]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
linux-user: Remove duplicate CPU_LOG_PAGE from probe_guest_base
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35
36 #define ELF_OSABI ELFOSABI_SYSV
37
38 /* from personality.h */
39
40 /*
41 * Flags for bug emulation.
42 *
43 * These occupy the top three bytes.
44 */
45 enum {
46 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
47 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
48 descriptors (signal handling) */
49 MMAP_PAGE_ZERO = 0x0100000,
50 ADDR_COMPAT_LAYOUT = 0x0200000,
51 READ_IMPLIES_EXEC = 0x0400000,
52 ADDR_LIMIT_32BIT = 0x0800000,
53 SHORT_INODE = 0x1000000,
54 WHOLE_SECONDS = 0x2000000,
55 STICKY_TIMEOUTS = 0x4000000,
56 ADDR_LIMIT_3GB = 0x8000000,
57 };
58
59 /*
60 * Personality types.
61 *
62 * These go in the low byte. Avoid using the top bit, it will
63 * conflict with error returns.
64 */
65 enum {
66 PER_LINUX = 0x0000,
67 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
68 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
69 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
75 PER_BSD = 0x0006,
76 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
77 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78 PER_LINUX32 = 0x0008,
79 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
80 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83 PER_RISCOS = 0x000c,
84 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
85 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86 PER_OSF4 = 0x000f, /* OSF/1 v4 */
87 PER_HPUX = 0x0010,
88 PER_MASK = 0x00ff,
89 };
90
91 /*
92 * Return the base personality without flags.
93 */
94 #define personality(pers) (pers & PER_MASK)
95
96 int info_is_fdpic(struct image_info *info)
97 {
98 return info->personality == PER_LINUX_FDPIC;
99 }
100
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA ELFDATA2MSB
113 #else
114 #define ELF_DATA ELFDATA2LSB
115 #endif
116
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong target_elf_greg_t;
119 #define tswapreg(ptr) tswap64(ptr)
120 #else
121 typedef abi_ulong target_elf_greg_t;
122 #define tswapreg(ptr) tswapal(ptr)
123 #endif
124
125 #ifdef USE_UID16
126 typedef abi_ushort target_uid_t;
127 typedef abi_ushort target_gid_t;
128 #else
129 typedef abi_uint target_uid_t;
130 typedef abi_uint target_gid_t;
131 #endif
132 typedef abi_int target_pid_t;
133
134 #ifdef TARGET_I386
135
136 #define ELF_HWCAP get_elf_hwcap()
137
138 static uint32_t get_elf_hwcap(void)
139 {
140 X86CPU *cpu = X86_CPU(thread_cpu);
141
142 return cpu->env.features[FEAT_1_EDX];
143 }
144
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147
148 #define ELF_CLASS ELFCLASS64
149 #define ELF_ARCH EM_X86_64
150
151 #define ELF_PLATFORM "x86_64"
152
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158 }
159
160 #define ELF_NREG 27
161 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
162
163 /*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172 (*regs)[0] = tswapreg(env->regs[15]);
173 (*regs)[1] = tswapreg(env->regs[14]);
174 (*regs)[2] = tswapreg(env->regs[13]);
175 (*regs)[3] = tswapreg(env->regs[12]);
176 (*regs)[4] = tswapreg(env->regs[R_EBP]);
177 (*regs)[5] = tswapreg(env->regs[R_EBX]);
178 (*regs)[6] = tswapreg(env->regs[11]);
179 (*regs)[7] = tswapreg(env->regs[10]);
180 (*regs)[8] = tswapreg(env->regs[9]);
181 (*regs)[9] = tswapreg(env->regs[8]);
182 (*regs)[10] = tswapreg(env->regs[R_EAX]);
183 (*regs)[11] = tswapreg(env->regs[R_ECX]);
184 (*regs)[12] = tswapreg(env->regs[R_EDX]);
185 (*regs)[13] = tswapreg(env->regs[R_ESI]);
186 (*regs)[14] = tswapreg(env->regs[R_EDI]);
187 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
188 (*regs)[16] = tswapreg(env->eip);
189 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
190 (*regs)[18] = tswapreg(env->eflags);
191 (*regs)[19] = tswapreg(env->regs[R_ESP]);
192 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
193 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
194 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
195 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
196 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
197 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
198 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
199 }
200
201 #if ULONG_MAX > UINT32_MAX
202 #define INIT_GUEST_COMMPAGE
203 static bool init_guest_commpage(void)
204 {
205 /*
206 * The vsyscall page is at a high negative address aka kernel space,
207 * which means that we cannot actually allocate it with target_mmap.
208 * We still should be able to use page_set_flags, unless the user
209 * has specified -R reserved_va, which would trigger an assert().
210 */
211 if (reserved_va != 0 &&
212 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
213 error_report("Cannot allocate vsyscall page");
214 exit(EXIT_FAILURE);
215 }
216 page_set_flags(TARGET_VSYSCALL_PAGE,
217 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
218 PAGE_EXEC | PAGE_VALID);
219 return true;
220 }
221 #endif
222 #else
223
224 #define ELF_START_MMAP 0x80000000
225
226 /*
227 * This is used to ensure we don't load something for the wrong architecture.
228 */
229 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
230
231 /*
232 * These are used to set parameters in the core dumps.
233 */
234 #define ELF_CLASS ELFCLASS32
235 #define ELF_ARCH EM_386
236
237 #define ELF_PLATFORM get_elf_platform()
238 #define EXSTACK_DEFAULT true
239
240 static const char *get_elf_platform(void)
241 {
242 static char elf_platform[] = "i386";
243 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
244 if (family > 6) {
245 family = 6;
246 }
247 if (family >= 3) {
248 elf_platform[1] = '0' + family;
249 }
250 return elf_platform;
251 }
252
253 static inline void init_thread(struct target_pt_regs *regs,
254 struct image_info *infop)
255 {
256 regs->esp = infop->start_stack;
257 regs->eip = infop->entry;
258
259 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
260 starts %edx contains a pointer to a function which might be
261 registered using `atexit'. This provides a mean for the
262 dynamic linker to call DT_FINI functions for shared libraries
263 that have been loaded before the code runs.
264
265 A value of 0 tells we have no such handler. */
266 regs->edx = 0;
267 }
268
269 #define ELF_NREG 17
270 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
271
272 /*
273 * Note that ELF_NREG should be 19 as there should be place for
274 * TRAPNO and ERR "registers" as well but linux doesn't dump
275 * those.
276 *
277 * See linux kernel: arch/x86/include/asm/elf.h
278 */
279 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
280 {
281 (*regs)[0] = tswapreg(env->regs[R_EBX]);
282 (*regs)[1] = tswapreg(env->regs[R_ECX]);
283 (*regs)[2] = tswapreg(env->regs[R_EDX]);
284 (*regs)[3] = tswapreg(env->regs[R_ESI]);
285 (*regs)[4] = tswapreg(env->regs[R_EDI]);
286 (*regs)[5] = tswapreg(env->regs[R_EBP]);
287 (*regs)[6] = tswapreg(env->regs[R_EAX]);
288 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
289 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
290 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
291 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
292 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
293 (*regs)[12] = tswapreg(env->eip);
294 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
295 (*regs)[14] = tswapreg(env->eflags);
296 (*regs)[15] = tswapreg(env->regs[R_ESP]);
297 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
298 }
299 #endif
300
301 #define USE_ELF_CORE_DUMP
302 #define ELF_EXEC_PAGESIZE 4096
303
304 #endif
305
306 #ifdef TARGET_ARM
307
308 #ifndef TARGET_AARCH64
309 /* 32 bit ARM definitions */
310
311 #define ELF_START_MMAP 0x80000000
312
313 #define ELF_ARCH EM_ARM
314 #define ELF_CLASS ELFCLASS32
315 #define EXSTACK_DEFAULT true
316
317 static inline void init_thread(struct target_pt_regs *regs,
318 struct image_info *infop)
319 {
320 abi_long stack = infop->start_stack;
321 memset(regs, 0, sizeof(*regs));
322
323 regs->uregs[16] = ARM_CPU_MODE_USR;
324 if (infop->entry & 1) {
325 regs->uregs[16] |= CPSR_T;
326 }
327 regs->uregs[15] = infop->entry & 0xfffffffe;
328 regs->uregs[13] = infop->start_stack;
329 /* FIXME - what to for failure of get_user()? */
330 get_user_ual(regs->uregs[2], stack + 8); /* envp */
331 get_user_ual(regs->uregs[1], stack + 4); /* envp */
332 /* XXX: it seems that r0 is zeroed after ! */
333 regs->uregs[0] = 0;
334 /* For uClinux PIC binaries. */
335 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
336 regs->uregs[10] = infop->start_data;
337
338 /* Support ARM FDPIC. */
339 if (info_is_fdpic(infop)) {
340 /* As described in the ABI document, r7 points to the loadmap info
341 * prepared by the kernel. If an interpreter is needed, r8 points
342 * to the interpreter loadmap and r9 points to the interpreter
343 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
344 * r9 points to the main program PT_DYNAMIC info.
345 */
346 regs->uregs[7] = infop->loadmap_addr;
347 if (infop->interpreter_loadmap_addr) {
348 /* Executable is dynamically loaded. */
349 regs->uregs[8] = infop->interpreter_loadmap_addr;
350 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
351 } else {
352 regs->uregs[8] = 0;
353 regs->uregs[9] = infop->pt_dynamic_addr;
354 }
355 }
356 }
357
358 #define ELF_NREG 18
359 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
360
361 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
362 {
363 (*regs)[0] = tswapreg(env->regs[0]);
364 (*regs)[1] = tswapreg(env->regs[1]);
365 (*regs)[2] = tswapreg(env->regs[2]);
366 (*regs)[3] = tswapreg(env->regs[3]);
367 (*regs)[4] = tswapreg(env->regs[4]);
368 (*regs)[5] = tswapreg(env->regs[5]);
369 (*regs)[6] = tswapreg(env->regs[6]);
370 (*regs)[7] = tswapreg(env->regs[7]);
371 (*regs)[8] = tswapreg(env->regs[8]);
372 (*regs)[9] = tswapreg(env->regs[9]);
373 (*regs)[10] = tswapreg(env->regs[10]);
374 (*regs)[11] = tswapreg(env->regs[11]);
375 (*regs)[12] = tswapreg(env->regs[12]);
376 (*regs)[13] = tswapreg(env->regs[13]);
377 (*regs)[14] = tswapreg(env->regs[14]);
378 (*regs)[15] = tswapreg(env->regs[15]);
379
380 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
381 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
382 }
383
384 #define USE_ELF_CORE_DUMP
385 #define ELF_EXEC_PAGESIZE 4096
386
387 enum
388 {
389 ARM_HWCAP_ARM_SWP = 1 << 0,
390 ARM_HWCAP_ARM_HALF = 1 << 1,
391 ARM_HWCAP_ARM_THUMB = 1 << 2,
392 ARM_HWCAP_ARM_26BIT = 1 << 3,
393 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
394 ARM_HWCAP_ARM_FPA = 1 << 5,
395 ARM_HWCAP_ARM_VFP = 1 << 6,
396 ARM_HWCAP_ARM_EDSP = 1 << 7,
397 ARM_HWCAP_ARM_JAVA = 1 << 8,
398 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
399 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
400 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
401 ARM_HWCAP_ARM_NEON = 1 << 12,
402 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
403 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
404 ARM_HWCAP_ARM_TLS = 1 << 15,
405 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
406 ARM_HWCAP_ARM_IDIVA = 1 << 17,
407 ARM_HWCAP_ARM_IDIVT = 1 << 18,
408 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
409 ARM_HWCAP_ARM_LPAE = 1 << 20,
410 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
411 };
412
413 enum {
414 ARM_HWCAP2_ARM_AES = 1 << 0,
415 ARM_HWCAP2_ARM_PMULL = 1 << 1,
416 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
417 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
418 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
419 };
420
421 /* The commpage only exists for 32 bit kernels */
422
423 #define HI_COMMPAGE (intptr_t)0xffff0f00u
424
425 static bool init_guest_commpage(void)
426 {
427 ARMCPU *cpu = ARM_CPU(thread_cpu);
428 abi_ptr commpage;
429 void *want;
430 void *addr;
431
432 /*
433 * M-profile allocates maximum of 2GB address space, so can never
434 * allocate the commpage. Skip it.
435 */
436 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
437 return true;
438 }
439
440 commpage = HI_COMMPAGE & -qemu_host_page_size;
441 want = g2h_untagged(commpage);
442 addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
443 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
444
445 if (addr == MAP_FAILED) {
446 perror("Allocating guest commpage");
447 exit(EXIT_FAILURE);
448 }
449 if (addr != want) {
450 return false;
451 }
452
453 /* Set kernel helper versions; rest of page is 0. */
454 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
455
456 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
457 perror("Protecting guest commpage");
458 exit(EXIT_FAILURE);
459 }
460
461 page_set_flags(commpage, commpage | ~qemu_host_page_mask,
462 PAGE_READ | PAGE_EXEC | PAGE_VALID);
463 return true;
464 }
465
466 #define ELF_HWCAP get_elf_hwcap()
467 #define ELF_HWCAP2 get_elf_hwcap2()
468
469 static uint32_t get_elf_hwcap(void)
470 {
471 ARMCPU *cpu = ARM_CPU(thread_cpu);
472 uint32_t hwcaps = 0;
473
474 hwcaps |= ARM_HWCAP_ARM_SWP;
475 hwcaps |= ARM_HWCAP_ARM_HALF;
476 hwcaps |= ARM_HWCAP_ARM_THUMB;
477 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
478
479 /* probe for the extra features */
480 #define GET_FEATURE(feat, hwcap) \
481 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
482
483 #define GET_FEATURE_ID(feat, hwcap) \
484 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
485
486 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
487 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
488 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
489 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
490 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
491 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
492 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
493 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
494 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
495 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
496
497 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
498 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
499 hwcaps |= ARM_HWCAP_ARM_VFPv3;
500 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
501 hwcaps |= ARM_HWCAP_ARM_VFPD32;
502 } else {
503 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
504 }
505 }
506 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
507
508 return hwcaps;
509 }
510
511 static uint32_t get_elf_hwcap2(void)
512 {
513 ARMCPU *cpu = ARM_CPU(thread_cpu);
514 uint32_t hwcaps = 0;
515
516 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
517 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
518 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
519 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
520 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
521 return hwcaps;
522 }
523
524 #undef GET_FEATURE
525 #undef GET_FEATURE_ID
526
527 #define ELF_PLATFORM get_elf_platform()
528
529 static const char *get_elf_platform(void)
530 {
531 CPUARMState *env = thread_cpu->env_ptr;
532
533 #if TARGET_BIG_ENDIAN
534 # define END "b"
535 #else
536 # define END "l"
537 #endif
538
539 if (arm_feature(env, ARM_FEATURE_V8)) {
540 return "v8" END;
541 } else if (arm_feature(env, ARM_FEATURE_V7)) {
542 if (arm_feature(env, ARM_FEATURE_M)) {
543 return "v7m" END;
544 } else {
545 return "v7" END;
546 }
547 } else if (arm_feature(env, ARM_FEATURE_V6)) {
548 return "v6" END;
549 } else if (arm_feature(env, ARM_FEATURE_V5)) {
550 return "v5" END;
551 } else {
552 return "v4" END;
553 }
554
555 #undef END
556 }
557
558 #else
559 /* 64 bit ARM definitions */
560 #define ELF_START_MMAP 0x80000000
561
562 #define ELF_ARCH EM_AARCH64
563 #define ELF_CLASS ELFCLASS64
564 #if TARGET_BIG_ENDIAN
565 # define ELF_PLATFORM "aarch64_be"
566 #else
567 # define ELF_PLATFORM "aarch64"
568 #endif
569
570 static inline void init_thread(struct target_pt_regs *regs,
571 struct image_info *infop)
572 {
573 abi_long stack = infop->start_stack;
574 memset(regs, 0, sizeof(*regs));
575
576 regs->pc = infop->entry & ~0x3ULL;
577 regs->sp = stack;
578 }
579
580 #define ELF_NREG 34
581 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
582
583 static void elf_core_copy_regs(target_elf_gregset_t *regs,
584 const CPUARMState *env)
585 {
586 int i;
587
588 for (i = 0; i < 32; i++) {
589 (*regs)[i] = tswapreg(env->xregs[i]);
590 }
591 (*regs)[32] = tswapreg(env->pc);
592 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
593 }
594
595 #define USE_ELF_CORE_DUMP
596 #define ELF_EXEC_PAGESIZE 4096
597
598 enum {
599 ARM_HWCAP_A64_FP = 1 << 0,
600 ARM_HWCAP_A64_ASIMD = 1 << 1,
601 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
602 ARM_HWCAP_A64_AES = 1 << 3,
603 ARM_HWCAP_A64_PMULL = 1 << 4,
604 ARM_HWCAP_A64_SHA1 = 1 << 5,
605 ARM_HWCAP_A64_SHA2 = 1 << 6,
606 ARM_HWCAP_A64_CRC32 = 1 << 7,
607 ARM_HWCAP_A64_ATOMICS = 1 << 8,
608 ARM_HWCAP_A64_FPHP = 1 << 9,
609 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
610 ARM_HWCAP_A64_CPUID = 1 << 11,
611 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
612 ARM_HWCAP_A64_JSCVT = 1 << 13,
613 ARM_HWCAP_A64_FCMA = 1 << 14,
614 ARM_HWCAP_A64_LRCPC = 1 << 15,
615 ARM_HWCAP_A64_DCPOP = 1 << 16,
616 ARM_HWCAP_A64_SHA3 = 1 << 17,
617 ARM_HWCAP_A64_SM3 = 1 << 18,
618 ARM_HWCAP_A64_SM4 = 1 << 19,
619 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
620 ARM_HWCAP_A64_SHA512 = 1 << 21,
621 ARM_HWCAP_A64_SVE = 1 << 22,
622 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
623 ARM_HWCAP_A64_DIT = 1 << 24,
624 ARM_HWCAP_A64_USCAT = 1 << 25,
625 ARM_HWCAP_A64_ILRCPC = 1 << 26,
626 ARM_HWCAP_A64_FLAGM = 1 << 27,
627 ARM_HWCAP_A64_SSBS = 1 << 28,
628 ARM_HWCAP_A64_SB = 1 << 29,
629 ARM_HWCAP_A64_PACA = 1 << 30,
630 ARM_HWCAP_A64_PACG = 1UL << 31,
631
632 ARM_HWCAP2_A64_DCPODP = 1 << 0,
633 ARM_HWCAP2_A64_SVE2 = 1 << 1,
634 ARM_HWCAP2_A64_SVEAES = 1 << 2,
635 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
636 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
637 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
638 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
639 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
640 ARM_HWCAP2_A64_FRINT = 1 << 8,
641 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
642 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
643 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
644 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
645 ARM_HWCAP2_A64_I8MM = 1 << 13,
646 ARM_HWCAP2_A64_BF16 = 1 << 14,
647 ARM_HWCAP2_A64_DGH = 1 << 15,
648 ARM_HWCAP2_A64_RNG = 1 << 16,
649 ARM_HWCAP2_A64_BTI = 1 << 17,
650 ARM_HWCAP2_A64_MTE = 1 << 18,
651 ARM_HWCAP2_A64_ECV = 1 << 19,
652 ARM_HWCAP2_A64_AFP = 1 << 20,
653 ARM_HWCAP2_A64_RPRES = 1 << 21,
654 ARM_HWCAP2_A64_MTE3 = 1 << 22,
655 ARM_HWCAP2_A64_SME = 1 << 23,
656 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
657 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
658 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
659 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
660 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
661 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
662 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
663 };
664
665 #define ELF_HWCAP get_elf_hwcap()
666 #define ELF_HWCAP2 get_elf_hwcap2()
667
668 #define GET_FEATURE_ID(feat, hwcap) \
669 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
670
671 static uint32_t get_elf_hwcap(void)
672 {
673 ARMCPU *cpu = ARM_CPU(thread_cpu);
674 uint32_t hwcaps = 0;
675
676 hwcaps |= ARM_HWCAP_A64_FP;
677 hwcaps |= ARM_HWCAP_A64_ASIMD;
678 hwcaps |= ARM_HWCAP_A64_CPUID;
679
680 /* probe for the extra features */
681
682 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
683 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
684 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
685 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
686 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
687 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
688 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
689 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
690 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
691 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
692 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
693 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
694 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
695 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
696 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
697 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
698 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
699 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
700 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
701 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
702 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
703 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
704 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
705
706 return hwcaps;
707 }
708
709 static uint32_t get_elf_hwcap2(void)
710 {
711 ARMCPU *cpu = ARM_CPU(thread_cpu);
712 uint32_t hwcaps = 0;
713
714 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
715 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
716 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
717 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
718 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
719 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
720 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
721 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
722 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
723 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
724 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
725 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
726 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
727 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
728 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
729 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
730 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
731 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
732 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
733 ARM_HWCAP2_A64_SME_F32F32 |
734 ARM_HWCAP2_A64_SME_B16F32 |
735 ARM_HWCAP2_A64_SME_F16F32 |
736 ARM_HWCAP2_A64_SME_I8I32));
737 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
738 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
739 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
740
741 return hwcaps;
742 }
743
744 #undef GET_FEATURE_ID
745
746 #endif /* not TARGET_AARCH64 */
747 #endif /* TARGET_ARM */
748
749 #ifdef TARGET_SPARC
750 #ifdef TARGET_SPARC64
751
752 #define ELF_START_MMAP 0x80000000
753 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
754 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
755 #ifndef TARGET_ABI32
756 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
757 #else
758 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
759 #endif
760
761 #define ELF_CLASS ELFCLASS64
762 #define ELF_ARCH EM_SPARCV9
763 #else
764 #define ELF_START_MMAP 0x80000000
765 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
766 | HWCAP_SPARC_MULDIV)
767 #define ELF_CLASS ELFCLASS32
768 #define ELF_ARCH EM_SPARC
769 #endif /* TARGET_SPARC64 */
770
771 static inline void init_thread(struct target_pt_regs *regs,
772 struct image_info *infop)
773 {
774 /* Note that target_cpu_copy_regs does not read psr/tstate. */
775 regs->pc = infop->entry;
776 regs->npc = regs->pc + 4;
777 regs->y = 0;
778 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
779 - TARGET_STACK_BIAS);
780 }
781 #endif /* TARGET_SPARC */
782
783 #ifdef TARGET_PPC
784
785 #define ELF_MACHINE PPC_ELF_MACHINE
786 #define ELF_START_MMAP 0x80000000
787
788 #if defined(TARGET_PPC64)
789
790 #define elf_check_arch(x) ( (x) == EM_PPC64 )
791
792 #define ELF_CLASS ELFCLASS64
793
794 #else
795
796 #define ELF_CLASS ELFCLASS32
797 #define EXSTACK_DEFAULT true
798
799 #endif
800
801 #define ELF_ARCH EM_PPC
802
803 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
804 See arch/powerpc/include/asm/cputable.h. */
805 enum {
806 QEMU_PPC_FEATURE_32 = 0x80000000,
807 QEMU_PPC_FEATURE_64 = 0x40000000,
808 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
809 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
810 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
811 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
812 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
813 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
814 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
815 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
816 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
817 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
818 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
819 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
820 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
821 QEMU_PPC_FEATURE_CELL = 0x00010000,
822 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
823 QEMU_PPC_FEATURE_SMT = 0x00004000,
824 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
825 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
826 QEMU_PPC_FEATURE_PA6T = 0x00000800,
827 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
828 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
829 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
830 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
831 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
832
833 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
834 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
835
836 /* Feature definitions in AT_HWCAP2. */
837 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
838 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
839 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
840 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
841 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
842 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
843 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
844 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
845 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
846 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
847 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
848 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
849 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
850 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
851 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
852 };
853
854 #define ELF_HWCAP get_elf_hwcap()
855
856 static uint32_t get_elf_hwcap(void)
857 {
858 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
859 uint32_t features = 0;
860
861 /* We don't have to be terribly complete here; the high points are
862 Altivec/FP/SPE support. Anything else is just a bonus. */
863 #define GET_FEATURE(flag, feature) \
864 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
865 #define GET_FEATURE2(flags, feature) \
866 do { \
867 if ((cpu->env.insns_flags2 & flags) == flags) { \
868 features |= feature; \
869 } \
870 } while (0)
871 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
872 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
873 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
874 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
875 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
876 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
877 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
878 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
879 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
880 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
881 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
882 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
883 QEMU_PPC_FEATURE_ARCH_2_06);
884 #undef GET_FEATURE
885 #undef GET_FEATURE2
886
887 return features;
888 }
889
890 #define ELF_HWCAP2 get_elf_hwcap2()
891
892 static uint32_t get_elf_hwcap2(void)
893 {
894 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
895 uint32_t features = 0;
896
897 #define GET_FEATURE(flag, feature) \
898 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
899 #define GET_FEATURE2(flag, feature) \
900 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
901
902 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
903 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
904 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
905 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
906 QEMU_PPC_FEATURE2_VEC_CRYPTO);
907 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
908 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
909 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
910 QEMU_PPC_FEATURE2_MMA);
911
912 #undef GET_FEATURE
913 #undef GET_FEATURE2
914
915 return features;
916 }
917
918 /*
919 * The requirements here are:
920 * - keep the final alignment of sp (sp & 0xf)
921 * - make sure the 32-bit value at the first 16 byte aligned position of
922 * AUXV is greater than 16 for glibc compatibility.
923 * AT_IGNOREPPC is used for that.
924 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
925 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
926 */
927 #define DLINFO_ARCH_ITEMS 5
928 #define ARCH_DLINFO \
929 do { \
930 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
931 /* \
932 * Handle glibc compatibility: these magic entries must \
933 * be at the lowest addresses in the final auxv. \
934 */ \
935 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
936 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
937 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
938 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
939 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
940 } while (0)
941
942 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
943 {
944 _regs->gpr[1] = infop->start_stack;
945 #if defined(TARGET_PPC64)
946 if (get_ppc64_abi(infop) < 2) {
947 uint64_t val;
948 get_user_u64(val, infop->entry + 8);
949 _regs->gpr[2] = val + infop->load_bias;
950 get_user_u64(val, infop->entry);
951 infop->entry = val + infop->load_bias;
952 } else {
953 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
954 }
955 #endif
956 _regs->nip = infop->entry;
957 }
958
959 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
960 #define ELF_NREG 48
961 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
962
963 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
964 {
965 int i;
966 target_ulong ccr = 0;
967
968 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
969 (*regs)[i] = tswapreg(env->gpr[i]);
970 }
971
972 (*regs)[32] = tswapreg(env->nip);
973 (*regs)[33] = tswapreg(env->msr);
974 (*regs)[35] = tswapreg(env->ctr);
975 (*regs)[36] = tswapreg(env->lr);
976 (*regs)[37] = tswapreg(cpu_read_xer(env));
977
978 ccr = ppc_get_cr(env);
979 (*regs)[38] = tswapreg(ccr);
980 }
981
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE 4096
984
985 #endif
986
987 #ifdef TARGET_LOONGARCH64
988
989 #define ELF_START_MMAP 0x80000000
990
991 #define ELF_CLASS ELFCLASS64
992 #define ELF_ARCH EM_LOONGARCH
993 #define EXSTACK_DEFAULT true
994
995 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
996
997 static inline void init_thread(struct target_pt_regs *regs,
998 struct image_info *infop)
999 {
1000 /*Set crmd PG,DA = 1,0 */
1001 regs->csr.crmd = 2 << 3;
1002 regs->csr.era = infop->entry;
1003 regs->regs[3] = infop->start_stack;
1004 }
1005
1006 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1007 #define ELF_NREG 45
1008 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1009
1010 enum {
1011 TARGET_EF_R0 = 0,
1012 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1013 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1014 };
1015
1016 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1017 const CPULoongArchState *env)
1018 {
1019 int i;
1020
1021 (*regs)[TARGET_EF_R0] = 0;
1022
1023 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1024 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1025 }
1026
1027 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1028 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1029 }
1030
1031 #define USE_ELF_CORE_DUMP
1032 #define ELF_EXEC_PAGESIZE 4096
1033
1034 #define ELF_HWCAP get_elf_hwcap()
1035
1036 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1037 enum {
1038 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1039 HWCAP_LOONGARCH_LAM = (1 << 1),
1040 HWCAP_LOONGARCH_UAL = (1 << 2),
1041 HWCAP_LOONGARCH_FPU = (1 << 3),
1042 HWCAP_LOONGARCH_LSX = (1 << 4),
1043 HWCAP_LOONGARCH_LASX = (1 << 5),
1044 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1045 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1046 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1047 HWCAP_LOONGARCH_LVZ = (1 << 9),
1048 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1049 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1050 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1051 };
1052
1053 static uint32_t get_elf_hwcap(void)
1054 {
1055 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1056 uint32_t hwcaps = 0;
1057
1058 hwcaps |= HWCAP_LOONGARCH_CRC32;
1059
1060 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1061 hwcaps |= HWCAP_LOONGARCH_UAL;
1062 }
1063
1064 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1065 hwcaps |= HWCAP_LOONGARCH_FPU;
1066 }
1067
1068 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1069 hwcaps |= HWCAP_LOONGARCH_LAM;
1070 }
1071
1072 return hwcaps;
1073 }
1074
1075 #define ELF_PLATFORM "loongarch"
1076
1077 #endif /* TARGET_LOONGARCH64 */
1078
1079 #ifdef TARGET_MIPS
1080
1081 #define ELF_START_MMAP 0x80000000
1082
1083 #ifdef TARGET_MIPS64
1084 #define ELF_CLASS ELFCLASS64
1085 #else
1086 #define ELF_CLASS ELFCLASS32
1087 #endif
1088 #define ELF_ARCH EM_MIPS
1089 #define EXSTACK_DEFAULT true
1090
1091 #ifdef TARGET_ABI_MIPSN32
1092 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1093 #else
1094 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1095 #endif
1096
1097 #define ELF_BASE_PLATFORM get_elf_base_platform()
1098
1099 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1100 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1101 { return _base_platform; } } while (0)
1102
1103 static const char *get_elf_base_platform(void)
1104 {
1105 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1106
1107 /* 64 bit ISAs goes first */
1108 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1109 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1110 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1111 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1112 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1113 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1114 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1115
1116 /* 32 bit ISAs */
1117 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1118 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1119 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1120 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1121 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1122
1123 /* Fallback */
1124 return "mips";
1125 }
1126 #undef MATCH_PLATFORM_INSN
1127
1128 static inline void init_thread(struct target_pt_regs *regs,
1129 struct image_info *infop)
1130 {
1131 regs->cp0_status = 2 << CP0St_KSU;
1132 regs->cp0_epc = infop->entry;
1133 regs->regs[29] = infop->start_stack;
1134 }
1135
1136 /* See linux kernel: arch/mips/include/asm/elf.h. */
1137 #define ELF_NREG 45
1138 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1139
1140 /* See linux kernel: arch/mips/include/asm/reg.h. */
1141 enum {
1142 #ifdef TARGET_MIPS64
1143 TARGET_EF_R0 = 0,
1144 #else
1145 TARGET_EF_R0 = 6,
1146 #endif
1147 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1148 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1149 TARGET_EF_LO = TARGET_EF_R0 + 32,
1150 TARGET_EF_HI = TARGET_EF_R0 + 33,
1151 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1152 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1153 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1154 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1155 };
1156
1157 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1158 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1159 {
1160 int i;
1161
1162 for (i = 0; i < TARGET_EF_R0; i++) {
1163 (*regs)[i] = 0;
1164 }
1165 (*regs)[TARGET_EF_R0] = 0;
1166
1167 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1168 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1169 }
1170
1171 (*regs)[TARGET_EF_R26] = 0;
1172 (*regs)[TARGET_EF_R27] = 0;
1173 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1174 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1175 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1176 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1177 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1178 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1179 }
1180
1181 #define USE_ELF_CORE_DUMP
1182 #define ELF_EXEC_PAGESIZE 4096
1183
1184 /* See arch/mips/include/uapi/asm/hwcap.h. */
1185 enum {
1186 HWCAP_MIPS_R6 = (1 << 0),
1187 HWCAP_MIPS_MSA = (1 << 1),
1188 HWCAP_MIPS_CRC32 = (1 << 2),
1189 HWCAP_MIPS_MIPS16 = (1 << 3),
1190 HWCAP_MIPS_MDMX = (1 << 4),
1191 HWCAP_MIPS_MIPS3D = (1 << 5),
1192 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1193 HWCAP_MIPS_DSP = (1 << 7),
1194 HWCAP_MIPS_DSP2 = (1 << 8),
1195 HWCAP_MIPS_DSP3 = (1 << 9),
1196 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1197 HWCAP_LOONGSON_MMI = (1 << 11),
1198 HWCAP_LOONGSON_EXT = (1 << 12),
1199 HWCAP_LOONGSON_EXT2 = (1 << 13),
1200 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1201 };
1202
1203 #define ELF_HWCAP get_elf_hwcap()
1204
1205 #define GET_FEATURE_INSN(_flag, _hwcap) \
1206 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1207
1208 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1209 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1210
1211 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1212 do { \
1213 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1214 hwcaps |= _hwcap; \
1215 } \
1216 } while (0)
1217
1218 static uint32_t get_elf_hwcap(void)
1219 {
1220 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1221 uint32_t hwcaps = 0;
1222
1223 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1224 2, HWCAP_MIPS_R6);
1225 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1226 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1227 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1228
1229 return hwcaps;
1230 }
1231
1232 #undef GET_FEATURE_REG_EQU
1233 #undef GET_FEATURE_REG_SET
1234 #undef GET_FEATURE_INSN
1235
1236 #endif /* TARGET_MIPS */
1237
1238 #ifdef TARGET_MICROBLAZE
1239
1240 #define ELF_START_MMAP 0x80000000
1241
1242 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1243
1244 #define ELF_CLASS ELFCLASS32
1245 #define ELF_ARCH EM_MICROBLAZE
1246
1247 static inline void init_thread(struct target_pt_regs *regs,
1248 struct image_info *infop)
1249 {
1250 regs->pc = infop->entry;
1251 regs->r1 = infop->start_stack;
1252
1253 }
1254
1255 #define ELF_EXEC_PAGESIZE 4096
1256
1257 #define USE_ELF_CORE_DUMP
1258 #define ELF_NREG 38
1259 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1260
1261 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1262 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1263 {
1264 int i, pos = 0;
1265
1266 for (i = 0; i < 32; i++) {
1267 (*regs)[pos++] = tswapreg(env->regs[i]);
1268 }
1269
1270 (*regs)[pos++] = tswapreg(env->pc);
1271 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1272 (*regs)[pos++] = 0;
1273 (*regs)[pos++] = tswapreg(env->ear);
1274 (*regs)[pos++] = 0;
1275 (*regs)[pos++] = tswapreg(env->esr);
1276 }
1277
1278 #endif /* TARGET_MICROBLAZE */
1279
1280 #ifdef TARGET_NIOS2
1281
1282 #define ELF_START_MMAP 0x80000000
1283
1284 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1285
1286 #define ELF_CLASS ELFCLASS32
1287 #define ELF_ARCH EM_ALTERA_NIOS2
1288
1289 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1290 {
1291 regs->ea = infop->entry;
1292 regs->sp = infop->start_stack;
1293 }
1294
1295 #define LO_COMMPAGE TARGET_PAGE_SIZE
1296
1297 static bool init_guest_commpage(void)
1298 {
1299 static const uint8_t kuser_page[4 + 2 * 64] = {
1300 /* __kuser_helper_version */
1301 [0x00] = 0x02, 0x00, 0x00, 0x00,
1302
1303 /* __kuser_cmpxchg */
1304 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1305 0x3a, 0x28, 0x00, 0xf8, /* ret */
1306
1307 /* __kuser_sigtramp */
1308 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1309 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1310 };
1311
1312 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1313 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1314 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1315
1316 if (addr == MAP_FAILED) {
1317 perror("Allocating guest commpage");
1318 exit(EXIT_FAILURE);
1319 }
1320 if (addr != want) {
1321 return false;
1322 }
1323
1324 memcpy(addr, kuser_page, sizeof(kuser_page));
1325
1326 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1327 perror("Protecting guest commpage");
1328 exit(EXIT_FAILURE);
1329 }
1330
1331 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1332 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1333 return true;
1334 }
1335
1336 #define ELF_EXEC_PAGESIZE 4096
1337
1338 #define USE_ELF_CORE_DUMP
1339 #define ELF_NREG 49
1340 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1341
1342 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1343 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1344 const CPUNios2State *env)
1345 {
1346 int i;
1347
1348 (*regs)[0] = -1;
1349 for (i = 1; i < 8; i++) /* r0-r7 */
1350 (*regs)[i] = tswapreg(env->regs[i + 7]);
1351
1352 for (i = 8; i < 16; i++) /* r8-r15 */
1353 (*regs)[i] = tswapreg(env->regs[i - 8]);
1354
1355 for (i = 16; i < 24; i++) /* r16-r23 */
1356 (*regs)[i] = tswapreg(env->regs[i + 7]);
1357 (*regs)[24] = -1; /* R_ET */
1358 (*regs)[25] = -1; /* R_BT */
1359 (*regs)[26] = tswapreg(env->regs[R_GP]);
1360 (*regs)[27] = tswapreg(env->regs[R_SP]);
1361 (*regs)[28] = tswapreg(env->regs[R_FP]);
1362 (*regs)[29] = tswapreg(env->regs[R_EA]);
1363 (*regs)[30] = -1; /* R_SSTATUS */
1364 (*regs)[31] = tswapreg(env->regs[R_RA]);
1365
1366 (*regs)[32] = tswapreg(env->pc);
1367
1368 (*regs)[33] = -1; /* R_STATUS */
1369 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1370
1371 for (i = 35; i < 49; i++) /* ... */
1372 (*regs)[i] = -1;
1373 }
1374
1375 #endif /* TARGET_NIOS2 */
1376
1377 #ifdef TARGET_OPENRISC
1378
1379 #define ELF_START_MMAP 0x08000000
1380
1381 #define ELF_ARCH EM_OPENRISC
1382 #define ELF_CLASS ELFCLASS32
1383 #define ELF_DATA ELFDATA2MSB
1384
1385 static inline void init_thread(struct target_pt_regs *regs,
1386 struct image_info *infop)
1387 {
1388 regs->pc = infop->entry;
1389 regs->gpr[1] = infop->start_stack;
1390 }
1391
1392 #define USE_ELF_CORE_DUMP
1393 #define ELF_EXEC_PAGESIZE 8192
1394
1395 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1396 #define ELF_NREG 34 /* gprs and pc, sr */
1397 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1398
1399 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1400 const CPUOpenRISCState *env)
1401 {
1402 int i;
1403
1404 for (i = 0; i < 32; i++) {
1405 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1406 }
1407 (*regs)[32] = tswapreg(env->pc);
1408 (*regs)[33] = tswapreg(cpu_get_sr(env));
1409 }
1410 #define ELF_HWCAP 0
1411 #define ELF_PLATFORM NULL
1412
1413 #endif /* TARGET_OPENRISC */
1414
1415 #ifdef TARGET_SH4
1416
1417 #define ELF_START_MMAP 0x80000000
1418
1419 #define ELF_CLASS ELFCLASS32
1420 #define ELF_ARCH EM_SH
1421
1422 static inline void init_thread(struct target_pt_regs *regs,
1423 struct image_info *infop)
1424 {
1425 /* Check other registers XXXXX */
1426 regs->pc = infop->entry;
1427 regs->regs[15] = infop->start_stack;
1428 }
1429
1430 /* See linux kernel: arch/sh/include/asm/elf.h. */
1431 #define ELF_NREG 23
1432 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1433
1434 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1435 enum {
1436 TARGET_REG_PC = 16,
1437 TARGET_REG_PR = 17,
1438 TARGET_REG_SR = 18,
1439 TARGET_REG_GBR = 19,
1440 TARGET_REG_MACH = 20,
1441 TARGET_REG_MACL = 21,
1442 TARGET_REG_SYSCALL = 22
1443 };
1444
1445 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1446 const CPUSH4State *env)
1447 {
1448 int i;
1449
1450 for (i = 0; i < 16; i++) {
1451 (*regs)[i] = tswapreg(env->gregs[i]);
1452 }
1453
1454 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1455 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1456 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1457 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1458 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1459 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1460 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1461 }
1462
1463 #define USE_ELF_CORE_DUMP
1464 #define ELF_EXEC_PAGESIZE 4096
1465
1466 enum {
1467 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1468 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1469 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1470 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1471 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1472 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1473 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1474 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1475 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1476 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1477 };
1478
1479 #define ELF_HWCAP get_elf_hwcap()
1480
1481 static uint32_t get_elf_hwcap(void)
1482 {
1483 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1484 uint32_t hwcap = 0;
1485
1486 hwcap |= SH_CPU_HAS_FPU;
1487
1488 if (cpu->env.features & SH_FEATURE_SH4A) {
1489 hwcap |= SH_CPU_HAS_LLSC;
1490 }
1491
1492 return hwcap;
1493 }
1494
1495 #endif
1496
1497 #ifdef TARGET_CRIS
1498
1499 #define ELF_START_MMAP 0x80000000
1500
1501 #define ELF_CLASS ELFCLASS32
1502 #define ELF_ARCH EM_CRIS
1503
1504 static inline void init_thread(struct target_pt_regs *regs,
1505 struct image_info *infop)
1506 {
1507 regs->erp = infop->entry;
1508 }
1509
1510 #define ELF_EXEC_PAGESIZE 8192
1511
1512 #endif
1513
1514 #ifdef TARGET_M68K
1515
1516 #define ELF_START_MMAP 0x80000000
1517
1518 #define ELF_CLASS ELFCLASS32
1519 #define ELF_ARCH EM_68K
1520
1521 /* ??? Does this need to do anything?
1522 #define ELF_PLAT_INIT(_r) */
1523
1524 static inline void init_thread(struct target_pt_regs *regs,
1525 struct image_info *infop)
1526 {
1527 regs->usp = infop->start_stack;
1528 regs->sr = 0;
1529 regs->pc = infop->entry;
1530 }
1531
1532 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1533 #define ELF_NREG 20
1534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1535
1536 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1537 {
1538 (*regs)[0] = tswapreg(env->dregs[1]);
1539 (*regs)[1] = tswapreg(env->dregs[2]);
1540 (*regs)[2] = tswapreg(env->dregs[3]);
1541 (*regs)[3] = tswapreg(env->dregs[4]);
1542 (*regs)[4] = tswapreg(env->dregs[5]);
1543 (*regs)[5] = tswapreg(env->dregs[6]);
1544 (*regs)[6] = tswapreg(env->dregs[7]);
1545 (*regs)[7] = tswapreg(env->aregs[0]);
1546 (*regs)[8] = tswapreg(env->aregs[1]);
1547 (*regs)[9] = tswapreg(env->aregs[2]);
1548 (*regs)[10] = tswapreg(env->aregs[3]);
1549 (*regs)[11] = tswapreg(env->aregs[4]);
1550 (*regs)[12] = tswapreg(env->aregs[5]);
1551 (*regs)[13] = tswapreg(env->aregs[6]);
1552 (*regs)[14] = tswapreg(env->dregs[0]);
1553 (*regs)[15] = tswapreg(env->aregs[7]);
1554 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1555 (*regs)[17] = tswapreg(env->sr);
1556 (*regs)[18] = tswapreg(env->pc);
1557 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1558 }
1559
1560 #define USE_ELF_CORE_DUMP
1561 #define ELF_EXEC_PAGESIZE 8192
1562
1563 #endif
1564
1565 #ifdef TARGET_ALPHA
1566
1567 #define ELF_START_MMAP (0x30000000000ULL)
1568
1569 #define ELF_CLASS ELFCLASS64
1570 #define ELF_ARCH EM_ALPHA
1571
1572 static inline void init_thread(struct target_pt_regs *regs,
1573 struct image_info *infop)
1574 {
1575 regs->pc = infop->entry;
1576 regs->ps = 8;
1577 regs->usp = infop->start_stack;
1578 }
1579
1580 #define ELF_EXEC_PAGESIZE 8192
1581
1582 #endif /* TARGET_ALPHA */
1583
1584 #ifdef TARGET_S390X
1585
1586 #define ELF_START_MMAP (0x20000000000ULL)
1587
1588 #define ELF_CLASS ELFCLASS64
1589 #define ELF_DATA ELFDATA2MSB
1590 #define ELF_ARCH EM_S390
1591
1592 #include "elf.h"
1593
1594 #define ELF_HWCAP get_elf_hwcap()
1595
1596 #define GET_FEATURE(_feat, _hwcap) \
1597 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1598
1599 uint32_t get_elf_hwcap(void)
1600 {
1601 /*
1602 * Let's assume we always have esan3 and zarch.
1603 * 31-bit processes can use 64-bit registers (high gprs).
1604 */
1605 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1606
1607 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1608 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1609 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1610 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1611 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1612 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1613 hwcap |= HWCAP_S390_ETF3EH;
1614 }
1615 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1616 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1617
1618 return hwcap;
1619 }
1620
1621 const char *elf_hwcap_str(uint32_t bit)
1622 {
1623 static const char *hwcap_str[] = {
1624 [HWCAP_S390_NR_ESAN3] = "esan3",
1625 [HWCAP_S390_NR_ZARCH] = "zarch",
1626 [HWCAP_S390_NR_STFLE] = "stfle",
1627 [HWCAP_S390_NR_MSA] = "msa",
1628 [HWCAP_S390_NR_LDISP] = "ldisp",
1629 [HWCAP_S390_NR_EIMM] = "eimm",
1630 [HWCAP_S390_NR_DFP] = "dfp",
1631 [HWCAP_S390_NR_HPAGE] = "edat",
1632 [HWCAP_S390_NR_ETF3EH] = "etf3eh",
1633 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1634 [HWCAP_S390_NR_TE] = "te",
1635 [HWCAP_S390_NR_VXRS] = "vx",
1636 [HWCAP_S390_NR_VXRS_BCD] = "vxd",
1637 [HWCAP_S390_NR_VXRS_EXT] = "vxe",
1638 [HWCAP_S390_NR_GS] = "gs",
1639 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1640 [HWCAP_S390_NR_VXRS_PDE] = "vxp",
1641 [HWCAP_S390_NR_SORT] = "sort",
1642 [HWCAP_S390_NR_DFLT] = "dflt",
1643 [HWCAP_S390_NR_NNPA] = "nnpa",
1644 [HWCAP_S390_NR_PCI_MIO] = "pcimio",
1645 [HWCAP_S390_NR_SIE] = "sie",
1646 };
1647
1648 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1649 }
1650
1651 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1652 {
1653 regs->psw.addr = infop->entry;
1654 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1655 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1656 PSW_MASK_32;
1657 regs->gprs[15] = infop->start_stack;
1658 }
1659
1660 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1661 #define ELF_NREG 27
1662 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1663
1664 enum {
1665 TARGET_REG_PSWM = 0,
1666 TARGET_REG_PSWA = 1,
1667 TARGET_REG_GPRS = 2,
1668 TARGET_REG_ARS = 18,
1669 TARGET_REG_ORIG_R2 = 26,
1670 };
1671
1672 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1673 const CPUS390XState *env)
1674 {
1675 int i;
1676 uint32_t *aregs;
1677
1678 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1679 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1680 for (i = 0; i < 16; i++) {
1681 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1682 }
1683 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1684 for (i = 0; i < 16; i++) {
1685 aregs[i] = tswap32(env->aregs[i]);
1686 }
1687 (*regs)[TARGET_REG_ORIG_R2] = 0;
1688 }
1689
1690 #define USE_ELF_CORE_DUMP
1691 #define ELF_EXEC_PAGESIZE 4096
1692
1693 #endif /* TARGET_S390X */
1694
1695 #ifdef TARGET_RISCV
1696
1697 #define ELF_START_MMAP 0x80000000
1698 #define ELF_ARCH EM_RISCV
1699
1700 #ifdef TARGET_RISCV32
1701 #define ELF_CLASS ELFCLASS32
1702 #else
1703 #define ELF_CLASS ELFCLASS64
1704 #endif
1705
1706 #define ELF_HWCAP get_elf_hwcap()
1707
1708 static uint32_t get_elf_hwcap(void)
1709 {
1710 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1711 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1712 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1713 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1714 | MISA_BIT('V');
1715
1716 return cpu->env.misa_ext & mask;
1717 #undef MISA_BIT
1718 }
1719
1720 static inline void init_thread(struct target_pt_regs *regs,
1721 struct image_info *infop)
1722 {
1723 regs->sepc = infop->entry;
1724 regs->sp = infop->start_stack;
1725 }
1726
1727 #define ELF_EXEC_PAGESIZE 4096
1728
1729 #endif /* TARGET_RISCV */
1730
1731 #ifdef TARGET_HPPA
1732
1733 #define ELF_START_MMAP 0x80000000
1734 #define ELF_CLASS ELFCLASS32
1735 #define ELF_ARCH EM_PARISC
1736 #define ELF_PLATFORM "PARISC"
1737 #define STACK_GROWS_DOWN 0
1738 #define STACK_ALIGNMENT 64
1739
1740 static inline void init_thread(struct target_pt_regs *regs,
1741 struct image_info *infop)
1742 {
1743 regs->iaoq[0] = infop->entry;
1744 regs->iaoq[1] = infop->entry + 4;
1745 regs->gr[23] = 0;
1746 regs->gr[24] = infop->argv;
1747 regs->gr[25] = infop->argc;
1748 /* The top-of-stack contains a linkage buffer. */
1749 regs->gr[30] = infop->start_stack + 64;
1750 regs->gr[31] = infop->entry;
1751 }
1752
1753 #define LO_COMMPAGE 0
1754
1755 static bool init_guest_commpage(void)
1756 {
1757 void *want = g2h_untagged(LO_COMMPAGE);
1758 void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1759 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1760
1761 if (addr == MAP_FAILED) {
1762 perror("Allocating guest commpage");
1763 exit(EXIT_FAILURE);
1764 }
1765 if (addr != want) {
1766 return false;
1767 }
1768
1769 /*
1770 * On Linux, page zero is normally marked execute only + gateway.
1771 * Normal read or write is supposed to fail (thus PROT_NONE above),
1772 * but specific offsets have kernel code mapped to raise permissions
1773 * and implement syscalls. Here, simply mark the page executable.
1774 * Special case the entry points during translation (see do_page_zero).
1775 */
1776 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1777 PAGE_EXEC | PAGE_VALID);
1778 return true;
1779 }
1780
1781 #endif /* TARGET_HPPA */
1782
1783 #ifdef TARGET_XTENSA
1784
1785 #define ELF_START_MMAP 0x20000000
1786
1787 #define ELF_CLASS ELFCLASS32
1788 #define ELF_ARCH EM_XTENSA
1789
1790 static inline void init_thread(struct target_pt_regs *regs,
1791 struct image_info *infop)
1792 {
1793 regs->windowbase = 0;
1794 regs->windowstart = 1;
1795 regs->areg[1] = infop->start_stack;
1796 regs->pc = infop->entry;
1797 if (info_is_fdpic(infop)) {
1798 regs->areg[4] = infop->loadmap_addr;
1799 regs->areg[5] = infop->interpreter_loadmap_addr;
1800 if (infop->interpreter_loadmap_addr) {
1801 regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1802 } else {
1803 regs->areg[6] = infop->pt_dynamic_addr;
1804 }
1805 }
1806 }
1807
1808 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1809 #define ELF_NREG 128
1810 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1811
1812 enum {
1813 TARGET_REG_PC,
1814 TARGET_REG_PS,
1815 TARGET_REG_LBEG,
1816 TARGET_REG_LEND,
1817 TARGET_REG_LCOUNT,
1818 TARGET_REG_SAR,
1819 TARGET_REG_WINDOWSTART,
1820 TARGET_REG_WINDOWBASE,
1821 TARGET_REG_THREADPTR,
1822 TARGET_REG_AR0 = 64,
1823 };
1824
1825 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1826 const CPUXtensaState *env)
1827 {
1828 unsigned i;
1829
1830 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1831 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1832 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1833 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1834 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1835 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1836 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1837 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1838 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1839 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1840 for (i = 0; i < env->config->nareg; ++i) {
1841 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1842 }
1843 }
1844
1845 #define USE_ELF_CORE_DUMP
1846 #define ELF_EXEC_PAGESIZE 4096
1847
1848 #endif /* TARGET_XTENSA */
1849
1850 #ifdef TARGET_HEXAGON
1851
1852 #define ELF_START_MMAP 0x20000000
1853
1854 #define ELF_CLASS ELFCLASS32
1855 #define ELF_ARCH EM_HEXAGON
1856
1857 static inline void init_thread(struct target_pt_regs *regs,
1858 struct image_info *infop)
1859 {
1860 regs->sepc = infop->entry;
1861 regs->sp = infop->start_stack;
1862 }
1863
1864 #endif /* TARGET_HEXAGON */
1865
1866 #ifndef ELF_BASE_PLATFORM
1867 #define ELF_BASE_PLATFORM (NULL)
1868 #endif
1869
1870 #ifndef ELF_PLATFORM
1871 #define ELF_PLATFORM (NULL)
1872 #endif
1873
1874 #ifndef ELF_MACHINE
1875 #define ELF_MACHINE ELF_ARCH
1876 #endif
1877
1878 #ifndef elf_check_arch
1879 #define elf_check_arch(x) ((x) == ELF_ARCH)
1880 #endif
1881
1882 #ifndef elf_check_abi
1883 #define elf_check_abi(x) (1)
1884 #endif
1885
1886 #ifndef ELF_HWCAP
1887 #define ELF_HWCAP 0
1888 #endif
1889
1890 #ifndef STACK_GROWS_DOWN
1891 #define STACK_GROWS_DOWN 1
1892 #endif
1893
1894 #ifndef STACK_ALIGNMENT
1895 #define STACK_ALIGNMENT 16
1896 #endif
1897
1898 #ifdef TARGET_ABI32
1899 #undef ELF_CLASS
1900 #define ELF_CLASS ELFCLASS32
1901 #undef bswaptls
1902 #define bswaptls(ptr) bswap32s(ptr)
1903 #endif
1904
1905 #ifndef EXSTACK_DEFAULT
1906 #define EXSTACK_DEFAULT false
1907 #endif
1908
1909 #include "elf.h"
1910
1911 /* We must delay the following stanzas until after "elf.h". */
1912 #if defined(TARGET_AARCH64)
1913
1914 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1915 const uint32_t *data,
1916 struct image_info *info,
1917 Error **errp)
1918 {
1919 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1920 if (pr_datasz != sizeof(uint32_t)) {
1921 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1922 return false;
1923 }
1924 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1925 info->note_flags = *data;
1926 }
1927 return true;
1928 }
1929 #define ARCH_USE_GNU_PROPERTY 1
1930
1931 #else
1932
1933 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1934 const uint32_t *data,
1935 struct image_info *info,
1936 Error **errp)
1937 {
1938 g_assert_not_reached();
1939 }
1940 #define ARCH_USE_GNU_PROPERTY 0
1941
1942 #endif
1943
1944 struct exec
1945 {
1946 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1947 unsigned int a_text; /* length of text, in bytes */
1948 unsigned int a_data; /* length of data, in bytes */
1949 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1950 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1951 unsigned int a_entry; /* start address */
1952 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1953 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1954 };
1955
1956
1957 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1958 #define OMAGIC 0407
1959 #define NMAGIC 0410
1960 #define ZMAGIC 0413
1961 #define QMAGIC 0314
1962
1963 #define DLINFO_ITEMS 16
1964
1965 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1966 {
1967 memcpy(to, from, n);
1968 }
1969
1970 #ifdef BSWAP_NEEDED
1971 static void bswap_ehdr(struct elfhdr *ehdr)
1972 {
1973 bswap16s(&ehdr->e_type); /* Object file type */
1974 bswap16s(&ehdr->e_machine); /* Architecture */
1975 bswap32s(&ehdr->e_version); /* Object file version */
1976 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1977 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1978 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1979 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1980 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1981 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1982 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1983 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1984 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1985 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1986 }
1987
1988 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1989 {
1990 int i;
1991 for (i = 0; i < phnum; ++i, ++phdr) {
1992 bswap32s(&phdr->p_type); /* Segment type */
1993 bswap32s(&phdr->p_flags); /* Segment flags */
1994 bswaptls(&phdr->p_offset); /* Segment file offset */
1995 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1996 bswaptls(&phdr->p_paddr); /* Segment physical address */
1997 bswaptls(&phdr->p_filesz); /* Segment size in file */
1998 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1999 bswaptls(&phdr->p_align); /* Segment alignment */
2000 }
2001 }
2002
2003 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2004 {
2005 int i;
2006 for (i = 0; i < shnum; ++i, ++shdr) {
2007 bswap32s(&shdr->sh_name);
2008 bswap32s(&shdr->sh_type);
2009 bswaptls(&shdr->sh_flags);
2010 bswaptls(&shdr->sh_addr);
2011 bswaptls(&shdr->sh_offset);
2012 bswaptls(&shdr->sh_size);
2013 bswap32s(&shdr->sh_link);
2014 bswap32s(&shdr->sh_info);
2015 bswaptls(&shdr->sh_addralign);
2016 bswaptls(&shdr->sh_entsize);
2017 }
2018 }
2019
2020 static void bswap_sym(struct elf_sym *sym)
2021 {
2022 bswap32s(&sym->st_name);
2023 bswaptls(&sym->st_value);
2024 bswaptls(&sym->st_size);
2025 bswap16s(&sym->st_shndx);
2026 }
2027
2028 #ifdef TARGET_MIPS
2029 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2030 {
2031 bswap16s(&abiflags->version);
2032 bswap32s(&abiflags->ases);
2033 bswap32s(&abiflags->isa_ext);
2034 bswap32s(&abiflags->flags1);
2035 bswap32s(&abiflags->flags2);
2036 }
2037 #endif
2038 #else
2039 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2040 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2041 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2042 static inline void bswap_sym(struct elf_sym *sym) { }
2043 #ifdef TARGET_MIPS
2044 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2045 #endif
2046 #endif
2047
2048 #ifdef USE_ELF_CORE_DUMP
2049 static int elf_core_dump(int, const CPUArchState *);
2050 #endif /* USE_ELF_CORE_DUMP */
2051 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2052
2053 /* Verify the portions of EHDR within E_IDENT for the target.
2054 This can be performed before bswapping the entire header. */
2055 static bool elf_check_ident(struct elfhdr *ehdr)
2056 {
2057 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2058 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2059 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2060 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2061 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2062 && ehdr->e_ident[EI_DATA] == ELF_DATA
2063 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2064 }
2065
2066 /* Verify the portions of EHDR outside of E_IDENT for the target.
2067 This has to wait until after bswapping the header. */
2068 static bool elf_check_ehdr(struct elfhdr *ehdr)
2069 {
2070 return (elf_check_arch(ehdr->e_machine)
2071 && elf_check_abi(ehdr->e_flags)
2072 && ehdr->e_ehsize == sizeof(struct elfhdr)
2073 && ehdr->e_phentsize == sizeof(struct elf_phdr)
2074 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2075 }
2076
2077 /*
2078 * 'copy_elf_strings()' copies argument/envelope strings from user
2079 * memory to free pages in kernel mem. These are in a format ready
2080 * to be put directly into the top of new user memory.
2081 *
2082 */
2083 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2084 abi_ulong p, abi_ulong stack_limit)
2085 {
2086 char *tmp;
2087 int len, i;
2088 abi_ulong top = p;
2089
2090 if (!p) {
2091 return 0; /* bullet-proofing */
2092 }
2093
2094 if (STACK_GROWS_DOWN) {
2095 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2096 for (i = argc - 1; i >= 0; --i) {
2097 tmp = argv[i];
2098 if (!tmp) {
2099 fprintf(stderr, "VFS: argc is wrong");
2100 exit(-1);
2101 }
2102 len = strlen(tmp) + 1;
2103 tmp += len;
2104
2105 if (len > (p - stack_limit)) {
2106 return 0;
2107 }
2108 while (len) {
2109 int bytes_to_copy = (len > offset) ? offset : len;
2110 tmp -= bytes_to_copy;
2111 p -= bytes_to_copy;
2112 offset -= bytes_to_copy;
2113 len -= bytes_to_copy;
2114
2115 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2116
2117 if (offset == 0) {
2118 memcpy_to_target(p, scratch, top - p);
2119 top = p;
2120 offset = TARGET_PAGE_SIZE;
2121 }
2122 }
2123 }
2124 if (p != top) {
2125 memcpy_to_target(p, scratch + offset, top - p);
2126 }
2127 } else {
2128 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2129 for (i = 0; i < argc; ++i) {
2130 tmp = argv[i];
2131 if (!tmp) {
2132 fprintf(stderr, "VFS: argc is wrong");
2133 exit(-1);
2134 }
2135 len = strlen(tmp) + 1;
2136 if (len > (stack_limit - p)) {
2137 return 0;
2138 }
2139 while (len) {
2140 int bytes_to_copy = (len > remaining) ? remaining : len;
2141
2142 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2143
2144 tmp += bytes_to_copy;
2145 remaining -= bytes_to_copy;
2146 p += bytes_to_copy;
2147 len -= bytes_to_copy;
2148
2149 if (remaining == 0) {
2150 memcpy_to_target(top, scratch, p - top);
2151 top = p;
2152 remaining = TARGET_PAGE_SIZE;
2153 }
2154 }
2155 }
2156 if (p != top) {
2157 memcpy_to_target(top, scratch, p - top);
2158 }
2159 }
2160
2161 return p;
2162 }
2163
2164 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2165 * argument/environment space. Newer kernels (>2.6.33) allow more,
2166 * dependent on stack size, but guarantee at least 32 pages for
2167 * backwards compatibility.
2168 */
2169 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2170
2171 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2172 struct image_info *info)
2173 {
2174 abi_ulong size, error, guard;
2175 int prot;
2176
2177 size = guest_stack_size;
2178 if (size < STACK_LOWER_LIMIT) {
2179 size = STACK_LOWER_LIMIT;
2180 }
2181
2182 if (STACK_GROWS_DOWN) {
2183 guard = TARGET_PAGE_SIZE;
2184 if (guard < qemu_real_host_page_size()) {
2185 guard = qemu_real_host_page_size();
2186 }
2187 } else {
2188 /* no guard page for hppa target where stack grows upwards. */
2189 guard = 0;
2190 }
2191
2192 prot = PROT_READ | PROT_WRITE;
2193 if (info->exec_stack) {
2194 prot |= PROT_EXEC;
2195 }
2196 error = target_mmap(0, size + guard, prot,
2197 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2198 if (error == -1) {
2199 perror("mmap stack");
2200 exit(-1);
2201 }
2202
2203 /* We reserve one extra page at the top of the stack as guard. */
2204 if (STACK_GROWS_DOWN) {
2205 target_mprotect(error, guard, PROT_NONE);
2206 info->stack_limit = error + guard;
2207 return info->stack_limit + size - sizeof(void *);
2208 } else {
2209 info->stack_limit = error + size;
2210 return error;
2211 }
2212 }
2213
2214 /**
2215 * zero_bss:
2216 *
2217 * Map and zero the bss. We need to explicitly zero any fractional pages
2218 * after the data section (i.e. bss). Return false on mapping failure.
2219 */
2220 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot)
2221 {
2222 abi_ulong align_bss;
2223
2224 align_bss = TARGET_PAGE_ALIGN(start_bss);
2225 end_bss = TARGET_PAGE_ALIGN(end_bss);
2226
2227 if (start_bss < align_bss) {
2228 int flags = page_get_flags(start_bss);
2229
2230 if (!(flags & PAGE_VALID)) {
2231 /* Map the start of the bss. */
2232 align_bss -= TARGET_PAGE_SIZE;
2233 } else if (flags & PAGE_WRITE) {
2234 /* The page is already mapped writable. */
2235 memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2236 } else {
2237 /* Read-only zeros? */
2238 g_assert_not_reached();
2239 }
2240 }
2241
2242 return align_bss >= end_bss ||
2243 target_mmap(align_bss, end_bss - align_bss, prot,
2244 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) != -1;
2245 }
2246
2247 #if defined(TARGET_ARM)
2248 static int elf_is_fdpic(struct elfhdr *exec)
2249 {
2250 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2251 }
2252 #elif defined(TARGET_XTENSA)
2253 static int elf_is_fdpic(struct elfhdr *exec)
2254 {
2255 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2256 }
2257 #else
2258 /* Default implementation, always false. */
2259 static int elf_is_fdpic(struct elfhdr *exec)
2260 {
2261 return 0;
2262 }
2263 #endif
2264
2265 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2266 {
2267 uint16_t n;
2268 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2269
2270 /* elf32_fdpic_loadseg */
2271 n = info->nsegs;
2272 while (n--) {
2273 sp -= 12;
2274 put_user_u32(loadsegs[n].addr, sp+0);
2275 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2276 put_user_u32(loadsegs[n].p_memsz, sp+8);
2277 }
2278
2279 /* elf32_fdpic_loadmap */
2280 sp -= 4;
2281 put_user_u16(0, sp+0); /* version */
2282 put_user_u16(info->nsegs, sp+2); /* nsegs */
2283
2284 info->personality = PER_LINUX_FDPIC;
2285 info->loadmap_addr = sp;
2286
2287 return sp;
2288 }
2289
2290 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2291 struct elfhdr *exec,
2292 struct image_info *info,
2293 struct image_info *interp_info)
2294 {
2295 abi_ulong sp;
2296 abi_ulong u_argc, u_argv, u_envp, u_auxv;
2297 int size;
2298 int i;
2299 abi_ulong u_rand_bytes;
2300 uint8_t k_rand_bytes[16];
2301 abi_ulong u_platform, u_base_platform;
2302 const char *k_platform, *k_base_platform;
2303 const int n = sizeof(elf_addr_t);
2304
2305 sp = p;
2306
2307 /* Needs to be before we load the env/argc/... */
2308 if (elf_is_fdpic(exec)) {
2309 /* Need 4 byte alignment for these structs */
2310 sp &= ~3;
2311 sp = loader_build_fdpic_loadmap(info, sp);
2312 info->other_info = interp_info;
2313 if (interp_info) {
2314 interp_info->other_info = info;
2315 sp = loader_build_fdpic_loadmap(interp_info, sp);
2316 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2317 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2318 } else {
2319 info->interpreter_loadmap_addr = 0;
2320 info->interpreter_pt_dynamic_addr = 0;
2321 }
2322 }
2323
2324 u_base_platform = 0;
2325 k_base_platform = ELF_BASE_PLATFORM;
2326 if (k_base_platform) {
2327 size_t len = strlen(k_base_platform) + 1;
2328 if (STACK_GROWS_DOWN) {
2329 sp -= (len + n - 1) & ~(n - 1);
2330 u_base_platform = sp;
2331 /* FIXME - check return value of memcpy_to_target() for failure */
2332 memcpy_to_target(sp, k_base_platform, len);
2333 } else {
2334 memcpy_to_target(sp, k_base_platform, len);
2335 u_base_platform = sp;
2336 sp += len + 1;
2337 }
2338 }
2339
2340 u_platform = 0;
2341 k_platform = ELF_PLATFORM;
2342 if (k_platform) {
2343 size_t len = strlen(k_platform) + 1;
2344 if (STACK_GROWS_DOWN) {
2345 sp -= (len + n - 1) & ~(n - 1);
2346 u_platform = sp;
2347 /* FIXME - check return value of memcpy_to_target() for failure */
2348 memcpy_to_target(sp, k_platform, len);
2349 } else {
2350 memcpy_to_target(sp, k_platform, len);
2351 u_platform = sp;
2352 sp += len + 1;
2353 }
2354 }
2355
2356 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2357 * the argv and envp pointers.
2358 */
2359 if (STACK_GROWS_DOWN) {
2360 sp = QEMU_ALIGN_DOWN(sp, 16);
2361 } else {
2362 sp = QEMU_ALIGN_UP(sp, 16);
2363 }
2364
2365 /*
2366 * Generate 16 random bytes for userspace PRNG seeding.
2367 */
2368 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2369 if (STACK_GROWS_DOWN) {
2370 sp -= 16;
2371 u_rand_bytes = sp;
2372 /* FIXME - check return value of memcpy_to_target() for failure */
2373 memcpy_to_target(sp, k_rand_bytes, 16);
2374 } else {
2375 memcpy_to_target(sp, k_rand_bytes, 16);
2376 u_rand_bytes = sp;
2377 sp += 16;
2378 }
2379
2380 size = (DLINFO_ITEMS + 1) * 2;
2381 if (k_base_platform)
2382 size += 2;
2383 if (k_platform)
2384 size += 2;
2385 #ifdef DLINFO_ARCH_ITEMS
2386 size += DLINFO_ARCH_ITEMS * 2;
2387 #endif
2388 #ifdef ELF_HWCAP2
2389 size += 2;
2390 #endif
2391 info->auxv_len = size * n;
2392
2393 size += envc + argc + 2;
2394 size += 1; /* argc itself */
2395 size *= n;
2396
2397 /* Allocate space and finalize stack alignment for entry now. */
2398 if (STACK_GROWS_DOWN) {
2399 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2400 sp = u_argc;
2401 } else {
2402 u_argc = sp;
2403 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2404 }
2405
2406 u_argv = u_argc + n;
2407 u_envp = u_argv + (argc + 1) * n;
2408 u_auxv = u_envp + (envc + 1) * n;
2409 info->saved_auxv = u_auxv;
2410 info->argc = argc;
2411 info->envc = envc;
2412 info->argv = u_argv;
2413 info->envp = u_envp;
2414
2415 /* This is correct because Linux defines
2416 * elf_addr_t as Elf32_Off / Elf64_Off
2417 */
2418 #define NEW_AUX_ENT(id, val) do { \
2419 put_user_ual(id, u_auxv); u_auxv += n; \
2420 put_user_ual(val, u_auxv); u_auxv += n; \
2421 } while(0)
2422
2423 #ifdef ARCH_DLINFO
2424 /*
2425 * ARCH_DLINFO must come first so platform specific code can enforce
2426 * special alignment requirements on the AUXV if necessary (eg. PPC).
2427 */
2428 ARCH_DLINFO;
2429 #endif
2430 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2431 * on info->auxv_len will trigger.
2432 */
2433 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2434 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2435 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2436 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2437 /* Target doesn't support host page size alignment */
2438 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2439 } else {
2440 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2441 qemu_host_page_size)));
2442 }
2443 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2444 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2445 NEW_AUX_ENT(AT_ENTRY, info->entry);
2446 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2447 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2448 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2449 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2450 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2451 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2452 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2453 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2454 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2455
2456 #ifdef ELF_HWCAP2
2457 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2458 #endif
2459
2460 if (u_base_platform) {
2461 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2462 }
2463 if (u_platform) {
2464 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2465 }
2466 NEW_AUX_ENT (AT_NULL, 0);
2467 #undef NEW_AUX_ENT
2468
2469 /* Check that our initial calculation of the auxv length matches how much
2470 * we actually put into it.
2471 */
2472 assert(info->auxv_len == u_auxv - info->saved_auxv);
2473
2474 put_user_ual(argc, u_argc);
2475
2476 p = info->arg_strings;
2477 for (i = 0; i < argc; ++i) {
2478 put_user_ual(p, u_argv);
2479 u_argv += n;
2480 p += target_strlen(p) + 1;
2481 }
2482 put_user_ual(0, u_argv);
2483
2484 p = info->env_strings;
2485 for (i = 0; i < envc; ++i) {
2486 put_user_ual(p, u_envp);
2487 u_envp += n;
2488 p += target_strlen(p) + 1;
2489 }
2490 put_user_ual(0, u_envp);
2491
2492 return sp;
2493 }
2494
2495 #if defined(HI_COMMPAGE)
2496 #define LO_COMMPAGE -1
2497 #elif defined(LO_COMMPAGE)
2498 #define HI_COMMPAGE 0
2499 #else
2500 #define HI_COMMPAGE 0
2501 #define LO_COMMPAGE -1
2502 #ifndef INIT_GUEST_COMMPAGE
2503 #define init_guest_commpage() true
2504 #endif
2505 #endif
2506
2507 static void pgb_fail_in_use(const char *image_name)
2508 {
2509 error_report("%s: requires virtual address space that is in use "
2510 "(omit the -B option or choose a different value)",
2511 image_name);
2512 exit(EXIT_FAILURE);
2513 }
2514
2515 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2516 abi_ulong guest_hiaddr, long align)
2517 {
2518 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2519 void *addr, *test;
2520
2521 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2522 fprintf(stderr, "Requested guest base %p does not satisfy "
2523 "host minimum alignment (0x%lx)\n",
2524 (void *)guest_base, align);
2525 exit(EXIT_FAILURE);
2526 }
2527
2528 /* Sanity check the guest binary. */
2529 if (reserved_va) {
2530 if (guest_hiaddr > reserved_va) {
2531 error_report("%s: requires more than reserved virtual "
2532 "address space (0x%" PRIx64 " > 0x%lx)",
2533 image_name, (uint64_t)guest_hiaddr, reserved_va);
2534 exit(EXIT_FAILURE);
2535 }
2536 } else {
2537 #if HOST_LONG_BITS < TARGET_ABI_BITS
2538 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2539 error_report("%s: requires more virtual address space "
2540 "than the host can provide (0x%" PRIx64 ")",
2541 image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
2542 exit(EXIT_FAILURE);
2543 }
2544 #endif
2545 }
2546
2547 /*
2548 * Expand the allocation to the entire reserved_va.
2549 * Exclude the mmap_min_addr hole.
2550 */
2551 if (reserved_va) {
2552 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2553 : mmap_min_addr - guest_base);
2554 guest_hiaddr = reserved_va;
2555 }
2556
2557 /* Reserve the address space for the binary, or reserved_va. */
2558 test = g2h_untagged(guest_loaddr);
2559 addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
2560 if (test != addr) {
2561 pgb_fail_in_use(image_name);
2562 }
2563 }
2564
2565 /**
2566 * pgd_find_hole_fallback: potential mmap address
2567 * @guest_size: size of available space
2568 * @brk: location of break
2569 * @align: memory alignment
2570 *
2571 * This is a fallback method for finding a hole in the host address
2572 * space if we don't have the benefit of being able to access
2573 * /proc/self/map. It can potentially take a very long time as we can
2574 * only dumbly iterate up the host address space seeing if the
2575 * allocation would work.
2576 */
2577 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2578 long align, uintptr_t offset)
2579 {
2580 uintptr_t base;
2581
2582 /* Start (aligned) at the bottom and work our way up */
2583 base = ROUND_UP(mmap_min_addr, align);
2584
2585 while (true) {
2586 uintptr_t align_start, end;
2587 align_start = ROUND_UP(base, align);
2588 end = align_start + guest_size + offset;
2589
2590 /* if brk is anywhere in the range give ourselves some room to grow. */
2591 if (align_start <= brk && brk < end) {
2592 base = brk + (16 * MiB);
2593 continue;
2594 } else if (align_start + guest_size < align_start) {
2595 /* we have run out of space */
2596 return -1;
2597 } else {
2598 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2599 MAP_FIXED_NOREPLACE;
2600 void * mmap_start = mmap((void *) align_start, guest_size,
2601 PROT_NONE, flags, -1, 0);
2602 if (mmap_start != MAP_FAILED) {
2603 munmap(mmap_start, guest_size);
2604 if (mmap_start == (void *) align_start) {
2605 return (uintptr_t) mmap_start + offset;
2606 }
2607 }
2608 base += qemu_host_page_size;
2609 }
2610 }
2611 }
2612
2613 /* Return value for guest_base, or -1 if no hole found. */
2614 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2615 long align, uintptr_t offset)
2616 {
2617 IntervalTreeRoot *maps;
2618 IntervalTreeNode *iter;
2619 uintptr_t this_start, this_end, next_start, brk;
2620 intptr_t ret = -1;
2621
2622 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2623
2624 maps = read_self_maps();
2625
2626 /* Read brk after we've read the maps, which will malloc. */
2627 brk = (uintptr_t)sbrk(0);
2628
2629 if (!maps) {
2630 return pgd_find_hole_fallback(guest_size, brk, align, offset);
2631 }
2632
2633 /* The first hole is before the first map entry. */
2634 this_start = mmap_min_addr;
2635
2636 for (iter = interval_tree_iter_first(maps, 0, -1);
2637 iter;
2638 this_start = next_start,
2639 iter = interval_tree_iter_next(iter, 0, -1)) {
2640 MapInfo *info = container_of(iter, MapInfo, itree);
2641 uintptr_t align_start, hole_size;
2642
2643 this_end = info->itree.start;
2644 next_start = info->itree.last + 1;
2645 align_start = ROUND_UP(this_start + offset, align);
2646
2647 /* Skip holes that are too small. */
2648 if (align_start >= this_end) {
2649 continue;
2650 }
2651 hole_size = this_end - align_start;
2652 if (hole_size < guest_size) {
2653 continue;
2654 }
2655
2656 /* If this hole contains brk, give ourselves some room to grow. */
2657 if (this_start <= brk && brk < this_end) {
2658 hole_size -= guest_size;
2659 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2660 align_start += 1 * GiB;
2661 } else if (hole_size >= 16 * MiB) {
2662 align_start += 16 * MiB;
2663 } else {
2664 align_start = (this_end - guest_size) & -align;
2665 if (align_start < this_start) {
2666 continue;
2667 }
2668 }
2669 }
2670
2671 /* Record the lowest successful match. */
2672 if (ret < 0) {
2673 ret = align_start;
2674 }
2675 /* If this hole contains the identity map, select it. */
2676 if (align_start <= guest_loaddr &&
2677 guest_loaddr + guest_size <= this_end) {
2678 ret = 0;
2679 }
2680 /* If this hole ends above the identity map, stop looking. */
2681 if (this_end >= guest_loaddr) {
2682 break;
2683 }
2684 }
2685 free_self_maps(maps);
2686 return ret;
2687 }
2688
2689 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2690 abi_ulong orig_hiaddr, long align)
2691 {
2692 uintptr_t loaddr = orig_loaddr;
2693 uintptr_t hiaddr = orig_hiaddr;
2694 uintptr_t offset = 0;
2695 uintptr_t addr;
2696
2697 if (hiaddr != orig_hiaddr) {
2698 error_report("%s: requires virtual address space that the "
2699 "host cannot provide (0x%" PRIx64 ")",
2700 image_name, (uint64_t)orig_hiaddr + 1);
2701 exit(EXIT_FAILURE);
2702 }
2703
2704 loaddr &= -align;
2705 if (HI_COMMPAGE) {
2706 /*
2707 * Extend the allocation to include the commpage.
2708 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2709 * need to ensure there is space bellow the guest_base so we
2710 * can map the commpage in the place needed when the address
2711 * arithmetic wraps around.
2712 */
2713 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2714 hiaddr = UINT32_MAX;
2715 } else {
2716 offset = -(HI_COMMPAGE & -align);
2717 }
2718 } else if (LO_COMMPAGE != -1) {
2719 loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2720 }
2721
2722 addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
2723 if (addr == -1) {
2724 /*
2725 * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2726 * that can satisfy both. But as the normal arm32 link base address
2727 * is ~32k, and we extend down to include the commpage, making the
2728 * overhead only ~96k, this is unlikely.
2729 */
2730 error_report("%s: Unable to allocate %#zx bytes of "
2731 "virtual address space", image_name,
2732 (size_t)(hiaddr - loaddr));
2733 exit(EXIT_FAILURE);
2734 }
2735
2736 guest_base = addr;
2737 }
2738
2739 static void pgb_dynamic(const char *image_name, long align)
2740 {
2741 /*
2742 * The executable is dynamic and does not require a fixed address.
2743 * All we need is a commpage that satisfies align.
2744 * If we do not need a commpage, leave guest_base == 0.
2745 */
2746 if (HI_COMMPAGE) {
2747 uintptr_t addr, commpage;
2748
2749 /* 64-bit hosts should have used reserved_va. */
2750 assert(sizeof(uintptr_t) == 4);
2751
2752 /*
2753 * By putting the commpage at the first hole, that puts guest_base
2754 * just above that, and maximises the positive guest addresses.
2755 */
2756 commpage = HI_COMMPAGE & -align;
2757 addr = pgb_find_hole(commpage, -commpage, align, 0);
2758 assert(addr != -1);
2759 guest_base = addr;
2760 }
2761 }
2762
2763 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2764 abi_ulong guest_hiaddr, long align)
2765 {
2766 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2767 void *addr, *test;
2768
2769 if (guest_hiaddr > reserved_va) {
2770 error_report("%s: requires more than reserved virtual "
2771 "address space (0x%" PRIx64 " > 0x%lx)",
2772 image_name, (uint64_t)guest_hiaddr, reserved_va);
2773 exit(EXIT_FAILURE);
2774 }
2775
2776 /* Widen the "image" to the entire reserved address space. */
2777 pgb_static(image_name, 0, reserved_va, align);
2778
2779 /* osdep.h defines this as 0 if it's missing */
2780 flags |= MAP_FIXED_NOREPLACE;
2781
2782 /* Reserve the memory on the host. */
2783 assert(guest_base != 0);
2784 test = g2h_untagged(0);
2785 addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
2786 if (addr == MAP_FAILED || addr != test) {
2787 error_report("Unable to reserve 0x%lx bytes of virtual address "
2788 "space at %p (%s) for use as guest address space (check your "
2789 "virtual memory ulimit setting, mmap_min_addr or reserve less "
2790 "using qemu-user's -R option)",
2791 reserved_va + 1, test, strerror(errno));
2792 exit(EXIT_FAILURE);
2793 }
2794 }
2795
2796 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2797 abi_ulong guest_hiaddr)
2798 {
2799 /* In order to use host shmat, we must be able to honor SHMLBA. */
2800 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2801
2802 if (have_guest_base) {
2803 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2804 } else if (reserved_va) {
2805 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2806 } else if (guest_loaddr) {
2807 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2808 } else {
2809 pgb_dynamic(image_name, align);
2810 }
2811
2812 /* Reserve and initialize the commpage. */
2813 if (!init_guest_commpage()) {
2814 /*
2815 * With have_guest_base, the user has selected the address and
2816 * we are trying to work with that. Otherwise, we have selected
2817 * free space and init_guest_commpage must succeeded.
2818 */
2819 assert(have_guest_base);
2820 pgb_fail_in_use(image_name);
2821 }
2822
2823 assert(QEMU_IS_ALIGNED(guest_base, align));
2824 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2825 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2826 }
2827
2828 enum {
2829 /* The string "GNU\0" as a magic number. */
2830 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2831 NOTE_DATA_SZ = 1 * KiB,
2832 NOTE_NAME_SZ = 4,
2833 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2834 };
2835
2836 /*
2837 * Process a single gnu_property entry.
2838 * Return false for error.
2839 */
2840 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2841 struct image_info *info, bool have_prev_type,
2842 uint32_t *prev_type, Error **errp)
2843 {
2844 uint32_t pr_type, pr_datasz, step;
2845
2846 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2847 goto error_data;
2848 }
2849 datasz -= *off;
2850 data += *off / sizeof(uint32_t);
2851
2852 if (datasz < 2 * sizeof(uint32_t)) {
2853 goto error_data;
2854 }
2855 pr_type = data[0];
2856 pr_datasz = data[1];
2857 data += 2;
2858 datasz -= 2 * sizeof(uint32_t);
2859 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2860 if (step > datasz) {
2861 goto error_data;
2862 }
2863
2864 /* Properties are supposed to be unique and sorted on pr_type. */
2865 if (have_prev_type && pr_type <= *prev_type) {
2866 if (pr_type == *prev_type) {
2867 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2868 } else {
2869 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2870 }
2871 return false;
2872 }
2873 *prev_type = pr_type;
2874
2875 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2876 return false;
2877 }
2878
2879 *off += 2 * sizeof(uint32_t) + step;
2880 return true;
2881
2882 error_data:
2883 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2884 return false;
2885 }
2886
2887 /* Process NT_GNU_PROPERTY_TYPE_0. */
2888 static bool parse_elf_properties(int image_fd,
2889 struct image_info *info,
2890 const struct elf_phdr *phdr,
2891 char bprm_buf[BPRM_BUF_SIZE],
2892 Error **errp)
2893 {
2894 union {
2895 struct elf_note nhdr;
2896 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2897 } note;
2898
2899 int n, off, datasz;
2900 bool have_prev_type;
2901 uint32_t prev_type;
2902
2903 /* Unless the arch requires properties, ignore them. */
2904 if (!ARCH_USE_GNU_PROPERTY) {
2905 return true;
2906 }
2907
2908 /* If the properties are crazy large, that's too bad. */
2909 n = phdr->p_filesz;
2910 if (n > sizeof(note)) {
2911 error_setg(errp, "PT_GNU_PROPERTY too large");
2912 return false;
2913 }
2914 if (n < sizeof(note.nhdr)) {
2915 error_setg(errp, "PT_GNU_PROPERTY too small");
2916 return false;
2917 }
2918
2919 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2920 memcpy(&note, bprm_buf + phdr->p_offset, n);
2921 } else {
2922 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2923 if (len != n) {
2924 error_setg_errno(errp, errno, "Error reading file header");
2925 return false;
2926 }
2927 }
2928
2929 /*
2930 * The contents of a valid PT_GNU_PROPERTY is a sequence
2931 * of uint32_t -- swap them all now.
2932 */
2933 #ifdef BSWAP_NEEDED
2934 for (int i = 0; i < n / 4; i++) {
2935 bswap32s(note.data + i);
2936 }
2937 #endif
2938
2939 /*
2940 * Note that nhdr is 3 words, and that the "name" described by namesz
2941 * immediately follows nhdr and is thus at the 4th word. Further, all
2942 * of the inputs to the kernel's round_up are multiples of 4.
2943 */
2944 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2945 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2946 note.data[3] != GNU0_MAGIC) {
2947 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2948 return false;
2949 }
2950 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2951
2952 datasz = note.nhdr.n_descsz + off;
2953 if (datasz > n) {
2954 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2955 return false;
2956 }
2957
2958 have_prev_type = false;
2959 prev_type = 0;
2960 while (1) {
2961 if (off == datasz) {
2962 return true; /* end, exit ok */
2963 }
2964 if (!parse_elf_property(note.data, &off, datasz, info,
2965 have_prev_type, &prev_type, errp)) {
2966 return false;
2967 }
2968 have_prev_type = true;
2969 }
2970 }
2971
2972 /* Load an ELF image into the address space.
2973
2974 IMAGE_NAME is the filename of the image, to use in error messages.
2975 IMAGE_FD is the open file descriptor for the image.
2976
2977 BPRM_BUF is a copy of the beginning of the file; this of course
2978 contains the elf file header at offset 0. It is assumed that this
2979 buffer is sufficiently aligned to present no problems to the host
2980 in accessing data at aligned offsets within the buffer.
2981
2982 On return: INFO values will be filled in, as necessary or available. */
2983
2984 static void load_elf_image(const char *image_name, int image_fd,
2985 struct image_info *info, char **pinterp_name,
2986 char bprm_buf[BPRM_BUF_SIZE])
2987 {
2988 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2989 struct elf_phdr *phdr;
2990 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2991 int i, retval, prot_exec;
2992 Error *err = NULL;
2993
2994 /* First of all, some simple consistency checks */
2995 if (!elf_check_ident(ehdr)) {
2996 error_setg(&err, "Invalid ELF image for this architecture");
2997 goto exit_errmsg;
2998 }
2999 bswap_ehdr(ehdr);
3000 if (!elf_check_ehdr(ehdr)) {
3001 error_setg(&err, "Invalid ELF image for this architecture");
3002 goto exit_errmsg;
3003 }
3004
3005 i = ehdr->e_phnum * sizeof(struct elf_phdr);
3006 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3007 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3008 } else {
3009 phdr = (struct elf_phdr *) alloca(i);
3010 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3011 if (retval != i) {
3012 goto exit_read;
3013 }
3014 }
3015 bswap_phdr(phdr, ehdr->e_phnum);
3016
3017 info->nsegs = 0;
3018 info->pt_dynamic_addr = 0;
3019
3020 mmap_lock();
3021
3022 /*
3023 * Find the maximum size of the image and allocate an appropriate
3024 * amount of memory to handle that. Locate the interpreter, if any.
3025 */
3026 loaddr = -1, hiaddr = 0;
3027 info->alignment = 0;
3028 info->exec_stack = EXSTACK_DEFAULT;
3029 for (i = 0; i < ehdr->e_phnum; ++i) {
3030 struct elf_phdr *eppnt = phdr + i;
3031 if (eppnt->p_type == PT_LOAD) {
3032 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3033 if (a < loaddr) {
3034 loaddr = a;
3035 }
3036 a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3037 if (a > hiaddr) {
3038 hiaddr = a;
3039 }
3040 ++info->nsegs;
3041 info->alignment |= eppnt->p_align;
3042 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3043 g_autofree char *interp_name = NULL;
3044
3045 if (*pinterp_name) {
3046 error_setg(&err, "Multiple PT_INTERP entries");
3047 goto exit_errmsg;
3048 }
3049
3050 interp_name = g_malloc(eppnt->p_filesz);
3051
3052 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3053 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3054 eppnt->p_filesz);
3055 } else {
3056 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3057 eppnt->p_offset);
3058 if (retval != eppnt->p_filesz) {
3059 goto exit_read;
3060 }
3061 }
3062 if (interp_name[eppnt->p_filesz - 1] != 0) {
3063 error_setg(&err, "Invalid PT_INTERP entry");
3064 goto exit_errmsg;
3065 }
3066 *pinterp_name = g_steal_pointer(&interp_name);
3067 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3068 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3069 goto exit_errmsg;
3070 }
3071 } else if (eppnt->p_type == PT_GNU_STACK) {
3072 info->exec_stack = eppnt->p_flags & PF_X;
3073 }
3074 }
3075
3076 load_addr = loaddr;
3077
3078 if (pinterp_name != NULL) {
3079 if (ehdr->e_type == ET_EXEC) {
3080 /*
3081 * Make sure that the low address does not conflict with
3082 * MMAP_MIN_ADDR or the QEMU application itself.
3083 */
3084 probe_guest_base(image_name, loaddr, hiaddr);
3085 } else {
3086 abi_ulong align;
3087
3088 /*
3089 * The binary is dynamic, but we still need to
3090 * select guest_base. In this case we pass a size.
3091 */
3092 probe_guest_base(image_name, 0, hiaddr - loaddr);
3093
3094 /*
3095 * Avoid collision with the loader by providing a different
3096 * default load address.
3097 */
3098 load_addr += elf_et_dyn_base;
3099
3100 /*
3101 * TODO: Better support for mmap alignment is desirable.
3102 * Since we do not have complete control over the guest
3103 * address space, we prefer the kernel to choose some address
3104 * rather than force the use of LOAD_ADDR via MAP_FIXED.
3105 * But without MAP_FIXED we cannot guarantee alignment,
3106 * only suggest it.
3107 */
3108 align = pow2ceil(info->alignment);
3109 if (align) {
3110 load_addr &= -align;
3111 }
3112 }
3113 }
3114
3115 /*
3116 * Reserve address space for all of this.
3117 *
3118 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3119 * exactly the address range that is required. Without reserved_va,
3120 * the guest address space is not isolated. We have attempted to avoid
3121 * conflict with the host program itself via probe_guest_base, but using
3122 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3123 *
3124 * Otherwise this is ET_DYN, and we are searching for a location
3125 * that can hold the memory space required. If the image is
3126 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3127 * honor that address if it happens to be free.
3128 *
3129 * In both cases, we will overwrite pages in this range with mappings
3130 * from the executable.
3131 */
3132 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3133 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3134 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3135 -1, 0);
3136 if (load_addr == -1) {
3137 goto exit_mmap;
3138 }
3139 load_bias = load_addr - loaddr;
3140
3141 if (elf_is_fdpic(ehdr)) {
3142 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3143 g_malloc(sizeof(*loadsegs) * info->nsegs);
3144
3145 for (i = 0; i < ehdr->e_phnum; ++i) {
3146 switch (phdr[i].p_type) {
3147 case PT_DYNAMIC:
3148 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3149 break;
3150 case PT_LOAD:
3151 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3152 loadsegs->p_vaddr = phdr[i].p_vaddr;
3153 loadsegs->p_memsz = phdr[i].p_memsz;
3154 ++loadsegs;
3155 break;
3156 }
3157 }
3158 }
3159
3160 info->load_bias = load_bias;
3161 info->code_offset = load_bias;
3162 info->data_offset = load_bias;
3163 info->load_addr = load_addr;
3164 info->entry = ehdr->e_entry + load_bias;
3165 info->start_code = -1;
3166 info->end_code = 0;
3167 info->start_data = -1;
3168 info->end_data = 0;
3169 /* Usual start for brk is after all sections of the main executable. */
3170 info->brk = TARGET_PAGE_ALIGN(hiaddr);
3171 info->elf_flags = ehdr->e_flags;
3172
3173 prot_exec = PROT_EXEC;
3174 #ifdef TARGET_AARCH64
3175 /*
3176 * If the BTI feature is present, this indicates that the executable
3177 * pages of the startup binary should be mapped with PROT_BTI, so that
3178 * branch targets are enforced.
3179 *
3180 * The startup binary is either the interpreter or the static executable.
3181 * The interpreter is responsible for all pages of a dynamic executable.
3182 *
3183 * Elf notes are backward compatible to older cpus.
3184 * Do not enable BTI unless it is supported.
3185 */
3186 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3187 && (pinterp_name == NULL || *pinterp_name == 0)
3188 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3189 prot_exec |= TARGET_PROT_BTI;
3190 }
3191 #endif
3192
3193 for (i = 0; i < ehdr->e_phnum; i++) {
3194 struct elf_phdr *eppnt = phdr + i;
3195 if (eppnt->p_type == PT_LOAD) {
3196 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3197 int elf_prot = 0;
3198
3199 if (eppnt->p_flags & PF_R) {
3200 elf_prot |= PROT_READ;
3201 }
3202 if (eppnt->p_flags & PF_W) {
3203 elf_prot |= PROT_WRITE;
3204 }
3205 if (eppnt->p_flags & PF_X) {
3206 elf_prot |= prot_exec;
3207 }
3208
3209 vaddr = load_bias + eppnt->p_vaddr;
3210 vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3211 vaddr_ps = vaddr & TARGET_PAGE_MASK;
3212
3213 vaddr_ef = vaddr + eppnt->p_filesz;
3214 vaddr_em = vaddr + eppnt->p_memsz;
3215
3216 /*
3217 * Some segments may be completely empty, with a non-zero p_memsz
3218 * but no backing file segment.
3219 */
3220 if (eppnt->p_filesz != 0) {
3221 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3222 elf_prot, MAP_PRIVATE | MAP_FIXED,
3223 image_fd, eppnt->p_offset - vaddr_po);
3224 if (error == -1) {
3225 goto exit_mmap;
3226 }
3227 }
3228
3229 /* If the load segment requests extra zeros (e.g. bss), map it. */
3230 if (vaddr_ef < vaddr_em &&
3231 !zero_bss(vaddr_ef, vaddr_em, elf_prot)) {
3232 goto exit_mmap;
3233 }
3234
3235 /* Find the full program boundaries. */
3236 if (elf_prot & PROT_EXEC) {
3237 if (vaddr < info->start_code) {
3238 info->start_code = vaddr;
3239 }
3240 if (vaddr_ef > info->end_code) {
3241 info->end_code = vaddr_ef;
3242 }
3243 }
3244 if (elf_prot & PROT_WRITE) {
3245 if (vaddr < info->start_data) {
3246 info->start_data = vaddr;
3247 }
3248 if (vaddr_ef > info->end_data) {
3249 info->end_data = vaddr_ef;
3250 }
3251 }
3252 #ifdef TARGET_MIPS
3253 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3254 Mips_elf_abiflags_v0 abiflags;
3255 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3256 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3257 goto exit_errmsg;
3258 }
3259 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3260 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3261 sizeof(Mips_elf_abiflags_v0));
3262 } else {
3263 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3264 eppnt->p_offset);
3265 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3266 goto exit_read;
3267 }
3268 }
3269 bswap_mips_abiflags(&abiflags);
3270 info->fp_abi = abiflags.fp_abi;
3271 #endif
3272 }
3273 }
3274
3275 if (info->end_data == 0) {
3276 info->start_data = info->end_code;
3277 info->end_data = info->end_code;
3278 }
3279
3280 if (qemu_log_enabled()) {
3281 load_symbols(ehdr, image_fd, load_bias);
3282 }
3283
3284 debuginfo_report_elf(image_name, image_fd, load_bias);
3285
3286 mmap_unlock();
3287
3288 close(image_fd);
3289 return;
3290
3291 exit_read:
3292 if (retval >= 0) {
3293 error_setg(&err, "Incomplete read of file header");
3294 } else {
3295 error_setg_errno(&err, errno, "Error reading file header");
3296 }
3297 goto exit_errmsg;
3298 exit_mmap:
3299 error_setg_errno(&err, errno, "Error mapping file");
3300 goto exit_errmsg;
3301 exit_errmsg:
3302 error_reportf_err(err, "%s: ", image_name);
3303 exit(-1);
3304 }
3305
3306 static void load_elf_interp(const char *filename, struct image_info *info,
3307 char bprm_buf[BPRM_BUF_SIZE])
3308 {
3309 int fd, retval;
3310 Error *err = NULL;
3311
3312 fd = open(path(filename), O_RDONLY);
3313 if (fd < 0) {
3314 error_setg_file_open(&err, errno, filename);
3315 error_report_err(err);
3316 exit(-1);
3317 }
3318
3319 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3320 if (retval < 0) {
3321 error_setg_errno(&err, errno, "Error reading file header");
3322 error_reportf_err(err, "%s: ", filename);
3323 exit(-1);
3324 }
3325
3326 if (retval < BPRM_BUF_SIZE) {
3327 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3328 }
3329
3330 load_elf_image(filename, fd, info, NULL, bprm_buf);
3331 }
3332
3333 static int symfind(const void *s0, const void *s1)
3334 {
3335 struct elf_sym *sym = (struct elf_sym *)s1;
3336 __typeof(sym->st_value) addr = *(uint64_t *)s0;
3337 int result = 0;
3338
3339 if (addr < sym->st_value) {
3340 result = -1;
3341 } else if (addr >= sym->st_value + sym->st_size) {
3342 result = 1;
3343 }
3344 return result;
3345 }
3346
3347 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3348 {
3349 #if ELF_CLASS == ELFCLASS32
3350 struct elf_sym *syms = s->disas_symtab.elf32;
3351 #else
3352 struct elf_sym *syms = s->disas_symtab.elf64;
3353 #endif
3354
3355 // binary search
3356 struct elf_sym *sym;
3357
3358 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3359 if (sym != NULL) {
3360 return s->disas_strtab + sym->st_name;
3361 }
3362
3363 return "";
3364 }
3365
3366 /* FIXME: This should use elf_ops.h */
3367 static int symcmp(const void *s0, const void *s1)
3368 {
3369 struct elf_sym *sym0 = (struct elf_sym *)s0;
3370 struct elf_sym *sym1 = (struct elf_sym *)s1;
3371 return (sym0->st_value < sym1->st_value)
3372 ? -1
3373 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3374 }
3375
3376 /* Best attempt to load symbols from this ELF object. */
3377 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3378 {
3379 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3380 uint64_t segsz;
3381 struct elf_shdr *shdr;
3382 char *strings = NULL;
3383 struct syminfo *s = NULL;
3384 struct elf_sym *new_syms, *syms = NULL;
3385
3386 shnum = hdr->e_shnum;
3387 i = shnum * sizeof(struct elf_shdr);
3388 shdr = (struct elf_shdr *)alloca(i);
3389 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3390 return;
3391 }
3392
3393 bswap_shdr(shdr, shnum);
3394 for (i = 0; i < shnum; ++i) {
3395 if (shdr[i].sh_type == SHT_SYMTAB) {
3396 sym_idx = i;
3397 str_idx = shdr[i].sh_link;
3398 goto found;
3399 }
3400 }
3401
3402 /* There will be no symbol table if the file was stripped. */
3403 return;
3404
3405 found:
3406 /* Now know where the strtab and symtab are. Snarf them. */
3407 s = g_try_new(struct syminfo, 1);
3408 if (!s) {
3409 goto give_up;
3410 }
3411
3412 segsz = shdr[str_idx].sh_size;
3413 s->disas_strtab = strings = g_try_malloc(segsz);
3414 if (!strings ||
3415 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3416 goto give_up;
3417 }
3418
3419 segsz = shdr[sym_idx].sh_size;
3420 syms = g_try_malloc(segsz);
3421 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3422 goto give_up;
3423 }
3424
3425 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3426 /* Implausibly large symbol table: give up rather than ploughing
3427 * on with the number of symbols calculation overflowing
3428 */
3429 goto give_up;
3430 }
3431 nsyms = segsz / sizeof(struct elf_sym);
3432 for (i = 0; i < nsyms; ) {
3433 bswap_sym(syms + i);
3434 /* Throw away entries which we do not need. */
3435 if (syms[i].st_shndx == SHN_UNDEF
3436 || syms[i].st_shndx >= SHN_LORESERVE
3437 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3438 if (i < --nsyms) {
3439 syms[i] = syms[nsyms];
3440 }
3441 } else {
3442 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3443 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3444 syms[i].st_value &= ~(target_ulong)1;
3445 #endif
3446 syms[i].st_value += load_bias;
3447 i++;
3448 }
3449 }
3450
3451 /* No "useful" symbol. */
3452 if (nsyms == 0) {
3453 goto give_up;
3454 }
3455
3456 /* Attempt to free the storage associated with the local symbols
3457 that we threw away. Whether or not this has any effect on the
3458 memory allocation depends on the malloc implementation and how
3459 many symbols we managed to discard. */
3460 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3461 if (new_syms == NULL) {
3462 goto give_up;
3463 }
3464 syms = new_syms;
3465
3466 qsort(syms, nsyms, sizeof(*syms), symcmp);
3467
3468 s->disas_num_syms = nsyms;
3469 #if ELF_CLASS == ELFCLASS32
3470 s->disas_symtab.elf32 = syms;
3471 #else
3472 s->disas_symtab.elf64 = syms;
3473 #endif
3474 s->lookup_symbol = lookup_symbolxx;
3475 s->next = syminfos;
3476 syminfos = s;
3477
3478 return;
3479
3480 give_up:
3481 g_free(s);
3482 g_free(strings);
3483 g_free(syms);
3484 }
3485
3486 uint32_t get_elf_eflags(int fd)
3487 {
3488 struct elfhdr ehdr;
3489 off_t offset;
3490 int ret;
3491
3492 /* Read ELF header */
3493 offset = lseek(fd, 0, SEEK_SET);
3494 if (offset == (off_t) -1) {
3495 return 0;
3496 }
3497 ret = read(fd, &ehdr, sizeof(ehdr));
3498 if (ret < sizeof(ehdr)) {
3499 return 0;
3500 }
3501 offset = lseek(fd, offset, SEEK_SET);
3502 if (offset == (off_t) -1) {
3503 return 0;
3504 }
3505
3506 /* Check ELF signature */
3507 if (!elf_check_ident(&ehdr)) {
3508 return 0;
3509 }
3510
3511 /* check header */
3512 bswap_ehdr(&ehdr);
3513 if (!elf_check_ehdr(&ehdr)) {
3514 return 0;
3515 }
3516
3517 /* return architecture id */
3518 return ehdr.e_flags;
3519 }
3520
3521 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3522 {
3523 struct image_info interp_info;
3524 struct elfhdr elf_ex;
3525 char *elf_interpreter = NULL;
3526 char *scratch;
3527
3528 memset(&interp_info, 0, sizeof(interp_info));
3529 #ifdef TARGET_MIPS
3530 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3531 #endif
3532
3533 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3534
3535 load_elf_image(bprm->filename, bprm->fd, info,
3536 &elf_interpreter, bprm->buf);
3537
3538 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3539 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3540 when we load the interpreter. */
3541 elf_ex = *(struct elfhdr *)bprm->buf;
3542
3543 /* Do this so that we can load the interpreter, if need be. We will
3544 change some of these later */
3545 bprm->p = setup_arg_pages(bprm, info);
3546
3547 scratch = g_new0(char, TARGET_PAGE_SIZE);
3548 if (STACK_GROWS_DOWN) {
3549 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3550 bprm->p, info->stack_limit);
3551 info->file_string = bprm->p;
3552 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3553 bprm->p, info->stack_limit);
3554 info->env_strings = bprm->p;
3555 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3556 bprm->p, info->stack_limit);
3557 info->arg_strings = bprm->p;
3558 } else {
3559 info->arg_strings = bprm->p;
3560 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3561 bprm->p, info->stack_limit);
3562 info->env_strings = bprm->p;
3563 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3564 bprm->p, info->stack_limit);
3565 info->file_string = bprm->p;
3566 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3567 bprm->p, info->stack_limit);
3568 }
3569
3570 g_free(scratch);
3571
3572 if (!bprm->p) {
3573 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3574 exit(-1);
3575 }
3576
3577 if (elf_interpreter) {
3578 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3579
3580 /*
3581 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3582 * with the mappings the interpreter can be loaded above but
3583 * near the main executable, which can leave very little room
3584 * for the heap.
3585 * If the current brk has less than 16MB, use the end of the
3586 * interpreter.
3587 */
3588 if (interp_info.brk > info->brk &&
3589 interp_info.load_bias - info->brk < 16 * MiB) {
3590 info->brk = interp_info.brk;
3591 }
3592
3593 /* If the program interpreter is one of these two, then assume
3594 an iBCS2 image. Otherwise assume a native linux image. */
3595
3596 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3597 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3598 info->personality = PER_SVR4;
3599
3600 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3601 and some applications "depend" upon this behavior. Since
3602 we do not have the power to recompile these, we emulate
3603 the SVr4 behavior. Sigh. */
3604 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3605 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3606 }
3607 #ifdef TARGET_MIPS
3608 info->interp_fp_abi = interp_info.fp_abi;
3609 #endif
3610 }
3611
3612 /*
3613 * TODO: load a vdso, which would also contain the signal trampolines.
3614 * Otherwise, allocate a private page to hold them.
3615 */
3616 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3617 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3618 PROT_READ | PROT_WRITE,
3619 MAP_PRIVATE | MAP_ANON, -1, 0);
3620 if (tramp_page == -1) {
3621 return -errno;
3622 }
3623
3624 setup_sigtramp(tramp_page);
3625 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3626 }
3627
3628 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3629 info, (elf_interpreter ? &interp_info : NULL));
3630 info->start_stack = bprm->p;
3631
3632 /* If we have an interpreter, set that as the program's entry point.
3633 Copy the load_bias as well, to help PPC64 interpret the entry
3634 point as a function descriptor. Do this after creating elf tables
3635 so that we copy the original program entry point into the AUXV. */
3636 if (elf_interpreter) {
3637 info->load_bias = interp_info.load_bias;
3638 info->entry = interp_info.entry;
3639 g_free(elf_interpreter);
3640 }
3641
3642 #ifdef USE_ELF_CORE_DUMP
3643 bprm->core_dump = &elf_core_dump;
3644 #endif
3645
3646 return 0;
3647 }
3648
3649 #ifdef USE_ELF_CORE_DUMP
3650 /*
3651 * Definitions to generate Intel SVR4-like core files.
3652 * These mostly have the same names as the SVR4 types with "target_elf_"
3653 * tacked on the front to prevent clashes with linux definitions,
3654 * and the typedef forms have been avoided. This is mostly like
3655 * the SVR4 structure, but more Linuxy, with things that Linux does
3656 * not support and which gdb doesn't really use excluded.
3657 *
3658 * Fields we don't dump (their contents is zero) in linux-user qemu
3659 * are marked with XXX.
3660 *
3661 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3662 *
3663 * Porting ELF coredump for target is (quite) simple process. First you
3664 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3665 * the target resides):
3666 *
3667 * #define USE_ELF_CORE_DUMP
3668 *
3669 * Next you define type of register set used for dumping. ELF specification
3670 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3671 *
3672 * typedef <target_regtype> target_elf_greg_t;
3673 * #define ELF_NREG <number of registers>
3674 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3675 *
3676 * Last step is to implement target specific function that copies registers
3677 * from given cpu into just specified register set. Prototype is:
3678 *
3679 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3680 * const CPUArchState *env);
3681 *
3682 * Parameters:
3683 * regs - copy register values into here (allocated and zeroed by caller)
3684 * env - copy registers from here
3685 *
3686 * Example for ARM target is provided in this file.
3687 */
3688
3689 /* An ELF note in memory */
3690 struct memelfnote {
3691 const char *name;
3692 size_t namesz;
3693 size_t namesz_rounded;
3694 int type;
3695 size_t datasz;
3696 size_t datasz_rounded;
3697 void *data;
3698 size_t notesz;
3699 };
3700
3701 struct target_elf_siginfo {
3702 abi_int si_signo; /* signal number */
3703 abi_int si_code; /* extra code */
3704 abi_int si_errno; /* errno */
3705 };
3706
3707 struct target_elf_prstatus {
3708 struct target_elf_siginfo pr_info; /* Info associated with signal */
3709 abi_short pr_cursig; /* Current signal */
3710 abi_ulong pr_sigpend; /* XXX */
3711 abi_ulong pr_sighold; /* XXX */
3712 target_pid_t pr_pid;
3713 target_pid_t pr_ppid;
3714 target_pid_t pr_pgrp;
3715 target_pid_t pr_sid;
3716 struct target_timeval pr_utime; /* XXX User time */
3717 struct target_timeval pr_stime; /* XXX System time */
3718 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3719 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3720 target_elf_gregset_t pr_reg; /* GP registers */
3721 abi_int pr_fpvalid; /* XXX */
3722 };
3723
3724 #define ELF_PRARGSZ (80) /* Number of chars for args */
3725
3726 struct target_elf_prpsinfo {
3727 char pr_state; /* numeric process state */
3728 char pr_sname; /* char for pr_state */
3729 char pr_zomb; /* zombie */
3730 char pr_nice; /* nice val */
3731 abi_ulong pr_flag; /* flags */
3732 target_uid_t pr_uid;
3733 target_gid_t pr_gid;
3734 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3735 /* Lots missing */
3736 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3737 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3738 };
3739
3740 /* Here is the structure in which status of each thread is captured. */
3741 struct elf_thread_status {
3742 QTAILQ_ENTRY(elf_thread_status) ets_link;
3743 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3744 #if 0
3745 elf_fpregset_t fpu; /* NT_PRFPREG */
3746 struct task_struct *thread;
3747 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3748 #endif
3749 struct memelfnote notes[1];
3750 int num_notes;
3751 };
3752
3753 struct elf_note_info {
3754 struct memelfnote *notes;
3755 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3756 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3757
3758 QTAILQ_HEAD(, elf_thread_status) thread_list;
3759 #if 0
3760 /*
3761 * Current version of ELF coredump doesn't support
3762 * dumping fp regs etc.
3763 */
3764 elf_fpregset_t *fpu;
3765 elf_fpxregset_t *xfpu;
3766 int thread_status_size;
3767 #endif
3768 int notes_size;
3769 int numnote;
3770 };
3771
3772 struct vm_area_struct {
3773 target_ulong vma_start; /* start vaddr of memory region */
3774 target_ulong vma_end; /* end vaddr of memory region */
3775 abi_ulong vma_flags; /* protection etc. flags for the region */
3776 QTAILQ_ENTRY(vm_area_struct) vma_link;
3777 };
3778
3779 struct mm_struct {
3780 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3781 int mm_count; /* number of mappings */
3782 };
3783
3784 static struct mm_struct *vma_init(void);
3785 static void vma_delete(struct mm_struct *);
3786 static int vma_add_mapping(struct mm_struct *, target_ulong,
3787 target_ulong, abi_ulong);
3788 static int vma_get_mapping_count(const struct mm_struct *);
3789 static struct vm_area_struct *vma_first(const struct mm_struct *);
3790 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3791 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3792 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3793 unsigned long flags);
3794
3795 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3796 static void fill_note(struct memelfnote *, const char *, int,
3797 unsigned int, void *);
3798 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3799 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3800 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3801 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3802 static size_t note_size(const struct memelfnote *);
3803 static void free_note_info(struct elf_note_info *);
3804 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3805 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3806
3807 static int dump_write(int, const void *, size_t);
3808 static int write_note(struct memelfnote *, int);
3809 static int write_note_info(struct elf_note_info *, int);
3810
3811 #ifdef BSWAP_NEEDED
3812 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3813 {
3814 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3815 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3816 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3817 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3818 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3819 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3820 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3821 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3822 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3823 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3824 /* cpu times are not filled, so we skip them */
3825 /* regs should be in correct format already */
3826 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3827 }
3828
3829 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3830 {
3831 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3832 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3833 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3834 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3835 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3836 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3837 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3838 }
3839
3840 static void bswap_note(struct elf_note *en)
3841 {
3842 bswap32s(&en->n_namesz);
3843 bswap32s(&en->n_descsz);
3844 bswap32s(&en->n_type);
3845 }
3846 #else
3847 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3848 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3849 static inline void bswap_note(struct elf_note *en) { }
3850 #endif /* BSWAP_NEEDED */
3851
3852 /*
3853 * Minimal support for linux memory regions. These are needed
3854 * when we are finding out what memory exactly belongs to
3855 * emulated process. No locks needed here, as long as
3856 * thread that received the signal is stopped.
3857 */
3858
3859 static struct mm_struct *vma_init(void)
3860 {
3861 struct mm_struct *mm;
3862
3863 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3864 return (NULL);
3865
3866 mm->mm_count = 0;
3867 QTAILQ_INIT(&mm->mm_mmap);
3868
3869 return (mm);
3870 }
3871
3872 static void vma_delete(struct mm_struct *mm)
3873 {
3874 struct vm_area_struct *vma;
3875
3876 while ((vma = vma_first(mm)) != NULL) {
3877 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3878 g_free(vma);
3879 }
3880 g_free(mm);
3881 }
3882
3883 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3884 target_ulong end, abi_ulong flags)
3885 {
3886 struct vm_area_struct *vma;
3887
3888 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3889 return (-1);
3890
3891 vma->vma_start = start;
3892 vma->vma_end = end;
3893 vma->vma_flags = flags;
3894
3895 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3896 mm->mm_count++;
3897
3898 return (0);
3899 }
3900
3901 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3902 {
3903 return (QTAILQ_FIRST(&mm->mm_mmap));
3904 }
3905
3906 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3907 {
3908 return (QTAILQ_NEXT(vma, vma_link));
3909 }
3910
3911 static int vma_get_mapping_count(const struct mm_struct *mm)
3912 {
3913 return (mm->mm_count);
3914 }
3915
3916 /*
3917 * Calculate file (dump) size of given memory region.
3918 */
3919 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3920 {
3921 /* if we cannot even read the first page, skip it */
3922 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3923 return (0);
3924
3925 /*
3926 * Usually we don't dump executable pages as they contain
3927 * non-writable code that debugger can read directly from
3928 * target library etc. However, thread stacks are marked
3929 * also executable so we read in first page of given region
3930 * and check whether it contains elf header. If there is
3931 * no elf header, we dump it.
3932 */
3933 if (vma->vma_flags & PROT_EXEC) {
3934 char page[TARGET_PAGE_SIZE];
3935
3936 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3937 return 0;
3938 }
3939 if ((page[EI_MAG0] == ELFMAG0) &&
3940 (page[EI_MAG1] == ELFMAG1) &&
3941 (page[EI_MAG2] == ELFMAG2) &&
3942 (page[EI_MAG3] == ELFMAG3)) {
3943 /*
3944 * Mappings are possibly from ELF binary. Don't dump
3945 * them.
3946 */
3947 return (0);
3948 }
3949 }
3950
3951 return (vma->vma_end - vma->vma_start);
3952 }
3953
3954 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3955 unsigned long flags)
3956 {
3957 struct mm_struct *mm = (struct mm_struct *)priv;
3958
3959 vma_add_mapping(mm, start, end, flags);
3960 return (0);
3961 }
3962
3963 static void fill_note(struct memelfnote *note, const char *name, int type,
3964 unsigned int sz, void *data)
3965 {
3966 unsigned int namesz;
3967
3968 namesz = strlen(name) + 1;
3969 note->name = name;
3970 note->namesz = namesz;
3971 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3972 note->type = type;
3973 note->datasz = sz;
3974 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3975
3976 note->data = data;
3977
3978 /*
3979 * We calculate rounded up note size here as specified by
3980 * ELF document.
3981 */
3982 note->notesz = sizeof (struct elf_note) +
3983 note->namesz_rounded + note->datasz_rounded;
3984 }
3985
3986 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3987 uint32_t flags)
3988 {
3989 (void) memset(elf, 0, sizeof(*elf));
3990
3991 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3992 elf->e_ident[EI_CLASS] = ELF_CLASS;
3993 elf->e_ident[EI_DATA] = ELF_DATA;
3994 elf->e_ident[EI_VERSION] = EV_CURRENT;
3995 elf->e_ident[EI_OSABI] = ELF_OSABI;
3996
3997 elf->e_type = ET_CORE;
3998 elf->e_machine = machine;
3999 elf->e_version = EV_CURRENT;
4000 elf->e_phoff = sizeof(struct elfhdr);
4001 elf->e_flags = flags;
4002 elf->e_ehsize = sizeof(struct elfhdr);
4003 elf->e_phentsize = sizeof(struct elf_phdr);
4004 elf->e_phnum = segs;
4005
4006 bswap_ehdr(elf);
4007 }
4008
4009 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4010 {
4011 phdr->p_type = PT_NOTE;
4012 phdr->p_offset = offset;
4013 phdr->p_vaddr = 0;
4014 phdr->p_paddr = 0;
4015 phdr->p_filesz = sz;
4016 phdr->p_memsz = 0;
4017 phdr->p_flags = 0;
4018 phdr->p_align = 0;
4019
4020 bswap_phdr(phdr, 1);
4021 }
4022
4023 static size_t note_size(const struct memelfnote *note)
4024 {
4025 return (note->notesz);
4026 }
4027
4028 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4029 const TaskState *ts, int signr)
4030 {
4031 (void) memset(prstatus, 0, sizeof (*prstatus));
4032 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4033 prstatus->pr_pid = ts->ts_tid;
4034 prstatus->pr_ppid = getppid();
4035 prstatus->pr_pgrp = getpgrp();
4036 prstatus->pr_sid = getsid(0);
4037
4038 bswap_prstatus(prstatus);
4039 }
4040
4041 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4042 {
4043 char *base_filename;
4044 unsigned int i, len;
4045
4046 (void) memset(psinfo, 0, sizeof (*psinfo));
4047
4048 len = ts->info->env_strings - ts->info->arg_strings;
4049 if (len >= ELF_PRARGSZ)
4050 len = ELF_PRARGSZ - 1;
4051 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4052 return -EFAULT;
4053 }
4054 for (i = 0; i < len; i++)
4055 if (psinfo->pr_psargs[i] == 0)
4056 psinfo->pr_psargs[i] = ' ';
4057 psinfo->pr_psargs[len] = 0;
4058
4059 psinfo->pr_pid = getpid();
4060 psinfo->pr_ppid = getppid();
4061 psinfo->pr_pgrp = getpgrp();
4062 psinfo->pr_sid = getsid(0);
4063 psinfo->pr_uid = getuid();
4064 psinfo->pr_gid = getgid();
4065
4066 base_filename = g_path_get_basename(ts->bprm->filename);
4067 /*
4068 * Using strncpy here is fine: at max-length,
4069 * this field is not NUL-terminated.
4070 */
4071 (void) strncpy(psinfo->pr_fname, base_filename,
4072 sizeof(psinfo->pr_fname));
4073
4074 g_free(base_filename);
4075 bswap_psinfo(psinfo);
4076 return (0);
4077 }
4078
4079 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4080 {
4081 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4082 elf_addr_t orig_auxv = auxv;
4083 void *ptr;
4084 int len = ts->info->auxv_len;
4085
4086 /*
4087 * Auxiliary vector is stored in target process stack. It contains
4088 * {type, value} pairs that we need to dump into note. This is not
4089 * strictly necessary but we do it here for sake of completeness.
4090 */
4091
4092 /* read in whole auxv vector and copy it to memelfnote */
4093 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4094 if (ptr != NULL) {
4095 fill_note(note, "CORE", NT_AUXV, len, ptr);
4096 unlock_user(ptr, auxv, len);
4097 }
4098 }
4099
4100 /*
4101 * Constructs name of coredump file. We have following convention
4102 * for the name:
4103 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4104 *
4105 * Returns the filename
4106 */
4107 static char *core_dump_filename(const TaskState *ts)
4108 {
4109 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4110 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4111 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4112
4113 return g_strdup_printf("qemu_%s_%s_%d.core",
4114 base_filename, nowstr, (int)getpid());
4115 }
4116
4117 static int dump_write(int fd, const void *ptr, size_t size)
4118 {
4119 const char *bufp = (const char *)ptr;
4120 ssize_t bytes_written, bytes_left;
4121 struct rlimit dumpsize;
4122 off_t pos;
4123
4124 bytes_written = 0;
4125 getrlimit(RLIMIT_CORE, &dumpsize);
4126 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4127 if (errno == ESPIPE) { /* not a seekable stream */
4128 bytes_left = size;
4129 } else {
4130 return pos;
4131 }
4132 } else {
4133 if (dumpsize.rlim_cur <= pos) {
4134 return -1;
4135 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4136 bytes_left = size;
4137 } else {
4138 size_t limit_left=dumpsize.rlim_cur - pos;
4139 bytes_left = limit_left >= size ? size : limit_left ;
4140 }
4141 }
4142
4143 /*
4144 * In normal conditions, single write(2) should do but
4145 * in case of socket etc. this mechanism is more portable.
4146 */
4147 do {
4148 bytes_written = write(fd, bufp, bytes_left);
4149 if (bytes_written < 0) {
4150 if (errno == EINTR)
4151 continue;
4152 return (-1);
4153 } else if (bytes_written == 0) { /* eof */
4154 return (-1);
4155 }
4156 bufp += bytes_written;
4157 bytes_left -= bytes_written;
4158 } while (bytes_left > 0);
4159
4160 return (0);
4161 }
4162
4163 static int write_note(struct memelfnote *men, int fd)
4164 {
4165 struct elf_note en;
4166
4167 en.n_namesz = men->namesz;
4168 en.n_type = men->type;
4169 en.n_descsz = men->datasz;
4170
4171 bswap_note(&en);
4172
4173 if (dump_write(fd, &en, sizeof(en)) != 0)
4174 return (-1);
4175 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4176 return (-1);
4177 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4178 return (-1);
4179
4180 return (0);
4181 }
4182
4183 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4184 {
4185 CPUState *cpu = env_cpu((CPUArchState *)env);
4186 TaskState *ts = (TaskState *)cpu->opaque;
4187 struct elf_thread_status *ets;
4188
4189 ets = g_malloc0(sizeof (*ets));
4190 ets->num_notes = 1; /* only prstatus is dumped */
4191 fill_prstatus(&ets->prstatus, ts, 0);
4192 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4193 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4194 &ets->prstatus);
4195
4196 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4197
4198 info->notes_size += note_size(&ets->notes[0]);
4199 }
4200
4201 static void init_note_info(struct elf_note_info *info)
4202 {
4203 /* Initialize the elf_note_info structure so that it is at
4204 * least safe to call free_note_info() on it. Must be
4205 * called before calling fill_note_info().
4206 */
4207 memset(info, 0, sizeof (*info));
4208 QTAILQ_INIT(&info->thread_list);
4209 }
4210
4211 static int fill_note_info(struct elf_note_info *info,
4212 long signr, const CPUArchState *env)
4213 {
4214 #define NUMNOTES 3
4215 CPUState *cpu = env_cpu((CPUArchState *)env);
4216 TaskState *ts = (TaskState *)cpu->opaque;
4217 int i;
4218
4219 info->notes = g_new0(struct memelfnote, NUMNOTES);
4220 if (info->notes == NULL)
4221 return (-ENOMEM);
4222 info->prstatus = g_malloc0(sizeof (*info->prstatus));
4223 if (info->prstatus == NULL)
4224 return (-ENOMEM);
4225 info->psinfo = g_malloc0(sizeof (*info->psinfo));
4226 if (info->prstatus == NULL)
4227 return (-ENOMEM);
4228
4229 /*
4230 * First fill in status (and registers) of current thread
4231 * including process info & aux vector.
4232 */
4233 fill_prstatus(info->prstatus, ts, signr);
4234 elf_core_copy_regs(&info->prstatus->pr_reg, env);
4235 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4236 sizeof (*info->prstatus), info->prstatus);
4237 fill_psinfo(info->psinfo, ts);
4238 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4239 sizeof (*info->psinfo), info->psinfo);
4240 fill_auxv_note(&info->notes[2], ts);
4241 info->numnote = 3;
4242
4243 info->notes_size = 0;
4244 for (i = 0; i < info->numnote; i++)
4245 info->notes_size += note_size(&info->notes[i]);
4246
4247 /* read and fill status of all threads */
4248 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4249 CPU_FOREACH(cpu) {
4250 if (cpu == thread_cpu) {
4251 continue;
4252 }
4253 fill_thread_info(info, cpu->env_ptr);
4254 }
4255 }
4256
4257 return (0);
4258 }
4259
4260 static void free_note_info(struct elf_note_info *info)
4261 {
4262 struct elf_thread_status *ets;
4263
4264 while (!QTAILQ_EMPTY(&info->thread_list)) {
4265 ets = QTAILQ_FIRST(&info->thread_list);
4266 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4267 g_free(ets);
4268 }
4269
4270 g_free(info->prstatus);
4271 g_free(info->psinfo);
4272 g_free(info->notes);
4273 }
4274
4275 static int write_note_info(struct elf_note_info *info, int fd)
4276 {
4277 struct elf_thread_status *ets;
4278 int i, error = 0;
4279
4280 /* write prstatus, psinfo and auxv for current thread */
4281 for (i = 0; i < info->numnote; i++)
4282 if ((error = write_note(&info->notes[i], fd)) != 0)
4283 return (error);
4284
4285 /* write prstatus for each thread */
4286 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4287 if ((error = write_note(&ets->notes[0], fd)) != 0)
4288 return (error);
4289 }
4290
4291 return (0);
4292 }
4293
4294 /*
4295 * Write out ELF coredump.
4296 *
4297 * See documentation of ELF object file format in:
4298 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4299 *
4300 * Coredump format in linux is following:
4301 *
4302 * 0 +----------------------+ \
4303 * | ELF header | ET_CORE |
4304 * +----------------------+ |
4305 * | ELF program headers | |--- headers
4306 * | - NOTE section | |
4307 * | - PT_LOAD sections | |
4308 * +----------------------+ /
4309 * | NOTEs: |
4310 * | - NT_PRSTATUS |
4311 * | - NT_PRSINFO |
4312 * | - NT_AUXV |
4313 * +----------------------+ <-- aligned to target page
4314 * | Process memory dump |
4315 * : :
4316 * . .
4317 * : :
4318 * | |
4319 * +----------------------+
4320 *
4321 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4322 * NT_PRSINFO -> struct elf_prpsinfo
4323 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4324 *
4325 * Format follows System V format as close as possible. Current
4326 * version limitations are as follows:
4327 * - no floating point registers are dumped
4328 *
4329 * Function returns 0 in case of success, negative errno otherwise.
4330 *
4331 * TODO: make this work also during runtime: it should be
4332 * possible to force coredump from running process and then
4333 * continue processing. For example qemu could set up SIGUSR2
4334 * handler (provided that target process haven't registered
4335 * handler for that) that does the dump when signal is received.
4336 */
4337 static int elf_core_dump(int signr, const CPUArchState *env)
4338 {
4339 const CPUState *cpu = env_cpu((CPUArchState *)env);
4340 const TaskState *ts = (const TaskState *)cpu->opaque;
4341 struct vm_area_struct *vma = NULL;
4342 g_autofree char *corefile = NULL;
4343 struct elf_note_info info;
4344 struct elfhdr elf;
4345 struct elf_phdr phdr;
4346 struct rlimit dumpsize;
4347 struct mm_struct *mm = NULL;
4348 off_t offset = 0, data_offset = 0;
4349 int segs = 0;
4350 int fd = -1;
4351
4352 init_note_info(&info);
4353
4354 errno = 0;
4355 getrlimit(RLIMIT_CORE, &dumpsize);
4356 if (dumpsize.rlim_cur == 0)
4357 return 0;
4358
4359 corefile = core_dump_filename(ts);
4360
4361 if ((fd = open(corefile, O_WRONLY | O_CREAT,
4362 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4363 return (-errno);
4364
4365 /*
4366 * Walk through target process memory mappings and
4367 * set up structure containing this information. After
4368 * this point vma_xxx functions can be used.
4369 */
4370 if ((mm = vma_init()) == NULL)
4371 goto out;
4372
4373 walk_memory_regions(mm, vma_walker);
4374 segs = vma_get_mapping_count(mm);
4375
4376 /*
4377 * Construct valid coredump ELF header. We also
4378 * add one more segment for notes.
4379 */
4380 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4381 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4382 goto out;
4383
4384 /* fill in the in-memory version of notes */
4385 if (fill_note_info(&info, signr, env) < 0)
4386 goto out;
4387
4388 offset += sizeof (elf); /* elf header */
4389 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4390
4391 /* write out notes program header */
4392 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4393
4394 offset += info.notes_size;
4395 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4396 goto out;
4397
4398 /*
4399 * ELF specification wants data to start at page boundary so
4400 * we align it here.
4401 */
4402 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4403
4404 /*
4405 * Write program headers for memory regions mapped in
4406 * the target process.
4407 */
4408 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4409 (void) memset(&phdr, 0, sizeof (phdr));
4410
4411 phdr.p_type = PT_LOAD;
4412 phdr.p_offset = offset;
4413 phdr.p_vaddr = vma->vma_start;
4414 phdr.p_paddr = 0;
4415 phdr.p_filesz = vma_dump_size(vma);
4416 offset += phdr.p_filesz;
4417 phdr.p_memsz = vma->vma_end - vma->vma_start;
4418 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4419 if (vma->vma_flags & PROT_WRITE)
4420 phdr.p_flags |= PF_W;
4421 if (vma->vma_flags & PROT_EXEC)
4422 phdr.p_flags |= PF_X;
4423 phdr.p_align = ELF_EXEC_PAGESIZE;
4424
4425 bswap_phdr(&phdr, 1);
4426 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4427 goto out;
4428 }
4429 }
4430
4431 /*
4432 * Next we write notes just after program headers. No
4433 * alignment needed here.
4434 */
4435 if (write_note_info(&info, fd) < 0)
4436 goto out;
4437
4438 /* align data to page boundary */
4439 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4440 goto out;
4441
4442 /*
4443 * Finally we can dump process memory into corefile as well.
4444 */
4445 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4446 abi_ulong addr;
4447 abi_ulong end;
4448
4449 end = vma->vma_start + vma_dump_size(vma);
4450
4451 for (addr = vma->vma_start; addr < end;
4452 addr += TARGET_PAGE_SIZE) {
4453 char page[TARGET_PAGE_SIZE];
4454 int error;
4455
4456 /*
4457 * Read in page from target process memory and
4458 * write it to coredump file.
4459 */
4460 error = copy_from_user(page, addr, sizeof (page));
4461 if (error != 0) {
4462 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4463 addr);
4464 errno = -error;
4465 goto out;
4466 }
4467 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4468 goto out;
4469 }
4470 }
4471
4472 out:
4473 free_note_info(&info);
4474 if (mm != NULL)
4475 vma_delete(mm);
4476 (void) close(fd);
4477
4478 if (errno != 0)
4479 return (-errno);
4480 return (0);
4481 }
4482 #endif /* USE_ELF_CORE_DUMP */
4483
4484 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4485 {
4486 init_thread(regs, infop);
4487 }