 (*regs)[2] = tswapreg(env->dregs[3]);
1135 (*regs)[3] = tswapreg(env->dregs[4]);
1136 (*regs)[4] = tswapreg(env->dregs[5]);
1137 (*regs)[5] = tswapreg(env->dregs[6]);
1138 (*regs)[6] = tswapreg(env->dregs[7]);
1139 (*regs)[7] = tswapreg(env->aregs[0]);
1140 (*regs)[8] = tswapreg(env->aregs[1]);
1141 (*regs)[9] = tswapreg(env->aregs[2]);
1142 (*regs)[10] = tswapreg(env->aregs[3]);
1143 (*regs)[11] = tswapreg(env->aregs[4]);
1144 (*regs)[12] = tswapreg(env->aregs[5]);
1145 (*regs)[13] = tswapreg(env->aregs[6]);
1146 (*regs)[14] = tswapreg(env->dregs[0]);
1147 (*regs)[15] = tswapreg(env->aregs[7]);
1148 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1149 (*regs)[17] = tswapreg(env->sr);
1150 (*regs)[18] = tswapreg(env->pc);
1151 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1152 }
1153
1154 #define USE_ELF_CORE_DUMP
1155 #define ELF_EXEC_PAGESIZE 8192
1156
1157 #endif
1158
1159 #ifdef TARGET_ALPHA
1160
1161 #define ELF_START_MMAP (0x30000000000ULL)
1162
1163 #define ELF_CLASS ELFCLASS64
1164 #define ELF_ARCH EM_ALPHA
1165
1166 static inline void init_thread(struct target_pt_regs *regs,
1167 struct image_info *infop)
1168 {
1169 regs->pc = infop->entry;
1170 regs->ps = 8;
1171 regs->usp = infop->start_stack;
1172 }
1173
1174 #define ELF_EXEC_PAGESIZE 8192
1175
1176 #endif /* TARGET_ALPHA */
1177
1178 #ifdef TARGET_S390X
1179
1180 #define ELF_START_MMAP (0x20000000000ULL)
1181
1182 #define ELF_CLASS ELFCLASS64
1183 #define ELF_DATA ELFDATA2MSB
1184 #define ELF_ARCH EM_S390
1185
1186 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1187 {
1188 regs->psw.addr = infop->entry;
1189 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1190 regs->gprs[15] = infop->start_stack;
1191 }
1192
1193 #endif /* TARGET_S390X */
1194
1195 #ifdef TARGET_TILEGX
1196
1197 /* 42 bits real used address, a half for user mode */
1198 #define ELF_START_MMAP (0x00000020000000000ULL)
1199
1200 #define elf_check_arch(x) ((x) == EM_TILEGX)
1201
1202 #define ELF_CLASS ELFCLASS64
1203 #define ELF_DATA ELFDATA2LSB
1204 #define ELF_ARCH EM_TILEGX
1205
1206 static inline void init_thread(struct target_pt_regs *regs,
1207 struct image_info *infop)
1208 {
1209 regs->pc = infop->entry;
1210 regs->sp = infop->start_stack;
1211
1212 }
1213
1214 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1215
1216 #endif /* TARGET_TILEGX */
1217
1218 #ifndef ELF_PLATFORM
1219 #define ELF_PLATFORM (NULL)
1220 #endif
1221
1222 #ifndef ELF_MACHINE
1223 #define ELF_MACHINE ELF_ARCH
1224 #endif
1225
1226 #ifndef elf_check_arch
1227 #define elf_check_arch(x) ((x) == ELF_ARCH)
1228 #endif
1229
1230 #ifndef ELF_HWCAP
1231 #define ELF_HWCAP 0
1232 #endif
1233
1234 #ifndef STACK_GROWS_DOWN
1235 #define STACK_GROWS_DOWN 1
1236 #endif
1237
1238 #ifndef STACK_ALIGNMENT
1239 #define STACK_ALIGNMENT 16
1240 #endif
1241
1242 #ifdef TARGET_ABI32
1243 #undef ELF_CLASS
1244 #define ELF_CLASS ELFCLASS32
1245 #undef bswaptls
1246 #define bswaptls(ptr) bswap32s(ptr)
1247 #endif
1248
1249 #include "elf.h"
1250
1251 struct exec
1252 {
1253 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1254 unsigned int a_text; /* length of text, in bytes */
1255 unsigned int a_data; /* length of data, in bytes */
1256 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1257 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1258 unsigned int a_entry; /* start address */
1259 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1260 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1261 };
1262
1263
1264 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1265 #define OMAGIC 0407
1266 #define NMAGIC 0410
1267 #define ZMAGIC 0413
1268 #define QMAGIC 0314
1269
1270 /* Necessary parameters */
1271 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1272 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1273 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1274 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1275
1276 #define DLINFO_ITEMS 14
1277
1278 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1279 {
1280 memcpy(to, from, n);
1281 }
1282
1283 #ifdef BSWAP_NEEDED
1284 static void bswap_ehdr(struct elfhdr *ehdr)
1285 {
1286 bswap16s(&ehdr->e_type); /* Object file type */
1287 bswap16s(&ehdr->e_machine); /* Architecture */
1288 bswap32s(&ehdr->e_version); /* Object file version */
1289 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1290 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1291 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1292 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1293 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1294 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1295 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1296 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1297 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1298 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1299 }
1300
1301 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1302 {
1303 int i;
1304 for (i = 0; i < phnum; ++i, ++phdr) {
1305 bswap32s(&phdr->p_type); /* Segment type */
1306 bswap32s(&phdr->p_flags); /* Segment flags */
1307 bswaptls(&phdr->p_offset); /* Segment file offset */
1308 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1309 bswaptls(&phdr->p_paddr); /* Segment physical address */
1310 bswaptls(&phdr->p_filesz); /* Segment size in file */
1311 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1312 bswaptls(&phdr->p_align); /* Segment alignment */
1313 }
1314 }
1315
1316 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1317 {
1318 int i;
1319 for (i = 0; i < shnum; ++i, ++shdr) {
1320 bswap32s(&shdr->sh_name);
1321 bswap32s(&shdr->sh_type);
1322 bswaptls(&shdr->sh_flags);
1323 bswaptls(&shdr->sh_addr);
1324 bswaptls(&shdr->sh_offset);
1325 bswaptls(&shdr->sh_size);
1326 bswap32s(&shdr->sh_link);
1327 bswap32s(&shdr->sh_info);
1328 bswaptls(&shdr->sh_addralign);
1329 bswaptls(&shdr->sh_entsize);
1330 }
1331 }
1332
1333 static void bswap_sym(struct elf_sym *sym)
1334 {
1335 bswap32s(&sym->st_name);
1336 bswaptls(&sym->st_value);
1337 bswaptls(&sym->st_size);
1338 bswap16s(&sym->st_shndx);
1339 }
1340 #else
1341 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1342 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1343 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1344 static inline void bswap_sym(struct elf_sym *sym) { }
1345 #endif
1346
1347 #ifdef USE_ELF_CORE_DUMP
1348 static int elf_core_dump(int, const CPUArchState *);
1349 #endif /* USE_ELF_CORE_DUMP */
1350 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1351
1352 /* Verify the portions of EHDR within E_IDENT for the target.
1353 This can be performed before bswapping the entire header. */
1354 static bool elf_check_ident(struct elfhdr *ehdr)
1355 {
1356 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1357 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1358 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1359 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1360 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1361 && ehdr->e_ident[EI_DATA] == ELF_DATA
1362 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1363 }
1364
1365 /* Verify the portions of EHDR outside of E_IDENT for the target.
1366 This has to wait until after bswapping the header. */
1367 static bool elf_check_ehdr(struct elfhdr *ehdr)
1368 {
1369 return (elf_check_arch(ehdr->e_machine)
1370 && ehdr->e_ehsize == sizeof(struct elfhdr)
1371 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1372 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1373 }
1374
1375 /*
1376 * 'copy_elf_strings()' copies argument/envelope strings from user
1377 * memory to free pages in kernel mem. These are in a format ready
1378 * to be put directly into the top of new user memory.
1379 *
1380 */
1381 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1382 abi_ulong p, abi_ulong stack_limit)
1383 {
1384 char *tmp;
1385 int len, i;
1386 abi_ulong top = p;
1387
1388 if (!p) {
1389 return 0; /* bullet-proofing */
1390 }
1391
1392 if (STACK_GROWS_DOWN) {
1393 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1394 for (i = argc - 1; i >= 0; --i) {
1395 tmp = argv[i];
1396 if (!tmp) {
1397 fprintf(stderr, "VFS: argc is wrong");
1398 exit(-1);
1399 }
1400 len = strlen(tmp) + 1;
1401 tmp += len;
1402
1403 if (len > (p - stack_limit)) {
1404 return 0;
1405 }
1406 while (len) {
1407 int bytes_to_copy = (len > offset) ? offset : len;
1408 tmp -= bytes_to_copy;
1409 p -= bytes_to_copy;
1410 offset -= bytes_to_copy;
1411 len -= bytes_to_copy;
1412
1413 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1414
1415 if (offset == 0) {
1416 memcpy_to_target(p, scratch, top - p);
1417 top = p;
1418 offset = TARGET_PAGE_SIZE;
1419 }
1420 }
1421 }
1422 if (p != top) {
1423 memcpy_to_target(p, scratch + offset, top - p);
1424 }
1425 } else {
1426 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1427 for (i = 0; i < argc; ++i) {
1428 tmp = argv[i];
1429 if (!tmp) {
1430 fprintf(stderr, "VFS: argc is wrong");
1431 exit(-1);
1432 }
1433 len = strlen(tmp) + 1;
1434 if (len > (stack_limit - p)) {
1435 return 0;
1436 }
1437 while (len) {
1438 int bytes_to_copy = (len > remaining) ? remaining : len;
1439
1440 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1441
1442 tmp += bytes_to_copy;
1443 remaining -= bytes_to_copy;
1444 p += bytes_to_copy;
1445 len -= bytes_to_copy;
1446
1447 if (remaining == 0) {
1448 memcpy_to_target(top, scratch, p - top);
1449 top = p;
1450 remaining = TARGET_PAGE_SIZE;
1451 }
1452 }
1453 }
1454 if (p != top) {
1455 memcpy_to_target(top, scratch, p - top);
1456 }
1457 }
1458
1459 return p;
1460 }
1461
1462 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1463 * argument/environment space. Newer kernels (>2.6.33) allow more,
1464 * dependent on stack size, but guarantee at least 32 pages for
1465 * backwards compatibility.
1466 */
1467 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1468
1469 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1470 struct image_info *info)
1471 {
1472 abi_ulong size, error, guard;
1473
1474 size = guest_stack_size;
1475 if (size < STACK_LOWER_LIMIT) {
1476 size = STACK_LOWER_LIMIT;
1477 }
1478 guard = TARGET_PAGE_SIZE;
1479 if (guard < qemu_real_host_page_size) {
1480 guard = qemu_real_host_page_size;
1481 }
1482
1483 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1484 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1485 if (error == -1) {
1486 perror("mmap stack");
1487 exit(-1);
1488 }
1489
1490 /* We reserve one extra page at the top of the stack as guard. */
1491 if (STACK_GROWS_DOWN) {
1492 target_mprotect(error, guard, PROT_NONE);
1493 info->stack_limit = error + guard;
1494 return info->stack_limit + size - sizeof(void *);
1495 } else {
1496 target_mprotect(error + size, guard, PROT_NONE);
1497 info->stack_limit = error + size;
1498 return error;
1499 }
1500 }
1501
1502 /* Map and zero the bss. We need to explicitly zero any fractional pages
1503 after the data section (i.e. bss). */
1504 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1505 {
1506 uintptr_t host_start, host_map_start, host_end;
1507
1508 last_bss = TARGET_PAGE_ALIGN(last_bss);
1509
1510 /* ??? There is confusion between qemu_real_host_page_size and
1511 qemu_host_page_size here and elsewhere in target_mmap, which
1512 may lead to the end of the data section mapping from the file
1513 not being mapped. At least there was an explicit test and
1514 comment for that here, suggesting that "the file size must
1515 be known". The comment probably pre-dates the introduction
1516 of the fstat system call in target_mmap which does in fact
1517 find out the size. What isn't clear is if the workaround
1518 here is still actually needed. For now, continue with it,
1519 but merge it with the "normal" mmap that would allocate the bss. */
1520
1521 host_start = (uintptr_t) g2h(elf_bss);
1522 host_end = (uintptr_t) g2h(last_bss);
1523 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1524
1525 if (host_map_start < host_end) {
1526 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1527 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1528 if (p == MAP_FAILED) {
1529 perror("cannot mmap brk");
1530 exit(-1);
1531 }
1532 }
1533
1534 /* Ensure that the bss page(s) are valid */
1535 if ((page_get_flags(last_bss-1) & prot) != prot) {
1536 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1537 }
1538
1539 if (host_start < host_map_start) {
1540 memset((void *)host_start, 0, host_map_start - host_start);
1541 }
1542 }
1543
1544 #ifdef CONFIG_USE_FDPIC
1545 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1546 {
1547 uint16_t n;
1548 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1549
1550 /* elf32_fdpic_loadseg */
1551 n = info->nsegs;
1552 while (n--) {
1553 sp -= 12;
1554 put_user_u32(loadsegs[n].addr, sp+0);
1555 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1556 put_user_u32(loadsegs[n].p_memsz, sp+8);
1557 }
1558
1559 /* elf32_fdpic_loadmap */
1560 sp -= 4;
1561 put_user_u16(0, sp+0); /* version */
1562 put_user_u16(info->nsegs, sp+2); /* nsegs */
1563
1564 info->personality = PER_LINUX_FDPIC;
1565 info->loadmap_addr = sp;
1566
1567 return sp;
1568 }
1569 #endif
1570
1571 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1572 struct elfhdr *exec,
1573 struct image_info *info,
1574 struct image_info *interp_info)
1575 {
1576 abi_ulong sp;
1577 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1578 int size;
1579 int i;
1580 abi_ulong u_rand_bytes;
1581 uint8_t k_rand_bytes[16];
1582 abi_ulong u_platform;
1583 const char *k_platform;
1584 const int n = sizeof(elf_addr_t);
1585
1586 sp = p;
1587
1588 #ifdef CONFIG_USE_FDPIC
1589 /* Needs to be before we load the env/argc/... */
1590 if (elf_is_fdpic(exec)) {
1591 /* Need 4 byte alignment for these structs */
1592 sp &= ~3;
1593 sp = loader_build_fdpic_loadmap(info, sp);
1594 info->other_info = interp_info;
1595 if (interp_info) {
1596 interp_info->other_info = info;
1597 sp = loader_build_fdpic_loadmap(interp_info, sp);
1598 }
1599 }
1600 #endif
1601
1602 u_platform = 0;
1603 k_platform = ELF_PLATFORM;
1604 if (k_platform) {
1605 size_t len = strlen(k_platform) + 1;
1606 if (STACK_GROWS_DOWN) {
1607 sp -= (len + n - 1) & ~(n - 1);
1608 u_platform = sp;
1609 /* FIXME - check return value of memcpy_to_target() for failure */
1610 memcpy_to_target(sp, k_platform, len);
1611 } else {
1612 memcpy_to_target(sp, k_platform, len);
1613 u_platform = sp;
1614 sp += len + 1;
1615 }
1616 }
1617
1618 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1619 * the argv and envp pointers.
1620 */
1621 if (STACK_GROWS_DOWN) {
1622 sp = QEMU_ALIGN_DOWN(sp, 16);
1623 } else {
1624 sp = QEMU_ALIGN_UP(sp, 16);
1625 }
1626
1627 /*
1628 * Generate 16 random bytes for userspace PRNG seeding (not
1629 * cryptically secure but it's not the aim of QEMU).
1630 */
1631 for (i = 0; i < 16; i++) {
1632 k_rand_bytes[i] = rand();
1633 }
1634 if (STACK_GROWS_DOWN) {
1635 sp -= 16;
1636 u_rand_bytes = sp;
1637 /* FIXME - check return value of memcpy_to_target() for failure */
1638 memcpy_to_target(sp, k_rand_bytes, 16);
1639 } else {
1640 memcpy_to_target(sp, k_rand_bytes, 16);
1641 u_rand_bytes = sp;
1642 sp += 16;
1643 }
1644
1645 size = (DLINFO_ITEMS + 1) * 2;
1646 if (k_platform)
1647 size += 2;
1648 #ifdef DLINFO_ARCH_ITEMS
1649 size += DLINFO_ARCH_ITEMS * 2;
1650 #endif
1651 #ifdef ELF_HWCAP2
1652 size += 2;
1653 #endif
1654 size += envc + argc + 2;
1655 size += 1; /* argc itself */
1656 size *= n;
1657
1658 /* Allocate space and finalize stack alignment for entry now. */
1659 if (STACK_GROWS_DOWN) {
1660 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1661 sp = u_argc;
1662 } else {
1663 u_argc = sp;
1664 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1665 }
1666
1667 u_argv = u_argc + n;
1668 u_envp = u_argv + (argc + 1) * n;
1669 u_auxv = u_envp + (envc + 1) * n;
1670 info->saved_auxv = u_auxv;
1671 info->arg_start = u_argv;
1672 info->arg_end = u_argv + argc * n;
1673
1674 /* This is correct because Linux defines
1675 * elf_addr_t as Elf32_Off / Elf64_Off
1676 */
1677 #define NEW_AUX_ENT(id, val) do { \
1678 put_user_ual(id, u_auxv); u_auxv += n; \
1679 put_user_ual(val, u_auxv); u_auxv += n; \
1680 } while(0)
1681
1682 /* There must be exactly DLINFO_ITEMS entries here. */
1683 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1684 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1685 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1686 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1687 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1688 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1689 NEW_AUX_ENT(AT_ENTRY, info->entry);
1690 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1691 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1692 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1693 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1694 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1695 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1696 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1697
1698 #ifdef ELF_HWCAP2
1699 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1700 #endif
1701
1702 if (u_platform) {
1703 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1704 }
1705 #ifdef ARCH_DLINFO
1706 /*
1707 * ARCH_DLINFO must come last so platform specific code can enforce
1708 * special alignment requirements on the AUXV if necessary (eg. PPC).
1709 */
1710 ARCH_DLINFO;
1711 #endif
1712 NEW_AUX_ENT (AT_NULL, 0);
1713 #undef NEW_AUX_ENT
1714
1715 info->auxv_len = u_argv - info->saved_auxv;
1716
1717 put_user_ual(argc, u_argc);
1718
1719 p = info->arg_strings;
1720 for (i = 0; i < argc; ++i) {
1721 put_user_ual(p, u_argv);
1722 u_argv += n;
1723 p += target_strlen(p) + 1;
1724 }
1725 put_user_ual(0, u_argv);
1726
1727 p = info->env_strings;
1728 for (i = 0; i < envc; ++i) {
1729 put_user_ual(p, u_envp);
1730 u_envp += n;
1731 p += target_strlen(p) + 1;
1732 }
1733 put_user_ual(0, u_envp);
1734
1735 return sp;
1736 }
1737
1738 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1739 /* If the guest doesn't have a validation function just agree */
1740 static int validate_guest_space(unsigned long guest_base,
1741 unsigned long guest_size)
1742 {
1743 return 1;
1744 }
1745 #endif
1746
1747 unsigned long init_guest_space(unsigned long host_start,
1748 unsigned long host_size,
1749 unsigned long guest_start,
1750 bool fixed)
1751 {
1752 unsigned long current_start, real_start;
1753 int flags;
1754
1755 assert(host_start || host_size);
1756
1757 /* If just a starting address is given, then just verify that
1758 * address. */
1759 if (host_start && !host_size) {
1760 if (validate_guest_space(host_start, host_size) == 1) {
1761 return host_start;
1762 } else {
1763 return (unsigned long)-1;
1764 }
1765 }
1766
1767 /* Setup the initial flags and start address. */
1768 current_start = host_start & qemu_host_page_mask;
1769 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1770 if (fixed) {
1771 flags |= MAP_FIXED;
1772 }
1773
1774 /* Otherwise, a non-zero size region of memory needs to be mapped
1775 * and validated. */
1776 while (1) {
1777 unsigned long real_size = host_size;
1778
1779 /* Do not use mmap_find_vma here because that is limited to the
1780 * guest address space. We are going to make the
1781 * guest address space fit whatever we're given.
1782 */
1783 real_start = (unsigned long)
1784 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1785 if (real_start == (unsigned long)-1) {
1786 return (unsigned long)-1;
1787 }
1788
1789 /* Ensure the address is properly aligned. */
1790 if (real_start & ~qemu_host_page_mask) {
1791 munmap((void *)real_start, host_size);
1792 real_size = host_size + qemu_host_page_size;
1793 real_start = (unsigned long)
1794 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1795 if (real_start == (unsigned long)-1) {
1796 return (unsigned long)-1;
1797 }
1798 real_start = HOST_PAGE_ALIGN(real_start);
1799 }
1800
1801 /* Check to see if the address is valid. */
1802 if (!host_start || real_start == current_start) {
1803 int valid = validate_guest_space(real_start - guest_start,
1804 real_size);
1805 if (valid == 1) {
1806 break;
1807 } else if (valid == -1) {
1808 return (unsigned long)-1;
1809 }
1810 /* valid == 0, so try again. */
1811 }
1812
1813 /* That address didn't work. Unmap and try a different one.
1814 * The address the host picked because is typically right at
1815 * the top of the host address space and leaves the guest with
1816 * no usable address space. Resort to a linear search. We
1817 * already compensated for mmap_min_addr, so this should not
1818 * happen often. Probably means we got unlucky and host
1819 * address space randomization put a shared library somewhere
1820 * inconvenient.
1821 */
1822 munmap((void *)real_start, host_size);
1823 current_start += qemu_host_page_size;
1824 if (host_start == current_start) {
1825 /* Theoretically possible if host doesn't have any suitably
1826 * aligned areas. Normally the first mmap will fail.
1827 */
1828 return (unsigned long)-1;
1829 }
1830 }
1831
1832 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1833
1834 return real_start;
1835 }
1836
1837 static void probe_guest_base(const char *image_name,
1838 abi_ulong loaddr, abi_ulong hiaddr)
1839 {
1840 /* Probe for a suitable guest base address, if the user has not set
1841 * it explicitly, and set guest_base appropriately.
1842 * In case of error we will print a suitable message and exit.
1843 */
1844 const char *errmsg;
1845 if (!have_guest_base && !reserved_va) {
1846 unsigned long host_start, real_start, host_size;
1847
1848 /* Round addresses to page boundaries. */
1849 loaddr &= qemu_host_page_mask;
1850 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1851
1852 if (loaddr < mmap_min_addr) {
1853 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1854 } else {
1855 host_start = loaddr;
1856 if (host_start != loaddr) {
1857 errmsg = "Address overflow loading ELF binary";
1858 goto exit_errmsg;
1859 }
1860 }
1861 host_size = hiaddr - loaddr;
1862
1863 /* Setup the initial guest memory space with ranges gleaned from
1864 * the ELF image that is being loaded.
1865 */
1866 real_start = init_guest_space(host_start, host_size, loaddr, false);
1867 if (real_start == (unsigned long)-1) {
1868 errmsg = "Unable to find space for application";
1869 goto exit_errmsg;
1870 }
1871 guest_base = real_start - loaddr;
1872
1873 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1874 TARGET_ABI_FMT_lx " to 0x%lx\n",
1875 loaddr, real_start);
1876 }
1877 return;
1878
1879 exit_errmsg:
1880 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1881 exit(-1);
1882 }
1883
1884
1885 /* Load an ELF image into the address space.
1886
1887 IMAGE_NAME is the filename of the image, to use in error messages.
1888 IMAGE_FD is the open file descriptor for the image.
1889
1890 BPRM_BUF is a copy of the beginning of the file; this of course
1891 contains the elf file header at offset 0. It is assumed that this
1892 buffer is sufficiently aligned to present no problems to the host
1893 in accessing data at aligned offsets within the buffer.
1894
1895 On return: INFO values will be filled in, as necessary or available. */
1896
1897 static void load_elf_image(const char *image_name, int image_fd,
1898 struct image_info *info, char **pinterp_name,
1899 char bprm_buf[BPRM_BUF_SIZE])
1900 {
1901 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1902 struct elf_phdr *phdr;
1903 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1904 int i, retval;
1905 const char *errmsg;
1906
1907 /* First of all, some simple consistency checks */
1908 errmsg = "Invalid ELF image for this architecture";
1909 if (!elf_check_ident(ehdr)) {
1910 goto exit_errmsg;
1911 }
1912 bswap_ehdr(ehdr);
1913 if (!elf_check_ehdr(ehdr)) {
1914 goto exit_errmsg;
1915 }
1916
1917 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1918 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1919 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1920 } else {
1921 phdr = (struct elf_phdr *) alloca(i);
1922 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1923 if (retval != i) {
1924 goto exit_read;
1925 }
1926 }
1927 bswap_phdr(phdr, ehdr->e_phnum);
1928
1929 #ifdef CONFIG_USE_FDPIC
1930 info->nsegs = 0;
1931 info->pt_dynamic_addr = 0;
1932 #endif
1933
1934 mmap_lock();
1935
1936 /* Find the maximum size of the image and allocate an appropriate
1937 amount of memory to handle that. */
1938 loaddr = -1, hiaddr = 0;
1939 for (i = 0; i < ehdr->e_phnum; ++i) {
1940 if (phdr[i].p_type == PT_LOAD) {
1941 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1942 if (a < loaddr) {
1943 loaddr = a;
1944 }
1945 a = phdr[i].p_vaddr + phdr[i].p_memsz;
1946 if (a > hiaddr) {
1947 hiaddr = a;
1948 }
1949 #ifdef CONFIG_USE_FDPIC
1950 ++info->nsegs;
1951 #endif
1952 }
1953 }
1954
1955 load_addr = loaddr;
1956 if (ehdr->e_type == ET_DYN) {
1957 /* The image indicates that it can be loaded anywhere. Find a
1958 location that can hold the memory space required. If the
1959 image is pre-linked, LOADDR will be non-zero. Since we do
1960 not supply MAP_FIXED here we'll use that address if and
1961 only if it remains available. */
1962 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1963 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1964 -1, 0);
1965 if (load_addr == -1) {
1966 goto exit_perror;
1967 }
1968 } else if (pinterp_name != NULL) {
1969 /* This is the main executable. Make sure that the low
1970 address does not conflict with MMAP_MIN_ADDR or the
1971 QEMU application itself. */
1972 probe_guest_base(image_name, loaddr, hiaddr);
1973 }
1974 load_bias = load_addr - loaddr;
1975
1976 #ifdef CONFIG_USE_FDPIC
1977 {
1978 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1979 g_malloc(sizeof(*loadsegs) * info->nsegs);
1980
1981 for (i = 0; i < ehdr->e_phnum; ++i) {
1982 switch (phdr[i].p_type) {
1983 case PT_DYNAMIC:
1984 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1985 break;
1986 case PT_LOAD:
1987 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1988 loadsegs->p_vaddr = phdr[i].p_vaddr;
1989 loadsegs->p_memsz = phdr[i].p_memsz;
1990 ++loadsegs;
1991 break;
1992 }
1993 }
1994 }
1995 #endif
1996
1997 info->load_bias = load_bias;
1998 info->load_addr = load_addr;
1999 info->entry = ehdr->e_entry + load_bias;
2000 info->start_code = -1;
2001 info->end_code = 0;
2002 info->start_data = -1;
2003 info->end_data = 0;
2004 info->brk = 0;
2005 info->elf_flags = ehdr->e_flags;
2006
2007 for (i = 0; i < ehdr->e_phnum; i++) {
2008 struct elf_phdr *eppnt = phdr + i;
2009 if (eppnt->p_type == PT_LOAD) {
2010 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2011 int elf_prot = 0;
2012
2013 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2014 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2015 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2016
2017 vaddr = load_bias + eppnt->p_vaddr;
2018 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2019 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2020
2021 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2022 elf_prot, MAP_PRIVATE | MAP_FIXED,
2023 image_fd, eppnt->p_offset - vaddr_po);
2024 if (error == -1) {
2025 goto exit_perror;
2026 }
2027
2028 vaddr_ef = vaddr + eppnt->p_filesz;
2029 vaddr_em = vaddr + eppnt->p_memsz;
2030
2031 /* If the load segment requests extra zeros (e.g. bss), map it. */
2032 if (vaddr_ef < vaddr_em) {
2033 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2034 }
2035
2036 /* Find the full program boundaries. */
2037 if (elf_prot & PROT_EXEC) {
2038 if (vaddr < info->start_code) {
2039 info->start_code = vaddr;
2040 }
2041 if (vaddr_ef > info->end_code) {
2042 info->end_code = vaddr_ef;
2043 }
2044 }
2045 if (elf_prot & PROT_WRITE) {
2046 if (vaddr < info->start_data) {
2047 info->start_data = vaddr;
2048 }
2049 if (vaddr_ef > info->end_data) {
2050 info->end_data = vaddr_ef;
2051 }
2052 if (vaddr_em > info->brk) {
2053 info->brk = vaddr_em;
2054 }
2055 }
2056 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2057 char *interp_name;
2058
2059 if (*pinterp_name) {
2060 errmsg = "Multiple PT_INTERP entries";
2061 goto exit_errmsg;
2062 }
2063 interp_name = malloc(eppnt->p_filesz);
2064 if (!interp_name) {
2065 goto exit_perror;
2066 }
2067
2068 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2069 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2070 eppnt->p_filesz);
2071 } else {
2072 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2073 eppnt->p_offset);
2074 if (retval != eppnt->p_filesz) {
2075 goto exit_perror;
2076 }
2077 }
2078 if (interp_name[eppnt->p_filesz - 1] != 0) {
2079 errmsg = "Invalid PT_INTERP entry";
2080 goto exit_errmsg;
2081 }
2082 *pinterp_name = interp_name;
2083 }
2084 }
2085
2086 if (info->end_data == 0) {
2087 info->start_data = info->end_code;
2088 info->end_data = info->end_code;
2089 info->brk = info->end_code;
2090 }
2091
2092 if (qemu_log_enabled()) {
2093 load_symbols(ehdr, image_fd, load_bias);
2094 }
2095
2096 mmap_unlock();
2097
2098 close(image_fd);
2099 return;
2100
2101 exit_read:
2102 if (retval >= 0) {
2103 errmsg = "Incomplete read of file header";
2104 goto exit_errmsg;
2105 }
2106 exit_perror:
2107 errmsg = strerror(errno);
2108 exit_errmsg:
2109 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2110 exit(-1);
2111 }
2112
2113 static void load_elf_interp(const char *filename, struct image_info *info,
2114 char bprm_buf[BPRM_BUF_SIZE])
2115 {
2116 int fd, retval;
2117
2118 fd = open(path(filename), O_RDONLY);
2119 if (fd < 0) {
2120 goto exit_perror;
2121 }
2122
2123 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2124 if (retval < 0) {
2125 goto exit_perror;
2126 }
2127 if (retval < BPRM_BUF_SIZE) {
2128 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2129 }
2130
2131 load_elf_image(filename, fd, info, NULL, bprm_buf);
2132 return;
2133
2134 exit_perror:
2135 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2136 exit(-1);
2137 }
2138
2139 static int symfind(const void *s0, const void *s1)
2140 {
2141 target_ulong addr = *(target_ulong *)s0;
2142 struct elf_sym *sym = (struct elf_sym *)s1;
2143 int result = 0;
2144 if (addr < sym->st_value) {
2145 result = -1;
2146 } else if (addr >= sym->st_value + sym->st_size) {
2147 result = 1;
2148 }
2149 return result;
2150 }
2151
2152 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2153 {
2154 #if ELF_CLASS == ELFCLASS32
2155 struct elf_sym *syms = s->disas_symtab.elf32;
2156 #else
2157 struct elf_sym *syms = s->disas_symtab.elf64;
2158 #endif
2159
2160 // binary search
2161 struct elf_sym *sym;
2162
2163 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2164 if (sym != NULL) {
2165 return s->disas_strtab + sym->st_name;
2166 }
2167
2168 return "";
2169 }
2170
2171 /* FIXME: This should use elf_ops.h */
2172 static int symcmp(const void *s0, const void *s1)
2173 {
2174 struct elf_sym *sym0 = (struct elf_sym *)s0;
2175 struct elf_sym *sym1 = (struct elf_sym *)s1;
2176 return (sym0->st_value < sym1->st_value)
2177 ? -1
2178 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2179 }
2180
2181 /* Best attempt to load symbols from this ELF object. */
2182 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2183 {
2184 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2185 struct elf_shdr *shdr;
2186 char *strings = NULL;
2187 struct syminfo *s = NULL;
2188 struct elf_sym *new_syms, *syms = NULL;
2189
2190 shnum = hdr->e_shnum;
2191 i = shnum * sizeof(struct elf_shdr);
2192 shdr = (struct elf_shdr *)alloca(i);
2193 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2194 return;
2195 }
2196
2197 bswap_shdr(shdr, shnum);
2198 for (i = 0; i < shnum; ++i) {
2199 if (shdr[i].sh_type == SHT_SYMTAB) {
2200 sym_idx = i;
2201 str_idx = shdr[i].sh_link;
2202 goto found;
2203 }
2204 }
2205
2206 /* There will be no symbol table if the file was stripped. */
2207 return;
2208
2209 found:
2210 /* Now know where the strtab and symtab are. Snarf them. */
2211 s = g_try_new(struct syminfo, 1);
2212 if (!s) {
2213 goto give_up;
2214 }
2215
2216 i = shdr[str_idx].sh_size;
2217 s->disas_strtab = strings = g_try_malloc(i);
2218 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2219 goto give_up;
2220 }
2221
2222 i = shdr[sym_idx].sh_size;
2223 syms = g_try_malloc(i);
2224 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2225 goto give_up;
2226 }
2227
2228 nsyms = i / sizeof(struct elf_sym);
2229 for (i = 0; i < nsyms; ) {
2230 bswap_sym(syms + i);
2231 /* Throw away entries which we do not need. */
2232 if (syms[i].st_shndx == SHN_UNDEF
2233 || syms[i].st_shndx >= SHN_LORESERVE
2234 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2235 if (i < --nsyms) {
2236 syms[i] = syms[nsyms];
2237 }
2238 } else {
2239 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2240 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2241 syms[i].st_value &= ~(target_ulong)1;
2242 #endif
2243 syms[i].st_value += load_bias;
2244 i++;
2245 }
2246 }
2247
2248 /* No "useful" symbol. */
2249 if (nsyms == 0) {
2250 goto give_up;
2251 }
2252
2253 /* Attempt to free the storage associated with the local symbols
2254 that we threw away. Whether or not this has any effect on the
2255 memory allocation depends on the malloc implementation and how
2256 many symbols we managed to discard. */
2257 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2258 if (new_syms == NULL) {
2259 goto give_up;
2260 }
2261 syms = new_syms;
2262
2263 qsort(syms, nsyms, sizeof(*syms), symcmp);
2264
2265 s->disas_num_syms = nsyms;
2266 #if ELF_CLASS == ELFCLASS32
2267 s->disas_symtab.elf32 = syms;
2268 #else
2269 s->disas_symtab.elf64 = syms;
2270 #endif
2271 s->lookup_symbol = lookup_symbolxx;
2272 s->next = syminfos;
2273 syminfos = s;
2274
2275 return;
2276
2277 give_up:
2278 g_free(s);
2279 g_free(strings);
2280 g_free(syms);
2281 }
2282
2283 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2284 {
2285 struct image_info interp_info;
2286 struct elfhdr elf_ex;
2287 char *elf_interpreter = NULL;
2288 char *scratch;
2289
2290 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2291
2292 load_elf_image(bprm->filename, bprm->fd, info,
2293 &elf_interpreter, bprm->buf);
2294
2295 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2296 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2297 when we load the interpreter. */
2298 elf_ex = *(struct elfhdr *)bprm->buf;
2299
2300 /* Do this so that we can load the interpreter, if need be. We will
2301 change some of these later */
2302 bprm->p = setup_arg_pages(bprm, info);
2303
2304 scratch = g_new0(char, TARGET_PAGE_SIZE);
2305 if (STACK_GROWS_DOWN) {
2306 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2307 bprm->p, info->stack_limit);
2308 info->file_string = bprm->p;
2309 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2310 bprm->p, info->stack_limit);
2311 info->env_strings = bprm->p;
2312 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2313 bprm->p, info->stack_limit);
2314 info->arg_strings = bprm->p;
2315 } else {
2316 info->arg_strings = bprm->p;
2317 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2318 bprm->p, info->stack_limit);
2319 info->env_strings = bprm->p;
2320 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2321 bprm->p, info->stack_limit);
2322 info->file_string = bprm->p;
2323 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2324 bprm->p, info->stack_limit);
2325 }
2326
2327 g_free(scratch);
2328
2329 if (!bprm->p) {
2330 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2331 exit(-1);
2332 }
2333
2334 if (elf_interpreter) {
2335 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2336
2337 /* If the program interpreter is one of these two, then assume
2338 an iBCS2 image. Otherwise assume a native linux image. */
2339
2340 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2341 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2342 info->personality = PER_SVR4;
2343
2344 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2345 and some applications "depend" upon this behavior. Since
2346 we do not have the power to recompile these, we emulate
2347 the SVr4 behavior. Sigh. */
2348 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2349 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2350 }
2351 }
2352
2353 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2354 info, (elf_interpreter ? &interp_info : NULL));
2355 info->start_stack = bprm->p;
2356
2357 /* If we have an interpreter, set that as the program's entry point.
2358 Copy the load_bias as well, to help PPC64 interpret the entry
2359 point as a function descriptor. Do this after creating elf tables
2360 so that we copy the original program entry point into the AUXV. */
2361 if (elf_interpreter) {
2362 info->load_bias = interp_info.load_bias;
2363 info->entry = interp_info.entry;
2364 free(elf_interpreter);
2365 }
2366
2367 #ifdef USE_ELF_CORE_DUMP
2368 bprm->core_dump = &elf_core_dump;
2369 #endif
2370
2371 return 0;
2372 }
2373
2374 #ifdef USE_ELF_CORE_DUMP
2375 /*
2376 * Definitions to generate Intel SVR4-like core files.
2377 * These mostly have the same names as the SVR4 types with "target_elf_"
2378 * tacked on the front to prevent clashes with linux definitions,
2379 * and the typedef forms have been avoided. This is mostly like
2380 * the SVR4 structure, but more Linuxy, with things that Linux does
2381 * not support and which gdb doesn't really use excluded.
2382 *
2383 * Fields we don't dump (their contents is zero) in linux-user qemu
2384 * are marked with XXX.
2385 *
2386 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2387 *
2388 * Porting ELF coredump for target is (quite) simple process. First you
2389 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2390 * the target resides):
2391 *
2392 * #define USE_ELF_CORE_DUMP
2393 *
2394 * Next you define type of register set used for dumping. ELF specification
2395 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2396 *
2397 * typedef <target_regtype> target_elf_greg_t;
2398 * #define ELF_NREG <number of registers>
2399 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2400 *
2401 * Last step is to implement target specific function that copies registers
2402 * from given cpu into just specified register set. Prototype is:
2403 *
2404 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2405 * const CPUArchState *env);
2406 *
2407 * Parameters:
2408 * regs - copy register values into here (allocated and zeroed by caller)
2409 * env - copy registers from here
2410 *
2411 * Example for ARM target is provided in this file.
2412 */
2413
2414 /* An ELF note in memory */
2415 struct memelfnote {
2416 const char *name;
2417 size_t namesz;
2418 size_t namesz_rounded;
2419 int type;
2420 size_t datasz;
2421 size_t datasz_rounded;
2422 void *data;
2423 size_t notesz;
2424 };
2425
2426 struct target_elf_siginfo {
2427 abi_int si_signo; /* signal number */
2428 abi_int si_code; /* extra code */
2429 abi_int si_errno; /* errno */
2430 };
2431
2432 struct target_elf_prstatus {
2433 struct target_elf_siginfo pr_info; /* Info associated with signal */
2434 abi_short pr_cursig; /* Current signal */
2435 abi_ulong pr_sigpend; /* XXX */
2436 abi_ulong pr_sighold; /* XXX */
2437 target_pid_t pr_pid;
2438 target_pid_t pr_ppid;
2439 target_pid_t pr_pgrp;
2440 target_pid_t pr_sid;
2441 struct target_timeval pr_utime; /* XXX User time */
2442 struct target_timeval pr_stime; /* XXX System time */
2443 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2444 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2445 target_elf_gregset_t pr_reg; /* GP registers */
2446 abi_int pr_fpvalid; /* XXX */
2447 };
2448
2449 #define ELF_PRARGSZ (80) /* Number of chars for args */
2450
2451 struct target_elf_prpsinfo {
2452 char pr_state; /* numeric process state */
2453 char pr_sname; /* char for pr_state */
2454 char pr_zomb; /* zombie */
2455 char pr_nice; /* nice val */
2456 abi_ulong pr_flag; /* flags */
2457 target_uid_t pr_uid;
2458 target_gid_t pr_gid;
2459 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2460 /* Lots missing */
2461 char pr_fname[16]; /* filename of executable */
2462 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2463 };
2464
2465 /* Here is the structure in which status of each thread is captured. */
2466 struct elf_thread_status {
2467 QTAILQ_ENTRY(elf_thread_status) ets_link;
2468 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2469 #if 0
2470 elf_fpregset_t fpu; /* NT_PRFPREG */
2471 struct task_struct *thread;
2472 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2473 #endif
2474 struct memelfnote notes[1];
2475 int num_notes;
2476 };
2477
2478 struct elf_note_info {
2479 struct memelfnote *notes;
2480 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2481 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2482
2483 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2484 #if 0
2485 /*
2486 * Current version of ELF coredump doesn't support
2487 * dumping fp regs etc.
2488 */
2489 elf_fpregset_t *fpu;
2490 elf_fpxregset_t *xfpu;
2491 int thread_status_size;
2492 #endif
2493 int notes_size;
2494 int numnote;
2495 };
2496
2497 struct vm_area_struct {
2498 target_ulong vma_start; /* start vaddr of memory region */
2499 target_ulong vma_end; /* end vaddr of memory region */
2500 abi_ulong vma_flags; /* protection etc. flags for the region */
2501 QTAILQ_ENTRY(vm_area_struct) vma_link;
2502 };
2503
2504 struct mm_struct {
2505 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2506 int mm_count; /* number of mappings */
2507 };
2508
2509 static struct mm_struct *vma_init(void);
2510 static void vma_delete(struct mm_struct *);
2511 static int vma_add_mapping(struct mm_struct *, target_ulong,
2512 target_ulong, abi_ulong);
2513 static int vma_get_mapping_count(const struct mm_struct *);
2514 static struct vm_area_struct *vma_first(const struct mm_struct *);
2515 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2516 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2517 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2518 unsigned long flags);
2519
2520 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2521 static void fill_note(struct memelfnote *, const char *, int,
2522 unsigned int, void *);
2523 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2524 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2525 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2526 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2527 static size_t note_size(const struct memelfnote *);
2528 static void free_note_info(struct elf_note_info *);
2529 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2530 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2531 static int core_dump_filename(const TaskState *, char *, size_t);
2532
2533 static int dump_write(int, const void *, size_t);
2534 static int write_note(struct memelfnote *, int);
2535 static int write_note_info(struct elf_note_info *, int);
2536
2537 #ifdef BSWAP_NEEDED
2538 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2539 {
2540 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2541 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2542 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2543 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2544 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2545 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2546 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2547 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2548 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2549 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2550 /* cpu times are not filled, so we skip them */
2551 /* regs should be in correct format already */
2552 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2553 }
2554
2555 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2556 {
2557 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2558 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2559 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2560 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2561 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2562 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2563 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2564 }
2565
2566 static void bswap_note(struct elf_note *en)
2567 {
2568 bswap32s(&en->n_namesz);
2569 bswap32s(&en->n_descsz);
2570 bswap32s(&en->n_type);
2571 }
2572 #else
2573 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2574 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2575 static inline void bswap_note(struct elf_note *en) { }
2576 #endif /* BSWAP_NEEDED */
2577
2578 /*
2579 * Minimal support for linux memory regions. These are needed
2580 * when we are finding out what memory exactly belongs to
2581 * emulated process. No locks needed here, as long as
2582 * thread that received the signal is stopped.
2583 */
2584
2585 static struct mm_struct *vma_init(void)
2586 {
2587 struct mm_struct *mm;
2588
2589 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2590 return (NULL);
2591
2592 mm->mm_count = 0;
2593 QTAILQ_INIT(&mm->mm_mmap);
2594
2595 return (mm);
2596 }
2597
2598 static void vma_delete(struct mm_struct *mm)
2599 {
2600 struct vm_area_struct *vma;
2601
2602 while ((vma = vma_first(mm)) != NULL) {
2603 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2604 g_free(vma);
2605 }
2606 g_free(mm);
2607 }
2608
2609 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2610 target_ulong end, abi_ulong flags)
2611 {
2612 struct vm_area_struct *vma;
2613
2614 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2615 return (-1);
2616
2617 vma->vma_start = start;
2618 vma->vma_end = end;
2619 vma->vma_flags = flags;
2620
2621 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2622 mm->mm_count++;
2623
2624 return (0);
2625 }
2626
2627 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2628 {
2629 return (QTAILQ_FIRST(&mm->mm_mmap));
2630 }
2631
2632 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2633 {
2634 return (QTAILQ_NEXT(vma, vma_link));
2635 }
2636
2637 static int vma_get_mapping_count(const struct mm_struct *mm)
2638 {
2639 return (mm->mm_count);
2640 }
2641
2642 /*
2643 * Calculate file (dump) size of given memory region.
2644 */
2645 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2646 {
2647 /* if we cannot even read the first page, skip it */
2648 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2649 return (0);
2650
2651 /*
2652 * Usually we don't dump executable pages as they contain
2653 * non-writable code that debugger can read directly from
2654 * target library etc. However, thread stacks are marked
2655 * also executable so we read in first page of given region
2656 * and check whether it contains elf header. If there is
2657 * no elf header, we dump it.
2658 */
2659 if (vma->vma_flags & PROT_EXEC) {
2660 char page[TARGET_PAGE_SIZE];
2661
2662 copy_from_user(page, vma->vma_start, sizeof (page));
2663 if ((page[EI_MAG0] == ELFMAG0) &&
2664 (page[EI_MAG1] == ELFMAG1) &&
2665 (page[EI_MAG2] == ELFMAG2) &&
2666 (page[EI_MAG3] == ELFMAG3)) {
2667 /*
2668 * Mappings are possibly from ELF binary. Don't dump
2669 * them.
2670 */
2671 return (0);
2672 }
2673 }
2674
2675 return (vma->vma_end - vma->vma_start);
2676 }
2677
2678 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2679 unsigned long flags)
2680 {
2681 struct mm_struct *mm = (struct mm_struct *)priv;
2682
2683 vma_add_mapping(mm, start, end, flags);
2684 return (0);
2685 }
2686
2687 static void fill_note(struct memelfnote *note, const char *name, int type,
2688 unsigned int sz, void *data)
2689 {
2690 unsigned int namesz;
2691
2692 namesz = strlen(name) + 1;
2693 note->name = name;
2694 note->namesz = namesz;
2695 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2696 note->type = type;
2697 note->datasz = sz;
2698 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2699
2700 note->data = data;
2701
2702 /*
2703 * We calculate rounded up note size here as specified by
2704 * ELF document.
2705 */
2706 note->notesz = sizeof (struct elf_note) +
2707 note->namesz_rounded + note->datasz_rounded;
2708 }
2709
2710 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2711 uint32_t flags)
2712 {
2713 (void) memset(elf, 0, sizeof(*elf));
2714
2715 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2716 elf->e_ident[EI_CLASS] = ELF_CLASS;
2717 elf->e_ident[EI_DATA] = ELF_DATA;
2718 elf->e_ident[EI_VERSION] = EV_CURRENT;
2719 elf->e_ident[EI_OSABI] = ELF_OSABI;
2720
2721 elf->e_type = ET_CORE;
2722 elf->e_machine = machine;
2723 elf->e_version = EV_CURRENT;
2724 elf->e_phoff = sizeof(struct elfhdr);
2725 elf->e_flags = flags;
2726 elf->e_ehsize = sizeof(struct elfhdr);
2727 elf->e_phentsize = sizeof(struct elf_phdr);
2728 elf->e_phnum = segs;
2729
2730 bswap_ehdr(elf);
2731 }
2732
2733 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2734 {
2735 phdr->p_type = PT_NOTE;
2736 phdr->p_offset = offset;
2737 phdr->p_vaddr = 0;
2738 phdr->p_paddr = 0;
2739 phdr->p_filesz = sz;
2740 phdr->p_memsz = 0;
2741 phdr->p_flags = 0;
2742 phdr->p_align = 0;
2743
2744 bswap_phdr(phdr, 1);
2745 }
2746
2747 static size_t note_size(const struct memelfnote *note)
2748 {
2749 return (note->notesz);
2750 }
2751
2752 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2753 const TaskState *ts, int signr)
2754 {
2755 (void) memset(prstatus, 0, sizeof (*prstatus));
2756 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2757 prstatus->pr_pid = ts->ts_tid;
2758 prstatus->pr_ppid = getppid();
2759 prstatus->pr_pgrp = getpgrp();
2760 prstatus->pr_sid = getsid(0);
2761
2762 bswap_prstatus(prstatus);
2763 }
2764
2765 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2766 {
2767 char *base_filename;
2768 unsigned int i, len;
2769
2770 (void) memset(psinfo, 0, sizeof (*psinfo));
2771
2772 len = ts->info->arg_end - ts->info->arg_start;
2773 if (len >= ELF_PRARGSZ)
2774 len = ELF_PRARGSZ - 1;
2775 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2776 return -EFAULT;
2777 for (i = 0; i < len; i++)
2778 if (psinfo->pr_psargs[i] == 0)
2779 psinfo->pr_psargs[i] = ' ';
2780 psinfo->pr_psargs[len] = 0;
2781
2782 psinfo->pr_pid = getpid();
2783 psinfo->pr_ppid = getppid();
2784 psinfo->pr_pgrp = getpgrp();
2785 psinfo->pr_sid = getsid(0);
2786 psinfo->pr_uid = getuid();
2787 psinfo->pr_gid = getgid();
2788
2789 base_filename = g_path_get_basename(ts->bprm->filename);
2790 /*
2791 * Using strncpy here is fine: at max-length,
2792 * this field is not NUL-terminated.
2793 */
2794 (void) strncpy(psinfo->pr_fname, base_filename,
2795 sizeof(psinfo->pr_fname));
2796
2797 g_free(base_filename);
2798 bswap_psinfo(psinfo);
2799 return (0);
2800 }
2801
2802 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2803 {
2804 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2805 elf_addr_t orig_auxv = auxv;
2806 void *ptr;
2807 int len = ts->info->auxv_len;
2808
2809 /*
2810 * Auxiliary vector is stored in target process stack. It contains
2811 * {type, value} pairs that we need to dump into note. This is not
2812 * strictly necessary but we do it here for sake of completeness.
2813 */
2814
2815 /* read in whole auxv vector and copy it to memelfnote */
2816 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2817 if (ptr != NULL) {
2818 fill_note(note, "CORE", NT_AUXV, len, ptr);
2819 unlock_user(ptr, auxv, len);
2820 }
2821 }
2822
2823 /*
2824 * Constructs name of coredump file. We have following convention
2825 * for the name:
2826 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2827 *
2828 * Returns 0 in case of success, -1 otherwise (errno is set).
2829 */
2830 static int core_dump_filename(const TaskState *ts, char *buf,
2831 size_t bufsize)
2832 {
2833 char timestamp[64];
2834 char *base_filename = NULL;
2835 struct timeval tv;
2836 struct tm tm;
2837
2838 assert(bufsize >= PATH_MAX);
2839
2840 if (gettimeofday(&tv, NULL) < 0) {
2841 (void) fprintf(stderr, "unable to get current timestamp: %s",
2842 strerror(errno));
2843 return (-1);
2844 }
2845
2846 base_filename = g_path_get_basename(ts->bprm->filename);
2847 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2848 localtime_r(&tv.tv_sec, &tm));
2849 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2850 base_filename, timestamp, (int)getpid());
2851 g_free(base_filename);
2852
2853 return (0);
2854 }
2855
2856 static int dump_write(int fd, const void *ptr, size_t size)
2857 {
2858 const char *bufp = (const char *)ptr;
2859 ssize_t bytes_written, bytes_left;
2860 struct rlimit dumpsize;
2861 off_t pos;
2862
2863 bytes_written = 0;
2864 getrlimit(RLIMIT_CORE, &dumpsize);
2865 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2866 if (errno == ESPIPE) { /* not a seekable stream */
2867 bytes_left = size;
2868 } else {
2869 return pos;
2870 }
2871 } else {
2872 if (dumpsize.rlim_cur <= pos) {
2873 return -1;
2874 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2875 bytes_left = size;
2876 } else {
2877 size_t limit_left=dumpsize.rlim_cur - pos;
2878 bytes_left = limit_left >= size ? size : limit_left ;
2879 }
2880 }
2881
2882 /*
2883 * In normal conditions, single write(2) should do but
2884 * in case of socket etc. this mechanism is more portable.
2885 */
2886 do {
2887 bytes_written = write(fd, bufp, bytes_left);
2888 if (bytes_written < 0) {
2889 if (errno == EINTR)
2890 continue;
2891 return (-1);
2892 } else if (bytes_written == 0) { /* eof */
2893 return (-1);
2894 }
2895 bufp += bytes_written;
2896 bytes_left -= bytes_written;
2897 } while (bytes_left > 0);
2898
2899 return (0);
2900 }
2901
2902 static int write_note(struct memelfnote *men, int fd)
2903 {
2904 struct elf_note en;
2905
2906 en.n_namesz = men->namesz;
2907 en.n_type = men->type;
2908 en.n_descsz = men->datasz;
2909
2910 bswap_note(&en);
2911
2912 if (dump_write(fd, &en, sizeof(en)) != 0)
2913 return (-1);
2914 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2915 return (-1);
2916 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2917 return (-1);
2918
2919 return (0);
2920 }
2921
2922 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2923 {
2924 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2925 TaskState *ts = (TaskState *)cpu->opaque;
2926 struct elf_thread_status *ets;
2927
2928 ets = g_malloc0(sizeof (*ets));
2929 ets->num_notes = 1; /* only prstatus is dumped */
2930 fill_prstatus(&ets->prstatus, ts, 0);
2931 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2932 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2933 &ets->prstatus);
2934
2935 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2936
2937 info->notes_size += note_size(&ets->notes[0]);
2938 }
2939
2940 static void init_note_info(struct elf_note_info *info)
2941 {
2942 /* Initialize the elf_note_info structure so that it is at
2943 * least safe to call free_note_info() on it. Must be
2944 * called before calling fill_note_info().
2945 */
2946 memset(info, 0, sizeof (*info));
2947 QTAILQ_INIT(&info->thread_list);
2948 }
2949
2950 static int fill_note_info(struct elf_note_info *info,
2951 long signr, const CPUArchState *env)
2952 {
2953 #define NUMNOTES 3
2954 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2955 TaskState *ts = (TaskState *)cpu->opaque;
2956 int i;
2957
2958 info->notes = g_new0(struct memelfnote, NUMNOTES);
2959 if (info->notes == NULL)
2960 return (-ENOMEM);
2961 info->prstatus = g_malloc0(sizeof (*info->prstatus));
2962 if (info->prstatus == NULL)
2963 return (-ENOMEM);
2964 info->psinfo = g_malloc0(sizeof (*info->psinfo));
2965 if (info->prstatus == NULL)
2966 return (-ENOMEM);
2967
2968 /*
2969 * First fill in status (and registers) of current thread
2970 * including process info & aux vector.
2971 */
2972 fill_prstatus(info->prstatus, ts, signr);
2973 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2974 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2975 sizeof (*info->prstatus), info->prstatus);
2976 fill_psinfo(info->psinfo, ts);
2977 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2978 sizeof (*info->psinfo), info->psinfo);
2979 fill_auxv_note(&info->notes[2], ts);
2980 info->numnote = 3;
2981
2982 info->notes_size = 0;
2983 for (i = 0; i < info->numnote; i++)
2984 info->notes_size += note_size(&info->notes[i]);
2985
2986 /* read and fill status of all threads */
2987 cpu_list_lock();
2988 CPU_FOREACH(cpu) {
2989 if (cpu == thread_cpu) {
2990 continue;
2991 }
2992 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2993 }
2994 cpu_list_unlock();
2995
2996 return (0);
2997 }
2998
2999 static void free_note_info(struct elf_note_info *info)
3000 {
3001 struct elf_thread_status *ets;
3002
3003 while (!QTAILQ_EMPTY(&info->thread_list)) {
3004 ets = QTAILQ_FIRST(&info->thread_list);
3005 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3006 g_free(ets);
3007 }
3008
3009 g_free(info->prstatus);
3010 g_free(info->psinfo);
3011 g_free(info->notes);
3012 }
3013
3014 static int write_note_info(struct elf_note_info *info, int fd)
3015 {
3016 struct elf_thread_status *ets;
3017 int i, error = 0;
3018
3019 /* write prstatus, psinfo and auxv for current thread */
3020 for (i = 0; i < info->numnote; i++)
3021 if ((error = write_note(&info->notes[i], fd)) != 0)
3022 return (error);
3023
3024 /* write prstatus for each thread */
3025 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3026 if ((error = write_note(&ets->notes[0], fd)) != 0)
3027 return (error);
3028 }
3029
3030 return (0);
3031 }
3032
3033 /*
3034 * Write out ELF coredump.
3035 *
3036 * See documentation of ELF object file format in:
3037 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3038 *
3039 * Coredump format in linux is following:
3040 *
3041 * 0 +----------------------+ \
3042 * | ELF header | ET_CORE |
3043 * +----------------------+ |
3044 * | ELF program headers | |--- headers
3045 * | - NOTE section | |
3046 * | - PT_LOAD sections | |
3047 * +----------------------+ /
3048 * | NOTEs: |
3049 * | - NT_PRSTATUS |
3050 * | - NT_PRSINFO |
3051 * | - NT_AUXV |
3052 * +----------------------+ <-- aligned to target page
3053 * | Process memory dump |
3054 * : :
3055 * . .
3056 * : :
3057 * | |
3058 * +----------------------+
3059 *
3060 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3061 * NT_PRSINFO -> struct elf_prpsinfo
3062 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3063 *
3064 * Format follows System V format as close as possible. Current
3065 * version limitations are as follows:
3066 * - no floating point registers are dumped
3067 *
3068 * Function returns 0 in case of success, negative errno otherwise.
3069 *
3070 * TODO: make this work also during runtime: it should be
3071 * possible to force coredump from running process and then
3072 * continue processing. For example qemu could set up SIGUSR2
3073 * handler (provided that target process haven't registered
3074 * handler for that) that does the dump when signal is received.
3075 */
3076 static int elf_core_dump(int signr, const CPUArchState *env)
3077 {
3078 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3079 const TaskState *ts = (const TaskState *)cpu->opaque;
3080 struct vm_area_struct *vma = NULL;
3081 char corefile[PATH_MAX];
3082 struct elf_note_info info;
3083 struct elfhdr elf;
3084 struct elf_phdr phdr;
3085 struct rlimit dumpsize;
3086 struct mm_struct *mm = NULL;
3087 off_t offset = 0, data_offset = 0;
3088 int segs = 0;
3089 int fd = -1;
3090
3091 init_note_info(&info);
3092
3093 errno = 0;
3094 getrlimit(RLIMIT_CORE, &dumpsize);
3095 if (dumpsize.rlim_cur == 0)
3096 return 0;
3097
3098 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3099 return (-errno);
3100
3101 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3102 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3103 return (-errno);
3104
3105 /*
3106 * Walk through target process memory mappings and
3107 * set up structure containing this information. After
3108 * this point vma_xxx functions can be used.
3109 */
3110 if ((mm = vma_init()) == NULL)
3111 goto out;
3112
3113 walk_memory_regions(mm, vma_walker);
3114 segs = vma_get_mapping_count(mm);
3115
3116 /*
3117 * Construct valid coredump ELF header. We also
3118 * add one more segment for notes.
3119 */
3120 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3121 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3122 goto out;
3123
3124 /* fill in the in-memory version of notes */
3125 if (fill_note_info(&info, signr, env) < 0)
3126 goto out;
3127
3128 offset += sizeof (elf); /* elf header */
3129 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3130
3131 /* write out notes program header */
3132 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3133
3134 offset += info.notes_size;
3135 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3136 goto out;
3137
3138 /*
3139 * ELF specification wants data to start at page boundary so
3140 * we align it here.
3141 */
3142 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3143
3144 /*
3145 * Write program headers for memory regions mapped in
3146 * the target process.
3147 */
3148 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3149 (void) memset(&phdr, 0, sizeof (phdr));
3150
3151 phdr.p_type = PT_LOAD;
3152 phdr.p_offset = offset;
3153 phdr.p_vaddr = vma->vma_start;
3154 phdr.p_paddr = 0;
3155 phdr.p_filesz = vma_dump_size(vma);
3156 offset += phdr.p_filesz;
3157 phdr.p_memsz = vma->vma_end - vma->vma_start;
3158 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3159 if (vma->vma_flags & PROT_WRITE)
3160 phdr.p_flags |= PF_W;
3161 if (vma->vma_flags & PROT_EXEC)
3162 phdr.p_flags |= PF_X;
3163 phdr.p_align = ELF_EXEC_PAGESIZE;
3164
3165 bswap_phdr(&phdr, 1);
3166 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3167 goto out;
3168 }
3169 }
3170
3171 /*
3172 * Next we write notes just after program headers. No
3173 * alignment needed here.
3174 */
3175 if (write_note_info(&info, fd) < 0)
3176 goto out;
3177
3178 /* align data to page boundary */
3179 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3180 goto out;
3181
3182 /*
3183 * Finally we can dump process memory into corefile as well.
3184 */
3185 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3186 abi_ulong addr;
3187 abi_ulong end;
3188
3189 end = vma->vma_start + vma_dump_size(vma);
3190
3191 for (addr = vma->vma_start; addr < end;
3192 addr += TARGET_PAGE_SIZE) {
3193 char page[TARGET_PAGE_SIZE];
3194 int error;
3195
3196 /*
3197 * Read in page from target process memory and
3198 * write it to coredump file.
3199 */
3200 error = copy_from_user(page, addr, sizeof (page));
3201 if (error != 0) {
3202 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3203 addr);
3204 errno = -error;
3205 goto out;
3206 }
3207 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3208 goto out;
3209 }
3210 }
3211
3212 out:
3213 free_note_info(&info);
3214 if (mm != NULL)
3215 vma_delete(mm);
3216 (void) close(fd);
3217
3218 if (errno != 0)
3219 return (-errno);
3220 return (0);
3221 }
3222 #endif /* USE_ELF_CORE_DUMP */
3223
3224 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3225 {
3226 init_thread(regs, infop);
3227 }