]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
linux-user: Use elf_et_dyn_base for ET_DYN with interpreter
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35
36 #define ELF_OSABI ELFOSABI_SYSV
37
38 /* from personality.h */
39
40 /*
41 * Flags for bug emulation.
42 *
43 * These occupy the top three bytes.
44 */
45 enum {
46 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
47 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
48 descriptors (signal handling) */
49 MMAP_PAGE_ZERO = 0x0100000,
50 ADDR_COMPAT_LAYOUT = 0x0200000,
51 READ_IMPLIES_EXEC = 0x0400000,
52 ADDR_LIMIT_32BIT = 0x0800000,
53 SHORT_INODE = 0x1000000,
54 WHOLE_SECONDS = 0x2000000,
55 STICKY_TIMEOUTS = 0x4000000,
56 ADDR_LIMIT_3GB = 0x8000000,
57 };
58
59 /*
60 * Personality types.
61 *
62 * These go in the low byte. Avoid using the top bit, it will
63 * conflict with error returns.
64 */
65 enum {
66 PER_LINUX = 0x0000,
67 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
68 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
69 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
75 PER_BSD = 0x0006,
76 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
77 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78 PER_LINUX32 = 0x0008,
79 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
80 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83 PER_RISCOS = 0x000c,
84 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
85 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86 PER_OSF4 = 0x000f, /* OSF/1 v4 */
87 PER_HPUX = 0x0010,
88 PER_MASK = 0x00ff,
89 };
90
91 /*
92 * Return the base personality without flags.
93 */
94 #define personality(pers) (pers & PER_MASK)
95
96 int info_is_fdpic(struct image_info *info)
97 {
98 return info->personality == PER_LINUX_FDPIC;
99 }
100
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA ELFDATA2MSB
113 #else
114 #define ELF_DATA ELFDATA2LSB
115 #endif
116
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong target_elf_greg_t;
119 #define tswapreg(ptr) tswap64(ptr)
120 #else
121 typedef abi_ulong target_elf_greg_t;
122 #define tswapreg(ptr) tswapal(ptr)
123 #endif
124
125 #ifdef USE_UID16
126 typedef abi_ushort target_uid_t;
127 typedef abi_ushort target_gid_t;
128 #else
129 typedef abi_uint target_uid_t;
130 typedef abi_uint target_gid_t;
131 #endif
132 typedef abi_int target_pid_t;
133
134 #ifdef TARGET_I386
135
136 #define ELF_HWCAP get_elf_hwcap()
137
138 static uint32_t get_elf_hwcap(void)
139 {
140 X86CPU *cpu = X86_CPU(thread_cpu);
141
142 return cpu->env.features[FEAT_1_EDX];
143 }
144
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147
148 #define ELF_CLASS ELFCLASS64
149 #define ELF_ARCH EM_X86_64
150
151 #define ELF_PLATFORM "x86_64"
152
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158 }
159
160 #define ELF_NREG 27
161 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
162
163 /*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172 (*regs)[0] = tswapreg(env->regs[15]);
173 (*regs)[1] = tswapreg(env->regs[14]);
174 (*regs)[2] = tswapreg(env->regs[13]);
175 (*regs)[3] = tswapreg(env->regs[12]);
176 (*regs)[4] = tswapreg(env->regs[R_EBP]);
177 (*regs)[5] = tswapreg(env->regs[R_EBX]);
178 (*regs)[6] = tswapreg(env->regs[11]);
179 (*regs)[7] = tswapreg(env->regs[10]);
180 (*regs)[8] = tswapreg(env->regs[9]);
181 (*regs)[9] = tswapreg(env->regs[8]);
182 (*regs)[10] = tswapreg(env->regs[R_EAX]);
183 (*regs)[11] = tswapreg(env->regs[R_ECX]);
184 (*regs)[12] = tswapreg(env->regs[R_EDX]);
185 (*regs)[13] = tswapreg(env->regs[R_ESI]);
186 (*regs)[14] = tswapreg(env->regs[R_EDI]);
187 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
188 (*regs)[16] = tswapreg(env->eip);
189 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
190 (*regs)[18] = tswapreg(env->eflags);
191 (*regs)[19] = tswapreg(env->regs[R_ESP]);
192 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
193 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
194 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
195 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
196 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
197 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
198 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
199 }
200
201 #if ULONG_MAX > UINT32_MAX
202 #define INIT_GUEST_COMMPAGE
203 static bool init_guest_commpage(void)
204 {
205 /*
206 * The vsyscall page is at a high negative address aka kernel space,
207 * which means that we cannot actually allocate it with target_mmap.
208 * We still should be able to use page_set_flags, unless the user
209 * has specified -R reserved_va, which would trigger an assert().
210 */
211 if (reserved_va != 0 &&
212 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
213 error_report("Cannot allocate vsyscall page");
214 exit(EXIT_FAILURE);
215 }
216 page_set_flags(TARGET_VSYSCALL_PAGE,
217 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
218 PAGE_EXEC | PAGE_VALID);
219 return true;
220 }
221 #endif
222 #else
223
224 #define ELF_START_MMAP 0x80000000
225
226 /*
227 * This is used to ensure we don't load something for the wrong architecture.
228 */
229 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
230
231 /*
232 * These are used to set parameters in the core dumps.
233 */
234 #define ELF_CLASS ELFCLASS32
235 #define ELF_ARCH EM_386
236
237 #define ELF_PLATFORM get_elf_platform()
238 #define EXSTACK_DEFAULT true
239
240 static const char *get_elf_platform(void)
241 {
242 static char elf_platform[] = "i386";
243 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
244 if (family > 6) {
245 family = 6;
246 }
247 if (family >= 3) {
248 elf_platform[1] = '0' + family;
249 }
250 return elf_platform;
251 }
252
253 static inline void init_thread(struct target_pt_regs *regs,
254 struct image_info *infop)
255 {
256 regs->esp = infop->start_stack;
257 regs->eip = infop->entry;
258
259 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
260 starts %edx contains a pointer to a function which might be
261 registered using `atexit'. This provides a mean for the
262 dynamic linker to call DT_FINI functions for shared libraries
263 that have been loaded before the code runs.
264
265 A value of 0 tells we have no such handler. */
266 regs->edx = 0;
267 }
268
269 #define ELF_NREG 17
270 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
271
272 /*
273 * Note that ELF_NREG should be 19 as there should be place for
274 * TRAPNO and ERR "registers" as well but linux doesn't dump
275 * those.
276 *
277 * See linux kernel: arch/x86/include/asm/elf.h
278 */
279 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
280 {
281 (*regs)[0] = tswapreg(env->regs[R_EBX]);
282 (*regs)[1] = tswapreg(env->regs[R_ECX]);
283 (*regs)[2] = tswapreg(env->regs[R_EDX]);
284 (*regs)[3] = tswapreg(env->regs[R_ESI]);
285 (*regs)[4] = tswapreg(env->regs[R_EDI]);
286 (*regs)[5] = tswapreg(env->regs[R_EBP]);
287 (*regs)[6] = tswapreg(env->regs[R_EAX]);
288 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
289 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
290 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
291 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
292 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
293 (*regs)[12] = tswapreg(env->eip);
294 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
295 (*regs)[14] = tswapreg(env->eflags);
296 (*regs)[15] = tswapreg(env->regs[R_ESP]);
297 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
298 }
299 #endif
300
301 #define USE_ELF_CORE_DUMP
302 #define ELF_EXEC_PAGESIZE 4096
303
304 #endif
305
306 #ifdef TARGET_ARM
307
308 #ifndef TARGET_AARCH64
309 /* 32 bit ARM definitions */
310
311 #define ELF_START_MMAP 0x80000000
312
313 #define ELF_ARCH EM_ARM
314 #define ELF_CLASS ELFCLASS32
315 #define EXSTACK_DEFAULT true
316
317 static inline void init_thread(struct target_pt_regs *regs,
318 struct image_info *infop)
319 {
320 abi_long stack = infop->start_stack;
321 memset(regs, 0, sizeof(*regs));
322
323 regs->uregs[16] = ARM_CPU_MODE_USR;
324 if (infop->entry & 1) {
325 regs->uregs[16] |= CPSR_T;
326 }
327 regs->uregs[15] = infop->entry & 0xfffffffe;
328 regs->uregs[13] = infop->start_stack;
329 /* FIXME - what to for failure of get_user()? */
330 get_user_ual(regs->uregs[2], stack + 8); /* envp */
331 get_user_ual(regs->uregs[1], stack + 4); /* envp */
332 /* XXX: it seems that r0 is zeroed after ! */
333 regs->uregs[0] = 0;
334 /* For uClinux PIC binaries. */
335 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
336 regs->uregs[10] = infop->start_data;
337
338 /* Support ARM FDPIC. */
339 if (info_is_fdpic(infop)) {
340 /* As described in the ABI document, r7 points to the loadmap info
341 * prepared by the kernel. If an interpreter is needed, r8 points
342 * to the interpreter loadmap and r9 points to the interpreter
343 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
344 * r9 points to the main program PT_DYNAMIC info.
345 */
346 regs->uregs[7] = infop->loadmap_addr;
347 if (infop->interpreter_loadmap_addr) {
348 /* Executable is dynamically loaded. */
349 regs->uregs[8] = infop->interpreter_loadmap_addr;
350 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
351 } else {
352 regs->uregs[8] = 0;
353 regs->uregs[9] = infop->pt_dynamic_addr;
354 }
355 }
356 }
357
358 #define ELF_NREG 18
359 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
360
361 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
362 {
363 (*regs)[0] = tswapreg(env->regs[0]);
364 (*regs)[1] = tswapreg(env->regs[1]);
365 (*regs)[2] = tswapreg(env->regs[2]);
366 (*regs)[3] = tswapreg(env->regs[3]);
367 (*regs)[4] = tswapreg(env->regs[4]);
368 (*regs)[5] = tswapreg(env->regs[5]);
369 (*regs)[6] = tswapreg(env->regs[6]);
370 (*regs)[7] = tswapreg(env->regs[7]);
371 (*regs)[8] = tswapreg(env->regs[8]);
372 (*regs)[9] = tswapreg(env->regs[9]);
373 (*regs)[10] = tswapreg(env->regs[10]);
374 (*regs)[11] = tswapreg(env->regs[11]);
375 (*regs)[12] = tswapreg(env->regs[12]);
376 (*regs)[13] = tswapreg(env->regs[13]);
377 (*regs)[14] = tswapreg(env->regs[14]);
378 (*regs)[15] = tswapreg(env->regs[15]);
379
380 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
381 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
382 }
383
384 #define USE_ELF_CORE_DUMP
385 #define ELF_EXEC_PAGESIZE 4096
386
387 enum
388 {
389 ARM_HWCAP_ARM_SWP = 1 << 0,
390 ARM_HWCAP_ARM_HALF = 1 << 1,
391 ARM_HWCAP_ARM_THUMB = 1 << 2,
392 ARM_HWCAP_ARM_26BIT = 1 << 3,
393 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
394 ARM_HWCAP_ARM_FPA = 1 << 5,
395 ARM_HWCAP_ARM_VFP = 1 << 6,
396 ARM_HWCAP_ARM_EDSP = 1 << 7,
397 ARM_HWCAP_ARM_JAVA = 1 << 8,
398 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
399 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
400 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
401 ARM_HWCAP_ARM_NEON = 1 << 12,
402 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
403 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
404 ARM_HWCAP_ARM_TLS = 1 << 15,
405 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
406 ARM_HWCAP_ARM_IDIVA = 1 << 17,
407 ARM_HWCAP_ARM_IDIVT = 1 << 18,
408 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
409 ARM_HWCAP_ARM_LPAE = 1 << 20,
410 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
411 };
412
413 enum {
414 ARM_HWCAP2_ARM_AES = 1 << 0,
415 ARM_HWCAP2_ARM_PMULL = 1 << 1,
416 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
417 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
418 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
419 };
420
421 /* The commpage only exists for 32 bit kernels */
422
423 #define HI_COMMPAGE (intptr_t)0xffff0f00u
424
425 static bool init_guest_commpage(void)
426 {
427 ARMCPU *cpu = ARM_CPU(thread_cpu);
428 abi_ptr commpage;
429 void *want;
430 void *addr;
431
432 /*
433 * M-profile allocates maximum of 2GB address space, so can never
434 * allocate the commpage. Skip it.
435 */
436 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
437 return true;
438 }
439
440 commpage = HI_COMMPAGE & -qemu_host_page_size;
441 want = g2h_untagged(commpage);
442 addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
443 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
444
445 if (addr == MAP_FAILED) {
446 perror("Allocating guest commpage");
447 exit(EXIT_FAILURE);
448 }
449 if (addr != want) {
450 return false;
451 }
452
453 /* Set kernel helper versions; rest of page is 0. */
454 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
455
456 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
457 perror("Protecting guest commpage");
458 exit(EXIT_FAILURE);
459 }
460
461 page_set_flags(commpage, commpage | ~qemu_host_page_mask,
462 PAGE_READ | PAGE_EXEC | PAGE_VALID);
463 return true;
464 }
465
466 #define ELF_HWCAP get_elf_hwcap()
467 #define ELF_HWCAP2 get_elf_hwcap2()
468
469 static uint32_t get_elf_hwcap(void)
470 {
471 ARMCPU *cpu = ARM_CPU(thread_cpu);
472 uint32_t hwcaps = 0;
473
474 hwcaps |= ARM_HWCAP_ARM_SWP;
475 hwcaps |= ARM_HWCAP_ARM_HALF;
476 hwcaps |= ARM_HWCAP_ARM_THUMB;
477 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
478
479 /* probe for the extra features */
480 #define GET_FEATURE(feat, hwcap) \
481 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
482
483 #define GET_FEATURE_ID(feat, hwcap) \
484 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
485
486 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
487 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
488 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
489 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
490 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
491 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
492 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
493 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
494 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
495 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
496
497 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
498 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
499 hwcaps |= ARM_HWCAP_ARM_VFPv3;
500 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
501 hwcaps |= ARM_HWCAP_ARM_VFPD32;
502 } else {
503 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
504 }
505 }
506 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
507
508 return hwcaps;
509 }
510
511 static uint32_t get_elf_hwcap2(void)
512 {
513 ARMCPU *cpu = ARM_CPU(thread_cpu);
514 uint32_t hwcaps = 0;
515
516 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
517 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
518 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
519 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
520 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
521 return hwcaps;
522 }
523
524 #undef GET_FEATURE
525 #undef GET_FEATURE_ID
526
527 #define ELF_PLATFORM get_elf_platform()
528
529 static const char *get_elf_platform(void)
530 {
531 CPUARMState *env = thread_cpu->env_ptr;
532
533 #if TARGET_BIG_ENDIAN
534 # define END "b"
535 #else
536 # define END "l"
537 #endif
538
539 if (arm_feature(env, ARM_FEATURE_V8)) {
540 return "v8" END;
541 } else if (arm_feature(env, ARM_FEATURE_V7)) {
542 if (arm_feature(env, ARM_FEATURE_M)) {
543 return "v7m" END;
544 } else {
545 return "v7" END;
546 }
547 } else if (arm_feature(env, ARM_FEATURE_V6)) {
548 return "v6" END;
549 } else if (arm_feature(env, ARM_FEATURE_V5)) {
550 return "v5" END;
551 } else {
552 return "v4" END;
553 }
554
555 #undef END
556 }
557
558 #else
559 /* 64 bit ARM definitions */
560 #define ELF_START_MMAP 0x80000000
561
562 #define ELF_ARCH EM_AARCH64
563 #define ELF_CLASS ELFCLASS64
564 #if TARGET_BIG_ENDIAN
565 # define ELF_PLATFORM "aarch64_be"
566 #else
567 # define ELF_PLATFORM "aarch64"
568 #endif
569
570 static inline void init_thread(struct target_pt_regs *regs,
571 struct image_info *infop)
572 {
573 abi_long stack = infop->start_stack;
574 memset(regs, 0, sizeof(*regs));
575
576 regs->pc = infop->entry & ~0x3ULL;
577 regs->sp = stack;
578 }
579
580 #define ELF_NREG 34
581 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
582
583 static void elf_core_copy_regs(target_elf_gregset_t *regs,
584 const CPUARMState *env)
585 {
586 int i;
587
588 for (i = 0; i < 32; i++) {
589 (*regs)[i] = tswapreg(env->xregs[i]);
590 }
591 (*regs)[32] = tswapreg(env->pc);
592 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
593 }
594
595 #define USE_ELF_CORE_DUMP
596 #define ELF_EXEC_PAGESIZE 4096
597
598 enum {
599 ARM_HWCAP_A64_FP = 1 << 0,
600 ARM_HWCAP_A64_ASIMD = 1 << 1,
601 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
602 ARM_HWCAP_A64_AES = 1 << 3,
603 ARM_HWCAP_A64_PMULL = 1 << 4,
604 ARM_HWCAP_A64_SHA1 = 1 << 5,
605 ARM_HWCAP_A64_SHA2 = 1 << 6,
606 ARM_HWCAP_A64_CRC32 = 1 << 7,
607 ARM_HWCAP_A64_ATOMICS = 1 << 8,
608 ARM_HWCAP_A64_FPHP = 1 << 9,
609 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
610 ARM_HWCAP_A64_CPUID = 1 << 11,
611 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
612 ARM_HWCAP_A64_JSCVT = 1 << 13,
613 ARM_HWCAP_A64_FCMA = 1 << 14,
614 ARM_HWCAP_A64_LRCPC = 1 << 15,
615 ARM_HWCAP_A64_DCPOP = 1 << 16,
616 ARM_HWCAP_A64_SHA3 = 1 << 17,
617 ARM_HWCAP_A64_SM3 = 1 << 18,
618 ARM_HWCAP_A64_SM4 = 1 << 19,
619 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
620 ARM_HWCAP_A64_SHA512 = 1 << 21,
621 ARM_HWCAP_A64_SVE = 1 << 22,
622 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
623 ARM_HWCAP_A64_DIT = 1 << 24,
624 ARM_HWCAP_A64_USCAT = 1 << 25,
625 ARM_HWCAP_A64_ILRCPC = 1 << 26,
626 ARM_HWCAP_A64_FLAGM = 1 << 27,
627 ARM_HWCAP_A64_SSBS = 1 << 28,
628 ARM_HWCAP_A64_SB = 1 << 29,
629 ARM_HWCAP_A64_PACA = 1 << 30,
630 ARM_HWCAP_A64_PACG = 1UL << 31,
631
632 ARM_HWCAP2_A64_DCPODP = 1 << 0,
633 ARM_HWCAP2_A64_SVE2 = 1 << 1,
634 ARM_HWCAP2_A64_SVEAES = 1 << 2,
635 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
636 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
637 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
638 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
639 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
640 ARM_HWCAP2_A64_FRINT = 1 << 8,
641 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
642 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
643 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
644 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
645 ARM_HWCAP2_A64_I8MM = 1 << 13,
646 ARM_HWCAP2_A64_BF16 = 1 << 14,
647 ARM_HWCAP2_A64_DGH = 1 << 15,
648 ARM_HWCAP2_A64_RNG = 1 << 16,
649 ARM_HWCAP2_A64_BTI = 1 << 17,
650 ARM_HWCAP2_A64_MTE = 1 << 18,
651 ARM_HWCAP2_A64_ECV = 1 << 19,
652 ARM_HWCAP2_A64_AFP = 1 << 20,
653 ARM_HWCAP2_A64_RPRES = 1 << 21,
654 ARM_HWCAP2_A64_MTE3 = 1 << 22,
655 ARM_HWCAP2_A64_SME = 1 << 23,
656 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
657 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
658 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
659 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
660 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
661 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
662 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
663 };
664
665 #define ELF_HWCAP get_elf_hwcap()
666 #define ELF_HWCAP2 get_elf_hwcap2()
667
668 #define GET_FEATURE_ID(feat, hwcap) \
669 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
670
671 static uint32_t get_elf_hwcap(void)
672 {
673 ARMCPU *cpu = ARM_CPU(thread_cpu);
674 uint32_t hwcaps = 0;
675
676 hwcaps |= ARM_HWCAP_A64_FP;
677 hwcaps |= ARM_HWCAP_A64_ASIMD;
678 hwcaps |= ARM_HWCAP_A64_CPUID;
679
680 /* probe for the extra features */
681
682 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
683 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
684 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
685 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
686 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
687 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
688 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
689 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
690 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
691 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
692 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
693 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
694 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
695 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
696 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
697 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
698 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
699 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
700 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
701 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
702 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
703 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
704 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
705
706 return hwcaps;
707 }
708
709 static uint32_t get_elf_hwcap2(void)
710 {
711 ARMCPU *cpu = ARM_CPU(thread_cpu);
712 uint32_t hwcaps = 0;
713
714 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
715 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
716 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
717 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
718 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
719 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
720 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
721 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
722 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
723 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
724 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
725 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
726 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
727 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
728 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
729 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
730 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
731 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
732 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
733 ARM_HWCAP2_A64_SME_F32F32 |
734 ARM_HWCAP2_A64_SME_B16F32 |
735 ARM_HWCAP2_A64_SME_F16F32 |
736 ARM_HWCAP2_A64_SME_I8I32));
737 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
738 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
739 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
740
741 return hwcaps;
742 }
743
744 #undef GET_FEATURE_ID
745
746 #endif /* not TARGET_AARCH64 */
747 #endif /* TARGET_ARM */
748
749 #ifdef TARGET_SPARC
750 #ifdef TARGET_SPARC64
751
752 #define ELF_START_MMAP 0x80000000
753 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
754 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
755 #ifndef TARGET_ABI32
756 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
757 #else
758 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
759 #endif
760
761 #define ELF_CLASS ELFCLASS64
762 #define ELF_ARCH EM_SPARCV9
763 #else
764 #define ELF_START_MMAP 0x80000000
765 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
766 | HWCAP_SPARC_MULDIV)
767 #define ELF_CLASS ELFCLASS32
768 #define ELF_ARCH EM_SPARC
769 #endif /* TARGET_SPARC64 */
770
771 static inline void init_thread(struct target_pt_regs *regs,
772 struct image_info *infop)
773 {
774 /* Note that target_cpu_copy_regs does not read psr/tstate. */
775 regs->pc = infop->entry;
776 regs->npc = regs->pc + 4;
777 regs->y = 0;
778 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
779 - TARGET_STACK_BIAS);
780 }
781 #endif /* TARGET_SPARC */
782
783 #ifdef TARGET_PPC
784
785 #define ELF_MACHINE PPC_ELF_MACHINE
786 #define ELF_START_MMAP 0x80000000
787
788 #if defined(TARGET_PPC64)
789
790 #define elf_check_arch(x) ( (x) == EM_PPC64 )
791
792 #define ELF_CLASS ELFCLASS64
793
794 #else
795
796 #define ELF_CLASS ELFCLASS32
797 #define EXSTACK_DEFAULT true
798
799 #endif
800
801 #define ELF_ARCH EM_PPC
802
803 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
804 See arch/powerpc/include/asm/cputable.h. */
805 enum {
806 QEMU_PPC_FEATURE_32 = 0x80000000,
807 QEMU_PPC_FEATURE_64 = 0x40000000,
808 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
809 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
810 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
811 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
812 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
813 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
814 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
815 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
816 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
817 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
818 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
819 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
820 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
821 QEMU_PPC_FEATURE_CELL = 0x00010000,
822 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
823 QEMU_PPC_FEATURE_SMT = 0x00004000,
824 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
825 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
826 QEMU_PPC_FEATURE_PA6T = 0x00000800,
827 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
828 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
829 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
830 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
831 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
832
833 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
834 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
835
836 /* Feature definitions in AT_HWCAP2. */
837 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
838 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
839 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
840 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
841 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
842 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
843 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
844 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
845 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
846 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
847 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
848 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
849 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
850 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
851 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
852 };
853
854 #define ELF_HWCAP get_elf_hwcap()
855
856 static uint32_t get_elf_hwcap(void)
857 {
858 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
859 uint32_t features = 0;
860
861 /* We don't have to be terribly complete here; the high points are
862 Altivec/FP/SPE support. Anything else is just a bonus. */
863 #define GET_FEATURE(flag, feature) \
864 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
865 #define GET_FEATURE2(flags, feature) \
866 do { \
867 if ((cpu->env.insns_flags2 & flags) == flags) { \
868 features |= feature; \
869 } \
870 } while (0)
871 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
872 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
873 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
874 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
875 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
876 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
877 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
878 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
879 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
880 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
881 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
882 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
883 QEMU_PPC_FEATURE_ARCH_2_06);
884 #undef GET_FEATURE
885 #undef GET_FEATURE2
886
887 return features;
888 }
889
890 #define ELF_HWCAP2 get_elf_hwcap2()
891
892 static uint32_t get_elf_hwcap2(void)
893 {
894 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
895 uint32_t features = 0;
896
897 #define GET_FEATURE(flag, feature) \
898 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
899 #define GET_FEATURE2(flag, feature) \
900 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
901
902 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
903 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
904 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
905 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
906 QEMU_PPC_FEATURE2_VEC_CRYPTO);
907 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
908 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
909 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
910 QEMU_PPC_FEATURE2_MMA);
911
912 #undef GET_FEATURE
913 #undef GET_FEATURE2
914
915 return features;
916 }
917
918 /*
919 * The requirements here are:
920 * - keep the final alignment of sp (sp & 0xf)
921 * - make sure the 32-bit value at the first 16 byte aligned position of
922 * AUXV is greater than 16 for glibc compatibility.
923 * AT_IGNOREPPC is used for that.
924 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
925 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
926 */
927 #define DLINFO_ARCH_ITEMS 5
928 #define ARCH_DLINFO \
929 do { \
930 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
931 /* \
932 * Handle glibc compatibility: these magic entries must \
933 * be at the lowest addresses in the final auxv. \
934 */ \
935 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
936 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
937 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
938 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
939 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
940 } while (0)
941
942 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
943 {
944 _regs->gpr[1] = infop->start_stack;
945 #if defined(TARGET_PPC64)
946 if (get_ppc64_abi(infop) < 2) {
947 uint64_t val;
948 get_user_u64(val, infop->entry + 8);
949 _regs->gpr[2] = val + infop->load_bias;
950 get_user_u64(val, infop->entry);
951 infop->entry = val + infop->load_bias;
952 } else {
953 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
954 }
955 #endif
956 _regs->nip = infop->entry;
957 }
958
959 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
960 #define ELF_NREG 48
961 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
962
963 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
964 {
965 int i;
966 target_ulong ccr = 0;
967
968 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
969 (*regs)[i] = tswapreg(env->gpr[i]);
970 }
971
972 (*regs)[32] = tswapreg(env->nip);
973 (*regs)[33] = tswapreg(env->msr);
974 (*regs)[35] = tswapreg(env->ctr);
975 (*regs)[36] = tswapreg(env->lr);
976 (*regs)[37] = tswapreg(cpu_read_xer(env));
977
978 ccr = ppc_get_cr(env);
979 (*regs)[38] = tswapreg(ccr);
980 }
981
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE 4096
984
985 #endif
986
987 #ifdef TARGET_LOONGARCH64
988
989 #define ELF_START_MMAP 0x80000000
990
991 #define ELF_CLASS ELFCLASS64
992 #define ELF_ARCH EM_LOONGARCH
993 #define EXSTACK_DEFAULT true
994
995 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
996
997 static inline void init_thread(struct target_pt_regs *regs,
998 struct image_info *infop)
999 {
1000 /*Set crmd PG,DA = 1,0 */
1001 regs->csr.crmd = 2 << 3;
1002 regs->csr.era = infop->entry;
1003 regs->regs[3] = infop->start_stack;
1004 }
1005
1006 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1007 #define ELF_NREG 45
1008 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1009
1010 enum {
1011 TARGET_EF_R0 = 0,
1012 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1013 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1014 };
1015
1016 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1017 const CPULoongArchState *env)
1018 {
1019 int i;
1020
1021 (*regs)[TARGET_EF_R0] = 0;
1022
1023 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1024 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1025 }
1026
1027 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1028 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1029 }
1030
1031 #define USE_ELF_CORE_DUMP
1032 #define ELF_EXEC_PAGESIZE 4096
1033
1034 #define ELF_HWCAP get_elf_hwcap()
1035
1036 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1037 enum {
1038 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1039 HWCAP_LOONGARCH_LAM = (1 << 1),
1040 HWCAP_LOONGARCH_UAL = (1 << 2),
1041 HWCAP_LOONGARCH_FPU = (1 << 3),
1042 HWCAP_LOONGARCH_LSX = (1 << 4),
1043 HWCAP_LOONGARCH_LASX = (1 << 5),
1044 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1045 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1046 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1047 HWCAP_LOONGARCH_LVZ = (1 << 9),
1048 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1049 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1050 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1051 };
1052
1053 static uint32_t get_elf_hwcap(void)
1054 {
1055 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1056 uint32_t hwcaps = 0;
1057
1058 hwcaps |= HWCAP_LOONGARCH_CRC32;
1059
1060 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1061 hwcaps |= HWCAP_LOONGARCH_UAL;
1062 }
1063
1064 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1065 hwcaps |= HWCAP_LOONGARCH_FPU;
1066 }
1067
1068 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1069 hwcaps |= HWCAP_LOONGARCH_LAM;
1070 }
1071
1072 return hwcaps;
1073 }
1074
1075 #define ELF_PLATFORM "loongarch"
1076
1077 #endif /* TARGET_LOONGARCH64 */
1078
1079 #ifdef TARGET_MIPS
1080
1081 #define ELF_START_MMAP 0x80000000
1082
1083 #ifdef TARGET_MIPS64
1084 #define ELF_CLASS ELFCLASS64
1085 #else
1086 #define ELF_CLASS ELFCLASS32
1087 #endif
1088 #define ELF_ARCH EM_MIPS
1089 #define EXSTACK_DEFAULT true
1090
1091 #ifdef TARGET_ABI_MIPSN32
1092 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1093 #else
1094 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1095 #endif
1096
1097 #define ELF_BASE_PLATFORM get_elf_base_platform()
1098
1099 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1100 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1101 { return _base_platform; } } while (0)
1102
1103 static const char *get_elf_base_platform(void)
1104 {
1105 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1106
1107 /* 64 bit ISAs goes first */
1108 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1109 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1110 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1111 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1112 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1113 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1114 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1115
1116 /* 32 bit ISAs */
1117 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1118 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1119 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1120 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1121 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1122
1123 /* Fallback */
1124 return "mips";
1125 }
1126 #undef MATCH_PLATFORM_INSN
1127
1128 static inline void init_thread(struct target_pt_regs *regs,
1129 struct image_info *infop)
1130 {
1131 regs->cp0_status = 2 << CP0St_KSU;
1132 regs->cp0_epc = infop->entry;
1133 regs->regs[29] = infop->start_stack;
1134 }
1135
1136 /* See linux kernel: arch/mips/include/asm/elf.h. */
1137 #define ELF_NREG 45
1138 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1139
1140 /* See linux kernel: arch/mips/include/asm/reg.h. */
1141 enum {
1142 #ifdef TARGET_MIPS64
1143 TARGET_EF_R0 = 0,
1144 #else
1145 TARGET_EF_R0 = 6,
1146 #endif
1147 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1148 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1149 TARGET_EF_LO = TARGET_EF_R0 + 32,
1150 TARGET_EF_HI = TARGET_EF_R0 + 33,
1151 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1152 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1153 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1154 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1155 };
1156
1157 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1158 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1159 {
1160 int i;
1161
1162 for (i = 0; i < TARGET_EF_R0; i++) {
1163 (*regs)[i] = 0;
1164 }
1165 (*regs)[TARGET_EF_R0] = 0;
1166
1167 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1168 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1169 }
1170
1171 (*regs)[TARGET_EF_R26] = 0;
1172 (*regs)[TARGET_EF_R27] = 0;
1173 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1174 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1175 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1176 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1177 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1178 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1179 }
1180
1181 #define USE_ELF_CORE_DUMP
1182 #define ELF_EXEC_PAGESIZE 4096
1183
1184 /* See arch/mips/include/uapi/asm/hwcap.h. */
1185 enum {
1186 HWCAP_MIPS_R6 = (1 << 0),
1187 HWCAP_MIPS_MSA = (1 << 1),
1188 HWCAP_MIPS_CRC32 = (1 << 2),
1189 HWCAP_MIPS_MIPS16 = (1 << 3),
1190 HWCAP_MIPS_MDMX = (1 << 4),
1191 HWCAP_MIPS_MIPS3D = (1 << 5),
1192 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1193 HWCAP_MIPS_DSP = (1 << 7),
1194 HWCAP_MIPS_DSP2 = (1 << 8),
1195 HWCAP_MIPS_DSP3 = (1 << 9),
1196 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1197 HWCAP_LOONGSON_MMI = (1 << 11),
1198 HWCAP_LOONGSON_EXT = (1 << 12),
1199 HWCAP_LOONGSON_EXT2 = (1 << 13),
1200 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1201 };
1202
1203 #define ELF_HWCAP get_elf_hwcap()
1204
1205 #define GET_FEATURE_INSN(_flag, _hwcap) \
1206 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1207
1208 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1209 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1210
1211 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1212 do { \
1213 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1214 hwcaps |= _hwcap; \
1215 } \
1216 } while (0)
1217
1218 static uint32_t get_elf_hwcap(void)
1219 {
1220 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1221 uint32_t hwcaps = 0;
1222
1223 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1224 2, HWCAP_MIPS_R6);
1225 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1226 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1227 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1228
1229 return hwcaps;
1230 }
1231
1232 #undef GET_FEATURE_REG_EQU
1233 #undef GET_FEATURE_REG_SET
1234 #undef GET_FEATURE_INSN
1235
1236 #endif /* TARGET_MIPS */
1237
1238 #ifdef TARGET_MICROBLAZE
1239
1240 #define ELF_START_MMAP 0x80000000
1241
1242 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1243
1244 #define ELF_CLASS ELFCLASS32
1245 #define ELF_ARCH EM_MICROBLAZE
1246
1247 static inline void init_thread(struct target_pt_regs *regs,
1248 struct image_info *infop)
1249 {
1250 regs->pc = infop->entry;
1251 regs->r1 = infop->start_stack;
1252
1253 }
1254
1255 #define ELF_EXEC_PAGESIZE 4096
1256
1257 #define USE_ELF_CORE_DUMP
1258 #define ELF_NREG 38
1259 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1260
1261 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1262 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1263 {
1264 int i, pos = 0;
1265
1266 for (i = 0; i < 32; i++) {
1267 (*regs)[pos++] = tswapreg(env->regs[i]);
1268 }
1269
1270 (*regs)[pos++] = tswapreg(env->pc);
1271 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1272 (*regs)[pos++] = 0;
1273 (*regs)[pos++] = tswapreg(env->ear);
1274 (*regs)[pos++] = 0;
1275 (*regs)[pos++] = tswapreg(env->esr);
1276 }
1277
1278 #endif /* TARGET_MICROBLAZE */
1279
1280 #ifdef TARGET_NIOS2
1281
1282 #define ELF_START_MMAP 0x80000000
1283
1284 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1285
1286 #define ELF_CLASS ELFCLASS32
1287 #define ELF_ARCH EM_ALTERA_NIOS2
1288
1289 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1290 {
1291 regs->ea = infop->entry;
1292 regs->sp = infop->start_stack;
1293 }
1294
1295 #define LO_COMMPAGE TARGET_PAGE_SIZE
1296
1297 static bool init_guest_commpage(void)
1298 {
1299 static const uint8_t kuser_page[4 + 2 * 64] = {
1300 /* __kuser_helper_version */
1301 [0x00] = 0x02, 0x00, 0x00, 0x00,
1302
1303 /* __kuser_cmpxchg */
1304 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1305 0x3a, 0x28, 0x00, 0xf8, /* ret */
1306
1307 /* __kuser_sigtramp */
1308 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1309 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1310 };
1311
1312 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1313 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1314 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1315
1316 if (addr == MAP_FAILED) {
1317 perror("Allocating guest commpage");
1318 exit(EXIT_FAILURE);
1319 }
1320 if (addr != want) {
1321 return false;
1322 }
1323
1324 memcpy(addr, kuser_page, sizeof(kuser_page));
1325
1326 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1327 perror("Protecting guest commpage");
1328 exit(EXIT_FAILURE);
1329 }
1330
1331 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1332 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1333 return true;
1334 }
1335
1336 #define ELF_EXEC_PAGESIZE 4096
1337
1338 #define USE_ELF_CORE_DUMP
1339 #define ELF_NREG 49
1340 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1341
1342 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1343 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1344 const CPUNios2State *env)
1345 {
1346 int i;
1347
1348 (*regs)[0] = -1;
1349 for (i = 1; i < 8; i++) /* r0-r7 */
1350 (*regs)[i] = tswapreg(env->regs[i + 7]);
1351
1352 for (i = 8; i < 16; i++) /* r8-r15 */
1353 (*regs)[i] = tswapreg(env->regs[i - 8]);
1354
1355 for (i = 16; i < 24; i++) /* r16-r23 */
1356 (*regs)[i] = tswapreg(env->regs[i + 7]);
1357 (*regs)[24] = -1; /* R_ET */
1358 (*regs)[25] = -1; /* R_BT */
1359 (*regs)[26] = tswapreg(env->regs[R_GP]);
1360 (*regs)[27] = tswapreg(env->regs[R_SP]);
1361 (*regs)[28] = tswapreg(env->regs[R_FP]);
1362 (*regs)[29] = tswapreg(env->regs[R_EA]);
1363 (*regs)[30] = -1; /* R_SSTATUS */
1364 (*regs)[31] = tswapreg(env->regs[R_RA]);
1365
1366 (*regs)[32] = tswapreg(env->pc);
1367
1368 (*regs)[33] = -1; /* R_STATUS */
1369 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1370
1371 for (i = 35; i < 49; i++) /* ... */
1372 (*regs)[i] = -1;
1373 }
1374
1375 #endif /* TARGET_NIOS2 */
1376
1377 #ifdef TARGET_OPENRISC
1378
1379 #define ELF_START_MMAP 0x08000000
1380
1381 #define ELF_ARCH EM_OPENRISC
1382 #define ELF_CLASS ELFCLASS32
1383 #define ELF_DATA ELFDATA2MSB
1384
1385 static inline void init_thread(struct target_pt_regs *regs,
1386 struct image_info *infop)
1387 {
1388 regs->pc = infop->entry;
1389 regs->gpr[1] = infop->start_stack;
1390 }
1391
1392 #define USE_ELF_CORE_DUMP
1393 #define ELF_EXEC_PAGESIZE 8192
1394
1395 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1396 #define ELF_NREG 34 /* gprs and pc, sr */
1397 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1398
1399 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1400 const CPUOpenRISCState *env)
1401 {
1402 int i;
1403
1404 for (i = 0; i < 32; i++) {
1405 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1406 }
1407 (*regs)[32] = tswapreg(env->pc);
1408 (*regs)[33] = tswapreg(cpu_get_sr(env));
1409 }
1410 #define ELF_HWCAP 0
1411 #define ELF_PLATFORM NULL
1412
1413 #endif /* TARGET_OPENRISC */
1414
1415 #ifdef TARGET_SH4
1416
1417 #define ELF_START_MMAP 0x80000000
1418
1419 #define ELF_CLASS ELFCLASS32
1420 #define ELF_ARCH EM_SH
1421
1422 static inline void init_thread(struct target_pt_regs *regs,
1423 struct image_info *infop)
1424 {
1425 /* Check other registers XXXXX */
1426 regs->pc = infop->entry;
1427 regs->regs[15] = infop->start_stack;
1428 }
1429
1430 /* See linux kernel: arch/sh/include/asm/elf.h. */
1431 #define ELF_NREG 23
1432 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1433
1434 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1435 enum {
1436 TARGET_REG_PC = 16,
1437 TARGET_REG_PR = 17,
1438 TARGET_REG_SR = 18,
1439 TARGET_REG_GBR = 19,
1440 TARGET_REG_MACH = 20,
1441 TARGET_REG_MACL = 21,
1442 TARGET_REG_SYSCALL = 22
1443 };
1444
1445 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1446 const CPUSH4State *env)
1447 {
1448 int i;
1449
1450 for (i = 0; i < 16; i++) {
1451 (*regs)[i] = tswapreg(env->gregs[i]);
1452 }
1453
1454 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1455 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1456 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1457 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1458 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1459 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1460 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1461 }
1462
1463 #define USE_ELF_CORE_DUMP
1464 #define ELF_EXEC_PAGESIZE 4096
1465
1466 enum {
1467 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1468 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1469 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1470 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1471 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1472 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1473 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1474 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1475 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1476 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1477 };
1478
1479 #define ELF_HWCAP get_elf_hwcap()
1480
1481 static uint32_t get_elf_hwcap(void)
1482 {
1483 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1484 uint32_t hwcap = 0;
1485
1486 hwcap |= SH_CPU_HAS_FPU;
1487
1488 if (cpu->env.features & SH_FEATURE_SH4A) {
1489 hwcap |= SH_CPU_HAS_LLSC;
1490 }
1491
1492 return hwcap;
1493 }
1494
1495 #endif
1496
1497 #ifdef TARGET_CRIS
1498
1499 #define ELF_START_MMAP 0x80000000
1500
1501 #define ELF_CLASS ELFCLASS32
1502 #define ELF_ARCH EM_CRIS
1503
1504 static inline void init_thread(struct target_pt_regs *regs,
1505 struct image_info *infop)
1506 {
1507 regs->erp = infop->entry;
1508 }
1509
1510 #define ELF_EXEC_PAGESIZE 8192
1511
1512 #endif
1513
1514 #ifdef TARGET_M68K
1515
1516 #define ELF_START_MMAP 0x80000000
1517
1518 #define ELF_CLASS ELFCLASS32
1519 #define ELF_ARCH EM_68K
1520
1521 /* ??? Does this need to do anything?
1522 #define ELF_PLAT_INIT(_r) */
1523
1524 static inline void init_thread(struct target_pt_regs *regs,
1525 struct image_info *infop)
1526 {
1527 regs->usp = infop->start_stack;
1528 regs->sr = 0;
1529 regs->pc = infop->entry;
1530 }
1531
1532 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1533 #define ELF_NREG 20
1534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1535
1536 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1537 {
1538 (*regs)[0] = tswapreg(env->dregs[1]);
1539 (*regs)[1] = tswapreg(env->dregs[2]);
1540 (*regs)[2] = tswapreg(env->dregs[3]);
1541 (*regs)[3] = tswapreg(env->dregs[4]);
1542 (*regs)[4] = tswapreg(env->dregs[5]);
1543 (*regs)[5] = tswapreg(env->dregs[6]);
1544 (*regs)[6] = tswapreg(env->dregs[7]);
1545 (*regs)[7] = tswapreg(env->aregs[0]);
1546 (*regs)[8] = tswapreg(env->aregs[1]);
1547 (*regs)[9] = tswapreg(env->aregs[2]);
1548 (*regs)[10] = tswapreg(env->aregs[3]);
1549 (*regs)[11] = tswapreg(env->aregs[4]);
1550 (*regs)[12] = tswapreg(env->aregs[5]);
1551 (*regs)[13] = tswapreg(env->aregs[6]);
1552 (*regs)[14] = tswapreg(env->dregs[0]);
1553 (*regs)[15] = tswapreg(env->aregs[7]);
1554 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1555 (*regs)[17] = tswapreg(env->sr);
1556 (*regs)[18] = tswapreg(env->pc);
1557 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1558 }
1559
1560 #define USE_ELF_CORE_DUMP
1561 #define ELF_EXEC_PAGESIZE 8192
1562
1563 #endif
1564
1565 #ifdef TARGET_ALPHA
1566
1567 #define ELF_START_MMAP (0x30000000000ULL)
1568
1569 #define ELF_CLASS ELFCLASS64
1570 #define ELF_ARCH EM_ALPHA
1571
1572 static inline void init_thread(struct target_pt_regs *regs,
1573 struct image_info *infop)
1574 {
1575 regs->pc = infop->entry;
1576 regs->ps = 8;
1577 regs->usp = infop->start_stack;
1578 }
1579
1580 #define ELF_EXEC_PAGESIZE 8192
1581
1582 #endif /* TARGET_ALPHA */
1583
1584 #ifdef TARGET_S390X
1585
1586 #define ELF_START_MMAP (0x20000000000ULL)
1587
1588 #define ELF_CLASS ELFCLASS64
1589 #define ELF_DATA ELFDATA2MSB
1590 #define ELF_ARCH EM_S390
1591
1592 #include "elf.h"
1593
1594 #define ELF_HWCAP get_elf_hwcap()
1595
1596 #define GET_FEATURE(_feat, _hwcap) \
1597 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1598
1599 uint32_t get_elf_hwcap(void)
1600 {
1601 /*
1602 * Let's assume we always have esan3 and zarch.
1603 * 31-bit processes can use 64-bit registers (high gprs).
1604 */
1605 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1606
1607 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1608 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1609 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1610 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1611 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1612 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1613 hwcap |= HWCAP_S390_ETF3EH;
1614 }
1615 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1616 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1617
1618 return hwcap;
1619 }
1620
1621 const char *elf_hwcap_str(uint32_t bit)
1622 {
1623 static const char *hwcap_str[] = {
1624 [HWCAP_S390_NR_ESAN3] = "esan3",
1625 [HWCAP_S390_NR_ZARCH] = "zarch",
1626 [HWCAP_S390_NR_STFLE] = "stfle",
1627 [HWCAP_S390_NR_MSA] = "msa",
1628 [HWCAP_S390_NR_LDISP] = "ldisp",
1629 [HWCAP_S390_NR_EIMM] = "eimm",
1630 [HWCAP_S390_NR_DFP] = "dfp",
1631 [HWCAP_S390_NR_HPAGE] = "edat",
1632 [HWCAP_S390_NR_ETF3EH] = "etf3eh",
1633 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1634 [HWCAP_S390_NR_TE] = "te",
1635 [HWCAP_S390_NR_VXRS] = "vx",
1636 [HWCAP_S390_NR_VXRS_BCD] = "vxd",
1637 [HWCAP_S390_NR_VXRS_EXT] = "vxe",
1638 [HWCAP_S390_NR_GS] = "gs",
1639 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1640 [HWCAP_S390_NR_VXRS_PDE] = "vxp",
1641 [HWCAP_S390_NR_SORT] = "sort",
1642 [HWCAP_S390_NR_DFLT] = "dflt",
1643 [HWCAP_S390_NR_NNPA] = "nnpa",
1644 [HWCAP_S390_NR_PCI_MIO] = "pcimio",
1645 [HWCAP_S390_NR_SIE] = "sie",
1646 };
1647
1648 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1649 }
1650
1651 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1652 {
1653 regs->psw.addr = infop->entry;
1654 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1655 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1656 PSW_MASK_32;
1657 regs->gprs[15] = infop->start_stack;
1658 }
1659
1660 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1661 #define ELF_NREG 27
1662 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1663
1664 enum {
1665 TARGET_REG_PSWM = 0,
1666 TARGET_REG_PSWA = 1,
1667 TARGET_REG_GPRS = 2,
1668 TARGET_REG_ARS = 18,
1669 TARGET_REG_ORIG_R2 = 26,
1670 };
1671
1672 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1673 const CPUS390XState *env)
1674 {
1675 int i;
1676 uint32_t *aregs;
1677
1678 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1679 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1680 for (i = 0; i < 16; i++) {
1681 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1682 }
1683 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1684 for (i = 0; i < 16; i++) {
1685 aregs[i] = tswap32(env->aregs[i]);
1686 }
1687 (*regs)[TARGET_REG_ORIG_R2] = 0;
1688 }
1689
1690 #define USE_ELF_CORE_DUMP
1691 #define ELF_EXEC_PAGESIZE 4096
1692
1693 #endif /* TARGET_S390X */
1694
1695 #ifdef TARGET_RISCV
1696
1697 #define ELF_START_MMAP 0x80000000
1698 #define ELF_ARCH EM_RISCV
1699
1700 #ifdef TARGET_RISCV32
1701 #define ELF_CLASS ELFCLASS32
1702 #else
1703 #define ELF_CLASS ELFCLASS64
1704 #endif
1705
1706 #define ELF_HWCAP get_elf_hwcap()
1707
1708 static uint32_t get_elf_hwcap(void)
1709 {
1710 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1711 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1712 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1713 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1714 | MISA_BIT('V');
1715
1716 return cpu->env.misa_ext & mask;
1717 #undef MISA_BIT
1718 }
1719
1720 static inline void init_thread(struct target_pt_regs *regs,
1721 struct image_info *infop)
1722 {
1723 regs->sepc = infop->entry;
1724 regs->sp = infop->start_stack;
1725 }
1726
1727 #define ELF_EXEC_PAGESIZE 4096
1728
1729 #endif /* TARGET_RISCV */
1730
1731 #ifdef TARGET_HPPA
1732
1733 #define ELF_START_MMAP 0x80000000
1734 #define ELF_CLASS ELFCLASS32
1735 #define ELF_ARCH EM_PARISC
1736 #define ELF_PLATFORM "PARISC"
1737 #define STACK_GROWS_DOWN 0
1738 #define STACK_ALIGNMENT 64
1739
1740 static inline void init_thread(struct target_pt_regs *regs,
1741 struct image_info *infop)
1742 {
1743 regs->iaoq[0] = infop->entry;
1744 regs->iaoq[1] = infop->entry + 4;
1745 regs->gr[23] = 0;
1746 regs->gr[24] = infop->argv;
1747 regs->gr[25] = infop->argc;
1748 /* The top-of-stack contains a linkage buffer. */
1749 regs->gr[30] = infop->start_stack + 64;
1750 regs->gr[31] = infop->entry;
1751 }
1752
1753 #define LO_COMMPAGE 0
1754
1755 static bool init_guest_commpage(void)
1756 {
1757 void *want = g2h_untagged(LO_COMMPAGE);
1758 void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1759 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1760
1761 if (addr == MAP_FAILED) {
1762 perror("Allocating guest commpage");
1763 exit(EXIT_FAILURE);
1764 }
1765 if (addr != want) {
1766 return false;
1767 }
1768
1769 /*
1770 * On Linux, page zero is normally marked execute only + gateway.
1771 * Normal read or write is supposed to fail (thus PROT_NONE above),
1772 * but specific offsets have kernel code mapped to raise permissions
1773 * and implement syscalls. Here, simply mark the page executable.
1774 * Special case the entry points during translation (see do_page_zero).
1775 */
1776 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1777 PAGE_EXEC | PAGE_VALID);
1778 return true;
1779 }
1780
1781 #endif /* TARGET_HPPA */
1782
1783 #ifdef TARGET_XTENSA
1784
1785 #define ELF_START_MMAP 0x20000000
1786
1787 #define ELF_CLASS ELFCLASS32
1788 #define ELF_ARCH EM_XTENSA
1789
1790 static inline void init_thread(struct target_pt_regs *regs,
1791 struct image_info *infop)
1792 {
1793 regs->windowbase = 0;
1794 regs->windowstart = 1;
1795 regs->areg[1] = infop->start_stack;
1796 regs->pc = infop->entry;
1797 if (info_is_fdpic(infop)) {
1798 regs->areg[4] = infop->loadmap_addr;
1799 regs->areg[5] = infop->interpreter_loadmap_addr;
1800 if (infop->interpreter_loadmap_addr) {
1801 regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1802 } else {
1803 regs->areg[6] = infop->pt_dynamic_addr;
1804 }
1805 }
1806 }
1807
1808 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1809 #define ELF_NREG 128
1810 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1811
1812 enum {
1813 TARGET_REG_PC,
1814 TARGET_REG_PS,
1815 TARGET_REG_LBEG,
1816 TARGET_REG_LEND,
1817 TARGET_REG_LCOUNT,
1818 TARGET_REG_SAR,
1819 TARGET_REG_WINDOWSTART,
1820 TARGET_REG_WINDOWBASE,
1821 TARGET_REG_THREADPTR,
1822 TARGET_REG_AR0 = 64,
1823 };
1824
1825 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1826 const CPUXtensaState *env)
1827 {
1828 unsigned i;
1829
1830 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1831 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1832 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1833 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1834 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1835 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1836 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1837 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1838 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1839 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1840 for (i = 0; i < env->config->nareg; ++i) {
1841 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1842 }
1843 }
1844
1845 #define USE_ELF_CORE_DUMP
1846 #define ELF_EXEC_PAGESIZE 4096
1847
1848 #endif /* TARGET_XTENSA */
1849
1850 #ifdef TARGET_HEXAGON
1851
1852 #define ELF_START_MMAP 0x20000000
1853
1854 #define ELF_CLASS ELFCLASS32
1855 #define ELF_ARCH EM_HEXAGON
1856
1857 static inline void init_thread(struct target_pt_regs *regs,
1858 struct image_info *infop)
1859 {
1860 regs->sepc = infop->entry;
1861 regs->sp = infop->start_stack;
1862 }
1863
1864 #endif /* TARGET_HEXAGON */
1865
1866 #ifndef ELF_BASE_PLATFORM
1867 #define ELF_BASE_PLATFORM (NULL)
1868 #endif
1869
1870 #ifndef ELF_PLATFORM
1871 #define ELF_PLATFORM (NULL)
1872 #endif
1873
1874 #ifndef ELF_MACHINE
1875 #define ELF_MACHINE ELF_ARCH
1876 #endif
1877
1878 #ifndef elf_check_arch
1879 #define elf_check_arch(x) ((x) == ELF_ARCH)
1880 #endif
1881
1882 #ifndef elf_check_abi
1883 #define elf_check_abi(x) (1)
1884 #endif
1885
1886 #ifndef ELF_HWCAP
1887 #define ELF_HWCAP 0
1888 #endif
1889
1890 #ifndef STACK_GROWS_DOWN
1891 #define STACK_GROWS_DOWN 1
1892 #endif
1893
1894 #ifndef STACK_ALIGNMENT
1895 #define STACK_ALIGNMENT 16
1896 #endif
1897
1898 #ifdef TARGET_ABI32
1899 #undef ELF_CLASS
1900 #define ELF_CLASS ELFCLASS32
1901 #undef bswaptls
1902 #define bswaptls(ptr) bswap32s(ptr)
1903 #endif
1904
1905 #ifndef EXSTACK_DEFAULT
1906 #define EXSTACK_DEFAULT false
1907 #endif
1908
1909 #include "elf.h"
1910
1911 /* We must delay the following stanzas until after "elf.h". */
1912 #if defined(TARGET_AARCH64)
1913
1914 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1915 const uint32_t *data,
1916 struct image_info *info,
1917 Error **errp)
1918 {
1919 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1920 if (pr_datasz != sizeof(uint32_t)) {
1921 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1922 return false;
1923 }
1924 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1925 info->note_flags = *data;
1926 }
1927 return true;
1928 }
1929 #define ARCH_USE_GNU_PROPERTY 1
1930
1931 #else
1932
1933 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1934 const uint32_t *data,
1935 struct image_info *info,
1936 Error **errp)
1937 {
1938 g_assert_not_reached();
1939 }
1940 #define ARCH_USE_GNU_PROPERTY 0
1941
1942 #endif
1943
1944 struct exec
1945 {
1946 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1947 unsigned int a_text; /* length of text, in bytes */
1948 unsigned int a_data; /* length of data, in bytes */
1949 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1950 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1951 unsigned int a_entry; /* start address */
1952 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1953 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1954 };
1955
1956
1957 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1958 #define OMAGIC 0407
1959 #define NMAGIC 0410
1960 #define ZMAGIC 0413
1961 #define QMAGIC 0314
1962
1963 /* Necessary parameters */
1964 #define TARGET_ELF_EXEC_PAGESIZE \
1965 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1966 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1967 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1968 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1969 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1970 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1971
1972 #define DLINFO_ITEMS 16
1973
1974 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1975 {
1976 memcpy(to, from, n);
1977 }
1978
1979 #ifdef BSWAP_NEEDED
1980 static void bswap_ehdr(struct elfhdr *ehdr)
1981 {
1982 bswap16s(&ehdr->e_type); /* Object file type */
1983 bswap16s(&ehdr->e_machine); /* Architecture */
1984 bswap32s(&ehdr->e_version); /* Object file version */
1985 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1986 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1987 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1988 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1989 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1990 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1991 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1992 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1993 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1994 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1995 }
1996
1997 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1998 {
1999 int i;
2000 for (i = 0; i < phnum; ++i, ++phdr) {
2001 bswap32s(&phdr->p_type); /* Segment type */
2002 bswap32s(&phdr->p_flags); /* Segment flags */
2003 bswaptls(&phdr->p_offset); /* Segment file offset */
2004 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
2005 bswaptls(&phdr->p_paddr); /* Segment physical address */
2006 bswaptls(&phdr->p_filesz); /* Segment size in file */
2007 bswaptls(&phdr->p_memsz); /* Segment size in memory */
2008 bswaptls(&phdr->p_align); /* Segment alignment */
2009 }
2010 }
2011
2012 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2013 {
2014 int i;
2015 for (i = 0; i < shnum; ++i, ++shdr) {
2016 bswap32s(&shdr->sh_name);
2017 bswap32s(&shdr->sh_type);
2018 bswaptls(&shdr->sh_flags);
2019 bswaptls(&shdr->sh_addr);
2020 bswaptls(&shdr->sh_offset);
2021 bswaptls(&shdr->sh_size);
2022 bswap32s(&shdr->sh_link);
2023 bswap32s(&shdr->sh_info);
2024 bswaptls(&shdr->sh_addralign);
2025 bswaptls(&shdr->sh_entsize);
2026 }
2027 }
2028
2029 static void bswap_sym(struct elf_sym *sym)
2030 {
2031 bswap32s(&sym->st_name);
2032 bswaptls(&sym->st_value);
2033 bswaptls(&sym->st_size);
2034 bswap16s(&sym->st_shndx);
2035 }
2036
2037 #ifdef TARGET_MIPS
2038 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2039 {
2040 bswap16s(&abiflags->version);
2041 bswap32s(&abiflags->ases);
2042 bswap32s(&abiflags->isa_ext);
2043 bswap32s(&abiflags->flags1);
2044 bswap32s(&abiflags->flags2);
2045 }
2046 #endif
2047 #else
2048 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2049 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2050 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2051 static inline void bswap_sym(struct elf_sym *sym) { }
2052 #ifdef TARGET_MIPS
2053 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2054 #endif
2055 #endif
2056
2057 #ifdef USE_ELF_CORE_DUMP
2058 static int elf_core_dump(int, const CPUArchState *);
2059 #endif /* USE_ELF_CORE_DUMP */
2060 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2061
2062 /* Verify the portions of EHDR within E_IDENT for the target.
2063 This can be performed before bswapping the entire header. */
2064 static bool elf_check_ident(struct elfhdr *ehdr)
2065 {
2066 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2067 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2068 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2069 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2070 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2071 && ehdr->e_ident[EI_DATA] == ELF_DATA
2072 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2073 }
2074
2075 /* Verify the portions of EHDR outside of E_IDENT for the target.
2076 This has to wait until after bswapping the header. */
2077 static bool elf_check_ehdr(struct elfhdr *ehdr)
2078 {
2079 return (elf_check_arch(ehdr->e_machine)
2080 && elf_check_abi(ehdr->e_flags)
2081 && ehdr->e_ehsize == sizeof(struct elfhdr)
2082 && ehdr->e_phentsize == sizeof(struct elf_phdr)
2083 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2084 }
2085
2086 /*
2087 * 'copy_elf_strings()' copies argument/envelope strings from user
2088 * memory to free pages in kernel mem. These are in a format ready
2089 * to be put directly into the top of new user memory.
2090 *
2091 */
2092 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2093 abi_ulong p, abi_ulong stack_limit)
2094 {
2095 char *tmp;
2096 int len, i;
2097 abi_ulong top = p;
2098
2099 if (!p) {
2100 return 0; /* bullet-proofing */
2101 }
2102
2103 if (STACK_GROWS_DOWN) {
2104 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2105 for (i = argc - 1; i >= 0; --i) {
2106 tmp = argv[i];
2107 if (!tmp) {
2108 fprintf(stderr, "VFS: argc is wrong");
2109 exit(-1);
2110 }
2111 len = strlen(tmp) + 1;
2112 tmp += len;
2113
2114 if (len > (p - stack_limit)) {
2115 return 0;
2116 }
2117 while (len) {
2118 int bytes_to_copy = (len > offset) ? offset : len;
2119 tmp -= bytes_to_copy;
2120 p -= bytes_to_copy;
2121 offset -= bytes_to_copy;
2122 len -= bytes_to_copy;
2123
2124 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2125
2126 if (offset == 0) {
2127 memcpy_to_target(p, scratch, top - p);
2128 top = p;
2129 offset = TARGET_PAGE_SIZE;
2130 }
2131 }
2132 }
2133 if (p != top) {
2134 memcpy_to_target(p, scratch + offset, top - p);
2135 }
2136 } else {
2137 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2138 for (i = 0; i < argc; ++i) {
2139 tmp = argv[i];
2140 if (!tmp) {
2141 fprintf(stderr, "VFS: argc is wrong");
2142 exit(-1);
2143 }
2144 len = strlen(tmp) + 1;
2145 if (len > (stack_limit - p)) {
2146 return 0;
2147 }
2148 while (len) {
2149 int bytes_to_copy = (len > remaining) ? remaining : len;
2150
2151 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2152
2153 tmp += bytes_to_copy;
2154 remaining -= bytes_to_copy;
2155 p += bytes_to_copy;
2156 len -= bytes_to_copy;
2157
2158 if (remaining == 0) {
2159 memcpy_to_target(top, scratch, p - top);
2160 top = p;
2161 remaining = TARGET_PAGE_SIZE;
2162 }
2163 }
2164 }
2165 if (p != top) {
2166 memcpy_to_target(top, scratch, p - top);
2167 }
2168 }
2169
2170 return p;
2171 }
2172
2173 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2174 * argument/environment space. Newer kernels (>2.6.33) allow more,
2175 * dependent on stack size, but guarantee at least 32 pages for
2176 * backwards compatibility.
2177 */
2178 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2179
2180 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2181 struct image_info *info)
2182 {
2183 abi_ulong size, error, guard;
2184 int prot;
2185
2186 size = guest_stack_size;
2187 if (size < STACK_LOWER_LIMIT) {
2188 size = STACK_LOWER_LIMIT;
2189 }
2190
2191 if (STACK_GROWS_DOWN) {
2192 guard = TARGET_PAGE_SIZE;
2193 if (guard < qemu_real_host_page_size()) {
2194 guard = qemu_real_host_page_size();
2195 }
2196 } else {
2197 /* no guard page for hppa target where stack grows upwards. */
2198 guard = 0;
2199 }
2200
2201 prot = PROT_READ | PROT_WRITE;
2202 if (info->exec_stack) {
2203 prot |= PROT_EXEC;
2204 }
2205 error = target_mmap(0, size + guard, prot,
2206 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2207 if (error == -1) {
2208 perror("mmap stack");
2209 exit(-1);
2210 }
2211
2212 /* We reserve one extra page at the top of the stack as guard. */
2213 if (STACK_GROWS_DOWN) {
2214 target_mprotect(error, guard, PROT_NONE);
2215 info->stack_limit = error + guard;
2216 return info->stack_limit + size - sizeof(void *);
2217 } else {
2218 info->stack_limit = error + size;
2219 return error;
2220 }
2221 }
2222
2223 /* Map and zero the bss. We need to explicitly zero any fractional pages
2224 after the data section (i.e. bss). */
2225 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2226 {
2227 uintptr_t host_start, host_map_start, host_end;
2228
2229 last_bss = TARGET_PAGE_ALIGN(last_bss);
2230
2231 /* ??? There is confusion between qemu_real_host_page_size and
2232 qemu_host_page_size here and elsewhere in target_mmap, which
2233 may lead to the end of the data section mapping from the file
2234 not being mapped. At least there was an explicit test and
2235 comment for that here, suggesting that "the file size must
2236 be known". The comment probably pre-dates the introduction
2237 of the fstat system call in target_mmap which does in fact
2238 find out the size. What isn't clear is if the workaround
2239 here is still actually needed. For now, continue with it,
2240 but merge it with the "normal" mmap that would allocate the bss. */
2241
2242 host_start = (uintptr_t) g2h_untagged(elf_bss);
2243 host_end = (uintptr_t) g2h_untagged(last_bss);
2244 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2245
2246 if (host_map_start < host_end) {
2247 void *p = mmap((void *)host_map_start, host_end - host_map_start,
2248 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2249 if (p == MAP_FAILED) {
2250 perror("cannot mmap brk");
2251 exit(-1);
2252 }
2253 }
2254
2255 /* Ensure that the bss page(s) are valid */
2256 if ((page_get_flags(last_bss-1) & prot) != prot) {
2257 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2258 prot | PAGE_VALID);
2259 }
2260
2261 if (host_start < host_map_start) {
2262 memset((void *)host_start, 0, host_map_start - host_start);
2263 }
2264 }
2265
2266 #if defined(TARGET_ARM)
2267 static int elf_is_fdpic(struct elfhdr *exec)
2268 {
2269 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2270 }
2271 #elif defined(TARGET_XTENSA)
2272 static int elf_is_fdpic(struct elfhdr *exec)
2273 {
2274 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2275 }
2276 #else
2277 /* Default implementation, always false. */
2278 static int elf_is_fdpic(struct elfhdr *exec)
2279 {
2280 return 0;
2281 }
2282 #endif
2283
2284 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2285 {
2286 uint16_t n;
2287 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2288
2289 /* elf32_fdpic_loadseg */
2290 n = info->nsegs;
2291 while (n--) {
2292 sp -= 12;
2293 put_user_u32(loadsegs[n].addr, sp+0);
2294 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2295 put_user_u32(loadsegs[n].p_memsz, sp+8);
2296 }
2297
2298 /* elf32_fdpic_loadmap */
2299 sp -= 4;
2300 put_user_u16(0, sp+0); /* version */
2301 put_user_u16(info->nsegs, sp+2); /* nsegs */
2302
2303 info->personality = PER_LINUX_FDPIC;
2304 info->loadmap_addr = sp;
2305
2306 return sp;
2307 }
2308
2309 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2310 struct elfhdr *exec,
2311 struct image_info *info,
2312 struct image_info *interp_info)
2313 {
2314 abi_ulong sp;
2315 abi_ulong u_argc, u_argv, u_envp, u_auxv;
2316 int size;
2317 int i;
2318 abi_ulong u_rand_bytes;
2319 uint8_t k_rand_bytes[16];
2320 abi_ulong u_platform, u_base_platform;
2321 const char *k_platform, *k_base_platform;
2322 const int n = sizeof(elf_addr_t);
2323
2324 sp = p;
2325
2326 /* Needs to be before we load the env/argc/... */
2327 if (elf_is_fdpic(exec)) {
2328 /* Need 4 byte alignment for these structs */
2329 sp &= ~3;
2330 sp = loader_build_fdpic_loadmap(info, sp);
2331 info->other_info = interp_info;
2332 if (interp_info) {
2333 interp_info->other_info = info;
2334 sp = loader_build_fdpic_loadmap(interp_info, sp);
2335 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2336 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2337 } else {
2338 info->interpreter_loadmap_addr = 0;
2339 info->interpreter_pt_dynamic_addr = 0;
2340 }
2341 }
2342
2343 u_base_platform = 0;
2344 k_base_platform = ELF_BASE_PLATFORM;
2345 if (k_base_platform) {
2346 size_t len = strlen(k_base_platform) + 1;
2347 if (STACK_GROWS_DOWN) {
2348 sp -= (len + n - 1) & ~(n - 1);
2349 u_base_platform = sp;
2350 /* FIXME - check return value of memcpy_to_target() for failure */
2351 memcpy_to_target(sp, k_base_platform, len);
2352 } else {
2353 memcpy_to_target(sp, k_base_platform, len);
2354 u_base_platform = sp;
2355 sp += len + 1;
2356 }
2357 }
2358
2359 u_platform = 0;
2360 k_platform = ELF_PLATFORM;
2361 if (k_platform) {
2362 size_t len = strlen(k_platform) + 1;
2363 if (STACK_GROWS_DOWN) {
2364 sp -= (len + n - 1) & ~(n - 1);
2365 u_platform = sp;
2366 /* FIXME - check return value of memcpy_to_target() for failure */
2367 memcpy_to_target(sp, k_platform, len);
2368 } else {
2369 memcpy_to_target(sp, k_platform, len);
2370 u_platform = sp;
2371 sp += len + 1;
2372 }
2373 }
2374
2375 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2376 * the argv and envp pointers.
2377 */
2378 if (STACK_GROWS_DOWN) {
2379 sp = QEMU_ALIGN_DOWN(sp, 16);
2380 } else {
2381 sp = QEMU_ALIGN_UP(sp, 16);
2382 }
2383
2384 /*
2385 * Generate 16 random bytes for userspace PRNG seeding.
2386 */
2387 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2388 if (STACK_GROWS_DOWN) {
2389 sp -= 16;
2390 u_rand_bytes = sp;
2391 /* FIXME - check return value of memcpy_to_target() for failure */
2392 memcpy_to_target(sp, k_rand_bytes, 16);
2393 } else {
2394 memcpy_to_target(sp, k_rand_bytes, 16);
2395 u_rand_bytes = sp;
2396 sp += 16;
2397 }
2398
2399 size = (DLINFO_ITEMS + 1) * 2;
2400 if (k_base_platform)
2401 size += 2;
2402 if (k_platform)
2403 size += 2;
2404 #ifdef DLINFO_ARCH_ITEMS
2405 size += DLINFO_ARCH_ITEMS * 2;
2406 #endif
2407 #ifdef ELF_HWCAP2
2408 size += 2;
2409 #endif
2410 info->auxv_len = size * n;
2411
2412 size += envc + argc + 2;
2413 size += 1; /* argc itself */
2414 size *= n;
2415
2416 /* Allocate space and finalize stack alignment for entry now. */
2417 if (STACK_GROWS_DOWN) {
2418 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2419 sp = u_argc;
2420 } else {
2421 u_argc = sp;
2422 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2423 }
2424
2425 u_argv = u_argc + n;
2426 u_envp = u_argv + (argc + 1) * n;
2427 u_auxv = u_envp + (envc + 1) * n;
2428 info->saved_auxv = u_auxv;
2429 info->argc = argc;
2430 info->envc = envc;
2431 info->argv = u_argv;
2432 info->envp = u_envp;
2433
2434 /* This is correct because Linux defines
2435 * elf_addr_t as Elf32_Off / Elf64_Off
2436 */
2437 #define NEW_AUX_ENT(id, val) do { \
2438 put_user_ual(id, u_auxv); u_auxv += n; \
2439 put_user_ual(val, u_auxv); u_auxv += n; \
2440 } while(0)
2441
2442 #ifdef ARCH_DLINFO
2443 /*
2444 * ARCH_DLINFO must come first so platform specific code can enforce
2445 * special alignment requirements on the AUXV if necessary (eg. PPC).
2446 */
2447 ARCH_DLINFO;
2448 #endif
2449 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2450 * on info->auxv_len will trigger.
2451 */
2452 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2453 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2454 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2455 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2456 /* Target doesn't support host page size alignment */
2457 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2458 } else {
2459 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2460 qemu_host_page_size)));
2461 }
2462 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2463 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2464 NEW_AUX_ENT(AT_ENTRY, info->entry);
2465 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2466 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2467 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2468 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2469 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2470 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2471 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2472 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2473 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2474
2475 #ifdef ELF_HWCAP2
2476 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2477 #endif
2478
2479 if (u_base_platform) {
2480 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2481 }
2482 if (u_platform) {
2483 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2484 }
2485 NEW_AUX_ENT (AT_NULL, 0);
2486 #undef NEW_AUX_ENT
2487
2488 /* Check that our initial calculation of the auxv length matches how much
2489 * we actually put into it.
2490 */
2491 assert(info->auxv_len == u_auxv - info->saved_auxv);
2492
2493 put_user_ual(argc, u_argc);
2494
2495 p = info->arg_strings;
2496 for (i = 0; i < argc; ++i) {
2497 put_user_ual(p, u_argv);
2498 u_argv += n;
2499 p += target_strlen(p) + 1;
2500 }
2501 put_user_ual(0, u_argv);
2502
2503 p = info->env_strings;
2504 for (i = 0; i < envc; ++i) {
2505 put_user_ual(p, u_envp);
2506 u_envp += n;
2507 p += target_strlen(p) + 1;
2508 }
2509 put_user_ual(0, u_envp);
2510
2511 return sp;
2512 }
2513
2514 #if defined(HI_COMMPAGE)
2515 #define LO_COMMPAGE -1
2516 #elif defined(LO_COMMPAGE)
2517 #define HI_COMMPAGE 0
2518 #else
2519 #define HI_COMMPAGE 0
2520 #define LO_COMMPAGE -1
2521 #ifndef INIT_GUEST_COMMPAGE
2522 #define init_guest_commpage() true
2523 #endif
2524 #endif
2525
2526 static void pgb_fail_in_use(const char *image_name)
2527 {
2528 error_report("%s: requires virtual address space that is in use "
2529 "(omit the -B option or choose a different value)",
2530 image_name);
2531 exit(EXIT_FAILURE);
2532 }
2533
2534 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2535 abi_ulong guest_hiaddr, long align)
2536 {
2537 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2538 void *addr, *test;
2539
2540 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2541 fprintf(stderr, "Requested guest base %p does not satisfy "
2542 "host minimum alignment (0x%lx)\n",
2543 (void *)guest_base, align);
2544 exit(EXIT_FAILURE);
2545 }
2546
2547 /* Sanity check the guest binary. */
2548 if (reserved_va) {
2549 if (guest_hiaddr > reserved_va) {
2550 error_report("%s: requires more than reserved virtual "
2551 "address space (0x%" PRIx64 " > 0x%lx)",
2552 image_name, (uint64_t)guest_hiaddr, reserved_va);
2553 exit(EXIT_FAILURE);
2554 }
2555 } else {
2556 #if HOST_LONG_BITS < TARGET_ABI_BITS
2557 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2558 error_report("%s: requires more virtual address space "
2559 "than the host can provide (0x%" PRIx64 ")",
2560 image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
2561 exit(EXIT_FAILURE);
2562 }
2563 #endif
2564 }
2565
2566 /*
2567 * Expand the allocation to the entire reserved_va.
2568 * Exclude the mmap_min_addr hole.
2569 */
2570 if (reserved_va) {
2571 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2572 : mmap_min_addr - guest_base);
2573 guest_hiaddr = reserved_va;
2574 }
2575
2576 /* Reserve the address space for the binary, or reserved_va. */
2577 test = g2h_untagged(guest_loaddr);
2578 addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
2579 if (test != addr) {
2580 pgb_fail_in_use(image_name);
2581 }
2582 qemu_log_mask(CPU_LOG_PAGE,
2583 "%s: base @ %p for %" PRIu64 " bytes\n",
2584 __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
2585 }
2586
2587 /**
2588 * pgd_find_hole_fallback: potential mmap address
2589 * @guest_size: size of available space
2590 * @brk: location of break
2591 * @align: memory alignment
2592 *
2593 * This is a fallback method for finding a hole in the host address
2594 * space if we don't have the benefit of being able to access
2595 * /proc/self/map. It can potentially take a very long time as we can
2596 * only dumbly iterate up the host address space seeing if the
2597 * allocation would work.
2598 */
2599 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2600 long align, uintptr_t offset)
2601 {
2602 uintptr_t base;
2603
2604 /* Start (aligned) at the bottom and work our way up */
2605 base = ROUND_UP(mmap_min_addr, align);
2606
2607 while (true) {
2608 uintptr_t align_start, end;
2609 align_start = ROUND_UP(base, align);
2610 end = align_start + guest_size + offset;
2611
2612 /* if brk is anywhere in the range give ourselves some room to grow. */
2613 if (align_start <= brk && brk < end) {
2614 base = brk + (16 * MiB);
2615 continue;
2616 } else if (align_start + guest_size < align_start) {
2617 /* we have run out of space */
2618 return -1;
2619 } else {
2620 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2621 MAP_FIXED_NOREPLACE;
2622 void * mmap_start = mmap((void *) align_start, guest_size,
2623 PROT_NONE, flags, -1, 0);
2624 if (mmap_start != MAP_FAILED) {
2625 munmap(mmap_start, guest_size);
2626 if (mmap_start == (void *) align_start) {
2627 qemu_log_mask(CPU_LOG_PAGE,
2628 "%s: base @ %p for %" PRIdPTR" bytes\n",
2629 __func__, mmap_start + offset, guest_size);
2630 return (uintptr_t) mmap_start + offset;
2631 }
2632 }
2633 base += qemu_host_page_size;
2634 }
2635 }
2636 }
2637
2638 /* Return value for guest_base, or -1 if no hole found. */
2639 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2640 long align, uintptr_t offset)
2641 {
2642 GSList *maps, *iter;
2643 uintptr_t this_start, this_end, next_start, brk;
2644 intptr_t ret = -1;
2645
2646 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2647
2648 maps = read_self_maps();
2649
2650 /* Read brk after we've read the maps, which will malloc. */
2651 brk = (uintptr_t)sbrk(0);
2652
2653 if (!maps) {
2654 return pgd_find_hole_fallback(guest_size, brk, align, offset);
2655 }
2656
2657 /* The first hole is before the first map entry. */
2658 this_start = mmap_min_addr;
2659
2660 for (iter = maps; iter;
2661 this_start = next_start, iter = g_slist_next(iter)) {
2662 uintptr_t align_start, hole_size;
2663
2664 this_end = ((MapInfo *)iter->data)->start;
2665 next_start = ((MapInfo *)iter->data)->end;
2666 align_start = ROUND_UP(this_start + offset, align);
2667
2668 /* Skip holes that are too small. */
2669 if (align_start >= this_end) {
2670 continue;
2671 }
2672 hole_size = this_end - align_start;
2673 if (hole_size < guest_size) {
2674 continue;
2675 }
2676
2677 /* If this hole contains brk, give ourselves some room to grow. */
2678 if (this_start <= brk && brk < this_end) {
2679 hole_size -= guest_size;
2680 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2681 align_start += 1 * GiB;
2682 } else if (hole_size >= 16 * MiB) {
2683 align_start += 16 * MiB;
2684 } else {
2685 align_start = (this_end - guest_size) & -align;
2686 if (align_start < this_start) {
2687 continue;
2688 }
2689 }
2690 }
2691
2692 /* Record the lowest successful match. */
2693 if (ret < 0) {
2694 ret = align_start;
2695 }
2696 /* If this hole contains the identity map, select it. */
2697 if (align_start <= guest_loaddr &&
2698 guest_loaddr + guest_size <= this_end) {
2699 ret = 0;
2700 }
2701 /* If this hole ends above the identity map, stop looking. */
2702 if (this_end >= guest_loaddr) {
2703 break;
2704 }
2705 }
2706 free_self_maps(maps);
2707
2708 if (ret != -1) {
2709 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2710 " for %" PRIuPTR " bytes\n",
2711 __func__, ret, guest_size);
2712 }
2713
2714 return ret;
2715 }
2716
2717 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2718 abi_ulong orig_hiaddr, long align)
2719 {
2720 uintptr_t loaddr = orig_loaddr;
2721 uintptr_t hiaddr = orig_hiaddr;
2722 uintptr_t offset = 0;
2723 uintptr_t addr;
2724
2725 if (hiaddr != orig_hiaddr) {
2726 error_report("%s: requires virtual address space that the "
2727 "host cannot provide (0x%" PRIx64 ")",
2728 image_name, (uint64_t)orig_hiaddr + 1);
2729 exit(EXIT_FAILURE);
2730 }
2731
2732 loaddr &= -align;
2733 if (HI_COMMPAGE) {
2734 /*
2735 * Extend the allocation to include the commpage.
2736 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2737 * need to ensure there is space bellow the guest_base so we
2738 * can map the commpage in the place needed when the address
2739 * arithmetic wraps around.
2740 */
2741 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2742 hiaddr = UINT32_MAX;
2743 } else {
2744 offset = -(HI_COMMPAGE & -align);
2745 }
2746 } else if (LO_COMMPAGE != -1) {
2747 loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2748 }
2749
2750 addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
2751 if (addr == -1) {
2752 /*
2753 * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2754 * that can satisfy both. But as the normal arm32 link base address
2755 * is ~32k, and we extend down to include the commpage, making the
2756 * overhead only ~96k, this is unlikely.
2757 */
2758 error_report("%s: Unable to allocate %#zx bytes of "
2759 "virtual address space", image_name,
2760 (size_t)(hiaddr - loaddr));
2761 exit(EXIT_FAILURE);
2762 }
2763
2764 guest_base = addr;
2765
2766 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2767 __func__, addr, hiaddr - loaddr);
2768 }
2769
2770 static void pgb_dynamic(const char *image_name, long align)
2771 {
2772 /*
2773 * The executable is dynamic and does not require a fixed address.
2774 * All we need is a commpage that satisfies align.
2775 * If we do not need a commpage, leave guest_base == 0.
2776 */
2777 if (HI_COMMPAGE) {
2778 uintptr_t addr, commpage;
2779
2780 /* 64-bit hosts should have used reserved_va. */
2781 assert(sizeof(uintptr_t) == 4);
2782
2783 /*
2784 * By putting the commpage at the first hole, that puts guest_base
2785 * just above that, and maximises the positive guest addresses.
2786 */
2787 commpage = HI_COMMPAGE & -align;
2788 addr = pgb_find_hole(commpage, -commpage, align, 0);
2789 assert(addr != -1);
2790 guest_base = addr;
2791 }
2792 }
2793
2794 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2795 abi_ulong guest_hiaddr, long align)
2796 {
2797 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2798 void *addr, *test;
2799
2800 if (guest_hiaddr > reserved_va) {
2801 error_report("%s: requires more than reserved virtual "
2802 "address space (0x%" PRIx64 " > 0x%lx)",
2803 image_name, (uint64_t)guest_hiaddr, reserved_va);
2804 exit(EXIT_FAILURE);
2805 }
2806
2807 /* Widen the "image" to the entire reserved address space. */
2808 pgb_static(image_name, 0, reserved_va, align);
2809
2810 /* osdep.h defines this as 0 if it's missing */
2811 flags |= MAP_FIXED_NOREPLACE;
2812
2813 /* Reserve the memory on the host. */
2814 assert(guest_base != 0);
2815 test = g2h_untagged(0);
2816 addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
2817 if (addr == MAP_FAILED || addr != test) {
2818 error_report("Unable to reserve 0x%lx bytes of virtual address "
2819 "space at %p (%s) for use as guest address space (check your "
2820 "virtual memory ulimit setting, mmap_min_addr or reserve less "
2821 "using qemu-user's -R option)",
2822 reserved_va + 1, test, strerror(errno));
2823 exit(EXIT_FAILURE);
2824 }
2825
2826 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2827 __func__, addr, reserved_va + 1);
2828 }
2829
2830 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2831 abi_ulong guest_hiaddr)
2832 {
2833 /* In order to use host shmat, we must be able to honor SHMLBA. */
2834 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2835
2836 if (have_guest_base) {
2837 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2838 } else if (reserved_va) {
2839 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2840 } else if (guest_loaddr) {
2841 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2842 } else {
2843 pgb_dynamic(image_name, align);
2844 }
2845
2846 /* Reserve and initialize the commpage. */
2847 if (!init_guest_commpage()) {
2848 /*
2849 * With have_guest_base, the user has selected the address and
2850 * we are trying to work with that. Otherwise, we have selected
2851 * free space and init_guest_commpage must succeeded.
2852 */
2853 assert(have_guest_base);
2854 pgb_fail_in_use(image_name);
2855 }
2856
2857 assert(QEMU_IS_ALIGNED(guest_base, align));
2858 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2859 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2860 }
2861
2862 enum {
2863 /* The string "GNU\0" as a magic number. */
2864 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2865 NOTE_DATA_SZ = 1 * KiB,
2866 NOTE_NAME_SZ = 4,
2867 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2868 };
2869
2870 /*
2871 * Process a single gnu_property entry.
2872 * Return false for error.
2873 */
2874 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2875 struct image_info *info, bool have_prev_type,
2876 uint32_t *prev_type, Error **errp)
2877 {
2878 uint32_t pr_type, pr_datasz, step;
2879
2880 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2881 goto error_data;
2882 }
2883 datasz -= *off;
2884 data += *off / sizeof(uint32_t);
2885
2886 if (datasz < 2 * sizeof(uint32_t)) {
2887 goto error_data;
2888 }
2889 pr_type = data[0];
2890 pr_datasz = data[1];
2891 data += 2;
2892 datasz -= 2 * sizeof(uint32_t);
2893 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2894 if (step > datasz) {
2895 goto error_data;
2896 }
2897
2898 /* Properties are supposed to be unique and sorted on pr_type. */
2899 if (have_prev_type && pr_type <= *prev_type) {
2900 if (pr_type == *prev_type) {
2901 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2902 } else {
2903 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2904 }
2905 return false;
2906 }
2907 *prev_type = pr_type;
2908
2909 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2910 return false;
2911 }
2912
2913 *off += 2 * sizeof(uint32_t) + step;
2914 return true;
2915
2916 error_data:
2917 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2918 return false;
2919 }
2920
2921 /* Process NT_GNU_PROPERTY_TYPE_0. */
2922 static bool parse_elf_properties(int image_fd,
2923 struct image_info *info,
2924 const struct elf_phdr *phdr,
2925 char bprm_buf[BPRM_BUF_SIZE],
2926 Error **errp)
2927 {
2928 union {
2929 struct elf_note nhdr;
2930 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2931 } note;
2932
2933 int n, off, datasz;
2934 bool have_prev_type;
2935 uint32_t prev_type;
2936
2937 /* Unless the arch requires properties, ignore them. */
2938 if (!ARCH_USE_GNU_PROPERTY) {
2939 return true;
2940 }
2941
2942 /* If the properties are crazy large, that's too bad. */
2943 n = phdr->p_filesz;
2944 if (n > sizeof(note)) {
2945 error_setg(errp, "PT_GNU_PROPERTY too large");
2946 return false;
2947 }
2948 if (n < sizeof(note.nhdr)) {
2949 error_setg(errp, "PT_GNU_PROPERTY too small");
2950 return false;
2951 }
2952
2953 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2954 memcpy(&note, bprm_buf + phdr->p_offset, n);
2955 } else {
2956 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2957 if (len != n) {
2958 error_setg_errno(errp, errno, "Error reading file header");
2959 return false;
2960 }
2961 }
2962
2963 /*
2964 * The contents of a valid PT_GNU_PROPERTY is a sequence
2965 * of uint32_t -- swap them all now.
2966 */
2967 #ifdef BSWAP_NEEDED
2968 for (int i = 0; i < n / 4; i++) {
2969 bswap32s(note.data + i);
2970 }
2971 #endif
2972
2973 /*
2974 * Note that nhdr is 3 words, and that the "name" described by namesz
2975 * immediately follows nhdr and is thus at the 4th word. Further, all
2976 * of the inputs to the kernel's round_up are multiples of 4.
2977 */
2978 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2979 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2980 note.data[3] != GNU0_MAGIC) {
2981 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2982 return false;
2983 }
2984 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2985
2986 datasz = note.nhdr.n_descsz + off;
2987 if (datasz > n) {
2988 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2989 return false;
2990 }
2991
2992 have_prev_type = false;
2993 prev_type = 0;
2994 while (1) {
2995 if (off == datasz) {
2996 return true; /* end, exit ok */
2997 }
2998 if (!parse_elf_property(note.data, &off, datasz, info,
2999 have_prev_type, &prev_type, errp)) {
3000 return false;
3001 }
3002 have_prev_type = true;
3003 }
3004 }
3005
3006 /* Load an ELF image into the address space.
3007
3008 IMAGE_NAME is the filename of the image, to use in error messages.
3009 IMAGE_FD is the open file descriptor for the image.
3010
3011 BPRM_BUF is a copy of the beginning of the file; this of course
3012 contains the elf file header at offset 0. It is assumed that this
3013 buffer is sufficiently aligned to present no problems to the host
3014 in accessing data at aligned offsets within the buffer.
3015
3016 On return: INFO values will be filled in, as necessary or available. */
3017
3018 static void load_elf_image(const char *image_name, int image_fd,
3019 struct image_info *info, char **pinterp_name,
3020 char bprm_buf[BPRM_BUF_SIZE])
3021 {
3022 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3023 struct elf_phdr *phdr;
3024 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3025 int i, retval, prot_exec;
3026 Error *err = NULL;
3027
3028 /* First of all, some simple consistency checks */
3029 if (!elf_check_ident(ehdr)) {
3030 error_setg(&err, "Invalid ELF image for this architecture");
3031 goto exit_errmsg;
3032 }
3033 bswap_ehdr(ehdr);
3034 if (!elf_check_ehdr(ehdr)) {
3035 error_setg(&err, "Invalid ELF image for this architecture");
3036 goto exit_errmsg;
3037 }
3038
3039 i = ehdr->e_phnum * sizeof(struct elf_phdr);
3040 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3041 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3042 } else {
3043 phdr = (struct elf_phdr *) alloca(i);
3044 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3045 if (retval != i) {
3046 goto exit_read;
3047 }
3048 }
3049 bswap_phdr(phdr, ehdr->e_phnum);
3050
3051 info->nsegs = 0;
3052 info->pt_dynamic_addr = 0;
3053
3054 mmap_lock();
3055
3056 /*
3057 * Find the maximum size of the image and allocate an appropriate
3058 * amount of memory to handle that. Locate the interpreter, if any.
3059 */
3060 loaddr = -1, hiaddr = 0;
3061 info->alignment = 0;
3062 info->exec_stack = EXSTACK_DEFAULT;
3063 for (i = 0; i < ehdr->e_phnum; ++i) {
3064 struct elf_phdr *eppnt = phdr + i;
3065 if (eppnt->p_type == PT_LOAD) {
3066 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3067 if (a < loaddr) {
3068 loaddr = a;
3069 }
3070 a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3071 if (a > hiaddr) {
3072 hiaddr = a;
3073 }
3074 ++info->nsegs;
3075 info->alignment |= eppnt->p_align;
3076 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3077 g_autofree char *interp_name = NULL;
3078
3079 if (*pinterp_name) {
3080 error_setg(&err, "Multiple PT_INTERP entries");
3081 goto exit_errmsg;
3082 }
3083
3084 interp_name = g_malloc(eppnt->p_filesz);
3085
3086 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3087 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3088 eppnt->p_filesz);
3089 } else {
3090 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3091 eppnt->p_offset);
3092 if (retval != eppnt->p_filesz) {
3093 goto exit_read;
3094 }
3095 }
3096 if (interp_name[eppnt->p_filesz - 1] != 0) {
3097 error_setg(&err, "Invalid PT_INTERP entry");
3098 goto exit_errmsg;
3099 }
3100 *pinterp_name = g_steal_pointer(&interp_name);
3101 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3102 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3103 goto exit_errmsg;
3104 }
3105 } else if (eppnt->p_type == PT_GNU_STACK) {
3106 info->exec_stack = eppnt->p_flags & PF_X;
3107 }
3108 }
3109
3110 load_addr = loaddr;
3111
3112 if (pinterp_name != NULL) {
3113 /*
3114 * This is the main executable.
3115 *
3116 * Reserve extra space for brk.
3117 * We hold on to this space while placing the interpreter
3118 * and the stack, lest they be placed immediately after
3119 * the data segment and block allocation from the brk.
3120 *
3121 * 16MB is chosen as "large enough" without being so large as
3122 * to allow the result to not fit with a 32-bit guest on a
3123 * 32-bit host. However some 64 bit guests (e.g. s390x)
3124 * attempt to place their heap further ahead and currently
3125 * nothing stops them smashing into QEMUs address space.
3126 */
3127 #if TARGET_LONG_BITS == 64
3128 info->reserve_brk = 32 * MiB;
3129 #else
3130 info->reserve_brk = 16 * MiB;
3131 #endif
3132 hiaddr += info->reserve_brk;
3133
3134 if (ehdr->e_type == ET_EXEC) {
3135 /*
3136 * Make sure that the low address does not conflict with
3137 * MMAP_MIN_ADDR or the QEMU application itself.
3138 */
3139 probe_guest_base(image_name, loaddr, hiaddr);
3140 } else {
3141 abi_ulong align;
3142
3143 /*
3144 * The binary is dynamic, but we still need to
3145 * select guest_base. In this case we pass a size.
3146 */
3147 probe_guest_base(image_name, 0, hiaddr - loaddr);
3148
3149 /*
3150 * Avoid collision with the loader by providing a different
3151 * default load address.
3152 */
3153 load_addr += elf_et_dyn_base;
3154
3155 /*
3156 * TODO: Better support for mmap alignment is desirable.
3157 * Since we do not have complete control over the guest
3158 * address space, we prefer the kernel to choose some address
3159 * rather than force the use of LOAD_ADDR via MAP_FIXED.
3160 * But without MAP_FIXED we cannot guarantee alignment,
3161 * only suggest it.
3162 */
3163 align = pow2ceil(info->alignment);
3164 if (align) {
3165 load_addr &= -align;
3166 }
3167 }
3168 }
3169
3170 /*
3171 * Reserve address space for all of this.
3172 *
3173 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3174 * exactly the address range that is required. Without reserved_va,
3175 * the guest address space is not isolated. We have attempted to avoid
3176 * conflict with the host program itself via probe_guest_base, but using
3177 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3178 *
3179 * Otherwise this is ET_DYN, and we are searching for a location
3180 * that can hold the memory space required. If the image is
3181 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3182 * honor that address if it happens to be free.
3183 *
3184 * In both cases, we will overwrite pages in this range with mappings
3185 * from the executable.
3186 */
3187 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3188 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3189 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3190 -1, 0);
3191 if (load_addr == -1) {
3192 goto exit_mmap;
3193 }
3194 load_bias = load_addr - loaddr;
3195
3196 if (elf_is_fdpic(ehdr)) {
3197 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3198 g_malloc(sizeof(*loadsegs) * info->nsegs);
3199
3200 for (i = 0; i < ehdr->e_phnum; ++i) {
3201 switch (phdr[i].p_type) {
3202 case PT_DYNAMIC:
3203 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3204 break;
3205 case PT_LOAD:
3206 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3207 loadsegs->p_vaddr = phdr[i].p_vaddr;
3208 loadsegs->p_memsz = phdr[i].p_memsz;
3209 ++loadsegs;
3210 break;
3211 }
3212 }
3213 }
3214
3215 info->load_bias = load_bias;
3216 info->code_offset = load_bias;
3217 info->data_offset = load_bias;
3218 info->load_addr = load_addr;
3219 info->entry = ehdr->e_entry + load_bias;
3220 info->start_code = -1;
3221 info->end_code = 0;
3222 info->start_data = -1;
3223 info->end_data = 0;
3224 info->brk = 0;
3225 info->elf_flags = ehdr->e_flags;
3226
3227 prot_exec = PROT_EXEC;
3228 #ifdef TARGET_AARCH64
3229 /*
3230 * If the BTI feature is present, this indicates that the executable
3231 * pages of the startup binary should be mapped with PROT_BTI, so that
3232 * branch targets are enforced.
3233 *
3234 * The startup binary is either the interpreter or the static executable.
3235 * The interpreter is responsible for all pages of a dynamic executable.
3236 *
3237 * Elf notes are backward compatible to older cpus.
3238 * Do not enable BTI unless it is supported.
3239 */
3240 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3241 && (pinterp_name == NULL || *pinterp_name == 0)
3242 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3243 prot_exec |= TARGET_PROT_BTI;
3244 }
3245 #endif
3246
3247 for (i = 0; i < ehdr->e_phnum; i++) {
3248 struct elf_phdr *eppnt = phdr + i;
3249 if (eppnt->p_type == PT_LOAD) {
3250 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3251 int elf_prot = 0;
3252
3253 if (eppnt->p_flags & PF_R) {
3254 elf_prot |= PROT_READ;
3255 }
3256 if (eppnt->p_flags & PF_W) {
3257 elf_prot |= PROT_WRITE;
3258 }
3259 if (eppnt->p_flags & PF_X) {
3260 elf_prot |= prot_exec;
3261 }
3262
3263 vaddr = load_bias + eppnt->p_vaddr;
3264 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3265 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3266
3267 vaddr_ef = vaddr + eppnt->p_filesz;
3268 vaddr_em = vaddr + eppnt->p_memsz;
3269
3270 /*
3271 * Some segments may be completely empty, with a non-zero p_memsz
3272 * but no backing file segment.
3273 */
3274 if (eppnt->p_filesz != 0) {
3275 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3276 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3277 MAP_PRIVATE | MAP_FIXED,
3278 image_fd, eppnt->p_offset - vaddr_po);
3279
3280 if (error == -1) {
3281 goto exit_mmap;
3282 }
3283
3284 /*
3285 * If the load segment requests extra zeros (e.g. bss), map it.
3286 */
3287 if (eppnt->p_filesz < eppnt->p_memsz) {
3288 zero_bss(vaddr_ef, vaddr_em, elf_prot);
3289 }
3290 } else if (eppnt->p_memsz != 0) {
3291 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3292 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3293 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3294 -1, 0);
3295
3296 if (error == -1) {
3297 goto exit_mmap;
3298 }
3299 }
3300
3301 /* Find the full program boundaries. */
3302 if (elf_prot & PROT_EXEC) {
3303 if (vaddr < info->start_code) {
3304 info->start_code = vaddr;
3305 }
3306 if (vaddr_ef > info->end_code) {
3307 info->end_code = vaddr_ef;
3308 }
3309 }
3310 if (elf_prot & PROT_WRITE) {
3311 if (vaddr < info->start_data) {
3312 info->start_data = vaddr;
3313 }
3314 if (vaddr_ef > info->end_data) {
3315 info->end_data = vaddr_ef;
3316 }
3317 }
3318 if (vaddr_em > info->brk) {
3319 info->brk = vaddr_em;
3320 }
3321 #ifdef TARGET_MIPS
3322 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3323 Mips_elf_abiflags_v0 abiflags;
3324 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3325 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3326 goto exit_errmsg;
3327 }
3328 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3329 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3330 sizeof(Mips_elf_abiflags_v0));
3331 } else {
3332 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3333 eppnt->p_offset);
3334 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3335 goto exit_read;
3336 }
3337 }
3338 bswap_mips_abiflags(&abiflags);
3339 info->fp_abi = abiflags.fp_abi;
3340 #endif
3341 }
3342 }
3343
3344 if (info->end_data == 0) {
3345 info->start_data = info->end_code;
3346 info->end_data = info->end_code;
3347 }
3348
3349 if (qemu_log_enabled()) {
3350 load_symbols(ehdr, image_fd, load_bias);
3351 }
3352
3353 debuginfo_report_elf(image_name, image_fd, load_bias);
3354
3355 mmap_unlock();
3356
3357 close(image_fd);
3358 return;
3359
3360 exit_read:
3361 if (retval >= 0) {
3362 error_setg(&err, "Incomplete read of file header");
3363 } else {
3364 error_setg_errno(&err, errno, "Error reading file header");
3365 }
3366 goto exit_errmsg;
3367 exit_mmap:
3368 error_setg_errno(&err, errno, "Error mapping file");
3369 goto exit_errmsg;
3370 exit_errmsg:
3371 error_reportf_err(err, "%s: ", image_name);
3372 exit(-1);
3373 }
3374
3375 static void load_elf_interp(const char *filename, struct image_info *info,
3376 char bprm_buf[BPRM_BUF_SIZE])
3377 {
3378 int fd, retval;
3379 Error *err = NULL;
3380
3381 fd = open(path(filename), O_RDONLY);
3382 if (fd < 0) {
3383 error_setg_file_open(&err, errno, filename);
3384 error_report_err(err);
3385 exit(-1);
3386 }
3387
3388 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3389 if (retval < 0) {
3390 error_setg_errno(&err, errno, "Error reading file header");
3391 error_reportf_err(err, "%s: ", filename);
3392 exit(-1);
3393 }
3394
3395 if (retval < BPRM_BUF_SIZE) {
3396 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3397 }
3398
3399 load_elf_image(filename, fd, info, NULL, bprm_buf);
3400 }
3401
3402 static int symfind(const void *s0, const void *s1)
3403 {
3404 struct elf_sym *sym = (struct elf_sym *)s1;
3405 __typeof(sym->st_value) addr = *(uint64_t *)s0;
3406 int result = 0;
3407
3408 if (addr < sym->st_value) {
3409 result = -1;
3410 } else if (addr >= sym->st_value + sym->st_size) {
3411 result = 1;
3412 }
3413 return result;
3414 }
3415
3416 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3417 {
3418 #if ELF_CLASS == ELFCLASS32
3419 struct elf_sym *syms = s->disas_symtab.elf32;
3420 #else
3421 struct elf_sym *syms = s->disas_symtab.elf64;
3422 #endif
3423
3424 // binary search
3425 struct elf_sym *sym;
3426
3427 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3428 if (sym != NULL) {
3429 return s->disas_strtab + sym->st_name;
3430 }
3431
3432 return "";
3433 }
3434
3435 /* FIXME: This should use elf_ops.h */
3436 static int symcmp(const void *s0, const void *s1)
3437 {
3438 struct elf_sym *sym0 = (struct elf_sym *)s0;
3439 struct elf_sym *sym1 = (struct elf_sym *)s1;
3440 return (sym0->st_value < sym1->st_value)
3441 ? -1
3442 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3443 }
3444
3445 /* Best attempt to load symbols from this ELF object. */
3446 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3447 {
3448 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3449 uint64_t segsz;
3450 struct elf_shdr *shdr;
3451 char *strings = NULL;
3452 struct syminfo *s = NULL;
3453 struct elf_sym *new_syms, *syms = NULL;
3454
3455 shnum = hdr->e_shnum;
3456 i = shnum * sizeof(struct elf_shdr);
3457 shdr = (struct elf_shdr *)alloca(i);
3458 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3459 return;
3460 }
3461
3462 bswap_shdr(shdr, shnum);
3463 for (i = 0; i < shnum; ++i) {
3464 if (shdr[i].sh_type == SHT_SYMTAB) {
3465 sym_idx = i;
3466 str_idx = shdr[i].sh_link;
3467 goto found;
3468 }
3469 }
3470
3471 /* There will be no symbol table if the file was stripped. */
3472 return;
3473
3474 found:
3475 /* Now know where the strtab and symtab are. Snarf them. */
3476 s = g_try_new(struct syminfo, 1);
3477 if (!s) {
3478 goto give_up;
3479 }
3480
3481 segsz = shdr[str_idx].sh_size;
3482 s->disas_strtab = strings = g_try_malloc(segsz);
3483 if (!strings ||
3484 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3485 goto give_up;
3486 }
3487
3488 segsz = shdr[sym_idx].sh_size;
3489 syms = g_try_malloc(segsz);
3490 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3491 goto give_up;
3492 }
3493
3494 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3495 /* Implausibly large symbol table: give up rather than ploughing
3496 * on with the number of symbols calculation overflowing
3497 */
3498 goto give_up;
3499 }
3500 nsyms = segsz / sizeof(struct elf_sym);
3501 for (i = 0; i < nsyms; ) {
3502 bswap_sym(syms + i);
3503 /* Throw away entries which we do not need. */
3504 if (syms[i].st_shndx == SHN_UNDEF
3505 || syms[i].st_shndx >= SHN_LORESERVE
3506 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3507 if (i < --nsyms) {
3508 syms[i] = syms[nsyms];
3509 }
3510 } else {
3511 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3512 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3513 syms[i].st_value &= ~(target_ulong)1;
3514 #endif
3515 syms[i].st_value += load_bias;
3516 i++;
3517 }
3518 }
3519
3520 /* No "useful" symbol. */
3521 if (nsyms == 0) {
3522 goto give_up;
3523 }
3524
3525 /* Attempt to free the storage associated with the local symbols
3526 that we threw away. Whether or not this has any effect on the
3527 memory allocation depends on the malloc implementation and how
3528 many symbols we managed to discard. */
3529 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3530 if (new_syms == NULL) {
3531 goto give_up;
3532 }
3533 syms = new_syms;
3534
3535 qsort(syms, nsyms, sizeof(*syms), symcmp);
3536
3537 s->disas_num_syms = nsyms;
3538 #if ELF_CLASS == ELFCLASS32
3539 s->disas_symtab.elf32 = syms;
3540 #else
3541 s->disas_symtab.elf64 = syms;
3542 #endif
3543 s->lookup_symbol = lookup_symbolxx;
3544 s->next = syminfos;
3545 syminfos = s;
3546
3547 return;
3548
3549 give_up:
3550 g_free(s);
3551 g_free(strings);
3552 g_free(syms);
3553 }
3554
3555 uint32_t get_elf_eflags(int fd)
3556 {
3557 struct elfhdr ehdr;
3558 off_t offset;
3559 int ret;
3560
3561 /* Read ELF header */
3562 offset = lseek(fd, 0, SEEK_SET);
3563 if (offset == (off_t) -1) {
3564 return 0;
3565 }
3566 ret = read(fd, &ehdr, sizeof(ehdr));
3567 if (ret < sizeof(ehdr)) {
3568 return 0;
3569 }
3570 offset = lseek(fd, offset, SEEK_SET);
3571 if (offset == (off_t) -1) {
3572 return 0;
3573 }
3574
3575 /* Check ELF signature */
3576 if (!elf_check_ident(&ehdr)) {
3577 return 0;
3578 }
3579
3580 /* check header */
3581 bswap_ehdr(&ehdr);
3582 if (!elf_check_ehdr(&ehdr)) {
3583 return 0;
3584 }
3585
3586 /* return architecture id */
3587 return ehdr.e_flags;
3588 }
3589
3590 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3591 {
3592 struct image_info interp_info;
3593 struct elfhdr elf_ex;
3594 char *elf_interpreter = NULL;
3595 char *scratch;
3596
3597 memset(&interp_info, 0, sizeof(interp_info));
3598 #ifdef TARGET_MIPS
3599 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3600 #endif
3601
3602 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3603
3604 load_elf_image(bprm->filename, bprm->fd, info,
3605 &elf_interpreter, bprm->buf);
3606
3607 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3608 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3609 when we load the interpreter. */
3610 elf_ex = *(struct elfhdr *)bprm->buf;
3611
3612 /* Do this so that we can load the interpreter, if need be. We will
3613 change some of these later */
3614 bprm->p = setup_arg_pages(bprm, info);
3615
3616 scratch = g_new0(char, TARGET_PAGE_SIZE);
3617 if (STACK_GROWS_DOWN) {
3618 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3619 bprm->p, info->stack_limit);
3620 info->file_string = bprm->p;
3621 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3622 bprm->p, info->stack_limit);
3623 info->env_strings = bprm->p;
3624 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3625 bprm->p, info->stack_limit);
3626 info->arg_strings = bprm->p;
3627 } else {
3628 info->arg_strings = bprm->p;
3629 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3630 bprm->p, info->stack_limit);
3631 info->env_strings = bprm->p;
3632 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3633 bprm->p, info->stack_limit);
3634 info->file_string = bprm->p;
3635 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3636 bprm->p, info->stack_limit);
3637 }
3638
3639 g_free(scratch);
3640
3641 if (!bprm->p) {
3642 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3643 exit(-1);
3644 }
3645
3646 if (elf_interpreter) {
3647 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3648
3649 /* If the program interpreter is one of these two, then assume
3650 an iBCS2 image. Otherwise assume a native linux image. */
3651
3652 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3653 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3654 info->personality = PER_SVR4;
3655
3656 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3657 and some applications "depend" upon this behavior. Since
3658 we do not have the power to recompile these, we emulate
3659 the SVr4 behavior. Sigh. */
3660 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3661 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3662 }
3663 #ifdef TARGET_MIPS
3664 info->interp_fp_abi = interp_info.fp_abi;
3665 #endif
3666 }
3667
3668 /*
3669 * TODO: load a vdso, which would also contain the signal trampolines.
3670 * Otherwise, allocate a private page to hold them.
3671 */
3672 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3673 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3674 PROT_READ | PROT_WRITE,
3675 MAP_PRIVATE | MAP_ANON, -1, 0);
3676 if (tramp_page == -1) {
3677 return -errno;
3678 }
3679
3680 setup_sigtramp(tramp_page);
3681 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3682 }
3683
3684 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3685 info, (elf_interpreter ? &interp_info : NULL));
3686 info->start_stack = bprm->p;
3687
3688 /* If we have an interpreter, set that as the program's entry point.
3689 Copy the load_bias as well, to help PPC64 interpret the entry
3690 point as a function descriptor. Do this after creating elf tables
3691 so that we copy the original program entry point into the AUXV. */
3692 if (elf_interpreter) {
3693 info->load_bias = interp_info.load_bias;
3694 info->entry = interp_info.entry;
3695 g_free(elf_interpreter);
3696 }
3697
3698 #ifdef USE_ELF_CORE_DUMP
3699 bprm->core_dump = &elf_core_dump;
3700 #endif
3701
3702 /*
3703 * If we reserved extra space for brk, release it now.
3704 * The implementation of do_brk in syscalls.c expects to be able
3705 * to mmap pages in this space.
3706 */
3707 if (info->reserve_brk) {
3708 abi_ulong start_brk = TARGET_PAGE_ALIGN(info->brk);
3709 abi_ulong end_brk = TARGET_PAGE_ALIGN(info->brk + info->reserve_brk);
3710 target_munmap(start_brk, end_brk - start_brk);
3711 }
3712
3713 return 0;
3714 }
3715
3716 #ifdef USE_ELF_CORE_DUMP
3717 /*
3718 * Definitions to generate Intel SVR4-like core files.
3719 * These mostly have the same names as the SVR4 types with "target_elf_"
3720 * tacked on the front to prevent clashes with linux definitions,
3721 * and the typedef forms have been avoided. This is mostly like
3722 * the SVR4 structure, but more Linuxy, with things that Linux does
3723 * not support and which gdb doesn't really use excluded.
3724 *
3725 * Fields we don't dump (their contents is zero) in linux-user qemu
3726 * are marked with XXX.
3727 *
3728 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3729 *
3730 * Porting ELF coredump for target is (quite) simple process. First you
3731 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3732 * the target resides):
3733 *
3734 * #define USE_ELF_CORE_DUMP
3735 *
3736 * Next you define type of register set used for dumping. ELF specification
3737 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3738 *
3739 * typedef <target_regtype> target_elf_greg_t;
3740 * #define ELF_NREG <number of registers>
3741 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3742 *
3743 * Last step is to implement target specific function that copies registers
3744 * from given cpu into just specified register set. Prototype is:
3745 *
3746 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3747 * const CPUArchState *env);
3748 *
3749 * Parameters:
3750 * regs - copy register values into here (allocated and zeroed by caller)
3751 * env - copy registers from here
3752 *
3753 * Example for ARM target is provided in this file.
3754 */
3755
3756 /* An ELF note in memory */
3757 struct memelfnote {
3758 const char *name;
3759 size_t namesz;
3760 size_t namesz_rounded;
3761 int type;
3762 size_t datasz;
3763 size_t datasz_rounded;
3764 void *data;
3765 size_t notesz;
3766 };
3767
3768 struct target_elf_siginfo {
3769 abi_int si_signo; /* signal number */
3770 abi_int si_code; /* extra code */
3771 abi_int si_errno; /* errno */
3772 };
3773
3774 struct target_elf_prstatus {
3775 struct target_elf_siginfo pr_info; /* Info associated with signal */
3776 abi_short pr_cursig; /* Current signal */
3777 abi_ulong pr_sigpend; /* XXX */
3778 abi_ulong pr_sighold; /* XXX */
3779 target_pid_t pr_pid;
3780 target_pid_t pr_ppid;
3781 target_pid_t pr_pgrp;
3782 target_pid_t pr_sid;
3783 struct target_timeval pr_utime; /* XXX User time */
3784 struct target_timeval pr_stime; /* XXX System time */
3785 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3786 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3787 target_elf_gregset_t pr_reg; /* GP registers */
3788 abi_int pr_fpvalid; /* XXX */
3789 };
3790
3791 #define ELF_PRARGSZ (80) /* Number of chars for args */
3792
3793 struct target_elf_prpsinfo {
3794 char pr_state; /* numeric process state */
3795 char pr_sname; /* char for pr_state */
3796 char pr_zomb; /* zombie */
3797 char pr_nice; /* nice val */
3798 abi_ulong pr_flag; /* flags */
3799 target_uid_t pr_uid;
3800 target_gid_t pr_gid;
3801 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3802 /* Lots missing */
3803 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3804 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3805 };
3806
3807 /* Here is the structure in which status of each thread is captured. */
3808 struct elf_thread_status {
3809 QTAILQ_ENTRY(elf_thread_status) ets_link;
3810 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3811 #if 0
3812 elf_fpregset_t fpu; /* NT_PRFPREG */
3813 struct task_struct *thread;
3814 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3815 #endif
3816 struct memelfnote notes[1];
3817 int num_notes;
3818 };
3819
3820 struct elf_note_info {
3821 struct memelfnote *notes;
3822 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3823 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3824
3825 QTAILQ_HEAD(, elf_thread_status) thread_list;
3826 #if 0
3827 /*
3828 * Current version of ELF coredump doesn't support
3829 * dumping fp regs etc.
3830 */
3831 elf_fpregset_t *fpu;
3832 elf_fpxregset_t *xfpu;
3833 int thread_status_size;
3834 #endif
3835 int notes_size;
3836 int numnote;
3837 };
3838
3839 struct vm_area_struct {
3840 target_ulong vma_start; /* start vaddr of memory region */
3841 target_ulong vma_end; /* end vaddr of memory region */
3842 abi_ulong vma_flags; /* protection etc. flags for the region */
3843 QTAILQ_ENTRY(vm_area_struct) vma_link;
3844 };
3845
3846 struct mm_struct {
3847 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3848 int mm_count; /* number of mappings */
3849 };
3850
3851 static struct mm_struct *vma_init(void);
3852 static void vma_delete(struct mm_struct *);
3853 static int vma_add_mapping(struct mm_struct *, target_ulong,
3854 target_ulong, abi_ulong);
3855 static int vma_get_mapping_count(const struct mm_struct *);
3856 static struct vm_area_struct *vma_first(const struct mm_struct *);
3857 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3858 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3859 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3860 unsigned long flags);
3861
3862 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3863 static void fill_note(struct memelfnote *, const char *, int,
3864 unsigned int, void *);
3865 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3866 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3867 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3868 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3869 static size_t note_size(const struct memelfnote *);
3870 static void free_note_info(struct elf_note_info *);
3871 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3872 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3873
3874 static int dump_write(int, const void *, size_t);
3875 static int write_note(struct memelfnote *, int);
3876 static int write_note_info(struct elf_note_info *, int);
3877
3878 #ifdef BSWAP_NEEDED
3879 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3880 {
3881 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3882 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3883 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3884 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3885 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3886 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3887 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3888 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3889 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3890 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3891 /* cpu times are not filled, so we skip them */
3892 /* regs should be in correct format already */
3893 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3894 }
3895
3896 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3897 {
3898 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3899 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3900 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3901 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3902 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3903 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3904 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3905 }
3906
3907 static void bswap_note(struct elf_note *en)
3908 {
3909 bswap32s(&en->n_namesz);
3910 bswap32s(&en->n_descsz);
3911 bswap32s(&en->n_type);
3912 }
3913 #else
3914 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3915 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3916 static inline void bswap_note(struct elf_note *en) { }
3917 #endif /* BSWAP_NEEDED */
3918
3919 /*
3920 * Minimal support for linux memory regions. These are needed
3921 * when we are finding out what memory exactly belongs to
3922 * emulated process. No locks needed here, as long as
3923 * thread that received the signal is stopped.
3924 */
3925
3926 static struct mm_struct *vma_init(void)
3927 {
3928 struct mm_struct *mm;
3929
3930 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3931 return (NULL);
3932
3933 mm->mm_count = 0;
3934 QTAILQ_INIT(&mm->mm_mmap);
3935
3936 return (mm);
3937 }
3938
3939 static void vma_delete(struct mm_struct *mm)
3940 {
3941 struct vm_area_struct *vma;
3942
3943 while ((vma = vma_first(mm)) != NULL) {
3944 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3945 g_free(vma);
3946 }
3947 g_free(mm);
3948 }
3949
3950 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3951 target_ulong end, abi_ulong flags)
3952 {
3953 struct vm_area_struct *vma;
3954
3955 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3956 return (-1);
3957
3958 vma->vma_start = start;
3959 vma->vma_end = end;
3960 vma->vma_flags = flags;
3961
3962 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3963 mm->mm_count++;
3964
3965 return (0);
3966 }
3967
3968 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3969 {
3970 return (QTAILQ_FIRST(&mm->mm_mmap));
3971 }
3972
3973 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3974 {
3975 return (QTAILQ_NEXT(vma, vma_link));
3976 }
3977
3978 static int vma_get_mapping_count(const struct mm_struct *mm)
3979 {
3980 return (mm->mm_count);
3981 }
3982
3983 /*
3984 * Calculate file (dump) size of given memory region.
3985 */
3986 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3987 {
3988 /* if we cannot even read the first page, skip it */
3989 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3990 return (0);
3991
3992 /*
3993 * Usually we don't dump executable pages as they contain
3994 * non-writable code that debugger can read directly from
3995 * target library etc. However, thread stacks are marked
3996 * also executable so we read in first page of given region
3997 * and check whether it contains elf header. If there is
3998 * no elf header, we dump it.
3999 */
4000 if (vma->vma_flags & PROT_EXEC) {
4001 char page[TARGET_PAGE_SIZE];
4002
4003 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
4004 return 0;
4005 }
4006 if ((page[EI_MAG0] == ELFMAG0) &&
4007 (page[EI_MAG1] == ELFMAG1) &&
4008 (page[EI_MAG2] == ELFMAG2) &&
4009 (page[EI_MAG3] == ELFMAG3)) {
4010 /*
4011 * Mappings are possibly from ELF binary. Don't dump
4012 * them.
4013 */
4014 return (0);
4015 }
4016 }
4017
4018 return (vma->vma_end - vma->vma_start);
4019 }
4020
4021 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4022 unsigned long flags)
4023 {
4024 struct mm_struct *mm = (struct mm_struct *)priv;
4025
4026 vma_add_mapping(mm, start, end, flags);
4027 return (0);
4028 }
4029
4030 static void fill_note(struct memelfnote *note, const char *name, int type,
4031 unsigned int sz, void *data)
4032 {
4033 unsigned int namesz;
4034
4035 namesz = strlen(name) + 1;
4036 note->name = name;
4037 note->namesz = namesz;
4038 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4039 note->type = type;
4040 note->datasz = sz;
4041 note->datasz_rounded = roundup(sz, sizeof (int32_t));
4042
4043 note->data = data;
4044
4045 /*
4046 * We calculate rounded up note size here as specified by
4047 * ELF document.
4048 */
4049 note->notesz = sizeof (struct elf_note) +
4050 note->namesz_rounded + note->datasz_rounded;
4051 }
4052
4053 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4054 uint32_t flags)
4055 {
4056 (void) memset(elf, 0, sizeof(*elf));
4057
4058 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4059 elf->e_ident[EI_CLASS] = ELF_CLASS;
4060 elf->e_ident[EI_DATA] = ELF_DATA;
4061 elf->e_ident[EI_VERSION] = EV_CURRENT;
4062 elf->e_ident[EI_OSABI] = ELF_OSABI;
4063
4064 elf->e_type = ET_CORE;
4065 elf->e_machine = machine;
4066 elf->e_version = EV_CURRENT;
4067 elf->e_phoff = sizeof(struct elfhdr);
4068 elf->e_flags = flags;
4069 elf->e_ehsize = sizeof(struct elfhdr);
4070 elf->e_phentsize = sizeof(struct elf_phdr);
4071 elf->e_phnum = segs;
4072
4073 bswap_ehdr(elf);
4074 }
4075
4076 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4077 {
4078 phdr->p_type = PT_NOTE;
4079 phdr->p_offset = offset;
4080 phdr->p_vaddr = 0;
4081 phdr->p_paddr = 0;
4082 phdr->p_filesz = sz;
4083 phdr->p_memsz = 0;
4084 phdr->p_flags = 0;
4085 phdr->p_align = 0;
4086
4087 bswap_phdr(phdr, 1);
4088 }
4089
4090 static size_t note_size(const struct memelfnote *note)
4091 {
4092 return (note->notesz);
4093 }
4094
4095 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4096 const TaskState *ts, int signr)
4097 {
4098 (void) memset(prstatus, 0, sizeof (*prstatus));
4099 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4100 prstatus->pr_pid = ts->ts_tid;
4101 prstatus->pr_ppid = getppid();
4102 prstatus->pr_pgrp = getpgrp();
4103 prstatus->pr_sid = getsid(0);
4104
4105 bswap_prstatus(prstatus);
4106 }
4107
4108 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4109 {
4110 char *base_filename;
4111 unsigned int i, len;
4112
4113 (void) memset(psinfo, 0, sizeof (*psinfo));
4114
4115 len = ts->info->env_strings - ts->info->arg_strings;
4116 if (len >= ELF_PRARGSZ)
4117 len = ELF_PRARGSZ - 1;
4118 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4119 return -EFAULT;
4120 }
4121 for (i = 0; i < len; i++)
4122 if (psinfo->pr_psargs[i] == 0)
4123 psinfo->pr_psargs[i] = ' ';
4124 psinfo->pr_psargs[len] = 0;
4125
4126 psinfo->pr_pid = getpid();
4127 psinfo->pr_ppid = getppid();
4128 psinfo->pr_pgrp = getpgrp();
4129 psinfo->pr_sid = getsid(0);
4130 psinfo->pr_uid = getuid();
4131 psinfo->pr_gid = getgid();
4132
4133 base_filename = g_path_get_basename(ts->bprm->filename);
4134 /*
4135 * Using strncpy here is fine: at max-length,
4136 * this field is not NUL-terminated.
4137 */
4138 (void) strncpy(psinfo->pr_fname, base_filename,
4139 sizeof(psinfo->pr_fname));
4140
4141 g_free(base_filename);
4142 bswap_psinfo(psinfo);
4143 return (0);
4144 }
4145
4146 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4147 {
4148 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4149 elf_addr_t orig_auxv = auxv;
4150 void *ptr;
4151 int len = ts->info->auxv_len;
4152
4153 /*
4154 * Auxiliary vector is stored in target process stack. It contains
4155 * {type, value} pairs that we need to dump into note. This is not
4156 * strictly necessary but we do it here for sake of completeness.
4157 */
4158
4159 /* read in whole auxv vector and copy it to memelfnote */
4160 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4161 if (ptr != NULL) {
4162 fill_note(note, "CORE", NT_AUXV, len, ptr);
4163 unlock_user(ptr, auxv, len);
4164 }
4165 }
4166
4167 /*
4168 * Constructs name of coredump file. We have following convention
4169 * for the name:
4170 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4171 *
4172 * Returns the filename
4173 */
4174 static char *core_dump_filename(const TaskState *ts)
4175 {
4176 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4177 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4178 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4179
4180 return g_strdup_printf("qemu_%s_%s_%d.core",
4181 base_filename, nowstr, (int)getpid());
4182 }
4183
4184 static int dump_write(int fd, const void *ptr, size_t size)
4185 {
4186 const char *bufp = (const char *)ptr;
4187 ssize_t bytes_written, bytes_left;
4188 struct rlimit dumpsize;
4189 off_t pos;
4190
4191 bytes_written = 0;
4192 getrlimit(RLIMIT_CORE, &dumpsize);
4193 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4194 if (errno == ESPIPE) { /* not a seekable stream */
4195 bytes_left = size;
4196 } else {
4197 return pos;
4198 }
4199 } else {
4200 if (dumpsize.rlim_cur <= pos) {
4201 return -1;
4202 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4203 bytes_left = size;
4204 } else {
4205 size_t limit_left=dumpsize.rlim_cur - pos;
4206 bytes_left = limit_left >= size ? size : limit_left ;
4207 }
4208 }
4209
4210 /*
4211 * In normal conditions, single write(2) should do but
4212 * in case of socket etc. this mechanism is more portable.
4213 */
4214 do {
4215 bytes_written = write(fd, bufp, bytes_left);
4216 if (bytes_written < 0) {
4217 if (errno == EINTR)
4218 continue;
4219 return (-1);
4220 } else if (bytes_written == 0) { /* eof */
4221 return (-1);
4222 }
4223 bufp += bytes_written;
4224 bytes_left -= bytes_written;
4225 } while (bytes_left > 0);
4226
4227 return (0);
4228 }
4229
4230 static int write_note(struct memelfnote *men, int fd)
4231 {
4232 struct elf_note en;
4233
4234 en.n_namesz = men->namesz;
4235 en.n_type = men->type;
4236 en.n_descsz = men->datasz;
4237
4238 bswap_note(&en);
4239
4240 if (dump_write(fd, &en, sizeof(en)) != 0)
4241 return (-1);
4242 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4243 return (-1);
4244 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4245 return (-1);
4246
4247 return (0);
4248 }
4249
4250 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4251 {
4252 CPUState *cpu = env_cpu((CPUArchState *)env);
4253 TaskState *ts = (TaskState *)cpu->opaque;
4254 struct elf_thread_status *ets;
4255
4256 ets = g_malloc0(sizeof (*ets));
4257 ets->num_notes = 1; /* only prstatus is dumped */
4258 fill_prstatus(&ets->prstatus, ts, 0);
4259 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4260 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4261 &ets->prstatus);
4262
4263 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4264
4265 info->notes_size += note_size(&ets->notes[0]);
4266 }
4267
4268 static void init_note_info(struct elf_note_info *info)
4269 {
4270 /* Initialize the elf_note_info structure so that it is at
4271 * least safe to call free_note_info() on it. Must be
4272 * called before calling fill_note_info().
4273 */
4274 memset(info, 0, sizeof (*info));
4275 QTAILQ_INIT(&info->thread_list);
4276 }
4277
4278 static int fill_note_info(struct elf_note_info *info,
4279 long signr, const CPUArchState *env)
4280 {
4281 #define NUMNOTES 3
4282 CPUState *cpu = env_cpu((CPUArchState *)env);
4283 TaskState *ts = (TaskState *)cpu->opaque;
4284 int i;
4285
4286 info->notes = g_new0(struct memelfnote, NUMNOTES);
4287 if (info->notes == NULL)
4288 return (-ENOMEM);
4289 info->prstatus = g_malloc0(sizeof (*info->prstatus));
4290 if (info->prstatus == NULL)
4291 return (-ENOMEM);
4292 info->psinfo = g_malloc0(sizeof (*info->psinfo));
4293 if (info->prstatus == NULL)
4294 return (-ENOMEM);
4295
4296 /*
4297 * First fill in status (and registers) of current thread
4298 * including process info & aux vector.
4299 */
4300 fill_prstatus(info->prstatus, ts, signr);
4301 elf_core_copy_regs(&info->prstatus->pr_reg, env);
4302 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4303 sizeof (*info->prstatus), info->prstatus);
4304 fill_psinfo(info->psinfo, ts);
4305 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4306 sizeof (*info->psinfo), info->psinfo);
4307 fill_auxv_note(&info->notes[2], ts);
4308 info->numnote = 3;
4309
4310 info->notes_size = 0;
4311 for (i = 0; i < info->numnote; i++)
4312 info->notes_size += note_size(&info->notes[i]);
4313
4314 /* read and fill status of all threads */
4315 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4316 CPU_FOREACH(cpu) {
4317 if (cpu == thread_cpu) {
4318 continue;
4319 }
4320 fill_thread_info(info, cpu->env_ptr);
4321 }
4322 }
4323
4324 return (0);
4325 }
4326
4327 static void free_note_info(struct elf_note_info *info)
4328 {
4329 struct elf_thread_status *ets;
4330
4331 while (!QTAILQ_EMPTY(&info->thread_list)) {
4332 ets = QTAILQ_FIRST(&info->thread_list);
4333 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4334 g_free(ets);
4335 }
4336
4337 g_free(info->prstatus);
4338 g_free(info->psinfo);
4339 g_free(info->notes);
4340 }
4341
4342 static int write_note_info(struct elf_note_info *info, int fd)
4343 {
4344 struct elf_thread_status *ets;
4345 int i, error = 0;
4346
4347 /* write prstatus, psinfo and auxv for current thread */
4348 for (i = 0; i < info->numnote; i++)
4349 if ((error = write_note(&info->notes[i], fd)) != 0)
4350 return (error);
4351
4352 /* write prstatus for each thread */
4353 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4354 if ((error = write_note(&ets->notes[0], fd)) != 0)
4355 return (error);
4356 }
4357
4358 return (0);
4359 }
4360
4361 /*
4362 * Write out ELF coredump.
4363 *
4364 * See documentation of ELF object file format in:
4365 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4366 *
4367 * Coredump format in linux is following:
4368 *
4369 * 0 +----------------------+ \
4370 * | ELF header | ET_CORE |
4371 * +----------------------+ |
4372 * | ELF program headers | |--- headers
4373 * | - NOTE section | |
4374 * | - PT_LOAD sections | |
4375 * +----------------------+ /
4376 * | NOTEs: |
4377 * | - NT_PRSTATUS |
4378 * | - NT_PRSINFO |
4379 * | - NT_AUXV |
4380 * +----------------------+ <-- aligned to target page
4381 * | Process memory dump |
4382 * : :
4383 * . .
4384 * : :
4385 * | |
4386 * +----------------------+
4387 *
4388 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4389 * NT_PRSINFO -> struct elf_prpsinfo
4390 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4391 *
4392 * Format follows System V format as close as possible. Current
4393 * version limitations are as follows:
4394 * - no floating point registers are dumped
4395 *
4396 * Function returns 0 in case of success, negative errno otherwise.
4397 *
4398 * TODO: make this work also during runtime: it should be
4399 * possible to force coredump from running process and then
4400 * continue processing. For example qemu could set up SIGUSR2
4401 * handler (provided that target process haven't registered
4402 * handler for that) that does the dump when signal is received.
4403 */
4404 static int elf_core_dump(int signr, const CPUArchState *env)
4405 {
4406 const CPUState *cpu = env_cpu((CPUArchState *)env);
4407 const TaskState *ts = (const TaskState *)cpu->opaque;
4408 struct vm_area_struct *vma = NULL;
4409 g_autofree char *corefile = NULL;
4410 struct elf_note_info info;
4411 struct elfhdr elf;
4412 struct elf_phdr phdr;
4413 struct rlimit dumpsize;
4414 struct mm_struct *mm = NULL;
4415 off_t offset = 0, data_offset = 0;
4416 int segs = 0;
4417 int fd = -1;
4418
4419 init_note_info(&info);
4420
4421 errno = 0;
4422 getrlimit(RLIMIT_CORE, &dumpsize);
4423 if (dumpsize.rlim_cur == 0)
4424 return 0;
4425
4426 corefile = core_dump_filename(ts);
4427
4428 if ((fd = open(corefile, O_WRONLY | O_CREAT,
4429 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4430 return (-errno);
4431
4432 /*
4433 * Walk through target process memory mappings and
4434 * set up structure containing this information. After
4435 * this point vma_xxx functions can be used.
4436 */
4437 if ((mm = vma_init()) == NULL)
4438 goto out;
4439
4440 walk_memory_regions(mm, vma_walker);
4441 segs = vma_get_mapping_count(mm);
4442
4443 /*
4444 * Construct valid coredump ELF header. We also
4445 * add one more segment for notes.
4446 */
4447 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4448 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4449 goto out;
4450
4451 /* fill in the in-memory version of notes */
4452 if (fill_note_info(&info, signr, env) < 0)
4453 goto out;
4454
4455 offset += sizeof (elf); /* elf header */
4456 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4457
4458 /* write out notes program header */
4459 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4460
4461 offset += info.notes_size;
4462 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4463 goto out;
4464
4465 /*
4466 * ELF specification wants data to start at page boundary so
4467 * we align it here.
4468 */
4469 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4470
4471 /*
4472 * Write program headers for memory regions mapped in
4473 * the target process.
4474 */
4475 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4476 (void) memset(&phdr, 0, sizeof (phdr));
4477
4478 phdr.p_type = PT_LOAD;
4479 phdr.p_offset = offset;
4480 phdr.p_vaddr = vma->vma_start;
4481 phdr.p_paddr = 0;
4482 phdr.p_filesz = vma_dump_size(vma);
4483 offset += phdr.p_filesz;
4484 phdr.p_memsz = vma->vma_end - vma->vma_start;
4485 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4486 if (vma->vma_flags & PROT_WRITE)
4487 phdr.p_flags |= PF_W;
4488 if (vma->vma_flags & PROT_EXEC)
4489 phdr.p_flags |= PF_X;
4490 phdr.p_align = ELF_EXEC_PAGESIZE;
4491
4492 bswap_phdr(&phdr, 1);
4493 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4494 goto out;
4495 }
4496 }
4497
4498 /*
4499 * Next we write notes just after program headers. No
4500 * alignment needed here.
4501 */
4502 if (write_note_info(&info, fd) < 0)
4503 goto out;
4504
4505 /* align data to page boundary */
4506 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4507 goto out;
4508
4509 /*
4510 * Finally we can dump process memory into corefile as well.
4511 */
4512 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4513 abi_ulong addr;
4514 abi_ulong end;
4515
4516 end = vma->vma_start + vma_dump_size(vma);
4517
4518 for (addr = vma->vma_start; addr < end;
4519 addr += TARGET_PAGE_SIZE) {
4520 char page[TARGET_PAGE_SIZE];
4521 int error;
4522
4523 /*
4524 * Read in page from target process memory and
4525 * write it to coredump file.
4526 */
4527 error = copy_from_user(page, addr, sizeof (page));
4528 if (error != 0) {
4529 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4530 addr);
4531 errno = -error;
4532 goto out;
4533 }
4534 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4535 goto out;
4536 }
4537 }
4538
4539 out:
4540 free_note_info(&info);
4541 if (mm != NULL)
4542 vma_delete(mm);
4543 (void) close(fd);
4544
4545 if (errno != 0)
4546 return (-errno);
4547 return (0);
4548 }
4549 #endif /* USE_ELF_CORE_DUMP */
4550
4551 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4552 {
4553 init_thread(regs, infop);
4554 }