]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
Merge tag 'pull-maintainer-may24-160524-2' of https://gitlab.com/stsquad/qemu into...
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
8
9 #include "qemu.h"
10 #include "user/tswap-target.h"
11 #include "exec/page-protection.h"
12 #include "user/guest-base.h"
13 #include "user-internals.h"
14 #include "signal-common.h"
15 #include "loader.h"
16 #include "user-mmap.h"
17 #include "disas/disas.h"
18 #include "qemu/bitops.h"
19 #include "qemu/path.h"
20 #include "qemu/queue.h"
21 #include "qemu/guest-random.h"
22 #include "qemu/units.h"
23 #include "qemu/selfmap.h"
24 #include "qemu/lockable.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "target_signal.h"
28 #include "tcg/debuginfo.h"
29
30 #ifdef TARGET_ARM
31 #include "target/arm/cpu-features.h"
32 #endif
33
34 #ifdef _ARCH_PPC64
35 #undef ARCH_DLINFO
36 #undef ELF_PLATFORM
37 #undef ELF_HWCAP
38 #undef ELF_HWCAP2
39 #undef ELF_CLASS
40 #undef ELF_DATA
41 #undef ELF_ARCH
42 #endif
43
44 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
45 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
46 #endif
47
48 typedef struct {
49 const uint8_t *image;
50 const uint32_t *relocs;
51 unsigned image_size;
52 unsigned reloc_count;
53 unsigned sigreturn_ofs;
54 unsigned rt_sigreturn_ofs;
55 } VdsoImageInfo;
56
57 #define ELF_OSABI ELFOSABI_SYSV
58
59 /* from personality.h */
60
61 /*
62 * Flags for bug emulation.
63 *
64 * These occupy the top three bytes.
65 */
66 enum {
67 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
68 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
69 descriptors (signal handling) */
70 MMAP_PAGE_ZERO = 0x0100000,
71 ADDR_COMPAT_LAYOUT = 0x0200000,
72 READ_IMPLIES_EXEC = 0x0400000,
73 ADDR_LIMIT_32BIT = 0x0800000,
74 SHORT_INODE = 0x1000000,
75 WHOLE_SECONDS = 0x2000000,
76 STICKY_TIMEOUTS = 0x4000000,
77 ADDR_LIMIT_3GB = 0x8000000,
78 };
79
80 /*
81 * Personality types.
82 *
83 * These go in the low byte. Avoid using the top bit, it will
84 * conflict with error returns.
85 */
86 enum {
87 PER_LINUX = 0x0000,
88 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
89 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
90 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
91 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
92 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
93 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
94 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
95 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
96 PER_BSD = 0x0006,
97 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
98 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
99 PER_LINUX32 = 0x0008,
100 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
101 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
102 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
103 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
104 PER_RISCOS = 0x000c,
105 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
106 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
107 PER_OSF4 = 0x000f, /* OSF/1 v4 */
108 PER_HPUX = 0x0010,
109 PER_MASK = 0x00ff,
110 };
111
112 /*
113 * Return the base personality without flags.
114 */
115 #define personality(pers) (pers & PER_MASK)
116
117 int info_is_fdpic(struct image_info *info)
118 {
119 return info->personality == PER_LINUX_FDPIC;
120 }
121
122 /* this flag is uneffective under linux too, should be deleted */
123 #ifndef MAP_DENYWRITE
124 #define MAP_DENYWRITE 0
125 #endif
126
127 /* should probably go in elf.h */
128 #ifndef ELIBBAD
129 #define ELIBBAD 80
130 #endif
131
132 #if TARGET_BIG_ENDIAN
133 #define ELF_DATA ELFDATA2MSB
134 #else
135 #define ELF_DATA ELFDATA2LSB
136 #endif
137
138 #ifdef TARGET_ABI_MIPSN32
139 typedef abi_ullong target_elf_greg_t;
140 #define tswapreg(ptr) tswap64(ptr)
141 #else
142 typedef abi_ulong target_elf_greg_t;
143 #define tswapreg(ptr) tswapal(ptr)
144 #endif
145
146 #ifdef USE_UID16
147 typedef abi_ushort target_uid_t;
148 typedef abi_ushort target_gid_t;
149 #else
150 typedef abi_uint target_uid_t;
151 typedef abi_uint target_gid_t;
152 #endif
153 typedef abi_int target_pid_t;
154
155 #ifdef TARGET_I386
156
157 #define ELF_HWCAP get_elf_hwcap()
158
159 static uint32_t get_elf_hwcap(void)
160 {
161 X86CPU *cpu = X86_CPU(thread_cpu);
162
163 return cpu->env.features[FEAT_1_EDX];
164 }
165
166 #ifdef TARGET_X86_64
167 #define ELF_CLASS ELFCLASS64
168 #define ELF_ARCH EM_X86_64
169
170 #define ELF_PLATFORM "x86_64"
171
172 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
173 {
174 regs->rax = 0;
175 regs->rsp = infop->start_stack;
176 regs->rip = infop->entry;
177 }
178
179 #define ELF_NREG 27
180 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
181
182 /*
183 * Note that ELF_NREG should be 29 as there should be place for
184 * TRAPNO and ERR "registers" as well but linux doesn't dump
185 * those.
186 *
187 * See linux kernel: arch/x86/include/asm/elf.h
188 */
189 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
190 {
191 (*regs)[0] = tswapreg(env->regs[15]);
192 (*regs)[1] = tswapreg(env->regs[14]);
193 (*regs)[2] = tswapreg(env->regs[13]);
194 (*regs)[3] = tswapreg(env->regs[12]);
195 (*regs)[4] = tswapreg(env->regs[R_EBP]);
196 (*regs)[5] = tswapreg(env->regs[R_EBX]);
197 (*regs)[6] = tswapreg(env->regs[11]);
198 (*regs)[7] = tswapreg(env->regs[10]);
199 (*regs)[8] = tswapreg(env->regs[9]);
200 (*regs)[9] = tswapreg(env->regs[8]);
201 (*regs)[10] = tswapreg(env->regs[R_EAX]);
202 (*regs)[11] = tswapreg(env->regs[R_ECX]);
203 (*regs)[12] = tswapreg(env->regs[R_EDX]);
204 (*regs)[13] = tswapreg(env->regs[R_ESI]);
205 (*regs)[14] = tswapreg(env->regs[R_EDI]);
206 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
207 (*regs)[16] = tswapreg(env->eip);
208 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
209 (*regs)[18] = tswapreg(env->eflags);
210 (*regs)[19] = tswapreg(env->regs[R_ESP]);
211 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
212 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
213 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
214 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
215 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
216 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
217 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
218 }
219
220 #if ULONG_MAX > UINT32_MAX
221 #define INIT_GUEST_COMMPAGE
222 static bool init_guest_commpage(void)
223 {
224 /*
225 * The vsyscall page is at a high negative address aka kernel space,
226 * which means that we cannot actually allocate it with target_mmap.
227 * We still should be able to use page_set_flags, unless the user
228 * has specified -R reserved_va, which would trigger an assert().
229 */
230 if (reserved_va != 0 &&
231 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
232 error_report("Cannot allocate vsyscall page");
233 exit(EXIT_FAILURE);
234 }
235 page_set_flags(TARGET_VSYSCALL_PAGE,
236 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
237 PAGE_EXEC | PAGE_VALID);
238 return true;
239 }
240 #endif
241 #else
242
243 /*
244 * This is used to ensure we don't load something for the wrong architecture.
245 */
246 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
247
248 /*
249 * These are used to set parameters in the core dumps.
250 */
251 #define ELF_CLASS ELFCLASS32
252 #define ELF_ARCH EM_386
253
254 #define ELF_PLATFORM get_elf_platform()
255 #define EXSTACK_DEFAULT true
256
257 static const char *get_elf_platform(void)
258 {
259 static char elf_platform[] = "i386";
260 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
261 if (family > 6) {
262 family = 6;
263 }
264 if (family >= 3) {
265 elf_platform[1] = '0' + family;
266 }
267 return elf_platform;
268 }
269
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
272 {
273 regs->esp = infop->start_stack;
274 regs->eip = infop->entry;
275
276 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
277 starts %edx contains a pointer to a function which might be
278 registered using `atexit'. This provides a mean for the
279 dynamic linker to call DT_FINI functions for shared libraries
280 that have been loaded before the code runs.
281
282 A value of 0 tells we have no such handler. */
283 regs->edx = 0;
284 }
285
286 #define ELF_NREG 17
287 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
288
289 /*
290 * Note that ELF_NREG should be 19 as there should be place for
291 * TRAPNO and ERR "registers" as well but linux doesn't dump
292 * those.
293 *
294 * See linux kernel: arch/x86/include/asm/elf.h
295 */
296 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
297 {
298 (*regs)[0] = tswapreg(env->regs[R_EBX]);
299 (*regs)[1] = tswapreg(env->regs[R_ECX]);
300 (*regs)[2] = tswapreg(env->regs[R_EDX]);
301 (*regs)[3] = tswapreg(env->regs[R_ESI]);
302 (*regs)[4] = tswapreg(env->regs[R_EDI]);
303 (*regs)[5] = tswapreg(env->regs[R_EBP]);
304 (*regs)[6] = tswapreg(env->regs[R_EAX]);
305 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
306 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
307 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
308 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
309 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
310 (*regs)[12] = tswapreg(env->eip);
311 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
312 (*regs)[14] = tswapreg(env->eflags);
313 (*regs)[15] = tswapreg(env->regs[R_ESP]);
314 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
315 }
316
317 /*
318 * i386 is the only target which supplies AT_SYSINFO for the vdso.
319 * All others only supply AT_SYSINFO_EHDR.
320 */
321 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
322 #define ARCH_DLINFO \
323 do { \
324 if (vdso_info) { \
325 NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \
326 } \
327 } while (0)
328
329 #endif /* TARGET_X86_64 */
330
331 #define VDSO_HEADER "vdso.c.inc"
332
333 #define USE_ELF_CORE_DUMP
334 #define ELF_EXEC_PAGESIZE 4096
335
336 #endif /* TARGET_I386 */
337
338 #ifdef TARGET_ARM
339
340 #ifndef TARGET_AARCH64
341 /* 32 bit ARM definitions */
342
343 #define ELF_ARCH EM_ARM
344 #define ELF_CLASS ELFCLASS32
345 #define EXSTACK_DEFAULT true
346
347 static inline void init_thread(struct target_pt_regs *regs,
348 struct image_info *infop)
349 {
350 abi_long stack = infop->start_stack;
351 memset(regs, 0, sizeof(*regs));
352
353 regs->uregs[16] = ARM_CPU_MODE_USR;
354 if (infop->entry & 1) {
355 regs->uregs[16] |= CPSR_T;
356 }
357 regs->uregs[15] = infop->entry & 0xfffffffe;
358 regs->uregs[13] = infop->start_stack;
359 /* FIXME - what to for failure of get_user()? */
360 get_user_ual(regs->uregs[2], stack + 8); /* envp */
361 get_user_ual(regs->uregs[1], stack + 4); /* envp */
362 /* XXX: it seems that r0 is zeroed after ! */
363 regs->uregs[0] = 0;
364 /* For uClinux PIC binaries. */
365 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
366 regs->uregs[10] = infop->start_data;
367
368 /* Support ARM FDPIC. */
369 if (info_is_fdpic(infop)) {
370 /* As described in the ABI document, r7 points to the loadmap info
371 * prepared by the kernel. If an interpreter is needed, r8 points
372 * to the interpreter loadmap and r9 points to the interpreter
373 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
374 * r9 points to the main program PT_DYNAMIC info.
375 */
376 regs->uregs[7] = infop->loadmap_addr;
377 if (infop->interpreter_loadmap_addr) {
378 /* Executable is dynamically loaded. */
379 regs->uregs[8] = infop->interpreter_loadmap_addr;
380 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
381 } else {
382 regs->uregs[8] = 0;
383 regs->uregs[9] = infop->pt_dynamic_addr;
384 }
385 }
386 }
387
388 #define ELF_NREG 18
389 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
390
391 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
392 {
393 (*regs)[0] = tswapreg(env->regs[0]);
394 (*regs)[1] = tswapreg(env->regs[1]);
395 (*regs)[2] = tswapreg(env->regs[2]);
396 (*regs)[3] = tswapreg(env->regs[3]);
397 (*regs)[4] = tswapreg(env->regs[4]);
398 (*regs)[5] = tswapreg(env->regs[5]);
399 (*regs)[6] = tswapreg(env->regs[6]);
400 (*regs)[7] = tswapreg(env->regs[7]);
401 (*regs)[8] = tswapreg(env->regs[8]);
402 (*regs)[9] = tswapreg(env->regs[9]);
403 (*regs)[10] = tswapreg(env->regs[10]);
404 (*regs)[11] = tswapreg(env->regs[11]);
405 (*regs)[12] = tswapreg(env->regs[12]);
406 (*regs)[13] = tswapreg(env->regs[13]);
407 (*regs)[14] = tswapreg(env->regs[14]);
408 (*regs)[15] = tswapreg(env->regs[15]);
409
410 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
411 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
412 }
413
414 #define USE_ELF_CORE_DUMP
415 #define ELF_EXEC_PAGESIZE 4096
416
417 enum
418 {
419 ARM_HWCAP_ARM_SWP = 1 << 0,
420 ARM_HWCAP_ARM_HALF = 1 << 1,
421 ARM_HWCAP_ARM_THUMB = 1 << 2,
422 ARM_HWCAP_ARM_26BIT = 1 << 3,
423 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
424 ARM_HWCAP_ARM_FPA = 1 << 5,
425 ARM_HWCAP_ARM_VFP = 1 << 6,
426 ARM_HWCAP_ARM_EDSP = 1 << 7,
427 ARM_HWCAP_ARM_JAVA = 1 << 8,
428 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
429 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
430 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
431 ARM_HWCAP_ARM_NEON = 1 << 12,
432 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
433 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
434 ARM_HWCAP_ARM_TLS = 1 << 15,
435 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
436 ARM_HWCAP_ARM_IDIVA = 1 << 17,
437 ARM_HWCAP_ARM_IDIVT = 1 << 18,
438 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
439 ARM_HWCAP_ARM_LPAE = 1 << 20,
440 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
441 ARM_HWCAP_ARM_FPHP = 1 << 22,
442 ARM_HWCAP_ARM_ASIMDHP = 1 << 23,
443 ARM_HWCAP_ARM_ASIMDDP = 1 << 24,
444 ARM_HWCAP_ARM_ASIMDFHM = 1 << 25,
445 ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
446 ARM_HWCAP_ARM_I8MM = 1 << 27,
447 };
448
449 enum {
450 ARM_HWCAP2_ARM_AES = 1 << 0,
451 ARM_HWCAP2_ARM_PMULL = 1 << 1,
452 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
453 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
454 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
455 ARM_HWCAP2_ARM_SB = 1 << 5,
456 ARM_HWCAP2_ARM_SSBS = 1 << 6,
457 };
458
459 /* The commpage only exists for 32 bit kernels */
460
461 #define HI_COMMPAGE (intptr_t)0xffff0f00u
462
463 static bool init_guest_commpage(void)
464 {
465 ARMCPU *cpu = ARM_CPU(thread_cpu);
466 int host_page_size = qemu_real_host_page_size();
467 abi_ptr commpage;
468 void *want;
469 void *addr;
470
471 /*
472 * M-profile allocates maximum of 2GB address space, so can never
473 * allocate the commpage. Skip it.
474 */
475 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
476 return true;
477 }
478
479 commpage = HI_COMMPAGE & -host_page_size;
480 want = g2h_untagged(commpage);
481 addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
482 MAP_ANONYMOUS | MAP_PRIVATE |
483 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
484 -1, 0);
485
486 if (addr == MAP_FAILED) {
487 perror("Allocating guest commpage");
488 exit(EXIT_FAILURE);
489 }
490 if (addr != want) {
491 return false;
492 }
493
494 /* Set kernel helper versions; rest of page is 0. */
495 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
496
497 if (mprotect(addr, host_page_size, PROT_READ)) {
498 perror("Protecting guest commpage");
499 exit(EXIT_FAILURE);
500 }
501
502 page_set_flags(commpage, commpage | (host_page_size - 1),
503 PAGE_READ | PAGE_EXEC | PAGE_VALID);
504 return true;
505 }
506
507 #define ELF_HWCAP get_elf_hwcap()
508 #define ELF_HWCAP2 get_elf_hwcap2()
509
510 uint32_t get_elf_hwcap(void)
511 {
512 ARMCPU *cpu = ARM_CPU(thread_cpu);
513 uint32_t hwcaps = 0;
514
515 hwcaps |= ARM_HWCAP_ARM_SWP;
516 hwcaps |= ARM_HWCAP_ARM_HALF;
517 hwcaps |= ARM_HWCAP_ARM_THUMB;
518 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
519
520 /* probe for the extra features */
521 #define GET_FEATURE(feat, hwcap) \
522 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
523
524 #define GET_FEATURE_ID(feat, hwcap) \
525 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
526
527 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
528 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
529 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
530 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
531 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
532 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
533 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
534 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
535 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
536 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
537
538 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
539 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
540 hwcaps |= ARM_HWCAP_ARM_VFPv3;
541 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
542 hwcaps |= ARM_HWCAP_ARM_VFPD32;
543 } else {
544 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
545 }
546 }
547 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
548 /*
549 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
550 * isar_feature function for both. The kernel reports them as two hwcaps.
551 */
552 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
553 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
554 GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
555 GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
556 GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
557 GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
558
559 return hwcaps;
560 }
561
562 uint64_t get_elf_hwcap2(void)
563 {
564 ARMCPU *cpu = ARM_CPU(thread_cpu);
565 uint64_t hwcaps = 0;
566
567 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
568 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
569 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
570 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
571 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
572 GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
573 GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
574 return hwcaps;
575 }
576
577 const char *elf_hwcap_str(uint32_t bit)
578 {
579 static const char *hwcap_str[] = {
580 [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp",
581 [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half",
582 [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb",
583 [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit",
584 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
585 [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa",
586 [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp",
587 [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp",
588 [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java",
589 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt",
590 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch",
591 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee",
592 [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon",
593 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3",
594 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
595 [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls",
596 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4",
597 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva",
598 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt",
599 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32",
600 [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae",
601 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm",
602 [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp",
603 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp",
604 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp",
605 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
606 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
607 [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm",
608 };
609
610 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
611 }
612
613 const char *elf_hwcap2_str(uint32_t bit)
614 {
615 static const char *hwcap_str[] = {
616 [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes",
617 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
618 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
619 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
620 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
621 [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb",
622 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
623 };
624
625 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
626 }
627
628 #undef GET_FEATURE
629 #undef GET_FEATURE_ID
630
631 #define ELF_PLATFORM get_elf_platform()
632
633 static const char *get_elf_platform(void)
634 {
635 CPUARMState *env = cpu_env(thread_cpu);
636
637 #if TARGET_BIG_ENDIAN
638 # define END "b"
639 #else
640 # define END "l"
641 #endif
642
643 if (arm_feature(env, ARM_FEATURE_V8)) {
644 return "v8" END;
645 } else if (arm_feature(env, ARM_FEATURE_V7)) {
646 if (arm_feature(env, ARM_FEATURE_M)) {
647 return "v7m" END;
648 } else {
649 return "v7" END;
650 }
651 } else if (arm_feature(env, ARM_FEATURE_V6)) {
652 return "v6" END;
653 } else if (arm_feature(env, ARM_FEATURE_V5)) {
654 return "v5" END;
655 } else {
656 return "v4" END;
657 }
658
659 #undef END
660 }
661
662 #else
663 /* 64 bit ARM definitions */
664
665 #define ELF_ARCH EM_AARCH64
666 #define ELF_CLASS ELFCLASS64
667 #if TARGET_BIG_ENDIAN
668 # define ELF_PLATFORM "aarch64_be"
669 #else
670 # define ELF_PLATFORM "aarch64"
671 #endif
672
673 static inline void init_thread(struct target_pt_regs *regs,
674 struct image_info *infop)
675 {
676 abi_long stack = infop->start_stack;
677 memset(regs, 0, sizeof(*regs));
678
679 regs->pc = infop->entry & ~0x3ULL;
680 regs->sp = stack;
681 }
682
683 #define ELF_NREG 34
684 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
685
686 static void elf_core_copy_regs(target_elf_gregset_t *regs,
687 const CPUARMState *env)
688 {
689 int i;
690
691 for (i = 0; i < 32; i++) {
692 (*regs)[i] = tswapreg(env->xregs[i]);
693 }
694 (*regs)[32] = tswapreg(env->pc);
695 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
696 }
697
698 #define USE_ELF_CORE_DUMP
699 #define ELF_EXEC_PAGESIZE 4096
700
701 enum {
702 ARM_HWCAP_A64_FP = 1 << 0,
703 ARM_HWCAP_A64_ASIMD = 1 << 1,
704 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
705 ARM_HWCAP_A64_AES = 1 << 3,
706 ARM_HWCAP_A64_PMULL = 1 << 4,
707 ARM_HWCAP_A64_SHA1 = 1 << 5,
708 ARM_HWCAP_A64_SHA2 = 1 << 6,
709 ARM_HWCAP_A64_CRC32 = 1 << 7,
710 ARM_HWCAP_A64_ATOMICS = 1 << 8,
711 ARM_HWCAP_A64_FPHP = 1 << 9,
712 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
713 ARM_HWCAP_A64_CPUID = 1 << 11,
714 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
715 ARM_HWCAP_A64_JSCVT = 1 << 13,
716 ARM_HWCAP_A64_FCMA = 1 << 14,
717 ARM_HWCAP_A64_LRCPC = 1 << 15,
718 ARM_HWCAP_A64_DCPOP = 1 << 16,
719 ARM_HWCAP_A64_SHA3 = 1 << 17,
720 ARM_HWCAP_A64_SM3 = 1 << 18,
721 ARM_HWCAP_A64_SM4 = 1 << 19,
722 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
723 ARM_HWCAP_A64_SHA512 = 1 << 21,
724 ARM_HWCAP_A64_SVE = 1 << 22,
725 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
726 ARM_HWCAP_A64_DIT = 1 << 24,
727 ARM_HWCAP_A64_USCAT = 1 << 25,
728 ARM_HWCAP_A64_ILRCPC = 1 << 26,
729 ARM_HWCAP_A64_FLAGM = 1 << 27,
730 ARM_HWCAP_A64_SSBS = 1 << 28,
731 ARM_HWCAP_A64_SB = 1 << 29,
732 ARM_HWCAP_A64_PACA = 1 << 30,
733 ARM_HWCAP_A64_PACG = 1UL << 31,
734
735 ARM_HWCAP2_A64_DCPODP = 1 << 0,
736 ARM_HWCAP2_A64_SVE2 = 1 << 1,
737 ARM_HWCAP2_A64_SVEAES = 1 << 2,
738 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
739 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
740 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
741 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
742 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
743 ARM_HWCAP2_A64_FRINT = 1 << 8,
744 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
745 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
746 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
747 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
748 ARM_HWCAP2_A64_I8MM = 1 << 13,
749 ARM_HWCAP2_A64_BF16 = 1 << 14,
750 ARM_HWCAP2_A64_DGH = 1 << 15,
751 ARM_HWCAP2_A64_RNG = 1 << 16,
752 ARM_HWCAP2_A64_BTI = 1 << 17,
753 ARM_HWCAP2_A64_MTE = 1 << 18,
754 ARM_HWCAP2_A64_ECV = 1 << 19,
755 ARM_HWCAP2_A64_AFP = 1 << 20,
756 ARM_HWCAP2_A64_RPRES = 1 << 21,
757 ARM_HWCAP2_A64_MTE3 = 1 << 22,
758 ARM_HWCAP2_A64_SME = 1 << 23,
759 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
760 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
761 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
762 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
763 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
764 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
765 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
766 ARM_HWCAP2_A64_WFXT = 1ULL << 31,
767 ARM_HWCAP2_A64_EBF16 = 1ULL << 32,
768 ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33,
769 ARM_HWCAP2_A64_CSSC = 1ULL << 34,
770 ARM_HWCAP2_A64_RPRFM = 1ULL << 35,
771 ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36,
772 ARM_HWCAP2_A64_SME2 = 1ULL << 37,
773 ARM_HWCAP2_A64_SME2P1 = 1ULL << 38,
774 ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39,
775 ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40,
776 ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41,
777 ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42,
778 ARM_HWCAP2_A64_MOPS = 1ULL << 43,
779 ARM_HWCAP2_A64_HBC = 1ULL << 44,
780 };
781
782 #define ELF_HWCAP get_elf_hwcap()
783 #define ELF_HWCAP2 get_elf_hwcap2()
784
785 #define GET_FEATURE_ID(feat, hwcap) \
786 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
787
788 uint32_t get_elf_hwcap(void)
789 {
790 ARMCPU *cpu = ARM_CPU(thread_cpu);
791 uint32_t hwcaps = 0;
792
793 hwcaps |= ARM_HWCAP_A64_FP;
794 hwcaps |= ARM_HWCAP_A64_ASIMD;
795 hwcaps |= ARM_HWCAP_A64_CPUID;
796
797 /* probe for the extra features */
798
799 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
800 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
801 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
802 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
803 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
804 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
805 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
806 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
807 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
808 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
809 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
810 GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
811 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
812 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
813 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
814 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
815 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
816 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
817 GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
818 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
819 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
820 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
821 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
822 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
823 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
824
825 return hwcaps;
826 }
827
828 uint64_t get_elf_hwcap2(void)
829 {
830 ARMCPU *cpu = ARM_CPU(thread_cpu);
831 uint64_t hwcaps = 0;
832
833 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
834 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
835 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
836 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
837 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
838 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
839 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
840 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
841 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
842 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
843 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
844 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
845 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
846 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
847 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
848 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
849 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
850 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
851 GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
852 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
853 ARM_HWCAP2_A64_SME_F32F32 |
854 ARM_HWCAP2_A64_SME_B16F32 |
855 ARM_HWCAP2_A64_SME_F16F32 |
856 ARM_HWCAP2_A64_SME_I8I32));
857 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
858 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
859 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
860 GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
861 GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
862
863 return hwcaps;
864 }
865
866 const char *elf_hwcap_str(uint32_t bit)
867 {
868 static const char *hwcap_str[] = {
869 [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp",
870 [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd",
871 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
872 [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes",
873 [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull",
874 [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1",
875 [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2",
876 [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32",
877 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
878 [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp",
879 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
880 [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid",
881 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
882 [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt",
883 [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma",
884 [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc",
885 [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop",
886 [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3",
887 [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3",
888 [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4",
889 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
890 [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512",
891 [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve",
892 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
893 [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit",
894 [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat",
895 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc",
896 [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm",
897 [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs",
898 [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb",
899 [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca",
900 [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg",
901 };
902
903 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
904 }
905
906 const char *elf_hwcap2_str(uint32_t bit)
907 {
908 static const char *hwcap_str[] = {
909 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp",
910 [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2",
911 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes",
912 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull",
913 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm",
914 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3",
915 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4",
916 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2",
917 [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint",
918 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm",
919 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm",
920 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm",
921 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16",
922 [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm",
923 [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16",
924 [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh",
925 [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng",
926 [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti",
927 [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte",
928 [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv",
929 [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp",
930 [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres",
931 [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3",
932 [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme",
933 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64",
934 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64",
935 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32",
936 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32",
937 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32",
938 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32",
939 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64",
940 [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt",
941 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16",
942 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16",
943 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc",
944 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm",
945 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1",
946 [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2",
947 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1",
948 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
949 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
950 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
951 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
952 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops",
953 [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc",
954 };
955
956 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
957 }
958
959 #undef GET_FEATURE_ID
960
961 #endif /* not TARGET_AARCH64 */
962
963 #if TARGET_BIG_ENDIAN
964 # define VDSO_HEADER "vdso-be.c.inc"
965 #else
966 # define VDSO_HEADER "vdso-le.c.inc"
967 #endif
968
969 #endif /* TARGET_ARM */
970
971 #ifdef TARGET_SPARC
972
973 #ifndef TARGET_SPARC64
974 # define ELF_CLASS ELFCLASS32
975 # define ELF_ARCH EM_SPARC
976 #elif defined(TARGET_ABI32)
977 # define ELF_CLASS ELFCLASS32
978 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC)
979 #else
980 # define ELF_CLASS ELFCLASS64
981 # define ELF_ARCH EM_SPARCV9
982 #endif
983
984 #include "elf.h"
985
986 #define ELF_HWCAP get_elf_hwcap()
987
988 static uint32_t get_elf_hwcap(void)
989 {
990 /* There are not many sparc32 hwcap bits -- we have all of them. */
991 uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
992 HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV;
993
994 #ifdef TARGET_SPARC64
995 CPUSPARCState *env = cpu_env(thread_cpu);
996 uint32_t features = env->def.features;
997
998 r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS;
999 /* 32x32 multiply and divide are efficient. */
1000 r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32;
1001 /* We don't have an internal feature bit for this. */
1002 r |= HWCAP_SPARC_POPC;
1003 r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0;
1004 r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0;
1005 r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0;
1006 #endif
1007
1008 return r;
1009 }
1010
1011 static inline void init_thread(struct target_pt_regs *regs,
1012 struct image_info *infop)
1013 {
1014 /* Note that target_cpu_copy_regs does not read psr/tstate. */
1015 regs->pc = infop->entry;
1016 regs->npc = regs->pc + 4;
1017 regs->y = 0;
1018 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
1019 - TARGET_STACK_BIAS);
1020 }
1021 #endif /* TARGET_SPARC */
1022
1023 #ifdef TARGET_PPC
1024
1025 #define ELF_MACHINE PPC_ELF_MACHINE
1026
1027 #if defined(TARGET_PPC64)
1028
1029 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1030
1031 #define ELF_CLASS ELFCLASS64
1032
1033 #else
1034
1035 #define ELF_CLASS ELFCLASS32
1036 #define EXSTACK_DEFAULT true
1037
1038 #endif
1039
1040 #define ELF_ARCH EM_PPC
1041
1042 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1043 See arch/powerpc/include/asm/cputable.h. */
1044 enum {
1045 QEMU_PPC_FEATURE_32 = 0x80000000,
1046 QEMU_PPC_FEATURE_64 = 0x40000000,
1047 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1048 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1049 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1050 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1051 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1052 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1053 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1054 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1055 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1056 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1057 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1058 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1059 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1060 QEMU_PPC_FEATURE_CELL = 0x00010000,
1061 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1062 QEMU_PPC_FEATURE_SMT = 0x00004000,
1063 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1064 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1065 QEMU_PPC_FEATURE_PA6T = 0x00000800,
1066 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1067 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1068 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1069 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1070 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1071
1072 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1073 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1074
1075 /* Feature definitions in AT_HWCAP2. */
1076 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1077 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1078 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1079 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1080 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1081 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1082 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1083 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1084 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1085 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1086 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1087 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1088 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1089 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1090 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1091 };
1092
1093 #define ELF_HWCAP get_elf_hwcap()
1094
1095 static uint32_t get_elf_hwcap(void)
1096 {
1097 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1098 uint32_t features = 0;
1099
1100 /* We don't have to be terribly complete here; the high points are
1101 Altivec/FP/SPE support. Anything else is just a bonus. */
1102 #define GET_FEATURE(flag, feature) \
1103 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1104 #define GET_FEATURE2(flags, feature) \
1105 do { \
1106 if ((cpu->env.insns_flags2 & flags) == flags) { \
1107 features |= feature; \
1108 } \
1109 } while (0)
1110 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1111 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1112 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1113 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1114 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1115 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1116 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1117 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1118 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1119 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1120 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1121 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1122 QEMU_PPC_FEATURE_ARCH_2_06);
1123 #undef GET_FEATURE
1124 #undef GET_FEATURE2
1125
1126 return features;
1127 }
1128
1129 #define ELF_HWCAP2 get_elf_hwcap2()
1130
1131 static uint32_t get_elf_hwcap2(void)
1132 {
1133 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1134 uint32_t features = 0;
1135
1136 #define GET_FEATURE(flag, feature) \
1137 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1138 #define GET_FEATURE2(flag, feature) \
1139 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1140
1141 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1142 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1143 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1144 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1145 QEMU_PPC_FEATURE2_VEC_CRYPTO);
1146 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1147 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1148 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1149 QEMU_PPC_FEATURE2_MMA);
1150
1151 #undef GET_FEATURE
1152 #undef GET_FEATURE2
1153
1154 return features;
1155 }
1156
1157 /*
1158 * The requirements here are:
1159 * - keep the final alignment of sp (sp & 0xf)
1160 * - make sure the 32-bit value at the first 16 byte aligned position of
1161 * AUXV is greater than 16 for glibc compatibility.
1162 * AT_IGNOREPPC is used for that.
1163 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1164 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1165 */
1166 #define DLINFO_ARCH_ITEMS 5
1167 #define ARCH_DLINFO \
1168 do { \
1169 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
1170 /* \
1171 * Handle glibc compatibility: these magic entries must \
1172 * be at the lowest addresses in the final auxv. \
1173 */ \
1174 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1175 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
1176 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1177 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1178 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
1179 } while (0)
1180
1181 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1182 {
1183 _regs->gpr[1] = infop->start_stack;
1184 #if defined(TARGET_PPC64)
1185 if (get_ppc64_abi(infop) < 2) {
1186 uint64_t val;
1187 get_user_u64(val, infop->entry + 8);
1188 _regs->gpr[2] = val + infop->load_bias;
1189 get_user_u64(val, infop->entry);
1190 infop->entry = val + infop->load_bias;
1191 } else {
1192 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
1193 }
1194 #endif
1195 _regs->nip = infop->entry;
1196 }
1197
1198 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
1199 #define ELF_NREG 48
1200 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1201
1202 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1203 {
1204 int i;
1205 target_ulong ccr = 0;
1206
1207 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1208 (*regs)[i] = tswapreg(env->gpr[i]);
1209 }
1210
1211 (*regs)[32] = tswapreg(env->nip);
1212 (*regs)[33] = tswapreg(env->msr);
1213 (*regs)[35] = tswapreg(env->ctr);
1214 (*regs)[36] = tswapreg(env->lr);
1215 (*regs)[37] = tswapreg(cpu_read_xer(env));
1216
1217 ccr = ppc_get_cr(env);
1218 (*regs)[38] = tswapreg(ccr);
1219 }
1220
1221 #define USE_ELF_CORE_DUMP
1222 #define ELF_EXEC_PAGESIZE 4096
1223
1224 #ifndef TARGET_PPC64
1225 # define VDSO_HEADER "vdso-32.c.inc"
1226 #elif TARGET_BIG_ENDIAN
1227 # define VDSO_HEADER "vdso-64.c.inc"
1228 #else
1229 # define VDSO_HEADER "vdso-64le.c.inc"
1230 #endif
1231
1232 #endif
1233
1234 #ifdef TARGET_LOONGARCH64
1235
1236 #define ELF_CLASS ELFCLASS64
1237 #define ELF_ARCH EM_LOONGARCH
1238 #define EXSTACK_DEFAULT true
1239
1240 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1241
1242 #define VDSO_HEADER "vdso.c.inc"
1243
1244 static inline void init_thread(struct target_pt_regs *regs,
1245 struct image_info *infop)
1246 {
1247 /*Set crmd PG,DA = 1,0 */
1248 regs->csr.crmd = 2 << 3;
1249 regs->csr.era = infop->entry;
1250 regs->regs[3] = infop->start_stack;
1251 }
1252
1253 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1254 #define ELF_NREG 45
1255 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1256
1257 enum {
1258 TARGET_EF_R0 = 0,
1259 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1260 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1261 };
1262
1263 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1264 const CPULoongArchState *env)
1265 {
1266 int i;
1267
1268 (*regs)[TARGET_EF_R0] = 0;
1269
1270 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1271 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1272 }
1273
1274 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1275 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1276 }
1277
1278 #define USE_ELF_CORE_DUMP
1279 #define ELF_EXEC_PAGESIZE 4096
1280
1281 #define ELF_HWCAP get_elf_hwcap()
1282
1283 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1284 enum {
1285 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1286 HWCAP_LOONGARCH_LAM = (1 << 1),
1287 HWCAP_LOONGARCH_UAL = (1 << 2),
1288 HWCAP_LOONGARCH_FPU = (1 << 3),
1289 HWCAP_LOONGARCH_LSX = (1 << 4),
1290 HWCAP_LOONGARCH_LASX = (1 << 5),
1291 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1292 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1293 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1294 HWCAP_LOONGARCH_LVZ = (1 << 9),
1295 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1296 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1297 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1298 };
1299
1300 static uint32_t get_elf_hwcap(void)
1301 {
1302 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1303 uint32_t hwcaps = 0;
1304
1305 hwcaps |= HWCAP_LOONGARCH_CRC32;
1306
1307 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1308 hwcaps |= HWCAP_LOONGARCH_UAL;
1309 }
1310
1311 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1312 hwcaps |= HWCAP_LOONGARCH_FPU;
1313 }
1314
1315 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1316 hwcaps |= HWCAP_LOONGARCH_LAM;
1317 }
1318
1319 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1320 hwcaps |= HWCAP_LOONGARCH_LSX;
1321 }
1322
1323 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1324 hwcaps |= HWCAP_LOONGARCH_LASX;
1325 }
1326
1327 return hwcaps;
1328 }
1329
1330 #define ELF_PLATFORM "loongarch"
1331
1332 #endif /* TARGET_LOONGARCH64 */
1333
1334 #ifdef TARGET_MIPS
1335
1336 #ifdef TARGET_MIPS64
1337 #define ELF_CLASS ELFCLASS64
1338 #else
1339 #define ELF_CLASS ELFCLASS32
1340 #endif
1341 #define ELF_ARCH EM_MIPS
1342 #define EXSTACK_DEFAULT true
1343
1344 #ifdef TARGET_ABI_MIPSN32
1345 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1346 #else
1347 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1348 #endif
1349
1350 #define ELF_BASE_PLATFORM get_elf_base_platform()
1351
1352 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1353 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1354 { return _base_platform; } } while (0)
1355
1356 static const char *get_elf_base_platform(void)
1357 {
1358 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1359
1360 /* 64 bit ISAs goes first */
1361 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1362 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1363 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1364 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1365 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1366 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1367 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1368
1369 /* 32 bit ISAs */
1370 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1371 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1372 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1373 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1374 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1375
1376 /* Fallback */
1377 return "mips";
1378 }
1379 #undef MATCH_PLATFORM_INSN
1380
1381 static inline void init_thread(struct target_pt_regs *regs,
1382 struct image_info *infop)
1383 {
1384 regs->cp0_status = 2 << CP0St_KSU;
1385 regs->cp0_epc = infop->entry;
1386 regs->regs[29] = infop->start_stack;
1387 }
1388
1389 /* See linux kernel: arch/mips/include/asm/elf.h. */
1390 #define ELF_NREG 45
1391 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1392
1393 /* See linux kernel: arch/mips/include/asm/reg.h. */
1394 enum {
1395 #ifdef TARGET_MIPS64
1396 TARGET_EF_R0 = 0,
1397 #else
1398 TARGET_EF_R0 = 6,
1399 #endif
1400 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1401 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1402 TARGET_EF_LO = TARGET_EF_R0 + 32,
1403 TARGET_EF_HI = TARGET_EF_R0 + 33,
1404 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1405 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1406 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1407 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1408 };
1409
1410 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1411 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1412 {
1413 int i;
1414
1415 for (i = 0; i < TARGET_EF_R0; i++) {
1416 (*regs)[i] = 0;
1417 }
1418 (*regs)[TARGET_EF_R0] = 0;
1419
1420 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1421 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1422 }
1423
1424 (*regs)[TARGET_EF_R26] = 0;
1425 (*regs)[TARGET_EF_R27] = 0;
1426 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1427 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1428 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1429 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1430 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1431 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1432 }
1433
1434 #define USE_ELF_CORE_DUMP
1435 #define ELF_EXEC_PAGESIZE 4096
1436
1437 /* See arch/mips/include/uapi/asm/hwcap.h. */
1438 enum {
1439 HWCAP_MIPS_R6 = (1 << 0),
1440 HWCAP_MIPS_MSA = (1 << 1),
1441 HWCAP_MIPS_CRC32 = (1 << 2),
1442 HWCAP_MIPS_MIPS16 = (1 << 3),
1443 HWCAP_MIPS_MDMX = (1 << 4),
1444 HWCAP_MIPS_MIPS3D = (1 << 5),
1445 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1446 HWCAP_MIPS_DSP = (1 << 7),
1447 HWCAP_MIPS_DSP2 = (1 << 8),
1448 HWCAP_MIPS_DSP3 = (1 << 9),
1449 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1450 HWCAP_LOONGSON_MMI = (1 << 11),
1451 HWCAP_LOONGSON_EXT = (1 << 12),
1452 HWCAP_LOONGSON_EXT2 = (1 << 13),
1453 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1454 };
1455
1456 #define ELF_HWCAP get_elf_hwcap()
1457
1458 #define GET_FEATURE_INSN(_flag, _hwcap) \
1459 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1460
1461 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1462 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1463
1464 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1465 do { \
1466 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1467 hwcaps |= _hwcap; \
1468 } \
1469 } while (0)
1470
1471 static uint32_t get_elf_hwcap(void)
1472 {
1473 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1474 uint32_t hwcaps = 0;
1475
1476 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1477 2, HWCAP_MIPS_R6);
1478 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1479 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1480 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1481
1482 return hwcaps;
1483 }
1484
1485 #undef GET_FEATURE_REG_EQU
1486 #undef GET_FEATURE_REG_SET
1487 #undef GET_FEATURE_INSN
1488
1489 #endif /* TARGET_MIPS */
1490
1491 #ifdef TARGET_MICROBLAZE
1492
1493 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1494
1495 #define ELF_CLASS ELFCLASS32
1496 #define ELF_ARCH EM_MICROBLAZE
1497
1498 static inline void init_thread(struct target_pt_regs *regs,
1499 struct image_info *infop)
1500 {
1501 regs->pc = infop->entry;
1502 regs->r1 = infop->start_stack;
1503
1504 }
1505
1506 #define ELF_EXEC_PAGESIZE 4096
1507
1508 #define USE_ELF_CORE_DUMP
1509 #define ELF_NREG 38
1510 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1511
1512 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1513 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1514 {
1515 int i, pos = 0;
1516
1517 for (i = 0; i < 32; i++) {
1518 (*regs)[pos++] = tswapreg(env->regs[i]);
1519 }
1520
1521 (*regs)[pos++] = tswapreg(env->pc);
1522 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1523 (*regs)[pos++] = 0;
1524 (*regs)[pos++] = tswapreg(env->ear);
1525 (*regs)[pos++] = 0;
1526 (*regs)[pos++] = tswapreg(env->esr);
1527 }
1528
1529 #endif /* TARGET_MICROBLAZE */
1530
1531 #ifdef TARGET_OPENRISC
1532
1533 #define ELF_ARCH EM_OPENRISC
1534 #define ELF_CLASS ELFCLASS32
1535 #define ELF_DATA ELFDATA2MSB
1536
1537 static inline void init_thread(struct target_pt_regs *regs,
1538 struct image_info *infop)
1539 {
1540 regs->pc = infop->entry;
1541 regs->gpr[1] = infop->start_stack;
1542 }
1543
1544 #define USE_ELF_CORE_DUMP
1545 #define ELF_EXEC_PAGESIZE 8192
1546
1547 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1548 #define ELF_NREG 34 /* gprs and pc, sr */
1549 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1550
1551 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1552 const CPUOpenRISCState *env)
1553 {
1554 int i;
1555
1556 for (i = 0; i < 32; i++) {
1557 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1558 }
1559 (*regs)[32] = tswapreg(env->pc);
1560 (*regs)[33] = tswapreg(cpu_get_sr(env));
1561 }
1562 #define ELF_HWCAP 0
1563 #define ELF_PLATFORM NULL
1564
1565 #endif /* TARGET_OPENRISC */
1566
1567 #ifdef TARGET_SH4
1568
1569 #define ELF_CLASS ELFCLASS32
1570 #define ELF_ARCH EM_SH
1571
1572 static inline void init_thread(struct target_pt_regs *regs,
1573 struct image_info *infop)
1574 {
1575 /* Check other registers XXXXX */
1576 regs->pc = infop->entry;
1577 regs->regs[15] = infop->start_stack;
1578 }
1579
1580 /* See linux kernel: arch/sh/include/asm/elf.h. */
1581 #define ELF_NREG 23
1582 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1583
1584 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1585 enum {
1586 TARGET_REG_PC = 16,
1587 TARGET_REG_PR = 17,
1588 TARGET_REG_SR = 18,
1589 TARGET_REG_GBR = 19,
1590 TARGET_REG_MACH = 20,
1591 TARGET_REG_MACL = 21,
1592 TARGET_REG_SYSCALL = 22
1593 };
1594
1595 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1596 const CPUSH4State *env)
1597 {
1598 int i;
1599
1600 for (i = 0; i < 16; i++) {
1601 (*regs)[i] = tswapreg(env->gregs[i]);
1602 }
1603
1604 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1605 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1606 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1607 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1608 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1609 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1610 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1611 }
1612
1613 #define USE_ELF_CORE_DUMP
1614 #define ELF_EXEC_PAGESIZE 4096
1615
1616 enum {
1617 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1618 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1619 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1620 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1621 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1622 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1623 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1624 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1625 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1626 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1627 };
1628
1629 #define ELF_HWCAP get_elf_hwcap()
1630
1631 static uint32_t get_elf_hwcap(void)
1632 {
1633 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1634 uint32_t hwcap = 0;
1635
1636 hwcap |= SH_CPU_HAS_FPU;
1637
1638 if (cpu->env.features & SH_FEATURE_SH4A) {
1639 hwcap |= SH_CPU_HAS_LLSC;
1640 }
1641
1642 return hwcap;
1643 }
1644
1645 #endif
1646
1647 #ifdef TARGET_CRIS
1648
1649 #define ELF_CLASS ELFCLASS32
1650 #define ELF_ARCH EM_CRIS
1651
1652 static inline void init_thread(struct target_pt_regs *regs,
1653 struct image_info *infop)
1654 {
1655 regs->erp = infop->entry;
1656 }
1657
1658 #define ELF_EXEC_PAGESIZE 8192
1659
1660 #endif
1661
1662 #ifdef TARGET_M68K
1663
1664 #define ELF_CLASS ELFCLASS32
1665 #define ELF_ARCH EM_68K
1666
1667 /* ??? Does this need to do anything?
1668 #define ELF_PLAT_INIT(_r) */
1669
1670 static inline void init_thread(struct target_pt_regs *regs,
1671 struct image_info *infop)
1672 {
1673 regs->usp = infop->start_stack;
1674 regs->sr = 0;
1675 regs->pc = infop->entry;
1676 }
1677
1678 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1679 #define ELF_NREG 20
1680 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1681
1682 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1683 {
1684 (*regs)[0] = tswapreg(env->dregs[1]);
1685 (*regs)[1] = tswapreg(env->dregs[2]);
1686 (*regs)[2] = tswapreg(env->dregs[3]);
1687 (*regs)[3] = tswapreg(env->dregs[4]);
1688 (*regs)[4] = tswapreg(env->dregs[5]);
1689 (*regs)[5] = tswapreg(env->dregs[6]);
1690 (*regs)[6] = tswapreg(env->dregs[7]);
1691 (*regs)[7] = tswapreg(env->aregs[0]);
1692 (*regs)[8] = tswapreg(env->aregs[1]);
1693 (*regs)[9] = tswapreg(env->aregs[2]);
1694 (*regs)[10] = tswapreg(env->aregs[3]);
1695 (*regs)[11] = tswapreg(env->aregs[4]);
1696 (*regs)[12] = tswapreg(env->aregs[5]);
1697 (*regs)[13] = tswapreg(env->aregs[6]);
1698 (*regs)[14] = tswapreg(env->dregs[0]);
1699 (*regs)[15] = tswapreg(env->aregs[7]);
1700 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1701 (*regs)[17] = tswapreg(env->sr);
1702 (*regs)[18] = tswapreg(env->pc);
1703 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1704 }
1705
1706 #define USE_ELF_CORE_DUMP
1707 #define ELF_EXEC_PAGESIZE 8192
1708
1709 #endif
1710
1711 #ifdef TARGET_ALPHA
1712
1713 #define ELF_CLASS ELFCLASS64
1714 #define ELF_ARCH EM_ALPHA
1715
1716 static inline void init_thread(struct target_pt_regs *regs,
1717 struct image_info *infop)
1718 {
1719 regs->pc = infop->entry;
1720 regs->ps = 8;
1721 regs->usp = infop->start_stack;
1722 }
1723
1724 #define ELF_EXEC_PAGESIZE 8192
1725
1726 #endif /* TARGET_ALPHA */
1727
1728 #ifdef TARGET_S390X
1729
1730 #define ELF_CLASS ELFCLASS64
1731 #define ELF_DATA ELFDATA2MSB
1732 #define ELF_ARCH EM_S390
1733
1734 #include "elf.h"
1735
1736 #define ELF_HWCAP get_elf_hwcap()
1737
1738 #define GET_FEATURE(_feat, _hwcap) \
1739 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1740
1741 uint32_t get_elf_hwcap(void)
1742 {
1743 /*
1744 * Let's assume we always have esan3 and zarch.
1745 * 31-bit processes can use 64-bit registers (high gprs).
1746 */
1747 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1748
1749 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1750 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1751 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1752 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1753 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1754 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1755 hwcap |= HWCAP_S390_ETF3EH;
1756 }
1757 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1758 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1759 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1760
1761 return hwcap;
1762 }
1763
1764 const char *elf_hwcap_str(uint32_t bit)
1765 {
1766 static const char *hwcap_str[] = {
1767 [HWCAP_S390_NR_ESAN3] = "esan3",
1768 [HWCAP_S390_NR_ZARCH] = "zarch",
1769 [HWCAP_S390_NR_STFLE] = "stfle",
1770 [HWCAP_S390_NR_MSA] = "msa",
1771 [HWCAP_S390_NR_LDISP] = "ldisp",
1772 [HWCAP_S390_NR_EIMM] = "eimm",
1773 [HWCAP_S390_NR_DFP] = "dfp",
1774 [HWCAP_S390_NR_HPAGE] = "edat",
1775 [HWCAP_S390_NR_ETF3EH] = "etf3eh",
1776 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1777 [HWCAP_S390_NR_TE] = "te",
1778 [HWCAP_S390_NR_VXRS] = "vx",
1779 [HWCAP_S390_NR_VXRS_BCD] = "vxd",
1780 [HWCAP_S390_NR_VXRS_EXT] = "vxe",
1781 [HWCAP_S390_NR_GS] = "gs",
1782 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1783 [HWCAP_S390_NR_VXRS_PDE] = "vxp",
1784 [HWCAP_S390_NR_SORT] = "sort",
1785 [HWCAP_S390_NR_DFLT] = "dflt",
1786 [HWCAP_S390_NR_NNPA] = "nnpa",
1787 [HWCAP_S390_NR_PCI_MIO] = "pcimio",
1788 [HWCAP_S390_NR_SIE] = "sie",
1789 };
1790
1791 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1792 }
1793
1794 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1795 {
1796 regs->psw.addr = infop->entry;
1797 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1798 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1799 PSW_MASK_32;
1800 regs->gprs[15] = infop->start_stack;
1801 }
1802
1803 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1804 #define ELF_NREG 27
1805 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1806
1807 enum {
1808 TARGET_REG_PSWM = 0,
1809 TARGET_REG_PSWA = 1,
1810 TARGET_REG_GPRS = 2,
1811 TARGET_REG_ARS = 18,
1812 TARGET_REG_ORIG_R2 = 26,
1813 };
1814
1815 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1816 const CPUS390XState *env)
1817 {
1818 int i;
1819 uint32_t *aregs;
1820
1821 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1822 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1823 for (i = 0; i < 16; i++) {
1824 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1825 }
1826 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1827 for (i = 0; i < 16; i++) {
1828 aregs[i] = tswap32(env->aregs[i]);
1829 }
1830 (*regs)[TARGET_REG_ORIG_R2] = 0;
1831 }
1832
1833 #define USE_ELF_CORE_DUMP
1834 #define ELF_EXEC_PAGESIZE 4096
1835
1836 #define VDSO_HEADER "vdso.c.inc"
1837
1838 #endif /* TARGET_S390X */
1839
1840 #ifdef TARGET_RISCV
1841
1842 #define ELF_ARCH EM_RISCV
1843
1844 #ifdef TARGET_RISCV32
1845 #define ELF_CLASS ELFCLASS32
1846 #define VDSO_HEADER "vdso-32.c.inc"
1847 #else
1848 #define ELF_CLASS ELFCLASS64
1849 #define VDSO_HEADER "vdso-64.c.inc"
1850 #endif
1851
1852 #define ELF_HWCAP get_elf_hwcap()
1853
1854 static uint32_t get_elf_hwcap(void)
1855 {
1856 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1857 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1858 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1859 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1860 | MISA_BIT('V');
1861
1862 return cpu->env.misa_ext & mask;
1863 #undef MISA_BIT
1864 }
1865
1866 static inline void init_thread(struct target_pt_regs *regs,
1867 struct image_info *infop)
1868 {
1869 regs->sepc = infop->entry;
1870 regs->sp = infop->start_stack;
1871 }
1872
1873 #define ELF_EXEC_PAGESIZE 4096
1874
1875 #endif /* TARGET_RISCV */
1876
1877 #ifdef TARGET_HPPA
1878
1879 #define ELF_CLASS ELFCLASS32
1880 #define ELF_ARCH EM_PARISC
1881 #define ELF_PLATFORM "PARISC"
1882 #define STACK_GROWS_DOWN 0
1883 #define STACK_ALIGNMENT 64
1884
1885 #define VDSO_HEADER "vdso.c.inc"
1886
1887 static inline void init_thread(struct target_pt_regs *regs,
1888 struct image_info *infop)
1889 {
1890 regs->iaoq[0] = infop->entry | PRIV_USER;
1891 regs->iaoq[1] = regs->iaoq[0] + 4;
1892 regs->gr[23] = 0;
1893 regs->gr[24] = infop->argv;
1894 regs->gr[25] = infop->argc;
1895 /* The top-of-stack contains a linkage buffer. */
1896 regs->gr[30] = infop->start_stack + 64;
1897 regs->gr[31] = infop->entry;
1898 }
1899
1900 #define LO_COMMPAGE 0
1901
1902 static bool init_guest_commpage(void)
1903 {
1904 /* If reserved_va, then we have already mapped 0 page on the host. */
1905 if (!reserved_va) {
1906 void *want, *addr;
1907
1908 want = g2h_untagged(LO_COMMPAGE);
1909 addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
1910 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
1911 if (addr == MAP_FAILED) {
1912 perror("Allocating guest commpage");
1913 exit(EXIT_FAILURE);
1914 }
1915 if (addr != want) {
1916 return false;
1917 }
1918 }
1919
1920 /*
1921 * On Linux, page zero is normally marked execute only + gateway.
1922 * Normal read or write is supposed to fail (thus PROT_NONE above),
1923 * but specific offsets have kernel code mapped to raise permissions
1924 * and implement syscalls. Here, simply mark the page executable.
1925 * Special case the entry points during translation (see do_page_zero).
1926 */
1927 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1928 PAGE_EXEC | PAGE_VALID);
1929 return true;
1930 }
1931
1932 #endif /* TARGET_HPPA */
1933
1934 #ifdef TARGET_XTENSA
1935
1936 #define ELF_CLASS ELFCLASS32
1937 #define ELF_ARCH EM_XTENSA
1938
1939 static inline void init_thread(struct target_pt_regs *regs,
1940 struct image_info *infop)
1941 {
1942 regs->windowbase = 0;
1943 regs->windowstart = 1;
1944 regs->areg[1] = infop->start_stack;
1945 regs->pc = infop->entry;
1946 if (info_is_fdpic(infop)) {
1947 regs->areg[4] = infop->loadmap_addr;
1948 regs->areg[5] = infop->interpreter_loadmap_addr;
1949 if (infop->interpreter_loadmap_addr) {
1950 regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1951 } else {
1952 regs->areg[6] = infop->pt_dynamic_addr;
1953 }
1954 }
1955 }
1956
1957 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1958 #define ELF_NREG 128
1959 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1960
1961 enum {
1962 TARGET_REG_PC,
1963 TARGET_REG_PS,
1964 TARGET_REG_LBEG,
1965 TARGET_REG_LEND,
1966 TARGET_REG_LCOUNT,
1967 TARGET_REG_SAR,
1968 TARGET_REG_WINDOWSTART,
1969 TARGET_REG_WINDOWBASE,
1970 TARGET_REG_THREADPTR,
1971 TARGET_REG_AR0 = 64,
1972 };
1973
1974 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1975 const CPUXtensaState *env)
1976 {
1977 unsigned i;
1978
1979 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1980 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1981 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1982 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1983 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1984 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1985 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1986 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1987 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1988 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1989 for (i = 0; i < env->config->nareg; ++i) {
1990 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1991 }
1992 }
1993
1994 #define USE_ELF_CORE_DUMP
1995 #define ELF_EXEC_PAGESIZE 4096
1996
1997 #endif /* TARGET_XTENSA */
1998
1999 #ifdef TARGET_HEXAGON
2000
2001 #define ELF_CLASS ELFCLASS32
2002 #define ELF_ARCH EM_HEXAGON
2003
2004 static inline void init_thread(struct target_pt_regs *regs,
2005 struct image_info *infop)
2006 {
2007 regs->sepc = infop->entry;
2008 regs->sp = infop->start_stack;
2009 }
2010
2011 #endif /* TARGET_HEXAGON */
2012
2013 #ifndef ELF_BASE_PLATFORM
2014 #define ELF_BASE_PLATFORM (NULL)
2015 #endif
2016
2017 #ifndef ELF_PLATFORM
2018 #define ELF_PLATFORM (NULL)
2019 #endif
2020
2021 #ifndef ELF_MACHINE
2022 #define ELF_MACHINE ELF_ARCH
2023 #endif
2024
2025 #ifndef elf_check_arch
2026 #define elf_check_arch(x) ((x) == ELF_ARCH)
2027 #endif
2028
2029 #ifndef elf_check_abi
2030 #define elf_check_abi(x) (1)
2031 #endif
2032
2033 #ifndef ELF_HWCAP
2034 #define ELF_HWCAP 0
2035 #endif
2036
2037 #ifndef STACK_GROWS_DOWN
2038 #define STACK_GROWS_DOWN 1
2039 #endif
2040
2041 #ifndef STACK_ALIGNMENT
2042 #define STACK_ALIGNMENT 16
2043 #endif
2044
2045 #ifdef TARGET_ABI32
2046 #undef ELF_CLASS
2047 #define ELF_CLASS ELFCLASS32
2048 #undef bswaptls
2049 #define bswaptls(ptr) bswap32s(ptr)
2050 #endif
2051
2052 #ifndef EXSTACK_DEFAULT
2053 #define EXSTACK_DEFAULT false
2054 #endif
2055
2056 #include "elf.h"
2057
2058 /* We must delay the following stanzas until after "elf.h". */
2059 #if defined(TARGET_AARCH64)
2060
2061 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2062 const uint32_t *data,
2063 struct image_info *info,
2064 Error **errp)
2065 {
2066 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2067 if (pr_datasz != sizeof(uint32_t)) {
2068 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2069 return false;
2070 }
2071 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2072 info->note_flags = *data;
2073 }
2074 return true;
2075 }
2076 #define ARCH_USE_GNU_PROPERTY 1
2077
2078 #else
2079
2080 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2081 const uint32_t *data,
2082 struct image_info *info,
2083 Error **errp)
2084 {
2085 g_assert_not_reached();
2086 }
2087 #define ARCH_USE_GNU_PROPERTY 0
2088
2089 #endif
2090
2091 struct exec
2092 {
2093 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
2094 unsigned int a_text; /* length of text, in bytes */
2095 unsigned int a_data; /* length of data, in bytes */
2096 unsigned int a_bss; /* length of uninitialized data area, in bytes */
2097 unsigned int a_syms; /* length of symbol table data in file, in bytes */
2098 unsigned int a_entry; /* start address */
2099 unsigned int a_trsize; /* length of relocation info for text, in bytes */
2100 unsigned int a_drsize; /* length of relocation info for data, in bytes */
2101 };
2102
2103
2104 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2105 #define OMAGIC 0407
2106 #define NMAGIC 0410
2107 #define ZMAGIC 0413
2108 #define QMAGIC 0314
2109
2110 #define DLINFO_ITEMS 16
2111
2112 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2113 {
2114 memcpy(to, from, n);
2115 }
2116
2117 #ifdef BSWAP_NEEDED
2118 static void bswap_ehdr(struct elfhdr *ehdr)
2119 {
2120 bswap16s(&ehdr->e_type); /* Object file type */
2121 bswap16s(&ehdr->e_machine); /* Architecture */
2122 bswap32s(&ehdr->e_version); /* Object file version */
2123 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
2124 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
2125 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
2126 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
2127 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
2128 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
2129 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
2130 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
2131 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
2132 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
2133 }
2134
2135 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2136 {
2137 int i;
2138 for (i = 0; i < phnum; ++i, ++phdr) {
2139 bswap32s(&phdr->p_type); /* Segment type */
2140 bswap32s(&phdr->p_flags); /* Segment flags */
2141 bswaptls(&phdr->p_offset); /* Segment file offset */
2142 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
2143 bswaptls(&phdr->p_paddr); /* Segment physical address */
2144 bswaptls(&phdr->p_filesz); /* Segment size in file */
2145 bswaptls(&phdr->p_memsz); /* Segment size in memory */
2146 bswaptls(&phdr->p_align); /* Segment alignment */
2147 }
2148 }
2149
2150 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2151 {
2152 int i;
2153 for (i = 0; i < shnum; ++i, ++shdr) {
2154 bswap32s(&shdr->sh_name);
2155 bswap32s(&shdr->sh_type);
2156 bswaptls(&shdr->sh_flags);
2157 bswaptls(&shdr->sh_addr);
2158 bswaptls(&shdr->sh_offset);
2159 bswaptls(&shdr->sh_size);
2160 bswap32s(&shdr->sh_link);
2161 bswap32s(&shdr->sh_info);
2162 bswaptls(&shdr->sh_addralign);
2163 bswaptls(&shdr->sh_entsize);
2164 }
2165 }
2166
2167 static void bswap_sym(struct elf_sym *sym)
2168 {
2169 bswap32s(&sym->st_name);
2170 bswaptls(&sym->st_value);
2171 bswaptls(&sym->st_size);
2172 bswap16s(&sym->st_shndx);
2173 }
2174
2175 #ifdef TARGET_MIPS
2176 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2177 {
2178 bswap16s(&abiflags->version);
2179 bswap32s(&abiflags->ases);
2180 bswap32s(&abiflags->isa_ext);
2181 bswap32s(&abiflags->flags1);
2182 bswap32s(&abiflags->flags2);
2183 }
2184 #endif
2185 #else
2186 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2187 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2188 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2189 static inline void bswap_sym(struct elf_sym *sym) { }
2190 #ifdef TARGET_MIPS
2191 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2192 #endif
2193 #endif
2194
2195 #ifdef USE_ELF_CORE_DUMP
2196 static int elf_core_dump(int, const CPUArchState *);
2197 #endif /* USE_ELF_CORE_DUMP */
2198 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2199 abi_ulong load_bias);
2200
2201 /* Verify the portions of EHDR within E_IDENT for the target.
2202 This can be performed before bswapping the entire header. */
2203 static bool elf_check_ident(struct elfhdr *ehdr)
2204 {
2205 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2206 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2207 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2208 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2209 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2210 && ehdr->e_ident[EI_DATA] == ELF_DATA
2211 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2212 }
2213
2214 /* Verify the portions of EHDR outside of E_IDENT for the target.
2215 This has to wait until after bswapping the header. */
2216 static bool elf_check_ehdr(struct elfhdr *ehdr)
2217 {
2218 return (elf_check_arch(ehdr->e_machine)
2219 && elf_check_abi(ehdr->e_flags)
2220 && ehdr->e_ehsize == sizeof(struct elfhdr)
2221 && ehdr->e_phentsize == sizeof(struct elf_phdr)
2222 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2223 }
2224
2225 /*
2226 * 'copy_elf_strings()' copies argument/envelope strings from user
2227 * memory to free pages in kernel mem. These are in a format ready
2228 * to be put directly into the top of new user memory.
2229 *
2230 */
2231 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2232 abi_ulong p, abi_ulong stack_limit)
2233 {
2234 char *tmp;
2235 int len, i;
2236 abi_ulong top = p;
2237
2238 if (!p) {
2239 return 0; /* bullet-proofing */
2240 }
2241
2242 if (STACK_GROWS_DOWN) {
2243 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2244 for (i = argc - 1; i >= 0; --i) {
2245 tmp = argv[i];
2246 if (!tmp) {
2247 fprintf(stderr, "VFS: argc is wrong");
2248 exit(-1);
2249 }
2250 len = strlen(tmp) + 1;
2251 tmp += len;
2252
2253 if (len > (p - stack_limit)) {
2254 return 0;
2255 }
2256 while (len) {
2257 int bytes_to_copy = (len > offset) ? offset : len;
2258 tmp -= bytes_to_copy;
2259 p -= bytes_to_copy;
2260 offset -= bytes_to_copy;
2261 len -= bytes_to_copy;
2262
2263 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2264
2265 if (offset == 0) {
2266 memcpy_to_target(p, scratch, top - p);
2267 top = p;
2268 offset = TARGET_PAGE_SIZE;
2269 }
2270 }
2271 }
2272 if (p != top) {
2273 memcpy_to_target(p, scratch + offset, top - p);
2274 }
2275 } else {
2276 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2277 for (i = 0; i < argc; ++i) {
2278 tmp = argv[i];
2279 if (!tmp) {
2280 fprintf(stderr, "VFS: argc is wrong");
2281 exit(-1);
2282 }
2283 len = strlen(tmp) + 1;
2284 if (len > (stack_limit - p)) {
2285 return 0;
2286 }
2287 while (len) {
2288 int bytes_to_copy = (len > remaining) ? remaining : len;
2289
2290 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2291
2292 tmp += bytes_to_copy;
2293 remaining -= bytes_to_copy;
2294 p += bytes_to_copy;
2295 len -= bytes_to_copy;
2296
2297 if (remaining == 0) {
2298 memcpy_to_target(top, scratch, p - top);
2299 top = p;
2300 remaining = TARGET_PAGE_SIZE;
2301 }
2302 }
2303 }
2304 if (p != top) {
2305 memcpy_to_target(top, scratch, p - top);
2306 }
2307 }
2308
2309 return p;
2310 }
2311
2312 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2313 * argument/environment space. Newer kernels (>2.6.33) allow more,
2314 * dependent on stack size, but guarantee at least 32 pages for
2315 * backwards compatibility.
2316 */
2317 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2318
2319 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2320 struct image_info *info)
2321 {
2322 abi_ulong size, error, guard;
2323 int prot;
2324
2325 size = guest_stack_size;
2326 if (size < STACK_LOWER_LIMIT) {
2327 size = STACK_LOWER_LIMIT;
2328 }
2329
2330 if (STACK_GROWS_DOWN) {
2331 guard = TARGET_PAGE_SIZE;
2332 if (guard < qemu_real_host_page_size()) {
2333 guard = qemu_real_host_page_size();
2334 }
2335 } else {
2336 /* no guard page for hppa target where stack grows upwards. */
2337 guard = 0;
2338 }
2339
2340 prot = PROT_READ | PROT_WRITE;
2341 if (info->exec_stack) {
2342 prot |= PROT_EXEC;
2343 }
2344 error = target_mmap(0, size + guard, prot,
2345 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2346 if (error == -1) {
2347 perror("mmap stack");
2348 exit(-1);
2349 }
2350
2351 /* We reserve one extra page at the top of the stack as guard. */
2352 if (STACK_GROWS_DOWN) {
2353 target_mprotect(error, guard, PROT_NONE);
2354 info->stack_limit = error + guard;
2355 return info->stack_limit + size - sizeof(void *);
2356 } else {
2357 info->stack_limit = error + size;
2358 return error;
2359 }
2360 }
2361
2362 /**
2363 * zero_bss:
2364 *
2365 * Map and zero the bss. We need to explicitly zero any fractional pages
2366 * after the data section (i.e. bss). Return false on mapping failure.
2367 */
2368 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2369 int prot, Error **errp)
2370 {
2371 abi_ulong align_bss;
2372
2373 /* We only expect writable bss; the code segment shouldn't need this. */
2374 if (!(prot & PROT_WRITE)) {
2375 error_setg(errp, "PT_LOAD with non-writable bss");
2376 return false;
2377 }
2378
2379 align_bss = TARGET_PAGE_ALIGN(start_bss);
2380 end_bss = TARGET_PAGE_ALIGN(end_bss);
2381
2382 if (start_bss < align_bss) {
2383 int flags = page_get_flags(start_bss);
2384
2385 if (!(flags & PAGE_RWX)) {
2386 /*
2387 * The whole address space of the executable was reserved
2388 * at the start, therefore all pages will be VALID.
2389 * But assuming there are no PROT_NONE PT_LOAD segments,
2390 * a PROT_NONE page means no data all bss, and we can
2391 * simply extend the new anon mapping back to the start
2392 * of the page of bss.
2393 */
2394 align_bss -= TARGET_PAGE_SIZE;
2395 } else {
2396 /*
2397 * The start of the bss shares a page with something.
2398 * The only thing that we expect is the data section,
2399 * which would already be marked writable.
2400 * Overlapping the RX code segment seems malformed.
2401 */
2402 if (!(flags & PAGE_WRITE)) {
2403 error_setg(errp, "PT_LOAD with bss overlapping "
2404 "non-writable page");
2405 return false;
2406 }
2407
2408 /* The page is already mapped and writable. */
2409 memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2410 }
2411 }
2412
2413 if (align_bss < end_bss &&
2414 target_mmap(align_bss, end_bss - align_bss, prot,
2415 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2416 error_setg_errno(errp, errno, "Error mapping bss");
2417 return false;
2418 }
2419 return true;
2420 }
2421
2422 #if defined(TARGET_ARM)
2423 static int elf_is_fdpic(struct elfhdr *exec)
2424 {
2425 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2426 }
2427 #elif defined(TARGET_XTENSA)
2428 static int elf_is_fdpic(struct elfhdr *exec)
2429 {
2430 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2431 }
2432 #else
2433 /* Default implementation, always false. */
2434 static int elf_is_fdpic(struct elfhdr *exec)
2435 {
2436 return 0;
2437 }
2438 #endif
2439
2440 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2441 {
2442 uint16_t n;
2443 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2444
2445 /* elf32_fdpic_loadseg */
2446 n = info->nsegs;
2447 while (n--) {
2448 sp -= 12;
2449 put_user_u32(loadsegs[n].addr, sp+0);
2450 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2451 put_user_u32(loadsegs[n].p_memsz, sp+8);
2452 }
2453
2454 /* elf32_fdpic_loadmap */
2455 sp -= 4;
2456 put_user_u16(0, sp+0); /* version */
2457 put_user_u16(info->nsegs, sp+2); /* nsegs */
2458
2459 info->personality = PER_LINUX_FDPIC;
2460 info->loadmap_addr = sp;
2461
2462 return sp;
2463 }
2464
2465 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2466 struct elfhdr *exec,
2467 struct image_info *info,
2468 struct image_info *interp_info,
2469 struct image_info *vdso_info)
2470 {
2471 abi_ulong sp;
2472 abi_ulong u_argc, u_argv, u_envp, u_auxv;
2473 int size;
2474 int i;
2475 abi_ulong u_rand_bytes;
2476 uint8_t k_rand_bytes[16];
2477 abi_ulong u_platform, u_base_platform;
2478 const char *k_platform, *k_base_platform;
2479 const int n = sizeof(elf_addr_t);
2480
2481 sp = p;
2482
2483 /* Needs to be before we load the env/argc/... */
2484 if (elf_is_fdpic(exec)) {
2485 /* Need 4 byte alignment for these structs */
2486 sp &= ~3;
2487 sp = loader_build_fdpic_loadmap(info, sp);
2488 info->other_info = interp_info;
2489 if (interp_info) {
2490 interp_info->other_info = info;
2491 sp = loader_build_fdpic_loadmap(interp_info, sp);
2492 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2493 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2494 } else {
2495 info->interpreter_loadmap_addr = 0;
2496 info->interpreter_pt_dynamic_addr = 0;
2497 }
2498 }
2499
2500 u_base_platform = 0;
2501 k_base_platform = ELF_BASE_PLATFORM;
2502 if (k_base_platform) {
2503 size_t len = strlen(k_base_platform) + 1;
2504 if (STACK_GROWS_DOWN) {
2505 sp -= (len + n - 1) & ~(n - 1);
2506 u_base_platform = sp;
2507 /* FIXME - check return value of memcpy_to_target() for failure */
2508 memcpy_to_target(sp, k_base_platform, len);
2509 } else {
2510 memcpy_to_target(sp, k_base_platform, len);
2511 u_base_platform = sp;
2512 sp += len + 1;
2513 }
2514 }
2515
2516 u_platform = 0;
2517 k_platform = ELF_PLATFORM;
2518 if (k_platform) {
2519 size_t len = strlen(k_platform) + 1;
2520 if (STACK_GROWS_DOWN) {
2521 sp -= (len + n - 1) & ~(n - 1);
2522 u_platform = sp;
2523 /* FIXME - check return value of memcpy_to_target() for failure */
2524 memcpy_to_target(sp, k_platform, len);
2525 } else {
2526 memcpy_to_target(sp, k_platform, len);
2527 u_platform = sp;
2528 sp += len + 1;
2529 }
2530 }
2531
2532 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2533 * the argv and envp pointers.
2534 */
2535 if (STACK_GROWS_DOWN) {
2536 sp = QEMU_ALIGN_DOWN(sp, 16);
2537 } else {
2538 sp = QEMU_ALIGN_UP(sp, 16);
2539 }
2540
2541 /*
2542 * Generate 16 random bytes for userspace PRNG seeding.
2543 */
2544 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2545 if (STACK_GROWS_DOWN) {
2546 sp -= 16;
2547 u_rand_bytes = sp;
2548 /* FIXME - check return value of memcpy_to_target() for failure */
2549 memcpy_to_target(sp, k_rand_bytes, 16);
2550 } else {
2551 memcpy_to_target(sp, k_rand_bytes, 16);
2552 u_rand_bytes = sp;
2553 sp += 16;
2554 }
2555
2556 size = (DLINFO_ITEMS + 1) * 2;
2557 if (k_base_platform) {
2558 size += 2;
2559 }
2560 if (k_platform) {
2561 size += 2;
2562 }
2563 if (vdso_info) {
2564 size += 2;
2565 }
2566 #ifdef DLINFO_ARCH_ITEMS
2567 size += DLINFO_ARCH_ITEMS * 2;
2568 #endif
2569 #ifdef ELF_HWCAP2
2570 size += 2;
2571 #endif
2572 info->auxv_len = size * n;
2573
2574 size += envc + argc + 2;
2575 size += 1; /* argc itself */
2576 size *= n;
2577
2578 /* Allocate space and finalize stack alignment for entry now. */
2579 if (STACK_GROWS_DOWN) {
2580 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2581 sp = u_argc;
2582 } else {
2583 u_argc = sp;
2584 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2585 }
2586
2587 u_argv = u_argc + n;
2588 u_envp = u_argv + (argc + 1) * n;
2589 u_auxv = u_envp + (envc + 1) * n;
2590 info->saved_auxv = u_auxv;
2591 info->argc = argc;
2592 info->envc = envc;
2593 info->argv = u_argv;
2594 info->envp = u_envp;
2595
2596 /* This is correct because Linux defines
2597 * elf_addr_t as Elf32_Off / Elf64_Off
2598 */
2599 #define NEW_AUX_ENT(id, val) do { \
2600 put_user_ual(id, u_auxv); u_auxv += n; \
2601 put_user_ual(val, u_auxv); u_auxv += n; \
2602 } while(0)
2603
2604 #ifdef ARCH_DLINFO
2605 /*
2606 * ARCH_DLINFO must come first so platform specific code can enforce
2607 * special alignment requirements on the AUXV if necessary (eg. PPC).
2608 */
2609 ARCH_DLINFO;
2610 #endif
2611 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2612 * on info->auxv_len will trigger.
2613 */
2614 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2615 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2616 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2617 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2618 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2619 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2620 NEW_AUX_ENT(AT_ENTRY, info->entry);
2621 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2622 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2623 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2624 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2625 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2626 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2627 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2628 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2629 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2630
2631 #ifdef ELF_HWCAP2
2632 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2633 #endif
2634
2635 if (u_base_platform) {
2636 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2637 }
2638 if (u_platform) {
2639 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2640 }
2641 if (vdso_info) {
2642 NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2643 }
2644 NEW_AUX_ENT (AT_NULL, 0);
2645 #undef NEW_AUX_ENT
2646
2647 /* Check that our initial calculation of the auxv length matches how much
2648 * we actually put into it.
2649 */
2650 assert(info->auxv_len == u_auxv - info->saved_auxv);
2651
2652 put_user_ual(argc, u_argc);
2653
2654 p = info->arg_strings;
2655 for (i = 0; i < argc; ++i) {
2656 put_user_ual(p, u_argv);
2657 u_argv += n;
2658 p += target_strlen(p) + 1;
2659 }
2660 put_user_ual(0, u_argv);
2661
2662 p = info->env_strings;
2663 for (i = 0; i < envc; ++i) {
2664 put_user_ual(p, u_envp);
2665 u_envp += n;
2666 p += target_strlen(p) + 1;
2667 }
2668 put_user_ual(0, u_envp);
2669
2670 return sp;
2671 }
2672
2673 #if defined(HI_COMMPAGE)
2674 #define LO_COMMPAGE -1
2675 #elif defined(LO_COMMPAGE)
2676 #define HI_COMMPAGE 0
2677 #else
2678 #define HI_COMMPAGE 0
2679 #define LO_COMMPAGE -1
2680 #ifndef INIT_GUEST_COMMPAGE
2681 #define init_guest_commpage() true
2682 #endif
2683 #endif
2684
2685 /**
2686 * pgb_try_mmap:
2687 * @addr: host start address
2688 * @addr_last: host last address
2689 * @keep: do not unmap the probe region
2690 *
2691 * Return 1 if [@addr, @addr_last] is not mapped in the host,
2692 * return 0 if it is not available to map, and -1 on mmap error.
2693 * If @keep, the region is left mapped on success, otherwise unmapped.
2694 */
2695 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2696 {
2697 size_t size = addr_last - addr + 1;
2698 void *p = mmap((void *)addr, size, PROT_NONE,
2699 MAP_ANONYMOUS | MAP_PRIVATE |
2700 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2701 int ret;
2702
2703 if (p == MAP_FAILED) {
2704 return errno == EEXIST ? 0 : -1;
2705 }
2706 ret = p == (void *)addr;
2707 if (!keep || !ret) {
2708 munmap(p, size);
2709 }
2710 return ret;
2711 }
2712
2713 /**
2714 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2715 * @addr: host address
2716 * @addr_last: host last address
2717 * @brk: host brk
2718 *
2719 * Like pgb_try_mmap, but additionally reserve some memory following brk.
2720 */
2721 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2722 uintptr_t brk, bool keep)
2723 {
2724 uintptr_t brk_last = brk + 16 * MiB - 1;
2725
2726 /* Do not map anything close to the host brk. */
2727 if (addr <= brk_last && brk <= addr_last) {
2728 return 0;
2729 }
2730 return pgb_try_mmap(addr, addr_last, keep);
2731 }
2732
2733 /**
2734 * pgb_try_mmap_set:
2735 * @ga: set of guest addrs
2736 * @base: guest_base
2737 * @brk: host brk
2738 *
2739 * Return true if all @ga can be mapped by the host at @base.
2740 * On success, retain the mapping at index 0 for reserved_va.
2741 */
2742
2743 typedef struct PGBAddrs {
2744 uintptr_t bounds[3][2]; /* start/last pairs */
2745 int nbounds;
2746 } PGBAddrs;
2747
2748 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2749 {
2750 for (int i = ga->nbounds - 1; i >= 0; --i) {
2751 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2752 ga->bounds[i][1] + base,
2753 brk, i == 0 && reserved_va) <= 0) {
2754 return false;
2755 }
2756 }
2757 return true;
2758 }
2759
2760 /**
2761 * pgb_addr_set:
2762 * @ga: output set of guest addrs
2763 * @guest_loaddr: guest image low address
2764 * @guest_loaddr: guest image high address
2765 * @identity: create for identity mapping
2766 *
2767 * Fill in @ga with the image, COMMPAGE and NULL page.
2768 */
2769 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2770 abi_ulong guest_hiaddr, bool try_identity)
2771 {
2772 int n;
2773
2774 /*
2775 * With a low commpage, or a guest mapped very low,
2776 * we may not be able to use the identity map.
2777 */
2778 if (try_identity) {
2779 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2780 return false;
2781 }
2782 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2783 return false;
2784 }
2785 }
2786
2787 memset(ga, 0, sizeof(*ga));
2788 n = 0;
2789
2790 if (reserved_va) {
2791 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2792 ga->bounds[n][1] = reserved_va;
2793 n++;
2794 /* LO_COMMPAGE and NULL handled by reserving from 0. */
2795 } else {
2796 /* Add any LO_COMMPAGE or NULL page. */
2797 if (LO_COMMPAGE != -1) {
2798 ga->bounds[n][0] = 0;
2799 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2800 n++;
2801 } else if (!try_identity) {
2802 ga->bounds[n][0] = 0;
2803 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2804 n++;
2805 }
2806
2807 /* Add the guest image for ET_EXEC. */
2808 if (guest_loaddr) {
2809 ga->bounds[n][0] = guest_loaddr;
2810 ga->bounds[n][1] = guest_hiaddr;
2811 n++;
2812 }
2813 }
2814
2815 /*
2816 * Temporarily disable
2817 * "comparison is always false due to limited range of data type"
2818 * due to comparison between unsigned and (possible) 0.
2819 */
2820 #pragma GCC diagnostic push
2821 #pragma GCC diagnostic ignored "-Wtype-limits"
2822
2823 /* Add any HI_COMMPAGE not covered by reserved_va. */
2824 if (reserved_va < HI_COMMPAGE) {
2825 ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
2826 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2827 n++;
2828 }
2829
2830 #pragma GCC diagnostic pop
2831
2832 ga->nbounds = n;
2833 return true;
2834 }
2835
2836 static void pgb_fail_in_use(const char *image_name)
2837 {
2838 error_report("%s: requires virtual address space that is in use "
2839 "(omit the -B option or choose a different value)",
2840 image_name);
2841 exit(EXIT_FAILURE);
2842 }
2843
2844 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2845 uintptr_t guest_hiaddr, uintptr_t align)
2846 {
2847 PGBAddrs ga;
2848 uintptr_t brk = (uintptr_t)sbrk(0);
2849
2850 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2851 fprintf(stderr, "Requested guest base %p does not satisfy "
2852 "host minimum alignment (0x%" PRIxPTR ")\n",
2853 (void *)guest_base, align);
2854 exit(EXIT_FAILURE);
2855 }
2856
2857 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2858 || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2859 pgb_fail_in_use(image_name);
2860 }
2861 }
2862
2863 /**
2864 * pgb_find_fallback:
2865 *
2866 * This is a fallback method for finding holes in the host address space
2867 * if we don't have the benefit of being able to access /proc/self/map.
2868 * It can potentially take a very long time as we can only dumbly iterate
2869 * up the host address space seeing if the allocation would work.
2870 */
2871 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2872 uintptr_t brk)
2873 {
2874 /* TODO: come up with a better estimate of how much to skip. */
2875 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2876
2877 for (uintptr_t base = skip; ; base += skip) {
2878 base = ROUND_UP(base, align);
2879 if (pgb_try_mmap_set(ga, base, brk)) {
2880 return base;
2881 }
2882 if (base >= -skip) {
2883 return -1;
2884 }
2885 }
2886 }
2887
2888 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2889 IntervalTreeRoot *root)
2890 {
2891 for (int i = ga->nbounds - 1; i >= 0; --i) {
2892 uintptr_t s = base + ga->bounds[i][0];
2893 uintptr_t l = base + ga->bounds[i][1];
2894 IntervalTreeNode *n;
2895
2896 if (l < s) {
2897 /* Wraparound. Skip to advance S to mmap_min_addr. */
2898 return mmap_min_addr - s;
2899 }
2900
2901 n = interval_tree_iter_first(root, s, l);
2902 if (n != NULL) {
2903 /* Conflict. Skip to advance S to LAST + 1. */
2904 return n->last - s + 1;
2905 }
2906 }
2907 return 0; /* success */
2908 }
2909
2910 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2911 uintptr_t align, uintptr_t brk)
2912 {
2913 uintptr_t last = mmap_min_addr;
2914 uintptr_t base, skip;
2915
2916 while (true) {
2917 base = ROUND_UP(last, align);
2918 if (base < last) {
2919 return -1;
2920 }
2921
2922 skip = pgb_try_itree(ga, base, root);
2923 if (skip == 0) {
2924 break;
2925 }
2926
2927 last = base + skip;
2928 if (last < base) {
2929 return -1;
2930 }
2931 }
2932
2933 /*
2934 * We've chosen 'base' based on holes in the interval tree,
2935 * but we don't yet know if it is a valid host address.
2936 * Because it is the first matching hole, if the host addresses
2937 * are invalid we know there are no further matches.
2938 */
2939 return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2940 }
2941
2942 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2943 uintptr_t guest_hiaddr, uintptr_t align)
2944 {
2945 IntervalTreeRoot *root;
2946 uintptr_t brk, ret;
2947 PGBAddrs ga;
2948
2949 /* Try the identity map first. */
2950 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2951 brk = (uintptr_t)sbrk(0);
2952 if (pgb_try_mmap_set(&ga, 0, brk)) {
2953 guest_base = 0;
2954 return;
2955 }
2956 }
2957
2958 /*
2959 * Rebuild the address set for non-identity map.
2960 * This differs in the mapping of the guest NULL page.
2961 */
2962 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2963
2964 root = read_self_maps();
2965
2966 /* Read brk after we've read the maps, which will malloc. */
2967 brk = (uintptr_t)sbrk(0);
2968
2969 if (!root) {
2970 ret = pgb_find_fallback(&ga, align, brk);
2971 } else {
2972 /*
2973 * Reserve the area close to the host brk.
2974 * This will be freed with the rest of the tree.
2975 */
2976 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2977 b->start = brk;
2978 b->last = brk + 16 * MiB - 1;
2979 interval_tree_insert(b, root);
2980
2981 ret = pgb_find_itree(&ga, root, align, brk);
2982 free_self_maps(root);
2983 }
2984
2985 if (ret == -1) {
2986 int w = TARGET_LONG_BITS / 4;
2987
2988 error_report("%s: Unable to find a guest_base to satisfy all "
2989 "guest address mapping requirements", image_name);
2990
2991 for (int i = 0; i < ga.nbounds; ++i) {
2992 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n",
2993 w, (uint64_t)ga.bounds[i][0],
2994 w, (uint64_t)ga.bounds[i][1]);
2995 }
2996 exit(EXIT_FAILURE);
2997 }
2998 guest_base = ret;
2999 }
3000
3001 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
3002 abi_ulong guest_hiaddr)
3003 {
3004 /* In order to use host shmat, we must be able to honor SHMLBA. */
3005 uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
3006
3007 /* Sanity check the guest binary. */
3008 if (reserved_va) {
3009 if (guest_hiaddr > reserved_va) {
3010 error_report("%s: requires more than reserved virtual "
3011 "address space (0x%" PRIx64 " > 0x%lx)",
3012 image_name, (uint64_t)guest_hiaddr, reserved_va);
3013 exit(EXIT_FAILURE);
3014 }
3015 } else {
3016 if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3017 error_report("%s: requires more virtual address space "
3018 "than the host can provide (0x%" PRIx64 ")",
3019 image_name, (uint64_t)guest_hiaddr + 1);
3020 exit(EXIT_FAILURE);
3021 }
3022 }
3023
3024 if (have_guest_base) {
3025 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3026 } else {
3027 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3028 }
3029
3030 /* Reserve and initialize the commpage. */
3031 if (!init_guest_commpage()) {
3032 /* We have already probed for the commpage being free. */
3033 g_assert_not_reached();
3034 }
3035
3036 assert(QEMU_IS_ALIGNED(guest_base, align));
3037 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3038 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3039 }
3040
3041 enum {
3042 /* The string "GNU\0" as a magic number. */
3043 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3044 NOTE_DATA_SZ = 1 * KiB,
3045 NOTE_NAME_SZ = 4,
3046 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3047 };
3048
3049 /*
3050 * Process a single gnu_property entry.
3051 * Return false for error.
3052 */
3053 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3054 struct image_info *info, bool have_prev_type,
3055 uint32_t *prev_type, Error **errp)
3056 {
3057 uint32_t pr_type, pr_datasz, step;
3058
3059 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3060 goto error_data;
3061 }
3062 datasz -= *off;
3063 data += *off / sizeof(uint32_t);
3064
3065 if (datasz < 2 * sizeof(uint32_t)) {
3066 goto error_data;
3067 }
3068 pr_type = data[0];
3069 pr_datasz = data[1];
3070 data += 2;
3071 datasz -= 2 * sizeof(uint32_t);
3072 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3073 if (step > datasz) {
3074 goto error_data;
3075 }
3076
3077 /* Properties are supposed to be unique and sorted on pr_type. */
3078 if (have_prev_type && pr_type <= *prev_type) {
3079 if (pr_type == *prev_type) {
3080 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3081 } else {
3082 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3083 }
3084 return false;
3085 }
3086 *prev_type = pr_type;
3087
3088 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3089 return false;
3090 }
3091
3092 *off += 2 * sizeof(uint32_t) + step;
3093 return true;
3094
3095 error_data:
3096 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3097 return false;
3098 }
3099
3100 /* Process NT_GNU_PROPERTY_TYPE_0. */
3101 static bool parse_elf_properties(const ImageSource *src,
3102 struct image_info *info,
3103 const struct elf_phdr *phdr,
3104 Error **errp)
3105 {
3106 union {
3107 struct elf_note nhdr;
3108 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3109 } note;
3110
3111 int n, off, datasz;
3112 bool have_prev_type;
3113 uint32_t prev_type;
3114
3115 /* Unless the arch requires properties, ignore them. */
3116 if (!ARCH_USE_GNU_PROPERTY) {
3117 return true;
3118 }
3119
3120 /* If the properties are crazy large, that's too bad. */
3121 n = phdr->p_filesz;
3122 if (n > sizeof(note)) {
3123 error_setg(errp, "PT_GNU_PROPERTY too large");
3124 return false;
3125 }
3126 if (n < sizeof(note.nhdr)) {
3127 error_setg(errp, "PT_GNU_PROPERTY too small");
3128 return false;
3129 }
3130
3131 if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3132 return false;
3133 }
3134
3135 /*
3136 * The contents of a valid PT_GNU_PROPERTY is a sequence
3137 * of uint32_t -- swap them all now.
3138 */
3139 #ifdef BSWAP_NEEDED
3140 for (int i = 0; i < n / 4; i++) {
3141 bswap32s(note.data + i);
3142 }
3143 #endif
3144
3145 /*
3146 * Note that nhdr is 3 words, and that the "name" described by namesz
3147 * immediately follows nhdr and is thus at the 4th word. Further, all
3148 * of the inputs to the kernel's round_up are multiples of 4.
3149 */
3150 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3151 note.nhdr.n_namesz != NOTE_NAME_SZ ||
3152 note.data[3] != GNU0_MAGIC) {
3153 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3154 return false;
3155 }
3156 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3157
3158 datasz = note.nhdr.n_descsz + off;
3159 if (datasz > n) {
3160 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3161 return false;
3162 }
3163
3164 have_prev_type = false;
3165 prev_type = 0;
3166 while (1) {
3167 if (off == datasz) {
3168 return true; /* end, exit ok */
3169 }
3170 if (!parse_elf_property(note.data, &off, datasz, info,
3171 have_prev_type, &prev_type, errp)) {
3172 return false;
3173 }
3174 have_prev_type = true;
3175 }
3176 }
3177
3178 /**
3179 * load_elf_image: Load an ELF image into the address space.
3180 * @image_name: the filename of the image, to use in error messages.
3181 * @src: the ImageSource from which to read.
3182 * @info: info collected from the loaded image.
3183 * @ehdr: the ELF header, not yet bswapped.
3184 * @pinterp_name: record any PT_INTERP string found.
3185 *
3186 * On return: @info values will be filled in, as necessary or available.
3187 */
3188
3189 static void load_elf_image(const char *image_name, const ImageSource *src,
3190 struct image_info *info, struct elfhdr *ehdr,
3191 char **pinterp_name)
3192 {
3193 g_autofree struct elf_phdr *phdr = NULL;
3194 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3195 int i, prot_exec;
3196 Error *err = NULL;
3197
3198 /*
3199 * First of all, some simple consistency checks.
3200 * Note that we rely on the bswapped ehdr staying in bprm_buf,
3201 * for later use by load_elf_binary and create_elf_tables.
3202 */
3203 if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3204 goto exit_errmsg;
3205 }
3206 if (!elf_check_ident(ehdr)) {
3207 error_setg(&err, "Invalid ELF image for this architecture");
3208 goto exit_errmsg;
3209 }
3210 bswap_ehdr(ehdr);
3211 if (!elf_check_ehdr(ehdr)) {
3212 error_setg(&err, "Invalid ELF image for this architecture");
3213 goto exit_errmsg;
3214 }
3215
3216 phdr = imgsrc_read_alloc(ehdr->e_phoff,
3217 ehdr->e_phnum * sizeof(struct elf_phdr),
3218 src, &err);
3219 if (phdr == NULL) {
3220 goto exit_errmsg;
3221 }
3222 bswap_phdr(phdr, ehdr->e_phnum);
3223
3224 info->nsegs = 0;
3225 info->pt_dynamic_addr = 0;
3226
3227 mmap_lock();
3228
3229 /*
3230 * Find the maximum size of the image and allocate an appropriate
3231 * amount of memory to handle that. Locate the interpreter, if any.
3232 */
3233 loaddr = -1, hiaddr = 0;
3234 info->alignment = 0;
3235 info->exec_stack = EXSTACK_DEFAULT;
3236 for (i = 0; i < ehdr->e_phnum; ++i) {
3237 struct elf_phdr *eppnt = phdr + i;
3238 if (eppnt->p_type == PT_LOAD) {
3239 abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3240 if (a < loaddr) {
3241 loaddr = a;
3242 }
3243 a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3244 if (a > hiaddr) {
3245 hiaddr = a;
3246 }
3247 ++info->nsegs;
3248 info->alignment |= eppnt->p_align;
3249 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3250 g_autofree char *interp_name = NULL;
3251
3252 if (*pinterp_name) {
3253 error_setg(&err, "Multiple PT_INTERP entries");
3254 goto exit_errmsg;
3255 }
3256
3257 interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3258 src, &err);
3259 if (interp_name == NULL) {
3260 goto exit_errmsg;
3261 }
3262 if (interp_name[eppnt->p_filesz - 1] != 0) {
3263 error_setg(&err, "Invalid PT_INTERP entry");
3264 goto exit_errmsg;
3265 }
3266 *pinterp_name = g_steal_pointer(&interp_name);
3267 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3268 if (!parse_elf_properties(src, info, eppnt, &err)) {
3269 goto exit_errmsg;
3270 }
3271 } else if (eppnt->p_type == PT_GNU_STACK) {
3272 info->exec_stack = eppnt->p_flags & PF_X;
3273 }
3274 }
3275
3276 load_addr = loaddr;
3277
3278 if (pinterp_name != NULL) {
3279 if (ehdr->e_type == ET_EXEC) {
3280 /*
3281 * Make sure that the low address does not conflict with
3282 * MMAP_MIN_ADDR or the QEMU application itself.
3283 */
3284 probe_guest_base(image_name, loaddr, hiaddr);
3285 } else {
3286 abi_ulong align;
3287
3288 /*
3289 * The binary is dynamic, but we still need to
3290 * select guest_base. In this case we pass a size.
3291 */
3292 probe_guest_base(image_name, 0, hiaddr - loaddr);
3293
3294 /*
3295 * Avoid collision with the loader by providing a different
3296 * default load address.
3297 */
3298 load_addr += elf_et_dyn_base;
3299
3300 /*
3301 * TODO: Better support for mmap alignment is desirable.
3302 * Since we do not have complete control over the guest
3303 * address space, we prefer the kernel to choose some address
3304 * rather than force the use of LOAD_ADDR via MAP_FIXED.
3305 * But without MAP_FIXED we cannot guarantee alignment,
3306 * only suggest it.
3307 */
3308 align = pow2ceil(info->alignment);
3309 if (align) {
3310 load_addr &= -align;
3311 }
3312 }
3313 }
3314
3315 /*
3316 * Reserve address space for all of this.
3317 *
3318 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3319 * exactly the address range that is required. Without reserved_va,
3320 * the guest address space is not isolated. We have attempted to avoid
3321 * conflict with the host program itself via probe_guest_base, but using
3322 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3323 *
3324 * Otherwise this is ET_DYN, and we are searching for a location
3325 * that can hold the memory space required. If the image is
3326 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3327 * honor that address if it happens to be free.
3328 *
3329 * In both cases, we will overwrite pages in this range with mappings
3330 * from the executable.
3331 */
3332 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3333 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3334 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3335 -1, 0);
3336 if (load_addr == -1) {
3337 goto exit_mmap;
3338 }
3339 load_bias = load_addr - loaddr;
3340
3341 if (elf_is_fdpic(ehdr)) {
3342 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3343 g_malloc(sizeof(*loadsegs) * info->nsegs);
3344
3345 for (i = 0; i < ehdr->e_phnum; ++i) {
3346 switch (phdr[i].p_type) {
3347 case PT_DYNAMIC:
3348 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3349 break;
3350 case PT_LOAD:
3351 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3352 loadsegs->p_vaddr = phdr[i].p_vaddr;
3353 loadsegs->p_memsz = phdr[i].p_memsz;
3354 ++loadsegs;
3355 break;
3356 }
3357 }
3358 }
3359
3360 info->load_bias = load_bias;
3361 info->code_offset = load_bias;
3362 info->data_offset = load_bias;
3363 info->load_addr = load_addr;
3364 info->entry = ehdr->e_entry + load_bias;
3365 info->start_code = -1;
3366 info->end_code = 0;
3367 info->start_data = -1;
3368 info->end_data = 0;
3369 /* Usual start for brk is after all sections of the main executable. */
3370 info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3371 info->elf_flags = ehdr->e_flags;
3372
3373 prot_exec = PROT_EXEC;
3374 #ifdef TARGET_AARCH64
3375 /*
3376 * If the BTI feature is present, this indicates that the executable
3377 * pages of the startup binary should be mapped with PROT_BTI, so that
3378 * branch targets are enforced.
3379 *
3380 * The startup binary is either the interpreter or the static executable.
3381 * The interpreter is responsible for all pages of a dynamic executable.
3382 *
3383 * Elf notes are backward compatible to older cpus.
3384 * Do not enable BTI unless it is supported.
3385 */
3386 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3387 && (pinterp_name == NULL || *pinterp_name == 0)
3388 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3389 prot_exec |= TARGET_PROT_BTI;
3390 }
3391 #endif
3392
3393 for (i = 0; i < ehdr->e_phnum; i++) {
3394 struct elf_phdr *eppnt = phdr + i;
3395 if (eppnt->p_type == PT_LOAD) {
3396 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3397 int elf_prot = 0;
3398
3399 if (eppnt->p_flags & PF_R) {
3400 elf_prot |= PROT_READ;
3401 }
3402 if (eppnt->p_flags & PF_W) {
3403 elf_prot |= PROT_WRITE;
3404 }
3405 if (eppnt->p_flags & PF_X) {
3406 elf_prot |= prot_exec;
3407 }
3408
3409 vaddr = load_bias + eppnt->p_vaddr;
3410 vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3411 vaddr_ps = vaddr & TARGET_PAGE_MASK;
3412
3413 vaddr_ef = vaddr + eppnt->p_filesz;
3414 vaddr_em = vaddr + eppnt->p_memsz;
3415
3416 /*
3417 * Some segments may be completely empty, with a non-zero p_memsz
3418 * but no backing file segment.
3419 */
3420 if (eppnt->p_filesz != 0) {
3421 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3422 elf_prot, MAP_PRIVATE | MAP_FIXED,
3423 src, eppnt->p_offset - vaddr_po);
3424 if (error == -1) {
3425 goto exit_mmap;
3426 }
3427 }
3428
3429 /* If the load segment requests extra zeros (e.g. bss), map it. */
3430 if (vaddr_ef < vaddr_em &&
3431 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3432 goto exit_errmsg;
3433 }
3434
3435 /* Find the full program boundaries. */
3436 if (elf_prot & PROT_EXEC) {
3437 if (vaddr < info->start_code) {
3438 info->start_code = vaddr;
3439 }
3440 if (vaddr_ef > info->end_code) {
3441 info->end_code = vaddr_ef;
3442 }
3443 }
3444 if (elf_prot & PROT_WRITE) {
3445 if (vaddr < info->start_data) {
3446 info->start_data = vaddr;
3447 }
3448 if (vaddr_ef > info->end_data) {
3449 info->end_data = vaddr_ef;
3450 }
3451 }
3452 #ifdef TARGET_MIPS
3453 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3454 Mips_elf_abiflags_v0 abiflags;
3455
3456 if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3457 src, &err)) {
3458 goto exit_errmsg;
3459 }
3460 bswap_mips_abiflags(&abiflags);
3461 info->fp_abi = abiflags.fp_abi;
3462 #endif
3463 }
3464 }
3465
3466 if (info->end_data == 0) {
3467 info->start_data = info->end_code;
3468 info->end_data = info->end_code;
3469 }
3470
3471 if (qemu_log_enabled()) {
3472 load_symbols(ehdr, src, load_bias);
3473 }
3474
3475 debuginfo_report_elf(image_name, src->fd, load_bias);
3476
3477 mmap_unlock();
3478
3479 close(src->fd);
3480 return;
3481
3482 exit_mmap:
3483 error_setg_errno(&err, errno, "Error mapping file");
3484 goto exit_errmsg;
3485 exit_errmsg:
3486 error_reportf_err(err, "%s: ", image_name);
3487 exit(-1);
3488 }
3489
3490 static void load_elf_interp(const char *filename, struct image_info *info,
3491 char bprm_buf[BPRM_BUF_SIZE])
3492 {
3493 struct elfhdr ehdr;
3494 ImageSource src;
3495 int fd, retval;
3496 Error *err = NULL;
3497
3498 fd = open(path(filename), O_RDONLY);
3499 if (fd < 0) {
3500 error_setg_file_open(&err, errno, filename);
3501 error_report_err(err);
3502 exit(-1);
3503 }
3504
3505 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3506 if (retval < 0) {
3507 error_setg_errno(&err, errno, "Error reading file header");
3508 error_reportf_err(err, "%s: ", filename);
3509 exit(-1);
3510 }
3511
3512 src.fd = fd;
3513 src.cache = bprm_buf;
3514 src.cache_size = retval;
3515
3516 load_elf_image(filename, &src, info, &ehdr, NULL);
3517 }
3518
3519 #ifdef VDSO_HEADER
3520 #include VDSO_HEADER
3521 #define vdso_image_info() &vdso_image_info
3522 #else
3523 #define vdso_image_info() NULL
3524 #endif
3525
3526 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3527 {
3528 ImageSource src;
3529 struct elfhdr ehdr;
3530 abi_ulong load_bias, load_addr;
3531
3532 src.fd = -1;
3533 src.cache = vdso->image;
3534 src.cache_size = vdso->image_size;
3535
3536 load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3537 load_addr = info->load_addr;
3538 load_bias = info->load_bias;
3539
3540 /*
3541 * We need to relocate the VDSO image. The one built into the kernel
3542 * is built for a fixed address. The one built for QEMU is not, since
3543 * that requires close control of the guest address space.
3544 * We pre-processed the image to locate all of the addresses that need
3545 * to be updated.
3546 */
3547 for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3548 abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3549 *addr = tswapal(tswapal(*addr) + load_bias);
3550 }
3551
3552 /* Install signal trampolines, if present. */
3553 if (vdso->sigreturn_ofs) {
3554 default_sigreturn = load_addr + vdso->sigreturn_ofs;
3555 }
3556 if (vdso->rt_sigreturn_ofs) {
3557 default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3558 }
3559
3560 /* Remove write from VDSO segment. */
3561 target_mprotect(info->start_data, info->end_data - info->start_data,
3562 PROT_READ | PROT_EXEC);
3563 }
3564
3565 static int symfind(const void *s0, const void *s1)
3566 {
3567 struct elf_sym *sym = (struct elf_sym *)s1;
3568 __typeof(sym->st_value) addr = *(uint64_t *)s0;
3569 int result = 0;
3570
3571 if (addr < sym->st_value) {
3572 result = -1;
3573 } else if (addr >= sym->st_value + sym->st_size) {
3574 result = 1;
3575 }
3576 return result;
3577 }
3578
3579 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3580 {
3581 #if ELF_CLASS == ELFCLASS32
3582 struct elf_sym *syms = s->disas_symtab.elf32;
3583 #else
3584 struct elf_sym *syms = s->disas_symtab.elf64;
3585 #endif
3586
3587 // binary search
3588 struct elf_sym *sym;
3589
3590 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3591 if (sym != NULL) {
3592 return s->disas_strtab + sym->st_name;
3593 }
3594
3595 return "";
3596 }
3597
3598 /* FIXME: This should use elf_ops.h.inc */
3599 static int symcmp(const void *s0, const void *s1)
3600 {
3601 struct elf_sym *sym0 = (struct elf_sym *)s0;
3602 struct elf_sym *sym1 = (struct elf_sym *)s1;
3603 return (sym0->st_value < sym1->st_value)
3604 ? -1
3605 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3606 }
3607
3608 /* Best attempt to load symbols from this ELF object. */
3609 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3610 abi_ulong load_bias)
3611 {
3612 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3613 g_autofree struct elf_shdr *shdr = NULL;
3614 char *strings = NULL;
3615 struct elf_sym *syms = NULL;
3616 struct elf_sym *new_syms;
3617 uint64_t segsz;
3618
3619 shnum = hdr->e_shnum;
3620 shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3621 src, NULL);
3622 if (shdr == NULL) {
3623 return;
3624 }
3625
3626 bswap_shdr(shdr, shnum);
3627 for (i = 0; i < shnum; ++i) {
3628 if (shdr[i].sh_type == SHT_SYMTAB) {
3629 sym_idx = i;
3630 str_idx = shdr[i].sh_link;
3631 goto found;
3632 }
3633 }
3634
3635 /* There will be no symbol table if the file was stripped. */
3636 return;
3637
3638 found:
3639 /* Now know where the strtab and symtab are. Snarf them. */
3640
3641 segsz = shdr[str_idx].sh_size;
3642 strings = g_try_malloc(segsz);
3643 if (!strings) {
3644 goto give_up;
3645 }
3646 if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3647 goto give_up;
3648 }
3649
3650 segsz = shdr[sym_idx].sh_size;
3651 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3652 /*
3653 * Implausibly large symbol table: give up rather than ploughing
3654 * on with the number of symbols calculation overflowing.
3655 */
3656 goto give_up;
3657 }
3658 nsyms = segsz / sizeof(struct elf_sym);
3659 syms = g_try_malloc(segsz);
3660 if (!syms) {
3661 goto give_up;
3662 }
3663 if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3664 goto give_up;
3665 }
3666
3667 for (i = 0; i < nsyms; ) {
3668 bswap_sym(syms + i);
3669 /* Throw away entries which we do not need. */
3670 if (syms[i].st_shndx == SHN_UNDEF
3671 || syms[i].st_shndx >= SHN_LORESERVE
3672 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3673 if (i < --nsyms) {
3674 syms[i] = syms[nsyms];
3675 }
3676 } else {
3677 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3678 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3679 syms[i].st_value &= ~(target_ulong)1;
3680 #endif
3681 syms[i].st_value += load_bias;
3682 i++;
3683 }
3684 }
3685
3686 /* No "useful" symbol. */
3687 if (nsyms == 0) {
3688 goto give_up;
3689 }
3690
3691 /*
3692 * Attempt to free the storage associated with the local symbols
3693 * that we threw away. Whether or not this has any effect on the
3694 * memory allocation depends on the malloc implementation and how
3695 * many symbols we managed to discard.
3696 */
3697 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3698 if (new_syms == NULL) {
3699 goto give_up;
3700 }
3701 syms = new_syms;
3702
3703 qsort(syms, nsyms, sizeof(*syms), symcmp);
3704
3705 {
3706 struct syminfo *s = g_new(struct syminfo, 1);
3707
3708 s->disas_strtab = strings;
3709 s->disas_num_syms = nsyms;
3710 #if ELF_CLASS == ELFCLASS32
3711 s->disas_symtab.elf32 = syms;
3712 #else
3713 s->disas_symtab.elf64 = syms;
3714 #endif
3715 s->lookup_symbol = lookup_symbolxx;
3716 s->next = syminfos;
3717 syminfos = s;
3718 }
3719 return;
3720
3721 give_up:
3722 g_free(strings);
3723 g_free(syms);
3724 }
3725
3726 uint32_t get_elf_eflags(int fd)
3727 {
3728 struct elfhdr ehdr;
3729 off_t offset;
3730 int ret;
3731
3732 /* Read ELF header */
3733 offset = lseek(fd, 0, SEEK_SET);
3734 if (offset == (off_t) -1) {
3735 return 0;
3736 }
3737 ret = read(fd, &ehdr, sizeof(ehdr));
3738 if (ret < sizeof(ehdr)) {
3739 return 0;
3740 }
3741 offset = lseek(fd, offset, SEEK_SET);
3742 if (offset == (off_t) -1) {
3743 return 0;
3744 }
3745
3746 /* Check ELF signature */
3747 if (!elf_check_ident(&ehdr)) {
3748 return 0;
3749 }
3750
3751 /* check header */
3752 bswap_ehdr(&ehdr);
3753 if (!elf_check_ehdr(&ehdr)) {
3754 return 0;
3755 }
3756
3757 /* return architecture id */
3758 return ehdr.e_flags;
3759 }
3760
3761 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3762 {
3763 /*
3764 * We need a copy of the elf header for passing to create_elf_tables.
3765 * We will have overwritten the original when we re-use bprm->buf
3766 * while loading the interpreter. Allocate the storage for this now
3767 * and let elf_load_image do any swapping that may be required.
3768 */
3769 struct elfhdr ehdr;
3770 struct image_info interp_info, vdso_info;
3771 char *elf_interpreter = NULL;
3772 char *scratch;
3773
3774 memset(&interp_info, 0, sizeof(interp_info));
3775 #ifdef TARGET_MIPS
3776 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3777 #endif
3778
3779 load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3780
3781 /* Do this so that we can load the interpreter, if need be. We will
3782 change some of these later */
3783 bprm->p = setup_arg_pages(bprm, info);
3784
3785 scratch = g_new0(char, TARGET_PAGE_SIZE);
3786 if (STACK_GROWS_DOWN) {
3787 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3788 bprm->p, info->stack_limit);
3789 info->file_string = bprm->p;
3790 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3791 bprm->p, info->stack_limit);
3792 info->env_strings = bprm->p;
3793 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3794 bprm->p, info->stack_limit);
3795 info->arg_strings = bprm->p;
3796 } else {
3797 info->arg_strings = bprm->p;
3798 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3799 bprm->p, info->stack_limit);
3800 info->env_strings = bprm->p;
3801 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3802 bprm->p, info->stack_limit);
3803 info->file_string = bprm->p;
3804 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3805 bprm->p, info->stack_limit);
3806 }
3807
3808 g_free(scratch);
3809
3810 if (!bprm->p) {
3811 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3812 exit(-1);
3813 }
3814
3815 if (elf_interpreter) {
3816 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3817
3818 /*
3819 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3820 * with the mappings the interpreter can be loaded above but
3821 * near the main executable, which can leave very little room
3822 * for the heap.
3823 * If the current brk has less than 16MB, use the end of the
3824 * interpreter.
3825 */
3826 if (interp_info.brk > info->brk &&
3827 interp_info.load_bias - info->brk < 16 * MiB) {
3828 info->brk = interp_info.brk;
3829 }
3830
3831 /* If the program interpreter is one of these two, then assume
3832 an iBCS2 image. Otherwise assume a native linux image. */
3833
3834 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3835 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3836 info->personality = PER_SVR4;
3837
3838 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3839 and some applications "depend" upon this behavior. Since
3840 we do not have the power to recompile these, we emulate
3841 the SVr4 behavior. Sigh. */
3842 target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
3843 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
3844 -1, 0);
3845 }
3846 #ifdef TARGET_MIPS
3847 info->interp_fp_abi = interp_info.fp_abi;
3848 #endif
3849 }
3850
3851 /*
3852 * Load a vdso if available, which will amongst other things contain the
3853 * signal trampolines. Otherwise, allocate a separate page for them.
3854 */
3855 const VdsoImageInfo *vdso = vdso_image_info();
3856 if (vdso) {
3857 load_elf_vdso(&vdso_info, vdso);
3858 info->vdso = vdso_info.load_bias;
3859 } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3860 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3861 PROT_READ | PROT_WRITE,
3862 MAP_PRIVATE | MAP_ANON, -1, 0);
3863 if (tramp_page == -1) {
3864 return -errno;
3865 }
3866
3867 setup_sigtramp(tramp_page);
3868 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3869 }
3870
3871 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3872 elf_interpreter ? &interp_info : NULL,
3873 vdso ? &vdso_info : NULL);
3874 info->start_stack = bprm->p;
3875
3876 /* If we have an interpreter, set that as the program's entry point.
3877 Copy the load_bias as well, to help PPC64 interpret the entry
3878 point as a function descriptor. Do this after creating elf tables
3879 so that we copy the original program entry point into the AUXV. */
3880 if (elf_interpreter) {
3881 info->load_bias = interp_info.load_bias;
3882 info->entry = interp_info.entry;
3883 g_free(elf_interpreter);
3884 }
3885
3886 #ifdef USE_ELF_CORE_DUMP
3887 bprm->core_dump = &elf_core_dump;
3888 #endif
3889
3890 return 0;
3891 }
3892
3893 #ifdef USE_ELF_CORE_DUMP
3894 #include "exec/translate-all.h"
3895
3896 /*
3897 * Definitions to generate Intel SVR4-like core files.
3898 * These mostly have the same names as the SVR4 types with "target_elf_"
3899 * tacked on the front to prevent clashes with linux definitions,
3900 * and the typedef forms have been avoided. This is mostly like
3901 * the SVR4 structure, but more Linuxy, with things that Linux does
3902 * not support and which gdb doesn't really use excluded.
3903 *
3904 * Fields we don't dump (their contents is zero) in linux-user qemu
3905 * are marked with XXX.
3906 *
3907 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3908 *
3909 * Porting ELF coredump for target is (quite) simple process. First you
3910 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3911 * the target resides):
3912 *
3913 * #define USE_ELF_CORE_DUMP
3914 *
3915 * Next you define type of register set used for dumping. ELF specification
3916 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3917 *
3918 * typedef <target_regtype> target_elf_greg_t;
3919 * #define ELF_NREG <number of registers>
3920 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3921 *
3922 * Last step is to implement target specific function that copies registers
3923 * from given cpu into just specified register set. Prototype is:
3924 *
3925 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3926 * const CPUArchState *env);
3927 *
3928 * Parameters:
3929 * regs - copy register values into here (allocated and zeroed by caller)
3930 * env - copy registers from here
3931 *
3932 * Example for ARM target is provided in this file.
3933 */
3934
3935 struct target_elf_siginfo {
3936 abi_int si_signo; /* signal number */
3937 abi_int si_code; /* extra code */
3938 abi_int si_errno; /* errno */
3939 };
3940
3941 struct target_elf_prstatus {
3942 struct target_elf_siginfo pr_info; /* Info associated with signal */
3943 abi_short pr_cursig; /* Current signal */
3944 abi_ulong pr_sigpend; /* XXX */
3945 abi_ulong pr_sighold; /* XXX */
3946 target_pid_t pr_pid;
3947 target_pid_t pr_ppid;
3948 target_pid_t pr_pgrp;
3949 target_pid_t pr_sid;
3950 struct target_timeval pr_utime; /* XXX User time */
3951 struct target_timeval pr_stime; /* XXX System time */
3952 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3953 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3954 target_elf_gregset_t pr_reg; /* GP registers */
3955 abi_int pr_fpvalid; /* XXX */
3956 };
3957
3958 #define ELF_PRARGSZ (80) /* Number of chars for args */
3959
3960 struct target_elf_prpsinfo {
3961 char pr_state; /* numeric process state */
3962 char pr_sname; /* char for pr_state */
3963 char pr_zomb; /* zombie */
3964 char pr_nice; /* nice val */
3965 abi_ulong pr_flag; /* flags */
3966 target_uid_t pr_uid;
3967 target_gid_t pr_gid;
3968 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3969 /* Lots missing */
3970 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3971 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3972 };
3973
3974 #ifdef BSWAP_NEEDED
3975 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3976 {
3977 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3978 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3979 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3980 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3981 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3982 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3983 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3984 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3985 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3986 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3987 /* cpu times are not filled, so we skip them */
3988 /* regs should be in correct format already */
3989 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3990 }
3991
3992 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3993 {
3994 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3995 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3996 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3997 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3998 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3999 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
4000 psinfo->pr_sid = tswap32(psinfo->pr_sid);
4001 }
4002
4003 static void bswap_note(struct elf_note *en)
4004 {
4005 bswap32s(&en->n_namesz);
4006 bswap32s(&en->n_descsz);
4007 bswap32s(&en->n_type);
4008 }
4009 #else
4010 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
4011 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4012 static inline void bswap_note(struct elf_note *en) { }
4013 #endif /* BSWAP_NEEDED */
4014
4015 /*
4016 * Calculate file (dump) size of given memory region.
4017 */
4018 static size_t vma_dump_size(target_ulong start, target_ulong end,
4019 unsigned long flags)
4020 {
4021 /* The area must be readable. */
4022 if (!(flags & PAGE_READ)) {
4023 return 0;
4024 }
4025
4026 /*
4027 * Usually we don't dump executable pages as they contain
4028 * non-writable code that debugger can read directly from
4029 * target library etc. If there is no elf header, we dump it.
4030 */
4031 if (!(flags & PAGE_WRITE_ORG) &&
4032 (flags & PAGE_EXEC) &&
4033 memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
4034 return 0;
4035 }
4036
4037 return end - start;
4038 }
4039
4040 static size_t size_note(const char *name, size_t datasz)
4041 {
4042 size_t namesz = strlen(name) + 1;
4043
4044 namesz = ROUND_UP(namesz, 4);
4045 datasz = ROUND_UP(datasz, 4);
4046
4047 return sizeof(struct elf_note) + namesz + datasz;
4048 }
4049
4050 static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
4051 {
4052 void *ptr = *pptr;
4053 struct elf_note *n = ptr;
4054 size_t namesz = strlen(name) + 1;
4055
4056 n->n_namesz = namesz;
4057 n->n_descsz = datasz;
4058 n->n_type = type;
4059 bswap_note(n);
4060
4061 ptr += sizeof(*n);
4062 memcpy(ptr, name, namesz);
4063
4064 namesz = ROUND_UP(namesz, 4);
4065 datasz = ROUND_UP(datasz, 4);
4066
4067 *pptr = ptr + namesz + datasz;
4068 return ptr + namesz;
4069 }
4070
4071 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4072 uint32_t flags)
4073 {
4074 memcpy(elf->e_ident, ELFMAG, SELFMAG);
4075
4076 elf->e_ident[EI_CLASS] = ELF_CLASS;
4077 elf->e_ident[EI_DATA] = ELF_DATA;
4078 elf->e_ident[EI_VERSION] = EV_CURRENT;
4079 elf->e_ident[EI_OSABI] = ELF_OSABI;
4080
4081 elf->e_type = ET_CORE;
4082 elf->e_machine = machine;
4083 elf->e_version = EV_CURRENT;
4084 elf->e_phoff = sizeof(struct elfhdr);
4085 elf->e_flags = flags;
4086 elf->e_ehsize = sizeof(struct elfhdr);
4087 elf->e_phentsize = sizeof(struct elf_phdr);
4088 elf->e_phnum = segs;
4089
4090 bswap_ehdr(elf);
4091 }
4092
4093 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
4094 {
4095 phdr->p_type = PT_NOTE;
4096 phdr->p_offset = offset;
4097 phdr->p_filesz = sz;
4098
4099 bswap_phdr(phdr, 1);
4100 }
4101
4102 static void fill_prstatus_note(void *data, const TaskState *ts,
4103 CPUState *cpu, int signr)
4104 {
4105 /*
4106 * Because note memory is only aligned to 4, and target_elf_prstatus
4107 * may well have higher alignment requirements, fill locally and
4108 * memcpy to the destination afterward.
4109 */
4110 struct target_elf_prstatus prstatus = {
4111 .pr_info.si_signo = signr,
4112 .pr_cursig = signr,
4113 .pr_pid = ts->ts_tid,
4114 .pr_ppid = getppid(),
4115 .pr_pgrp = getpgrp(),
4116 .pr_sid = getsid(0),
4117 };
4118
4119 elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
4120 bswap_prstatus(&prstatus);
4121 memcpy(data, &prstatus, sizeof(prstatus));
4122 }
4123
4124 static void fill_prpsinfo_note(void *data, const TaskState *ts)
4125 {
4126 /*
4127 * Because note memory is only aligned to 4, and target_elf_prpsinfo
4128 * may well have higher alignment requirements, fill locally and
4129 * memcpy to the destination afterward.
4130 */
4131 struct target_elf_prpsinfo psinfo = {
4132 .pr_pid = getpid(),
4133 .pr_ppid = getppid(),
4134 .pr_pgrp = getpgrp(),
4135 .pr_sid = getsid(0),
4136 .pr_uid = getuid(),
4137 .pr_gid = getgid(),
4138 };
4139 char *base_filename;
4140 size_t len;
4141
4142 len = ts->info->env_strings - ts->info->arg_strings;
4143 len = MIN(len, ELF_PRARGSZ);
4144 memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
4145 for (size_t i = 0; i < len; i++) {
4146 if (psinfo.pr_psargs[i] == 0) {
4147 psinfo.pr_psargs[i] = ' ';
4148 }
4149 }
4150
4151 base_filename = g_path_get_basename(ts->bprm->filename);
4152 /*
4153 * Using strncpy here is fine: at max-length,
4154 * this field is not NUL-terminated.
4155 */
4156 strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
4157 g_free(base_filename);
4158
4159 bswap_psinfo(&psinfo);
4160 memcpy(data, &psinfo, sizeof(psinfo));
4161 }
4162
4163 static void fill_auxv_note(void *data, const TaskState *ts)
4164 {
4165 memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
4166 }
4167
4168 /*
4169 * Constructs name of coredump file. We have following convention
4170 * for the name:
4171 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4172 *
4173 * Returns the filename
4174 */
4175 static char *core_dump_filename(const TaskState *ts)
4176 {
4177 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4178 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4179 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4180
4181 return g_strdup_printf("qemu_%s_%s_%d.core",
4182 base_filename, nowstr, (int)getpid());
4183 }
4184
4185 static int dump_write(int fd, const void *ptr, size_t size)
4186 {
4187 const char *bufp = (const char *)ptr;
4188 ssize_t bytes_written, bytes_left;
4189
4190 bytes_written = 0;
4191 bytes_left = size;
4192
4193 /*
4194 * In normal conditions, single write(2) should do but
4195 * in case of socket etc. this mechanism is more portable.
4196 */
4197 do {
4198 bytes_written = write(fd, bufp, bytes_left);
4199 if (bytes_written < 0) {
4200 if (errno == EINTR)
4201 continue;
4202 return (-1);
4203 } else if (bytes_written == 0) { /* eof */
4204 return (-1);
4205 }
4206 bufp += bytes_written;
4207 bytes_left -= bytes_written;
4208 } while (bytes_left > 0);
4209
4210 return (0);
4211 }
4212
4213 static int wmr_page_unprotect_regions(void *opaque, target_ulong start,
4214 target_ulong end, unsigned long flags)
4215 {
4216 if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
4217 size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
4218
4219 while (1) {
4220 page_unprotect(start, 0);
4221 if (end - start <= step) {
4222 break;
4223 }
4224 start += step;
4225 }
4226 }
4227 return 0;
4228 }
4229
4230 typedef struct {
4231 unsigned count;
4232 size_t size;
4233 } CountAndSizeRegions;
4234
4235 static int wmr_count_and_size_regions(void *opaque, target_ulong start,
4236 target_ulong end, unsigned long flags)
4237 {
4238 CountAndSizeRegions *css = opaque;
4239
4240 css->count++;
4241 css->size += vma_dump_size(start, end, flags);
4242 return 0;
4243 }
4244
4245 typedef struct {
4246 struct elf_phdr *phdr;
4247 off_t offset;
4248 } FillRegionPhdr;
4249
4250 static int wmr_fill_region_phdr(void *opaque, target_ulong start,
4251 target_ulong end, unsigned long flags)
4252 {
4253 FillRegionPhdr *d = opaque;
4254 struct elf_phdr *phdr = d->phdr;
4255
4256 phdr->p_type = PT_LOAD;
4257 phdr->p_vaddr = start;
4258 phdr->p_paddr = 0;
4259 phdr->p_filesz = vma_dump_size(start, end, flags);
4260 phdr->p_offset = d->offset;
4261 d->offset += phdr->p_filesz;
4262 phdr->p_memsz = end - start;
4263 phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
4264 | (flags & PAGE_WRITE_ORG ? PF_W : 0)
4265 | (flags & PAGE_EXEC ? PF_X : 0);
4266 phdr->p_align = ELF_EXEC_PAGESIZE;
4267
4268 bswap_phdr(phdr, 1);
4269 d->phdr = phdr + 1;
4270 return 0;
4271 }
4272
4273 static int wmr_write_region(void *opaque, target_ulong start,
4274 target_ulong end, unsigned long flags)
4275 {
4276 int fd = *(int *)opaque;
4277 size_t size = vma_dump_size(start, end, flags);
4278
4279 if (!size) {
4280 return 0;
4281 }
4282 return dump_write(fd, g2h_untagged(start), size);
4283 }
4284
4285 /*
4286 * Write out ELF coredump.
4287 *
4288 * See documentation of ELF object file format in:
4289 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4290 *
4291 * Coredump format in linux is following:
4292 *
4293 * 0 +----------------------+ \
4294 * | ELF header | ET_CORE |
4295 * +----------------------+ |
4296 * | ELF program headers | |--- headers
4297 * | - NOTE section | |
4298 * | - PT_LOAD sections | |
4299 * +----------------------+ /
4300 * | NOTEs: |
4301 * | - NT_PRSTATUS |
4302 * | - NT_PRSINFO |
4303 * | - NT_AUXV |
4304 * +----------------------+ <-- aligned to target page
4305 * | Process memory dump |
4306 * : :
4307 * . .
4308 * : :
4309 * | |
4310 * +----------------------+
4311 *
4312 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4313 * NT_PRSINFO -> struct elf_prpsinfo
4314 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4315 *
4316 * Format follows System V format as close as possible. Current
4317 * version limitations are as follows:
4318 * - no floating point registers are dumped
4319 *
4320 * Function returns 0 in case of success, negative errno otherwise.
4321 *
4322 * TODO: make this work also during runtime: it should be
4323 * possible to force coredump from running process and then
4324 * continue processing. For example qemu could set up SIGUSR2
4325 * handler (provided that target process haven't registered
4326 * handler for that) that does the dump when signal is received.
4327 */
4328 static int elf_core_dump(int signr, const CPUArchState *env)
4329 {
4330 const CPUState *cpu = env_cpu((CPUArchState *)env);
4331 const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
4332 struct rlimit dumpsize;
4333 CountAndSizeRegions css;
4334 off_t offset, note_offset, data_offset;
4335 size_t note_size;
4336 int cpus, ret;
4337 int fd = -1;
4338 CPUState *cpu_iter;
4339
4340 if (prctl(PR_GET_DUMPABLE) == 0) {
4341 return 0;
4342 }
4343
4344 if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
4345 return 0;
4346 }
4347
4348 cpu_list_lock();
4349 mmap_lock();
4350
4351 /* By unprotecting, we merge vmas that might be split. */
4352 walk_memory_regions(NULL, wmr_page_unprotect_regions);
4353
4354 /*
4355 * Walk through target process memory mappings and
4356 * set up structure containing this information.
4357 */
4358 memset(&css, 0, sizeof(css));
4359 walk_memory_regions(&css, wmr_count_and_size_regions);
4360
4361 cpus = 0;
4362 CPU_FOREACH(cpu_iter) {
4363 cpus++;
4364 }
4365
4366 offset = sizeof(struct elfhdr);
4367 offset += (css.count + 1) * sizeof(struct elf_phdr);
4368 note_offset = offset;
4369
4370 offset += size_note("CORE", ts->info->auxv_len);
4371 offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
4372 offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
4373 note_size = offset - note_offset;
4374 data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
4375
4376 /* Do not dump if the corefile size exceeds the limit. */
4377 if (dumpsize.rlim_cur != RLIM_INFINITY
4378 && dumpsize.rlim_cur < data_offset + css.size) {
4379 errno = 0;
4380 goto out;
4381 }
4382
4383 {
4384 g_autofree char *corefile = core_dump_filename(ts);
4385 fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
4386 S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
4387 }
4388 if (fd < 0) {
4389 goto out;
4390 }
4391
4392 /*
4393 * There is a fair amount of alignment padding within the notes
4394 * as well as preceeding the process memory. Allocate a zeroed
4395 * block to hold it all. Write all of the headers directly into
4396 * this buffer and then write it out as a block.
4397 */
4398 {
4399 g_autofree void *header = g_malloc0(data_offset);
4400 FillRegionPhdr frp;
4401 void *hptr, *dptr;
4402
4403 /* Create elf file header. */
4404 hptr = header;
4405 fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
4406 hptr += sizeof(struct elfhdr);
4407
4408 /* Create elf program headers. */
4409 fill_elf_note_phdr(hptr, note_size, note_offset);
4410 hptr += sizeof(struct elf_phdr);
4411
4412 frp.phdr = hptr;
4413 frp.offset = data_offset;
4414 walk_memory_regions(&frp, wmr_fill_region_phdr);
4415 hptr = frp.phdr;
4416
4417 /* Create the notes. */
4418 dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
4419 fill_auxv_note(dptr, ts);
4420
4421 dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
4422 sizeof(struct target_elf_prpsinfo));
4423 fill_prpsinfo_note(dptr, ts);
4424
4425 CPU_FOREACH(cpu_iter) {
4426 dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
4427 sizeof(struct target_elf_prstatus));
4428 fill_prstatus_note(dptr, ts, cpu_iter,
4429 cpu_iter == cpu ? signr : 0);
4430 }
4431
4432 if (dump_write(fd, header, data_offset) < 0) {
4433 goto out;
4434 }
4435 }
4436
4437 /*
4438 * Finally write process memory into the corefile as well.
4439 */
4440 if (walk_memory_regions(&fd, wmr_write_region) < 0) {
4441 goto out;
4442 }
4443 errno = 0;
4444
4445 out:
4446 ret = -errno;
4447 mmap_unlock();
4448 cpu_list_unlock();
4449 if (fd >= 0) {
4450 close(fd);
4451 }
4452 return ret;
4453 }
4454 #endif /* USE_ELF_CORE_DUMP */
4455
4456 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4457 {
4458 init_thread(regs, infop);
4459 }