]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
linux-user: call rcu_(un)register_thread on pthread_(exit|create)
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15
16 #include "qemu.h"
17 #include "disas/disas.h"
18
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28
29 #define ELF_OSABI ELFOSABI_SYSV
30
31 /* from personality.h */
32
33 /*
34 * Flags for bug emulation.
35 *
36 * These occupy the top three bytes.
37 */
38 enum {
39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
41 descriptors (signal handling) */
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
50 };
51
52 /*
53 * Personality types.
54 *
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
57 */
58 enum {
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
68 PER_BSD = 0x0006,
69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_LINUX32 = 0x0008,
72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76 PER_RISCOS = 0x000c,
77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79 PER_OSF4 = 0x000f, /* OSF/1 v4 */
80 PER_HPUX = 0x0010,
81 PER_MASK = 0x00ff,
82 };
83
84 /*
85 * Return the base personality without flags.
86 */
87 #define personality(pers) (pers & PER_MASK)
88
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA ELFDATA2MSB
101 #else
102 #define ELF_DATA ELFDATA2LSB
103 #endif
104
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong target_elf_greg_t;
107 #define tswapreg(ptr) tswap64(ptr)
108 #else
109 typedef abi_ulong target_elf_greg_t;
110 #define tswapreg(ptr) tswapal(ptr)
111 #endif
112
113 #ifdef USE_UID16
114 typedef abi_ushort target_uid_t;
115 typedef abi_ushort target_gid_t;
116 #else
117 typedef abi_uint target_uid_t;
118 typedef abi_uint target_gid_t;
119 #endif
120 typedef abi_int target_pid_t;
121
122 #ifdef TARGET_I386
123
124 #define ELF_PLATFORM get_elf_platform()
125
126 static const char *get_elf_platform(void)
127 {
128 static char elf_platform[] = "i386";
129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130 if (family > 6)
131 family = 6;
132 if (family >= 3)
133 elf_platform[1] = '0' + family;
134 return elf_platform;
135 }
136
137 #define ELF_HWCAP get_elf_hwcap()
138
139 static uint32_t get_elf_hwcap(void)
140 {
141 X86CPU *cpu = X86_CPU(thread_cpu);
142
143 return cpu->env.features[FEAT_1_EDX];
144 }
145
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149
150 #define ELF_CLASS ELFCLASS64
151 #define ELF_ARCH EM_X86_64
152
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158 }
159
160 #define ELF_NREG 27
161 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
162
163 /*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172 (*regs)[0] = env->regs[15];
173 (*regs)[1] = env->regs[14];
174 (*regs)[2] = env->regs[13];
175 (*regs)[3] = env->regs[12];
176 (*regs)[4] = env->regs[R_EBP];
177 (*regs)[5] = env->regs[R_EBX];
178 (*regs)[6] = env->regs[11];
179 (*regs)[7] = env->regs[10];
180 (*regs)[8] = env->regs[9];
181 (*regs)[9] = env->regs[8];
182 (*regs)[10] = env->regs[R_EAX];
183 (*regs)[11] = env->regs[R_ECX];
184 (*regs)[12] = env->regs[R_EDX];
185 (*regs)[13] = env->regs[R_ESI];
186 (*regs)[14] = env->regs[R_EDI];
187 (*regs)[15] = env->regs[R_EAX]; /* XXX */
188 (*regs)[16] = env->eip;
189 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190 (*regs)[18] = env->eflags;
191 (*regs)[19] = env->regs[R_ESP];
192 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199 }
200
201 #else
202
203 #define ELF_START_MMAP 0x80000000
204
205 /*
206 * This is used to ensure we don't load something for the wrong architecture.
207 */
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209
210 /*
211 * These are used to set parameters in the core dumps.
212 */
213 #define ELF_CLASS ELFCLASS32
214 #define ELF_ARCH EM_386
215
216 static inline void init_thread(struct target_pt_regs *regs,
217 struct image_info *infop)
218 {
219 regs->esp = infop->start_stack;
220 regs->eip = infop->entry;
221
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
227
228 A value of 0 tells we have no such handler. */
229 regs->edx = 0;
230 }
231
232 #define ELF_NREG 17
233 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
234
235 /*
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
238 * those.
239 *
240 * See linux kernel: arch/x86/include/asm/elf.h
241 */
242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
243 {
244 (*regs)[0] = env->regs[R_EBX];
245 (*regs)[1] = env->regs[R_ECX];
246 (*regs)[2] = env->regs[R_EDX];
247 (*regs)[3] = env->regs[R_ESI];
248 (*regs)[4] = env->regs[R_EDI];
249 (*regs)[5] = env->regs[R_EBP];
250 (*regs)[6] = env->regs[R_EAX];
251 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255 (*regs)[11] = env->regs[R_EAX]; /* XXX */
256 (*regs)[12] = env->eip;
257 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258 (*regs)[14] = env->eflags;
259 (*regs)[15] = env->regs[R_ESP];
260 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261 }
262 #endif
263
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE 4096
266
267 #endif
268
269 #ifdef TARGET_ARM
270
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
273
274 #define ELF_START_MMAP 0x80000000
275
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
277
278 #define ELF_ARCH ELF_MACHINE
279 #define ELF_CLASS ELFCLASS32
280
281 static inline void init_thread(struct target_pt_regs *regs,
282 struct image_info *infop)
283 {
284 abi_long stack = infop->start_stack;
285 memset(regs, 0, sizeof(*regs));
286
287 regs->ARM_cpsr = 0x10;
288 if (infop->entry & 1)
289 regs->ARM_cpsr |= CPSR_T;
290 regs->ARM_pc = infop->entry & 0xfffffffe;
291 regs->ARM_sp = infop->start_stack;
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
295 /* XXX: it seems that r0 is zeroed after ! */
296 regs->ARM_r0 = 0;
297 /* For uClinux PIC binaries. */
298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299 regs->ARM_r10 = infop->start_data;
300 }
301
302 #define ELF_NREG 18
303 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
304
305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
306 {
307 (*regs)[0] = tswapreg(env->regs[0]);
308 (*regs)[1] = tswapreg(env->regs[1]);
309 (*regs)[2] = tswapreg(env->regs[2]);
310 (*regs)[3] = tswapreg(env->regs[3]);
311 (*regs)[4] = tswapreg(env->regs[4]);
312 (*regs)[5] = tswapreg(env->regs[5]);
313 (*regs)[6] = tswapreg(env->regs[6]);
314 (*regs)[7] = tswapreg(env->regs[7]);
315 (*regs)[8] = tswapreg(env->regs[8]);
316 (*regs)[9] = tswapreg(env->regs[9]);
317 (*regs)[10] = tswapreg(env->regs[10]);
318 (*regs)[11] = tswapreg(env->regs[11]);
319 (*regs)[12] = tswapreg(env->regs[12]);
320 (*regs)[13] = tswapreg(env->regs[13]);
321 (*regs)[14] = tswapreg(env->regs[14]);
322 (*regs)[15] = tswapreg(env->regs[15]);
323
324 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
326 }
327
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE 4096
330
331 enum
332 {
333 ARM_HWCAP_ARM_SWP = 1 << 0,
334 ARM_HWCAP_ARM_HALF = 1 << 1,
335 ARM_HWCAP_ARM_THUMB = 1 << 2,
336 ARM_HWCAP_ARM_26BIT = 1 << 3,
337 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338 ARM_HWCAP_ARM_FPA = 1 << 5,
339 ARM_HWCAP_ARM_VFP = 1 << 6,
340 ARM_HWCAP_ARM_EDSP = 1 << 7,
341 ARM_HWCAP_ARM_JAVA = 1 << 8,
342 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
343 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
344 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
345 ARM_HWCAP_ARM_NEON = 1 << 12,
346 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
347 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
348 ARM_HWCAP_ARM_TLS = 1 << 15,
349 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
350 ARM_HWCAP_ARM_IDIVA = 1 << 17,
351 ARM_HWCAP_ARM_IDIVT = 1 << 18,
352 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
353 ARM_HWCAP_ARM_LPAE = 1 << 20,
354 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
355 };
356
357 enum {
358 ARM_HWCAP2_ARM_AES = 1 << 0,
359 ARM_HWCAP2_ARM_PMULL = 1 << 1,
360 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
361 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
362 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
363 };
364
365 /* The commpage only exists for 32 bit kernels */
366
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369 * Return 0 if the proposed guest space isn't suitable, but another
370 * address space should be tried.
371 * Return -1 if there is no way the proposed guest space can be
372 * valid regardless of the base.
373 * The guest code may leave a page mapped and populate it if the
374 * address is suitable.
375 */
376 static int validate_guest_space(unsigned long guest_base,
377 unsigned long guest_size)
378 {
379 unsigned long real_start, test_page_addr;
380
381 /* We need to check that we can force a fault on access to the
382 * commpage at 0xffff0fxx
383 */
384 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
385
386 /* If the commpage lies within the already allocated guest space,
387 * then there is no way we can allocate it.
388 */
389 if (test_page_addr >= guest_base
390 && test_page_addr <= (guest_base + guest_size)) {
391 return -1;
392 }
393
394 /* Note it needs to be writeable to let us initialise it */
395 real_start = (unsigned long)
396 mmap((void *)test_page_addr, qemu_host_page_size,
397 PROT_READ | PROT_WRITE,
398 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399
400 /* If we can't map it then try another address */
401 if (real_start == -1ul) {
402 return 0;
403 }
404
405 if (real_start != test_page_addr) {
406 /* OS didn't put the page where we asked - unmap and reject */
407 munmap((void *)real_start, qemu_host_page_size);
408 return 0;
409 }
410
411 /* Leave the page mapped
412 * Populate it (mmap should have left it all 0'd)
413 */
414
415 /* Kernel helper versions */
416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417
418 /* Now it's populated make it RO */
419 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420 perror("Protecting guest commpage");
421 exit(-1);
422 }
423
424 return 1; /* All good */
425 }
426
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
429
430 static uint32_t get_elf_hwcap(void)
431 {
432 ARMCPU *cpu = ARM_CPU(thread_cpu);
433 uint32_t hwcaps = 0;
434
435 hwcaps |= ARM_HWCAP_ARM_SWP;
436 hwcaps |= ARM_HWCAP_ARM_HALF;
437 hwcaps |= ARM_HWCAP_ARM_THUMB;
438 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
439
440 /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
445 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
450 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457 * to our VFP_FP16 feature bit.
458 */
459 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
461
462 return hwcaps;
463 }
464
465 static uint32_t get_elf_hwcap2(void)
466 {
467 ARMCPU *cpu = ARM_CPU(thread_cpu);
468 uint32_t hwcaps = 0;
469
470 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
471 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
472 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
474 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475 return hwcaps;
476 }
477
478 #undef GET_FEATURE
479
480 #else
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
483
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
485
486 #define ELF_ARCH ELF_MACHINE
487 #define ELF_CLASS ELFCLASS64
488 #define ELF_PLATFORM "aarch64"
489
490 static inline void init_thread(struct target_pt_regs *regs,
491 struct image_info *infop)
492 {
493 abi_long stack = infop->start_stack;
494 memset(regs, 0, sizeof(*regs));
495
496 regs->pc = infop->entry & ~0x3ULL;
497 regs->sp = stack;
498 }
499
500 #define ELF_NREG 34
501 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
502
503 static void elf_core_copy_regs(target_elf_gregset_t *regs,
504 const CPUARMState *env)
505 {
506 int i;
507
508 for (i = 0; i < 32; i++) {
509 (*regs)[i] = tswapreg(env->xregs[i]);
510 }
511 (*regs)[32] = tswapreg(env->pc);
512 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513 }
514
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE 4096
517
518 enum {
519 ARM_HWCAP_A64_FP = 1 << 0,
520 ARM_HWCAP_A64_ASIMD = 1 << 1,
521 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
522 ARM_HWCAP_A64_AES = 1 << 3,
523 ARM_HWCAP_A64_PMULL = 1 << 4,
524 ARM_HWCAP_A64_SHA1 = 1 << 5,
525 ARM_HWCAP_A64_SHA2 = 1 << 6,
526 ARM_HWCAP_A64_CRC32 = 1 << 7,
527 };
528
529 #define ELF_HWCAP get_elf_hwcap()
530
531 static uint32_t get_elf_hwcap(void)
532 {
533 ARMCPU *cpu = ARM_CPU(thread_cpu);
534 uint32_t hwcaps = 0;
535
536 hwcaps |= ARM_HWCAP_A64_FP;
537 hwcaps |= ARM_HWCAP_A64_ASIMD;
538
539 /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
543 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
544 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
546 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
547 #undef GET_FEATURE
548
549 return hwcaps;
550 }
551
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
554
555 #ifdef TARGET_UNICORE32
556
557 #define ELF_START_MMAP 0x80000000
558
559 #define elf_check_arch(x) ((x) == EM_UNICORE32)
560
561 #define ELF_CLASS ELFCLASS32
562 #define ELF_DATA ELFDATA2LSB
563 #define ELF_ARCH EM_UNICORE32
564
565 static inline void init_thread(struct target_pt_regs *regs,
566 struct image_info *infop)
567 {
568 abi_long stack = infop->start_stack;
569 memset(regs, 0, sizeof(*regs));
570 regs->UC32_REG_asr = 0x10;
571 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572 regs->UC32_REG_sp = infop->start_stack;
573 /* FIXME - what to for failure of get_user()? */
574 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576 /* XXX: it seems that r0 is zeroed after ! */
577 regs->UC32_REG_00 = 0;
578 }
579
580 #define ELF_NREG 34
581 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
582
583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
584 {
585 (*regs)[0] = env->regs[0];
586 (*regs)[1] = env->regs[1];
587 (*regs)[2] = env->regs[2];
588 (*regs)[3] = env->regs[3];
589 (*regs)[4] = env->regs[4];
590 (*regs)[5] = env->regs[5];
591 (*regs)[6] = env->regs[6];
592 (*regs)[7] = env->regs[7];
593 (*regs)[8] = env->regs[8];
594 (*regs)[9] = env->regs[9];
595 (*regs)[10] = env->regs[10];
596 (*regs)[11] = env->regs[11];
597 (*regs)[12] = env->regs[12];
598 (*regs)[13] = env->regs[13];
599 (*regs)[14] = env->regs[14];
600 (*regs)[15] = env->regs[15];
601 (*regs)[16] = env->regs[16];
602 (*regs)[17] = env->regs[17];
603 (*regs)[18] = env->regs[18];
604 (*regs)[19] = env->regs[19];
605 (*regs)[20] = env->regs[20];
606 (*regs)[21] = env->regs[21];
607 (*regs)[22] = env->regs[22];
608 (*regs)[23] = env->regs[23];
609 (*regs)[24] = env->regs[24];
610 (*regs)[25] = env->regs[25];
611 (*regs)[26] = env->regs[26];
612 (*regs)[27] = env->regs[27];
613 (*regs)[28] = env->regs[28];
614 (*regs)[29] = env->regs[29];
615 (*regs)[30] = env->regs[30];
616 (*regs)[31] = env->regs[31];
617
618 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
619 (*regs)[33] = env->regs[0]; /* XXX */
620 }
621
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE 4096
624
625 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626
627 #endif
628
629 #ifdef TARGET_SPARC
630 #ifdef TARGET_SPARC64
631
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
635 #ifndef TARGET_ABI32
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
637 #else
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639 #endif
640
641 #define ELF_CLASS ELFCLASS64
642 #define ELF_ARCH EM_SPARCV9
643
644 #define STACK_BIAS 2047
645
646 static inline void init_thread(struct target_pt_regs *regs,
647 struct image_info *infop)
648 {
649 #ifndef TARGET_ABI32
650 regs->tstate = 0;
651 #endif
652 regs->pc = infop->entry;
653 regs->npc = regs->pc + 4;
654 regs->y = 0;
655 #ifdef TARGET_ABI32
656 regs->u_regs[14] = infop->start_stack - 16 * 4;
657 #else
658 if (personality(infop->personality) == PER_LINUX32)
659 regs->u_regs[14] = infop->start_stack - 16 * 4;
660 else
661 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
662 #endif
663 }
664
665 #else
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668 | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
670
671 #define ELF_CLASS ELFCLASS32
672 #define ELF_ARCH EM_SPARC
673
674 static inline void init_thread(struct target_pt_regs *regs,
675 struct image_info *infop)
676 {
677 regs->psr = 0;
678 regs->pc = infop->entry;
679 regs->npc = regs->pc + 4;
680 regs->y = 0;
681 regs->u_regs[14] = infop->start_stack - 16 * 4;
682 }
683
684 #endif
685 #endif
686
687 #ifdef TARGET_PPC
688
689 #define ELF_START_MMAP 0x80000000
690
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
692
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
694
695 #define ELF_CLASS ELFCLASS64
696
697 #else
698
699 #define elf_check_arch(x) ( (x) == EM_PPC )
700
701 #define ELF_CLASS ELFCLASS32
702
703 #endif
704
705 #define ELF_ARCH EM_PPC
706
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708 See arch/powerpc/include/asm/cputable.h. */
709 enum {
710 QEMU_PPC_FEATURE_32 = 0x80000000,
711 QEMU_PPC_FEATURE_64 = 0x40000000,
712 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725 QEMU_PPC_FEATURE_CELL = 0x00010000,
726 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727 QEMU_PPC_FEATURE_SMT = 0x00004000,
728 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730 QEMU_PPC_FEATURE_PA6T = 0x00000800,
731 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736
737 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
739
740 /* Feature definitions in AT_HWCAP2. */
741 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
742 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
743 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
744 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
745 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
746 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
747 };
748
749 #define ELF_HWCAP get_elf_hwcap()
750
751 static uint32_t get_elf_hwcap(void)
752 {
753 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
754 uint32_t features = 0;
755
756 /* We don't have to be terribly complete here; the high points are
757 Altivec/FP/SPE support. Anything else is just a bonus. */
758 #define GET_FEATURE(flag, feature) \
759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
763 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
764 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
765 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
766 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
767 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
768 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
769 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
770 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
771 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
772 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
773 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
774 QEMU_PPC_FEATURE_ARCH_2_06);
775 #undef GET_FEATURE
776 #undef GET_FEATURE2
777
778 return features;
779 }
780
781 #define ELF_HWCAP2 get_elf_hwcap2()
782
783 static uint32_t get_elf_hwcap2(void)
784 {
785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
786 uint32_t features = 0;
787
788 #define GET_FEATURE(flag, feature) \
789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flag, feature) \
791 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
792
793 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
794 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
795 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
796 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
797
798 #undef GET_FEATURE
799 #undef GET_FEATURE2
800
801 return features;
802 }
803
804 /*
805 * The requirements here are:
806 * - keep the final alignment of sp (sp & 0xf)
807 * - make sure the 32-bit value at the first 16 byte aligned position of
808 * AUXV is greater than 16 for glibc compatibility.
809 * AT_IGNOREPPC is used for that.
810 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
812 */
813 #define DLINFO_ARCH_ITEMS 5
814 #define ARCH_DLINFO \
815 do { \
816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
817 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
819 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
820 /* \
821 * Now handle glibc compatibility. \
822 */ \
823 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
824 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
825 } while (0)
826
827 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
828 {
829 _regs->gpr[1] = infop->start_stack;
830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
831 if (get_ppc64_abi(infop) < 2) {
832 uint64_t val;
833 get_user_u64(val, infop->entry + 8);
834 _regs->gpr[2] = val + infop->load_bias;
835 get_user_u64(val, infop->entry);
836 infop->entry = val + infop->load_bias;
837 } else {
838 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
839 }
840 #endif
841 _regs->nip = infop->entry;
842 }
843
844 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
845 #define ELF_NREG 48
846 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
847
848 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
849 {
850 int i;
851 target_ulong ccr = 0;
852
853 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
854 (*regs)[i] = tswapreg(env->gpr[i]);
855 }
856
857 (*regs)[32] = tswapreg(env->nip);
858 (*regs)[33] = tswapreg(env->msr);
859 (*regs)[35] = tswapreg(env->ctr);
860 (*regs)[36] = tswapreg(env->lr);
861 (*regs)[37] = tswapreg(env->xer);
862
863 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
864 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
865 }
866 (*regs)[38] = tswapreg(ccr);
867 }
868
869 #define USE_ELF_CORE_DUMP
870 #define ELF_EXEC_PAGESIZE 4096
871
872 #endif
873
874 #ifdef TARGET_MIPS
875
876 #define ELF_START_MMAP 0x80000000
877
878 #define elf_check_arch(x) ( (x) == EM_MIPS )
879
880 #ifdef TARGET_MIPS64
881 #define ELF_CLASS ELFCLASS64
882 #else
883 #define ELF_CLASS ELFCLASS32
884 #endif
885 #define ELF_ARCH EM_MIPS
886
887 static inline void init_thread(struct target_pt_regs *regs,
888 struct image_info *infop)
889 {
890 regs->cp0_status = 2 << CP0St_KSU;
891 regs->cp0_epc = infop->entry;
892 regs->regs[29] = infop->start_stack;
893 }
894
895 /* See linux kernel: arch/mips/include/asm/elf.h. */
896 #define ELF_NREG 45
897 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
898
899 /* See linux kernel: arch/mips/include/asm/reg.h. */
900 enum {
901 #ifdef TARGET_MIPS64
902 TARGET_EF_R0 = 0,
903 #else
904 TARGET_EF_R0 = 6,
905 #endif
906 TARGET_EF_R26 = TARGET_EF_R0 + 26,
907 TARGET_EF_R27 = TARGET_EF_R0 + 27,
908 TARGET_EF_LO = TARGET_EF_R0 + 32,
909 TARGET_EF_HI = TARGET_EF_R0 + 33,
910 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
911 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
912 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
913 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
914 };
915
916 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
917 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
918 {
919 int i;
920
921 for (i = 0; i < TARGET_EF_R0; i++) {
922 (*regs)[i] = 0;
923 }
924 (*regs)[TARGET_EF_R0] = 0;
925
926 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
927 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
928 }
929
930 (*regs)[TARGET_EF_R26] = 0;
931 (*regs)[TARGET_EF_R27] = 0;
932 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
933 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
934 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
935 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
936 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
937 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
938 }
939
940 #define USE_ELF_CORE_DUMP
941 #define ELF_EXEC_PAGESIZE 4096
942
943 #endif /* TARGET_MIPS */
944
945 #ifdef TARGET_MICROBLAZE
946
947 #define ELF_START_MMAP 0x80000000
948
949 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
950
951 #define ELF_CLASS ELFCLASS32
952 #define ELF_ARCH EM_MICROBLAZE
953
954 static inline void init_thread(struct target_pt_regs *regs,
955 struct image_info *infop)
956 {
957 regs->pc = infop->entry;
958 regs->r1 = infop->start_stack;
959
960 }
961
962 #define ELF_EXEC_PAGESIZE 4096
963
964 #define USE_ELF_CORE_DUMP
965 #define ELF_NREG 38
966 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
967
968 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
969 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
970 {
971 int i, pos = 0;
972
973 for (i = 0; i < 32; i++) {
974 (*regs)[pos++] = tswapreg(env->regs[i]);
975 }
976
977 for (i = 0; i < 6; i++) {
978 (*regs)[pos++] = tswapreg(env->sregs[i]);
979 }
980 }
981
982 #endif /* TARGET_MICROBLAZE */
983
984 #ifdef TARGET_OPENRISC
985
986 #define ELF_START_MMAP 0x08000000
987
988 #define elf_check_arch(x) ((x) == EM_OPENRISC)
989
990 #define ELF_ARCH EM_OPENRISC
991 #define ELF_CLASS ELFCLASS32
992 #define ELF_DATA ELFDATA2MSB
993
994 static inline void init_thread(struct target_pt_regs *regs,
995 struct image_info *infop)
996 {
997 regs->pc = infop->entry;
998 regs->gpr[1] = infop->start_stack;
999 }
1000
1001 #define USE_ELF_CORE_DUMP
1002 #define ELF_EXEC_PAGESIZE 8192
1003
1004 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1005 #define ELF_NREG 34 /* gprs and pc, sr */
1006 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1007
1008 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1009 const CPUOpenRISCState *env)
1010 {
1011 int i;
1012
1013 for (i = 0; i < 32; i++) {
1014 (*regs)[i] = tswapreg(env->gpr[i]);
1015 }
1016
1017 (*regs)[32] = tswapreg(env->pc);
1018 (*regs)[33] = tswapreg(env->sr);
1019 }
1020 #define ELF_HWCAP 0
1021 #define ELF_PLATFORM NULL
1022
1023 #endif /* TARGET_OPENRISC */
1024
1025 #ifdef TARGET_SH4
1026
1027 #define ELF_START_MMAP 0x80000000
1028
1029 #define elf_check_arch(x) ( (x) == EM_SH )
1030
1031 #define ELF_CLASS ELFCLASS32
1032 #define ELF_ARCH EM_SH
1033
1034 static inline void init_thread(struct target_pt_regs *regs,
1035 struct image_info *infop)
1036 {
1037 /* Check other registers XXXXX */
1038 regs->pc = infop->entry;
1039 regs->regs[15] = infop->start_stack;
1040 }
1041
1042 /* See linux kernel: arch/sh/include/asm/elf.h. */
1043 #define ELF_NREG 23
1044 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1045
1046 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1047 enum {
1048 TARGET_REG_PC = 16,
1049 TARGET_REG_PR = 17,
1050 TARGET_REG_SR = 18,
1051 TARGET_REG_GBR = 19,
1052 TARGET_REG_MACH = 20,
1053 TARGET_REG_MACL = 21,
1054 TARGET_REG_SYSCALL = 22
1055 };
1056
1057 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1058 const CPUSH4State *env)
1059 {
1060 int i;
1061
1062 for (i = 0; i < 16; i++) {
1063 (*regs[i]) = tswapreg(env->gregs[i]);
1064 }
1065
1066 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1067 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1068 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1069 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1070 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1071 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1072 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1073 }
1074
1075 #define USE_ELF_CORE_DUMP
1076 #define ELF_EXEC_PAGESIZE 4096
1077
1078 enum {
1079 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1080 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1081 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1082 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1083 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1084 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1085 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1086 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1087 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1088 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1089 };
1090
1091 #define ELF_HWCAP get_elf_hwcap()
1092
1093 static uint32_t get_elf_hwcap(void)
1094 {
1095 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1096 uint32_t hwcap = 0;
1097
1098 hwcap |= SH_CPU_HAS_FPU;
1099
1100 if (cpu->env.features & SH_FEATURE_SH4A) {
1101 hwcap |= SH_CPU_HAS_LLSC;
1102 }
1103
1104 return hwcap;
1105 }
1106
1107 #endif
1108
1109 #ifdef TARGET_CRIS
1110
1111 #define ELF_START_MMAP 0x80000000
1112
1113 #define elf_check_arch(x) ( (x) == EM_CRIS )
1114
1115 #define ELF_CLASS ELFCLASS32
1116 #define ELF_ARCH EM_CRIS
1117
1118 static inline void init_thread(struct target_pt_regs *regs,
1119 struct image_info *infop)
1120 {
1121 regs->erp = infop->entry;
1122 }
1123
1124 #define ELF_EXEC_PAGESIZE 8192
1125
1126 #endif
1127
1128 #ifdef TARGET_M68K
1129
1130 #define ELF_START_MMAP 0x80000000
1131
1132 #define elf_check_arch(x) ( (x) == EM_68K )
1133
1134 #define ELF_CLASS ELFCLASS32
1135 #define ELF_ARCH EM_68K
1136
1137 /* ??? Does this need to do anything?
1138 #define ELF_PLAT_INIT(_r) */
1139
1140 static inline void init_thread(struct target_pt_regs *regs,
1141 struct image_info *infop)
1142 {
1143 regs->usp = infop->start_stack;
1144 regs->sr = 0;
1145 regs->pc = infop->entry;
1146 }
1147
1148 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1149 #define ELF_NREG 20
1150 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1151
1152 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1153 {
1154 (*regs)[0] = tswapreg(env->dregs[1]);
1155 (*regs)[1] = tswapreg(env->dregs[2]);
1156 (*regs)[2] = tswapreg(env->dregs[3]);
1157 (*regs)[3] = tswapreg(env->dregs[4]);
1158 (*regs)[4] = tswapreg(env->dregs[5]);
1159 (*regs)[5] = tswapreg(env->dregs[6]);
1160 (*regs)[6] = tswapreg(env->dregs[7]);
1161 (*regs)[7] = tswapreg(env->aregs[0]);
1162 (*regs)[8] = tswapreg(env->aregs[1]);
1163 (*regs)[9] = tswapreg(env->aregs[2]);
1164 (*regs)[10] = tswapreg(env->aregs[3]);
1165 (*regs)[11] = tswapreg(env->aregs[4]);
1166 (*regs)[12] = tswapreg(env->aregs[5]);
1167 (*regs)[13] = tswapreg(env->aregs[6]);
1168 (*regs)[14] = tswapreg(env->dregs[0]);
1169 (*regs)[15] = tswapreg(env->aregs[7]);
1170 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1171 (*regs)[17] = tswapreg(env->sr);
1172 (*regs)[18] = tswapreg(env->pc);
1173 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1174 }
1175
1176 #define USE_ELF_CORE_DUMP
1177 #define ELF_EXEC_PAGESIZE 8192
1178
1179 #endif
1180
1181 #ifdef TARGET_ALPHA
1182
1183 #define ELF_START_MMAP (0x30000000000ULL)
1184
1185 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1186
1187 #define ELF_CLASS ELFCLASS64
1188 #define ELF_ARCH EM_ALPHA
1189
1190 static inline void init_thread(struct target_pt_regs *regs,
1191 struct image_info *infop)
1192 {
1193 regs->pc = infop->entry;
1194 regs->ps = 8;
1195 regs->usp = infop->start_stack;
1196 }
1197
1198 #define ELF_EXEC_PAGESIZE 8192
1199
1200 #endif /* TARGET_ALPHA */
1201
1202 #ifdef TARGET_S390X
1203
1204 #define ELF_START_MMAP (0x20000000000ULL)
1205
1206 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1207
1208 #define ELF_CLASS ELFCLASS64
1209 #define ELF_DATA ELFDATA2MSB
1210 #define ELF_ARCH EM_S390
1211
1212 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1213 {
1214 regs->psw.addr = infop->entry;
1215 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1216 regs->gprs[15] = infop->start_stack;
1217 }
1218
1219 #endif /* TARGET_S390X */
1220
1221 #ifndef ELF_PLATFORM
1222 #define ELF_PLATFORM (NULL)
1223 #endif
1224
1225 #ifndef ELF_HWCAP
1226 #define ELF_HWCAP 0
1227 #endif
1228
1229 #ifdef TARGET_ABI32
1230 #undef ELF_CLASS
1231 #define ELF_CLASS ELFCLASS32
1232 #undef bswaptls
1233 #define bswaptls(ptr) bswap32s(ptr)
1234 #endif
1235
1236 #include "elf.h"
1237
1238 struct exec
1239 {
1240 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1241 unsigned int a_text; /* length of text, in bytes */
1242 unsigned int a_data; /* length of data, in bytes */
1243 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1244 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1245 unsigned int a_entry; /* start address */
1246 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1247 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1248 };
1249
1250
1251 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1252 #define OMAGIC 0407
1253 #define NMAGIC 0410
1254 #define ZMAGIC 0413
1255 #define QMAGIC 0314
1256
1257 /* Necessary parameters */
1258 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1259 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1260 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1261 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1262
1263 #define DLINFO_ITEMS 14
1264
1265 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1266 {
1267 memcpy(to, from, n);
1268 }
1269
1270 #ifdef BSWAP_NEEDED
1271 static void bswap_ehdr(struct elfhdr *ehdr)
1272 {
1273 bswap16s(&ehdr->e_type); /* Object file type */
1274 bswap16s(&ehdr->e_machine); /* Architecture */
1275 bswap32s(&ehdr->e_version); /* Object file version */
1276 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1277 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1278 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1279 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1280 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1281 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1282 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1283 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1284 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1285 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1286 }
1287
1288 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1289 {
1290 int i;
1291 for (i = 0; i < phnum; ++i, ++phdr) {
1292 bswap32s(&phdr->p_type); /* Segment type */
1293 bswap32s(&phdr->p_flags); /* Segment flags */
1294 bswaptls(&phdr->p_offset); /* Segment file offset */
1295 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1296 bswaptls(&phdr->p_paddr); /* Segment physical address */
1297 bswaptls(&phdr->p_filesz); /* Segment size in file */
1298 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1299 bswaptls(&phdr->p_align); /* Segment alignment */
1300 }
1301 }
1302
1303 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1304 {
1305 int i;
1306 for (i = 0; i < shnum; ++i, ++shdr) {
1307 bswap32s(&shdr->sh_name);
1308 bswap32s(&shdr->sh_type);
1309 bswaptls(&shdr->sh_flags);
1310 bswaptls(&shdr->sh_addr);
1311 bswaptls(&shdr->sh_offset);
1312 bswaptls(&shdr->sh_size);
1313 bswap32s(&shdr->sh_link);
1314 bswap32s(&shdr->sh_info);
1315 bswaptls(&shdr->sh_addralign);
1316 bswaptls(&shdr->sh_entsize);
1317 }
1318 }
1319
1320 static void bswap_sym(struct elf_sym *sym)
1321 {
1322 bswap32s(&sym->st_name);
1323 bswaptls(&sym->st_value);
1324 bswaptls(&sym->st_size);
1325 bswap16s(&sym->st_shndx);
1326 }
1327 #else
1328 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1329 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1330 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1331 static inline void bswap_sym(struct elf_sym *sym) { }
1332 #endif
1333
1334 #ifdef USE_ELF_CORE_DUMP
1335 static int elf_core_dump(int, const CPUArchState *);
1336 #endif /* USE_ELF_CORE_DUMP */
1337 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1338
1339 /* Verify the portions of EHDR within E_IDENT for the target.
1340 This can be performed before bswapping the entire header. */
1341 static bool elf_check_ident(struct elfhdr *ehdr)
1342 {
1343 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1344 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1345 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1346 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1347 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1348 && ehdr->e_ident[EI_DATA] == ELF_DATA
1349 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1350 }
1351
1352 /* Verify the portions of EHDR outside of E_IDENT for the target.
1353 This has to wait until after bswapping the header. */
1354 static bool elf_check_ehdr(struct elfhdr *ehdr)
1355 {
1356 return (elf_check_arch(ehdr->e_machine)
1357 && ehdr->e_ehsize == sizeof(struct elfhdr)
1358 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1359 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1360 }
1361
1362 /*
1363 * 'copy_elf_strings()' copies argument/envelope strings from user
1364 * memory to free pages in kernel mem. These are in a format ready
1365 * to be put directly into the top of new user memory.
1366 *
1367 */
1368 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1369 abi_ulong p)
1370 {
1371 char *tmp, *tmp1, *pag = NULL;
1372 int len, offset = 0;
1373
1374 if (!p) {
1375 return 0; /* bullet-proofing */
1376 }
1377 while (argc-- > 0) {
1378 tmp = argv[argc];
1379 if (!tmp) {
1380 fprintf(stderr, "VFS: argc is wrong");
1381 exit(-1);
1382 }
1383 tmp1 = tmp;
1384 while (*tmp++);
1385 len = tmp - tmp1;
1386 if (p < len) { /* this shouldn't happen - 128kB */
1387 return 0;
1388 }
1389 while (len) {
1390 --p; --tmp; --len;
1391 if (--offset < 0) {
1392 offset = p % TARGET_PAGE_SIZE;
1393 pag = (char *)page[p/TARGET_PAGE_SIZE];
1394 if (!pag) {
1395 pag = g_try_malloc0(TARGET_PAGE_SIZE);
1396 page[p/TARGET_PAGE_SIZE] = pag;
1397 if (!pag)
1398 return 0;
1399 }
1400 }
1401 if (len == 0 || offset == 0) {
1402 *(pag + offset) = *tmp;
1403 }
1404 else {
1405 int bytes_to_copy = (len > offset) ? offset : len;
1406 tmp -= bytes_to_copy;
1407 p -= bytes_to_copy;
1408 offset -= bytes_to_copy;
1409 len -= bytes_to_copy;
1410 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1411 }
1412 }
1413 }
1414 return p;
1415 }
1416
1417 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1418 struct image_info *info)
1419 {
1420 abi_ulong stack_base, size, error, guard;
1421 int i;
1422
1423 /* Create enough stack to hold everything. If we don't use
1424 it for args, we'll use it for something else. */
1425 size = guest_stack_size;
1426 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1427 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1428 }
1429 guard = TARGET_PAGE_SIZE;
1430 if (guard < qemu_real_host_page_size) {
1431 guard = qemu_real_host_page_size;
1432 }
1433
1434 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1435 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1436 if (error == -1) {
1437 perror("mmap stack");
1438 exit(-1);
1439 }
1440
1441 /* We reserve one extra page at the top of the stack as guard. */
1442 target_mprotect(error, guard, PROT_NONE);
1443
1444 info->stack_limit = error + guard;
1445 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1446 p += stack_base;
1447
1448 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1449 if (bprm->page[i]) {
1450 info->rss++;
1451 /* FIXME - check return value of memcpy_to_target() for failure */
1452 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1453 g_free(bprm->page[i]);
1454 }
1455 stack_base += TARGET_PAGE_SIZE;
1456 }
1457 return p;
1458 }
1459
1460 /* Map and zero the bss. We need to explicitly zero any fractional pages
1461 after the data section (i.e. bss). */
1462 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1463 {
1464 uintptr_t host_start, host_map_start, host_end;
1465
1466 last_bss = TARGET_PAGE_ALIGN(last_bss);
1467
1468 /* ??? There is confusion between qemu_real_host_page_size and
1469 qemu_host_page_size here and elsewhere in target_mmap, which
1470 may lead to the end of the data section mapping from the file
1471 not being mapped. At least there was an explicit test and
1472 comment for that here, suggesting that "the file size must
1473 be known". The comment probably pre-dates the introduction
1474 of the fstat system call in target_mmap which does in fact
1475 find out the size. What isn't clear is if the workaround
1476 here is still actually needed. For now, continue with it,
1477 but merge it with the "normal" mmap that would allocate the bss. */
1478
1479 host_start = (uintptr_t) g2h(elf_bss);
1480 host_end = (uintptr_t) g2h(last_bss);
1481 host_map_start = (host_start + qemu_real_host_page_size - 1);
1482 host_map_start &= -qemu_real_host_page_size;
1483
1484 if (host_map_start < host_end) {
1485 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1486 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1487 if (p == MAP_FAILED) {
1488 perror("cannot mmap brk");
1489 exit(-1);
1490 }
1491 }
1492
1493 /* Ensure that the bss page(s) are valid */
1494 if ((page_get_flags(last_bss-1) & prot) != prot) {
1495 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1496 }
1497
1498 if (host_start < host_map_start) {
1499 memset((void *)host_start, 0, host_map_start - host_start);
1500 }
1501 }
1502
1503 #ifdef CONFIG_USE_FDPIC
1504 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1505 {
1506 uint16_t n;
1507 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1508
1509 /* elf32_fdpic_loadseg */
1510 n = info->nsegs;
1511 while (n--) {
1512 sp -= 12;
1513 put_user_u32(loadsegs[n].addr, sp+0);
1514 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1515 put_user_u32(loadsegs[n].p_memsz, sp+8);
1516 }
1517
1518 /* elf32_fdpic_loadmap */
1519 sp -= 4;
1520 put_user_u16(0, sp+0); /* version */
1521 put_user_u16(info->nsegs, sp+2); /* nsegs */
1522
1523 info->personality = PER_LINUX_FDPIC;
1524 info->loadmap_addr = sp;
1525
1526 return sp;
1527 }
1528 #endif
1529
1530 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1531 struct elfhdr *exec,
1532 struct image_info *info,
1533 struct image_info *interp_info)
1534 {
1535 abi_ulong sp;
1536 abi_ulong sp_auxv;
1537 int size;
1538 int i;
1539 abi_ulong u_rand_bytes;
1540 uint8_t k_rand_bytes[16];
1541 abi_ulong u_platform;
1542 const char *k_platform;
1543 const int n = sizeof(elf_addr_t);
1544
1545 sp = p;
1546
1547 #ifdef CONFIG_USE_FDPIC
1548 /* Needs to be before we load the env/argc/... */
1549 if (elf_is_fdpic(exec)) {
1550 /* Need 4 byte alignment for these structs */
1551 sp &= ~3;
1552 sp = loader_build_fdpic_loadmap(info, sp);
1553 info->other_info = interp_info;
1554 if (interp_info) {
1555 interp_info->other_info = info;
1556 sp = loader_build_fdpic_loadmap(interp_info, sp);
1557 }
1558 }
1559 #endif
1560
1561 u_platform = 0;
1562 k_platform = ELF_PLATFORM;
1563 if (k_platform) {
1564 size_t len = strlen(k_platform) + 1;
1565 sp -= (len + n - 1) & ~(n - 1);
1566 u_platform = sp;
1567 /* FIXME - check return value of memcpy_to_target() for failure */
1568 memcpy_to_target(sp, k_platform, len);
1569 }
1570
1571 /*
1572 * Generate 16 random bytes for userspace PRNG seeding (not
1573 * cryptically secure but it's not the aim of QEMU).
1574 */
1575 for (i = 0; i < 16; i++) {
1576 k_rand_bytes[i] = rand();
1577 }
1578 sp -= 16;
1579 u_rand_bytes = sp;
1580 /* FIXME - check return value of memcpy_to_target() for failure */
1581 memcpy_to_target(sp, k_rand_bytes, 16);
1582
1583 /*
1584 * Force 16 byte _final_ alignment here for generality.
1585 */
1586 sp = sp &~ (abi_ulong)15;
1587 size = (DLINFO_ITEMS + 1) * 2;
1588 if (k_platform)
1589 size += 2;
1590 #ifdef DLINFO_ARCH_ITEMS
1591 size += DLINFO_ARCH_ITEMS * 2;
1592 #endif
1593 #ifdef ELF_HWCAP2
1594 size += 2;
1595 #endif
1596 size += envc + argc + 2;
1597 size += 1; /* argc itself */
1598 size *= n;
1599 if (size & 15)
1600 sp -= 16 - (size & 15);
1601
1602 /* This is correct because Linux defines
1603 * elf_addr_t as Elf32_Off / Elf64_Off
1604 */
1605 #define NEW_AUX_ENT(id, val) do { \
1606 sp -= n; put_user_ual(val, sp); \
1607 sp -= n; put_user_ual(id, sp); \
1608 } while(0)
1609
1610 sp_auxv = sp;
1611 NEW_AUX_ENT (AT_NULL, 0);
1612
1613 /* There must be exactly DLINFO_ITEMS entries here. */
1614 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1615 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1616 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1617 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1618 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1619 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1620 NEW_AUX_ENT(AT_ENTRY, info->entry);
1621 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1622 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1623 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1624 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1625 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1626 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1627 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1628
1629 #ifdef ELF_HWCAP2
1630 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1631 #endif
1632
1633 if (k_platform)
1634 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1635 #ifdef ARCH_DLINFO
1636 /*
1637 * ARCH_DLINFO must come last so platform specific code can enforce
1638 * special alignment requirements on the AUXV if necessary (eg. PPC).
1639 */
1640 ARCH_DLINFO;
1641 #endif
1642 #undef NEW_AUX_ENT
1643
1644 info->saved_auxv = sp;
1645 info->auxv_len = sp_auxv - sp;
1646
1647 sp = loader_build_argptr(envc, argc, sp, p, 0);
1648 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1649 assert(sp_auxv - sp == size);
1650 return sp;
1651 }
1652
1653 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1654 /* If the guest doesn't have a validation function just agree */
1655 static int validate_guest_space(unsigned long guest_base,
1656 unsigned long guest_size)
1657 {
1658 return 1;
1659 }
1660 #endif
1661
1662 unsigned long init_guest_space(unsigned long host_start,
1663 unsigned long host_size,
1664 unsigned long guest_start,
1665 bool fixed)
1666 {
1667 unsigned long current_start, real_start;
1668 int flags;
1669
1670 assert(host_start || host_size);
1671
1672 /* If just a starting address is given, then just verify that
1673 * address. */
1674 if (host_start && !host_size) {
1675 if (validate_guest_space(host_start, host_size) == 1) {
1676 return host_start;
1677 } else {
1678 return (unsigned long)-1;
1679 }
1680 }
1681
1682 /* Setup the initial flags and start address. */
1683 current_start = host_start & qemu_host_page_mask;
1684 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1685 if (fixed) {
1686 flags |= MAP_FIXED;
1687 }
1688
1689 /* Otherwise, a non-zero size region of memory needs to be mapped
1690 * and validated. */
1691 while (1) {
1692 unsigned long real_size = host_size;
1693
1694 /* Do not use mmap_find_vma here because that is limited to the
1695 * guest address space. We are going to make the
1696 * guest address space fit whatever we're given.
1697 */
1698 real_start = (unsigned long)
1699 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1700 if (real_start == (unsigned long)-1) {
1701 return (unsigned long)-1;
1702 }
1703
1704 /* Ensure the address is properly aligned. */
1705 if (real_start & ~qemu_host_page_mask) {
1706 munmap((void *)real_start, host_size);
1707 real_size = host_size + qemu_host_page_size;
1708 real_start = (unsigned long)
1709 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1710 if (real_start == (unsigned long)-1) {
1711 return (unsigned long)-1;
1712 }
1713 real_start = HOST_PAGE_ALIGN(real_start);
1714 }
1715
1716 /* Check to see if the address is valid. */
1717 if (!host_start || real_start == current_start) {
1718 int valid = validate_guest_space(real_start - guest_start,
1719 real_size);
1720 if (valid == 1) {
1721 break;
1722 } else if (valid == -1) {
1723 return (unsigned long)-1;
1724 }
1725 /* valid == 0, so try again. */
1726 }
1727
1728 /* That address didn't work. Unmap and try a different one.
1729 * The address the host picked because is typically right at
1730 * the top of the host address space and leaves the guest with
1731 * no usable address space. Resort to a linear search. We
1732 * already compensated for mmap_min_addr, so this should not
1733 * happen often. Probably means we got unlucky and host
1734 * address space randomization put a shared library somewhere
1735 * inconvenient.
1736 */
1737 munmap((void *)real_start, host_size);
1738 current_start += qemu_host_page_size;
1739 if (host_start == current_start) {
1740 /* Theoretically possible if host doesn't have any suitably
1741 * aligned areas. Normally the first mmap will fail.
1742 */
1743 return (unsigned long)-1;
1744 }
1745 }
1746
1747 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1748
1749 return real_start;
1750 }
1751
1752 static void probe_guest_base(const char *image_name,
1753 abi_ulong loaddr, abi_ulong hiaddr)
1754 {
1755 /* Probe for a suitable guest base address, if the user has not set
1756 * it explicitly, and set guest_base appropriately.
1757 * In case of error we will print a suitable message and exit.
1758 */
1759 const char *errmsg;
1760 if (!have_guest_base && !reserved_va) {
1761 unsigned long host_start, real_start, host_size;
1762
1763 /* Round addresses to page boundaries. */
1764 loaddr &= qemu_host_page_mask;
1765 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1766
1767 if (loaddr < mmap_min_addr) {
1768 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1769 } else {
1770 host_start = loaddr;
1771 if (host_start != loaddr) {
1772 errmsg = "Address overflow loading ELF binary";
1773 goto exit_errmsg;
1774 }
1775 }
1776 host_size = hiaddr - loaddr;
1777
1778 /* Setup the initial guest memory space with ranges gleaned from
1779 * the ELF image that is being loaded.
1780 */
1781 real_start = init_guest_space(host_start, host_size, loaddr, false);
1782 if (real_start == (unsigned long)-1) {
1783 errmsg = "Unable to find space for application";
1784 goto exit_errmsg;
1785 }
1786 guest_base = real_start - loaddr;
1787
1788 qemu_log("Relocating guest address space from 0x"
1789 TARGET_ABI_FMT_lx " to 0x%lx\n",
1790 loaddr, real_start);
1791 }
1792 return;
1793
1794 exit_errmsg:
1795 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1796 exit(-1);
1797 }
1798
1799
1800 /* Load an ELF image into the address space.
1801
1802 IMAGE_NAME is the filename of the image, to use in error messages.
1803 IMAGE_FD is the open file descriptor for the image.
1804
1805 BPRM_BUF is a copy of the beginning of the file; this of course
1806 contains the elf file header at offset 0. It is assumed that this
1807 buffer is sufficiently aligned to present no problems to the host
1808 in accessing data at aligned offsets within the buffer.
1809
1810 On return: INFO values will be filled in, as necessary or available. */
1811
1812 static void load_elf_image(const char *image_name, int image_fd,
1813 struct image_info *info, char **pinterp_name,
1814 char bprm_buf[BPRM_BUF_SIZE])
1815 {
1816 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1817 struct elf_phdr *phdr;
1818 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1819 int i, retval;
1820 const char *errmsg;
1821
1822 /* First of all, some simple consistency checks */
1823 errmsg = "Invalid ELF image for this architecture";
1824 if (!elf_check_ident(ehdr)) {
1825 goto exit_errmsg;
1826 }
1827 bswap_ehdr(ehdr);
1828 if (!elf_check_ehdr(ehdr)) {
1829 goto exit_errmsg;
1830 }
1831
1832 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1833 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1834 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1835 } else {
1836 phdr = (struct elf_phdr *) alloca(i);
1837 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1838 if (retval != i) {
1839 goto exit_read;
1840 }
1841 }
1842 bswap_phdr(phdr, ehdr->e_phnum);
1843
1844 #ifdef CONFIG_USE_FDPIC
1845 info->nsegs = 0;
1846 info->pt_dynamic_addr = 0;
1847 #endif
1848
1849 /* Find the maximum size of the image and allocate an appropriate
1850 amount of memory to handle that. */
1851 loaddr = -1, hiaddr = 0;
1852 for (i = 0; i < ehdr->e_phnum; ++i) {
1853 if (phdr[i].p_type == PT_LOAD) {
1854 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1855 if (a < loaddr) {
1856 loaddr = a;
1857 }
1858 a = phdr[i].p_vaddr + phdr[i].p_memsz;
1859 if (a > hiaddr) {
1860 hiaddr = a;
1861 }
1862 #ifdef CONFIG_USE_FDPIC
1863 ++info->nsegs;
1864 #endif
1865 }
1866 }
1867
1868 load_addr = loaddr;
1869 if (ehdr->e_type == ET_DYN) {
1870 /* The image indicates that it can be loaded anywhere. Find a
1871 location that can hold the memory space required. If the
1872 image is pre-linked, LOADDR will be non-zero. Since we do
1873 not supply MAP_FIXED here we'll use that address if and
1874 only if it remains available. */
1875 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1876 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1877 -1, 0);
1878 if (load_addr == -1) {
1879 goto exit_perror;
1880 }
1881 } else if (pinterp_name != NULL) {
1882 /* This is the main executable. Make sure that the low
1883 address does not conflict with MMAP_MIN_ADDR or the
1884 QEMU application itself. */
1885 probe_guest_base(image_name, loaddr, hiaddr);
1886 }
1887 load_bias = load_addr - loaddr;
1888
1889 #ifdef CONFIG_USE_FDPIC
1890 {
1891 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1892 g_malloc(sizeof(*loadsegs) * info->nsegs);
1893
1894 for (i = 0; i < ehdr->e_phnum; ++i) {
1895 switch (phdr[i].p_type) {
1896 case PT_DYNAMIC:
1897 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1898 break;
1899 case PT_LOAD:
1900 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1901 loadsegs->p_vaddr = phdr[i].p_vaddr;
1902 loadsegs->p_memsz = phdr[i].p_memsz;
1903 ++loadsegs;
1904 break;
1905 }
1906 }
1907 }
1908 #endif
1909
1910 info->load_bias = load_bias;
1911 info->load_addr = load_addr;
1912 info->entry = ehdr->e_entry + load_bias;
1913 info->start_code = -1;
1914 info->end_code = 0;
1915 info->start_data = -1;
1916 info->end_data = 0;
1917 info->brk = 0;
1918 info->elf_flags = ehdr->e_flags;
1919
1920 for (i = 0; i < ehdr->e_phnum; i++) {
1921 struct elf_phdr *eppnt = phdr + i;
1922 if (eppnt->p_type == PT_LOAD) {
1923 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1924 int elf_prot = 0;
1925
1926 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1927 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1928 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1929
1930 vaddr = load_bias + eppnt->p_vaddr;
1931 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1932 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1933
1934 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1935 elf_prot, MAP_PRIVATE | MAP_FIXED,
1936 image_fd, eppnt->p_offset - vaddr_po);
1937 if (error == -1) {
1938 goto exit_perror;
1939 }
1940
1941 vaddr_ef = vaddr + eppnt->p_filesz;
1942 vaddr_em = vaddr + eppnt->p_memsz;
1943
1944 /* If the load segment requests extra zeros (e.g. bss), map it. */
1945 if (vaddr_ef < vaddr_em) {
1946 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1947 }
1948
1949 /* Find the full program boundaries. */
1950 if (elf_prot & PROT_EXEC) {
1951 if (vaddr < info->start_code) {
1952 info->start_code = vaddr;
1953 }
1954 if (vaddr_ef > info->end_code) {
1955 info->end_code = vaddr_ef;
1956 }
1957 }
1958 if (elf_prot & PROT_WRITE) {
1959 if (vaddr < info->start_data) {
1960 info->start_data = vaddr;
1961 }
1962 if (vaddr_ef > info->end_data) {
1963 info->end_data = vaddr_ef;
1964 }
1965 if (vaddr_em > info->brk) {
1966 info->brk = vaddr_em;
1967 }
1968 }
1969 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1970 char *interp_name;
1971
1972 if (*pinterp_name) {
1973 errmsg = "Multiple PT_INTERP entries";
1974 goto exit_errmsg;
1975 }
1976 interp_name = malloc(eppnt->p_filesz);
1977 if (!interp_name) {
1978 goto exit_perror;
1979 }
1980
1981 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1982 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1983 eppnt->p_filesz);
1984 } else {
1985 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1986 eppnt->p_offset);
1987 if (retval != eppnt->p_filesz) {
1988 goto exit_perror;
1989 }
1990 }
1991 if (interp_name[eppnt->p_filesz - 1] != 0) {
1992 errmsg = "Invalid PT_INTERP entry";
1993 goto exit_errmsg;
1994 }
1995 *pinterp_name = interp_name;
1996 }
1997 }
1998
1999 if (info->end_data == 0) {
2000 info->start_data = info->end_code;
2001 info->end_data = info->end_code;
2002 info->brk = info->end_code;
2003 }
2004
2005 if (qemu_log_enabled()) {
2006 load_symbols(ehdr, image_fd, load_bias);
2007 }
2008
2009 close(image_fd);
2010 return;
2011
2012 exit_read:
2013 if (retval >= 0) {
2014 errmsg = "Incomplete read of file header";
2015 goto exit_errmsg;
2016 }
2017 exit_perror:
2018 errmsg = strerror(errno);
2019 exit_errmsg:
2020 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2021 exit(-1);
2022 }
2023
2024 static void load_elf_interp(const char *filename, struct image_info *info,
2025 char bprm_buf[BPRM_BUF_SIZE])
2026 {
2027 int fd, retval;
2028
2029 fd = open(path(filename), O_RDONLY);
2030 if (fd < 0) {
2031 goto exit_perror;
2032 }
2033
2034 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2035 if (retval < 0) {
2036 goto exit_perror;
2037 }
2038 if (retval < BPRM_BUF_SIZE) {
2039 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2040 }
2041
2042 load_elf_image(filename, fd, info, NULL, bprm_buf);
2043 return;
2044
2045 exit_perror:
2046 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2047 exit(-1);
2048 }
2049
2050 static int symfind(const void *s0, const void *s1)
2051 {
2052 target_ulong addr = *(target_ulong *)s0;
2053 struct elf_sym *sym = (struct elf_sym *)s1;
2054 int result = 0;
2055 if (addr < sym->st_value) {
2056 result = -1;
2057 } else if (addr >= sym->st_value + sym->st_size) {
2058 result = 1;
2059 }
2060 return result;
2061 }
2062
2063 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2064 {
2065 #if ELF_CLASS == ELFCLASS32
2066 struct elf_sym *syms = s->disas_symtab.elf32;
2067 #else
2068 struct elf_sym *syms = s->disas_symtab.elf64;
2069 #endif
2070
2071 // binary search
2072 struct elf_sym *sym;
2073
2074 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2075 if (sym != NULL) {
2076 return s->disas_strtab + sym->st_name;
2077 }
2078
2079 return "";
2080 }
2081
2082 /* FIXME: This should use elf_ops.h */
2083 static int symcmp(const void *s0, const void *s1)
2084 {
2085 struct elf_sym *sym0 = (struct elf_sym *)s0;
2086 struct elf_sym *sym1 = (struct elf_sym *)s1;
2087 return (sym0->st_value < sym1->st_value)
2088 ? -1
2089 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2090 }
2091
2092 /* Best attempt to load symbols from this ELF object. */
2093 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2094 {
2095 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2096 struct elf_shdr *shdr;
2097 char *strings = NULL;
2098 struct syminfo *s = NULL;
2099 struct elf_sym *new_syms, *syms = NULL;
2100
2101 shnum = hdr->e_shnum;
2102 i = shnum * sizeof(struct elf_shdr);
2103 shdr = (struct elf_shdr *)alloca(i);
2104 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2105 return;
2106 }
2107
2108 bswap_shdr(shdr, shnum);
2109 for (i = 0; i < shnum; ++i) {
2110 if (shdr[i].sh_type == SHT_SYMTAB) {
2111 sym_idx = i;
2112 str_idx = shdr[i].sh_link;
2113 goto found;
2114 }
2115 }
2116
2117 /* There will be no symbol table if the file was stripped. */
2118 return;
2119
2120 found:
2121 /* Now know where the strtab and symtab are. Snarf them. */
2122 s = malloc(sizeof(*s));
2123 if (!s) {
2124 goto give_up;
2125 }
2126
2127 i = shdr[str_idx].sh_size;
2128 s->disas_strtab = strings = malloc(i);
2129 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2130 goto give_up;
2131 }
2132
2133 i = shdr[sym_idx].sh_size;
2134 syms = malloc(i);
2135 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2136 goto give_up;
2137 }
2138
2139 nsyms = i / sizeof(struct elf_sym);
2140 for (i = 0; i < nsyms; ) {
2141 bswap_sym(syms + i);
2142 /* Throw away entries which we do not need. */
2143 if (syms[i].st_shndx == SHN_UNDEF
2144 || syms[i].st_shndx >= SHN_LORESERVE
2145 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2146 if (i < --nsyms) {
2147 syms[i] = syms[nsyms];
2148 }
2149 } else {
2150 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2151 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2152 syms[i].st_value &= ~(target_ulong)1;
2153 #endif
2154 syms[i].st_value += load_bias;
2155 i++;
2156 }
2157 }
2158
2159 /* No "useful" symbol. */
2160 if (nsyms == 0) {
2161 goto give_up;
2162 }
2163
2164 /* Attempt to free the storage associated with the local symbols
2165 that we threw away. Whether or not this has any effect on the
2166 memory allocation depends on the malloc implementation and how
2167 many symbols we managed to discard. */
2168 new_syms = realloc(syms, nsyms * sizeof(*syms));
2169 if (new_syms == NULL) {
2170 goto give_up;
2171 }
2172 syms = new_syms;
2173
2174 qsort(syms, nsyms, sizeof(*syms), symcmp);
2175
2176 s->disas_num_syms = nsyms;
2177 #if ELF_CLASS == ELFCLASS32
2178 s->disas_symtab.elf32 = syms;
2179 #else
2180 s->disas_symtab.elf64 = syms;
2181 #endif
2182 s->lookup_symbol = lookup_symbolxx;
2183 s->next = syminfos;
2184 syminfos = s;
2185
2186 return;
2187
2188 give_up:
2189 free(s);
2190 free(strings);
2191 free(syms);
2192 }
2193
2194 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2195 {
2196 struct image_info interp_info;
2197 struct elfhdr elf_ex;
2198 char *elf_interpreter = NULL;
2199
2200 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2201 info->mmap = 0;
2202 info->rss = 0;
2203
2204 load_elf_image(bprm->filename, bprm->fd, info,
2205 &elf_interpreter, bprm->buf);
2206
2207 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2208 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2209 when we load the interpreter. */
2210 elf_ex = *(struct elfhdr *)bprm->buf;
2211
2212 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2213 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2214 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2215 if (!bprm->p) {
2216 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2217 exit(-1);
2218 }
2219
2220 /* Do this so that we can load the interpreter, if need be. We will
2221 change some of these later */
2222 bprm->p = setup_arg_pages(bprm->p, bprm, info);
2223
2224 if (elf_interpreter) {
2225 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2226
2227 /* If the program interpreter is one of these two, then assume
2228 an iBCS2 image. Otherwise assume a native linux image. */
2229
2230 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2231 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2232 info->personality = PER_SVR4;
2233
2234 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2235 and some applications "depend" upon this behavior. Since
2236 we do not have the power to recompile these, we emulate
2237 the SVr4 behavior. Sigh. */
2238 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2239 MAP_FIXED | MAP_PRIVATE, -1, 0);
2240 }
2241 }
2242
2243 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2244 info, (elf_interpreter ? &interp_info : NULL));
2245 info->start_stack = bprm->p;
2246
2247 /* If we have an interpreter, set that as the program's entry point.
2248 Copy the load_bias as well, to help PPC64 interpret the entry
2249 point as a function descriptor. Do this after creating elf tables
2250 so that we copy the original program entry point into the AUXV. */
2251 if (elf_interpreter) {
2252 info->load_bias = interp_info.load_bias;
2253 info->entry = interp_info.entry;
2254 free(elf_interpreter);
2255 }
2256
2257 #ifdef USE_ELF_CORE_DUMP
2258 bprm->core_dump = &elf_core_dump;
2259 #endif
2260
2261 return 0;
2262 }
2263
2264 #ifdef USE_ELF_CORE_DUMP
2265 /*
2266 * Definitions to generate Intel SVR4-like core files.
2267 * These mostly have the same names as the SVR4 types with "target_elf_"
2268 * tacked on the front to prevent clashes with linux definitions,
2269 * and the typedef forms have been avoided. This is mostly like
2270 * the SVR4 structure, but more Linuxy, with things that Linux does
2271 * not support and which gdb doesn't really use excluded.
2272 *
2273 * Fields we don't dump (their contents is zero) in linux-user qemu
2274 * are marked with XXX.
2275 *
2276 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2277 *
2278 * Porting ELF coredump for target is (quite) simple process. First you
2279 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2280 * the target resides):
2281 *
2282 * #define USE_ELF_CORE_DUMP
2283 *
2284 * Next you define type of register set used for dumping. ELF specification
2285 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2286 *
2287 * typedef <target_regtype> target_elf_greg_t;
2288 * #define ELF_NREG <number of registers>
2289 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2290 *
2291 * Last step is to implement target specific function that copies registers
2292 * from given cpu into just specified register set. Prototype is:
2293 *
2294 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2295 * const CPUArchState *env);
2296 *
2297 * Parameters:
2298 * regs - copy register values into here (allocated and zeroed by caller)
2299 * env - copy registers from here
2300 *
2301 * Example for ARM target is provided in this file.
2302 */
2303
2304 /* An ELF note in memory */
2305 struct memelfnote {
2306 const char *name;
2307 size_t namesz;
2308 size_t namesz_rounded;
2309 int type;
2310 size_t datasz;
2311 size_t datasz_rounded;
2312 void *data;
2313 size_t notesz;
2314 };
2315
2316 struct target_elf_siginfo {
2317 abi_int si_signo; /* signal number */
2318 abi_int si_code; /* extra code */
2319 abi_int si_errno; /* errno */
2320 };
2321
2322 struct target_elf_prstatus {
2323 struct target_elf_siginfo pr_info; /* Info associated with signal */
2324 abi_short pr_cursig; /* Current signal */
2325 abi_ulong pr_sigpend; /* XXX */
2326 abi_ulong pr_sighold; /* XXX */
2327 target_pid_t pr_pid;
2328 target_pid_t pr_ppid;
2329 target_pid_t pr_pgrp;
2330 target_pid_t pr_sid;
2331 struct target_timeval pr_utime; /* XXX User time */
2332 struct target_timeval pr_stime; /* XXX System time */
2333 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2334 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2335 target_elf_gregset_t pr_reg; /* GP registers */
2336 abi_int pr_fpvalid; /* XXX */
2337 };
2338
2339 #define ELF_PRARGSZ (80) /* Number of chars for args */
2340
2341 struct target_elf_prpsinfo {
2342 char pr_state; /* numeric process state */
2343 char pr_sname; /* char for pr_state */
2344 char pr_zomb; /* zombie */
2345 char pr_nice; /* nice val */
2346 abi_ulong pr_flag; /* flags */
2347 target_uid_t pr_uid;
2348 target_gid_t pr_gid;
2349 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2350 /* Lots missing */
2351 char pr_fname[16]; /* filename of executable */
2352 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2353 };
2354
2355 /* Here is the structure in which status of each thread is captured. */
2356 struct elf_thread_status {
2357 QTAILQ_ENTRY(elf_thread_status) ets_link;
2358 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2359 #if 0
2360 elf_fpregset_t fpu; /* NT_PRFPREG */
2361 struct task_struct *thread;
2362 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2363 #endif
2364 struct memelfnote notes[1];
2365 int num_notes;
2366 };
2367
2368 struct elf_note_info {
2369 struct memelfnote *notes;
2370 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2371 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2372
2373 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2374 #if 0
2375 /*
2376 * Current version of ELF coredump doesn't support
2377 * dumping fp regs etc.
2378 */
2379 elf_fpregset_t *fpu;
2380 elf_fpxregset_t *xfpu;
2381 int thread_status_size;
2382 #endif
2383 int notes_size;
2384 int numnote;
2385 };
2386
2387 struct vm_area_struct {
2388 target_ulong vma_start; /* start vaddr of memory region */
2389 target_ulong vma_end; /* end vaddr of memory region */
2390 abi_ulong vma_flags; /* protection etc. flags for the region */
2391 QTAILQ_ENTRY(vm_area_struct) vma_link;
2392 };
2393
2394 struct mm_struct {
2395 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2396 int mm_count; /* number of mappings */
2397 };
2398
2399 static struct mm_struct *vma_init(void);
2400 static void vma_delete(struct mm_struct *);
2401 static int vma_add_mapping(struct mm_struct *, target_ulong,
2402 target_ulong, abi_ulong);
2403 static int vma_get_mapping_count(const struct mm_struct *);
2404 static struct vm_area_struct *vma_first(const struct mm_struct *);
2405 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2406 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2407 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2408 unsigned long flags);
2409
2410 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2411 static void fill_note(struct memelfnote *, const char *, int,
2412 unsigned int, void *);
2413 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2414 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2415 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2416 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2417 static size_t note_size(const struct memelfnote *);
2418 static void free_note_info(struct elf_note_info *);
2419 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2420 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2421 static int core_dump_filename(const TaskState *, char *, size_t);
2422
2423 static int dump_write(int, const void *, size_t);
2424 static int write_note(struct memelfnote *, int);
2425 static int write_note_info(struct elf_note_info *, int);
2426
2427 #ifdef BSWAP_NEEDED
2428 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2429 {
2430 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2431 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2432 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2433 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2434 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2435 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2436 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2437 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2438 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2439 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2440 /* cpu times are not filled, so we skip them */
2441 /* regs should be in correct format already */
2442 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2443 }
2444
2445 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2446 {
2447 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2448 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2449 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2450 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2451 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2452 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2453 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2454 }
2455
2456 static void bswap_note(struct elf_note *en)
2457 {
2458 bswap32s(&en->n_namesz);
2459 bswap32s(&en->n_descsz);
2460 bswap32s(&en->n_type);
2461 }
2462 #else
2463 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2464 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2465 static inline void bswap_note(struct elf_note *en) { }
2466 #endif /* BSWAP_NEEDED */
2467
2468 /*
2469 * Minimal support for linux memory regions. These are needed
2470 * when we are finding out what memory exactly belongs to
2471 * emulated process. No locks needed here, as long as
2472 * thread that received the signal is stopped.
2473 */
2474
2475 static struct mm_struct *vma_init(void)
2476 {
2477 struct mm_struct *mm;
2478
2479 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2480 return (NULL);
2481
2482 mm->mm_count = 0;
2483 QTAILQ_INIT(&mm->mm_mmap);
2484
2485 return (mm);
2486 }
2487
2488 static void vma_delete(struct mm_struct *mm)
2489 {
2490 struct vm_area_struct *vma;
2491
2492 while ((vma = vma_first(mm)) != NULL) {
2493 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2494 g_free(vma);
2495 }
2496 g_free(mm);
2497 }
2498
2499 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2500 target_ulong end, abi_ulong flags)
2501 {
2502 struct vm_area_struct *vma;
2503
2504 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2505 return (-1);
2506
2507 vma->vma_start = start;
2508 vma->vma_end = end;
2509 vma->vma_flags = flags;
2510
2511 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2512 mm->mm_count++;
2513
2514 return (0);
2515 }
2516
2517 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2518 {
2519 return (QTAILQ_FIRST(&mm->mm_mmap));
2520 }
2521
2522 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2523 {
2524 return (QTAILQ_NEXT(vma, vma_link));
2525 }
2526
2527 static int vma_get_mapping_count(const struct mm_struct *mm)
2528 {
2529 return (mm->mm_count);
2530 }
2531
2532 /*
2533 * Calculate file (dump) size of given memory region.
2534 */
2535 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2536 {
2537 /* if we cannot even read the first page, skip it */
2538 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2539 return (0);
2540
2541 /*
2542 * Usually we don't dump executable pages as they contain
2543 * non-writable code that debugger can read directly from
2544 * target library etc. However, thread stacks are marked
2545 * also executable so we read in first page of given region
2546 * and check whether it contains elf header. If there is
2547 * no elf header, we dump it.
2548 */
2549 if (vma->vma_flags & PROT_EXEC) {
2550 char page[TARGET_PAGE_SIZE];
2551
2552 copy_from_user(page, vma->vma_start, sizeof (page));
2553 if ((page[EI_MAG0] == ELFMAG0) &&
2554 (page[EI_MAG1] == ELFMAG1) &&
2555 (page[EI_MAG2] == ELFMAG2) &&
2556 (page[EI_MAG3] == ELFMAG3)) {
2557 /*
2558 * Mappings are possibly from ELF binary. Don't dump
2559 * them.
2560 */
2561 return (0);
2562 }
2563 }
2564
2565 return (vma->vma_end - vma->vma_start);
2566 }
2567
2568 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2569 unsigned long flags)
2570 {
2571 struct mm_struct *mm = (struct mm_struct *)priv;
2572
2573 vma_add_mapping(mm, start, end, flags);
2574 return (0);
2575 }
2576
2577 static void fill_note(struct memelfnote *note, const char *name, int type,
2578 unsigned int sz, void *data)
2579 {
2580 unsigned int namesz;
2581
2582 namesz = strlen(name) + 1;
2583 note->name = name;
2584 note->namesz = namesz;
2585 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2586 note->type = type;
2587 note->datasz = sz;
2588 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2589
2590 note->data = data;
2591
2592 /*
2593 * We calculate rounded up note size here as specified by
2594 * ELF document.
2595 */
2596 note->notesz = sizeof (struct elf_note) +
2597 note->namesz_rounded + note->datasz_rounded;
2598 }
2599
2600 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2601 uint32_t flags)
2602 {
2603 (void) memset(elf, 0, sizeof(*elf));
2604
2605 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2606 elf->e_ident[EI_CLASS] = ELF_CLASS;
2607 elf->e_ident[EI_DATA] = ELF_DATA;
2608 elf->e_ident[EI_VERSION] = EV_CURRENT;
2609 elf->e_ident[EI_OSABI] = ELF_OSABI;
2610
2611 elf->e_type = ET_CORE;
2612 elf->e_machine = machine;
2613 elf->e_version = EV_CURRENT;
2614 elf->e_phoff = sizeof(struct elfhdr);
2615 elf->e_flags = flags;
2616 elf->e_ehsize = sizeof(struct elfhdr);
2617 elf->e_phentsize = sizeof(struct elf_phdr);
2618 elf->e_phnum = segs;
2619
2620 bswap_ehdr(elf);
2621 }
2622
2623 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2624 {
2625 phdr->p_type = PT_NOTE;
2626 phdr->p_offset = offset;
2627 phdr->p_vaddr = 0;
2628 phdr->p_paddr = 0;
2629 phdr->p_filesz = sz;
2630 phdr->p_memsz = 0;
2631 phdr->p_flags = 0;
2632 phdr->p_align = 0;
2633
2634 bswap_phdr(phdr, 1);
2635 }
2636
2637 static size_t note_size(const struct memelfnote *note)
2638 {
2639 return (note->notesz);
2640 }
2641
2642 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2643 const TaskState *ts, int signr)
2644 {
2645 (void) memset(prstatus, 0, sizeof (*prstatus));
2646 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2647 prstatus->pr_pid = ts->ts_tid;
2648 prstatus->pr_ppid = getppid();
2649 prstatus->pr_pgrp = getpgrp();
2650 prstatus->pr_sid = getsid(0);
2651
2652 bswap_prstatus(prstatus);
2653 }
2654
2655 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2656 {
2657 char *base_filename;
2658 unsigned int i, len;
2659
2660 (void) memset(psinfo, 0, sizeof (*psinfo));
2661
2662 len = ts->info->arg_end - ts->info->arg_start;
2663 if (len >= ELF_PRARGSZ)
2664 len = ELF_PRARGSZ - 1;
2665 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2666 return -EFAULT;
2667 for (i = 0; i < len; i++)
2668 if (psinfo->pr_psargs[i] == 0)
2669 psinfo->pr_psargs[i] = ' ';
2670 psinfo->pr_psargs[len] = 0;
2671
2672 psinfo->pr_pid = getpid();
2673 psinfo->pr_ppid = getppid();
2674 psinfo->pr_pgrp = getpgrp();
2675 psinfo->pr_sid = getsid(0);
2676 psinfo->pr_uid = getuid();
2677 psinfo->pr_gid = getgid();
2678
2679 base_filename = g_path_get_basename(ts->bprm->filename);
2680 /*
2681 * Using strncpy here is fine: at max-length,
2682 * this field is not NUL-terminated.
2683 */
2684 (void) strncpy(psinfo->pr_fname, base_filename,
2685 sizeof(psinfo->pr_fname));
2686
2687 g_free(base_filename);
2688 bswap_psinfo(psinfo);
2689 return (0);
2690 }
2691
2692 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2693 {
2694 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2695 elf_addr_t orig_auxv = auxv;
2696 void *ptr;
2697 int len = ts->info->auxv_len;
2698
2699 /*
2700 * Auxiliary vector is stored in target process stack. It contains
2701 * {type, value} pairs that we need to dump into note. This is not
2702 * strictly necessary but we do it here for sake of completeness.
2703 */
2704
2705 /* read in whole auxv vector and copy it to memelfnote */
2706 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2707 if (ptr != NULL) {
2708 fill_note(note, "CORE", NT_AUXV, len, ptr);
2709 unlock_user(ptr, auxv, len);
2710 }
2711 }
2712
2713 /*
2714 * Constructs name of coredump file. We have following convention
2715 * for the name:
2716 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2717 *
2718 * Returns 0 in case of success, -1 otherwise (errno is set).
2719 */
2720 static int core_dump_filename(const TaskState *ts, char *buf,
2721 size_t bufsize)
2722 {
2723 char timestamp[64];
2724 char *filename = NULL;
2725 char *base_filename = NULL;
2726 struct timeval tv;
2727 struct tm tm;
2728
2729 assert(bufsize >= PATH_MAX);
2730
2731 if (gettimeofday(&tv, NULL) < 0) {
2732 (void) fprintf(stderr, "unable to get current timestamp: %s",
2733 strerror(errno));
2734 return (-1);
2735 }
2736
2737 filename = strdup(ts->bprm->filename);
2738 base_filename = strdup(basename(filename));
2739 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2740 localtime_r(&tv.tv_sec, &tm));
2741 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2742 base_filename, timestamp, (int)getpid());
2743 free(base_filename);
2744 free(filename);
2745
2746 return (0);
2747 }
2748
2749 static int dump_write(int fd, const void *ptr, size_t size)
2750 {
2751 const char *bufp = (const char *)ptr;
2752 ssize_t bytes_written, bytes_left;
2753 struct rlimit dumpsize;
2754 off_t pos;
2755
2756 bytes_written = 0;
2757 getrlimit(RLIMIT_CORE, &dumpsize);
2758 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2759 if (errno == ESPIPE) { /* not a seekable stream */
2760 bytes_left = size;
2761 } else {
2762 return pos;
2763 }
2764 } else {
2765 if (dumpsize.rlim_cur <= pos) {
2766 return -1;
2767 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2768 bytes_left = size;
2769 } else {
2770 size_t limit_left=dumpsize.rlim_cur - pos;
2771 bytes_left = limit_left >= size ? size : limit_left ;
2772 }
2773 }
2774
2775 /*
2776 * In normal conditions, single write(2) should do but
2777 * in case of socket etc. this mechanism is more portable.
2778 */
2779 do {
2780 bytes_written = write(fd, bufp, bytes_left);
2781 if (bytes_written < 0) {
2782 if (errno == EINTR)
2783 continue;
2784 return (-1);
2785 } else if (bytes_written == 0) { /* eof */
2786 return (-1);
2787 }
2788 bufp += bytes_written;
2789 bytes_left -= bytes_written;
2790 } while (bytes_left > 0);
2791
2792 return (0);
2793 }
2794
2795 static int write_note(struct memelfnote *men, int fd)
2796 {
2797 struct elf_note en;
2798
2799 en.n_namesz = men->namesz;
2800 en.n_type = men->type;
2801 en.n_descsz = men->datasz;
2802
2803 bswap_note(&en);
2804
2805 if (dump_write(fd, &en, sizeof(en)) != 0)
2806 return (-1);
2807 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2808 return (-1);
2809 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2810 return (-1);
2811
2812 return (0);
2813 }
2814
2815 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2816 {
2817 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2818 TaskState *ts = (TaskState *)cpu->opaque;
2819 struct elf_thread_status *ets;
2820
2821 ets = g_malloc0(sizeof (*ets));
2822 ets->num_notes = 1; /* only prstatus is dumped */
2823 fill_prstatus(&ets->prstatus, ts, 0);
2824 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2825 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2826 &ets->prstatus);
2827
2828 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2829
2830 info->notes_size += note_size(&ets->notes[0]);
2831 }
2832
2833 static void init_note_info(struct elf_note_info *info)
2834 {
2835 /* Initialize the elf_note_info structure so that it is at
2836 * least safe to call free_note_info() on it. Must be
2837 * called before calling fill_note_info().
2838 */
2839 memset(info, 0, sizeof (*info));
2840 QTAILQ_INIT(&info->thread_list);
2841 }
2842
2843 static int fill_note_info(struct elf_note_info *info,
2844 long signr, const CPUArchState *env)
2845 {
2846 #define NUMNOTES 3
2847 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2848 TaskState *ts = (TaskState *)cpu->opaque;
2849 int i;
2850
2851 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2852 if (info->notes == NULL)
2853 return (-ENOMEM);
2854 info->prstatus = g_malloc0(sizeof (*info->prstatus));
2855 if (info->prstatus == NULL)
2856 return (-ENOMEM);
2857 info->psinfo = g_malloc0(sizeof (*info->psinfo));
2858 if (info->prstatus == NULL)
2859 return (-ENOMEM);
2860
2861 /*
2862 * First fill in status (and registers) of current thread
2863 * including process info & aux vector.
2864 */
2865 fill_prstatus(info->prstatus, ts, signr);
2866 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2867 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2868 sizeof (*info->prstatus), info->prstatus);
2869 fill_psinfo(info->psinfo, ts);
2870 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2871 sizeof (*info->psinfo), info->psinfo);
2872 fill_auxv_note(&info->notes[2], ts);
2873 info->numnote = 3;
2874
2875 info->notes_size = 0;
2876 for (i = 0; i < info->numnote; i++)
2877 info->notes_size += note_size(&info->notes[i]);
2878
2879 /* read and fill status of all threads */
2880 cpu_list_lock();
2881 CPU_FOREACH(cpu) {
2882 if (cpu == thread_cpu) {
2883 continue;
2884 }
2885 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2886 }
2887 cpu_list_unlock();
2888
2889 return (0);
2890 }
2891
2892 static void free_note_info(struct elf_note_info *info)
2893 {
2894 struct elf_thread_status *ets;
2895
2896 while (!QTAILQ_EMPTY(&info->thread_list)) {
2897 ets = QTAILQ_FIRST(&info->thread_list);
2898 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2899 g_free(ets);
2900 }
2901
2902 g_free(info->prstatus);
2903 g_free(info->psinfo);
2904 g_free(info->notes);
2905 }
2906
2907 static int write_note_info(struct elf_note_info *info, int fd)
2908 {
2909 struct elf_thread_status *ets;
2910 int i, error = 0;
2911
2912 /* write prstatus, psinfo and auxv for current thread */
2913 for (i = 0; i < info->numnote; i++)
2914 if ((error = write_note(&info->notes[i], fd)) != 0)
2915 return (error);
2916
2917 /* write prstatus for each thread */
2918 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
2919 if ((error = write_note(&ets->notes[0], fd)) != 0)
2920 return (error);
2921 }
2922
2923 return (0);
2924 }
2925
2926 /*
2927 * Write out ELF coredump.
2928 *
2929 * See documentation of ELF object file format in:
2930 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2931 *
2932 * Coredump format in linux is following:
2933 *
2934 * 0 +----------------------+ \
2935 * | ELF header | ET_CORE |
2936 * +----------------------+ |
2937 * | ELF program headers | |--- headers
2938 * | - NOTE section | |
2939 * | - PT_LOAD sections | |
2940 * +----------------------+ /
2941 * | NOTEs: |
2942 * | - NT_PRSTATUS |
2943 * | - NT_PRSINFO |
2944 * | - NT_AUXV |
2945 * +----------------------+ <-- aligned to target page
2946 * | Process memory dump |
2947 * : :
2948 * . .
2949 * : :
2950 * | |
2951 * +----------------------+
2952 *
2953 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2954 * NT_PRSINFO -> struct elf_prpsinfo
2955 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2956 *
2957 * Format follows System V format as close as possible. Current
2958 * version limitations are as follows:
2959 * - no floating point registers are dumped
2960 *
2961 * Function returns 0 in case of success, negative errno otherwise.
2962 *
2963 * TODO: make this work also during runtime: it should be
2964 * possible to force coredump from running process and then
2965 * continue processing. For example qemu could set up SIGUSR2
2966 * handler (provided that target process haven't registered
2967 * handler for that) that does the dump when signal is received.
2968 */
2969 static int elf_core_dump(int signr, const CPUArchState *env)
2970 {
2971 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2972 const TaskState *ts = (const TaskState *)cpu->opaque;
2973 struct vm_area_struct *vma = NULL;
2974 char corefile[PATH_MAX];
2975 struct elf_note_info info;
2976 struct elfhdr elf;
2977 struct elf_phdr phdr;
2978 struct rlimit dumpsize;
2979 struct mm_struct *mm = NULL;
2980 off_t offset = 0, data_offset = 0;
2981 int segs = 0;
2982 int fd = -1;
2983
2984 init_note_info(&info);
2985
2986 errno = 0;
2987 getrlimit(RLIMIT_CORE, &dumpsize);
2988 if (dumpsize.rlim_cur == 0)
2989 return 0;
2990
2991 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2992 return (-errno);
2993
2994 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2995 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2996 return (-errno);
2997
2998 /*
2999 * Walk through target process memory mappings and
3000 * set up structure containing this information. After
3001 * this point vma_xxx functions can be used.
3002 */
3003 if ((mm = vma_init()) == NULL)
3004 goto out;
3005
3006 walk_memory_regions(mm, vma_walker);
3007 segs = vma_get_mapping_count(mm);
3008
3009 /*
3010 * Construct valid coredump ELF header. We also
3011 * add one more segment for notes.
3012 */
3013 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3014 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3015 goto out;
3016
3017 /* fill in in-memory version of notes */
3018 if (fill_note_info(&info, signr, env) < 0)
3019 goto out;
3020
3021 offset += sizeof (elf); /* elf header */
3022 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3023
3024 /* write out notes program header */
3025 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3026
3027 offset += info.notes_size;
3028 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3029 goto out;
3030
3031 /*
3032 * ELF specification wants data to start at page boundary so
3033 * we align it here.
3034 */
3035 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3036
3037 /*
3038 * Write program headers for memory regions mapped in
3039 * the target process.
3040 */
3041 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3042 (void) memset(&phdr, 0, sizeof (phdr));
3043
3044 phdr.p_type = PT_LOAD;
3045 phdr.p_offset = offset;
3046 phdr.p_vaddr = vma->vma_start;
3047 phdr.p_paddr = 0;
3048 phdr.p_filesz = vma_dump_size(vma);
3049 offset += phdr.p_filesz;
3050 phdr.p_memsz = vma->vma_end - vma->vma_start;
3051 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3052 if (vma->vma_flags & PROT_WRITE)
3053 phdr.p_flags |= PF_W;
3054 if (vma->vma_flags & PROT_EXEC)
3055 phdr.p_flags |= PF_X;
3056 phdr.p_align = ELF_EXEC_PAGESIZE;
3057
3058 bswap_phdr(&phdr, 1);
3059 dump_write(fd, &phdr, sizeof (phdr));
3060 }
3061
3062 /*
3063 * Next we write notes just after program headers. No
3064 * alignment needed here.
3065 */
3066 if (write_note_info(&info, fd) < 0)
3067 goto out;
3068
3069 /* align data to page boundary */
3070 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3071 goto out;
3072
3073 /*
3074 * Finally we can dump process memory into corefile as well.
3075 */
3076 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3077 abi_ulong addr;
3078 abi_ulong end;
3079
3080 end = vma->vma_start + vma_dump_size(vma);
3081
3082 for (addr = vma->vma_start; addr < end;
3083 addr += TARGET_PAGE_SIZE) {
3084 char page[TARGET_PAGE_SIZE];
3085 int error;
3086
3087 /*
3088 * Read in page from target process memory and
3089 * write it to coredump file.
3090 */
3091 error = copy_from_user(page, addr, sizeof (page));
3092 if (error != 0) {
3093 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3094 addr);
3095 errno = -error;
3096 goto out;
3097 }
3098 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3099 goto out;
3100 }
3101 }
3102
3103 out:
3104 free_note_info(&info);
3105 if (mm != NULL)
3106 vma_delete(mm);
3107 (void) close(fd);
3108
3109 if (errno != 0)
3110 return (-errno);
3111 return (0);
3112 }
3113 #endif /* USE_ELF_CORE_DUMP */
3114
3115 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3116 {
3117 init_thread(regs, infop);
3118 }