]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
Merge tag 'qemu-slof-20211112' of github.com:aik/qemu into ppc-next
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "target_signal.h"
22
23 #ifdef _ARCH_PPC64
24 #undef ARCH_DLINFO
25 #undef ELF_PLATFORM
26 #undef ELF_HWCAP
27 #undef ELF_HWCAP2
28 #undef ELF_CLASS
29 #undef ELF_DATA
30 #undef ELF_ARCH
31 #endif
32
33 #define ELF_OSABI ELFOSABI_SYSV
34
35 /* from personality.h */
36
37 /*
38 * Flags for bug emulation.
39 *
40 * These occupy the top three bytes.
41 */
42 enum {
43 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
44 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
45 descriptors (signal handling) */
46 MMAP_PAGE_ZERO = 0x0100000,
47 ADDR_COMPAT_LAYOUT = 0x0200000,
48 READ_IMPLIES_EXEC = 0x0400000,
49 ADDR_LIMIT_32BIT = 0x0800000,
50 SHORT_INODE = 0x1000000,
51 WHOLE_SECONDS = 0x2000000,
52 STICKY_TIMEOUTS = 0x4000000,
53 ADDR_LIMIT_3GB = 0x8000000,
54 };
55
56 /*
57 * Personality types.
58 *
59 * These go in the low byte. Avoid using the top bit, it will
60 * conflict with error returns.
61 */
62 enum {
63 PER_LINUX = 0x0000,
64 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
65 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
66 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
67 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
69 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
70 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
72 PER_BSD = 0x0006,
73 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
74 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
75 PER_LINUX32 = 0x0008,
76 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
77 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
78 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
79 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
80 PER_RISCOS = 0x000c,
81 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
82 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
83 PER_OSF4 = 0x000f, /* OSF/1 v4 */
84 PER_HPUX = 0x0010,
85 PER_MASK = 0x00ff,
86 };
87
88 /*
89 * Return the base personality without flags.
90 */
91 #define personality(pers) (pers & PER_MASK)
92
93 int info_is_fdpic(struct image_info *info)
94 {
95 return info->personality == PER_LINUX_FDPIC;
96 }
97
98 /* this flag is uneffective under linux too, should be deleted */
99 #ifndef MAP_DENYWRITE
100 #define MAP_DENYWRITE 0
101 #endif
102
103 /* should probably go in elf.h */
104 #ifndef ELIBBAD
105 #define ELIBBAD 80
106 #endif
107
108 #ifdef TARGET_WORDS_BIGENDIAN
109 #define ELF_DATA ELFDATA2MSB
110 #else
111 #define ELF_DATA ELFDATA2LSB
112 #endif
113
114 #ifdef TARGET_ABI_MIPSN32
115 typedef abi_ullong target_elf_greg_t;
116 #define tswapreg(ptr) tswap64(ptr)
117 #else
118 typedef abi_ulong target_elf_greg_t;
119 #define tswapreg(ptr) tswapal(ptr)
120 #endif
121
122 #ifdef USE_UID16
123 typedef abi_ushort target_uid_t;
124 typedef abi_ushort target_gid_t;
125 #else
126 typedef abi_uint target_uid_t;
127 typedef abi_uint target_gid_t;
128 #endif
129 typedef abi_int target_pid_t;
130
131 #ifdef TARGET_I386
132
133 #define ELF_PLATFORM get_elf_platform()
134
135 static const char *get_elf_platform(void)
136 {
137 static char elf_platform[] = "i386";
138 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
139 if (family > 6)
140 family = 6;
141 if (family >= 3)
142 elf_platform[1] = '0' + family;
143 return elf_platform;
144 }
145
146 #define ELF_HWCAP get_elf_hwcap()
147
148 static uint32_t get_elf_hwcap(void)
149 {
150 X86CPU *cpu = X86_CPU(thread_cpu);
151
152 return cpu->env.features[FEAT_1_EDX];
153 }
154
155 #ifdef TARGET_X86_64
156 #define ELF_START_MMAP 0x2aaaaab000ULL
157
158 #define ELF_CLASS ELFCLASS64
159 #define ELF_ARCH EM_X86_64
160
161 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
162 {
163 regs->rax = 0;
164 regs->rsp = infop->start_stack;
165 regs->rip = infop->entry;
166 }
167
168 #define ELF_NREG 27
169 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
170
171 /*
172 * Note that ELF_NREG should be 29 as there should be place for
173 * TRAPNO and ERR "registers" as well but linux doesn't dump
174 * those.
175 *
176 * See linux kernel: arch/x86/include/asm/elf.h
177 */
178 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
179 {
180 (*regs)[0] = tswapreg(env->regs[15]);
181 (*regs)[1] = tswapreg(env->regs[14]);
182 (*regs)[2] = tswapreg(env->regs[13]);
183 (*regs)[3] = tswapreg(env->regs[12]);
184 (*regs)[4] = tswapreg(env->regs[R_EBP]);
185 (*regs)[5] = tswapreg(env->regs[R_EBX]);
186 (*regs)[6] = tswapreg(env->regs[11]);
187 (*regs)[7] = tswapreg(env->regs[10]);
188 (*regs)[8] = tswapreg(env->regs[9]);
189 (*regs)[9] = tswapreg(env->regs[8]);
190 (*regs)[10] = tswapreg(env->regs[R_EAX]);
191 (*regs)[11] = tswapreg(env->regs[R_ECX]);
192 (*regs)[12] = tswapreg(env->regs[R_EDX]);
193 (*regs)[13] = tswapreg(env->regs[R_ESI]);
194 (*regs)[14] = tswapreg(env->regs[R_EDI]);
195 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
196 (*regs)[16] = tswapreg(env->eip);
197 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
198 (*regs)[18] = tswapreg(env->eflags);
199 (*regs)[19] = tswapreg(env->regs[R_ESP]);
200 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
201 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
202 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
203 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
204 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
205 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
206 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
207 }
208
209 #else
210
211 #define ELF_START_MMAP 0x80000000
212
213 /*
214 * This is used to ensure we don't load something for the wrong architecture.
215 */
216 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
217
218 /*
219 * These are used to set parameters in the core dumps.
220 */
221 #define ELF_CLASS ELFCLASS32
222 #define ELF_ARCH EM_386
223
224 static inline void init_thread(struct target_pt_regs *regs,
225 struct image_info *infop)
226 {
227 regs->esp = infop->start_stack;
228 regs->eip = infop->entry;
229
230 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
231 starts %edx contains a pointer to a function which might be
232 registered using `atexit'. This provides a mean for the
233 dynamic linker to call DT_FINI functions for shared libraries
234 that have been loaded before the code runs.
235
236 A value of 0 tells we have no such handler. */
237 regs->edx = 0;
238 }
239
240 #define ELF_NREG 17
241 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
242
243 /*
244 * Note that ELF_NREG should be 19 as there should be place for
245 * TRAPNO and ERR "registers" as well but linux doesn't dump
246 * those.
247 *
248 * See linux kernel: arch/x86/include/asm/elf.h
249 */
250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
251 {
252 (*regs)[0] = tswapreg(env->regs[R_EBX]);
253 (*regs)[1] = tswapreg(env->regs[R_ECX]);
254 (*regs)[2] = tswapreg(env->regs[R_EDX]);
255 (*regs)[3] = tswapreg(env->regs[R_ESI]);
256 (*regs)[4] = tswapreg(env->regs[R_EDI]);
257 (*regs)[5] = tswapreg(env->regs[R_EBP]);
258 (*regs)[6] = tswapreg(env->regs[R_EAX]);
259 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
260 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
261 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
262 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
263 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
264 (*regs)[12] = tswapreg(env->eip);
265 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
266 (*regs)[14] = tswapreg(env->eflags);
267 (*regs)[15] = tswapreg(env->regs[R_ESP]);
268 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
269 }
270 #endif
271
272 #define USE_ELF_CORE_DUMP
273 #define ELF_EXEC_PAGESIZE 4096
274
275 #endif
276
277 #ifdef TARGET_ARM
278
279 #ifndef TARGET_AARCH64
280 /* 32 bit ARM definitions */
281
282 #define ELF_START_MMAP 0x80000000
283
284 #define ELF_ARCH EM_ARM
285 #define ELF_CLASS ELFCLASS32
286
287 static inline void init_thread(struct target_pt_regs *regs,
288 struct image_info *infop)
289 {
290 abi_long stack = infop->start_stack;
291 memset(regs, 0, sizeof(*regs));
292
293 regs->uregs[16] = ARM_CPU_MODE_USR;
294 if (infop->entry & 1) {
295 regs->uregs[16] |= CPSR_T;
296 }
297 regs->uregs[15] = infop->entry & 0xfffffffe;
298 regs->uregs[13] = infop->start_stack;
299 /* FIXME - what to for failure of get_user()? */
300 get_user_ual(regs->uregs[2], stack + 8); /* envp */
301 get_user_ual(regs->uregs[1], stack + 4); /* envp */
302 /* XXX: it seems that r0 is zeroed after ! */
303 regs->uregs[0] = 0;
304 /* For uClinux PIC binaries. */
305 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
306 regs->uregs[10] = infop->start_data;
307
308 /* Support ARM FDPIC. */
309 if (info_is_fdpic(infop)) {
310 /* As described in the ABI document, r7 points to the loadmap info
311 * prepared by the kernel. If an interpreter is needed, r8 points
312 * to the interpreter loadmap and r9 points to the interpreter
313 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
314 * r9 points to the main program PT_DYNAMIC info.
315 */
316 regs->uregs[7] = infop->loadmap_addr;
317 if (infop->interpreter_loadmap_addr) {
318 /* Executable is dynamically loaded. */
319 regs->uregs[8] = infop->interpreter_loadmap_addr;
320 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
321 } else {
322 regs->uregs[8] = 0;
323 regs->uregs[9] = infop->pt_dynamic_addr;
324 }
325 }
326 }
327
328 #define ELF_NREG 18
329 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
330
331 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
332 {
333 (*regs)[0] = tswapreg(env->regs[0]);
334 (*regs)[1] = tswapreg(env->regs[1]);
335 (*regs)[2] = tswapreg(env->regs[2]);
336 (*regs)[3] = tswapreg(env->regs[3]);
337 (*regs)[4] = tswapreg(env->regs[4]);
338 (*regs)[5] = tswapreg(env->regs[5]);
339 (*regs)[6] = tswapreg(env->regs[6]);
340 (*regs)[7] = tswapreg(env->regs[7]);
341 (*regs)[8] = tswapreg(env->regs[8]);
342 (*regs)[9] = tswapreg(env->regs[9]);
343 (*regs)[10] = tswapreg(env->regs[10]);
344 (*regs)[11] = tswapreg(env->regs[11]);
345 (*regs)[12] = tswapreg(env->regs[12]);
346 (*regs)[13] = tswapreg(env->regs[13]);
347 (*regs)[14] = tswapreg(env->regs[14]);
348 (*regs)[15] = tswapreg(env->regs[15]);
349
350 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
351 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
352 }
353
354 #define USE_ELF_CORE_DUMP
355 #define ELF_EXEC_PAGESIZE 4096
356
357 enum
358 {
359 ARM_HWCAP_ARM_SWP = 1 << 0,
360 ARM_HWCAP_ARM_HALF = 1 << 1,
361 ARM_HWCAP_ARM_THUMB = 1 << 2,
362 ARM_HWCAP_ARM_26BIT = 1 << 3,
363 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
364 ARM_HWCAP_ARM_FPA = 1 << 5,
365 ARM_HWCAP_ARM_VFP = 1 << 6,
366 ARM_HWCAP_ARM_EDSP = 1 << 7,
367 ARM_HWCAP_ARM_JAVA = 1 << 8,
368 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
369 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
370 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
371 ARM_HWCAP_ARM_NEON = 1 << 12,
372 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
373 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
374 ARM_HWCAP_ARM_TLS = 1 << 15,
375 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
376 ARM_HWCAP_ARM_IDIVA = 1 << 17,
377 ARM_HWCAP_ARM_IDIVT = 1 << 18,
378 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
379 ARM_HWCAP_ARM_LPAE = 1 << 20,
380 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
381 };
382
383 enum {
384 ARM_HWCAP2_ARM_AES = 1 << 0,
385 ARM_HWCAP2_ARM_PMULL = 1 << 1,
386 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
387 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
388 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
389 };
390
391 /* The commpage only exists for 32 bit kernels */
392
393 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
394
395 static bool init_guest_commpage(void)
396 {
397 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
398 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
399 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
400
401 if (addr == MAP_FAILED) {
402 perror("Allocating guest commpage");
403 exit(EXIT_FAILURE);
404 }
405 if (addr != want) {
406 return false;
407 }
408
409 /* Set kernel helper versions; rest of page is 0. */
410 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
411
412 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
413 perror("Protecting guest commpage");
414 exit(EXIT_FAILURE);
415 }
416 return true;
417 }
418
419 #define ELF_HWCAP get_elf_hwcap()
420 #define ELF_HWCAP2 get_elf_hwcap2()
421
422 static uint32_t get_elf_hwcap(void)
423 {
424 ARMCPU *cpu = ARM_CPU(thread_cpu);
425 uint32_t hwcaps = 0;
426
427 hwcaps |= ARM_HWCAP_ARM_SWP;
428 hwcaps |= ARM_HWCAP_ARM_HALF;
429 hwcaps |= ARM_HWCAP_ARM_THUMB;
430 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
431
432 /* probe for the extra features */
433 #define GET_FEATURE(feat, hwcap) \
434 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
435
436 #define GET_FEATURE_ID(feat, hwcap) \
437 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
438
439 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
440 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
441 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
442 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
443 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
444 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
445 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
446 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
447 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
448 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
449
450 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
451 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
452 hwcaps |= ARM_HWCAP_ARM_VFPv3;
453 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
454 hwcaps |= ARM_HWCAP_ARM_VFPD32;
455 } else {
456 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
457 }
458 }
459 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
460
461 return hwcaps;
462 }
463
464 static uint32_t get_elf_hwcap2(void)
465 {
466 ARMCPU *cpu = ARM_CPU(thread_cpu);
467 uint32_t hwcaps = 0;
468
469 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
470 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
471 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
472 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
473 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
474 return hwcaps;
475 }
476
477 #undef GET_FEATURE
478 #undef GET_FEATURE_ID
479
480 #define ELF_PLATFORM get_elf_platform()
481
482 static const char *get_elf_platform(void)
483 {
484 CPUARMState *env = thread_cpu->env_ptr;
485
486 #ifdef TARGET_WORDS_BIGENDIAN
487 # define END "b"
488 #else
489 # define END "l"
490 #endif
491
492 if (arm_feature(env, ARM_FEATURE_V8)) {
493 return "v8" END;
494 } else if (arm_feature(env, ARM_FEATURE_V7)) {
495 if (arm_feature(env, ARM_FEATURE_M)) {
496 return "v7m" END;
497 } else {
498 return "v7" END;
499 }
500 } else if (arm_feature(env, ARM_FEATURE_V6)) {
501 return "v6" END;
502 } else if (arm_feature(env, ARM_FEATURE_V5)) {
503 return "v5" END;
504 } else {
505 return "v4" END;
506 }
507
508 #undef END
509 }
510
511 #else
512 /* 64 bit ARM definitions */
513 #define ELF_START_MMAP 0x80000000
514
515 #define ELF_ARCH EM_AARCH64
516 #define ELF_CLASS ELFCLASS64
517 #ifdef TARGET_WORDS_BIGENDIAN
518 # define ELF_PLATFORM "aarch64_be"
519 #else
520 # define ELF_PLATFORM "aarch64"
521 #endif
522
523 static inline void init_thread(struct target_pt_regs *regs,
524 struct image_info *infop)
525 {
526 abi_long stack = infop->start_stack;
527 memset(regs, 0, sizeof(*regs));
528
529 regs->pc = infop->entry & ~0x3ULL;
530 regs->sp = stack;
531 }
532
533 #define ELF_NREG 34
534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
535
536 static void elf_core_copy_regs(target_elf_gregset_t *regs,
537 const CPUARMState *env)
538 {
539 int i;
540
541 for (i = 0; i < 32; i++) {
542 (*regs)[i] = tswapreg(env->xregs[i]);
543 }
544 (*regs)[32] = tswapreg(env->pc);
545 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
546 }
547
548 #define USE_ELF_CORE_DUMP
549 #define ELF_EXEC_PAGESIZE 4096
550
551 enum {
552 ARM_HWCAP_A64_FP = 1 << 0,
553 ARM_HWCAP_A64_ASIMD = 1 << 1,
554 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
555 ARM_HWCAP_A64_AES = 1 << 3,
556 ARM_HWCAP_A64_PMULL = 1 << 4,
557 ARM_HWCAP_A64_SHA1 = 1 << 5,
558 ARM_HWCAP_A64_SHA2 = 1 << 6,
559 ARM_HWCAP_A64_CRC32 = 1 << 7,
560 ARM_HWCAP_A64_ATOMICS = 1 << 8,
561 ARM_HWCAP_A64_FPHP = 1 << 9,
562 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
563 ARM_HWCAP_A64_CPUID = 1 << 11,
564 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
565 ARM_HWCAP_A64_JSCVT = 1 << 13,
566 ARM_HWCAP_A64_FCMA = 1 << 14,
567 ARM_HWCAP_A64_LRCPC = 1 << 15,
568 ARM_HWCAP_A64_DCPOP = 1 << 16,
569 ARM_HWCAP_A64_SHA3 = 1 << 17,
570 ARM_HWCAP_A64_SM3 = 1 << 18,
571 ARM_HWCAP_A64_SM4 = 1 << 19,
572 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
573 ARM_HWCAP_A64_SHA512 = 1 << 21,
574 ARM_HWCAP_A64_SVE = 1 << 22,
575 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
576 ARM_HWCAP_A64_DIT = 1 << 24,
577 ARM_HWCAP_A64_USCAT = 1 << 25,
578 ARM_HWCAP_A64_ILRCPC = 1 << 26,
579 ARM_HWCAP_A64_FLAGM = 1 << 27,
580 ARM_HWCAP_A64_SSBS = 1 << 28,
581 ARM_HWCAP_A64_SB = 1 << 29,
582 ARM_HWCAP_A64_PACA = 1 << 30,
583 ARM_HWCAP_A64_PACG = 1UL << 31,
584
585 ARM_HWCAP2_A64_DCPODP = 1 << 0,
586 ARM_HWCAP2_A64_SVE2 = 1 << 1,
587 ARM_HWCAP2_A64_SVEAES = 1 << 2,
588 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
589 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
590 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
591 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
592 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
593 ARM_HWCAP2_A64_FRINT = 1 << 8,
594 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
595 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
596 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
597 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
598 ARM_HWCAP2_A64_I8MM = 1 << 13,
599 ARM_HWCAP2_A64_BF16 = 1 << 14,
600 ARM_HWCAP2_A64_DGH = 1 << 15,
601 ARM_HWCAP2_A64_RNG = 1 << 16,
602 ARM_HWCAP2_A64_BTI = 1 << 17,
603 ARM_HWCAP2_A64_MTE = 1 << 18,
604 };
605
606 #define ELF_HWCAP get_elf_hwcap()
607 #define ELF_HWCAP2 get_elf_hwcap2()
608
609 #define GET_FEATURE_ID(feat, hwcap) \
610 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
611
612 static uint32_t get_elf_hwcap(void)
613 {
614 ARMCPU *cpu = ARM_CPU(thread_cpu);
615 uint32_t hwcaps = 0;
616
617 hwcaps |= ARM_HWCAP_A64_FP;
618 hwcaps |= ARM_HWCAP_A64_ASIMD;
619 hwcaps |= ARM_HWCAP_A64_CPUID;
620
621 /* probe for the extra features */
622
623 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
624 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
625 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
626 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
627 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
628 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
629 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
630 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
631 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
632 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
633 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
634 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
635 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
636 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
637 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
638 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
639 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
640 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
641 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
642 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
643 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
644 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
645 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
646
647 return hwcaps;
648 }
649
650 static uint32_t get_elf_hwcap2(void)
651 {
652 ARMCPU *cpu = ARM_CPU(thread_cpu);
653 uint32_t hwcaps = 0;
654
655 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
656 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
657 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
658 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
659 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
660 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
661 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
662 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
663 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
664 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
665 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
666 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
667 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
668 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
669 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
670 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
671 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
672 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
673
674 return hwcaps;
675 }
676
677 #undef GET_FEATURE_ID
678
679 #endif /* not TARGET_AARCH64 */
680 #endif /* TARGET_ARM */
681
682 #ifdef TARGET_SPARC
683 #ifdef TARGET_SPARC64
684
685 #define ELF_START_MMAP 0x80000000
686 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
687 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
688 #ifndef TARGET_ABI32
689 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
690 #else
691 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
692 #endif
693
694 #define ELF_CLASS ELFCLASS64
695 #define ELF_ARCH EM_SPARCV9
696 #else
697 #define ELF_START_MMAP 0x80000000
698 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
699 | HWCAP_SPARC_MULDIV)
700 #define ELF_CLASS ELFCLASS32
701 #define ELF_ARCH EM_SPARC
702 #endif /* TARGET_SPARC64 */
703
704 static inline void init_thread(struct target_pt_regs *regs,
705 struct image_info *infop)
706 {
707 /* Note that target_cpu_copy_regs does not read psr/tstate. */
708 regs->pc = infop->entry;
709 regs->npc = regs->pc + 4;
710 regs->y = 0;
711 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
712 - TARGET_STACK_BIAS);
713 }
714 #endif /* TARGET_SPARC */
715
716 #ifdef TARGET_PPC
717
718 #define ELF_MACHINE PPC_ELF_MACHINE
719 #define ELF_START_MMAP 0x80000000
720
721 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
722
723 #define elf_check_arch(x) ( (x) == EM_PPC64 )
724
725 #define ELF_CLASS ELFCLASS64
726
727 #else
728
729 #define ELF_CLASS ELFCLASS32
730
731 #endif
732
733 #define ELF_ARCH EM_PPC
734
735 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
736 See arch/powerpc/include/asm/cputable.h. */
737 enum {
738 QEMU_PPC_FEATURE_32 = 0x80000000,
739 QEMU_PPC_FEATURE_64 = 0x40000000,
740 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
741 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
742 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
743 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
744 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
745 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
746 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
747 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
748 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
749 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
750 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
751 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
752 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
753 QEMU_PPC_FEATURE_CELL = 0x00010000,
754 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
755 QEMU_PPC_FEATURE_SMT = 0x00004000,
756 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
757 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
758 QEMU_PPC_FEATURE_PA6T = 0x00000800,
759 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
760 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
761 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
762 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
763 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
764
765 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
766 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
767
768 /* Feature definitions in AT_HWCAP2. */
769 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
770 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
771 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
772 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
773 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
774 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
775 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
776 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
777 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
778 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
779 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
780 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
781 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
782 };
783
784 #define ELF_HWCAP get_elf_hwcap()
785
786 static uint32_t get_elf_hwcap(void)
787 {
788 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
789 uint32_t features = 0;
790
791 /* We don't have to be terribly complete here; the high points are
792 Altivec/FP/SPE support. Anything else is just a bonus. */
793 #define GET_FEATURE(flag, feature) \
794 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
795 #define GET_FEATURE2(flags, feature) \
796 do { \
797 if ((cpu->env.insns_flags2 & flags) == flags) { \
798 features |= feature; \
799 } \
800 } while (0)
801 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
802 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
803 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
804 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
805 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
806 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
807 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
808 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
809 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
810 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
811 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
812 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
813 QEMU_PPC_FEATURE_ARCH_2_06);
814 #undef GET_FEATURE
815 #undef GET_FEATURE2
816
817 return features;
818 }
819
820 #define ELF_HWCAP2 get_elf_hwcap2()
821
822 static uint32_t get_elf_hwcap2(void)
823 {
824 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
825 uint32_t features = 0;
826
827 #define GET_FEATURE(flag, feature) \
828 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
829 #define GET_FEATURE2(flag, feature) \
830 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
831
832 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
833 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
834 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
835 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
836 QEMU_PPC_FEATURE2_VEC_CRYPTO);
837 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
838 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
839
840 #undef GET_FEATURE
841 #undef GET_FEATURE2
842
843 return features;
844 }
845
846 /*
847 * The requirements here are:
848 * - keep the final alignment of sp (sp & 0xf)
849 * - make sure the 32-bit value at the first 16 byte aligned position of
850 * AUXV is greater than 16 for glibc compatibility.
851 * AT_IGNOREPPC is used for that.
852 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
853 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
854 */
855 #define DLINFO_ARCH_ITEMS 5
856 #define ARCH_DLINFO \
857 do { \
858 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
859 /* \
860 * Handle glibc compatibility: these magic entries must \
861 * be at the lowest addresses in the final auxv. \
862 */ \
863 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
864 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
865 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
866 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
867 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
868 } while (0)
869
870 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
871 {
872 _regs->gpr[1] = infop->start_stack;
873 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
874 if (get_ppc64_abi(infop) < 2) {
875 uint64_t val;
876 get_user_u64(val, infop->entry + 8);
877 _regs->gpr[2] = val + infop->load_bias;
878 get_user_u64(val, infop->entry);
879 infop->entry = val + infop->load_bias;
880 } else {
881 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
882 }
883 #endif
884 _regs->nip = infop->entry;
885 }
886
887 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
888 #define ELF_NREG 48
889 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
890
891 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
892 {
893 int i;
894 target_ulong ccr = 0;
895
896 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
897 (*regs)[i] = tswapreg(env->gpr[i]);
898 }
899
900 (*regs)[32] = tswapreg(env->nip);
901 (*regs)[33] = tswapreg(env->msr);
902 (*regs)[35] = tswapreg(env->ctr);
903 (*regs)[36] = tswapreg(env->lr);
904 (*regs)[37] = tswapreg(cpu_read_xer(env));
905
906 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
907 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
908 }
909 (*regs)[38] = tswapreg(ccr);
910 }
911
912 #define USE_ELF_CORE_DUMP
913 #define ELF_EXEC_PAGESIZE 4096
914
915 #endif
916
917 #ifdef TARGET_MIPS
918
919 #define ELF_START_MMAP 0x80000000
920
921 #ifdef TARGET_MIPS64
922 #define ELF_CLASS ELFCLASS64
923 #else
924 #define ELF_CLASS ELFCLASS32
925 #endif
926 #define ELF_ARCH EM_MIPS
927
928 #ifdef TARGET_ABI_MIPSN32
929 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
930 #else
931 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
932 #endif
933
934 static inline void init_thread(struct target_pt_regs *regs,
935 struct image_info *infop)
936 {
937 regs->cp0_status = 2 << CP0St_KSU;
938 regs->cp0_epc = infop->entry;
939 regs->regs[29] = infop->start_stack;
940 }
941
942 /* See linux kernel: arch/mips/include/asm/elf.h. */
943 #define ELF_NREG 45
944 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
945
946 /* See linux kernel: arch/mips/include/asm/reg.h. */
947 enum {
948 #ifdef TARGET_MIPS64
949 TARGET_EF_R0 = 0,
950 #else
951 TARGET_EF_R0 = 6,
952 #endif
953 TARGET_EF_R26 = TARGET_EF_R0 + 26,
954 TARGET_EF_R27 = TARGET_EF_R0 + 27,
955 TARGET_EF_LO = TARGET_EF_R0 + 32,
956 TARGET_EF_HI = TARGET_EF_R0 + 33,
957 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
958 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
959 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
960 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
961 };
962
963 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
964 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
965 {
966 int i;
967
968 for (i = 0; i < TARGET_EF_R0; i++) {
969 (*regs)[i] = 0;
970 }
971 (*regs)[TARGET_EF_R0] = 0;
972
973 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
974 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
975 }
976
977 (*regs)[TARGET_EF_R26] = 0;
978 (*regs)[TARGET_EF_R27] = 0;
979 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
980 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
981 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
982 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
983 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
984 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
985 }
986
987 #define USE_ELF_CORE_DUMP
988 #define ELF_EXEC_PAGESIZE 4096
989
990 /* See arch/mips/include/uapi/asm/hwcap.h. */
991 enum {
992 HWCAP_MIPS_R6 = (1 << 0),
993 HWCAP_MIPS_MSA = (1 << 1),
994 HWCAP_MIPS_CRC32 = (1 << 2),
995 HWCAP_MIPS_MIPS16 = (1 << 3),
996 HWCAP_MIPS_MDMX = (1 << 4),
997 HWCAP_MIPS_MIPS3D = (1 << 5),
998 HWCAP_MIPS_SMARTMIPS = (1 << 6),
999 HWCAP_MIPS_DSP = (1 << 7),
1000 HWCAP_MIPS_DSP2 = (1 << 8),
1001 HWCAP_MIPS_DSP3 = (1 << 9),
1002 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1003 HWCAP_LOONGSON_MMI = (1 << 11),
1004 HWCAP_LOONGSON_EXT = (1 << 12),
1005 HWCAP_LOONGSON_EXT2 = (1 << 13),
1006 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1007 };
1008
1009 #define ELF_HWCAP get_elf_hwcap()
1010
1011 #define GET_FEATURE_INSN(_flag, _hwcap) \
1012 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1013
1014 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1015 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1016
1017 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1018 do { \
1019 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1020 hwcaps |= _hwcap; \
1021 } \
1022 } while (0)
1023
1024 static uint32_t get_elf_hwcap(void)
1025 {
1026 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1027 uint32_t hwcaps = 0;
1028
1029 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1030 2, HWCAP_MIPS_R6);
1031 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1032 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1033 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1034
1035 return hwcaps;
1036 }
1037
1038 #undef GET_FEATURE_REG_EQU
1039 #undef GET_FEATURE_REG_SET
1040 #undef GET_FEATURE_INSN
1041
1042 #endif /* TARGET_MIPS */
1043
1044 #ifdef TARGET_MICROBLAZE
1045
1046 #define ELF_START_MMAP 0x80000000
1047
1048 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1049
1050 #define ELF_CLASS ELFCLASS32
1051 #define ELF_ARCH EM_MICROBLAZE
1052
1053 static inline void init_thread(struct target_pt_regs *regs,
1054 struct image_info *infop)
1055 {
1056 regs->pc = infop->entry;
1057 regs->r1 = infop->start_stack;
1058
1059 }
1060
1061 #define ELF_EXEC_PAGESIZE 4096
1062
1063 #define USE_ELF_CORE_DUMP
1064 #define ELF_NREG 38
1065 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1066
1067 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1068 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1069 {
1070 int i, pos = 0;
1071
1072 for (i = 0; i < 32; i++) {
1073 (*regs)[pos++] = tswapreg(env->regs[i]);
1074 }
1075
1076 (*regs)[pos++] = tswapreg(env->pc);
1077 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1078 (*regs)[pos++] = 0;
1079 (*regs)[pos++] = tswapreg(env->ear);
1080 (*regs)[pos++] = 0;
1081 (*regs)[pos++] = tswapreg(env->esr);
1082 }
1083
1084 #endif /* TARGET_MICROBLAZE */
1085
1086 #ifdef TARGET_NIOS2
1087
1088 #define ELF_START_MMAP 0x80000000
1089
1090 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1091
1092 #define ELF_CLASS ELFCLASS32
1093 #define ELF_ARCH EM_ALTERA_NIOS2
1094
1095 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1096 {
1097 regs->ea = infop->entry;
1098 regs->sp = infop->start_stack;
1099 regs->estatus = 0x3;
1100 }
1101
1102 #define ELF_EXEC_PAGESIZE 4096
1103
1104 #define USE_ELF_CORE_DUMP
1105 #define ELF_NREG 49
1106 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1107
1108 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1109 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1110 const CPUNios2State *env)
1111 {
1112 int i;
1113
1114 (*regs)[0] = -1;
1115 for (i = 1; i < 8; i++) /* r0-r7 */
1116 (*regs)[i] = tswapreg(env->regs[i + 7]);
1117
1118 for (i = 8; i < 16; i++) /* r8-r15 */
1119 (*regs)[i] = tswapreg(env->regs[i - 8]);
1120
1121 for (i = 16; i < 24; i++) /* r16-r23 */
1122 (*regs)[i] = tswapreg(env->regs[i + 7]);
1123 (*regs)[24] = -1; /* R_ET */
1124 (*regs)[25] = -1; /* R_BT */
1125 (*regs)[26] = tswapreg(env->regs[R_GP]);
1126 (*regs)[27] = tswapreg(env->regs[R_SP]);
1127 (*regs)[28] = tswapreg(env->regs[R_FP]);
1128 (*regs)[29] = tswapreg(env->regs[R_EA]);
1129 (*regs)[30] = -1; /* R_SSTATUS */
1130 (*regs)[31] = tswapreg(env->regs[R_RA]);
1131
1132 (*regs)[32] = tswapreg(env->regs[R_PC]);
1133
1134 (*regs)[33] = -1; /* R_STATUS */
1135 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1136
1137 for (i = 35; i < 49; i++) /* ... */
1138 (*regs)[i] = -1;
1139 }
1140
1141 #endif /* TARGET_NIOS2 */
1142
1143 #ifdef TARGET_OPENRISC
1144
1145 #define ELF_START_MMAP 0x08000000
1146
1147 #define ELF_ARCH EM_OPENRISC
1148 #define ELF_CLASS ELFCLASS32
1149 #define ELF_DATA ELFDATA2MSB
1150
1151 static inline void init_thread(struct target_pt_regs *regs,
1152 struct image_info *infop)
1153 {
1154 regs->pc = infop->entry;
1155 regs->gpr[1] = infop->start_stack;
1156 }
1157
1158 #define USE_ELF_CORE_DUMP
1159 #define ELF_EXEC_PAGESIZE 8192
1160
1161 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1162 #define ELF_NREG 34 /* gprs and pc, sr */
1163 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1164
1165 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1166 const CPUOpenRISCState *env)
1167 {
1168 int i;
1169
1170 for (i = 0; i < 32; i++) {
1171 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1172 }
1173 (*regs)[32] = tswapreg(env->pc);
1174 (*regs)[33] = tswapreg(cpu_get_sr(env));
1175 }
1176 #define ELF_HWCAP 0
1177 #define ELF_PLATFORM NULL
1178
1179 #endif /* TARGET_OPENRISC */
1180
1181 #ifdef TARGET_SH4
1182
1183 #define ELF_START_MMAP 0x80000000
1184
1185 #define ELF_CLASS ELFCLASS32
1186 #define ELF_ARCH EM_SH
1187
1188 static inline void init_thread(struct target_pt_regs *regs,
1189 struct image_info *infop)
1190 {
1191 /* Check other registers XXXXX */
1192 regs->pc = infop->entry;
1193 regs->regs[15] = infop->start_stack;
1194 }
1195
1196 /* See linux kernel: arch/sh/include/asm/elf.h. */
1197 #define ELF_NREG 23
1198 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1199
1200 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1201 enum {
1202 TARGET_REG_PC = 16,
1203 TARGET_REG_PR = 17,
1204 TARGET_REG_SR = 18,
1205 TARGET_REG_GBR = 19,
1206 TARGET_REG_MACH = 20,
1207 TARGET_REG_MACL = 21,
1208 TARGET_REG_SYSCALL = 22
1209 };
1210
1211 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1212 const CPUSH4State *env)
1213 {
1214 int i;
1215
1216 for (i = 0; i < 16; i++) {
1217 (*regs)[i] = tswapreg(env->gregs[i]);
1218 }
1219
1220 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1221 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1222 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1223 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1224 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1225 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1226 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1227 }
1228
1229 #define USE_ELF_CORE_DUMP
1230 #define ELF_EXEC_PAGESIZE 4096
1231
1232 enum {
1233 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1234 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1235 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1236 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1237 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1238 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1239 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1240 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1241 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1242 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1243 };
1244
1245 #define ELF_HWCAP get_elf_hwcap()
1246
1247 static uint32_t get_elf_hwcap(void)
1248 {
1249 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1250 uint32_t hwcap = 0;
1251
1252 hwcap |= SH_CPU_HAS_FPU;
1253
1254 if (cpu->env.features & SH_FEATURE_SH4A) {
1255 hwcap |= SH_CPU_HAS_LLSC;
1256 }
1257
1258 return hwcap;
1259 }
1260
1261 #endif
1262
1263 #ifdef TARGET_CRIS
1264
1265 #define ELF_START_MMAP 0x80000000
1266
1267 #define ELF_CLASS ELFCLASS32
1268 #define ELF_ARCH EM_CRIS
1269
1270 static inline void init_thread(struct target_pt_regs *regs,
1271 struct image_info *infop)
1272 {
1273 regs->erp = infop->entry;
1274 }
1275
1276 #define ELF_EXEC_PAGESIZE 8192
1277
1278 #endif
1279
1280 #ifdef TARGET_M68K
1281
1282 #define ELF_START_MMAP 0x80000000
1283
1284 #define ELF_CLASS ELFCLASS32
1285 #define ELF_ARCH EM_68K
1286
1287 /* ??? Does this need to do anything?
1288 #define ELF_PLAT_INIT(_r) */
1289
1290 static inline void init_thread(struct target_pt_regs *regs,
1291 struct image_info *infop)
1292 {
1293 regs->usp = infop->start_stack;
1294 regs->sr = 0;
1295 regs->pc = infop->entry;
1296 }
1297
1298 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1299 #define ELF_NREG 20
1300 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1301
1302 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1303 {
1304 (*regs)[0] = tswapreg(env->dregs[1]);
1305 (*regs)[1] = tswapreg(env->dregs[2]);
1306 (*regs)[2] = tswapreg(env->dregs[3]);
1307 (*regs)[3] = tswapreg(env->dregs[4]);
1308 (*regs)[4] = tswapreg(env->dregs[5]);
1309 (*regs)[5] = tswapreg(env->dregs[6]);
1310 (*regs)[6] = tswapreg(env->dregs[7]);
1311 (*regs)[7] = tswapreg(env->aregs[0]);
1312 (*regs)[8] = tswapreg(env->aregs[1]);
1313 (*regs)[9] = tswapreg(env->aregs[2]);
1314 (*regs)[10] = tswapreg(env->aregs[3]);
1315 (*regs)[11] = tswapreg(env->aregs[4]);
1316 (*regs)[12] = tswapreg(env->aregs[5]);
1317 (*regs)[13] = tswapreg(env->aregs[6]);
1318 (*regs)[14] = tswapreg(env->dregs[0]);
1319 (*regs)[15] = tswapreg(env->aregs[7]);
1320 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1321 (*regs)[17] = tswapreg(env->sr);
1322 (*regs)[18] = tswapreg(env->pc);
1323 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1324 }
1325
1326 #define USE_ELF_CORE_DUMP
1327 #define ELF_EXEC_PAGESIZE 8192
1328
1329 #endif
1330
1331 #ifdef TARGET_ALPHA
1332
1333 #define ELF_START_MMAP (0x30000000000ULL)
1334
1335 #define ELF_CLASS ELFCLASS64
1336 #define ELF_ARCH EM_ALPHA
1337
1338 static inline void init_thread(struct target_pt_regs *regs,
1339 struct image_info *infop)
1340 {
1341 regs->pc = infop->entry;
1342 regs->ps = 8;
1343 regs->usp = infop->start_stack;
1344 }
1345
1346 #define ELF_EXEC_PAGESIZE 8192
1347
1348 #endif /* TARGET_ALPHA */
1349
1350 #ifdef TARGET_S390X
1351
1352 #define ELF_START_MMAP (0x20000000000ULL)
1353
1354 #define ELF_CLASS ELFCLASS64
1355 #define ELF_DATA ELFDATA2MSB
1356 #define ELF_ARCH EM_S390
1357
1358 #include "elf.h"
1359
1360 #define ELF_HWCAP get_elf_hwcap()
1361
1362 #define GET_FEATURE(_feat, _hwcap) \
1363 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1364
1365 static uint32_t get_elf_hwcap(void)
1366 {
1367 /*
1368 * Let's assume we always have esan3 and zarch.
1369 * 31-bit processes can use 64-bit registers (high gprs).
1370 */
1371 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1372
1373 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1374 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1375 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1376 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1377 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1378 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1379 hwcap |= HWCAP_S390_ETF3EH;
1380 }
1381 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1382 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1383
1384 return hwcap;
1385 }
1386
1387 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1388 {
1389 regs->psw.addr = infop->entry;
1390 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1391 regs->gprs[15] = infop->start_stack;
1392 }
1393
1394 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1395 #define ELF_NREG 27
1396 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1397
1398 enum {
1399 TARGET_REG_PSWM = 0,
1400 TARGET_REG_PSWA = 1,
1401 TARGET_REG_GPRS = 2,
1402 TARGET_REG_ARS = 18,
1403 TARGET_REG_ORIG_R2 = 26,
1404 };
1405
1406 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1407 const CPUS390XState *env)
1408 {
1409 int i;
1410 uint32_t *aregs;
1411
1412 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1413 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1414 for (i = 0; i < 16; i++) {
1415 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1416 }
1417 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1418 for (i = 0; i < 16; i++) {
1419 aregs[i] = tswap32(env->aregs[i]);
1420 }
1421 (*regs)[TARGET_REG_ORIG_R2] = 0;
1422 }
1423
1424 #define USE_ELF_CORE_DUMP
1425 #define ELF_EXEC_PAGESIZE 4096
1426
1427 #endif /* TARGET_S390X */
1428
1429 #ifdef TARGET_RISCV
1430
1431 #define ELF_START_MMAP 0x80000000
1432 #define ELF_ARCH EM_RISCV
1433
1434 #ifdef TARGET_RISCV32
1435 #define ELF_CLASS ELFCLASS32
1436 #else
1437 #define ELF_CLASS ELFCLASS64
1438 #endif
1439
1440 #define ELF_HWCAP get_elf_hwcap()
1441
1442 static uint32_t get_elf_hwcap(void)
1443 {
1444 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1445 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1446 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1447 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1448
1449 return cpu->env.misa_ext & mask;
1450 #undef MISA_BIT
1451 }
1452
1453 static inline void init_thread(struct target_pt_regs *regs,
1454 struct image_info *infop)
1455 {
1456 regs->sepc = infop->entry;
1457 regs->sp = infop->start_stack;
1458 }
1459
1460 #define ELF_EXEC_PAGESIZE 4096
1461
1462 #endif /* TARGET_RISCV */
1463
1464 #ifdef TARGET_HPPA
1465
1466 #define ELF_START_MMAP 0x80000000
1467 #define ELF_CLASS ELFCLASS32
1468 #define ELF_ARCH EM_PARISC
1469 #define ELF_PLATFORM "PARISC"
1470 #define STACK_GROWS_DOWN 0
1471 #define STACK_ALIGNMENT 64
1472
1473 static inline void init_thread(struct target_pt_regs *regs,
1474 struct image_info *infop)
1475 {
1476 regs->iaoq[0] = infop->entry;
1477 regs->iaoq[1] = infop->entry + 4;
1478 regs->gr[23] = 0;
1479 regs->gr[24] = infop->arg_start;
1480 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1481 /* The top-of-stack contains a linkage buffer. */
1482 regs->gr[30] = infop->start_stack + 64;
1483 regs->gr[31] = infop->entry;
1484 }
1485
1486 #endif /* TARGET_HPPA */
1487
1488 #ifdef TARGET_XTENSA
1489
1490 #define ELF_START_MMAP 0x20000000
1491
1492 #define ELF_CLASS ELFCLASS32
1493 #define ELF_ARCH EM_XTENSA
1494
1495 static inline void init_thread(struct target_pt_regs *regs,
1496 struct image_info *infop)
1497 {
1498 regs->windowbase = 0;
1499 regs->windowstart = 1;
1500 regs->areg[1] = infop->start_stack;
1501 regs->pc = infop->entry;
1502 }
1503
1504 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1505 #define ELF_NREG 128
1506 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1507
1508 enum {
1509 TARGET_REG_PC,
1510 TARGET_REG_PS,
1511 TARGET_REG_LBEG,
1512 TARGET_REG_LEND,
1513 TARGET_REG_LCOUNT,
1514 TARGET_REG_SAR,
1515 TARGET_REG_WINDOWSTART,
1516 TARGET_REG_WINDOWBASE,
1517 TARGET_REG_THREADPTR,
1518 TARGET_REG_AR0 = 64,
1519 };
1520
1521 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1522 const CPUXtensaState *env)
1523 {
1524 unsigned i;
1525
1526 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1527 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1528 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1529 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1530 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1531 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1532 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1533 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1534 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1535 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1536 for (i = 0; i < env->config->nareg; ++i) {
1537 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1538 }
1539 }
1540
1541 #define USE_ELF_CORE_DUMP
1542 #define ELF_EXEC_PAGESIZE 4096
1543
1544 #endif /* TARGET_XTENSA */
1545
1546 #ifdef TARGET_HEXAGON
1547
1548 #define ELF_START_MMAP 0x20000000
1549
1550 #define ELF_CLASS ELFCLASS32
1551 #define ELF_ARCH EM_HEXAGON
1552
1553 static inline void init_thread(struct target_pt_regs *regs,
1554 struct image_info *infop)
1555 {
1556 regs->sepc = infop->entry;
1557 regs->sp = infop->start_stack;
1558 }
1559
1560 #endif /* TARGET_HEXAGON */
1561
1562 #ifndef ELF_PLATFORM
1563 #define ELF_PLATFORM (NULL)
1564 #endif
1565
1566 #ifndef ELF_MACHINE
1567 #define ELF_MACHINE ELF_ARCH
1568 #endif
1569
1570 #ifndef elf_check_arch
1571 #define elf_check_arch(x) ((x) == ELF_ARCH)
1572 #endif
1573
1574 #ifndef elf_check_abi
1575 #define elf_check_abi(x) (1)
1576 #endif
1577
1578 #ifndef ELF_HWCAP
1579 #define ELF_HWCAP 0
1580 #endif
1581
1582 #ifndef STACK_GROWS_DOWN
1583 #define STACK_GROWS_DOWN 1
1584 #endif
1585
1586 #ifndef STACK_ALIGNMENT
1587 #define STACK_ALIGNMENT 16
1588 #endif
1589
1590 #ifdef TARGET_ABI32
1591 #undef ELF_CLASS
1592 #define ELF_CLASS ELFCLASS32
1593 #undef bswaptls
1594 #define bswaptls(ptr) bswap32s(ptr)
1595 #endif
1596
1597 #include "elf.h"
1598
1599 /* We must delay the following stanzas until after "elf.h". */
1600 #if defined(TARGET_AARCH64)
1601
1602 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1603 const uint32_t *data,
1604 struct image_info *info,
1605 Error **errp)
1606 {
1607 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1608 if (pr_datasz != sizeof(uint32_t)) {
1609 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1610 return false;
1611 }
1612 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1613 info->note_flags = *data;
1614 }
1615 return true;
1616 }
1617 #define ARCH_USE_GNU_PROPERTY 1
1618
1619 #else
1620
1621 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1622 const uint32_t *data,
1623 struct image_info *info,
1624 Error **errp)
1625 {
1626 g_assert_not_reached();
1627 }
1628 #define ARCH_USE_GNU_PROPERTY 0
1629
1630 #endif
1631
1632 struct exec
1633 {
1634 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1635 unsigned int a_text; /* length of text, in bytes */
1636 unsigned int a_data; /* length of data, in bytes */
1637 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1638 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1639 unsigned int a_entry; /* start address */
1640 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1641 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1642 };
1643
1644
1645 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1646 #define OMAGIC 0407
1647 #define NMAGIC 0410
1648 #define ZMAGIC 0413
1649 #define QMAGIC 0314
1650
1651 /* Necessary parameters */
1652 #define TARGET_ELF_EXEC_PAGESIZE \
1653 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1654 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1655 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1656 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1657 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1658 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1659
1660 #define DLINFO_ITEMS 16
1661
1662 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1663 {
1664 memcpy(to, from, n);
1665 }
1666
1667 #ifdef BSWAP_NEEDED
1668 static void bswap_ehdr(struct elfhdr *ehdr)
1669 {
1670 bswap16s(&ehdr->e_type); /* Object file type */
1671 bswap16s(&ehdr->e_machine); /* Architecture */
1672 bswap32s(&ehdr->e_version); /* Object file version */
1673 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1674 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1675 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1676 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1677 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1678 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1679 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1680 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1681 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1682 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1683 }
1684
1685 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1686 {
1687 int i;
1688 for (i = 0; i < phnum; ++i, ++phdr) {
1689 bswap32s(&phdr->p_type); /* Segment type */
1690 bswap32s(&phdr->p_flags); /* Segment flags */
1691 bswaptls(&phdr->p_offset); /* Segment file offset */
1692 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1693 bswaptls(&phdr->p_paddr); /* Segment physical address */
1694 bswaptls(&phdr->p_filesz); /* Segment size in file */
1695 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1696 bswaptls(&phdr->p_align); /* Segment alignment */
1697 }
1698 }
1699
1700 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1701 {
1702 int i;
1703 for (i = 0; i < shnum; ++i, ++shdr) {
1704 bswap32s(&shdr->sh_name);
1705 bswap32s(&shdr->sh_type);
1706 bswaptls(&shdr->sh_flags);
1707 bswaptls(&shdr->sh_addr);
1708 bswaptls(&shdr->sh_offset);
1709 bswaptls(&shdr->sh_size);
1710 bswap32s(&shdr->sh_link);
1711 bswap32s(&shdr->sh_info);
1712 bswaptls(&shdr->sh_addralign);
1713 bswaptls(&shdr->sh_entsize);
1714 }
1715 }
1716
1717 static void bswap_sym(struct elf_sym *sym)
1718 {
1719 bswap32s(&sym->st_name);
1720 bswaptls(&sym->st_value);
1721 bswaptls(&sym->st_size);
1722 bswap16s(&sym->st_shndx);
1723 }
1724
1725 #ifdef TARGET_MIPS
1726 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1727 {
1728 bswap16s(&abiflags->version);
1729 bswap32s(&abiflags->ases);
1730 bswap32s(&abiflags->isa_ext);
1731 bswap32s(&abiflags->flags1);
1732 bswap32s(&abiflags->flags2);
1733 }
1734 #endif
1735 #else
1736 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1737 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1738 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1739 static inline void bswap_sym(struct elf_sym *sym) { }
1740 #ifdef TARGET_MIPS
1741 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1742 #endif
1743 #endif
1744
1745 #ifdef USE_ELF_CORE_DUMP
1746 static int elf_core_dump(int, const CPUArchState *);
1747 #endif /* USE_ELF_CORE_DUMP */
1748 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1749
1750 /* Verify the portions of EHDR within E_IDENT for the target.
1751 This can be performed before bswapping the entire header. */
1752 static bool elf_check_ident(struct elfhdr *ehdr)
1753 {
1754 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1755 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1756 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1757 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1758 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1759 && ehdr->e_ident[EI_DATA] == ELF_DATA
1760 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1761 }
1762
1763 /* Verify the portions of EHDR outside of E_IDENT for the target.
1764 This has to wait until after bswapping the header. */
1765 static bool elf_check_ehdr(struct elfhdr *ehdr)
1766 {
1767 return (elf_check_arch(ehdr->e_machine)
1768 && elf_check_abi(ehdr->e_flags)
1769 && ehdr->e_ehsize == sizeof(struct elfhdr)
1770 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1771 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1772 }
1773
1774 /*
1775 * 'copy_elf_strings()' copies argument/envelope strings from user
1776 * memory to free pages in kernel mem. These are in a format ready
1777 * to be put directly into the top of new user memory.
1778 *
1779 */
1780 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1781 abi_ulong p, abi_ulong stack_limit)
1782 {
1783 char *tmp;
1784 int len, i;
1785 abi_ulong top = p;
1786
1787 if (!p) {
1788 return 0; /* bullet-proofing */
1789 }
1790
1791 if (STACK_GROWS_DOWN) {
1792 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1793 for (i = argc - 1; i >= 0; --i) {
1794 tmp = argv[i];
1795 if (!tmp) {
1796 fprintf(stderr, "VFS: argc is wrong");
1797 exit(-1);
1798 }
1799 len = strlen(tmp) + 1;
1800 tmp += len;
1801
1802 if (len > (p - stack_limit)) {
1803 return 0;
1804 }
1805 while (len) {
1806 int bytes_to_copy = (len > offset) ? offset : len;
1807 tmp -= bytes_to_copy;
1808 p -= bytes_to_copy;
1809 offset -= bytes_to_copy;
1810 len -= bytes_to_copy;
1811
1812 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1813
1814 if (offset == 0) {
1815 memcpy_to_target(p, scratch, top - p);
1816 top = p;
1817 offset = TARGET_PAGE_SIZE;
1818 }
1819 }
1820 }
1821 if (p != top) {
1822 memcpy_to_target(p, scratch + offset, top - p);
1823 }
1824 } else {
1825 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1826 for (i = 0; i < argc; ++i) {
1827 tmp = argv[i];
1828 if (!tmp) {
1829 fprintf(stderr, "VFS: argc is wrong");
1830 exit(-1);
1831 }
1832 len = strlen(tmp) + 1;
1833 if (len > (stack_limit - p)) {
1834 return 0;
1835 }
1836 while (len) {
1837 int bytes_to_copy = (len > remaining) ? remaining : len;
1838
1839 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1840
1841 tmp += bytes_to_copy;
1842 remaining -= bytes_to_copy;
1843 p += bytes_to_copy;
1844 len -= bytes_to_copy;
1845
1846 if (remaining == 0) {
1847 memcpy_to_target(top, scratch, p - top);
1848 top = p;
1849 remaining = TARGET_PAGE_SIZE;
1850 }
1851 }
1852 }
1853 if (p != top) {
1854 memcpy_to_target(top, scratch, p - top);
1855 }
1856 }
1857
1858 return p;
1859 }
1860
1861 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1862 * argument/environment space. Newer kernels (>2.6.33) allow more,
1863 * dependent on stack size, but guarantee at least 32 pages for
1864 * backwards compatibility.
1865 */
1866 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1867
1868 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1869 struct image_info *info)
1870 {
1871 abi_ulong size, error, guard;
1872
1873 size = guest_stack_size;
1874 if (size < STACK_LOWER_LIMIT) {
1875 size = STACK_LOWER_LIMIT;
1876 }
1877 guard = TARGET_PAGE_SIZE;
1878 if (guard < qemu_real_host_page_size) {
1879 guard = qemu_real_host_page_size;
1880 }
1881
1882 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1883 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1884 if (error == -1) {
1885 perror("mmap stack");
1886 exit(-1);
1887 }
1888
1889 /* We reserve one extra page at the top of the stack as guard. */
1890 if (STACK_GROWS_DOWN) {
1891 target_mprotect(error, guard, PROT_NONE);
1892 info->stack_limit = error + guard;
1893 return info->stack_limit + size - sizeof(void *);
1894 } else {
1895 target_mprotect(error + size, guard, PROT_NONE);
1896 info->stack_limit = error + size;
1897 return error;
1898 }
1899 }
1900
1901 /* Map and zero the bss. We need to explicitly zero any fractional pages
1902 after the data section (i.e. bss). */
1903 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1904 {
1905 uintptr_t host_start, host_map_start, host_end;
1906
1907 last_bss = TARGET_PAGE_ALIGN(last_bss);
1908
1909 /* ??? There is confusion between qemu_real_host_page_size and
1910 qemu_host_page_size here and elsewhere in target_mmap, which
1911 may lead to the end of the data section mapping from the file
1912 not being mapped. At least there was an explicit test and
1913 comment for that here, suggesting that "the file size must
1914 be known". The comment probably pre-dates the introduction
1915 of the fstat system call in target_mmap which does in fact
1916 find out the size. What isn't clear is if the workaround
1917 here is still actually needed. For now, continue with it,
1918 but merge it with the "normal" mmap that would allocate the bss. */
1919
1920 host_start = (uintptr_t) g2h_untagged(elf_bss);
1921 host_end = (uintptr_t) g2h_untagged(last_bss);
1922 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1923
1924 if (host_map_start < host_end) {
1925 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1926 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1927 if (p == MAP_FAILED) {
1928 perror("cannot mmap brk");
1929 exit(-1);
1930 }
1931 }
1932
1933 /* Ensure that the bss page(s) are valid */
1934 if ((page_get_flags(last_bss-1) & prot) != prot) {
1935 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1936 }
1937
1938 if (host_start < host_map_start) {
1939 memset((void *)host_start, 0, host_map_start - host_start);
1940 }
1941 }
1942
1943 #ifdef TARGET_ARM
1944 static int elf_is_fdpic(struct elfhdr *exec)
1945 {
1946 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1947 }
1948 #else
1949 /* Default implementation, always false. */
1950 static int elf_is_fdpic(struct elfhdr *exec)
1951 {
1952 return 0;
1953 }
1954 #endif
1955
1956 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1957 {
1958 uint16_t n;
1959 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1960
1961 /* elf32_fdpic_loadseg */
1962 n = info->nsegs;
1963 while (n--) {
1964 sp -= 12;
1965 put_user_u32(loadsegs[n].addr, sp+0);
1966 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1967 put_user_u32(loadsegs[n].p_memsz, sp+8);
1968 }
1969
1970 /* elf32_fdpic_loadmap */
1971 sp -= 4;
1972 put_user_u16(0, sp+0); /* version */
1973 put_user_u16(info->nsegs, sp+2); /* nsegs */
1974
1975 info->personality = PER_LINUX_FDPIC;
1976 info->loadmap_addr = sp;
1977
1978 return sp;
1979 }
1980
1981 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1982 struct elfhdr *exec,
1983 struct image_info *info,
1984 struct image_info *interp_info)
1985 {
1986 abi_ulong sp;
1987 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1988 int size;
1989 int i;
1990 abi_ulong u_rand_bytes;
1991 uint8_t k_rand_bytes[16];
1992 abi_ulong u_platform;
1993 const char *k_platform;
1994 const int n = sizeof(elf_addr_t);
1995
1996 sp = p;
1997
1998 /* Needs to be before we load the env/argc/... */
1999 if (elf_is_fdpic(exec)) {
2000 /* Need 4 byte alignment for these structs */
2001 sp &= ~3;
2002 sp = loader_build_fdpic_loadmap(info, sp);
2003 info->other_info = interp_info;
2004 if (interp_info) {
2005 interp_info->other_info = info;
2006 sp = loader_build_fdpic_loadmap(interp_info, sp);
2007 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2008 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2009 } else {
2010 info->interpreter_loadmap_addr = 0;
2011 info->interpreter_pt_dynamic_addr = 0;
2012 }
2013 }
2014
2015 u_platform = 0;
2016 k_platform = ELF_PLATFORM;
2017 if (k_platform) {
2018 size_t len = strlen(k_platform) + 1;
2019 if (STACK_GROWS_DOWN) {
2020 sp -= (len + n - 1) & ~(n - 1);
2021 u_platform = sp;
2022 /* FIXME - check return value of memcpy_to_target() for failure */
2023 memcpy_to_target(sp, k_platform, len);
2024 } else {
2025 memcpy_to_target(sp, k_platform, len);
2026 u_platform = sp;
2027 sp += len + 1;
2028 }
2029 }
2030
2031 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2032 * the argv and envp pointers.
2033 */
2034 if (STACK_GROWS_DOWN) {
2035 sp = QEMU_ALIGN_DOWN(sp, 16);
2036 } else {
2037 sp = QEMU_ALIGN_UP(sp, 16);
2038 }
2039
2040 /*
2041 * Generate 16 random bytes for userspace PRNG seeding.
2042 */
2043 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2044 if (STACK_GROWS_DOWN) {
2045 sp -= 16;
2046 u_rand_bytes = sp;
2047 /* FIXME - check return value of memcpy_to_target() for failure */
2048 memcpy_to_target(sp, k_rand_bytes, 16);
2049 } else {
2050 memcpy_to_target(sp, k_rand_bytes, 16);
2051 u_rand_bytes = sp;
2052 sp += 16;
2053 }
2054
2055 size = (DLINFO_ITEMS + 1) * 2;
2056 if (k_platform)
2057 size += 2;
2058 #ifdef DLINFO_ARCH_ITEMS
2059 size += DLINFO_ARCH_ITEMS * 2;
2060 #endif
2061 #ifdef ELF_HWCAP2
2062 size += 2;
2063 #endif
2064 info->auxv_len = size * n;
2065
2066 size += envc + argc + 2;
2067 size += 1; /* argc itself */
2068 size *= n;
2069
2070 /* Allocate space and finalize stack alignment for entry now. */
2071 if (STACK_GROWS_DOWN) {
2072 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2073 sp = u_argc;
2074 } else {
2075 u_argc = sp;
2076 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2077 }
2078
2079 u_argv = u_argc + n;
2080 u_envp = u_argv + (argc + 1) * n;
2081 u_auxv = u_envp + (envc + 1) * n;
2082 info->saved_auxv = u_auxv;
2083 info->arg_start = u_argv;
2084 info->arg_end = u_argv + argc * n;
2085
2086 /* This is correct because Linux defines
2087 * elf_addr_t as Elf32_Off / Elf64_Off
2088 */
2089 #define NEW_AUX_ENT(id, val) do { \
2090 put_user_ual(id, u_auxv); u_auxv += n; \
2091 put_user_ual(val, u_auxv); u_auxv += n; \
2092 } while(0)
2093
2094 #ifdef ARCH_DLINFO
2095 /*
2096 * ARCH_DLINFO must come first so platform specific code can enforce
2097 * special alignment requirements on the AUXV if necessary (eg. PPC).
2098 */
2099 ARCH_DLINFO;
2100 #endif
2101 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2102 * on info->auxv_len will trigger.
2103 */
2104 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2105 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2106 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2107 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2108 /* Target doesn't support host page size alignment */
2109 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2110 } else {
2111 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2112 qemu_host_page_size)));
2113 }
2114 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2115 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2116 NEW_AUX_ENT(AT_ENTRY, info->entry);
2117 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2118 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2119 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2120 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2121 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2122 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2123 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2124 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2125 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2126
2127 #ifdef ELF_HWCAP2
2128 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2129 #endif
2130
2131 if (u_platform) {
2132 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2133 }
2134 NEW_AUX_ENT (AT_NULL, 0);
2135 #undef NEW_AUX_ENT
2136
2137 /* Check that our initial calculation of the auxv length matches how much
2138 * we actually put into it.
2139 */
2140 assert(info->auxv_len == u_auxv - info->saved_auxv);
2141
2142 put_user_ual(argc, u_argc);
2143
2144 p = info->arg_strings;
2145 for (i = 0; i < argc; ++i) {
2146 put_user_ual(p, u_argv);
2147 u_argv += n;
2148 p += target_strlen(p) + 1;
2149 }
2150 put_user_ual(0, u_argv);
2151
2152 p = info->env_strings;
2153 for (i = 0; i < envc; ++i) {
2154 put_user_ual(p, u_envp);
2155 u_envp += n;
2156 p += target_strlen(p) + 1;
2157 }
2158 put_user_ual(0, u_envp);
2159
2160 return sp;
2161 }
2162
2163 #ifndef ARM_COMMPAGE
2164 #define ARM_COMMPAGE 0
2165 #define init_guest_commpage() true
2166 #endif
2167
2168 static void pgb_fail_in_use(const char *image_name)
2169 {
2170 error_report("%s: requires virtual address space that is in use "
2171 "(omit the -B option or choose a different value)",
2172 image_name);
2173 exit(EXIT_FAILURE);
2174 }
2175
2176 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2177 abi_ulong guest_hiaddr, long align)
2178 {
2179 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2180 void *addr, *test;
2181
2182 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2183 fprintf(stderr, "Requested guest base %p does not satisfy "
2184 "host minimum alignment (0x%lx)\n",
2185 (void *)guest_base, align);
2186 exit(EXIT_FAILURE);
2187 }
2188
2189 /* Sanity check the guest binary. */
2190 if (reserved_va) {
2191 if (guest_hiaddr > reserved_va) {
2192 error_report("%s: requires more than reserved virtual "
2193 "address space (0x%" PRIx64 " > 0x%lx)",
2194 image_name, (uint64_t)guest_hiaddr, reserved_va);
2195 exit(EXIT_FAILURE);
2196 }
2197 } else {
2198 #if HOST_LONG_BITS < TARGET_ABI_BITS
2199 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2200 error_report("%s: requires more virtual address space "
2201 "than the host can provide (0x%" PRIx64 ")",
2202 image_name, (uint64_t)guest_hiaddr - guest_base);
2203 exit(EXIT_FAILURE);
2204 }
2205 #endif
2206 }
2207
2208 /*
2209 * Expand the allocation to the entire reserved_va.
2210 * Exclude the mmap_min_addr hole.
2211 */
2212 if (reserved_va) {
2213 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2214 : mmap_min_addr - guest_base);
2215 guest_hiaddr = reserved_va;
2216 }
2217
2218 /* Reserve the address space for the binary, or reserved_va. */
2219 test = g2h_untagged(guest_loaddr);
2220 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2221 if (test != addr) {
2222 pgb_fail_in_use(image_name);
2223 }
2224 }
2225
2226 /**
2227 * pgd_find_hole_fallback: potential mmap address
2228 * @guest_size: size of available space
2229 * @brk: location of break
2230 * @align: memory alignment
2231 *
2232 * This is a fallback method for finding a hole in the host address
2233 * space if we don't have the benefit of being able to access
2234 * /proc/self/map. It can potentially take a very long time as we can
2235 * only dumbly iterate up the host address space seeing if the
2236 * allocation would work.
2237 */
2238 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2239 long align, uintptr_t offset)
2240 {
2241 uintptr_t base;
2242
2243 /* Start (aligned) at the bottom and work our way up */
2244 base = ROUND_UP(mmap_min_addr, align);
2245
2246 while (true) {
2247 uintptr_t align_start, end;
2248 align_start = ROUND_UP(base, align);
2249 end = align_start + guest_size + offset;
2250
2251 /* if brk is anywhere in the range give ourselves some room to grow. */
2252 if (align_start <= brk && brk < end) {
2253 base = brk + (16 * MiB);
2254 continue;
2255 } else if (align_start + guest_size < align_start) {
2256 /* we have run out of space */
2257 return -1;
2258 } else {
2259 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2260 MAP_FIXED_NOREPLACE;
2261 void * mmap_start = mmap((void *) align_start, guest_size,
2262 PROT_NONE, flags, -1, 0);
2263 if (mmap_start != MAP_FAILED) {
2264 munmap(mmap_start, guest_size);
2265 if (mmap_start == (void *) align_start) {
2266 return (uintptr_t) mmap_start + offset;
2267 }
2268 }
2269 base += qemu_host_page_size;
2270 }
2271 }
2272 }
2273
2274 /* Return value for guest_base, or -1 if no hole found. */
2275 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2276 long align, uintptr_t offset)
2277 {
2278 GSList *maps, *iter;
2279 uintptr_t this_start, this_end, next_start, brk;
2280 intptr_t ret = -1;
2281
2282 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2283
2284 maps = read_self_maps();
2285
2286 /* Read brk after we've read the maps, which will malloc. */
2287 brk = (uintptr_t)sbrk(0);
2288
2289 if (!maps) {
2290 ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2291 return ret == -1 ? -1 : ret - guest_loaddr;
2292 }
2293
2294 /* The first hole is before the first map entry. */
2295 this_start = mmap_min_addr;
2296
2297 for (iter = maps; iter;
2298 this_start = next_start, iter = g_slist_next(iter)) {
2299 uintptr_t align_start, hole_size;
2300
2301 this_end = ((MapInfo *)iter->data)->start;
2302 next_start = ((MapInfo *)iter->data)->end;
2303 align_start = ROUND_UP(this_start + offset, align);
2304
2305 /* Skip holes that are too small. */
2306 if (align_start >= this_end) {
2307 continue;
2308 }
2309 hole_size = this_end - align_start;
2310 if (hole_size < guest_size) {
2311 continue;
2312 }
2313
2314 /* If this hole contains brk, give ourselves some room to grow. */
2315 if (this_start <= brk && brk < this_end) {
2316 hole_size -= guest_size;
2317 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2318 align_start += 1 * GiB;
2319 } else if (hole_size >= 16 * MiB) {
2320 align_start += 16 * MiB;
2321 } else {
2322 align_start = (this_end - guest_size) & -align;
2323 if (align_start < this_start) {
2324 continue;
2325 }
2326 }
2327 }
2328
2329 /* Record the lowest successful match. */
2330 if (ret < 0) {
2331 ret = align_start - guest_loaddr;
2332 }
2333 /* If this hole contains the identity map, select it. */
2334 if (align_start <= guest_loaddr &&
2335 guest_loaddr + guest_size <= this_end) {
2336 ret = 0;
2337 }
2338 /* If this hole ends above the identity map, stop looking. */
2339 if (this_end >= guest_loaddr) {
2340 break;
2341 }
2342 }
2343 free_self_maps(maps);
2344
2345 return ret;
2346 }
2347
2348 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2349 abi_ulong orig_hiaddr, long align)
2350 {
2351 uintptr_t loaddr = orig_loaddr;
2352 uintptr_t hiaddr = orig_hiaddr;
2353 uintptr_t offset = 0;
2354 uintptr_t addr;
2355
2356 if (hiaddr != orig_hiaddr) {
2357 error_report("%s: requires virtual address space that the "
2358 "host cannot provide (0x%" PRIx64 ")",
2359 image_name, (uint64_t)orig_hiaddr);
2360 exit(EXIT_FAILURE);
2361 }
2362
2363 loaddr &= -align;
2364 if (ARM_COMMPAGE) {
2365 /*
2366 * Extend the allocation to include the commpage.
2367 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2368 * need to ensure there is space bellow the guest_base so we
2369 * can map the commpage in the place needed when the address
2370 * arithmetic wraps around.
2371 */
2372 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2373 hiaddr = (uintptr_t) 4 << 30;
2374 } else {
2375 offset = -(ARM_COMMPAGE & -align);
2376 }
2377 }
2378
2379 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2380 if (addr == -1) {
2381 /*
2382 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2383 * that can satisfy both. But as the normal arm32 link base address
2384 * is ~32k, and we extend down to include the commpage, making the
2385 * overhead only ~96k, this is unlikely.
2386 */
2387 error_report("%s: Unable to allocate %#zx bytes of "
2388 "virtual address space", image_name,
2389 (size_t)(hiaddr - loaddr));
2390 exit(EXIT_FAILURE);
2391 }
2392
2393 guest_base = addr;
2394 }
2395
2396 static void pgb_dynamic(const char *image_name, long align)
2397 {
2398 /*
2399 * The executable is dynamic and does not require a fixed address.
2400 * All we need is a commpage that satisfies align.
2401 * If we do not need a commpage, leave guest_base == 0.
2402 */
2403 if (ARM_COMMPAGE) {
2404 uintptr_t addr, commpage;
2405
2406 /* 64-bit hosts should have used reserved_va. */
2407 assert(sizeof(uintptr_t) == 4);
2408
2409 /*
2410 * By putting the commpage at the first hole, that puts guest_base
2411 * just above that, and maximises the positive guest addresses.
2412 */
2413 commpage = ARM_COMMPAGE & -align;
2414 addr = pgb_find_hole(commpage, -commpage, align, 0);
2415 assert(addr != -1);
2416 guest_base = addr;
2417 }
2418 }
2419
2420 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2421 abi_ulong guest_hiaddr, long align)
2422 {
2423 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2424 void *addr, *test;
2425
2426 if (guest_hiaddr > reserved_va) {
2427 error_report("%s: requires more than reserved virtual "
2428 "address space (0x%" PRIx64 " > 0x%lx)",
2429 image_name, (uint64_t)guest_hiaddr, reserved_va);
2430 exit(EXIT_FAILURE);
2431 }
2432
2433 /* Widen the "image" to the entire reserved address space. */
2434 pgb_static(image_name, 0, reserved_va, align);
2435
2436 /* osdep.h defines this as 0 if it's missing */
2437 flags |= MAP_FIXED_NOREPLACE;
2438
2439 /* Reserve the memory on the host. */
2440 assert(guest_base != 0);
2441 test = g2h_untagged(0);
2442 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2443 if (addr == MAP_FAILED || addr != test) {
2444 error_report("Unable to reserve 0x%lx bytes of virtual address "
2445 "space at %p (%s) for use as guest address space (check your"
2446 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2447 "using -R option)", reserved_va, test, strerror(errno));
2448 exit(EXIT_FAILURE);
2449 }
2450 }
2451
2452 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2453 abi_ulong guest_hiaddr)
2454 {
2455 /* In order to use host shmat, we must be able to honor SHMLBA. */
2456 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2457
2458 if (have_guest_base) {
2459 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2460 } else if (reserved_va) {
2461 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2462 } else if (guest_loaddr) {
2463 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2464 } else {
2465 pgb_dynamic(image_name, align);
2466 }
2467
2468 /* Reserve and initialize the commpage. */
2469 if (!init_guest_commpage()) {
2470 /*
2471 * With have_guest_base, the user has selected the address and
2472 * we are trying to work with that. Otherwise, we have selected
2473 * free space and init_guest_commpage must succeeded.
2474 */
2475 assert(have_guest_base);
2476 pgb_fail_in_use(image_name);
2477 }
2478
2479 assert(QEMU_IS_ALIGNED(guest_base, align));
2480 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2481 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2482 }
2483
2484 enum {
2485 /* The string "GNU\0" as a magic number. */
2486 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2487 NOTE_DATA_SZ = 1 * KiB,
2488 NOTE_NAME_SZ = 4,
2489 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2490 };
2491
2492 /*
2493 * Process a single gnu_property entry.
2494 * Return false for error.
2495 */
2496 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2497 struct image_info *info, bool have_prev_type,
2498 uint32_t *prev_type, Error **errp)
2499 {
2500 uint32_t pr_type, pr_datasz, step;
2501
2502 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2503 goto error_data;
2504 }
2505 datasz -= *off;
2506 data += *off / sizeof(uint32_t);
2507
2508 if (datasz < 2 * sizeof(uint32_t)) {
2509 goto error_data;
2510 }
2511 pr_type = data[0];
2512 pr_datasz = data[1];
2513 data += 2;
2514 datasz -= 2 * sizeof(uint32_t);
2515 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2516 if (step > datasz) {
2517 goto error_data;
2518 }
2519
2520 /* Properties are supposed to be unique and sorted on pr_type. */
2521 if (have_prev_type && pr_type <= *prev_type) {
2522 if (pr_type == *prev_type) {
2523 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2524 } else {
2525 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2526 }
2527 return false;
2528 }
2529 *prev_type = pr_type;
2530
2531 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2532 return false;
2533 }
2534
2535 *off += 2 * sizeof(uint32_t) + step;
2536 return true;
2537
2538 error_data:
2539 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2540 return false;
2541 }
2542
2543 /* Process NT_GNU_PROPERTY_TYPE_0. */
2544 static bool parse_elf_properties(int image_fd,
2545 struct image_info *info,
2546 const struct elf_phdr *phdr,
2547 char bprm_buf[BPRM_BUF_SIZE],
2548 Error **errp)
2549 {
2550 union {
2551 struct elf_note nhdr;
2552 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2553 } note;
2554
2555 int n, off, datasz;
2556 bool have_prev_type;
2557 uint32_t prev_type;
2558
2559 /* Unless the arch requires properties, ignore them. */
2560 if (!ARCH_USE_GNU_PROPERTY) {
2561 return true;
2562 }
2563
2564 /* If the properties are crazy large, that's too bad. */
2565 n = phdr->p_filesz;
2566 if (n > sizeof(note)) {
2567 error_setg(errp, "PT_GNU_PROPERTY too large");
2568 return false;
2569 }
2570 if (n < sizeof(note.nhdr)) {
2571 error_setg(errp, "PT_GNU_PROPERTY too small");
2572 return false;
2573 }
2574
2575 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2576 memcpy(&note, bprm_buf + phdr->p_offset, n);
2577 } else {
2578 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2579 if (len != n) {
2580 error_setg_errno(errp, errno, "Error reading file header");
2581 return false;
2582 }
2583 }
2584
2585 /*
2586 * The contents of a valid PT_GNU_PROPERTY is a sequence
2587 * of uint32_t -- swap them all now.
2588 */
2589 #ifdef BSWAP_NEEDED
2590 for (int i = 0; i < n / 4; i++) {
2591 bswap32s(note.data + i);
2592 }
2593 #endif
2594
2595 /*
2596 * Note that nhdr is 3 words, and that the "name" described by namesz
2597 * immediately follows nhdr and is thus at the 4th word. Further, all
2598 * of the inputs to the kernel's round_up are multiples of 4.
2599 */
2600 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2601 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2602 note.data[3] != GNU0_MAGIC) {
2603 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2604 return false;
2605 }
2606 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2607
2608 datasz = note.nhdr.n_descsz + off;
2609 if (datasz > n) {
2610 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2611 return false;
2612 }
2613
2614 have_prev_type = false;
2615 prev_type = 0;
2616 while (1) {
2617 if (off == datasz) {
2618 return true; /* end, exit ok */
2619 }
2620 if (!parse_elf_property(note.data, &off, datasz, info,
2621 have_prev_type, &prev_type, errp)) {
2622 return false;
2623 }
2624 have_prev_type = true;
2625 }
2626 }
2627
2628 /* Load an ELF image into the address space.
2629
2630 IMAGE_NAME is the filename of the image, to use in error messages.
2631 IMAGE_FD is the open file descriptor for the image.
2632
2633 BPRM_BUF is a copy of the beginning of the file; this of course
2634 contains the elf file header at offset 0. It is assumed that this
2635 buffer is sufficiently aligned to present no problems to the host
2636 in accessing data at aligned offsets within the buffer.
2637
2638 On return: INFO values will be filled in, as necessary or available. */
2639
2640 static void load_elf_image(const char *image_name, int image_fd,
2641 struct image_info *info, char **pinterp_name,
2642 char bprm_buf[BPRM_BUF_SIZE])
2643 {
2644 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2645 struct elf_phdr *phdr;
2646 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2647 int i, retval, prot_exec;
2648 Error *err = NULL;
2649
2650 /* First of all, some simple consistency checks */
2651 if (!elf_check_ident(ehdr)) {
2652 error_setg(&err, "Invalid ELF image for this architecture");
2653 goto exit_errmsg;
2654 }
2655 bswap_ehdr(ehdr);
2656 if (!elf_check_ehdr(ehdr)) {
2657 error_setg(&err, "Invalid ELF image for this architecture");
2658 goto exit_errmsg;
2659 }
2660
2661 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2662 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2663 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2664 } else {
2665 phdr = (struct elf_phdr *) alloca(i);
2666 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2667 if (retval != i) {
2668 goto exit_read;
2669 }
2670 }
2671 bswap_phdr(phdr, ehdr->e_phnum);
2672
2673 info->nsegs = 0;
2674 info->pt_dynamic_addr = 0;
2675
2676 mmap_lock();
2677
2678 /*
2679 * Find the maximum size of the image and allocate an appropriate
2680 * amount of memory to handle that. Locate the interpreter, if any.
2681 */
2682 loaddr = -1, hiaddr = 0;
2683 info->alignment = 0;
2684 for (i = 0; i < ehdr->e_phnum; ++i) {
2685 struct elf_phdr *eppnt = phdr + i;
2686 if (eppnt->p_type == PT_LOAD) {
2687 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2688 if (a < loaddr) {
2689 loaddr = a;
2690 }
2691 a = eppnt->p_vaddr + eppnt->p_memsz;
2692 if (a > hiaddr) {
2693 hiaddr = a;
2694 }
2695 ++info->nsegs;
2696 info->alignment |= eppnt->p_align;
2697 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2698 g_autofree char *interp_name = NULL;
2699
2700 if (*pinterp_name) {
2701 error_setg(&err, "Multiple PT_INTERP entries");
2702 goto exit_errmsg;
2703 }
2704
2705 interp_name = g_malloc(eppnt->p_filesz);
2706
2707 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2708 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2709 eppnt->p_filesz);
2710 } else {
2711 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2712 eppnt->p_offset);
2713 if (retval != eppnt->p_filesz) {
2714 goto exit_read;
2715 }
2716 }
2717 if (interp_name[eppnt->p_filesz - 1] != 0) {
2718 error_setg(&err, "Invalid PT_INTERP entry");
2719 goto exit_errmsg;
2720 }
2721 *pinterp_name = g_steal_pointer(&interp_name);
2722 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2723 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2724 goto exit_errmsg;
2725 }
2726 }
2727 }
2728
2729 if (pinterp_name != NULL) {
2730 /*
2731 * This is the main executable.
2732 *
2733 * Reserve extra space for brk.
2734 * We hold on to this space while placing the interpreter
2735 * and the stack, lest they be placed immediately after
2736 * the data segment and block allocation from the brk.
2737 *
2738 * 16MB is chosen as "large enough" without being so large
2739 * as to allow the result to not fit with a 32-bit guest on
2740 * a 32-bit host.
2741 */
2742 info->reserve_brk = 16 * MiB;
2743 hiaddr += info->reserve_brk;
2744
2745 if (ehdr->e_type == ET_EXEC) {
2746 /*
2747 * Make sure that the low address does not conflict with
2748 * MMAP_MIN_ADDR or the QEMU application itself.
2749 */
2750 probe_guest_base(image_name, loaddr, hiaddr);
2751 } else {
2752 /*
2753 * The binary is dynamic, but we still need to
2754 * select guest_base. In this case we pass a size.
2755 */
2756 probe_guest_base(image_name, 0, hiaddr - loaddr);
2757 }
2758 }
2759
2760 /*
2761 * Reserve address space for all of this.
2762 *
2763 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2764 * exactly the address range that is required.
2765 *
2766 * Otherwise this is ET_DYN, and we are searching for a location
2767 * that can hold the memory space required. If the image is
2768 * pre-linked, LOADDR will be non-zero, and the kernel should
2769 * honor that address if it happens to be free.
2770 *
2771 * In both cases, we will overwrite pages in this range with mappings
2772 * from the executable.
2773 */
2774 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2775 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2776 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2777 -1, 0);
2778 if (load_addr == -1) {
2779 goto exit_mmap;
2780 }
2781 load_bias = load_addr - loaddr;
2782
2783 if (elf_is_fdpic(ehdr)) {
2784 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2785 g_malloc(sizeof(*loadsegs) * info->nsegs);
2786
2787 for (i = 0; i < ehdr->e_phnum; ++i) {
2788 switch (phdr[i].p_type) {
2789 case PT_DYNAMIC:
2790 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2791 break;
2792 case PT_LOAD:
2793 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2794 loadsegs->p_vaddr = phdr[i].p_vaddr;
2795 loadsegs->p_memsz = phdr[i].p_memsz;
2796 ++loadsegs;
2797 break;
2798 }
2799 }
2800 }
2801
2802 info->load_bias = load_bias;
2803 info->code_offset = load_bias;
2804 info->data_offset = load_bias;
2805 info->load_addr = load_addr;
2806 info->entry = ehdr->e_entry + load_bias;
2807 info->start_code = -1;
2808 info->end_code = 0;
2809 info->start_data = -1;
2810 info->end_data = 0;
2811 info->brk = 0;
2812 info->elf_flags = ehdr->e_flags;
2813
2814 prot_exec = PROT_EXEC;
2815 #ifdef TARGET_AARCH64
2816 /*
2817 * If the BTI feature is present, this indicates that the executable
2818 * pages of the startup binary should be mapped with PROT_BTI, so that
2819 * branch targets are enforced.
2820 *
2821 * The startup binary is either the interpreter or the static executable.
2822 * The interpreter is responsible for all pages of a dynamic executable.
2823 *
2824 * Elf notes are backward compatible to older cpus.
2825 * Do not enable BTI unless it is supported.
2826 */
2827 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2828 && (pinterp_name == NULL || *pinterp_name == 0)
2829 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2830 prot_exec |= TARGET_PROT_BTI;
2831 }
2832 #endif
2833
2834 for (i = 0; i < ehdr->e_phnum; i++) {
2835 struct elf_phdr *eppnt = phdr + i;
2836 if (eppnt->p_type == PT_LOAD) {
2837 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2838 int elf_prot = 0;
2839
2840 if (eppnt->p_flags & PF_R) {
2841 elf_prot |= PROT_READ;
2842 }
2843 if (eppnt->p_flags & PF_W) {
2844 elf_prot |= PROT_WRITE;
2845 }
2846 if (eppnt->p_flags & PF_X) {
2847 elf_prot |= prot_exec;
2848 }
2849
2850 vaddr = load_bias + eppnt->p_vaddr;
2851 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2852 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2853
2854 vaddr_ef = vaddr + eppnt->p_filesz;
2855 vaddr_em = vaddr + eppnt->p_memsz;
2856
2857 /*
2858 * Some segments may be completely empty, with a non-zero p_memsz
2859 * but no backing file segment.
2860 */
2861 if (eppnt->p_filesz != 0) {
2862 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2863 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2864 MAP_PRIVATE | MAP_FIXED,
2865 image_fd, eppnt->p_offset - vaddr_po);
2866
2867 if (error == -1) {
2868 goto exit_mmap;
2869 }
2870
2871 /*
2872 * If the load segment requests extra zeros (e.g. bss), map it.
2873 */
2874 if (eppnt->p_filesz < eppnt->p_memsz) {
2875 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2876 }
2877 } else if (eppnt->p_memsz != 0) {
2878 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2879 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2880 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2881 -1, 0);
2882
2883 if (error == -1) {
2884 goto exit_mmap;
2885 }
2886 }
2887
2888 /* Find the full program boundaries. */
2889 if (elf_prot & PROT_EXEC) {
2890 if (vaddr < info->start_code) {
2891 info->start_code = vaddr;
2892 }
2893 if (vaddr_ef > info->end_code) {
2894 info->end_code = vaddr_ef;
2895 }
2896 }
2897 if (elf_prot & PROT_WRITE) {
2898 if (vaddr < info->start_data) {
2899 info->start_data = vaddr;
2900 }
2901 if (vaddr_ef > info->end_data) {
2902 info->end_data = vaddr_ef;
2903 }
2904 }
2905 if (vaddr_em > info->brk) {
2906 info->brk = vaddr_em;
2907 }
2908 #ifdef TARGET_MIPS
2909 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2910 Mips_elf_abiflags_v0 abiflags;
2911 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2912 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2913 goto exit_errmsg;
2914 }
2915 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2916 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2917 sizeof(Mips_elf_abiflags_v0));
2918 } else {
2919 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2920 eppnt->p_offset);
2921 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2922 goto exit_read;
2923 }
2924 }
2925 bswap_mips_abiflags(&abiflags);
2926 info->fp_abi = abiflags.fp_abi;
2927 #endif
2928 }
2929 }
2930
2931 if (info->end_data == 0) {
2932 info->start_data = info->end_code;
2933 info->end_data = info->end_code;
2934 }
2935
2936 if (qemu_log_enabled()) {
2937 load_symbols(ehdr, image_fd, load_bias);
2938 }
2939
2940 mmap_unlock();
2941
2942 close(image_fd);
2943 return;
2944
2945 exit_read:
2946 if (retval >= 0) {
2947 error_setg(&err, "Incomplete read of file header");
2948 } else {
2949 error_setg_errno(&err, errno, "Error reading file header");
2950 }
2951 goto exit_errmsg;
2952 exit_mmap:
2953 error_setg_errno(&err, errno, "Error mapping file");
2954 goto exit_errmsg;
2955 exit_errmsg:
2956 error_reportf_err(err, "%s: ", image_name);
2957 exit(-1);
2958 }
2959
2960 static void load_elf_interp(const char *filename, struct image_info *info,
2961 char bprm_buf[BPRM_BUF_SIZE])
2962 {
2963 int fd, retval;
2964 Error *err = NULL;
2965
2966 fd = open(path(filename), O_RDONLY);
2967 if (fd < 0) {
2968 error_setg_file_open(&err, errno, filename);
2969 error_report_err(err);
2970 exit(-1);
2971 }
2972
2973 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2974 if (retval < 0) {
2975 error_setg_errno(&err, errno, "Error reading file header");
2976 error_reportf_err(err, "%s: ", filename);
2977 exit(-1);
2978 }
2979
2980 if (retval < BPRM_BUF_SIZE) {
2981 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2982 }
2983
2984 load_elf_image(filename, fd, info, NULL, bprm_buf);
2985 }
2986
2987 static int symfind(const void *s0, const void *s1)
2988 {
2989 target_ulong addr = *(target_ulong *)s0;
2990 struct elf_sym *sym = (struct elf_sym *)s1;
2991 int result = 0;
2992 if (addr < sym->st_value) {
2993 result = -1;
2994 } else if (addr >= sym->st_value + sym->st_size) {
2995 result = 1;
2996 }
2997 return result;
2998 }
2999
3000 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3001 {
3002 #if ELF_CLASS == ELFCLASS32
3003 struct elf_sym *syms = s->disas_symtab.elf32;
3004 #else
3005 struct elf_sym *syms = s->disas_symtab.elf64;
3006 #endif
3007
3008 // binary search
3009 struct elf_sym *sym;
3010
3011 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3012 if (sym != NULL) {
3013 return s->disas_strtab + sym->st_name;
3014 }
3015
3016 return "";
3017 }
3018
3019 /* FIXME: This should use elf_ops.h */
3020 static int symcmp(const void *s0, const void *s1)
3021 {
3022 struct elf_sym *sym0 = (struct elf_sym *)s0;
3023 struct elf_sym *sym1 = (struct elf_sym *)s1;
3024 return (sym0->st_value < sym1->st_value)
3025 ? -1
3026 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3027 }
3028
3029 /* Best attempt to load symbols from this ELF object. */
3030 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3031 {
3032 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3033 uint64_t segsz;
3034 struct elf_shdr *shdr;
3035 char *strings = NULL;
3036 struct syminfo *s = NULL;
3037 struct elf_sym *new_syms, *syms = NULL;
3038
3039 shnum = hdr->e_shnum;
3040 i = shnum * sizeof(struct elf_shdr);
3041 shdr = (struct elf_shdr *)alloca(i);
3042 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3043 return;
3044 }
3045
3046 bswap_shdr(shdr, shnum);
3047 for (i = 0; i < shnum; ++i) {
3048 if (shdr[i].sh_type == SHT_SYMTAB) {
3049 sym_idx = i;
3050 str_idx = shdr[i].sh_link;
3051 goto found;
3052 }
3053 }
3054
3055 /* There will be no symbol table if the file was stripped. */
3056 return;
3057
3058 found:
3059 /* Now know where the strtab and symtab are. Snarf them. */
3060 s = g_try_new(struct syminfo, 1);
3061 if (!s) {
3062 goto give_up;
3063 }
3064
3065 segsz = shdr[str_idx].sh_size;
3066 s->disas_strtab = strings = g_try_malloc(segsz);
3067 if (!strings ||
3068 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3069 goto give_up;
3070 }
3071
3072 segsz = shdr[sym_idx].sh_size;
3073 syms = g_try_malloc(segsz);
3074 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3075 goto give_up;
3076 }
3077
3078 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3079 /* Implausibly large symbol table: give up rather than ploughing
3080 * on with the number of symbols calculation overflowing
3081 */
3082 goto give_up;
3083 }
3084 nsyms = segsz / sizeof(struct elf_sym);
3085 for (i = 0; i < nsyms; ) {
3086 bswap_sym(syms + i);
3087 /* Throw away entries which we do not need. */
3088 if (syms[i].st_shndx == SHN_UNDEF
3089 || syms[i].st_shndx >= SHN_LORESERVE
3090 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3091 if (i < --nsyms) {
3092 syms[i] = syms[nsyms];
3093 }
3094 } else {
3095 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3096 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3097 syms[i].st_value &= ~(target_ulong)1;
3098 #endif
3099 syms[i].st_value += load_bias;
3100 i++;
3101 }
3102 }
3103
3104 /* No "useful" symbol. */
3105 if (nsyms == 0) {
3106 goto give_up;
3107 }
3108
3109 /* Attempt to free the storage associated with the local symbols
3110 that we threw away. Whether or not this has any effect on the
3111 memory allocation depends on the malloc implementation and how
3112 many symbols we managed to discard. */
3113 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3114 if (new_syms == NULL) {
3115 goto give_up;
3116 }
3117 syms = new_syms;
3118
3119 qsort(syms, nsyms, sizeof(*syms), symcmp);
3120
3121 s->disas_num_syms = nsyms;
3122 #if ELF_CLASS == ELFCLASS32
3123 s->disas_symtab.elf32 = syms;
3124 #else
3125 s->disas_symtab.elf64 = syms;
3126 #endif
3127 s->lookup_symbol = lookup_symbolxx;
3128 s->next = syminfos;
3129 syminfos = s;
3130
3131 return;
3132
3133 give_up:
3134 g_free(s);
3135 g_free(strings);
3136 g_free(syms);
3137 }
3138
3139 uint32_t get_elf_eflags(int fd)
3140 {
3141 struct elfhdr ehdr;
3142 off_t offset;
3143 int ret;
3144
3145 /* Read ELF header */
3146 offset = lseek(fd, 0, SEEK_SET);
3147 if (offset == (off_t) -1) {
3148 return 0;
3149 }
3150 ret = read(fd, &ehdr, sizeof(ehdr));
3151 if (ret < sizeof(ehdr)) {
3152 return 0;
3153 }
3154 offset = lseek(fd, offset, SEEK_SET);
3155 if (offset == (off_t) -1) {
3156 return 0;
3157 }
3158
3159 /* Check ELF signature */
3160 if (!elf_check_ident(&ehdr)) {
3161 return 0;
3162 }
3163
3164 /* check header */
3165 bswap_ehdr(&ehdr);
3166 if (!elf_check_ehdr(&ehdr)) {
3167 return 0;
3168 }
3169
3170 /* return architecture id */
3171 return ehdr.e_flags;
3172 }
3173
3174 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3175 {
3176 struct image_info interp_info;
3177 struct elfhdr elf_ex;
3178 char *elf_interpreter = NULL;
3179 char *scratch;
3180
3181 memset(&interp_info, 0, sizeof(interp_info));
3182 #ifdef TARGET_MIPS
3183 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3184 #endif
3185
3186 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3187
3188 load_elf_image(bprm->filename, bprm->fd, info,
3189 &elf_interpreter, bprm->buf);
3190
3191 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3192 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3193 when we load the interpreter. */
3194 elf_ex = *(struct elfhdr *)bprm->buf;
3195
3196 /* Do this so that we can load the interpreter, if need be. We will
3197 change some of these later */
3198 bprm->p = setup_arg_pages(bprm, info);
3199
3200 scratch = g_new0(char, TARGET_PAGE_SIZE);
3201 if (STACK_GROWS_DOWN) {
3202 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3203 bprm->p, info->stack_limit);
3204 info->file_string = bprm->p;
3205 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3206 bprm->p, info->stack_limit);
3207 info->env_strings = bprm->p;
3208 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3209 bprm->p, info->stack_limit);
3210 info->arg_strings = bprm->p;
3211 } else {
3212 info->arg_strings = bprm->p;
3213 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3214 bprm->p, info->stack_limit);
3215 info->env_strings = bprm->p;
3216 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3217 bprm->p, info->stack_limit);
3218 info->file_string = bprm->p;
3219 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3220 bprm->p, info->stack_limit);
3221 }
3222
3223 g_free(scratch);
3224
3225 if (!bprm->p) {
3226 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3227 exit(-1);
3228 }
3229
3230 if (elf_interpreter) {
3231 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3232
3233 /* If the program interpreter is one of these two, then assume
3234 an iBCS2 image. Otherwise assume a native linux image. */
3235
3236 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3237 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3238 info->personality = PER_SVR4;
3239
3240 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3241 and some applications "depend" upon this behavior. Since
3242 we do not have the power to recompile these, we emulate
3243 the SVr4 behavior. Sigh. */
3244 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3245 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3246 }
3247 #ifdef TARGET_MIPS
3248 info->interp_fp_abi = interp_info.fp_abi;
3249 #endif
3250 }
3251
3252 /*
3253 * TODO: load a vdso, which would also contain the signal trampolines.
3254 * Otherwise, allocate a private page to hold them.
3255 */
3256 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3257 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3258 PROT_READ | PROT_WRITE,
3259 MAP_PRIVATE | MAP_ANON, -1, 0);
3260 if (tramp_page == -1) {
3261 return -errno;
3262 }
3263
3264 setup_sigtramp(tramp_page);
3265 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3266 }
3267
3268 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3269 info, (elf_interpreter ? &interp_info : NULL));
3270 info->start_stack = bprm->p;
3271
3272 /* If we have an interpreter, set that as the program's entry point.
3273 Copy the load_bias as well, to help PPC64 interpret the entry
3274 point as a function descriptor. Do this after creating elf tables
3275 so that we copy the original program entry point into the AUXV. */
3276 if (elf_interpreter) {
3277 info->load_bias = interp_info.load_bias;
3278 info->entry = interp_info.entry;
3279 g_free(elf_interpreter);
3280 }
3281
3282 #ifdef USE_ELF_CORE_DUMP
3283 bprm->core_dump = &elf_core_dump;
3284 #endif
3285
3286 /*
3287 * If we reserved extra space for brk, release it now.
3288 * The implementation of do_brk in syscalls.c expects to be able
3289 * to mmap pages in this space.
3290 */
3291 if (info->reserve_brk) {
3292 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3293 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3294 target_munmap(start_brk, end_brk - start_brk);
3295 }
3296
3297 return 0;
3298 }
3299
3300 #ifdef USE_ELF_CORE_DUMP
3301 /*
3302 * Definitions to generate Intel SVR4-like core files.
3303 * These mostly have the same names as the SVR4 types with "target_elf_"
3304 * tacked on the front to prevent clashes with linux definitions,
3305 * and the typedef forms have been avoided. This is mostly like
3306 * the SVR4 structure, but more Linuxy, with things that Linux does
3307 * not support and which gdb doesn't really use excluded.
3308 *
3309 * Fields we don't dump (their contents is zero) in linux-user qemu
3310 * are marked with XXX.
3311 *
3312 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3313 *
3314 * Porting ELF coredump for target is (quite) simple process. First you
3315 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3316 * the target resides):
3317 *
3318 * #define USE_ELF_CORE_DUMP
3319 *
3320 * Next you define type of register set used for dumping. ELF specification
3321 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3322 *
3323 * typedef <target_regtype> target_elf_greg_t;
3324 * #define ELF_NREG <number of registers>
3325 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3326 *
3327 * Last step is to implement target specific function that copies registers
3328 * from given cpu into just specified register set. Prototype is:
3329 *
3330 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3331 * const CPUArchState *env);
3332 *
3333 * Parameters:
3334 * regs - copy register values into here (allocated and zeroed by caller)
3335 * env - copy registers from here
3336 *
3337 * Example for ARM target is provided in this file.
3338 */
3339
3340 /* An ELF note in memory */
3341 struct memelfnote {
3342 const char *name;
3343 size_t namesz;
3344 size_t namesz_rounded;
3345 int type;
3346 size_t datasz;
3347 size_t datasz_rounded;
3348 void *data;
3349 size_t notesz;
3350 };
3351
3352 struct target_elf_siginfo {
3353 abi_int si_signo; /* signal number */
3354 abi_int si_code; /* extra code */
3355 abi_int si_errno; /* errno */
3356 };
3357
3358 struct target_elf_prstatus {
3359 struct target_elf_siginfo pr_info; /* Info associated with signal */
3360 abi_short pr_cursig; /* Current signal */
3361 abi_ulong pr_sigpend; /* XXX */
3362 abi_ulong pr_sighold; /* XXX */
3363 target_pid_t pr_pid;
3364 target_pid_t pr_ppid;
3365 target_pid_t pr_pgrp;
3366 target_pid_t pr_sid;
3367 struct target_timeval pr_utime; /* XXX User time */
3368 struct target_timeval pr_stime; /* XXX System time */
3369 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3370 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3371 target_elf_gregset_t pr_reg; /* GP registers */
3372 abi_int pr_fpvalid; /* XXX */
3373 };
3374
3375 #define ELF_PRARGSZ (80) /* Number of chars for args */
3376
3377 struct target_elf_prpsinfo {
3378 char pr_state; /* numeric process state */
3379 char pr_sname; /* char for pr_state */
3380 char pr_zomb; /* zombie */
3381 char pr_nice; /* nice val */
3382 abi_ulong pr_flag; /* flags */
3383 target_uid_t pr_uid;
3384 target_gid_t pr_gid;
3385 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3386 /* Lots missing */
3387 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3388 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3389 };
3390
3391 /* Here is the structure in which status of each thread is captured. */
3392 struct elf_thread_status {
3393 QTAILQ_ENTRY(elf_thread_status) ets_link;
3394 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3395 #if 0
3396 elf_fpregset_t fpu; /* NT_PRFPREG */
3397 struct task_struct *thread;
3398 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3399 #endif
3400 struct memelfnote notes[1];
3401 int num_notes;
3402 };
3403
3404 struct elf_note_info {
3405 struct memelfnote *notes;
3406 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3407 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3408
3409 QTAILQ_HEAD(, elf_thread_status) thread_list;
3410 #if 0
3411 /*
3412 * Current version of ELF coredump doesn't support
3413 * dumping fp regs etc.
3414 */
3415 elf_fpregset_t *fpu;
3416 elf_fpxregset_t *xfpu;
3417 int thread_status_size;
3418 #endif
3419 int notes_size;
3420 int numnote;
3421 };
3422
3423 struct vm_area_struct {
3424 target_ulong vma_start; /* start vaddr of memory region */
3425 target_ulong vma_end; /* end vaddr of memory region */
3426 abi_ulong vma_flags; /* protection etc. flags for the region */
3427 QTAILQ_ENTRY(vm_area_struct) vma_link;
3428 };
3429
3430 struct mm_struct {
3431 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3432 int mm_count; /* number of mappings */
3433 };
3434
3435 static struct mm_struct *vma_init(void);
3436 static void vma_delete(struct mm_struct *);
3437 static int vma_add_mapping(struct mm_struct *, target_ulong,
3438 target_ulong, abi_ulong);
3439 static int vma_get_mapping_count(const struct mm_struct *);
3440 static struct vm_area_struct *vma_first(const struct mm_struct *);
3441 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3442 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3443 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3444 unsigned long flags);
3445
3446 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3447 static void fill_note(struct memelfnote *, const char *, int,
3448 unsigned int, void *);
3449 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3450 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3451 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3452 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3453 static size_t note_size(const struct memelfnote *);
3454 static void free_note_info(struct elf_note_info *);
3455 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3456 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3457
3458 static int dump_write(int, const void *, size_t);
3459 static int write_note(struct memelfnote *, int);
3460 static int write_note_info(struct elf_note_info *, int);
3461
3462 #ifdef BSWAP_NEEDED
3463 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3464 {
3465 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3466 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3467 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3468 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3469 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3470 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3471 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3472 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3473 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3474 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3475 /* cpu times are not filled, so we skip them */
3476 /* regs should be in correct format already */
3477 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3478 }
3479
3480 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3481 {
3482 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3483 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3484 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3485 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3486 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3487 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3488 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3489 }
3490
3491 static void bswap_note(struct elf_note *en)
3492 {
3493 bswap32s(&en->n_namesz);
3494 bswap32s(&en->n_descsz);
3495 bswap32s(&en->n_type);
3496 }
3497 #else
3498 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3499 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3500 static inline void bswap_note(struct elf_note *en) { }
3501 #endif /* BSWAP_NEEDED */
3502
3503 /*
3504 * Minimal support for linux memory regions. These are needed
3505 * when we are finding out what memory exactly belongs to
3506 * emulated process. No locks needed here, as long as
3507 * thread that received the signal is stopped.
3508 */
3509
3510 static struct mm_struct *vma_init(void)
3511 {
3512 struct mm_struct *mm;
3513
3514 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3515 return (NULL);
3516
3517 mm->mm_count = 0;
3518 QTAILQ_INIT(&mm->mm_mmap);
3519
3520 return (mm);
3521 }
3522
3523 static void vma_delete(struct mm_struct *mm)
3524 {
3525 struct vm_area_struct *vma;
3526
3527 while ((vma = vma_first(mm)) != NULL) {
3528 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3529 g_free(vma);
3530 }
3531 g_free(mm);
3532 }
3533
3534 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3535 target_ulong end, abi_ulong flags)
3536 {
3537 struct vm_area_struct *vma;
3538
3539 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3540 return (-1);
3541
3542 vma->vma_start = start;
3543 vma->vma_end = end;
3544 vma->vma_flags = flags;
3545
3546 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3547 mm->mm_count++;
3548
3549 return (0);
3550 }
3551
3552 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3553 {
3554 return (QTAILQ_FIRST(&mm->mm_mmap));
3555 }
3556
3557 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3558 {
3559 return (QTAILQ_NEXT(vma, vma_link));
3560 }
3561
3562 static int vma_get_mapping_count(const struct mm_struct *mm)
3563 {
3564 return (mm->mm_count);
3565 }
3566
3567 /*
3568 * Calculate file (dump) size of given memory region.
3569 */
3570 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3571 {
3572 /* if we cannot even read the first page, skip it */
3573 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3574 return (0);
3575
3576 /*
3577 * Usually we don't dump executable pages as they contain
3578 * non-writable code that debugger can read directly from
3579 * target library etc. However, thread stacks are marked
3580 * also executable so we read in first page of given region
3581 * and check whether it contains elf header. If there is
3582 * no elf header, we dump it.
3583 */
3584 if (vma->vma_flags & PROT_EXEC) {
3585 char page[TARGET_PAGE_SIZE];
3586
3587 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3588 return 0;
3589 }
3590 if ((page[EI_MAG0] == ELFMAG0) &&
3591 (page[EI_MAG1] == ELFMAG1) &&
3592 (page[EI_MAG2] == ELFMAG2) &&
3593 (page[EI_MAG3] == ELFMAG3)) {
3594 /*
3595 * Mappings are possibly from ELF binary. Don't dump
3596 * them.
3597 */
3598 return (0);
3599 }
3600 }
3601
3602 return (vma->vma_end - vma->vma_start);
3603 }
3604
3605 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3606 unsigned long flags)
3607 {
3608 struct mm_struct *mm = (struct mm_struct *)priv;
3609
3610 vma_add_mapping(mm, start, end, flags);
3611 return (0);
3612 }
3613
3614 static void fill_note(struct memelfnote *note, const char *name, int type,
3615 unsigned int sz, void *data)
3616 {
3617 unsigned int namesz;
3618
3619 namesz = strlen(name) + 1;
3620 note->name = name;
3621 note->namesz = namesz;
3622 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3623 note->type = type;
3624 note->datasz = sz;
3625 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3626
3627 note->data = data;
3628
3629 /*
3630 * We calculate rounded up note size here as specified by
3631 * ELF document.
3632 */
3633 note->notesz = sizeof (struct elf_note) +
3634 note->namesz_rounded + note->datasz_rounded;
3635 }
3636
3637 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3638 uint32_t flags)
3639 {
3640 (void) memset(elf, 0, sizeof(*elf));
3641
3642 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3643 elf->e_ident[EI_CLASS] = ELF_CLASS;
3644 elf->e_ident[EI_DATA] = ELF_DATA;
3645 elf->e_ident[EI_VERSION] = EV_CURRENT;
3646 elf->e_ident[EI_OSABI] = ELF_OSABI;
3647
3648 elf->e_type = ET_CORE;
3649 elf->e_machine = machine;
3650 elf->e_version = EV_CURRENT;
3651 elf->e_phoff = sizeof(struct elfhdr);
3652 elf->e_flags = flags;
3653 elf->e_ehsize = sizeof(struct elfhdr);
3654 elf->e_phentsize = sizeof(struct elf_phdr);
3655 elf->e_phnum = segs;
3656
3657 bswap_ehdr(elf);
3658 }
3659
3660 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3661 {
3662 phdr->p_type = PT_NOTE;
3663 phdr->p_offset = offset;
3664 phdr->p_vaddr = 0;
3665 phdr->p_paddr = 0;
3666 phdr->p_filesz = sz;
3667 phdr->p_memsz = 0;
3668 phdr->p_flags = 0;
3669 phdr->p_align = 0;
3670
3671 bswap_phdr(phdr, 1);
3672 }
3673
3674 static size_t note_size(const struct memelfnote *note)
3675 {
3676 return (note->notesz);
3677 }
3678
3679 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3680 const TaskState *ts, int signr)
3681 {
3682 (void) memset(prstatus, 0, sizeof (*prstatus));
3683 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3684 prstatus->pr_pid = ts->ts_tid;
3685 prstatus->pr_ppid = getppid();
3686 prstatus->pr_pgrp = getpgrp();
3687 prstatus->pr_sid = getsid(0);
3688
3689 bswap_prstatus(prstatus);
3690 }
3691
3692 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3693 {
3694 char *base_filename;
3695 unsigned int i, len;
3696
3697 (void) memset(psinfo, 0, sizeof (*psinfo));
3698
3699 len = ts->info->env_strings - ts->info->arg_strings;
3700 if (len >= ELF_PRARGSZ)
3701 len = ELF_PRARGSZ - 1;
3702 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3703 return -EFAULT;
3704 }
3705 for (i = 0; i < len; i++)
3706 if (psinfo->pr_psargs[i] == 0)
3707 psinfo->pr_psargs[i] = ' ';
3708 psinfo->pr_psargs[len] = 0;
3709
3710 psinfo->pr_pid = getpid();
3711 psinfo->pr_ppid = getppid();
3712 psinfo->pr_pgrp = getpgrp();
3713 psinfo->pr_sid = getsid(0);
3714 psinfo->pr_uid = getuid();
3715 psinfo->pr_gid = getgid();
3716
3717 base_filename = g_path_get_basename(ts->bprm->filename);
3718 /*
3719 * Using strncpy here is fine: at max-length,
3720 * this field is not NUL-terminated.
3721 */
3722 (void) strncpy(psinfo->pr_fname, base_filename,
3723 sizeof(psinfo->pr_fname));
3724
3725 g_free(base_filename);
3726 bswap_psinfo(psinfo);
3727 return (0);
3728 }
3729
3730 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3731 {
3732 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3733 elf_addr_t orig_auxv = auxv;
3734 void *ptr;
3735 int len = ts->info->auxv_len;
3736
3737 /*
3738 * Auxiliary vector is stored in target process stack. It contains
3739 * {type, value} pairs that we need to dump into note. This is not
3740 * strictly necessary but we do it here for sake of completeness.
3741 */
3742
3743 /* read in whole auxv vector and copy it to memelfnote */
3744 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3745 if (ptr != NULL) {
3746 fill_note(note, "CORE", NT_AUXV, len, ptr);
3747 unlock_user(ptr, auxv, len);
3748 }
3749 }
3750
3751 /*
3752 * Constructs name of coredump file. We have following convention
3753 * for the name:
3754 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3755 *
3756 * Returns the filename
3757 */
3758 static char *core_dump_filename(const TaskState *ts)
3759 {
3760 g_autoptr(GDateTime) now = g_date_time_new_now_local();
3761 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3762 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3763
3764 return g_strdup_printf("qemu_%s_%s_%d.core",
3765 base_filename, nowstr, (int)getpid());
3766 }
3767
3768 static int dump_write(int fd, const void *ptr, size_t size)
3769 {
3770 const char *bufp = (const char *)ptr;
3771 ssize_t bytes_written, bytes_left;
3772 struct rlimit dumpsize;
3773 off_t pos;
3774
3775 bytes_written = 0;
3776 getrlimit(RLIMIT_CORE, &dumpsize);
3777 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3778 if (errno == ESPIPE) { /* not a seekable stream */
3779 bytes_left = size;
3780 } else {
3781 return pos;
3782 }
3783 } else {
3784 if (dumpsize.rlim_cur <= pos) {
3785 return -1;
3786 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3787 bytes_left = size;
3788 } else {
3789 size_t limit_left=dumpsize.rlim_cur - pos;
3790 bytes_left = limit_left >= size ? size : limit_left ;
3791 }
3792 }
3793
3794 /*
3795 * In normal conditions, single write(2) should do but
3796 * in case of socket etc. this mechanism is more portable.
3797 */
3798 do {
3799 bytes_written = write(fd, bufp, bytes_left);
3800 if (bytes_written < 0) {
3801 if (errno == EINTR)
3802 continue;
3803 return (-1);
3804 } else if (bytes_written == 0) { /* eof */
3805 return (-1);
3806 }
3807 bufp += bytes_written;
3808 bytes_left -= bytes_written;
3809 } while (bytes_left > 0);
3810
3811 return (0);
3812 }
3813
3814 static int write_note(struct memelfnote *men, int fd)
3815 {
3816 struct elf_note en;
3817
3818 en.n_namesz = men->namesz;
3819 en.n_type = men->type;
3820 en.n_descsz = men->datasz;
3821
3822 bswap_note(&en);
3823
3824 if (dump_write(fd, &en, sizeof(en)) != 0)
3825 return (-1);
3826 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3827 return (-1);
3828 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3829 return (-1);
3830
3831 return (0);
3832 }
3833
3834 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3835 {
3836 CPUState *cpu = env_cpu((CPUArchState *)env);
3837 TaskState *ts = (TaskState *)cpu->opaque;
3838 struct elf_thread_status *ets;
3839
3840 ets = g_malloc0(sizeof (*ets));
3841 ets->num_notes = 1; /* only prstatus is dumped */
3842 fill_prstatus(&ets->prstatus, ts, 0);
3843 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3844 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3845 &ets->prstatus);
3846
3847 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3848
3849 info->notes_size += note_size(&ets->notes[0]);
3850 }
3851
3852 static void init_note_info(struct elf_note_info *info)
3853 {
3854 /* Initialize the elf_note_info structure so that it is at
3855 * least safe to call free_note_info() on it. Must be
3856 * called before calling fill_note_info().
3857 */
3858 memset(info, 0, sizeof (*info));
3859 QTAILQ_INIT(&info->thread_list);
3860 }
3861
3862 static int fill_note_info(struct elf_note_info *info,
3863 long signr, const CPUArchState *env)
3864 {
3865 #define NUMNOTES 3
3866 CPUState *cpu = env_cpu((CPUArchState *)env);
3867 TaskState *ts = (TaskState *)cpu->opaque;
3868 int i;
3869
3870 info->notes = g_new0(struct memelfnote, NUMNOTES);
3871 if (info->notes == NULL)
3872 return (-ENOMEM);
3873 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3874 if (info->prstatus == NULL)
3875 return (-ENOMEM);
3876 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3877 if (info->prstatus == NULL)
3878 return (-ENOMEM);
3879
3880 /*
3881 * First fill in status (and registers) of current thread
3882 * including process info & aux vector.
3883 */
3884 fill_prstatus(info->prstatus, ts, signr);
3885 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3886 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3887 sizeof (*info->prstatus), info->prstatus);
3888 fill_psinfo(info->psinfo, ts);
3889 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3890 sizeof (*info->psinfo), info->psinfo);
3891 fill_auxv_note(&info->notes[2], ts);
3892 info->numnote = 3;
3893
3894 info->notes_size = 0;
3895 for (i = 0; i < info->numnote; i++)
3896 info->notes_size += note_size(&info->notes[i]);
3897
3898 /* read and fill status of all threads */
3899 cpu_list_lock();
3900 CPU_FOREACH(cpu) {
3901 if (cpu == thread_cpu) {
3902 continue;
3903 }
3904 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3905 }
3906 cpu_list_unlock();
3907
3908 return (0);
3909 }
3910
3911 static void free_note_info(struct elf_note_info *info)
3912 {
3913 struct elf_thread_status *ets;
3914
3915 while (!QTAILQ_EMPTY(&info->thread_list)) {
3916 ets = QTAILQ_FIRST(&info->thread_list);
3917 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3918 g_free(ets);
3919 }
3920
3921 g_free(info->prstatus);
3922 g_free(info->psinfo);
3923 g_free(info->notes);
3924 }
3925
3926 static int write_note_info(struct elf_note_info *info, int fd)
3927 {
3928 struct elf_thread_status *ets;
3929 int i, error = 0;
3930
3931 /* write prstatus, psinfo and auxv for current thread */
3932 for (i = 0; i < info->numnote; i++)
3933 if ((error = write_note(&info->notes[i], fd)) != 0)
3934 return (error);
3935
3936 /* write prstatus for each thread */
3937 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3938 if ((error = write_note(&ets->notes[0], fd)) != 0)
3939 return (error);
3940 }
3941
3942 return (0);
3943 }
3944
3945 /*
3946 * Write out ELF coredump.
3947 *
3948 * See documentation of ELF object file format in:
3949 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3950 *
3951 * Coredump format in linux is following:
3952 *
3953 * 0 +----------------------+ \
3954 * | ELF header | ET_CORE |
3955 * +----------------------+ |
3956 * | ELF program headers | |--- headers
3957 * | - NOTE section | |
3958 * | - PT_LOAD sections | |
3959 * +----------------------+ /
3960 * | NOTEs: |
3961 * | - NT_PRSTATUS |
3962 * | - NT_PRSINFO |
3963 * | - NT_AUXV |
3964 * +----------------------+ <-- aligned to target page
3965 * | Process memory dump |
3966 * : :
3967 * . .
3968 * : :
3969 * | |
3970 * +----------------------+
3971 *
3972 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3973 * NT_PRSINFO -> struct elf_prpsinfo
3974 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3975 *
3976 * Format follows System V format as close as possible. Current
3977 * version limitations are as follows:
3978 * - no floating point registers are dumped
3979 *
3980 * Function returns 0 in case of success, negative errno otherwise.
3981 *
3982 * TODO: make this work also during runtime: it should be
3983 * possible to force coredump from running process and then
3984 * continue processing. For example qemu could set up SIGUSR2
3985 * handler (provided that target process haven't registered
3986 * handler for that) that does the dump when signal is received.
3987 */
3988 static int elf_core_dump(int signr, const CPUArchState *env)
3989 {
3990 const CPUState *cpu = env_cpu((CPUArchState *)env);
3991 const TaskState *ts = (const TaskState *)cpu->opaque;
3992 struct vm_area_struct *vma = NULL;
3993 g_autofree char *corefile = NULL;
3994 struct elf_note_info info;
3995 struct elfhdr elf;
3996 struct elf_phdr phdr;
3997 struct rlimit dumpsize;
3998 struct mm_struct *mm = NULL;
3999 off_t offset = 0, data_offset = 0;
4000 int segs = 0;
4001 int fd = -1;
4002
4003 init_note_info(&info);
4004
4005 errno = 0;
4006 getrlimit(RLIMIT_CORE, &dumpsize);
4007 if (dumpsize.rlim_cur == 0)
4008 return 0;
4009
4010 corefile = core_dump_filename(ts);
4011
4012 if ((fd = open(corefile, O_WRONLY | O_CREAT,
4013 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4014 return (-errno);
4015
4016 /*
4017 * Walk through target process memory mappings and
4018 * set up structure containing this information. After
4019 * this point vma_xxx functions can be used.
4020 */
4021 if ((mm = vma_init()) == NULL)
4022 goto out;
4023
4024 walk_memory_regions(mm, vma_walker);
4025 segs = vma_get_mapping_count(mm);
4026
4027 /*
4028 * Construct valid coredump ELF header. We also
4029 * add one more segment for notes.
4030 */
4031 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4032 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4033 goto out;
4034
4035 /* fill in the in-memory version of notes */
4036 if (fill_note_info(&info, signr, env) < 0)
4037 goto out;
4038
4039 offset += sizeof (elf); /* elf header */
4040 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4041
4042 /* write out notes program header */
4043 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4044
4045 offset += info.notes_size;
4046 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4047 goto out;
4048
4049 /*
4050 * ELF specification wants data to start at page boundary so
4051 * we align it here.
4052 */
4053 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4054
4055 /*
4056 * Write program headers for memory regions mapped in
4057 * the target process.
4058 */
4059 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4060 (void) memset(&phdr, 0, sizeof (phdr));
4061
4062 phdr.p_type = PT_LOAD;
4063 phdr.p_offset = offset;
4064 phdr.p_vaddr = vma->vma_start;
4065 phdr.p_paddr = 0;
4066 phdr.p_filesz = vma_dump_size(vma);
4067 offset += phdr.p_filesz;
4068 phdr.p_memsz = vma->vma_end - vma->vma_start;
4069 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4070 if (vma->vma_flags & PROT_WRITE)
4071 phdr.p_flags |= PF_W;
4072 if (vma->vma_flags & PROT_EXEC)
4073 phdr.p_flags |= PF_X;
4074 phdr.p_align = ELF_EXEC_PAGESIZE;
4075
4076 bswap_phdr(&phdr, 1);
4077 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4078 goto out;
4079 }
4080 }
4081
4082 /*
4083 * Next we write notes just after program headers. No
4084 * alignment needed here.
4085 */
4086 if (write_note_info(&info, fd) < 0)
4087 goto out;
4088
4089 /* align data to page boundary */
4090 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4091 goto out;
4092
4093 /*
4094 * Finally we can dump process memory into corefile as well.
4095 */
4096 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4097 abi_ulong addr;
4098 abi_ulong end;
4099
4100 end = vma->vma_start + vma_dump_size(vma);
4101
4102 for (addr = vma->vma_start; addr < end;
4103 addr += TARGET_PAGE_SIZE) {
4104 char page[TARGET_PAGE_SIZE];
4105 int error;
4106
4107 /*
4108 * Read in page from target process memory and
4109 * write it to coredump file.
4110 */
4111 error = copy_from_user(page, addr, sizeof (page));
4112 if (error != 0) {
4113 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4114 addr);
4115 errno = -error;
4116 goto out;
4117 }
4118 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4119 goto out;
4120 }
4121 }
4122
4123 out:
4124 free_note_info(&info);
4125 if (mm != NULL)
4126 vma_delete(mm);
4127 (void) close(fd);
4128
4129 if (errno != 0)
4130 return (-errno);
4131 return (0);
4132 }
4133 #endif /* USE_ELF_CORE_DUMP */
4134
4135 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4136 {
4137 init_thread(regs, infop);
4138 }