]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
Merge remote-tracking branch 'remotes/vivier2/tags/linux-user-for-4.1-pull-request...
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/guest-random.h"
12
13 #ifdef _ARCH_PPC64
14 #undef ARCH_DLINFO
15 #undef ELF_PLATFORM
16 #undef ELF_HWCAP
17 #undef ELF_HWCAP2
18 #undef ELF_CLASS
19 #undef ELF_DATA
20 #undef ELF_ARCH
21 #endif
22
23 #define ELF_OSABI ELFOSABI_SYSV
24
25 /* from personality.h */
26
27 /*
28 * Flags for bug emulation.
29 *
30 * These occupy the top three bytes.
31 */
32 enum {
33 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
34 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
35 descriptors (signal handling) */
36 MMAP_PAGE_ZERO = 0x0100000,
37 ADDR_COMPAT_LAYOUT = 0x0200000,
38 READ_IMPLIES_EXEC = 0x0400000,
39 ADDR_LIMIT_32BIT = 0x0800000,
40 SHORT_INODE = 0x1000000,
41 WHOLE_SECONDS = 0x2000000,
42 STICKY_TIMEOUTS = 0x4000000,
43 ADDR_LIMIT_3GB = 0x8000000,
44 };
45
46 /*
47 * Personality types.
48 *
49 * These go in the low byte. Avoid using the top bit, it will
50 * conflict with error returns.
51 */
52 enum {
53 PER_LINUX = 0x0000,
54 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
55 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
56 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
57 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
58 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
59 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
60 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
61 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
62 PER_BSD = 0x0006,
63 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
64 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
65 PER_LINUX32 = 0x0008,
66 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
67 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
68 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
69 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
70 PER_RISCOS = 0x000c,
71 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
72 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
73 PER_OSF4 = 0x000f, /* OSF/1 v4 */
74 PER_HPUX = 0x0010,
75 PER_MASK = 0x00ff,
76 };
77
78 /*
79 * Return the base personality without flags.
80 */
81 #define personality(pers) (pers & PER_MASK)
82
83 int info_is_fdpic(struct image_info *info)
84 {
85 return info->personality == PER_LINUX_FDPIC;
86 }
87
88 /* this flag is uneffective under linux too, should be deleted */
89 #ifndef MAP_DENYWRITE
90 #define MAP_DENYWRITE 0
91 #endif
92
93 /* should probably go in elf.h */
94 #ifndef ELIBBAD
95 #define ELIBBAD 80
96 #endif
97
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA ELFDATA2MSB
100 #else
101 #define ELF_DATA ELFDATA2LSB
102 #endif
103
104 #ifdef TARGET_ABI_MIPSN32
105 typedef abi_ullong target_elf_greg_t;
106 #define tswapreg(ptr) tswap64(ptr)
107 #else
108 typedef abi_ulong target_elf_greg_t;
109 #define tswapreg(ptr) tswapal(ptr)
110 #endif
111
112 #ifdef USE_UID16
113 typedef abi_ushort target_uid_t;
114 typedef abi_ushort target_gid_t;
115 #else
116 typedef abi_uint target_uid_t;
117 typedef abi_uint target_gid_t;
118 #endif
119 typedef abi_int target_pid_t;
120
121 #ifdef TARGET_I386
122
123 #define ELF_PLATFORM get_elf_platform()
124
125 static const char *get_elf_platform(void)
126 {
127 static char elf_platform[] = "i386";
128 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
129 if (family > 6)
130 family = 6;
131 if (family >= 3)
132 elf_platform[1] = '0' + family;
133 return elf_platform;
134 }
135
136 #define ELF_HWCAP get_elf_hwcap()
137
138 static uint32_t get_elf_hwcap(void)
139 {
140 X86CPU *cpu = X86_CPU(thread_cpu);
141
142 return cpu->env.features[FEAT_1_EDX];
143 }
144
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147
148 #define ELF_CLASS ELFCLASS64
149 #define ELF_ARCH EM_X86_64
150
151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152 {
153 regs->rax = 0;
154 regs->rsp = infop->start_stack;
155 regs->rip = infop->entry;
156 }
157
158 #define ELF_NREG 27
159 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
160
161 /*
162 * Note that ELF_NREG should be 29 as there should be place for
163 * TRAPNO and ERR "registers" as well but linux doesn't dump
164 * those.
165 *
166 * See linux kernel: arch/x86/include/asm/elf.h
167 */
168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
169 {
170 (*regs)[0] = env->regs[15];
171 (*regs)[1] = env->regs[14];
172 (*regs)[2] = env->regs[13];
173 (*regs)[3] = env->regs[12];
174 (*regs)[4] = env->regs[R_EBP];
175 (*regs)[5] = env->regs[R_EBX];
176 (*regs)[6] = env->regs[11];
177 (*regs)[7] = env->regs[10];
178 (*regs)[8] = env->regs[9];
179 (*regs)[9] = env->regs[8];
180 (*regs)[10] = env->regs[R_EAX];
181 (*regs)[11] = env->regs[R_ECX];
182 (*regs)[12] = env->regs[R_EDX];
183 (*regs)[13] = env->regs[R_ESI];
184 (*regs)[14] = env->regs[R_EDI];
185 (*regs)[15] = env->regs[R_EAX]; /* XXX */
186 (*regs)[16] = env->eip;
187 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
188 (*regs)[18] = env->eflags;
189 (*regs)[19] = env->regs[R_ESP];
190 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
191 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
192 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
193 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
194 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
195 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
196 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197 }
198
199 #else
200
201 #define ELF_START_MMAP 0x80000000
202
203 /*
204 * This is used to ensure we don't load something for the wrong architecture.
205 */
206 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207
208 /*
209 * These are used to set parameters in the core dumps.
210 */
211 #define ELF_CLASS ELFCLASS32
212 #define ELF_ARCH EM_386
213
214 static inline void init_thread(struct target_pt_regs *regs,
215 struct image_info *infop)
216 {
217 regs->esp = infop->start_stack;
218 regs->eip = infop->entry;
219
220 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
221 starts %edx contains a pointer to a function which might be
222 registered using `atexit'. This provides a mean for the
223 dynamic linker to call DT_FINI functions for shared libraries
224 that have been loaded before the code runs.
225
226 A value of 0 tells we have no such handler. */
227 regs->edx = 0;
228 }
229
230 #define ELF_NREG 17
231 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
232
233 /*
234 * Note that ELF_NREG should be 19 as there should be place for
235 * TRAPNO and ERR "registers" as well but linux doesn't dump
236 * those.
237 *
238 * See linux kernel: arch/x86/include/asm/elf.h
239 */
240 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
241 {
242 (*regs)[0] = env->regs[R_EBX];
243 (*regs)[1] = env->regs[R_ECX];
244 (*regs)[2] = env->regs[R_EDX];
245 (*regs)[3] = env->regs[R_ESI];
246 (*regs)[4] = env->regs[R_EDI];
247 (*regs)[5] = env->regs[R_EBP];
248 (*regs)[6] = env->regs[R_EAX];
249 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
250 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
251 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
252 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
253 (*regs)[11] = env->regs[R_EAX]; /* XXX */
254 (*regs)[12] = env->eip;
255 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
256 (*regs)[14] = env->eflags;
257 (*regs)[15] = env->regs[R_ESP];
258 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
259 }
260 #endif
261
262 #define USE_ELF_CORE_DUMP
263 #define ELF_EXEC_PAGESIZE 4096
264
265 #endif
266
267 #ifdef TARGET_ARM
268
269 #ifndef TARGET_AARCH64
270 /* 32 bit ARM definitions */
271
272 #define ELF_START_MMAP 0x80000000
273
274 #define ELF_ARCH EM_ARM
275 #define ELF_CLASS ELFCLASS32
276
277 static inline void init_thread(struct target_pt_regs *regs,
278 struct image_info *infop)
279 {
280 abi_long stack = infop->start_stack;
281 memset(regs, 0, sizeof(*regs));
282
283 regs->uregs[16] = ARM_CPU_MODE_USR;
284 if (infop->entry & 1) {
285 regs->uregs[16] |= CPSR_T;
286 }
287 regs->uregs[15] = infop->entry & 0xfffffffe;
288 regs->uregs[13] = infop->start_stack;
289 /* FIXME - what to for failure of get_user()? */
290 get_user_ual(regs->uregs[2], stack + 8); /* envp */
291 get_user_ual(regs->uregs[1], stack + 4); /* envp */
292 /* XXX: it seems that r0 is zeroed after ! */
293 regs->uregs[0] = 0;
294 /* For uClinux PIC binaries. */
295 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
296 regs->uregs[10] = infop->start_data;
297
298 /* Support ARM FDPIC. */
299 if (info_is_fdpic(infop)) {
300 /* As described in the ABI document, r7 points to the loadmap info
301 * prepared by the kernel. If an interpreter is needed, r8 points
302 * to the interpreter loadmap and r9 points to the interpreter
303 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
304 * r9 points to the main program PT_DYNAMIC info.
305 */
306 regs->uregs[7] = infop->loadmap_addr;
307 if (infop->interpreter_loadmap_addr) {
308 /* Executable is dynamically loaded. */
309 regs->uregs[8] = infop->interpreter_loadmap_addr;
310 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
311 } else {
312 regs->uregs[8] = 0;
313 regs->uregs[9] = infop->pt_dynamic_addr;
314 }
315 }
316 }
317
318 #define ELF_NREG 18
319 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
320
321 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
322 {
323 (*regs)[0] = tswapreg(env->regs[0]);
324 (*regs)[1] = tswapreg(env->regs[1]);
325 (*regs)[2] = tswapreg(env->regs[2]);
326 (*regs)[3] = tswapreg(env->regs[3]);
327 (*regs)[4] = tswapreg(env->regs[4]);
328 (*regs)[5] = tswapreg(env->regs[5]);
329 (*regs)[6] = tswapreg(env->regs[6]);
330 (*regs)[7] = tswapreg(env->regs[7]);
331 (*regs)[8] = tswapreg(env->regs[8]);
332 (*regs)[9] = tswapreg(env->regs[9]);
333 (*regs)[10] = tswapreg(env->regs[10]);
334 (*regs)[11] = tswapreg(env->regs[11]);
335 (*regs)[12] = tswapreg(env->regs[12]);
336 (*regs)[13] = tswapreg(env->regs[13]);
337 (*regs)[14] = tswapreg(env->regs[14]);
338 (*regs)[15] = tswapreg(env->regs[15]);
339
340 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
341 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
342 }
343
344 #define USE_ELF_CORE_DUMP
345 #define ELF_EXEC_PAGESIZE 4096
346
347 enum
348 {
349 ARM_HWCAP_ARM_SWP = 1 << 0,
350 ARM_HWCAP_ARM_HALF = 1 << 1,
351 ARM_HWCAP_ARM_THUMB = 1 << 2,
352 ARM_HWCAP_ARM_26BIT = 1 << 3,
353 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
354 ARM_HWCAP_ARM_FPA = 1 << 5,
355 ARM_HWCAP_ARM_VFP = 1 << 6,
356 ARM_HWCAP_ARM_EDSP = 1 << 7,
357 ARM_HWCAP_ARM_JAVA = 1 << 8,
358 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
359 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
360 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
361 ARM_HWCAP_ARM_NEON = 1 << 12,
362 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
363 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
364 ARM_HWCAP_ARM_TLS = 1 << 15,
365 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
366 ARM_HWCAP_ARM_IDIVA = 1 << 17,
367 ARM_HWCAP_ARM_IDIVT = 1 << 18,
368 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
369 ARM_HWCAP_ARM_LPAE = 1 << 20,
370 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
371 };
372
373 enum {
374 ARM_HWCAP2_ARM_AES = 1 << 0,
375 ARM_HWCAP2_ARM_PMULL = 1 << 1,
376 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
377 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
378 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
379 };
380
381 /* The commpage only exists for 32 bit kernels */
382
383 /* Return 1 if the proposed guest space is suitable for the guest.
384 * Return 0 if the proposed guest space isn't suitable, but another
385 * address space should be tried.
386 * Return -1 if there is no way the proposed guest space can be
387 * valid regardless of the base.
388 * The guest code may leave a page mapped and populate it if the
389 * address is suitable.
390 */
391 static int init_guest_commpage(unsigned long guest_base,
392 unsigned long guest_size)
393 {
394 unsigned long real_start, test_page_addr;
395
396 /* We need to check that we can force a fault on access to the
397 * commpage at 0xffff0fxx
398 */
399 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
400
401 /* If the commpage lies within the already allocated guest space,
402 * then there is no way we can allocate it.
403 *
404 * You may be thinking that that this check is redundant because
405 * we already validated the guest size against MAX_RESERVED_VA;
406 * but if qemu_host_page_mask is unusually large, then
407 * test_page_addr may be lower.
408 */
409 if (test_page_addr >= guest_base
410 && test_page_addr < (guest_base + guest_size)) {
411 return -1;
412 }
413
414 /* Note it needs to be writeable to let us initialise it */
415 real_start = (unsigned long)
416 mmap((void *)test_page_addr, qemu_host_page_size,
417 PROT_READ | PROT_WRITE,
418 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
419
420 /* If we can't map it then try another address */
421 if (real_start == -1ul) {
422 return 0;
423 }
424
425 if (real_start != test_page_addr) {
426 /* OS didn't put the page where we asked - unmap and reject */
427 munmap((void *)real_start, qemu_host_page_size);
428 return 0;
429 }
430
431 /* Leave the page mapped
432 * Populate it (mmap should have left it all 0'd)
433 */
434
435 /* Kernel helper versions */
436 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
437
438 /* Now it's populated make it RO */
439 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
440 perror("Protecting guest commpage");
441 exit(-1);
442 }
443
444 return 1; /* All good */
445 }
446
447 #define ELF_HWCAP get_elf_hwcap()
448 #define ELF_HWCAP2 get_elf_hwcap2()
449
450 static uint32_t get_elf_hwcap(void)
451 {
452 ARMCPU *cpu = ARM_CPU(thread_cpu);
453 uint32_t hwcaps = 0;
454
455 hwcaps |= ARM_HWCAP_ARM_SWP;
456 hwcaps |= ARM_HWCAP_ARM_HALF;
457 hwcaps |= ARM_HWCAP_ARM_THUMB;
458 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
459
460 /* probe for the extra features */
461 #define GET_FEATURE(feat, hwcap) \
462 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
463
464 #define GET_FEATURE_ID(feat, hwcap) \
465 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
466
467 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
468 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
469 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
470 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
471 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
472 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
473 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
474 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
475 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
476 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
477 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
478 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
479 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
480 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
481 * to our VFP_FP16 feature bit.
482 */
483 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
484 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
485
486 return hwcaps;
487 }
488
489 static uint32_t get_elf_hwcap2(void)
490 {
491 ARMCPU *cpu = ARM_CPU(thread_cpu);
492 uint32_t hwcaps = 0;
493
494 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
495 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
496 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
497 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
498 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
499 return hwcaps;
500 }
501
502 #undef GET_FEATURE
503 #undef GET_FEATURE_ID
504
505 #define ELF_PLATFORM get_elf_platform()
506
507 static const char *get_elf_platform(void)
508 {
509 CPUARMState *env = thread_cpu->env_ptr;
510
511 #ifdef TARGET_WORDS_BIGENDIAN
512 # define END "b"
513 #else
514 # define END "l"
515 #endif
516
517 if (arm_feature(env, ARM_FEATURE_V8)) {
518 return "v8" END;
519 } else if (arm_feature(env, ARM_FEATURE_V7)) {
520 if (arm_feature(env, ARM_FEATURE_M)) {
521 return "v7m" END;
522 } else {
523 return "v7" END;
524 }
525 } else if (arm_feature(env, ARM_FEATURE_V6)) {
526 return "v6" END;
527 } else if (arm_feature(env, ARM_FEATURE_V5)) {
528 return "v5" END;
529 } else {
530 return "v4" END;
531 }
532
533 #undef END
534 }
535
536 #else
537 /* 64 bit ARM definitions */
538 #define ELF_START_MMAP 0x80000000
539
540 #define ELF_ARCH EM_AARCH64
541 #define ELF_CLASS ELFCLASS64
542 #ifdef TARGET_WORDS_BIGENDIAN
543 # define ELF_PLATFORM "aarch64_be"
544 #else
545 # define ELF_PLATFORM "aarch64"
546 #endif
547
548 static inline void init_thread(struct target_pt_regs *regs,
549 struct image_info *infop)
550 {
551 abi_long stack = infop->start_stack;
552 memset(regs, 0, sizeof(*regs));
553
554 regs->pc = infop->entry & ~0x3ULL;
555 regs->sp = stack;
556 }
557
558 #define ELF_NREG 34
559 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
560
561 static void elf_core_copy_regs(target_elf_gregset_t *regs,
562 const CPUARMState *env)
563 {
564 int i;
565
566 for (i = 0; i < 32; i++) {
567 (*regs)[i] = tswapreg(env->xregs[i]);
568 }
569 (*regs)[32] = tswapreg(env->pc);
570 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
571 }
572
573 #define USE_ELF_CORE_DUMP
574 #define ELF_EXEC_PAGESIZE 4096
575
576 enum {
577 ARM_HWCAP_A64_FP = 1 << 0,
578 ARM_HWCAP_A64_ASIMD = 1 << 1,
579 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
580 ARM_HWCAP_A64_AES = 1 << 3,
581 ARM_HWCAP_A64_PMULL = 1 << 4,
582 ARM_HWCAP_A64_SHA1 = 1 << 5,
583 ARM_HWCAP_A64_SHA2 = 1 << 6,
584 ARM_HWCAP_A64_CRC32 = 1 << 7,
585 ARM_HWCAP_A64_ATOMICS = 1 << 8,
586 ARM_HWCAP_A64_FPHP = 1 << 9,
587 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
588 ARM_HWCAP_A64_CPUID = 1 << 11,
589 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
590 ARM_HWCAP_A64_JSCVT = 1 << 13,
591 ARM_HWCAP_A64_FCMA = 1 << 14,
592 ARM_HWCAP_A64_LRCPC = 1 << 15,
593 ARM_HWCAP_A64_DCPOP = 1 << 16,
594 ARM_HWCAP_A64_SHA3 = 1 << 17,
595 ARM_HWCAP_A64_SM3 = 1 << 18,
596 ARM_HWCAP_A64_SM4 = 1 << 19,
597 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
598 ARM_HWCAP_A64_SHA512 = 1 << 21,
599 ARM_HWCAP_A64_SVE = 1 << 22,
600 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
601 ARM_HWCAP_A64_DIT = 1 << 24,
602 ARM_HWCAP_A64_USCAT = 1 << 25,
603 ARM_HWCAP_A64_ILRCPC = 1 << 26,
604 ARM_HWCAP_A64_FLAGM = 1 << 27,
605 ARM_HWCAP_A64_SSBS = 1 << 28,
606 ARM_HWCAP_A64_SB = 1 << 29,
607 ARM_HWCAP_A64_PACA = 1 << 30,
608 ARM_HWCAP_A64_PACG = 1UL << 31,
609 };
610
611 #define ELF_HWCAP get_elf_hwcap()
612
613 static uint32_t get_elf_hwcap(void)
614 {
615 ARMCPU *cpu = ARM_CPU(thread_cpu);
616 uint32_t hwcaps = 0;
617
618 hwcaps |= ARM_HWCAP_A64_FP;
619 hwcaps |= ARM_HWCAP_A64_ASIMD;
620 hwcaps |= ARM_HWCAP_A64_CPUID;
621
622 /* probe for the extra features */
623 #define GET_FEATURE_ID(feat, hwcap) \
624 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
625
626 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
627 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
628 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
629 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
630 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
631 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
632 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
633 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
634 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
635 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
636 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
637 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
638 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
639 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
640 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
641 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
642 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
643 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
644 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
645 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
646
647 #undef GET_FEATURE_ID
648
649 return hwcaps;
650 }
651
652 #endif /* not TARGET_AARCH64 */
653 #endif /* TARGET_ARM */
654
655 #ifdef TARGET_SPARC
656 #ifdef TARGET_SPARC64
657
658 #define ELF_START_MMAP 0x80000000
659 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
660 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
661 #ifndef TARGET_ABI32
662 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
663 #else
664 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
665 #endif
666
667 #define ELF_CLASS ELFCLASS64
668 #define ELF_ARCH EM_SPARCV9
669
670 #define STACK_BIAS 2047
671
672 static inline void init_thread(struct target_pt_regs *regs,
673 struct image_info *infop)
674 {
675 #ifndef TARGET_ABI32
676 regs->tstate = 0;
677 #endif
678 regs->pc = infop->entry;
679 regs->npc = regs->pc + 4;
680 regs->y = 0;
681 #ifdef TARGET_ABI32
682 regs->u_regs[14] = infop->start_stack - 16 * 4;
683 #else
684 if (personality(infop->personality) == PER_LINUX32)
685 regs->u_regs[14] = infop->start_stack - 16 * 4;
686 else
687 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
688 #endif
689 }
690
691 #else
692 #define ELF_START_MMAP 0x80000000
693 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
694 | HWCAP_SPARC_MULDIV)
695
696 #define ELF_CLASS ELFCLASS32
697 #define ELF_ARCH EM_SPARC
698
699 static inline void init_thread(struct target_pt_regs *regs,
700 struct image_info *infop)
701 {
702 regs->psr = 0;
703 regs->pc = infop->entry;
704 regs->npc = regs->pc + 4;
705 regs->y = 0;
706 regs->u_regs[14] = infop->start_stack - 16 * 4;
707 }
708
709 #endif
710 #endif
711
712 #ifdef TARGET_PPC
713
714 #define ELF_MACHINE PPC_ELF_MACHINE
715 #define ELF_START_MMAP 0x80000000
716
717 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
718
719 #define elf_check_arch(x) ( (x) == EM_PPC64 )
720
721 #define ELF_CLASS ELFCLASS64
722
723 #else
724
725 #define ELF_CLASS ELFCLASS32
726
727 #endif
728
729 #define ELF_ARCH EM_PPC
730
731 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
732 See arch/powerpc/include/asm/cputable.h. */
733 enum {
734 QEMU_PPC_FEATURE_32 = 0x80000000,
735 QEMU_PPC_FEATURE_64 = 0x40000000,
736 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
737 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
738 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
739 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
740 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
741 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
742 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
743 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
744 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
745 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
746 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
747 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
748 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
749 QEMU_PPC_FEATURE_CELL = 0x00010000,
750 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
751 QEMU_PPC_FEATURE_SMT = 0x00004000,
752 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
753 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
754 QEMU_PPC_FEATURE_PA6T = 0x00000800,
755 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
756 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
757 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
758 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
759 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
760
761 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
762 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
763
764 /* Feature definitions in AT_HWCAP2. */
765 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
766 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
767 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
768 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
769 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
770 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
771 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
772 };
773
774 #define ELF_HWCAP get_elf_hwcap()
775
776 static uint32_t get_elf_hwcap(void)
777 {
778 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
779 uint32_t features = 0;
780
781 /* We don't have to be terribly complete here; the high points are
782 Altivec/FP/SPE support. Anything else is just a bonus. */
783 #define GET_FEATURE(flag, feature) \
784 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
785 #define GET_FEATURE2(flags, feature) \
786 do { \
787 if ((cpu->env.insns_flags2 & flags) == flags) { \
788 features |= feature; \
789 } \
790 } while (0)
791 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
792 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
793 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
794 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
795 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
796 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
797 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
798 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
799 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
800 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
801 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
802 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
803 QEMU_PPC_FEATURE_ARCH_2_06);
804 #undef GET_FEATURE
805 #undef GET_FEATURE2
806
807 return features;
808 }
809
810 #define ELF_HWCAP2 get_elf_hwcap2()
811
812 static uint32_t get_elf_hwcap2(void)
813 {
814 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
815 uint32_t features = 0;
816
817 #define GET_FEATURE(flag, feature) \
818 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
819 #define GET_FEATURE2(flag, feature) \
820 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
821
822 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
823 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
824 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
825 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
826 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
827
828 #undef GET_FEATURE
829 #undef GET_FEATURE2
830
831 return features;
832 }
833
834 /*
835 * The requirements here are:
836 * - keep the final alignment of sp (sp & 0xf)
837 * - make sure the 32-bit value at the first 16 byte aligned position of
838 * AUXV is greater than 16 for glibc compatibility.
839 * AT_IGNOREPPC is used for that.
840 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
841 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
842 */
843 #define DLINFO_ARCH_ITEMS 5
844 #define ARCH_DLINFO \
845 do { \
846 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
847 /* \
848 * Handle glibc compatibility: these magic entries must \
849 * be at the lowest addresses in the final auxv. \
850 */ \
851 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
852 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
853 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
854 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
855 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
856 } while (0)
857
858 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
859 {
860 _regs->gpr[1] = infop->start_stack;
861 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
862 if (get_ppc64_abi(infop) < 2) {
863 uint64_t val;
864 get_user_u64(val, infop->entry + 8);
865 _regs->gpr[2] = val + infop->load_bias;
866 get_user_u64(val, infop->entry);
867 infop->entry = val + infop->load_bias;
868 } else {
869 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
870 }
871 #endif
872 _regs->nip = infop->entry;
873 }
874
875 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
876 #define ELF_NREG 48
877 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
878
879 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
880 {
881 int i;
882 target_ulong ccr = 0;
883
884 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
885 (*regs)[i] = tswapreg(env->gpr[i]);
886 }
887
888 (*regs)[32] = tswapreg(env->nip);
889 (*regs)[33] = tswapreg(env->msr);
890 (*regs)[35] = tswapreg(env->ctr);
891 (*regs)[36] = tswapreg(env->lr);
892 (*regs)[37] = tswapreg(env->xer);
893
894 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
895 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
896 }
897 (*regs)[38] = tswapreg(ccr);
898 }
899
900 #define USE_ELF_CORE_DUMP
901 #define ELF_EXEC_PAGESIZE 4096
902
903 #endif
904
905 #ifdef TARGET_MIPS
906
907 #define ELF_START_MMAP 0x80000000
908
909 #ifdef TARGET_MIPS64
910 #define ELF_CLASS ELFCLASS64
911 #else
912 #define ELF_CLASS ELFCLASS32
913 #endif
914 #define ELF_ARCH EM_MIPS
915
916 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
917
918 static inline void init_thread(struct target_pt_regs *regs,
919 struct image_info *infop)
920 {
921 regs->cp0_status = 2 << CP0St_KSU;
922 regs->cp0_epc = infop->entry;
923 regs->regs[29] = infop->start_stack;
924 }
925
926 /* See linux kernel: arch/mips/include/asm/elf.h. */
927 #define ELF_NREG 45
928 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
929
930 /* See linux kernel: arch/mips/include/asm/reg.h. */
931 enum {
932 #ifdef TARGET_MIPS64
933 TARGET_EF_R0 = 0,
934 #else
935 TARGET_EF_R0 = 6,
936 #endif
937 TARGET_EF_R26 = TARGET_EF_R0 + 26,
938 TARGET_EF_R27 = TARGET_EF_R0 + 27,
939 TARGET_EF_LO = TARGET_EF_R0 + 32,
940 TARGET_EF_HI = TARGET_EF_R0 + 33,
941 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
942 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
943 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
944 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
945 };
946
947 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
948 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
949 {
950 int i;
951
952 for (i = 0; i < TARGET_EF_R0; i++) {
953 (*regs)[i] = 0;
954 }
955 (*regs)[TARGET_EF_R0] = 0;
956
957 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
958 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
959 }
960
961 (*regs)[TARGET_EF_R26] = 0;
962 (*regs)[TARGET_EF_R27] = 0;
963 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
964 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
965 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
966 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
967 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
968 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
969 }
970
971 #define USE_ELF_CORE_DUMP
972 #define ELF_EXEC_PAGESIZE 4096
973
974 /* See arch/mips/include/uapi/asm/hwcap.h. */
975 enum {
976 HWCAP_MIPS_R6 = (1 << 0),
977 HWCAP_MIPS_MSA = (1 << 1),
978 };
979
980 #define ELF_HWCAP get_elf_hwcap()
981
982 static uint32_t get_elf_hwcap(void)
983 {
984 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
985 uint32_t hwcaps = 0;
986
987 #define GET_FEATURE(flag, hwcap) \
988 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
989
990 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
991 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
992
993 #undef GET_FEATURE
994
995 return hwcaps;
996 }
997
998 #endif /* TARGET_MIPS */
999
1000 #ifdef TARGET_MICROBLAZE
1001
1002 #define ELF_START_MMAP 0x80000000
1003
1004 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1005
1006 #define ELF_CLASS ELFCLASS32
1007 #define ELF_ARCH EM_MICROBLAZE
1008
1009 static inline void init_thread(struct target_pt_regs *regs,
1010 struct image_info *infop)
1011 {
1012 regs->pc = infop->entry;
1013 regs->r1 = infop->start_stack;
1014
1015 }
1016
1017 #define ELF_EXEC_PAGESIZE 4096
1018
1019 #define USE_ELF_CORE_DUMP
1020 #define ELF_NREG 38
1021 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1022
1023 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1024 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1025 {
1026 int i, pos = 0;
1027
1028 for (i = 0; i < 32; i++) {
1029 (*regs)[pos++] = tswapreg(env->regs[i]);
1030 }
1031
1032 for (i = 0; i < 6; i++) {
1033 (*regs)[pos++] = tswapreg(env->sregs[i]);
1034 }
1035 }
1036
1037 #endif /* TARGET_MICROBLAZE */
1038
1039 #ifdef TARGET_NIOS2
1040
1041 #define ELF_START_MMAP 0x80000000
1042
1043 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1044
1045 #define ELF_CLASS ELFCLASS32
1046 #define ELF_ARCH EM_ALTERA_NIOS2
1047
1048 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1049 {
1050 regs->ea = infop->entry;
1051 regs->sp = infop->start_stack;
1052 regs->estatus = 0x3;
1053 }
1054
1055 #define ELF_EXEC_PAGESIZE 4096
1056
1057 #define USE_ELF_CORE_DUMP
1058 #define ELF_NREG 49
1059 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1060
1061 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1062 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1063 const CPUNios2State *env)
1064 {
1065 int i;
1066
1067 (*regs)[0] = -1;
1068 for (i = 1; i < 8; i++) /* r0-r7 */
1069 (*regs)[i] = tswapreg(env->regs[i + 7]);
1070
1071 for (i = 8; i < 16; i++) /* r8-r15 */
1072 (*regs)[i] = tswapreg(env->regs[i - 8]);
1073
1074 for (i = 16; i < 24; i++) /* r16-r23 */
1075 (*regs)[i] = tswapreg(env->regs[i + 7]);
1076 (*regs)[24] = -1; /* R_ET */
1077 (*regs)[25] = -1; /* R_BT */
1078 (*regs)[26] = tswapreg(env->regs[R_GP]);
1079 (*regs)[27] = tswapreg(env->regs[R_SP]);
1080 (*regs)[28] = tswapreg(env->regs[R_FP]);
1081 (*regs)[29] = tswapreg(env->regs[R_EA]);
1082 (*regs)[30] = -1; /* R_SSTATUS */
1083 (*regs)[31] = tswapreg(env->regs[R_RA]);
1084
1085 (*regs)[32] = tswapreg(env->regs[R_PC]);
1086
1087 (*regs)[33] = -1; /* R_STATUS */
1088 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1089
1090 for (i = 35; i < 49; i++) /* ... */
1091 (*regs)[i] = -1;
1092 }
1093
1094 #endif /* TARGET_NIOS2 */
1095
1096 #ifdef TARGET_OPENRISC
1097
1098 #define ELF_START_MMAP 0x08000000
1099
1100 #define ELF_ARCH EM_OPENRISC
1101 #define ELF_CLASS ELFCLASS32
1102 #define ELF_DATA ELFDATA2MSB
1103
1104 static inline void init_thread(struct target_pt_regs *regs,
1105 struct image_info *infop)
1106 {
1107 regs->pc = infop->entry;
1108 regs->gpr[1] = infop->start_stack;
1109 }
1110
1111 #define USE_ELF_CORE_DUMP
1112 #define ELF_EXEC_PAGESIZE 8192
1113
1114 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1115 #define ELF_NREG 34 /* gprs and pc, sr */
1116 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1117
1118 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1119 const CPUOpenRISCState *env)
1120 {
1121 int i;
1122
1123 for (i = 0; i < 32; i++) {
1124 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1125 }
1126 (*regs)[32] = tswapreg(env->pc);
1127 (*regs)[33] = tswapreg(cpu_get_sr(env));
1128 }
1129 #define ELF_HWCAP 0
1130 #define ELF_PLATFORM NULL
1131
1132 #endif /* TARGET_OPENRISC */
1133
1134 #ifdef TARGET_SH4
1135
1136 #define ELF_START_MMAP 0x80000000
1137
1138 #define ELF_CLASS ELFCLASS32
1139 #define ELF_ARCH EM_SH
1140
1141 static inline void init_thread(struct target_pt_regs *regs,
1142 struct image_info *infop)
1143 {
1144 /* Check other registers XXXXX */
1145 regs->pc = infop->entry;
1146 regs->regs[15] = infop->start_stack;
1147 }
1148
1149 /* See linux kernel: arch/sh/include/asm/elf.h. */
1150 #define ELF_NREG 23
1151 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1152
1153 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1154 enum {
1155 TARGET_REG_PC = 16,
1156 TARGET_REG_PR = 17,
1157 TARGET_REG_SR = 18,
1158 TARGET_REG_GBR = 19,
1159 TARGET_REG_MACH = 20,
1160 TARGET_REG_MACL = 21,
1161 TARGET_REG_SYSCALL = 22
1162 };
1163
1164 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1165 const CPUSH4State *env)
1166 {
1167 int i;
1168
1169 for (i = 0; i < 16; i++) {
1170 (*regs)[i] = tswapreg(env->gregs[i]);
1171 }
1172
1173 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1174 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1175 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1176 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1177 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1178 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1179 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1180 }
1181
1182 #define USE_ELF_CORE_DUMP
1183 #define ELF_EXEC_PAGESIZE 4096
1184
1185 enum {
1186 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1187 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1188 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1189 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1190 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1191 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1192 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1193 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1194 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1195 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1196 };
1197
1198 #define ELF_HWCAP get_elf_hwcap()
1199
1200 static uint32_t get_elf_hwcap(void)
1201 {
1202 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1203 uint32_t hwcap = 0;
1204
1205 hwcap |= SH_CPU_HAS_FPU;
1206
1207 if (cpu->env.features & SH_FEATURE_SH4A) {
1208 hwcap |= SH_CPU_HAS_LLSC;
1209 }
1210
1211 return hwcap;
1212 }
1213
1214 #endif
1215
1216 #ifdef TARGET_CRIS
1217
1218 #define ELF_START_MMAP 0x80000000
1219
1220 #define ELF_CLASS ELFCLASS32
1221 #define ELF_ARCH EM_CRIS
1222
1223 static inline void init_thread(struct target_pt_regs *regs,
1224 struct image_info *infop)
1225 {
1226 regs->erp = infop->entry;
1227 }
1228
1229 #define ELF_EXEC_PAGESIZE 8192
1230
1231 #endif
1232
1233 #ifdef TARGET_M68K
1234
1235 #define ELF_START_MMAP 0x80000000
1236
1237 #define ELF_CLASS ELFCLASS32
1238 #define ELF_ARCH EM_68K
1239
1240 /* ??? Does this need to do anything?
1241 #define ELF_PLAT_INIT(_r) */
1242
1243 static inline void init_thread(struct target_pt_regs *regs,
1244 struct image_info *infop)
1245 {
1246 regs->usp = infop->start_stack;
1247 regs->sr = 0;
1248 regs->pc = infop->entry;
1249 }
1250
1251 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1252 #define ELF_NREG 20
1253 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1254
1255 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1256 {
1257 (*regs)[0] = tswapreg(env->dregs[1]);
1258 (*regs)[1] = tswapreg(env->dregs[2]);
1259 (*regs)[2] = tswapreg(env->dregs[3]);
1260 (*regs)[3] = tswapreg(env->dregs[4]);
1261 (*regs)[4] = tswapreg(env->dregs[5]);
1262 (*regs)[5] = tswapreg(env->dregs[6]);
1263 (*regs)[6] = tswapreg(env->dregs[7]);
1264 (*regs)[7] = tswapreg(env->aregs[0]);
1265 (*regs)[8] = tswapreg(env->aregs[1]);
1266 (*regs)[9] = tswapreg(env->aregs[2]);
1267 (*regs)[10] = tswapreg(env->aregs[3]);
1268 (*regs)[11] = tswapreg(env->aregs[4]);
1269 (*regs)[12] = tswapreg(env->aregs[5]);
1270 (*regs)[13] = tswapreg(env->aregs[6]);
1271 (*regs)[14] = tswapreg(env->dregs[0]);
1272 (*regs)[15] = tswapreg(env->aregs[7]);
1273 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1274 (*regs)[17] = tswapreg(env->sr);
1275 (*regs)[18] = tswapreg(env->pc);
1276 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1277 }
1278
1279 #define USE_ELF_CORE_DUMP
1280 #define ELF_EXEC_PAGESIZE 8192
1281
1282 #endif
1283
1284 #ifdef TARGET_ALPHA
1285
1286 #define ELF_START_MMAP (0x30000000000ULL)
1287
1288 #define ELF_CLASS ELFCLASS64
1289 #define ELF_ARCH EM_ALPHA
1290
1291 static inline void init_thread(struct target_pt_regs *regs,
1292 struct image_info *infop)
1293 {
1294 regs->pc = infop->entry;
1295 regs->ps = 8;
1296 regs->usp = infop->start_stack;
1297 }
1298
1299 #define ELF_EXEC_PAGESIZE 8192
1300
1301 #endif /* TARGET_ALPHA */
1302
1303 #ifdef TARGET_S390X
1304
1305 #define ELF_START_MMAP (0x20000000000ULL)
1306
1307 #define ELF_CLASS ELFCLASS64
1308 #define ELF_DATA ELFDATA2MSB
1309 #define ELF_ARCH EM_S390
1310
1311 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1312 {
1313 regs->psw.addr = infop->entry;
1314 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1315 regs->gprs[15] = infop->start_stack;
1316 }
1317
1318 #endif /* TARGET_S390X */
1319
1320 #ifdef TARGET_TILEGX
1321
1322 /* 42 bits real used address, a half for user mode */
1323 #define ELF_START_MMAP (0x00000020000000000ULL)
1324
1325 #define elf_check_arch(x) ((x) == EM_TILEGX)
1326
1327 #define ELF_CLASS ELFCLASS64
1328 #define ELF_DATA ELFDATA2LSB
1329 #define ELF_ARCH EM_TILEGX
1330
1331 static inline void init_thread(struct target_pt_regs *regs,
1332 struct image_info *infop)
1333 {
1334 regs->pc = infop->entry;
1335 regs->sp = infop->start_stack;
1336
1337 }
1338
1339 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1340
1341 #endif /* TARGET_TILEGX */
1342
1343 #ifdef TARGET_RISCV
1344
1345 #define ELF_START_MMAP 0x80000000
1346 #define ELF_ARCH EM_RISCV
1347
1348 #ifdef TARGET_RISCV32
1349 #define ELF_CLASS ELFCLASS32
1350 #else
1351 #define ELF_CLASS ELFCLASS64
1352 #endif
1353
1354 static inline void init_thread(struct target_pt_regs *regs,
1355 struct image_info *infop)
1356 {
1357 regs->sepc = infop->entry;
1358 regs->sp = infop->start_stack;
1359 }
1360
1361 #define ELF_EXEC_PAGESIZE 4096
1362
1363 #endif /* TARGET_RISCV */
1364
1365 #ifdef TARGET_HPPA
1366
1367 #define ELF_START_MMAP 0x80000000
1368 #define ELF_CLASS ELFCLASS32
1369 #define ELF_ARCH EM_PARISC
1370 #define ELF_PLATFORM "PARISC"
1371 #define STACK_GROWS_DOWN 0
1372 #define STACK_ALIGNMENT 64
1373
1374 static inline void init_thread(struct target_pt_regs *regs,
1375 struct image_info *infop)
1376 {
1377 regs->iaoq[0] = infop->entry;
1378 regs->iaoq[1] = infop->entry + 4;
1379 regs->gr[23] = 0;
1380 regs->gr[24] = infop->arg_start;
1381 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1382 /* The top-of-stack contains a linkage buffer. */
1383 regs->gr[30] = infop->start_stack + 64;
1384 regs->gr[31] = infop->entry;
1385 }
1386
1387 #endif /* TARGET_HPPA */
1388
1389 #ifdef TARGET_XTENSA
1390
1391 #define ELF_START_MMAP 0x20000000
1392
1393 #define ELF_CLASS ELFCLASS32
1394 #define ELF_ARCH EM_XTENSA
1395
1396 static inline void init_thread(struct target_pt_regs *regs,
1397 struct image_info *infop)
1398 {
1399 regs->windowbase = 0;
1400 regs->windowstart = 1;
1401 regs->areg[1] = infop->start_stack;
1402 regs->pc = infop->entry;
1403 }
1404
1405 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1406 #define ELF_NREG 128
1407 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1408
1409 enum {
1410 TARGET_REG_PC,
1411 TARGET_REG_PS,
1412 TARGET_REG_LBEG,
1413 TARGET_REG_LEND,
1414 TARGET_REG_LCOUNT,
1415 TARGET_REG_SAR,
1416 TARGET_REG_WINDOWSTART,
1417 TARGET_REG_WINDOWBASE,
1418 TARGET_REG_THREADPTR,
1419 TARGET_REG_AR0 = 64,
1420 };
1421
1422 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1423 const CPUXtensaState *env)
1424 {
1425 unsigned i;
1426
1427 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1428 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1429 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1430 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1431 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1432 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1433 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1434 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1435 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1436 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1437 for (i = 0; i < env->config->nareg; ++i) {
1438 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1439 }
1440 }
1441
1442 #define USE_ELF_CORE_DUMP
1443 #define ELF_EXEC_PAGESIZE 4096
1444
1445 #endif /* TARGET_XTENSA */
1446
1447 #ifndef ELF_PLATFORM
1448 #define ELF_PLATFORM (NULL)
1449 #endif
1450
1451 #ifndef ELF_MACHINE
1452 #define ELF_MACHINE ELF_ARCH
1453 #endif
1454
1455 #ifndef elf_check_arch
1456 #define elf_check_arch(x) ((x) == ELF_ARCH)
1457 #endif
1458
1459 #ifndef ELF_HWCAP
1460 #define ELF_HWCAP 0
1461 #endif
1462
1463 #ifndef STACK_GROWS_DOWN
1464 #define STACK_GROWS_DOWN 1
1465 #endif
1466
1467 #ifndef STACK_ALIGNMENT
1468 #define STACK_ALIGNMENT 16
1469 #endif
1470
1471 #ifdef TARGET_ABI32
1472 #undef ELF_CLASS
1473 #define ELF_CLASS ELFCLASS32
1474 #undef bswaptls
1475 #define bswaptls(ptr) bswap32s(ptr)
1476 #endif
1477
1478 #include "elf.h"
1479
1480 struct exec
1481 {
1482 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1483 unsigned int a_text; /* length of text, in bytes */
1484 unsigned int a_data; /* length of data, in bytes */
1485 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1486 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1487 unsigned int a_entry; /* start address */
1488 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1489 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1490 };
1491
1492
1493 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1494 #define OMAGIC 0407
1495 #define NMAGIC 0410
1496 #define ZMAGIC 0413
1497 #define QMAGIC 0314
1498
1499 /* Necessary parameters */
1500 #define TARGET_ELF_EXEC_PAGESIZE \
1501 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1502 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1503 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1504 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1505 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1506 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1507
1508 #define DLINFO_ITEMS 15
1509
1510 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1511 {
1512 memcpy(to, from, n);
1513 }
1514
1515 #ifdef BSWAP_NEEDED
1516 static void bswap_ehdr(struct elfhdr *ehdr)
1517 {
1518 bswap16s(&ehdr->e_type); /* Object file type */
1519 bswap16s(&ehdr->e_machine); /* Architecture */
1520 bswap32s(&ehdr->e_version); /* Object file version */
1521 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1522 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1523 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1524 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1525 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1526 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1527 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1528 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1529 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1530 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1531 }
1532
1533 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1534 {
1535 int i;
1536 for (i = 0; i < phnum; ++i, ++phdr) {
1537 bswap32s(&phdr->p_type); /* Segment type */
1538 bswap32s(&phdr->p_flags); /* Segment flags */
1539 bswaptls(&phdr->p_offset); /* Segment file offset */
1540 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1541 bswaptls(&phdr->p_paddr); /* Segment physical address */
1542 bswaptls(&phdr->p_filesz); /* Segment size in file */
1543 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1544 bswaptls(&phdr->p_align); /* Segment alignment */
1545 }
1546 }
1547
1548 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1549 {
1550 int i;
1551 for (i = 0; i < shnum; ++i, ++shdr) {
1552 bswap32s(&shdr->sh_name);
1553 bswap32s(&shdr->sh_type);
1554 bswaptls(&shdr->sh_flags);
1555 bswaptls(&shdr->sh_addr);
1556 bswaptls(&shdr->sh_offset);
1557 bswaptls(&shdr->sh_size);
1558 bswap32s(&shdr->sh_link);
1559 bswap32s(&shdr->sh_info);
1560 bswaptls(&shdr->sh_addralign);
1561 bswaptls(&shdr->sh_entsize);
1562 }
1563 }
1564
1565 static void bswap_sym(struct elf_sym *sym)
1566 {
1567 bswap32s(&sym->st_name);
1568 bswaptls(&sym->st_value);
1569 bswaptls(&sym->st_size);
1570 bswap16s(&sym->st_shndx);
1571 }
1572
1573 #ifdef TARGET_MIPS
1574 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1575 {
1576 bswap16s(&abiflags->version);
1577 bswap32s(&abiflags->ases);
1578 bswap32s(&abiflags->isa_ext);
1579 bswap32s(&abiflags->flags1);
1580 bswap32s(&abiflags->flags2);
1581 }
1582 #endif
1583 #else
1584 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1585 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1586 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1587 static inline void bswap_sym(struct elf_sym *sym) { }
1588 #ifdef TARGET_MIPS
1589 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1590 #endif
1591 #endif
1592
1593 #ifdef USE_ELF_CORE_DUMP
1594 static int elf_core_dump(int, const CPUArchState *);
1595 #endif /* USE_ELF_CORE_DUMP */
1596 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1597
1598 /* Verify the portions of EHDR within E_IDENT for the target.
1599 This can be performed before bswapping the entire header. */
1600 static bool elf_check_ident(struct elfhdr *ehdr)
1601 {
1602 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1603 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1604 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1605 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1606 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1607 && ehdr->e_ident[EI_DATA] == ELF_DATA
1608 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1609 }
1610
1611 /* Verify the portions of EHDR outside of E_IDENT for the target.
1612 This has to wait until after bswapping the header. */
1613 static bool elf_check_ehdr(struct elfhdr *ehdr)
1614 {
1615 return (elf_check_arch(ehdr->e_machine)
1616 && ehdr->e_ehsize == sizeof(struct elfhdr)
1617 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1618 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1619 }
1620
1621 /*
1622 * 'copy_elf_strings()' copies argument/envelope strings from user
1623 * memory to free pages in kernel mem. These are in a format ready
1624 * to be put directly into the top of new user memory.
1625 *
1626 */
1627 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1628 abi_ulong p, abi_ulong stack_limit)
1629 {
1630 char *tmp;
1631 int len, i;
1632 abi_ulong top = p;
1633
1634 if (!p) {
1635 return 0; /* bullet-proofing */
1636 }
1637
1638 if (STACK_GROWS_DOWN) {
1639 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1640 for (i = argc - 1; i >= 0; --i) {
1641 tmp = argv[i];
1642 if (!tmp) {
1643 fprintf(stderr, "VFS: argc is wrong");
1644 exit(-1);
1645 }
1646 len = strlen(tmp) + 1;
1647 tmp += len;
1648
1649 if (len > (p - stack_limit)) {
1650 return 0;
1651 }
1652 while (len) {
1653 int bytes_to_copy = (len > offset) ? offset : len;
1654 tmp -= bytes_to_copy;
1655 p -= bytes_to_copy;
1656 offset -= bytes_to_copy;
1657 len -= bytes_to_copy;
1658
1659 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1660
1661 if (offset == 0) {
1662 memcpy_to_target(p, scratch, top - p);
1663 top = p;
1664 offset = TARGET_PAGE_SIZE;
1665 }
1666 }
1667 }
1668 if (p != top) {
1669 memcpy_to_target(p, scratch + offset, top - p);
1670 }
1671 } else {
1672 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1673 for (i = 0; i < argc; ++i) {
1674 tmp = argv[i];
1675 if (!tmp) {
1676 fprintf(stderr, "VFS: argc is wrong");
1677 exit(-1);
1678 }
1679 len = strlen(tmp) + 1;
1680 if (len > (stack_limit - p)) {
1681 return 0;
1682 }
1683 while (len) {
1684 int bytes_to_copy = (len > remaining) ? remaining : len;
1685
1686 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1687
1688 tmp += bytes_to_copy;
1689 remaining -= bytes_to_copy;
1690 p += bytes_to_copy;
1691 len -= bytes_to_copy;
1692
1693 if (remaining == 0) {
1694 memcpy_to_target(top, scratch, p - top);
1695 top = p;
1696 remaining = TARGET_PAGE_SIZE;
1697 }
1698 }
1699 }
1700 if (p != top) {
1701 memcpy_to_target(top, scratch, p - top);
1702 }
1703 }
1704
1705 return p;
1706 }
1707
1708 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1709 * argument/environment space. Newer kernels (>2.6.33) allow more,
1710 * dependent on stack size, but guarantee at least 32 pages for
1711 * backwards compatibility.
1712 */
1713 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1714
1715 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1716 struct image_info *info)
1717 {
1718 abi_ulong size, error, guard;
1719
1720 size = guest_stack_size;
1721 if (size < STACK_LOWER_LIMIT) {
1722 size = STACK_LOWER_LIMIT;
1723 }
1724 guard = TARGET_PAGE_SIZE;
1725 if (guard < qemu_real_host_page_size) {
1726 guard = qemu_real_host_page_size;
1727 }
1728
1729 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1730 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1731 if (error == -1) {
1732 perror("mmap stack");
1733 exit(-1);
1734 }
1735
1736 /* We reserve one extra page at the top of the stack as guard. */
1737 if (STACK_GROWS_DOWN) {
1738 target_mprotect(error, guard, PROT_NONE);
1739 info->stack_limit = error + guard;
1740 return info->stack_limit + size - sizeof(void *);
1741 } else {
1742 target_mprotect(error + size, guard, PROT_NONE);
1743 info->stack_limit = error + size;
1744 return error;
1745 }
1746 }
1747
1748 /* Map and zero the bss. We need to explicitly zero any fractional pages
1749 after the data section (i.e. bss). */
1750 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1751 {
1752 uintptr_t host_start, host_map_start, host_end;
1753
1754 last_bss = TARGET_PAGE_ALIGN(last_bss);
1755
1756 /* ??? There is confusion between qemu_real_host_page_size and
1757 qemu_host_page_size here and elsewhere in target_mmap, which
1758 may lead to the end of the data section mapping from the file
1759 not being mapped. At least there was an explicit test and
1760 comment for that here, suggesting that "the file size must
1761 be known". The comment probably pre-dates the introduction
1762 of the fstat system call in target_mmap which does in fact
1763 find out the size. What isn't clear is if the workaround
1764 here is still actually needed. For now, continue with it,
1765 but merge it with the "normal" mmap that would allocate the bss. */
1766
1767 host_start = (uintptr_t) g2h(elf_bss);
1768 host_end = (uintptr_t) g2h(last_bss);
1769 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1770
1771 if (host_map_start < host_end) {
1772 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1773 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1774 if (p == MAP_FAILED) {
1775 perror("cannot mmap brk");
1776 exit(-1);
1777 }
1778 }
1779
1780 /* Ensure that the bss page(s) are valid */
1781 if ((page_get_flags(last_bss-1) & prot) != prot) {
1782 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1783 }
1784
1785 if (host_start < host_map_start) {
1786 memset((void *)host_start, 0, host_map_start - host_start);
1787 }
1788 }
1789
1790 #ifdef TARGET_ARM
1791 static int elf_is_fdpic(struct elfhdr *exec)
1792 {
1793 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1794 }
1795 #else
1796 /* Default implementation, always false. */
1797 static int elf_is_fdpic(struct elfhdr *exec)
1798 {
1799 return 0;
1800 }
1801 #endif
1802
1803 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1804 {
1805 uint16_t n;
1806 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1807
1808 /* elf32_fdpic_loadseg */
1809 n = info->nsegs;
1810 while (n--) {
1811 sp -= 12;
1812 put_user_u32(loadsegs[n].addr, sp+0);
1813 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1814 put_user_u32(loadsegs[n].p_memsz, sp+8);
1815 }
1816
1817 /* elf32_fdpic_loadmap */
1818 sp -= 4;
1819 put_user_u16(0, sp+0); /* version */
1820 put_user_u16(info->nsegs, sp+2); /* nsegs */
1821
1822 info->personality = PER_LINUX_FDPIC;
1823 info->loadmap_addr = sp;
1824
1825 return sp;
1826 }
1827
1828 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1829 struct elfhdr *exec,
1830 struct image_info *info,
1831 struct image_info *interp_info)
1832 {
1833 abi_ulong sp;
1834 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1835 int size;
1836 int i;
1837 abi_ulong u_rand_bytes;
1838 uint8_t k_rand_bytes[16];
1839 abi_ulong u_platform;
1840 const char *k_platform;
1841 const int n = sizeof(elf_addr_t);
1842
1843 sp = p;
1844
1845 /* Needs to be before we load the env/argc/... */
1846 if (elf_is_fdpic(exec)) {
1847 /* Need 4 byte alignment for these structs */
1848 sp &= ~3;
1849 sp = loader_build_fdpic_loadmap(info, sp);
1850 info->other_info = interp_info;
1851 if (interp_info) {
1852 interp_info->other_info = info;
1853 sp = loader_build_fdpic_loadmap(interp_info, sp);
1854 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1855 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1856 } else {
1857 info->interpreter_loadmap_addr = 0;
1858 info->interpreter_pt_dynamic_addr = 0;
1859 }
1860 }
1861
1862 u_platform = 0;
1863 k_platform = ELF_PLATFORM;
1864 if (k_platform) {
1865 size_t len = strlen(k_platform) + 1;
1866 if (STACK_GROWS_DOWN) {
1867 sp -= (len + n - 1) & ~(n - 1);
1868 u_platform = sp;
1869 /* FIXME - check return value of memcpy_to_target() for failure */
1870 memcpy_to_target(sp, k_platform, len);
1871 } else {
1872 memcpy_to_target(sp, k_platform, len);
1873 u_platform = sp;
1874 sp += len + 1;
1875 }
1876 }
1877
1878 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1879 * the argv and envp pointers.
1880 */
1881 if (STACK_GROWS_DOWN) {
1882 sp = QEMU_ALIGN_DOWN(sp, 16);
1883 } else {
1884 sp = QEMU_ALIGN_UP(sp, 16);
1885 }
1886
1887 /*
1888 * Generate 16 random bytes for userspace PRNG seeding.
1889 */
1890 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1891 if (STACK_GROWS_DOWN) {
1892 sp -= 16;
1893 u_rand_bytes = sp;
1894 /* FIXME - check return value of memcpy_to_target() for failure */
1895 memcpy_to_target(sp, k_rand_bytes, 16);
1896 } else {
1897 memcpy_to_target(sp, k_rand_bytes, 16);
1898 u_rand_bytes = sp;
1899 sp += 16;
1900 }
1901
1902 size = (DLINFO_ITEMS + 1) * 2;
1903 if (k_platform)
1904 size += 2;
1905 #ifdef DLINFO_ARCH_ITEMS
1906 size += DLINFO_ARCH_ITEMS * 2;
1907 #endif
1908 #ifdef ELF_HWCAP2
1909 size += 2;
1910 #endif
1911 info->auxv_len = size * n;
1912
1913 size += envc + argc + 2;
1914 size += 1; /* argc itself */
1915 size *= n;
1916
1917 /* Allocate space and finalize stack alignment for entry now. */
1918 if (STACK_GROWS_DOWN) {
1919 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1920 sp = u_argc;
1921 } else {
1922 u_argc = sp;
1923 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1924 }
1925
1926 u_argv = u_argc + n;
1927 u_envp = u_argv + (argc + 1) * n;
1928 u_auxv = u_envp + (envc + 1) * n;
1929 info->saved_auxv = u_auxv;
1930 info->arg_start = u_argv;
1931 info->arg_end = u_argv + argc * n;
1932
1933 /* This is correct because Linux defines
1934 * elf_addr_t as Elf32_Off / Elf64_Off
1935 */
1936 #define NEW_AUX_ENT(id, val) do { \
1937 put_user_ual(id, u_auxv); u_auxv += n; \
1938 put_user_ual(val, u_auxv); u_auxv += n; \
1939 } while(0)
1940
1941 #ifdef ARCH_DLINFO
1942 /*
1943 * ARCH_DLINFO must come first so platform specific code can enforce
1944 * special alignment requirements on the AUXV if necessary (eg. PPC).
1945 */
1946 ARCH_DLINFO;
1947 #endif
1948 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1949 * on info->auxv_len will trigger.
1950 */
1951 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1952 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1953 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1954 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1955 /* Target doesn't support host page size alignment */
1956 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1957 } else {
1958 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1959 qemu_host_page_size)));
1960 }
1961 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1962 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1963 NEW_AUX_ENT(AT_ENTRY, info->entry);
1964 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1965 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1966 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1967 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1968 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1969 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1970 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1971 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1972
1973 #ifdef ELF_HWCAP2
1974 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1975 #endif
1976
1977 if (u_platform) {
1978 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1979 }
1980 NEW_AUX_ENT (AT_NULL, 0);
1981 #undef NEW_AUX_ENT
1982
1983 /* Check that our initial calculation of the auxv length matches how much
1984 * we actually put into it.
1985 */
1986 assert(info->auxv_len == u_auxv - info->saved_auxv);
1987
1988 put_user_ual(argc, u_argc);
1989
1990 p = info->arg_strings;
1991 for (i = 0; i < argc; ++i) {
1992 put_user_ual(p, u_argv);
1993 u_argv += n;
1994 p += target_strlen(p) + 1;
1995 }
1996 put_user_ual(0, u_argv);
1997
1998 p = info->env_strings;
1999 for (i = 0; i < envc; ++i) {
2000 put_user_ual(p, u_envp);
2001 u_envp += n;
2002 p += target_strlen(p) + 1;
2003 }
2004 put_user_ual(0, u_envp);
2005
2006 return sp;
2007 }
2008
2009 unsigned long init_guest_space(unsigned long host_start,
2010 unsigned long host_size,
2011 unsigned long guest_start,
2012 bool fixed)
2013 {
2014 /* In order to use host shmat, we must be able to honor SHMLBA. */
2015 unsigned long align = MAX(SHMLBA, qemu_host_page_size);
2016 unsigned long current_start, aligned_start;
2017 int flags;
2018
2019 assert(host_start || host_size);
2020
2021 /* If just a starting address is given, then just verify that
2022 * address. */
2023 if (host_start && !host_size) {
2024 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2025 if (init_guest_commpage(host_start, host_size) != 1) {
2026 return (unsigned long)-1;
2027 }
2028 #endif
2029 return host_start;
2030 }
2031
2032 /* Setup the initial flags and start address. */
2033 current_start = host_start & -align;
2034 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2035 if (fixed) {
2036 flags |= MAP_FIXED;
2037 }
2038
2039 /* Otherwise, a non-zero size region of memory needs to be mapped
2040 * and validated. */
2041
2042 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2043 /* On 32-bit ARM, we need to map not just the usable memory, but
2044 * also the commpage. Try to find a suitable place by allocating
2045 * a big chunk for all of it. If host_start, then the naive
2046 * strategy probably does good enough.
2047 */
2048 if (!host_start) {
2049 unsigned long guest_full_size, host_full_size, real_start;
2050
2051 guest_full_size =
2052 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2053 host_full_size = guest_full_size - guest_start;
2054 real_start = (unsigned long)
2055 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2056 if (real_start == (unsigned long)-1) {
2057 if (host_size < host_full_size - qemu_host_page_size) {
2058 /* We failed to map a continous segment, but we're
2059 * allowed to have a gap between the usable memory and
2060 * the commpage where other things can be mapped.
2061 * This sparseness gives us more flexibility to find
2062 * an address range.
2063 */
2064 goto naive;
2065 }
2066 return (unsigned long)-1;
2067 }
2068 munmap((void *)real_start, host_full_size);
2069 if (real_start & (align - 1)) {
2070 /* The same thing again, but with extra
2071 * so that we can shift around alignment.
2072 */
2073 unsigned long real_size = host_full_size + qemu_host_page_size;
2074 real_start = (unsigned long)
2075 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2076 if (real_start == (unsigned long)-1) {
2077 if (host_size < host_full_size - qemu_host_page_size) {
2078 goto naive;
2079 }
2080 return (unsigned long)-1;
2081 }
2082 munmap((void *)real_start, real_size);
2083 real_start = ROUND_UP(real_start, align);
2084 }
2085 current_start = real_start;
2086 }
2087 naive:
2088 #endif
2089
2090 while (1) {
2091 unsigned long real_start, real_size, aligned_size;
2092 aligned_size = real_size = host_size;
2093
2094 /* Do not use mmap_find_vma here because that is limited to the
2095 * guest address space. We are going to make the
2096 * guest address space fit whatever we're given.
2097 */
2098 real_start = (unsigned long)
2099 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2100 if (real_start == (unsigned long)-1) {
2101 return (unsigned long)-1;
2102 }
2103
2104 /* Check to see if the address is valid. */
2105 if (host_start && real_start != current_start) {
2106 goto try_again;
2107 }
2108
2109 /* Ensure the address is properly aligned. */
2110 if (real_start & (align - 1)) {
2111 /* Ideally, we adjust like
2112 *
2113 * pages: [ ][ ][ ][ ][ ]
2114 * old: [ real ]
2115 * [ aligned ]
2116 * new: [ real ]
2117 * [ aligned ]
2118 *
2119 * But if there is something else mapped right after it,
2120 * then obviously it won't have room to grow, and the
2121 * kernel will put the new larger real someplace else with
2122 * unknown alignment (if we made it to here, then
2123 * fixed=false). Which is why we grow real by a full page
2124 * size, instead of by part of one; so that even if we get
2125 * moved, we can still guarantee alignment. But this does
2126 * mean that there is a padding of < 1 page both before
2127 * and after the aligned range; the "after" could could
2128 * cause problems for ARM emulation where it could butt in
2129 * to where we need to put the commpage.
2130 */
2131 munmap((void *)real_start, host_size);
2132 real_size = aligned_size + qemu_host_page_size;
2133 real_start = (unsigned long)
2134 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2135 if (real_start == (unsigned long)-1) {
2136 return (unsigned long)-1;
2137 }
2138 aligned_start = ROUND_UP(real_start, align);
2139 } else {
2140 aligned_start = real_start;
2141 }
2142
2143 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2144 /* On 32-bit ARM, we need to also be able to map the commpage. */
2145 int valid = init_guest_commpage(aligned_start - guest_start,
2146 aligned_size + guest_start);
2147 if (valid == -1) {
2148 munmap((void *)real_start, real_size);
2149 return (unsigned long)-1;
2150 } else if (valid == 0) {
2151 goto try_again;
2152 }
2153 #endif
2154
2155 /* If nothing has said `return -1` or `goto try_again` yet,
2156 * then the address we have is good.
2157 */
2158 break;
2159
2160 try_again:
2161 /* That address didn't work. Unmap and try a different one.
2162 * The address the host picked because is typically right at
2163 * the top of the host address space and leaves the guest with
2164 * no usable address space. Resort to a linear search. We
2165 * already compensated for mmap_min_addr, so this should not
2166 * happen often. Probably means we got unlucky and host
2167 * address space randomization put a shared library somewhere
2168 * inconvenient.
2169 *
2170 * This is probably a good strategy if host_start, but is
2171 * probably a bad strategy if not, which means we got here
2172 * because of trouble with ARM commpage setup.
2173 */
2174 munmap((void *)real_start, real_size);
2175 current_start += align;
2176 if (host_start == current_start) {
2177 /* Theoretically possible if host doesn't have any suitably
2178 * aligned areas. Normally the first mmap will fail.
2179 */
2180 return (unsigned long)-1;
2181 }
2182 }
2183
2184 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2185
2186 return aligned_start;
2187 }
2188
2189 static void probe_guest_base(const char *image_name,
2190 abi_ulong loaddr, abi_ulong hiaddr)
2191 {
2192 /* Probe for a suitable guest base address, if the user has not set
2193 * it explicitly, and set guest_base appropriately.
2194 * In case of error we will print a suitable message and exit.
2195 */
2196 const char *errmsg;
2197 if (!have_guest_base && !reserved_va) {
2198 unsigned long host_start, real_start, host_size;
2199
2200 /* Round addresses to page boundaries. */
2201 loaddr &= qemu_host_page_mask;
2202 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2203
2204 if (loaddr < mmap_min_addr) {
2205 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2206 } else {
2207 host_start = loaddr;
2208 if (host_start != loaddr) {
2209 errmsg = "Address overflow loading ELF binary";
2210 goto exit_errmsg;
2211 }
2212 }
2213 host_size = hiaddr - loaddr;
2214
2215 /* Setup the initial guest memory space with ranges gleaned from
2216 * the ELF image that is being loaded.
2217 */
2218 real_start = init_guest_space(host_start, host_size, loaddr, false);
2219 if (real_start == (unsigned long)-1) {
2220 errmsg = "Unable to find space for application";
2221 goto exit_errmsg;
2222 }
2223 guest_base = real_start - loaddr;
2224
2225 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2226 TARGET_ABI_FMT_lx " to 0x%lx\n",
2227 loaddr, real_start);
2228 }
2229 return;
2230
2231 exit_errmsg:
2232 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2233 exit(-1);
2234 }
2235
2236
2237 /* Load an ELF image into the address space.
2238
2239 IMAGE_NAME is the filename of the image, to use in error messages.
2240 IMAGE_FD is the open file descriptor for the image.
2241
2242 BPRM_BUF is a copy of the beginning of the file; this of course
2243 contains the elf file header at offset 0. It is assumed that this
2244 buffer is sufficiently aligned to present no problems to the host
2245 in accessing data at aligned offsets within the buffer.
2246
2247 On return: INFO values will be filled in, as necessary or available. */
2248
2249 static void load_elf_image(const char *image_name, int image_fd,
2250 struct image_info *info, char **pinterp_name,
2251 char bprm_buf[BPRM_BUF_SIZE])
2252 {
2253 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2254 struct elf_phdr *phdr;
2255 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2256 int i, retval;
2257 const char *errmsg;
2258
2259 /* First of all, some simple consistency checks */
2260 errmsg = "Invalid ELF image for this architecture";
2261 if (!elf_check_ident(ehdr)) {
2262 goto exit_errmsg;
2263 }
2264 bswap_ehdr(ehdr);
2265 if (!elf_check_ehdr(ehdr)) {
2266 goto exit_errmsg;
2267 }
2268
2269 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2270 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2271 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2272 } else {
2273 phdr = (struct elf_phdr *) alloca(i);
2274 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2275 if (retval != i) {
2276 goto exit_read;
2277 }
2278 }
2279 bswap_phdr(phdr, ehdr->e_phnum);
2280
2281 info->nsegs = 0;
2282 info->pt_dynamic_addr = 0;
2283
2284 mmap_lock();
2285
2286 /* Find the maximum size of the image and allocate an appropriate
2287 amount of memory to handle that. */
2288 loaddr = -1, hiaddr = 0;
2289 info->alignment = 0;
2290 for (i = 0; i < ehdr->e_phnum; ++i) {
2291 if (phdr[i].p_type == PT_LOAD) {
2292 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2293 if (a < loaddr) {
2294 loaddr = a;
2295 }
2296 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2297 if (a > hiaddr) {
2298 hiaddr = a;
2299 }
2300 ++info->nsegs;
2301 info->alignment |= phdr[i].p_align;
2302 }
2303 }
2304
2305 load_addr = loaddr;
2306 if (ehdr->e_type == ET_DYN) {
2307 /* The image indicates that it can be loaded anywhere. Find a
2308 location that can hold the memory space required. If the
2309 image is pre-linked, LOADDR will be non-zero. Since we do
2310 not supply MAP_FIXED here we'll use that address if and
2311 only if it remains available. */
2312 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2313 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2314 -1, 0);
2315 if (load_addr == -1) {
2316 goto exit_perror;
2317 }
2318 } else if (pinterp_name != NULL) {
2319 /* This is the main executable. Make sure that the low
2320 address does not conflict with MMAP_MIN_ADDR or the
2321 QEMU application itself. */
2322 probe_guest_base(image_name, loaddr, hiaddr);
2323 }
2324 load_bias = load_addr - loaddr;
2325
2326 if (elf_is_fdpic(ehdr)) {
2327 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2328 g_malloc(sizeof(*loadsegs) * info->nsegs);
2329
2330 for (i = 0; i < ehdr->e_phnum; ++i) {
2331 switch (phdr[i].p_type) {
2332 case PT_DYNAMIC:
2333 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2334 break;
2335 case PT_LOAD:
2336 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2337 loadsegs->p_vaddr = phdr[i].p_vaddr;
2338 loadsegs->p_memsz = phdr[i].p_memsz;
2339 ++loadsegs;
2340 break;
2341 }
2342 }
2343 }
2344
2345 info->load_bias = load_bias;
2346 info->load_addr = load_addr;
2347 info->entry = ehdr->e_entry + load_bias;
2348 info->start_code = -1;
2349 info->end_code = 0;
2350 info->start_data = -1;
2351 info->end_data = 0;
2352 info->brk = 0;
2353 info->elf_flags = ehdr->e_flags;
2354
2355 for (i = 0; i < ehdr->e_phnum; i++) {
2356 struct elf_phdr *eppnt = phdr + i;
2357 if (eppnt->p_type == PT_LOAD) {
2358 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2359 int elf_prot = 0;
2360
2361 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2362 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2363 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2364
2365 vaddr = load_bias + eppnt->p_vaddr;
2366 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2367 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2368 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2369
2370 /*
2371 * Some segments may be completely empty without any backing file
2372 * segment, in that case just let zero_bss allocate an empty buffer
2373 * for it.
2374 */
2375 if (eppnt->p_filesz != 0) {
2376 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2377 MAP_PRIVATE | MAP_FIXED,
2378 image_fd, eppnt->p_offset - vaddr_po);
2379
2380 if (error == -1) {
2381 goto exit_perror;
2382 }
2383 }
2384
2385 vaddr_ef = vaddr + eppnt->p_filesz;
2386 vaddr_em = vaddr + eppnt->p_memsz;
2387
2388 /* If the load segment requests extra zeros (e.g. bss), map it. */
2389 if (vaddr_ef < vaddr_em) {
2390 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2391 }
2392
2393 /* Find the full program boundaries. */
2394 if (elf_prot & PROT_EXEC) {
2395 if (vaddr < info->start_code) {
2396 info->start_code = vaddr;
2397 }
2398 if (vaddr_ef > info->end_code) {
2399 info->end_code = vaddr_ef;
2400 }
2401 }
2402 if (elf_prot & PROT_WRITE) {
2403 if (vaddr < info->start_data) {
2404 info->start_data = vaddr;
2405 }
2406 if (vaddr_ef > info->end_data) {
2407 info->end_data = vaddr_ef;
2408 }
2409 if (vaddr_em > info->brk) {
2410 info->brk = vaddr_em;
2411 }
2412 }
2413 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2414 char *interp_name;
2415
2416 if (*pinterp_name) {
2417 errmsg = "Multiple PT_INTERP entries";
2418 goto exit_errmsg;
2419 }
2420 interp_name = malloc(eppnt->p_filesz);
2421 if (!interp_name) {
2422 goto exit_perror;
2423 }
2424
2425 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2426 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2427 eppnt->p_filesz);
2428 } else {
2429 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2430 eppnt->p_offset);
2431 if (retval != eppnt->p_filesz) {
2432 goto exit_perror;
2433 }
2434 }
2435 if (interp_name[eppnt->p_filesz - 1] != 0) {
2436 errmsg = "Invalid PT_INTERP entry";
2437 goto exit_errmsg;
2438 }
2439 *pinterp_name = interp_name;
2440 #ifdef TARGET_MIPS
2441 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2442 Mips_elf_abiflags_v0 abiflags;
2443 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2444 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2445 goto exit_errmsg;
2446 }
2447 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2448 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2449 sizeof(Mips_elf_abiflags_v0));
2450 } else {
2451 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2452 eppnt->p_offset);
2453 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2454 goto exit_perror;
2455 }
2456 }
2457 bswap_mips_abiflags(&abiflags);
2458 info->fp_abi = abiflags.fp_abi;
2459 #endif
2460 }
2461 }
2462
2463 if (info->end_data == 0) {
2464 info->start_data = info->end_code;
2465 info->end_data = info->end_code;
2466 info->brk = info->end_code;
2467 }
2468
2469 if (qemu_log_enabled()) {
2470 load_symbols(ehdr, image_fd, load_bias);
2471 }
2472
2473 mmap_unlock();
2474
2475 close(image_fd);
2476 return;
2477
2478 exit_read:
2479 if (retval >= 0) {
2480 errmsg = "Incomplete read of file header";
2481 goto exit_errmsg;
2482 }
2483 exit_perror:
2484 errmsg = strerror(errno);
2485 exit_errmsg:
2486 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2487 exit(-1);
2488 }
2489
2490 static void load_elf_interp(const char *filename, struct image_info *info,
2491 char bprm_buf[BPRM_BUF_SIZE])
2492 {
2493 int fd, retval;
2494
2495 fd = open(path(filename), O_RDONLY);
2496 if (fd < 0) {
2497 goto exit_perror;
2498 }
2499
2500 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2501 if (retval < 0) {
2502 goto exit_perror;
2503 }
2504 if (retval < BPRM_BUF_SIZE) {
2505 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2506 }
2507
2508 load_elf_image(filename, fd, info, NULL, bprm_buf);
2509 return;
2510
2511 exit_perror:
2512 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2513 exit(-1);
2514 }
2515
2516 static int symfind(const void *s0, const void *s1)
2517 {
2518 target_ulong addr = *(target_ulong *)s0;
2519 struct elf_sym *sym = (struct elf_sym *)s1;
2520 int result = 0;
2521 if (addr < sym->st_value) {
2522 result = -1;
2523 } else if (addr >= sym->st_value + sym->st_size) {
2524 result = 1;
2525 }
2526 return result;
2527 }
2528
2529 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2530 {
2531 #if ELF_CLASS == ELFCLASS32
2532 struct elf_sym *syms = s->disas_symtab.elf32;
2533 #else
2534 struct elf_sym *syms = s->disas_symtab.elf64;
2535 #endif
2536
2537 // binary search
2538 struct elf_sym *sym;
2539
2540 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2541 if (sym != NULL) {
2542 return s->disas_strtab + sym->st_name;
2543 }
2544
2545 return "";
2546 }
2547
2548 /* FIXME: This should use elf_ops.h */
2549 static int symcmp(const void *s0, const void *s1)
2550 {
2551 struct elf_sym *sym0 = (struct elf_sym *)s0;
2552 struct elf_sym *sym1 = (struct elf_sym *)s1;
2553 return (sym0->st_value < sym1->st_value)
2554 ? -1
2555 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2556 }
2557
2558 /* Best attempt to load symbols from this ELF object. */
2559 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2560 {
2561 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2562 uint64_t segsz;
2563 struct elf_shdr *shdr;
2564 char *strings = NULL;
2565 struct syminfo *s = NULL;
2566 struct elf_sym *new_syms, *syms = NULL;
2567
2568 shnum = hdr->e_shnum;
2569 i = shnum * sizeof(struct elf_shdr);
2570 shdr = (struct elf_shdr *)alloca(i);
2571 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2572 return;
2573 }
2574
2575 bswap_shdr(shdr, shnum);
2576 for (i = 0; i < shnum; ++i) {
2577 if (shdr[i].sh_type == SHT_SYMTAB) {
2578 sym_idx = i;
2579 str_idx = shdr[i].sh_link;
2580 goto found;
2581 }
2582 }
2583
2584 /* There will be no symbol table if the file was stripped. */
2585 return;
2586
2587 found:
2588 /* Now know where the strtab and symtab are. Snarf them. */
2589 s = g_try_new(struct syminfo, 1);
2590 if (!s) {
2591 goto give_up;
2592 }
2593
2594 segsz = shdr[str_idx].sh_size;
2595 s->disas_strtab = strings = g_try_malloc(segsz);
2596 if (!strings ||
2597 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2598 goto give_up;
2599 }
2600
2601 segsz = shdr[sym_idx].sh_size;
2602 syms = g_try_malloc(segsz);
2603 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2604 goto give_up;
2605 }
2606
2607 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2608 /* Implausibly large symbol table: give up rather than ploughing
2609 * on with the number of symbols calculation overflowing
2610 */
2611 goto give_up;
2612 }
2613 nsyms = segsz / sizeof(struct elf_sym);
2614 for (i = 0; i < nsyms; ) {
2615 bswap_sym(syms + i);
2616 /* Throw away entries which we do not need. */
2617 if (syms[i].st_shndx == SHN_UNDEF
2618 || syms[i].st_shndx >= SHN_LORESERVE
2619 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2620 if (i < --nsyms) {
2621 syms[i] = syms[nsyms];
2622 }
2623 } else {
2624 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2625 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2626 syms[i].st_value &= ~(target_ulong)1;
2627 #endif
2628 syms[i].st_value += load_bias;
2629 i++;
2630 }
2631 }
2632
2633 /* No "useful" symbol. */
2634 if (nsyms == 0) {
2635 goto give_up;
2636 }
2637
2638 /* Attempt to free the storage associated with the local symbols
2639 that we threw away. Whether or not this has any effect on the
2640 memory allocation depends on the malloc implementation and how
2641 many symbols we managed to discard. */
2642 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2643 if (new_syms == NULL) {
2644 goto give_up;
2645 }
2646 syms = new_syms;
2647
2648 qsort(syms, nsyms, sizeof(*syms), symcmp);
2649
2650 s->disas_num_syms = nsyms;
2651 #if ELF_CLASS == ELFCLASS32
2652 s->disas_symtab.elf32 = syms;
2653 #else
2654 s->disas_symtab.elf64 = syms;
2655 #endif
2656 s->lookup_symbol = lookup_symbolxx;
2657 s->next = syminfos;
2658 syminfos = s;
2659
2660 return;
2661
2662 give_up:
2663 g_free(s);
2664 g_free(strings);
2665 g_free(syms);
2666 }
2667
2668 uint32_t get_elf_eflags(int fd)
2669 {
2670 struct elfhdr ehdr;
2671 off_t offset;
2672 int ret;
2673
2674 /* Read ELF header */
2675 offset = lseek(fd, 0, SEEK_SET);
2676 if (offset == (off_t) -1) {
2677 return 0;
2678 }
2679 ret = read(fd, &ehdr, sizeof(ehdr));
2680 if (ret < sizeof(ehdr)) {
2681 return 0;
2682 }
2683 offset = lseek(fd, offset, SEEK_SET);
2684 if (offset == (off_t) -1) {
2685 return 0;
2686 }
2687
2688 /* Check ELF signature */
2689 if (!elf_check_ident(&ehdr)) {
2690 return 0;
2691 }
2692
2693 /* check header */
2694 bswap_ehdr(&ehdr);
2695 if (!elf_check_ehdr(&ehdr)) {
2696 return 0;
2697 }
2698
2699 /* return architecture id */
2700 return ehdr.e_flags;
2701 }
2702
2703 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2704 {
2705 struct image_info interp_info;
2706 struct elfhdr elf_ex;
2707 char *elf_interpreter = NULL;
2708 char *scratch;
2709
2710 memset(&interp_info, 0, sizeof(interp_info));
2711 #ifdef TARGET_MIPS
2712 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2713 #endif
2714
2715 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2716
2717 load_elf_image(bprm->filename, bprm->fd, info,
2718 &elf_interpreter, bprm->buf);
2719
2720 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2721 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2722 when we load the interpreter. */
2723 elf_ex = *(struct elfhdr *)bprm->buf;
2724
2725 /* Do this so that we can load the interpreter, if need be. We will
2726 change some of these later */
2727 bprm->p = setup_arg_pages(bprm, info);
2728
2729 scratch = g_new0(char, TARGET_PAGE_SIZE);
2730 if (STACK_GROWS_DOWN) {
2731 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2732 bprm->p, info->stack_limit);
2733 info->file_string = bprm->p;
2734 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2735 bprm->p, info->stack_limit);
2736 info->env_strings = bprm->p;
2737 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2738 bprm->p, info->stack_limit);
2739 info->arg_strings = bprm->p;
2740 } else {
2741 info->arg_strings = bprm->p;
2742 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2743 bprm->p, info->stack_limit);
2744 info->env_strings = bprm->p;
2745 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2746 bprm->p, info->stack_limit);
2747 info->file_string = bprm->p;
2748 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2749 bprm->p, info->stack_limit);
2750 }
2751
2752 g_free(scratch);
2753
2754 if (!bprm->p) {
2755 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2756 exit(-1);
2757 }
2758
2759 if (elf_interpreter) {
2760 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2761
2762 /* If the program interpreter is one of these two, then assume
2763 an iBCS2 image. Otherwise assume a native linux image. */
2764
2765 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2766 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2767 info->personality = PER_SVR4;
2768
2769 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2770 and some applications "depend" upon this behavior. Since
2771 we do not have the power to recompile these, we emulate
2772 the SVr4 behavior. Sigh. */
2773 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2774 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2775 }
2776 #ifdef TARGET_MIPS
2777 info->interp_fp_abi = interp_info.fp_abi;
2778 #endif
2779 }
2780
2781 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2782 info, (elf_interpreter ? &interp_info : NULL));
2783 info->start_stack = bprm->p;
2784
2785 /* If we have an interpreter, set that as the program's entry point.
2786 Copy the load_bias as well, to help PPC64 interpret the entry
2787 point as a function descriptor. Do this after creating elf tables
2788 so that we copy the original program entry point into the AUXV. */
2789 if (elf_interpreter) {
2790 info->load_bias = interp_info.load_bias;
2791 info->entry = interp_info.entry;
2792 free(elf_interpreter);
2793 }
2794
2795 #ifdef USE_ELF_CORE_DUMP
2796 bprm->core_dump = &elf_core_dump;
2797 #endif
2798
2799 return 0;
2800 }
2801
2802 #ifdef USE_ELF_CORE_DUMP
2803 /*
2804 * Definitions to generate Intel SVR4-like core files.
2805 * These mostly have the same names as the SVR4 types with "target_elf_"
2806 * tacked on the front to prevent clashes with linux definitions,
2807 * and the typedef forms have been avoided. This is mostly like
2808 * the SVR4 structure, but more Linuxy, with things that Linux does
2809 * not support and which gdb doesn't really use excluded.
2810 *
2811 * Fields we don't dump (their contents is zero) in linux-user qemu
2812 * are marked with XXX.
2813 *
2814 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2815 *
2816 * Porting ELF coredump for target is (quite) simple process. First you
2817 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2818 * the target resides):
2819 *
2820 * #define USE_ELF_CORE_DUMP
2821 *
2822 * Next you define type of register set used for dumping. ELF specification
2823 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2824 *
2825 * typedef <target_regtype> target_elf_greg_t;
2826 * #define ELF_NREG <number of registers>
2827 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2828 *
2829 * Last step is to implement target specific function that copies registers
2830 * from given cpu into just specified register set. Prototype is:
2831 *
2832 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2833 * const CPUArchState *env);
2834 *
2835 * Parameters:
2836 * regs - copy register values into here (allocated and zeroed by caller)
2837 * env - copy registers from here
2838 *
2839 * Example for ARM target is provided in this file.
2840 */
2841
2842 /* An ELF note in memory */
2843 struct memelfnote {
2844 const char *name;
2845 size_t namesz;
2846 size_t namesz_rounded;
2847 int type;
2848 size_t datasz;
2849 size_t datasz_rounded;
2850 void *data;
2851 size_t notesz;
2852 };
2853
2854 struct target_elf_siginfo {
2855 abi_int si_signo; /* signal number */
2856 abi_int si_code; /* extra code */
2857 abi_int si_errno; /* errno */
2858 };
2859
2860 struct target_elf_prstatus {
2861 struct target_elf_siginfo pr_info; /* Info associated with signal */
2862 abi_short pr_cursig; /* Current signal */
2863 abi_ulong pr_sigpend; /* XXX */
2864 abi_ulong pr_sighold; /* XXX */
2865 target_pid_t pr_pid;
2866 target_pid_t pr_ppid;
2867 target_pid_t pr_pgrp;
2868 target_pid_t pr_sid;
2869 struct target_timeval pr_utime; /* XXX User time */
2870 struct target_timeval pr_stime; /* XXX System time */
2871 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2872 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2873 target_elf_gregset_t pr_reg; /* GP registers */
2874 abi_int pr_fpvalid; /* XXX */
2875 };
2876
2877 #define ELF_PRARGSZ (80) /* Number of chars for args */
2878
2879 struct target_elf_prpsinfo {
2880 char pr_state; /* numeric process state */
2881 char pr_sname; /* char for pr_state */
2882 char pr_zomb; /* zombie */
2883 char pr_nice; /* nice val */
2884 abi_ulong pr_flag; /* flags */
2885 target_uid_t pr_uid;
2886 target_gid_t pr_gid;
2887 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2888 /* Lots missing */
2889 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
2890 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2891 };
2892
2893 /* Here is the structure in which status of each thread is captured. */
2894 struct elf_thread_status {
2895 QTAILQ_ENTRY(elf_thread_status) ets_link;
2896 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2897 #if 0
2898 elf_fpregset_t fpu; /* NT_PRFPREG */
2899 struct task_struct *thread;
2900 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2901 #endif
2902 struct memelfnote notes[1];
2903 int num_notes;
2904 };
2905
2906 struct elf_note_info {
2907 struct memelfnote *notes;
2908 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2909 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2910
2911 QTAILQ_HEAD(, elf_thread_status) thread_list;
2912 #if 0
2913 /*
2914 * Current version of ELF coredump doesn't support
2915 * dumping fp regs etc.
2916 */
2917 elf_fpregset_t *fpu;
2918 elf_fpxregset_t *xfpu;
2919 int thread_status_size;
2920 #endif
2921 int notes_size;
2922 int numnote;
2923 };
2924
2925 struct vm_area_struct {
2926 target_ulong vma_start; /* start vaddr of memory region */
2927 target_ulong vma_end; /* end vaddr of memory region */
2928 abi_ulong vma_flags; /* protection etc. flags for the region */
2929 QTAILQ_ENTRY(vm_area_struct) vma_link;
2930 };
2931
2932 struct mm_struct {
2933 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2934 int mm_count; /* number of mappings */
2935 };
2936
2937 static struct mm_struct *vma_init(void);
2938 static void vma_delete(struct mm_struct *);
2939 static int vma_add_mapping(struct mm_struct *, target_ulong,
2940 target_ulong, abi_ulong);
2941 static int vma_get_mapping_count(const struct mm_struct *);
2942 static struct vm_area_struct *vma_first(const struct mm_struct *);
2943 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2944 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2945 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2946 unsigned long flags);
2947
2948 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2949 static void fill_note(struct memelfnote *, const char *, int,
2950 unsigned int, void *);
2951 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2952 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2953 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2954 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2955 static size_t note_size(const struct memelfnote *);
2956 static void free_note_info(struct elf_note_info *);
2957 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2958 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2959 static int core_dump_filename(const TaskState *, char *, size_t);
2960
2961 static int dump_write(int, const void *, size_t);
2962 static int write_note(struct memelfnote *, int);
2963 static int write_note_info(struct elf_note_info *, int);
2964
2965 #ifdef BSWAP_NEEDED
2966 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2967 {
2968 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2969 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2970 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2971 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2972 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2973 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2974 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2975 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2976 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2977 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2978 /* cpu times are not filled, so we skip them */
2979 /* regs should be in correct format already */
2980 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2981 }
2982
2983 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2984 {
2985 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2986 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2987 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2988 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2989 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2990 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2991 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2992 }
2993
2994 static void bswap_note(struct elf_note *en)
2995 {
2996 bswap32s(&en->n_namesz);
2997 bswap32s(&en->n_descsz);
2998 bswap32s(&en->n_type);
2999 }
3000 #else
3001 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3002 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3003 static inline void bswap_note(struct elf_note *en) { }
3004 #endif /* BSWAP_NEEDED */
3005
3006 /*
3007 * Minimal support for linux memory regions. These are needed
3008 * when we are finding out what memory exactly belongs to
3009 * emulated process. No locks needed here, as long as
3010 * thread that received the signal is stopped.
3011 */
3012
3013 static struct mm_struct *vma_init(void)
3014 {
3015 struct mm_struct *mm;
3016
3017 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3018 return (NULL);
3019
3020 mm->mm_count = 0;
3021 QTAILQ_INIT(&mm->mm_mmap);
3022
3023 return (mm);
3024 }
3025
3026 static void vma_delete(struct mm_struct *mm)
3027 {
3028 struct vm_area_struct *vma;
3029
3030 while ((vma = vma_first(mm)) != NULL) {
3031 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3032 g_free(vma);
3033 }
3034 g_free(mm);
3035 }
3036
3037 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3038 target_ulong end, abi_ulong flags)
3039 {
3040 struct vm_area_struct *vma;
3041
3042 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3043 return (-1);
3044
3045 vma->vma_start = start;
3046 vma->vma_end = end;
3047 vma->vma_flags = flags;
3048
3049 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3050 mm->mm_count++;
3051
3052 return (0);
3053 }
3054
3055 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3056 {
3057 return (QTAILQ_FIRST(&mm->mm_mmap));
3058 }
3059
3060 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3061 {
3062 return (QTAILQ_NEXT(vma, vma_link));
3063 }
3064
3065 static int vma_get_mapping_count(const struct mm_struct *mm)
3066 {
3067 return (mm->mm_count);
3068 }
3069
3070 /*
3071 * Calculate file (dump) size of given memory region.
3072 */
3073 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3074 {
3075 /* if we cannot even read the first page, skip it */
3076 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3077 return (0);
3078
3079 /*
3080 * Usually we don't dump executable pages as they contain
3081 * non-writable code that debugger can read directly from
3082 * target library etc. However, thread stacks are marked
3083 * also executable so we read in first page of given region
3084 * and check whether it contains elf header. If there is
3085 * no elf header, we dump it.
3086 */
3087 if (vma->vma_flags & PROT_EXEC) {
3088 char page[TARGET_PAGE_SIZE];
3089
3090 copy_from_user(page, vma->vma_start, sizeof (page));
3091 if ((page[EI_MAG0] == ELFMAG0) &&
3092 (page[EI_MAG1] == ELFMAG1) &&
3093 (page[EI_MAG2] == ELFMAG2) &&
3094 (page[EI_MAG3] == ELFMAG3)) {
3095 /*
3096 * Mappings are possibly from ELF binary. Don't dump
3097 * them.
3098 */
3099 return (0);
3100 }
3101 }
3102
3103 return (vma->vma_end - vma->vma_start);
3104 }
3105
3106 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3107 unsigned long flags)
3108 {
3109 struct mm_struct *mm = (struct mm_struct *)priv;
3110
3111 vma_add_mapping(mm, start, end, flags);
3112 return (0);
3113 }
3114
3115 static void fill_note(struct memelfnote *note, const char *name, int type,
3116 unsigned int sz, void *data)
3117 {
3118 unsigned int namesz;
3119
3120 namesz = strlen(name) + 1;
3121 note->name = name;
3122 note->namesz = namesz;
3123 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3124 note->type = type;
3125 note->datasz = sz;
3126 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3127
3128 note->data = data;
3129
3130 /*
3131 * We calculate rounded up note size here as specified by
3132 * ELF document.
3133 */
3134 note->notesz = sizeof (struct elf_note) +
3135 note->namesz_rounded + note->datasz_rounded;
3136 }
3137
3138 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3139 uint32_t flags)
3140 {
3141 (void) memset(elf, 0, sizeof(*elf));
3142
3143 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3144 elf->e_ident[EI_CLASS] = ELF_CLASS;
3145 elf->e_ident[EI_DATA] = ELF_DATA;
3146 elf->e_ident[EI_VERSION] = EV_CURRENT;
3147 elf->e_ident[EI_OSABI] = ELF_OSABI;
3148
3149 elf->e_type = ET_CORE;
3150 elf->e_machine = machine;
3151 elf->e_version = EV_CURRENT;
3152 elf->e_phoff = sizeof(struct elfhdr);
3153 elf->e_flags = flags;
3154 elf->e_ehsize = sizeof(struct elfhdr);
3155 elf->e_phentsize = sizeof(struct elf_phdr);
3156 elf->e_phnum = segs;
3157
3158 bswap_ehdr(elf);
3159 }
3160
3161 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3162 {
3163 phdr->p_type = PT_NOTE;
3164 phdr->p_offset = offset;
3165 phdr->p_vaddr = 0;
3166 phdr->p_paddr = 0;
3167 phdr->p_filesz = sz;
3168 phdr->p_memsz = 0;
3169 phdr->p_flags = 0;
3170 phdr->p_align = 0;
3171
3172 bswap_phdr(phdr, 1);
3173 }
3174
3175 static size_t note_size(const struct memelfnote *note)
3176 {
3177 return (note->notesz);
3178 }
3179
3180 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3181 const TaskState *ts, int signr)
3182 {
3183 (void) memset(prstatus, 0, sizeof (*prstatus));
3184 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3185 prstatus->pr_pid = ts->ts_tid;
3186 prstatus->pr_ppid = getppid();
3187 prstatus->pr_pgrp = getpgrp();
3188 prstatus->pr_sid = getsid(0);
3189
3190 bswap_prstatus(prstatus);
3191 }
3192
3193 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3194 {
3195 char *base_filename;
3196 unsigned int i, len;
3197
3198 (void) memset(psinfo, 0, sizeof (*psinfo));
3199
3200 len = ts->info->arg_end - ts->info->arg_start;
3201 if (len >= ELF_PRARGSZ)
3202 len = ELF_PRARGSZ - 1;
3203 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3204 return -EFAULT;
3205 for (i = 0; i < len; i++)
3206 if (psinfo->pr_psargs[i] == 0)
3207 psinfo->pr_psargs[i] = ' ';
3208 psinfo->pr_psargs[len] = 0;
3209
3210 psinfo->pr_pid = getpid();
3211 psinfo->pr_ppid = getppid();
3212 psinfo->pr_pgrp = getpgrp();
3213 psinfo->pr_sid = getsid(0);
3214 psinfo->pr_uid = getuid();
3215 psinfo->pr_gid = getgid();
3216
3217 base_filename = g_path_get_basename(ts->bprm->filename);
3218 /*
3219 * Using strncpy here is fine: at max-length,
3220 * this field is not NUL-terminated.
3221 */
3222 (void) strncpy(psinfo->pr_fname, base_filename,
3223 sizeof(psinfo->pr_fname));
3224
3225 g_free(base_filename);
3226 bswap_psinfo(psinfo);
3227 return (0);
3228 }
3229
3230 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3231 {
3232 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3233 elf_addr_t orig_auxv = auxv;
3234 void *ptr;
3235 int len = ts->info->auxv_len;
3236
3237 /*
3238 * Auxiliary vector is stored in target process stack. It contains
3239 * {type, value} pairs that we need to dump into note. This is not
3240 * strictly necessary but we do it here for sake of completeness.
3241 */
3242
3243 /* read in whole auxv vector and copy it to memelfnote */
3244 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3245 if (ptr != NULL) {
3246 fill_note(note, "CORE", NT_AUXV, len, ptr);
3247 unlock_user(ptr, auxv, len);
3248 }
3249 }
3250
3251 /*
3252 * Constructs name of coredump file. We have following convention
3253 * for the name:
3254 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3255 *
3256 * Returns 0 in case of success, -1 otherwise (errno is set).
3257 */
3258 static int core_dump_filename(const TaskState *ts, char *buf,
3259 size_t bufsize)
3260 {
3261 char timestamp[64];
3262 char *base_filename = NULL;
3263 struct timeval tv;
3264 struct tm tm;
3265
3266 assert(bufsize >= PATH_MAX);
3267
3268 if (gettimeofday(&tv, NULL) < 0) {
3269 (void) fprintf(stderr, "unable to get current timestamp: %s",
3270 strerror(errno));
3271 return (-1);
3272 }
3273
3274 base_filename = g_path_get_basename(ts->bprm->filename);
3275 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3276 localtime_r(&tv.tv_sec, &tm));
3277 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3278 base_filename, timestamp, (int)getpid());
3279 g_free(base_filename);
3280
3281 return (0);
3282 }
3283
3284 static int dump_write(int fd, const void *ptr, size_t size)
3285 {
3286 const char *bufp = (const char *)ptr;
3287 ssize_t bytes_written, bytes_left;
3288 struct rlimit dumpsize;
3289 off_t pos;
3290
3291 bytes_written = 0;
3292 getrlimit(RLIMIT_CORE, &dumpsize);
3293 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3294 if (errno == ESPIPE) { /* not a seekable stream */
3295 bytes_left = size;
3296 } else {
3297 return pos;
3298 }
3299 } else {
3300 if (dumpsize.rlim_cur <= pos) {
3301 return -1;
3302 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3303 bytes_left = size;
3304 } else {
3305 size_t limit_left=dumpsize.rlim_cur - pos;
3306 bytes_left = limit_left >= size ? size : limit_left ;
3307 }
3308 }
3309
3310 /*
3311 * In normal conditions, single write(2) should do but
3312 * in case of socket etc. this mechanism is more portable.
3313 */
3314 do {
3315 bytes_written = write(fd, bufp, bytes_left);
3316 if (bytes_written < 0) {
3317 if (errno == EINTR)
3318 continue;
3319 return (-1);
3320 } else if (bytes_written == 0) { /* eof */
3321 return (-1);
3322 }
3323 bufp += bytes_written;
3324 bytes_left -= bytes_written;
3325 } while (bytes_left > 0);
3326
3327 return (0);
3328 }
3329
3330 static int write_note(struct memelfnote *men, int fd)
3331 {
3332 struct elf_note en;
3333
3334 en.n_namesz = men->namesz;
3335 en.n_type = men->type;
3336 en.n_descsz = men->datasz;
3337
3338 bswap_note(&en);
3339
3340 if (dump_write(fd, &en, sizeof(en)) != 0)
3341 return (-1);
3342 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3343 return (-1);
3344 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3345 return (-1);
3346
3347 return (0);
3348 }
3349
3350 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3351 {
3352 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3353 TaskState *ts = (TaskState *)cpu->opaque;
3354 struct elf_thread_status *ets;
3355
3356 ets = g_malloc0(sizeof (*ets));
3357 ets->num_notes = 1; /* only prstatus is dumped */
3358 fill_prstatus(&ets->prstatus, ts, 0);
3359 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3360 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3361 &ets->prstatus);
3362
3363 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3364
3365 info->notes_size += note_size(&ets->notes[0]);
3366 }
3367
3368 static void init_note_info(struct elf_note_info *info)
3369 {
3370 /* Initialize the elf_note_info structure so that it is at
3371 * least safe to call free_note_info() on it. Must be
3372 * called before calling fill_note_info().
3373 */
3374 memset(info, 0, sizeof (*info));
3375 QTAILQ_INIT(&info->thread_list);
3376 }
3377
3378 static int fill_note_info(struct elf_note_info *info,
3379 long signr, const CPUArchState *env)
3380 {
3381 #define NUMNOTES 3
3382 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3383 TaskState *ts = (TaskState *)cpu->opaque;
3384 int i;
3385
3386 info->notes = g_new0(struct memelfnote, NUMNOTES);
3387 if (info->notes == NULL)
3388 return (-ENOMEM);
3389 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3390 if (info->prstatus == NULL)
3391 return (-ENOMEM);
3392 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3393 if (info->prstatus == NULL)
3394 return (-ENOMEM);
3395
3396 /*
3397 * First fill in status (and registers) of current thread
3398 * including process info & aux vector.
3399 */
3400 fill_prstatus(info->prstatus, ts, signr);
3401 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3402 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3403 sizeof (*info->prstatus), info->prstatus);
3404 fill_psinfo(info->psinfo, ts);
3405 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3406 sizeof (*info->psinfo), info->psinfo);
3407 fill_auxv_note(&info->notes[2], ts);
3408 info->numnote = 3;
3409
3410 info->notes_size = 0;
3411 for (i = 0; i < info->numnote; i++)
3412 info->notes_size += note_size(&info->notes[i]);
3413
3414 /* read and fill status of all threads */
3415 cpu_list_lock();
3416 CPU_FOREACH(cpu) {
3417 if (cpu == thread_cpu) {
3418 continue;
3419 }
3420 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3421 }
3422 cpu_list_unlock();
3423
3424 return (0);
3425 }
3426
3427 static void free_note_info(struct elf_note_info *info)
3428 {
3429 struct elf_thread_status *ets;
3430
3431 while (!QTAILQ_EMPTY(&info->thread_list)) {
3432 ets = QTAILQ_FIRST(&info->thread_list);
3433 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3434 g_free(ets);
3435 }
3436
3437 g_free(info->prstatus);
3438 g_free(info->psinfo);
3439 g_free(info->notes);
3440 }
3441
3442 static int write_note_info(struct elf_note_info *info, int fd)
3443 {
3444 struct elf_thread_status *ets;
3445 int i, error = 0;
3446
3447 /* write prstatus, psinfo and auxv for current thread */
3448 for (i = 0; i < info->numnote; i++)
3449 if ((error = write_note(&info->notes[i], fd)) != 0)
3450 return (error);
3451
3452 /* write prstatus for each thread */
3453 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3454 if ((error = write_note(&ets->notes[0], fd)) != 0)
3455 return (error);
3456 }
3457
3458 return (0);
3459 }
3460
3461 /*
3462 * Write out ELF coredump.
3463 *
3464 * See documentation of ELF object file format in:
3465 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3466 *
3467 * Coredump format in linux is following:
3468 *
3469 * 0 +----------------------+ \
3470 * | ELF header | ET_CORE |
3471 * +----------------------+ |
3472 * | ELF program headers | |--- headers
3473 * | - NOTE section | |
3474 * | - PT_LOAD sections | |
3475 * +----------------------+ /
3476 * | NOTEs: |
3477 * | - NT_PRSTATUS |
3478 * | - NT_PRSINFO |
3479 * | - NT_AUXV |
3480 * +----------------------+ <-- aligned to target page
3481 * | Process memory dump |
3482 * : :
3483 * . .
3484 * : :
3485 * | |
3486 * +----------------------+
3487 *
3488 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3489 * NT_PRSINFO -> struct elf_prpsinfo
3490 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3491 *
3492 * Format follows System V format as close as possible. Current
3493 * version limitations are as follows:
3494 * - no floating point registers are dumped
3495 *
3496 * Function returns 0 in case of success, negative errno otherwise.
3497 *
3498 * TODO: make this work also during runtime: it should be
3499 * possible to force coredump from running process and then
3500 * continue processing. For example qemu could set up SIGUSR2
3501 * handler (provided that target process haven't registered
3502 * handler for that) that does the dump when signal is received.
3503 */
3504 static int elf_core_dump(int signr, const CPUArchState *env)
3505 {
3506 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3507 const TaskState *ts = (const TaskState *)cpu->opaque;
3508 struct vm_area_struct *vma = NULL;
3509 char corefile[PATH_MAX];
3510 struct elf_note_info info;
3511 struct elfhdr elf;
3512 struct elf_phdr phdr;
3513 struct rlimit dumpsize;
3514 struct mm_struct *mm = NULL;
3515 off_t offset = 0, data_offset = 0;
3516 int segs = 0;
3517 int fd = -1;
3518
3519 init_note_info(&info);
3520
3521 errno = 0;
3522 getrlimit(RLIMIT_CORE, &dumpsize);
3523 if (dumpsize.rlim_cur == 0)
3524 return 0;
3525
3526 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3527 return (-errno);
3528
3529 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3530 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3531 return (-errno);
3532
3533 /*
3534 * Walk through target process memory mappings and
3535 * set up structure containing this information. After
3536 * this point vma_xxx functions can be used.
3537 */
3538 if ((mm = vma_init()) == NULL)
3539 goto out;
3540
3541 walk_memory_regions(mm, vma_walker);
3542 segs = vma_get_mapping_count(mm);
3543
3544 /*
3545 * Construct valid coredump ELF header. We also
3546 * add one more segment for notes.
3547 */
3548 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3549 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3550 goto out;
3551
3552 /* fill in the in-memory version of notes */
3553 if (fill_note_info(&info, signr, env) < 0)
3554 goto out;
3555
3556 offset += sizeof (elf); /* elf header */
3557 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3558
3559 /* write out notes program header */
3560 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3561
3562 offset += info.notes_size;
3563 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3564 goto out;
3565
3566 /*
3567 * ELF specification wants data to start at page boundary so
3568 * we align it here.
3569 */
3570 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3571
3572 /*
3573 * Write program headers for memory regions mapped in
3574 * the target process.
3575 */
3576 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3577 (void) memset(&phdr, 0, sizeof (phdr));
3578
3579 phdr.p_type = PT_LOAD;
3580 phdr.p_offset = offset;
3581 phdr.p_vaddr = vma->vma_start;
3582 phdr.p_paddr = 0;
3583 phdr.p_filesz = vma_dump_size(vma);
3584 offset += phdr.p_filesz;
3585 phdr.p_memsz = vma->vma_end - vma->vma_start;
3586 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3587 if (vma->vma_flags & PROT_WRITE)
3588 phdr.p_flags |= PF_W;
3589 if (vma->vma_flags & PROT_EXEC)
3590 phdr.p_flags |= PF_X;
3591 phdr.p_align = ELF_EXEC_PAGESIZE;
3592
3593 bswap_phdr(&phdr, 1);
3594 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3595 goto out;
3596 }
3597 }
3598
3599 /*
3600 * Next we write notes just after program headers. No
3601 * alignment needed here.
3602 */
3603 if (write_note_info(&info, fd) < 0)
3604 goto out;
3605
3606 /* align data to page boundary */
3607 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3608 goto out;
3609
3610 /*
3611 * Finally we can dump process memory into corefile as well.
3612 */
3613 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3614 abi_ulong addr;
3615 abi_ulong end;
3616
3617 end = vma->vma_start + vma_dump_size(vma);
3618
3619 for (addr = vma->vma_start; addr < end;
3620 addr += TARGET_PAGE_SIZE) {
3621 char page[TARGET_PAGE_SIZE];
3622 int error;
3623
3624 /*
3625 * Read in page from target process memory and
3626 * write it to coredump file.
3627 */
3628 error = copy_from_user(page, addr, sizeof (page));
3629 if (error != 0) {
3630 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3631 addr);
3632 errno = -error;
3633 goto out;
3634 }
3635 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3636 goto out;
3637 }
3638 }
3639
3640 out:
3641 free_note_info(&info);
3642 if (mm != NULL)
3643 vma_delete(mm);
3644 (void) close(fd);
3645
3646 if (errno != 0)
3647 return (-errno);
3648 return (0);
3649 }
3650 #endif /* USE_ELF_CORE_DUMP */
3651
3652 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3653 {
3654 init_thread(regs, infop);
3655 }