]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
linux-user: Correct DLINFO_ITEMS
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15
16 #include "qemu.h"
17 #include "disas/disas.h"
18
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27
28 #define ELF_OSABI ELFOSABI_SYSV
29
30 /* from personality.h */
31
32 /*
33 * Flags for bug emulation.
34 *
35 * These occupy the top three bytes.
36 */
37 enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
49 };
50
51 /*
52 * Personality types.
53 *
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
56 */
57 enum {
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
81 };
82
83 /*
84 * Return the base personality without flags.
85 */
86 #define personality(pers) (pers & PER_MASK)
87
88 /* this flag is uneffective under linux too, should be deleted */
89 #ifndef MAP_DENYWRITE
90 #define MAP_DENYWRITE 0
91 #endif
92
93 /* should probably go in elf.h */
94 #ifndef ELIBBAD
95 #define ELIBBAD 80
96 #endif
97
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA ELFDATA2MSB
100 #else
101 #define ELF_DATA ELFDATA2LSB
102 #endif
103
104 #ifdef TARGET_ABI_MIPSN32
105 typedef abi_ullong target_elf_greg_t;
106 #define tswapreg(ptr) tswap64(ptr)
107 #else
108 typedef abi_ulong target_elf_greg_t;
109 #define tswapreg(ptr) tswapal(ptr)
110 #endif
111
112 #ifdef USE_UID16
113 typedef abi_ushort target_uid_t;
114 typedef abi_ushort target_gid_t;
115 #else
116 typedef abi_uint target_uid_t;
117 typedef abi_uint target_gid_t;
118 #endif
119 typedef abi_int target_pid_t;
120
121 #ifdef TARGET_I386
122
123 #define ELF_PLATFORM get_elf_platform()
124
125 static const char *get_elf_platform(void)
126 {
127 static char elf_platform[] = "i386";
128 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
129 if (family > 6)
130 family = 6;
131 if (family >= 3)
132 elf_platform[1] = '0' + family;
133 return elf_platform;
134 }
135
136 #define ELF_HWCAP get_elf_hwcap()
137
138 static uint32_t get_elf_hwcap(void)
139 {
140 X86CPU *cpu = X86_CPU(thread_cpu);
141
142 return cpu->env.features[FEAT_1_EDX];
143 }
144
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
148
149 #define ELF_CLASS ELFCLASS64
150 #define ELF_ARCH EM_X86_64
151
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154 regs->rax = 0;
155 regs->rsp = infop->start_stack;
156 regs->rip = infop->entry;
157 }
158
159 #define ELF_NREG 27
160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
161
162 /*
163 * Note that ELF_NREG should be 29 as there should be place for
164 * TRAPNO and ERR "registers" as well but linux doesn't dump
165 * those.
166 *
167 * See linux kernel: arch/x86/include/asm/elf.h
168 */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171 (*regs)[0] = env->regs[15];
172 (*regs)[1] = env->regs[14];
173 (*regs)[2] = env->regs[13];
174 (*regs)[3] = env->regs[12];
175 (*regs)[4] = env->regs[R_EBP];
176 (*regs)[5] = env->regs[R_EBX];
177 (*regs)[6] = env->regs[11];
178 (*regs)[7] = env->regs[10];
179 (*regs)[8] = env->regs[9];
180 (*regs)[9] = env->regs[8];
181 (*regs)[10] = env->regs[R_EAX];
182 (*regs)[11] = env->regs[R_ECX];
183 (*regs)[12] = env->regs[R_EDX];
184 (*regs)[13] = env->regs[R_ESI];
185 (*regs)[14] = env->regs[R_EDI];
186 (*regs)[15] = env->regs[R_EAX]; /* XXX */
187 (*regs)[16] = env->eip;
188 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189 (*regs)[18] = env->eflags;
190 (*regs)[19] = env->regs[R_ESP];
191 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
198 }
199
200 #else
201
202 #define ELF_START_MMAP 0x80000000
203
204 /*
205 * This is used to ensure we don't load something for the wrong architecture.
206 */
207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208
209 /*
210 * These are used to set parameters in the core dumps.
211 */
212 #define ELF_CLASS ELFCLASS32
213 #define ELF_ARCH EM_386
214
215 static inline void init_thread(struct target_pt_regs *regs,
216 struct image_info *infop)
217 {
218 regs->esp = infop->start_stack;
219 regs->eip = infop->entry;
220
221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222 starts %edx contains a pointer to a function which might be
223 registered using `atexit'. This provides a mean for the
224 dynamic linker to call DT_FINI functions for shared libraries
225 that have been loaded before the code runs.
226
227 A value of 0 tells we have no such handler. */
228 regs->edx = 0;
229 }
230
231 #define ELF_NREG 17
232 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
233
234 /*
235 * Note that ELF_NREG should be 19 as there should be place for
236 * TRAPNO and ERR "registers" as well but linux doesn't dump
237 * those.
238 *
239 * See linux kernel: arch/x86/include/asm/elf.h
240 */
241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
242 {
243 (*regs)[0] = env->regs[R_EBX];
244 (*regs)[1] = env->regs[R_ECX];
245 (*regs)[2] = env->regs[R_EDX];
246 (*regs)[3] = env->regs[R_ESI];
247 (*regs)[4] = env->regs[R_EDI];
248 (*regs)[5] = env->regs[R_EBP];
249 (*regs)[6] = env->regs[R_EAX];
250 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254 (*regs)[11] = env->regs[R_EAX]; /* XXX */
255 (*regs)[12] = env->eip;
256 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257 (*regs)[14] = env->eflags;
258 (*regs)[15] = env->regs[R_ESP];
259 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
260 }
261 #endif
262
263 #define USE_ELF_CORE_DUMP
264 #define ELF_EXEC_PAGESIZE 4096
265
266 #endif
267
268 #ifdef TARGET_ARM
269
270 #define ELF_START_MMAP 0x80000000
271
272 #define elf_check_arch(x) ((x) == ELF_MACHINE)
273
274 #define ELF_ARCH ELF_MACHINE
275
276 #ifdef TARGET_AARCH64
277 #define ELF_CLASS ELFCLASS64
278 #else
279 #define ELF_CLASS ELFCLASS32
280 #endif
281
282 static inline void init_thread(struct target_pt_regs *regs,
283 struct image_info *infop)
284 {
285 abi_long stack = infop->start_stack;
286 memset(regs, 0, sizeof(*regs));
287
288 #ifdef TARGET_AARCH64
289 regs->pc = infop->entry & ~0x3ULL;
290 regs->sp = stack;
291 #else
292 regs->ARM_cpsr = 0x10;
293 if (infop->entry & 1)
294 regs->ARM_cpsr |= CPSR_T;
295 regs->ARM_pc = infop->entry & 0xfffffffe;
296 regs->ARM_sp = infop->start_stack;
297 /* FIXME - what to for failure of get_user()? */
298 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
299 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
300 /* XXX: it seems that r0 is zeroed after ! */
301 regs->ARM_r0 = 0;
302 /* For uClinux PIC binaries. */
303 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
304 regs->ARM_r10 = infop->start_data;
305 #endif
306 }
307
308 #define ELF_NREG 18
309 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
310
311 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
312 {
313 (*regs)[0] = tswapreg(env->regs[0]);
314 (*regs)[1] = tswapreg(env->regs[1]);
315 (*regs)[2] = tswapreg(env->regs[2]);
316 (*regs)[3] = tswapreg(env->regs[3]);
317 (*regs)[4] = tswapreg(env->regs[4]);
318 (*regs)[5] = tswapreg(env->regs[5]);
319 (*regs)[6] = tswapreg(env->regs[6]);
320 (*regs)[7] = tswapreg(env->regs[7]);
321 (*regs)[8] = tswapreg(env->regs[8]);
322 (*regs)[9] = tswapreg(env->regs[9]);
323 (*regs)[10] = tswapreg(env->regs[10]);
324 (*regs)[11] = tswapreg(env->regs[11]);
325 (*regs)[12] = tswapreg(env->regs[12]);
326 (*regs)[13] = tswapreg(env->regs[13]);
327 (*regs)[14] = tswapreg(env->regs[14]);
328 (*regs)[15] = tswapreg(env->regs[15]);
329
330 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
331 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
332 }
333
334 #define USE_ELF_CORE_DUMP
335 #define ELF_EXEC_PAGESIZE 4096
336
337 enum
338 {
339 ARM_HWCAP_ARM_SWP = 1 << 0,
340 ARM_HWCAP_ARM_HALF = 1 << 1,
341 ARM_HWCAP_ARM_THUMB = 1 << 2,
342 ARM_HWCAP_ARM_26BIT = 1 << 3,
343 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
344 ARM_HWCAP_ARM_FPA = 1 << 5,
345 ARM_HWCAP_ARM_VFP = 1 << 6,
346 ARM_HWCAP_ARM_EDSP = 1 << 7,
347 ARM_HWCAP_ARM_JAVA = 1 << 8,
348 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
349 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
350 ARM_HWCAP_ARM_NEON = 1 << 11,
351 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
352 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
353 };
354
355 #ifndef TARGET_AARCH64
356 /* The commpage only exists for 32 bit kernels */
357
358 #define TARGET_HAS_VALIDATE_GUEST_SPACE
359 /* Return 1 if the proposed guest space is suitable for the guest.
360 * Return 0 if the proposed guest space isn't suitable, but another
361 * address space should be tried.
362 * Return -1 if there is no way the proposed guest space can be
363 * valid regardless of the base.
364 * The guest code may leave a page mapped and populate it if the
365 * address is suitable.
366 */
367 static int validate_guest_space(unsigned long guest_base,
368 unsigned long guest_size)
369 {
370 unsigned long real_start, test_page_addr;
371
372 /* We need to check that we can force a fault on access to the
373 * commpage at 0xffff0fxx
374 */
375 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
376
377 /* If the commpage lies within the already allocated guest space,
378 * then there is no way we can allocate it.
379 */
380 if (test_page_addr >= guest_base
381 && test_page_addr <= (guest_base + guest_size)) {
382 return -1;
383 }
384
385 /* Note it needs to be writeable to let us initialise it */
386 real_start = (unsigned long)
387 mmap((void *)test_page_addr, qemu_host_page_size,
388 PROT_READ | PROT_WRITE,
389 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
390
391 /* If we can't map it then try another address */
392 if (real_start == -1ul) {
393 return 0;
394 }
395
396 if (real_start != test_page_addr) {
397 /* OS didn't put the page where we asked - unmap and reject */
398 munmap((void *)real_start, qemu_host_page_size);
399 return 0;
400 }
401
402 /* Leave the page mapped
403 * Populate it (mmap should have left it all 0'd)
404 */
405
406 /* Kernel helper versions */
407 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
408
409 /* Now it's populated make it RO */
410 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
411 perror("Protecting guest commpage");
412 exit(-1);
413 }
414
415 return 1; /* All good */
416 }
417 #endif
418
419 #define ELF_HWCAP get_elf_hwcap()
420
421 static uint32_t get_elf_hwcap(void)
422 {
423 ARMCPU *cpu = ARM_CPU(thread_cpu);
424 uint32_t hwcaps = 0;
425
426 hwcaps |= ARM_HWCAP_ARM_SWP;
427 hwcaps |= ARM_HWCAP_ARM_HALF;
428 hwcaps |= ARM_HWCAP_ARM_THUMB;
429 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
430 hwcaps |= ARM_HWCAP_ARM_FPA;
431
432 /* probe for the extra features */
433 #define GET_FEATURE(feat, hwcap) \
434 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440 GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16);
441 #undef GET_FEATURE
442
443 return hwcaps;
444 }
445
446 #endif
447
448 #ifdef TARGET_UNICORE32
449
450 #define ELF_START_MMAP 0x80000000
451
452 #define elf_check_arch(x) ((x) == EM_UNICORE32)
453
454 #define ELF_CLASS ELFCLASS32
455 #define ELF_DATA ELFDATA2LSB
456 #define ELF_ARCH EM_UNICORE32
457
458 static inline void init_thread(struct target_pt_regs *regs,
459 struct image_info *infop)
460 {
461 abi_long stack = infop->start_stack;
462 memset(regs, 0, sizeof(*regs));
463 regs->UC32_REG_asr = 0x10;
464 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
465 regs->UC32_REG_sp = infop->start_stack;
466 /* FIXME - what to for failure of get_user()? */
467 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
468 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
469 /* XXX: it seems that r0 is zeroed after ! */
470 regs->UC32_REG_00 = 0;
471 }
472
473 #define ELF_NREG 34
474 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
475
476 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
477 {
478 (*regs)[0] = env->regs[0];
479 (*regs)[1] = env->regs[1];
480 (*regs)[2] = env->regs[2];
481 (*regs)[3] = env->regs[3];
482 (*regs)[4] = env->regs[4];
483 (*regs)[5] = env->regs[5];
484 (*regs)[6] = env->regs[6];
485 (*regs)[7] = env->regs[7];
486 (*regs)[8] = env->regs[8];
487 (*regs)[9] = env->regs[9];
488 (*regs)[10] = env->regs[10];
489 (*regs)[11] = env->regs[11];
490 (*regs)[12] = env->regs[12];
491 (*regs)[13] = env->regs[13];
492 (*regs)[14] = env->regs[14];
493 (*regs)[15] = env->regs[15];
494 (*regs)[16] = env->regs[16];
495 (*regs)[17] = env->regs[17];
496 (*regs)[18] = env->regs[18];
497 (*regs)[19] = env->regs[19];
498 (*regs)[20] = env->regs[20];
499 (*regs)[21] = env->regs[21];
500 (*regs)[22] = env->regs[22];
501 (*regs)[23] = env->regs[23];
502 (*regs)[24] = env->regs[24];
503 (*regs)[25] = env->regs[25];
504 (*regs)[26] = env->regs[26];
505 (*regs)[27] = env->regs[27];
506 (*regs)[28] = env->regs[28];
507 (*regs)[29] = env->regs[29];
508 (*regs)[30] = env->regs[30];
509 (*regs)[31] = env->regs[31];
510
511 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
512 (*regs)[33] = env->regs[0]; /* XXX */
513 }
514
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE 4096
517
518 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
519
520 #endif
521
522 #ifdef TARGET_SPARC
523 #ifdef TARGET_SPARC64
524
525 #define ELF_START_MMAP 0x80000000
526 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
527 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
528 #ifndef TARGET_ABI32
529 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
530 #else
531 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
532 #endif
533
534 #define ELF_CLASS ELFCLASS64
535 #define ELF_ARCH EM_SPARCV9
536
537 #define STACK_BIAS 2047
538
539 static inline void init_thread(struct target_pt_regs *regs,
540 struct image_info *infop)
541 {
542 #ifndef TARGET_ABI32
543 regs->tstate = 0;
544 #endif
545 regs->pc = infop->entry;
546 regs->npc = regs->pc + 4;
547 regs->y = 0;
548 #ifdef TARGET_ABI32
549 regs->u_regs[14] = infop->start_stack - 16 * 4;
550 #else
551 if (personality(infop->personality) == PER_LINUX32)
552 regs->u_regs[14] = infop->start_stack - 16 * 4;
553 else
554 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
555 #endif
556 }
557
558 #else
559 #define ELF_START_MMAP 0x80000000
560 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
561 | HWCAP_SPARC_MULDIV)
562 #define elf_check_arch(x) ( (x) == EM_SPARC )
563
564 #define ELF_CLASS ELFCLASS32
565 #define ELF_ARCH EM_SPARC
566
567 static inline void init_thread(struct target_pt_regs *regs,
568 struct image_info *infop)
569 {
570 regs->psr = 0;
571 regs->pc = infop->entry;
572 regs->npc = regs->pc + 4;
573 regs->y = 0;
574 regs->u_regs[14] = infop->start_stack - 16 * 4;
575 }
576
577 #endif
578 #endif
579
580 #ifdef TARGET_PPC
581
582 #define ELF_START_MMAP 0x80000000
583
584 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
585
586 #define elf_check_arch(x) ( (x) == EM_PPC64 )
587
588 #define ELF_CLASS ELFCLASS64
589
590 #else
591
592 #define elf_check_arch(x) ( (x) == EM_PPC )
593
594 #define ELF_CLASS ELFCLASS32
595
596 #endif
597
598 #define ELF_ARCH EM_PPC
599
600 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
601 See arch/powerpc/include/asm/cputable.h. */
602 enum {
603 QEMU_PPC_FEATURE_32 = 0x80000000,
604 QEMU_PPC_FEATURE_64 = 0x40000000,
605 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
606 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
607 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
608 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
609 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
610 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
611 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
612 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
613 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
614 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
615 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
616 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
617 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
618 QEMU_PPC_FEATURE_CELL = 0x00010000,
619 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
620 QEMU_PPC_FEATURE_SMT = 0x00004000,
621 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
622 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
623 QEMU_PPC_FEATURE_PA6T = 0x00000800,
624 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
625 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
626 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
627 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
628 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
629
630 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
631 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
632 };
633
634 #define ELF_HWCAP get_elf_hwcap()
635
636 static uint32_t get_elf_hwcap(void)
637 {
638 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
639 uint32_t features = 0;
640
641 /* We don't have to be terribly complete here; the high points are
642 Altivec/FP/SPE support. Anything else is just a bonus. */
643 #define GET_FEATURE(flag, feature) \
644 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
645 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
646 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
647 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
648 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
649 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
650 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
651 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
652 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
653 #undef GET_FEATURE
654
655 return features;
656 }
657
658 /*
659 * The requirements here are:
660 * - keep the final alignment of sp (sp & 0xf)
661 * - make sure the 32-bit value at the first 16 byte aligned position of
662 * AUXV is greater than 16 for glibc compatibility.
663 * AT_IGNOREPPC is used for that.
664 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
665 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
666 */
667 #define DLINFO_ARCH_ITEMS 5
668 #define ARCH_DLINFO \
669 do { \
670 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
671 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
672 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
673 /* \
674 * Now handle glibc compatibility. \
675 */ \
676 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
677 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
678 } while (0)
679
680 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
681 {
682 _regs->gpr[1] = infop->start_stack;
683 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
684 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
685 infop->entry = ldq_raw(infop->entry) + infop->load_bias;
686 #endif
687 _regs->nip = infop->entry;
688 }
689
690 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
691 #define ELF_NREG 48
692 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
693
694 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
695 {
696 int i;
697 target_ulong ccr = 0;
698
699 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
700 (*regs)[i] = tswapreg(env->gpr[i]);
701 }
702
703 (*regs)[32] = tswapreg(env->nip);
704 (*regs)[33] = tswapreg(env->msr);
705 (*regs)[35] = tswapreg(env->ctr);
706 (*regs)[36] = tswapreg(env->lr);
707 (*regs)[37] = tswapreg(env->xer);
708
709 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
710 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
711 }
712 (*regs)[38] = tswapreg(ccr);
713 }
714
715 #define USE_ELF_CORE_DUMP
716 #define ELF_EXEC_PAGESIZE 4096
717
718 #endif
719
720 #ifdef TARGET_MIPS
721
722 #define ELF_START_MMAP 0x80000000
723
724 #define elf_check_arch(x) ( (x) == EM_MIPS )
725
726 #ifdef TARGET_MIPS64
727 #define ELF_CLASS ELFCLASS64
728 #else
729 #define ELF_CLASS ELFCLASS32
730 #endif
731 #define ELF_ARCH EM_MIPS
732
733 static inline void init_thread(struct target_pt_regs *regs,
734 struct image_info *infop)
735 {
736 regs->cp0_status = 2 << CP0St_KSU;
737 regs->cp0_epc = infop->entry;
738 regs->regs[29] = infop->start_stack;
739 }
740
741 /* See linux kernel: arch/mips/include/asm/elf.h. */
742 #define ELF_NREG 45
743 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
744
745 /* See linux kernel: arch/mips/include/asm/reg.h. */
746 enum {
747 #ifdef TARGET_MIPS64
748 TARGET_EF_R0 = 0,
749 #else
750 TARGET_EF_R0 = 6,
751 #endif
752 TARGET_EF_R26 = TARGET_EF_R0 + 26,
753 TARGET_EF_R27 = TARGET_EF_R0 + 27,
754 TARGET_EF_LO = TARGET_EF_R0 + 32,
755 TARGET_EF_HI = TARGET_EF_R0 + 33,
756 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
757 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
758 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
759 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
760 };
761
762 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
763 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
764 {
765 int i;
766
767 for (i = 0; i < TARGET_EF_R0; i++) {
768 (*regs)[i] = 0;
769 }
770 (*regs)[TARGET_EF_R0] = 0;
771
772 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
773 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
774 }
775
776 (*regs)[TARGET_EF_R26] = 0;
777 (*regs)[TARGET_EF_R27] = 0;
778 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
779 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
780 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
781 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
782 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
783 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
784 }
785
786 #define USE_ELF_CORE_DUMP
787 #define ELF_EXEC_PAGESIZE 4096
788
789 #endif /* TARGET_MIPS */
790
791 #ifdef TARGET_MICROBLAZE
792
793 #define ELF_START_MMAP 0x80000000
794
795 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
796
797 #define ELF_CLASS ELFCLASS32
798 #define ELF_ARCH EM_MICROBLAZE
799
800 static inline void init_thread(struct target_pt_regs *regs,
801 struct image_info *infop)
802 {
803 regs->pc = infop->entry;
804 regs->r1 = infop->start_stack;
805
806 }
807
808 #define ELF_EXEC_PAGESIZE 4096
809
810 #define USE_ELF_CORE_DUMP
811 #define ELF_NREG 38
812 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
813
814 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
815 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
816 {
817 int i, pos = 0;
818
819 for (i = 0; i < 32; i++) {
820 (*regs)[pos++] = tswapreg(env->regs[i]);
821 }
822
823 for (i = 0; i < 6; i++) {
824 (*regs)[pos++] = tswapreg(env->sregs[i]);
825 }
826 }
827
828 #endif /* TARGET_MICROBLAZE */
829
830 #ifdef TARGET_OPENRISC
831
832 #define ELF_START_MMAP 0x08000000
833
834 #define elf_check_arch(x) ((x) == EM_OPENRISC)
835
836 #define ELF_ARCH EM_OPENRISC
837 #define ELF_CLASS ELFCLASS32
838 #define ELF_DATA ELFDATA2MSB
839
840 static inline void init_thread(struct target_pt_regs *regs,
841 struct image_info *infop)
842 {
843 regs->pc = infop->entry;
844 regs->gpr[1] = infop->start_stack;
845 }
846
847 #define USE_ELF_CORE_DUMP
848 #define ELF_EXEC_PAGESIZE 8192
849
850 /* See linux kernel arch/openrisc/include/asm/elf.h. */
851 #define ELF_NREG 34 /* gprs and pc, sr */
852 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
853
854 static void elf_core_copy_regs(target_elf_gregset_t *regs,
855 const CPUOpenRISCState *env)
856 {
857 int i;
858
859 for (i = 0; i < 32; i++) {
860 (*regs)[i] = tswapreg(env->gpr[i]);
861 }
862
863 (*regs)[32] = tswapreg(env->pc);
864 (*regs)[33] = tswapreg(env->sr);
865 }
866 #define ELF_HWCAP 0
867 #define ELF_PLATFORM NULL
868
869 #endif /* TARGET_OPENRISC */
870
871 #ifdef TARGET_SH4
872
873 #define ELF_START_MMAP 0x80000000
874
875 #define elf_check_arch(x) ( (x) == EM_SH )
876
877 #define ELF_CLASS ELFCLASS32
878 #define ELF_ARCH EM_SH
879
880 static inline void init_thread(struct target_pt_regs *regs,
881 struct image_info *infop)
882 {
883 /* Check other registers XXXXX */
884 regs->pc = infop->entry;
885 regs->regs[15] = infop->start_stack;
886 }
887
888 /* See linux kernel: arch/sh/include/asm/elf.h. */
889 #define ELF_NREG 23
890 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
891
892 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
893 enum {
894 TARGET_REG_PC = 16,
895 TARGET_REG_PR = 17,
896 TARGET_REG_SR = 18,
897 TARGET_REG_GBR = 19,
898 TARGET_REG_MACH = 20,
899 TARGET_REG_MACL = 21,
900 TARGET_REG_SYSCALL = 22
901 };
902
903 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
904 const CPUSH4State *env)
905 {
906 int i;
907
908 for (i = 0; i < 16; i++) {
909 (*regs[i]) = tswapreg(env->gregs[i]);
910 }
911
912 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
913 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
914 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
915 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
916 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
917 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
918 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
919 }
920
921 #define USE_ELF_CORE_DUMP
922 #define ELF_EXEC_PAGESIZE 4096
923
924 #endif
925
926 #ifdef TARGET_CRIS
927
928 #define ELF_START_MMAP 0x80000000
929
930 #define elf_check_arch(x) ( (x) == EM_CRIS )
931
932 #define ELF_CLASS ELFCLASS32
933 #define ELF_ARCH EM_CRIS
934
935 static inline void init_thread(struct target_pt_regs *regs,
936 struct image_info *infop)
937 {
938 regs->erp = infop->entry;
939 }
940
941 #define ELF_EXEC_PAGESIZE 8192
942
943 #endif
944
945 #ifdef TARGET_M68K
946
947 #define ELF_START_MMAP 0x80000000
948
949 #define elf_check_arch(x) ( (x) == EM_68K )
950
951 #define ELF_CLASS ELFCLASS32
952 #define ELF_ARCH EM_68K
953
954 /* ??? Does this need to do anything?
955 #define ELF_PLAT_INIT(_r) */
956
957 static inline void init_thread(struct target_pt_regs *regs,
958 struct image_info *infop)
959 {
960 regs->usp = infop->start_stack;
961 regs->sr = 0;
962 regs->pc = infop->entry;
963 }
964
965 /* See linux kernel: arch/m68k/include/asm/elf.h. */
966 #define ELF_NREG 20
967 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
968
969 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
970 {
971 (*regs)[0] = tswapreg(env->dregs[1]);
972 (*regs)[1] = tswapreg(env->dregs[2]);
973 (*regs)[2] = tswapreg(env->dregs[3]);
974 (*regs)[3] = tswapreg(env->dregs[4]);
975 (*regs)[4] = tswapreg(env->dregs[5]);
976 (*regs)[5] = tswapreg(env->dregs[6]);
977 (*regs)[6] = tswapreg(env->dregs[7]);
978 (*regs)[7] = tswapreg(env->aregs[0]);
979 (*regs)[8] = tswapreg(env->aregs[1]);
980 (*regs)[9] = tswapreg(env->aregs[2]);
981 (*regs)[10] = tswapreg(env->aregs[3]);
982 (*regs)[11] = tswapreg(env->aregs[4]);
983 (*regs)[12] = tswapreg(env->aregs[5]);
984 (*regs)[13] = tswapreg(env->aregs[6]);
985 (*regs)[14] = tswapreg(env->dregs[0]);
986 (*regs)[15] = tswapreg(env->aregs[7]);
987 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
988 (*regs)[17] = tswapreg(env->sr);
989 (*regs)[18] = tswapreg(env->pc);
990 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
991 }
992
993 #define USE_ELF_CORE_DUMP
994 #define ELF_EXEC_PAGESIZE 8192
995
996 #endif
997
998 #ifdef TARGET_ALPHA
999
1000 #define ELF_START_MMAP (0x30000000000ULL)
1001
1002 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1003
1004 #define ELF_CLASS ELFCLASS64
1005 #define ELF_ARCH EM_ALPHA
1006
1007 static inline void init_thread(struct target_pt_regs *regs,
1008 struct image_info *infop)
1009 {
1010 regs->pc = infop->entry;
1011 regs->ps = 8;
1012 regs->usp = infop->start_stack;
1013 }
1014
1015 #define ELF_EXEC_PAGESIZE 8192
1016
1017 #endif /* TARGET_ALPHA */
1018
1019 #ifdef TARGET_S390X
1020
1021 #define ELF_START_MMAP (0x20000000000ULL)
1022
1023 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1024
1025 #define ELF_CLASS ELFCLASS64
1026 #define ELF_DATA ELFDATA2MSB
1027 #define ELF_ARCH EM_S390
1028
1029 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1030 {
1031 regs->psw.addr = infop->entry;
1032 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1033 regs->gprs[15] = infop->start_stack;
1034 }
1035
1036 #endif /* TARGET_S390X */
1037
1038 #ifndef ELF_PLATFORM
1039 #define ELF_PLATFORM (NULL)
1040 #endif
1041
1042 #ifndef ELF_HWCAP
1043 #define ELF_HWCAP 0
1044 #endif
1045
1046 #ifdef TARGET_ABI32
1047 #undef ELF_CLASS
1048 #define ELF_CLASS ELFCLASS32
1049 #undef bswaptls
1050 #define bswaptls(ptr) bswap32s(ptr)
1051 #endif
1052
1053 #include "elf.h"
1054
1055 struct exec
1056 {
1057 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1058 unsigned int a_text; /* length of text, in bytes */
1059 unsigned int a_data; /* length of data, in bytes */
1060 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1061 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1062 unsigned int a_entry; /* start address */
1063 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1064 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1065 };
1066
1067
1068 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1069 #define OMAGIC 0407
1070 #define NMAGIC 0410
1071 #define ZMAGIC 0413
1072 #define QMAGIC 0314
1073
1074 /* Necessary parameters */
1075 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1076 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1077 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1078
1079 #define DLINFO_ITEMS 14
1080
1081 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1082 {
1083 memcpy(to, from, n);
1084 }
1085
1086 #ifdef BSWAP_NEEDED
1087 static void bswap_ehdr(struct elfhdr *ehdr)
1088 {
1089 bswap16s(&ehdr->e_type); /* Object file type */
1090 bswap16s(&ehdr->e_machine); /* Architecture */
1091 bswap32s(&ehdr->e_version); /* Object file version */
1092 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1093 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1094 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1095 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1096 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1097 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1098 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1099 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1100 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1101 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1102 }
1103
1104 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1105 {
1106 int i;
1107 for (i = 0; i < phnum; ++i, ++phdr) {
1108 bswap32s(&phdr->p_type); /* Segment type */
1109 bswap32s(&phdr->p_flags); /* Segment flags */
1110 bswaptls(&phdr->p_offset); /* Segment file offset */
1111 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1112 bswaptls(&phdr->p_paddr); /* Segment physical address */
1113 bswaptls(&phdr->p_filesz); /* Segment size in file */
1114 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1115 bswaptls(&phdr->p_align); /* Segment alignment */
1116 }
1117 }
1118
1119 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1120 {
1121 int i;
1122 for (i = 0; i < shnum; ++i, ++shdr) {
1123 bswap32s(&shdr->sh_name);
1124 bswap32s(&shdr->sh_type);
1125 bswaptls(&shdr->sh_flags);
1126 bswaptls(&shdr->sh_addr);
1127 bswaptls(&shdr->sh_offset);
1128 bswaptls(&shdr->sh_size);
1129 bswap32s(&shdr->sh_link);
1130 bswap32s(&shdr->sh_info);
1131 bswaptls(&shdr->sh_addralign);
1132 bswaptls(&shdr->sh_entsize);
1133 }
1134 }
1135
1136 static void bswap_sym(struct elf_sym *sym)
1137 {
1138 bswap32s(&sym->st_name);
1139 bswaptls(&sym->st_value);
1140 bswaptls(&sym->st_size);
1141 bswap16s(&sym->st_shndx);
1142 }
1143 #else
1144 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1145 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1146 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1147 static inline void bswap_sym(struct elf_sym *sym) { }
1148 #endif
1149
1150 #ifdef USE_ELF_CORE_DUMP
1151 static int elf_core_dump(int, const CPUArchState *);
1152 #endif /* USE_ELF_CORE_DUMP */
1153 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1154
1155 /* Verify the portions of EHDR within E_IDENT for the target.
1156 This can be performed before bswapping the entire header. */
1157 static bool elf_check_ident(struct elfhdr *ehdr)
1158 {
1159 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1160 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1161 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1162 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1163 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1164 && ehdr->e_ident[EI_DATA] == ELF_DATA
1165 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1166 }
1167
1168 /* Verify the portions of EHDR outside of E_IDENT for the target.
1169 This has to wait until after bswapping the header. */
1170 static bool elf_check_ehdr(struct elfhdr *ehdr)
1171 {
1172 return (elf_check_arch(ehdr->e_machine)
1173 && ehdr->e_ehsize == sizeof(struct elfhdr)
1174 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1175 && ehdr->e_shentsize == sizeof(struct elf_shdr)
1176 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1177 }
1178
1179 /*
1180 * 'copy_elf_strings()' copies argument/envelope strings from user
1181 * memory to free pages in kernel mem. These are in a format ready
1182 * to be put directly into the top of new user memory.
1183 *
1184 */
1185 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1186 abi_ulong p)
1187 {
1188 char *tmp, *tmp1, *pag = NULL;
1189 int len, offset = 0;
1190
1191 if (!p) {
1192 return 0; /* bullet-proofing */
1193 }
1194 while (argc-- > 0) {
1195 tmp = argv[argc];
1196 if (!tmp) {
1197 fprintf(stderr, "VFS: argc is wrong");
1198 exit(-1);
1199 }
1200 tmp1 = tmp;
1201 while (*tmp++);
1202 len = tmp - tmp1;
1203 if (p < len) { /* this shouldn't happen - 128kB */
1204 return 0;
1205 }
1206 while (len) {
1207 --p; --tmp; --len;
1208 if (--offset < 0) {
1209 offset = p % TARGET_PAGE_SIZE;
1210 pag = (char *)page[p/TARGET_PAGE_SIZE];
1211 if (!pag) {
1212 pag = g_try_malloc0(TARGET_PAGE_SIZE);
1213 page[p/TARGET_PAGE_SIZE] = pag;
1214 if (!pag)
1215 return 0;
1216 }
1217 }
1218 if (len == 0 || offset == 0) {
1219 *(pag + offset) = *tmp;
1220 }
1221 else {
1222 int bytes_to_copy = (len > offset) ? offset : len;
1223 tmp -= bytes_to_copy;
1224 p -= bytes_to_copy;
1225 offset -= bytes_to_copy;
1226 len -= bytes_to_copy;
1227 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1228 }
1229 }
1230 }
1231 return p;
1232 }
1233
1234 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1235 struct image_info *info)
1236 {
1237 abi_ulong stack_base, size, error, guard;
1238 int i;
1239
1240 /* Create enough stack to hold everything. If we don't use
1241 it for args, we'll use it for something else. */
1242 size = guest_stack_size;
1243 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1244 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1245 }
1246 guard = TARGET_PAGE_SIZE;
1247 if (guard < qemu_real_host_page_size) {
1248 guard = qemu_real_host_page_size;
1249 }
1250
1251 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1252 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1253 if (error == -1) {
1254 perror("mmap stack");
1255 exit(-1);
1256 }
1257
1258 /* We reserve one extra page at the top of the stack as guard. */
1259 target_mprotect(error, guard, PROT_NONE);
1260
1261 info->stack_limit = error + guard;
1262 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1263 p += stack_base;
1264
1265 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1266 if (bprm->page[i]) {
1267 info->rss++;
1268 /* FIXME - check return value of memcpy_to_target() for failure */
1269 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1270 g_free(bprm->page[i]);
1271 }
1272 stack_base += TARGET_PAGE_SIZE;
1273 }
1274 return p;
1275 }
1276
1277 /* Map and zero the bss. We need to explicitly zero any fractional pages
1278 after the data section (i.e. bss). */
1279 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1280 {
1281 uintptr_t host_start, host_map_start, host_end;
1282
1283 last_bss = TARGET_PAGE_ALIGN(last_bss);
1284
1285 /* ??? There is confusion between qemu_real_host_page_size and
1286 qemu_host_page_size here and elsewhere in target_mmap, which
1287 may lead to the end of the data section mapping from the file
1288 not being mapped. At least there was an explicit test and
1289 comment for that here, suggesting that "the file size must
1290 be known". The comment probably pre-dates the introduction
1291 of the fstat system call in target_mmap which does in fact
1292 find out the size. What isn't clear is if the workaround
1293 here is still actually needed. For now, continue with it,
1294 but merge it with the "normal" mmap that would allocate the bss. */
1295
1296 host_start = (uintptr_t) g2h(elf_bss);
1297 host_end = (uintptr_t) g2h(last_bss);
1298 host_map_start = (host_start + qemu_real_host_page_size - 1);
1299 host_map_start &= -qemu_real_host_page_size;
1300
1301 if (host_map_start < host_end) {
1302 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1303 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1304 if (p == MAP_FAILED) {
1305 perror("cannot mmap brk");
1306 exit(-1);
1307 }
1308
1309 /* Since we didn't use target_mmap, make sure to record
1310 the validity of the pages with qemu. */
1311 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1312 }
1313
1314 if (host_start < host_map_start) {
1315 memset((void *)host_start, 0, host_map_start - host_start);
1316 }
1317 }
1318
1319 #ifdef CONFIG_USE_FDPIC
1320 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1321 {
1322 uint16_t n;
1323 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1324
1325 /* elf32_fdpic_loadseg */
1326 n = info->nsegs;
1327 while (n--) {
1328 sp -= 12;
1329 put_user_u32(loadsegs[n].addr, sp+0);
1330 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1331 put_user_u32(loadsegs[n].p_memsz, sp+8);
1332 }
1333
1334 /* elf32_fdpic_loadmap */
1335 sp -= 4;
1336 put_user_u16(0, sp+0); /* version */
1337 put_user_u16(info->nsegs, sp+2); /* nsegs */
1338
1339 info->personality = PER_LINUX_FDPIC;
1340 info->loadmap_addr = sp;
1341
1342 return sp;
1343 }
1344 #endif
1345
1346 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1347 struct elfhdr *exec,
1348 struct image_info *info,
1349 struct image_info *interp_info)
1350 {
1351 abi_ulong sp;
1352 abi_ulong sp_auxv;
1353 int size;
1354 int i;
1355 abi_ulong u_rand_bytes;
1356 uint8_t k_rand_bytes[16];
1357 abi_ulong u_platform;
1358 const char *k_platform;
1359 const int n = sizeof(elf_addr_t);
1360
1361 sp = p;
1362
1363 #ifdef CONFIG_USE_FDPIC
1364 /* Needs to be before we load the env/argc/... */
1365 if (elf_is_fdpic(exec)) {
1366 /* Need 4 byte alignment for these structs */
1367 sp &= ~3;
1368 sp = loader_build_fdpic_loadmap(info, sp);
1369 info->other_info = interp_info;
1370 if (interp_info) {
1371 interp_info->other_info = info;
1372 sp = loader_build_fdpic_loadmap(interp_info, sp);
1373 }
1374 }
1375 #endif
1376
1377 u_platform = 0;
1378 k_platform = ELF_PLATFORM;
1379 if (k_platform) {
1380 size_t len = strlen(k_platform) + 1;
1381 sp -= (len + n - 1) & ~(n - 1);
1382 u_platform = sp;
1383 /* FIXME - check return value of memcpy_to_target() for failure */
1384 memcpy_to_target(sp, k_platform, len);
1385 }
1386
1387 /*
1388 * Generate 16 random bytes for userspace PRNG seeding (not
1389 * cryptically secure but it's not the aim of QEMU).
1390 */
1391 srand((unsigned int) time(NULL));
1392 for (i = 0; i < 16; i++) {
1393 k_rand_bytes[i] = rand();
1394 }
1395 sp -= 16;
1396 u_rand_bytes = sp;
1397 /* FIXME - check return value of memcpy_to_target() for failure */
1398 memcpy_to_target(sp, k_rand_bytes, 16);
1399
1400 /*
1401 * Force 16 byte _final_ alignment here for generality.
1402 */
1403 sp = sp &~ (abi_ulong)15;
1404 size = (DLINFO_ITEMS + 1) * 2;
1405 if (k_platform)
1406 size += 2;
1407 #ifdef DLINFO_ARCH_ITEMS
1408 size += DLINFO_ARCH_ITEMS * 2;
1409 #endif
1410 size += envc + argc + 2;
1411 size += 1; /* argc itself */
1412 size *= n;
1413 if (size & 15)
1414 sp -= 16 - (size & 15);
1415
1416 /* This is correct because Linux defines
1417 * elf_addr_t as Elf32_Off / Elf64_Off
1418 */
1419 #define NEW_AUX_ENT(id, val) do { \
1420 sp -= n; put_user_ual(val, sp); \
1421 sp -= n; put_user_ual(id, sp); \
1422 } while(0)
1423
1424 sp_auxv = sp;
1425 NEW_AUX_ENT (AT_NULL, 0);
1426
1427 /* There must be exactly DLINFO_ITEMS entries here. */
1428 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1429 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1430 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1431 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1432 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1433 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1434 NEW_AUX_ENT(AT_ENTRY, info->entry);
1435 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1436 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1437 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1438 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1439 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1440 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1441 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1442
1443 if (k_platform)
1444 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1445 #ifdef ARCH_DLINFO
1446 /*
1447 * ARCH_DLINFO must come last so platform specific code can enforce
1448 * special alignment requirements on the AUXV if necessary (eg. PPC).
1449 */
1450 ARCH_DLINFO;
1451 #endif
1452 #undef NEW_AUX_ENT
1453
1454 info->saved_auxv = sp;
1455 info->auxv_len = sp_auxv - sp;
1456
1457 sp = loader_build_argptr(envc, argc, sp, p, 0);
1458 return sp;
1459 }
1460
1461 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1462 /* If the guest doesn't have a validation function just agree */
1463 static int validate_guest_space(unsigned long guest_base,
1464 unsigned long guest_size)
1465 {
1466 return 1;
1467 }
1468 #endif
1469
1470 unsigned long init_guest_space(unsigned long host_start,
1471 unsigned long host_size,
1472 unsigned long guest_start,
1473 bool fixed)
1474 {
1475 unsigned long current_start, real_start;
1476 int flags;
1477
1478 assert(host_start || host_size);
1479
1480 /* If just a starting address is given, then just verify that
1481 * address. */
1482 if (host_start && !host_size) {
1483 if (validate_guest_space(host_start, host_size) == 1) {
1484 return host_start;
1485 } else {
1486 return (unsigned long)-1;
1487 }
1488 }
1489
1490 /* Setup the initial flags and start address. */
1491 current_start = host_start & qemu_host_page_mask;
1492 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1493 if (fixed) {
1494 flags |= MAP_FIXED;
1495 }
1496
1497 /* Otherwise, a non-zero size region of memory needs to be mapped
1498 * and validated. */
1499 while (1) {
1500 unsigned long real_size = host_size;
1501
1502 /* Do not use mmap_find_vma here because that is limited to the
1503 * guest address space. We are going to make the
1504 * guest address space fit whatever we're given.
1505 */
1506 real_start = (unsigned long)
1507 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1508 if (real_start == (unsigned long)-1) {
1509 return (unsigned long)-1;
1510 }
1511
1512 /* Ensure the address is properly aligned. */
1513 if (real_start & ~qemu_host_page_mask) {
1514 munmap((void *)real_start, host_size);
1515 real_size = host_size + qemu_host_page_size;
1516 real_start = (unsigned long)
1517 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1518 if (real_start == (unsigned long)-1) {
1519 return (unsigned long)-1;
1520 }
1521 real_start = HOST_PAGE_ALIGN(real_start);
1522 }
1523
1524 /* Check to see if the address is valid. */
1525 if (!host_start || real_start == current_start) {
1526 int valid = validate_guest_space(real_start - guest_start,
1527 real_size);
1528 if (valid == 1) {
1529 break;
1530 } else if (valid == -1) {
1531 return (unsigned long)-1;
1532 }
1533 /* valid == 0, so try again. */
1534 }
1535
1536 /* That address didn't work. Unmap and try a different one.
1537 * The address the host picked because is typically right at
1538 * the top of the host address space and leaves the guest with
1539 * no usable address space. Resort to a linear search. We
1540 * already compensated for mmap_min_addr, so this should not
1541 * happen often. Probably means we got unlucky and host
1542 * address space randomization put a shared library somewhere
1543 * inconvenient.
1544 */
1545 munmap((void *)real_start, host_size);
1546 current_start += qemu_host_page_size;
1547 if (host_start == current_start) {
1548 /* Theoretically possible if host doesn't have any suitably
1549 * aligned areas. Normally the first mmap will fail.
1550 */
1551 return (unsigned long)-1;
1552 }
1553 }
1554
1555 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1556
1557 return real_start;
1558 }
1559
1560 static void probe_guest_base(const char *image_name,
1561 abi_ulong loaddr, abi_ulong hiaddr)
1562 {
1563 /* Probe for a suitable guest base address, if the user has not set
1564 * it explicitly, and set guest_base appropriately.
1565 * In case of error we will print a suitable message and exit.
1566 */
1567 #if defined(CONFIG_USE_GUEST_BASE)
1568 const char *errmsg;
1569 if (!have_guest_base && !reserved_va) {
1570 unsigned long host_start, real_start, host_size;
1571
1572 /* Round addresses to page boundaries. */
1573 loaddr &= qemu_host_page_mask;
1574 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1575
1576 if (loaddr < mmap_min_addr) {
1577 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1578 } else {
1579 host_start = loaddr;
1580 if (host_start != loaddr) {
1581 errmsg = "Address overflow loading ELF binary";
1582 goto exit_errmsg;
1583 }
1584 }
1585 host_size = hiaddr - loaddr;
1586
1587 /* Setup the initial guest memory space with ranges gleaned from
1588 * the ELF image that is being loaded.
1589 */
1590 real_start = init_guest_space(host_start, host_size, loaddr, false);
1591 if (real_start == (unsigned long)-1) {
1592 errmsg = "Unable to find space for application";
1593 goto exit_errmsg;
1594 }
1595 guest_base = real_start - loaddr;
1596
1597 qemu_log("Relocating guest address space from 0x"
1598 TARGET_ABI_FMT_lx " to 0x%lx\n",
1599 loaddr, real_start);
1600 }
1601 return;
1602
1603 exit_errmsg:
1604 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1605 exit(-1);
1606 #endif
1607 }
1608
1609
1610 /* Load an ELF image into the address space.
1611
1612 IMAGE_NAME is the filename of the image, to use in error messages.
1613 IMAGE_FD is the open file descriptor for the image.
1614
1615 BPRM_BUF is a copy of the beginning of the file; this of course
1616 contains the elf file header at offset 0. It is assumed that this
1617 buffer is sufficiently aligned to present no problems to the host
1618 in accessing data at aligned offsets within the buffer.
1619
1620 On return: INFO values will be filled in, as necessary or available. */
1621
1622 static void load_elf_image(const char *image_name, int image_fd,
1623 struct image_info *info, char **pinterp_name,
1624 char bprm_buf[BPRM_BUF_SIZE])
1625 {
1626 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1627 struct elf_phdr *phdr;
1628 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1629 int i, retval;
1630 const char *errmsg;
1631
1632 /* First of all, some simple consistency checks */
1633 errmsg = "Invalid ELF image for this architecture";
1634 if (!elf_check_ident(ehdr)) {
1635 goto exit_errmsg;
1636 }
1637 bswap_ehdr(ehdr);
1638 if (!elf_check_ehdr(ehdr)) {
1639 goto exit_errmsg;
1640 }
1641
1642 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1643 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1644 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1645 } else {
1646 phdr = (struct elf_phdr *) alloca(i);
1647 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1648 if (retval != i) {
1649 goto exit_read;
1650 }
1651 }
1652 bswap_phdr(phdr, ehdr->e_phnum);
1653
1654 #ifdef CONFIG_USE_FDPIC
1655 info->nsegs = 0;
1656 info->pt_dynamic_addr = 0;
1657 #endif
1658
1659 /* Find the maximum size of the image and allocate an appropriate
1660 amount of memory to handle that. */
1661 loaddr = -1, hiaddr = 0;
1662 for (i = 0; i < ehdr->e_phnum; ++i) {
1663 if (phdr[i].p_type == PT_LOAD) {
1664 abi_ulong a = phdr[i].p_vaddr;
1665 if (a < loaddr) {
1666 loaddr = a;
1667 }
1668 a += phdr[i].p_memsz;
1669 if (a > hiaddr) {
1670 hiaddr = a;
1671 }
1672 #ifdef CONFIG_USE_FDPIC
1673 ++info->nsegs;
1674 #endif
1675 }
1676 }
1677
1678 load_addr = loaddr;
1679 if (ehdr->e_type == ET_DYN) {
1680 /* The image indicates that it can be loaded anywhere. Find a
1681 location that can hold the memory space required. If the
1682 image is pre-linked, LOADDR will be non-zero. Since we do
1683 not supply MAP_FIXED here we'll use that address if and
1684 only if it remains available. */
1685 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1686 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1687 -1, 0);
1688 if (load_addr == -1) {
1689 goto exit_perror;
1690 }
1691 } else if (pinterp_name != NULL) {
1692 /* This is the main executable. Make sure that the low
1693 address does not conflict with MMAP_MIN_ADDR or the
1694 QEMU application itself. */
1695 probe_guest_base(image_name, loaddr, hiaddr);
1696 }
1697 load_bias = load_addr - loaddr;
1698
1699 #ifdef CONFIG_USE_FDPIC
1700 {
1701 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1702 g_malloc(sizeof(*loadsegs) * info->nsegs);
1703
1704 for (i = 0; i < ehdr->e_phnum; ++i) {
1705 switch (phdr[i].p_type) {
1706 case PT_DYNAMIC:
1707 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1708 break;
1709 case PT_LOAD:
1710 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1711 loadsegs->p_vaddr = phdr[i].p_vaddr;
1712 loadsegs->p_memsz = phdr[i].p_memsz;
1713 ++loadsegs;
1714 break;
1715 }
1716 }
1717 }
1718 #endif
1719
1720 info->load_bias = load_bias;
1721 info->load_addr = load_addr;
1722 info->entry = ehdr->e_entry + load_bias;
1723 info->start_code = -1;
1724 info->end_code = 0;
1725 info->start_data = -1;
1726 info->end_data = 0;
1727 info->brk = 0;
1728 info->elf_flags = ehdr->e_flags;
1729
1730 for (i = 0; i < ehdr->e_phnum; i++) {
1731 struct elf_phdr *eppnt = phdr + i;
1732 if (eppnt->p_type == PT_LOAD) {
1733 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1734 int elf_prot = 0;
1735
1736 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1737 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1738 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1739
1740 vaddr = load_bias + eppnt->p_vaddr;
1741 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1742 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1743
1744 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1745 elf_prot, MAP_PRIVATE | MAP_FIXED,
1746 image_fd, eppnt->p_offset - vaddr_po);
1747 if (error == -1) {
1748 goto exit_perror;
1749 }
1750
1751 vaddr_ef = vaddr + eppnt->p_filesz;
1752 vaddr_em = vaddr + eppnt->p_memsz;
1753
1754 /* If the load segment requests extra zeros (e.g. bss), map it. */
1755 if (vaddr_ef < vaddr_em) {
1756 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1757 }
1758
1759 /* Find the full program boundaries. */
1760 if (elf_prot & PROT_EXEC) {
1761 if (vaddr < info->start_code) {
1762 info->start_code = vaddr;
1763 }
1764 if (vaddr_ef > info->end_code) {
1765 info->end_code = vaddr_ef;
1766 }
1767 }
1768 if (elf_prot & PROT_WRITE) {
1769 if (vaddr < info->start_data) {
1770 info->start_data = vaddr;
1771 }
1772 if (vaddr_ef > info->end_data) {
1773 info->end_data = vaddr_ef;
1774 }
1775 if (vaddr_em > info->brk) {
1776 info->brk = vaddr_em;
1777 }
1778 }
1779 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1780 char *interp_name;
1781
1782 if (*pinterp_name) {
1783 errmsg = "Multiple PT_INTERP entries";
1784 goto exit_errmsg;
1785 }
1786 interp_name = malloc(eppnt->p_filesz);
1787 if (!interp_name) {
1788 goto exit_perror;
1789 }
1790
1791 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1792 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1793 eppnt->p_filesz);
1794 } else {
1795 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1796 eppnt->p_offset);
1797 if (retval != eppnt->p_filesz) {
1798 goto exit_perror;
1799 }
1800 }
1801 if (interp_name[eppnt->p_filesz - 1] != 0) {
1802 errmsg = "Invalid PT_INTERP entry";
1803 goto exit_errmsg;
1804 }
1805 *pinterp_name = interp_name;
1806 }
1807 }
1808
1809 if (info->end_data == 0) {
1810 info->start_data = info->end_code;
1811 info->end_data = info->end_code;
1812 info->brk = info->end_code;
1813 }
1814
1815 if (qemu_log_enabled()) {
1816 load_symbols(ehdr, image_fd, load_bias);
1817 }
1818
1819 close(image_fd);
1820 return;
1821
1822 exit_read:
1823 if (retval >= 0) {
1824 errmsg = "Incomplete read of file header";
1825 goto exit_errmsg;
1826 }
1827 exit_perror:
1828 errmsg = strerror(errno);
1829 exit_errmsg:
1830 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1831 exit(-1);
1832 }
1833
1834 static void load_elf_interp(const char *filename, struct image_info *info,
1835 char bprm_buf[BPRM_BUF_SIZE])
1836 {
1837 int fd, retval;
1838
1839 fd = open(path(filename), O_RDONLY);
1840 if (fd < 0) {
1841 goto exit_perror;
1842 }
1843
1844 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1845 if (retval < 0) {
1846 goto exit_perror;
1847 }
1848 if (retval < BPRM_BUF_SIZE) {
1849 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1850 }
1851
1852 load_elf_image(filename, fd, info, NULL, bprm_buf);
1853 return;
1854
1855 exit_perror:
1856 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1857 exit(-1);
1858 }
1859
1860 static int symfind(const void *s0, const void *s1)
1861 {
1862 target_ulong addr = *(target_ulong *)s0;
1863 struct elf_sym *sym = (struct elf_sym *)s1;
1864 int result = 0;
1865 if (addr < sym->st_value) {
1866 result = -1;
1867 } else if (addr >= sym->st_value + sym->st_size) {
1868 result = 1;
1869 }
1870 return result;
1871 }
1872
1873 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1874 {
1875 #if ELF_CLASS == ELFCLASS32
1876 struct elf_sym *syms = s->disas_symtab.elf32;
1877 #else
1878 struct elf_sym *syms = s->disas_symtab.elf64;
1879 #endif
1880
1881 // binary search
1882 struct elf_sym *sym;
1883
1884 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
1885 if (sym != NULL) {
1886 return s->disas_strtab + sym->st_name;
1887 }
1888
1889 return "";
1890 }
1891
1892 /* FIXME: This should use elf_ops.h */
1893 static int symcmp(const void *s0, const void *s1)
1894 {
1895 struct elf_sym *sym0 = (struct elf_sym *)s0;
1896 struct elf_sym *sym1 = (struct elf_sym *)s1;
1897 return (sym0->st_value < sym1->st_value)
1898 ? -1
1899 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1900 }
1901
1902 /* Best attempt to load symbols from this ELF object. */
1903 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
1904 {
1905 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1906 struct elf_shdr *shdr;
1907 char *strings = NULL;
1908 struct syminfo *s = NULL;
1909 struct elf_sym *new_syms, *syms = NULL;
1910
1911 shnum = hdr->e_shnum;
1912 i = shnum * sizeof(struct elf_shdr);
1913 shdr = (struct elf_shdr *)alloca(i);
1914 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1915 return;
1916 }
1917
1918 bswap_shdr(shdr, shnum);
1919 for (i = 0; i < shnum; ++i) {
1920 if (shdr[i].sh_type == SHT_SYMTAB) {
1921 sym_idx = i;
1922 str_idx = shdr[i].sh_link;
1923 goto found;
1924 }
1925 }
1926
1927 /* There will be no symbol table if the file was stripped. */
1928 return;
1929
1930 found:
1931 /* Now know where the strtab and symtab are. Snarf them. */
1932 s = malloc(sizeof(*s));
1933 if (!s) {
1934 goto give_up;
1935 }
1936
1937 i = shdr[str_idx].sh_size;
1938 s->disas_strtab = strings = malloc(i);
1939 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
1940 goto give_up;
1941 }
1942
1943 i = shdr[sym_idx].sh_size;
1944 syms = malloc(i);
1945 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
1946 goto give_up;
1947 }
1948
1949 nsyms = i / sizeof(struct elf_sym);
1950 for (i = 0; i < nsyms; ) {
1951 bswap_sym(syms + i);
1952 /* Throw away entries which we do not need. */
1953 if (syms[i].st_shndx == SHN_UNDEF
1954 || syms[i].st_shndx >= SHN_LORESERVE
1955 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1956 if (i < --nsyms) {
1957 syms[i] = syms[nsyms];
1958 }
1959 } else {
1960 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1961 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1962 syms[i].st_value &= ~(target_ulong)1;
1963 #endif
1964 syms[i].st_value += load_bias;
1965 i++;
1966 }
1967 }
1968
1969 /* No "useful" symbol. */
1970 if (nsyms == 0) {
1971 goto give_up;
1972 }
1973
1974 /* Attempt to free the storage associated with the local symbols
1975 that we threw away. Whether or not this has any effect on the
1976 memory allocation depends on the malloc implementation and how
1977 many symbols we managed to discard. */
1978 new_syms = realloc(syms, nsyms * sizeof(*syms));
1979 if (new_syms == NULL) {
1980 goto give_up;
1981 }
1982 syms = new_syms;
1983
1984 qsort(syms, nsyms, sizeof(*syms), symcmp);
1985
1986 s->disas_num_syms = nsyms;
1987 #if ELF_CLASS == ELFCLASS32
1988 s->disas_symtab.elf32 = syms;
1989 #else
1990 s->disas_symtab.elf64 = syms;
1991 #endif
1992 s->lookup_symbol = lookup_symbolxx;
1993 s->next = syminfos;
1994 syminfos = s;
1995
1996 return;
1997
1998 give_up:
1999 free(s);
2000 free(strings);
2001 free(syms);
2002 }
2003
2004 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2005 {
2006 struct image_info interp_info;
2007 struct elfhdr elf_ex;
2008 char *elf_interpreter = NULL;
2009
2010 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2011 info->mmap = 0;
2012 info->rss = 0;
2013
2014 load_elf_image(bprm->filename, bprm->fd, info,
2015 &elf_interpreter, bprm->buf);
2016
2017 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2018 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2019 when we load the interpreter. */
2020 elf_ex = *(struct elfhdr *)bprm->buf;
2021
2022 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2023 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2024 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2025 if (!bprm->p) {
2026 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2027 exit(-1);
2028 }
2029
2030 /* Do this so that we can load the interpreter, if need be. We will
2031 change some of these later */
2032 bprm->p = setup_arg_pages(bprm->p, bprm, info);
2033
2034 if (elf_interpreter) {
2035 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2036
2037 /* If the program interpreter is one of these two, then assume
2038 an iBCS2 image. Otherwise assume a native linux image. */
2039
2040 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2041 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2042 info->personality = PER_SVR4;
2043
2044 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2045 and some applications "depend" upon this behavior. Since
2046 we do not have the power to recompile these, we emulate
2047 the SVr4 behavior. Sigh. */
2048 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2049 MAP_FIXED | MAP_PRIVATE, -1, 0);
2050 }
2051 }
2052
2053 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2054 info, (elf_interpreter ? &interp_info : NULL));
2055 info->start_stack = bprm->p;
2056
2057 /* If we have an interpreter, set that as the program's entry point.
2058 Copy the load_bias as well, to help PPC64 interpret the entry
2059 point as a function descriptor. Do this after creating elf tables
2060 so that we copy the original program entry point into the AUXV. */
2061 if (elf_interpreter) {
2062 info->load_bias = interp_info.load_bias;
2063 info->entry = interp_info.entry;
2064 free(elf_interpreter);
2065 }
2066
2067 #ifdef USE_ELF_CORE_DUMP
2068 bprm->core_dump = &elf_core_dump;
2069 #endif
2070
2071 return 0;
2072 }
2073
2074 #ifdef USE_ELF_CORE_DUMP
2075 /*
2076 * Definitions to generate Intel SVR4-like core files.
2077 * These mostly have the same names as the SVR4 types with "target_elf_"
2078 * tacked on the front to prevent clashes with linux definitions,
2079 * and the typedef forms have been avoided. This is mostly like
2080 * the SVR4 structure, but more Linuxy, with things that Linux does
2081 * not support and which gdb doesn't really use excluded.
2082 *
2083 * Fields we don't dump (their contents is zero) in linux-user qemu
2084 * are marked with XXX.
2085 *
2086 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2087 *
2088 * Porting ELF coredump for target is (quite) simple process. First you
2089 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2090 * the target resides):
2091 *
2092 * #define USE_ELF_CORE_DUMP
2093 *
2094 * Next you define type of register set used for dumping. ELF specification
2095 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2096 *
2097 * typedef <target_regtype> target_elf_greg_t;
2098 * #define ELF_NREG <number of registers>
2099 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2100 *
2101 * Last step is to implement target specific function that copies registers
2102 * from given cpu into just specified register set. Prototype is:
2103 *
2104 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2105 * const CPUArchState *env);
2106 *
2107 * Parameters:
2108 * regs - copy register values into here (allocated and zeroed by caller)
2109 * env - copy registers from here
2110 *
2111 * Example for ARM target is provided in this file.
2112 */
2113
2114 /* An ELF note in memory */
2115 struct memelfnote {
2116 const char *name;
2117 size_t namesz;
2118 size_t namesz_rounded;
2119 int type;
2120 size_t datasz;
2121 size_t datasz_rounded;
2122 void *data;
2123 size_t notesz;
2124 };
2125
2126 struct target_elf_siginfo {
2127 abi_int si_signo; /* signal number */
2128 abi_int si_code; /* extra code */
2129 abi_int si_errno; /* errno */
2130 };
2131
2132 struct target_elf_prstatus {
2133 struct target_elf_siginfo pr_info; /* Info associated with signal */
2134 abi_short pr_cursig; /* Current signal */
2135 abi_ulong pr_sigpend; /* XXX */
2136 abi_ulong pr_sighold; /* XXX */
2137 target_pid_t pr_pid;
2138 target_pid_t pr_ppid;
2139 target_pid_t pr_pgrp;
2140 target_pid_t pr_sid;
2141 struct target_timeval pr_utime; /* XXX User time */
2142 struct target_timeval pr_stime; /* XXX System time */
2143 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2144 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2145 target_elf_gregset_t pr_reg; /* GP registers */
2146 abi_int pr_fpvalid; /* XXX */
2147 };
2148
2149 #define ELF_PRARGSZ (80) /* Number of chars for args */
2150
2151 struct target_elf_prpsinfo {
2152 char pr_state; /* numeric process state */
2153 char pr_sname; /* char for pr_state */
2154 char pr_zomb; /* zombie */
2155 char pr_nice; /* nice val */
2156 abi_ulong pr_flag; /* flags */
2157 target_uid_t pr_uid;
2158 target_gid_t pr_gid;
2159 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2160 /* Lots missing */
2161 char pr_fname[16]; /* filename of executable */
2162 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2163 };
2164
2165 /* Here is the structure in which status of each thread is captured. */
2166 struct elf_thread_status {
2167 QTAILQ_ENTRY(elf_thread_status) ets_link;
2168 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2169 #if 0
2170 elf_fpregset_t fpu; /* NT_PRFPREG */
2171 struct task_struct *thread;
2172 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2173 #endif
2174 struct memelfnote notes[1];
2175 int num_notes;
2176 };
2177
2178 struct elf_note_info {
2179 struct memelfnote *notes;
2180 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2181 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2182
2183 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2184 #if 0
2185 /*
2186 * Current version of ELF coredump doesn't support
2187 * dumping fp regs etc.
2188 */
2189 elf_fpregset_t *fpu;
2190 elf_fpxregset_t *xfpu;
2191 int thread_status_size;
2192 #endif
2193 int notes_size;
2194 int numnote;
2195 };
2196
2197 struct vm_area_struct {
2198 abi_ulong vma_start; /* start vaddr of memory region */
2199 abi_ulong vma_end; /* end vaddr of memory region */
2200 abi_ulong vma_flags; /* protection etc. flags for the region */
2201 QTAILQ_ENTRY(vm_area_struct) vma_link;
2202 };
2203
2204 struct mm_struct {
2205 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2206 int mm_count; /* number of mappings */
2207 };
2208
2209 static struct mm_struct *vma_init(void);
2210 static void vma_delete(struct mm_struct *);
2211 static int vma_add_mapping(struct mm_struct *, abi_ulong,
2212 abi_ulong, abi_ulong);
2213 static int vma_get_mapping_count(const struct mm_struct *);
2214 static struct vm_area_struct *vma_first(const struct mm_struct *);
2215 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2216 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2217 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2218 unsigned long flags);
2219
2220 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2221 static void fill_note(struct memelfnote *, const char *, int,
2222 unsigned int, void *);
2223 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2224 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2225 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2226 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2227 static size_t note_size(const struct memelfnote *);
2228 static void free_note_info(struct elf_note_info *);
2229 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2230 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2231 static int core_dump_filename(const TaskState *, char *, size_t);
2232
2233 static int dump_write(int, const void *, size_t);
2234 static int write_note(struct memelfnote *, int);
2235 static int write_note_info(struct elf_note_info *, int);
2236
2237 #ifdef BSWAP_NEEDED
2238 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2239 {
2240 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2241 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2242 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2243 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2244 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2245 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2246 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2247 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2248 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2249 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2250 /* cpu times are not filled, so we skip them */
2251 /* regs should be in correct format already */
2252 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2253 }
2254
2255 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2256 {
2257 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2258 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2259 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2260 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2261 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2262 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2263 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2264 }
2265
2266 static void bswap_note(struct elf_note *en)
2267 {
2268 bswap32s(&en->n_namesz);
2269 bswap32s(&en->n_descsz);
2270 bswap32s(&en->n_type);
2271 }
2272 #else
2273 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2274 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2275 static inline void bswap_note(struct elf_note *en) { }
2276 #endif /* BSWAP_NEEDED */
2277
2278 /*
2279 * Minimal support for linux memory regions. These are needed
2280 * when we are finding out what memory exactly belongs to
2281 * emulated process. No locks needed here, as long as
2282 * thread that received the signal is stopped.
2283 */
2284
2285 static struct mm_struct *vma_init(void)
2286 {
2287 struct mm_struct *mm;
2288
2289 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2290 return (NULL);
2291
2292 mm->mm_count = 0;
2293 QTAILQ_INIT(&mm->mm_mmap);
2294
2295 return (mm);
2296 }
2297
2298 static void vma_delete(struct mm_struct *mm)
2299 {
2300 struct vm_area_struct *vma;
2301
2302 while ((vma = vma_first(mm)) != NULL) {
2303 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2304 g_free(vma);
2305 }
2306 g_free(mm);
2307 }
2308
2309 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2310 abi_ulong end, abi_ulong flags)
2311 {
2312 struct vm_area_struct *vma;
2313
2314 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2315 return (-1);
2316
2317 vma->vma_start = start;
2318 vma->vma_end = end;
2319 vma->vma_flags = flags;
2320
2321 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2322 mm->mm_count++;
2323
2324 return (0);
2325 }
2326
2327 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2328 {
2329 return (QTAILQ_FIRST(&mm->mm_mmap));
2330 }
2331
2332 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2333 {
2334 return (QTAILQ_NEXT(vma, vma_link));
2335 }
2336
2337 static int vma_get_mapping_count(const struct mm_struct *mm)
2338 {
2339 return (mm->mm_count);
2340 }
2341
2342 /*
2343 * Calculate file (dump) size of given memory region.
2344 */
2345 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2346 {
2347 /* if we cannot even read the first page, skip it */
2348 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2349 return (0);
2350
2351 /*
2352 * Usually we don't dump executable pages as they contain
2353 * non-writable code that debugger can read directly from
2354 * target library etc. However, thread stacks are marked
2355 * also executable so we read in first page of given region
2356 * and check whether it contains elf header. If there is
2357 * no elf header, we dump it.
2358 */
2359 if (vma->vma_flags & PROT_EXEC) {
2360 char page[TARGET_PAGE_SIZE];
2361
2362 copy_from_user(page, vma->vma_start, sizeof (page));
2363 if ((page[EI_MAG0] == ELFMAG0) &&
2364 (page[EI_MAG1] == ELFMAG1) &&
2365 (page[EI_MAG2] == ELFMAG2) &&
2366 (page[EI_MAG3] == ELFMAG3)) {
2367 /*
2368 * Mappings are possibly from ELF binary. Don't dump
2369 * them.
2370 */
2371 return (0);
2372 }
2373 }
2374
2375 return (vma->vma_end - vma->vma_start);
2376 }
2377
2378 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2379 unsigned long flags)
2380 {
2381 struct mm_struct *mm = (struct mm_struct *)priv;
2382
2383 vma_add_mapping(mm, start, end, flags);
2384 return (0);
2385 }
2386
2387 static void fill_note(struct memelfnote *note, const char *name, int type,
2388 unsigned int sz, void *data)
2389 {
2390 unsigned int namesz;
2391
2392 namesz = strlen(name) + 1;
2393 note->name = name;
2394 note->namesz = namesz;
2395 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2396 note->type = type;
2397 note->datasz = sz;
2398 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2399
2400 note->data = data;
2401
2402 /*
2403 * We calculate rounded up note size here as specified by
2404 * ELF document.
2405 */
2406 note->notesz = sizeof (struct elf_note) +
2407 note->namesz_rounded + note->datasz_rounded;
2408 }
2409
2410 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2411 uint32_t flags)
2412 {
2413 (void) memset(elf, 0, sizeof(*elf));
2414
2415 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2416 elf->e_ident[EI_CLASS] = ELF_CLASS;
2417 elf->e_ident[EI_DATA] = ELF_DATA;
2418 elf->e_ident[EI_VERSION] = EV_CURRENT;
2419 elf->e_ident[EI_OSABI] = ELF_OSABI;
2420
2421 elf->e_type = ET_CORE;
2422 elf->e_machine = machine;
2423 elf->e_version = EV_CURRENT;
2424 elf->e_phoff = sizeof(struct elfhdr);
2425 elf->e_flags = flags;
2426 elf->e_ehsize = sizeof(struct elfhdr);
2427 elf->e_phentsize = sizeof(struct elf_phdr);
2428 elf->e_phnum = segs;
2429
2430 bswap_ehdr(elf);
2431 }
2432
2433 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2434 {
2435 phdr->p_type = PT_NOTE;
2436 phdr->p_offset = offset;
2437 phdr->p_vaddr = 0;
2438 phdr->p_paddr = 0;
2439 phdr->p_filesz = sz;
2440 phdr->p_memsz = 0;
2441 phdr->p_flags = 0;
2442 phdr->p_align = 0;
2443
2444 bswap_phdr(phdr, 1);
2445 }
2446
2447 static size_t note_size(const struct memelfnote *note)
2448 {
2449 return (note->notesz);
2450 }
2451
2452 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2453 const TaskState *ts, int signr)
2454 {
2455 (void) memset(prstatus, 0, sizeof (*prstatus));
2456 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2457 prstatus->pr_pid = ts->ts_tid;
2458 prstatus->pr_ppid = getppid();
2459 prstatus->pr_pgrp = getpgrp();
2460 prstatus->pr_sid = getsid(0);
2461
2462 bswap_prstatus(prstatus);
2463 }
2464
2465 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2466 {
2467 char *base_filename;
2468 unsigned int i, len;
2469
2470 (void) memset(psinfo, 0, sizeof (*psinfo));
2471
2472 len = ts->info->arg_end - ts->info->arg_start;
2473 if (len >= ELF_PRARGSZ)
2474 len = ELF_PRARGSZ - 1;
2475 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2476 return -EFAULT;
2477 for (i = 0; i < len; i++)
2478 if (psinfo->pr_psargs[i] == 0)
2479 psinfo->pr_psargs[i] = ' ';
2480 psinfo->pr_psargs[len] = 0;
2481
2482 psinfo->pr_pid = getpid();
2483 psinfo->pr_ppid = getppid();
2484 psinfo->pr_pgrp = getpgrp();
2485 psinfo->pr_sid = getsid(0);
2486 psinfo->pr_uid = getuid();
2487 psinfo->pr_gid = getgid();
2488
2489 base_filename = g_path_get_basename(ts->bprm->filename);
2490 /*
2491 * Using strncpy here is fine: at max-length,
2492 * this field is not NUL-terminated.
2493 */
2494 (void) strncpy(psinfo->pr_fname, base_filename,
2495 sizeof(psinfo->pr_fname));
2496
2497 g_free(base_filename);
2498 bswap_psinfo(psinfo);
2499 return (0);
2500 }
2501
2502 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2503 {
2504 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2505 elf_addr_t orig_auxv = auxv;
2506 void *ptr;
2507 int len = ts->info->auxv_len;
2508
2509 /*
2510 * Auxiliary vector is stored in target process stack. It contains
2511 * {type, value} pairs that we need to dump into note. This is not
2512 * strictly necessary but we do it here for sake of completeness.
2513 */
2514
2515 /* read in whole auxv vector and copy it to memelfnote */
2516 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2517 if (ptr != NULL) {
2518 fill_note(note, "CORE", NT_AUXV, len, ptr);
2519 unlock_user(ptr, auxv, len);
2520 }
2521 }
2522
2523 /*
2524 * Constructs name of coredump file. We have following convention
2525 * for the name:
2526 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2527 *
2528 * Returns 0 in case of success, -1 otherwise (errno is set).
2529 */
2530 static int core_dump_filename(const TaskState *ts, char *buf,
2531 size_t bufsize)
2532 {
2533 char timestamp[64];
2534 char *filename = NULL;
2535 char *base_filename = NULL;
2536 struct timeval tv;
2537 struct tm tm;
2538
2539 assert(bufsize >= PATH_MAX);
2540
2541 if (gettimeofday(&tv, NULL) < 0) {
2542 (void) fprintf(stderr, "unable to get current timestamp: %s",
2543 strerror(errno));
2544 return (-1);
2545 }
2546
2547 filename = strdup(ts->bprm->filename);
2548 base_filename = strdup(basename(filename));
2549 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2550 localtime_r(&tv.tv_sec, &tm));
2551 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2552 base_filename, timestamp, (int)getpid());
2553 free(base_filename);
2554 free(filename);
2555
2556 return (0);
2557 }
2558
2559 static int dump_write(int fd, const void *ptr, size_t size)
2560 {
2561 const char *bufp = (const char *)ptr;
2562 ssize_t bytes_written, bytes_left;
2563 struct rlimit dumpsize;
2564 off_t pos;
2565
2566 bytes_written = 0;
2567 getrlimit(RLIMIT_CORE, &dumpsize);
2568 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2569 if (errno == ESPIPE) { /* not a seekable stream */
2570 bytes_left = size;
2571 } else {
2572 return pos;
2573 }
2574 } else {
2575 if (dumpsize.rlim_cur <= pos) {
2576 return -1;
2577 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2578 bytes_left = size;
2579 } else {
2580 size_t limit_left=dumpsize.rlim_cur - pos;
2581 bytes_left = limit_left >= size ? size : limit_left ;
2582 }
2583 }
2584
2585 /*
2586 * In normal conditions, single write(2) should do but
2587 * in case of socket etc. this mechanism is more portable.
2588 */
2589 do {
2590 bytes_written = write(fd, bufp, bytes_left);
2591 if (bytes_written < 0) {
2592 if (errno == EINTR)
2593 continue;
2594 return (-1);
2595 } else if (bytes_written == 0) { /* eof */
2596 return (-1);
2597 }
2598 bufp += bytes_written;
2599 bytes_left -= bytes_written;
2600 } while (bytes_left > 0);
2601
2602 return (0);
2603 }
2604
2605 static int write_note(struct memelfnote *men, int fd)
2606 {
2607 struct elf_note en;
2608
2609 en.n_namesz = men->namesz;
2610 en.n_type = men->type;
2611 en.n_descsz = men->datasz;
2612
2613 bswap_note(&en);
2614
2615 if (dump_write(fd, &en, sizeof(en)) != 0)
2616 return (-1);
2617 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2618 return (-1);
2619 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2620 return (-1);
2621
2622 return (0);
2623 }
2624
2625 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2626 {
2627 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2628 TaskState *ts = (TaskState *)cpu->opaque;
2629 struct elf_thread_status *ets;
2630
2631 ets = g_malloc0(sizeof (*ets));
2632 ets->num_notes = 1; /* only prstatus is dumped */
2633 fill_prstatus(&ets->prstatus, ts, 0);
2634 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2635 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2636 &ets->prstatus);
2637
2638 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2639
2640 info->notes_size += note_size(&ets->notes[0]);
2641 }
2642
2643 static void init_note_info(struct elf_note_info *info)
2644 {
2645 /* Initialize the elf_note_info structure so that it is at
2646 * least safe to call free_note_info() on it. Must be
2647 * called before calling fill_note_info().
2648 */
2649 memset(info, 0, sizeof (*info));
2650 QTAILQ_INIT(&info->thread_list);
2651 }
2652
2653 static int fill_note_info(struct elf_note_info *info,
2654 long signr, const CPUArchState *env)
2655 {
2656 #define NUMNOTES 3
2657 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2658 TaskState *ts = (TaskState *)cpu->opaque;
2659 int i;
2660
2661 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2662 if (info->notes == NULL)
2663 return (-ENOMEM);
2664 info->prstatus = g_malloc0(sizeof (*info->prstatus));
2665 if (info->prstatus == NULL)
2666 return (-ENOMEM);
2667 info->psinfo = g_malloc0(sizeof (*info->psinfo));
2668 if (info->prstatus == NULL)
2669 return (-ENOMEM);
2670
2671 /*
2672 * First fill in status (and registers) of current thread
2673 * including process info & aux vector.
2674 */
2675 fill_prstatus(info->prstatus, ts, signr);
2676 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2677 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2678 sizeof (*info->prstatus), info->prstatus);
2679 fill_psinfo(info->psinfo, ts);
2680 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2681 sizeof (*info->psinfo), info->psinfo);
2682 fill_auxv_note(&info->notes[2], ts);
2683 info->numnote = 3;
2684
2685 info->notes_size = 0;
2686 for (i = 0; i < info->numnote; i++)
2687 info->notes_size += note_size(&info->notes[i]);
2688
2689 /* read and fill status of all threads */
2690 cpu_list_lock();
2691 CPU_FOREACH(cpu) {
2692 if (cpu == thread_cpu) {
2693 continue;
2694 }
2695 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2696 }
2697 cpu_list_unlock();
2698
2699 return (0);
2700 }
2701
2702 static void free_note_info(struct elf_note_info *info)
2703 {
2704 struct elf_thread_status *ets;
2705
2706 while (!QTAILQ_EMPTY(&info->thread_list)) {
2707 ets = QTAILQ_FIRST(&info->thread_list);
2708 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2709 g_free(ets);
2710 }
2711
2712 g_free(info->prstatus);
2713 g_free(info->psinfo);
2714 g_free(info->notes);
2715 }
2716
2717 static int write_note_info(struct elf_note_info *info, int fd)
2718 {
2719 struct elf_thread_status *ets;
2720 int i, error = 0;
2721
2722 /* write prstatus, psinfo and auxv for current thread */
2723 for (i = 0; i < info->numnote; i++)
2724 if ((error = write_note(&info->notes[i], fd)) != 0)
2725 return (error);
2726
2727 /* write prstatus for each thread */
2728 for (ets = info->thread_list.tqh_first; ets != NULL;
2729 ets = ets->ets_link.tqe_next) {
2730 if ((error = write_note(&ets->notes[0], fd)) != 0)
2731 return (error);
2732 }
2733
2734 return (0);
2735 }
2736
2737 /*
2738 * Write out ELF coredump.
2739 *
2740 * See documentation of ELF object file format in:
2741 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2742 *
2743 * Coredump format in linux is following:
2744 *
2745 * 0 +----------------------+ \
2746 * | ELF header | ET_CORE |
2747 * +----------------------+ |
2748 * | ELF program headers | |--- headers
2749 * | - NOTE section | |
2750 * | - PT_LOAD sections | |
2751 * +----------------------+ /
2752 * | NOTEs: |
2753 * | - NT_PRSTATUS |
2754 * | - NT_PRSINFO |
2755 * | - NT_AUXV |
2756 * +----------------------+ <-- aligned to target page
2757 * | Process memory dump |
2758 * : :
2759 * . .
2760 * : :
2761 * | |
2762 * +----------------------+
2763 *
2764 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2765 * NT_PRSINFO -> struct elf_prpsinfo
2766 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2767 *
2768 * Format follows System V format as close as possible. Current
2769 * version limitations are as follows:
2770 * - no floating point registers are dumped
2771 *
2772 * Function returns 0 in case of success, negative errno otherwise.
2773 *
2774 * TODO: make this work also during runtime: it should be
2775 * possible to force coredump from running process and then
2776 * continue processing. For example qemu could set up SIGUSR2
2777 * handler (provided that target process haven't registered
2778 * handler for that) that does the dump when signal is received.
2779 */
2780 static int elf_core_dump(int signr, const CPUArchState *env)
2781 {
2782 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2783 const TaskState *ts = (const TaskState *)cpu->opaque;
2784 struct vm_area_struct *vma = NULL;
2785 char corefile[PATH_MAX];
2786 struct elf_note_info info;
2787 struct elfhdr elf;
2788 struct elf_phdr phdr;
2789 struct rlimit dumpsize;
2790 struct mm_struct *mm = NULL;
2791 off_t offset = 0, data_offset = 0;
2792 int segs = 0;
2793 int fd = -1;
2794
2795 init_note_info(&info);
2796
2797 errno = 0;
2798 getrlimit(RLIMIT_CORE, &dumpsize);
2799 if (dumpsize.rlim_cur == 0)
2800 return 0;
2801
2802 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2803 return (-errno);
2804
2805 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2806 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2807 return (-errno);
2808
2809 /*
2810 * Walk through target process memory mappings and
2811 * set up structure containing this information. After
2812 * this point vma_xxx functions can be used.
2813 */
2814 if ((mm = vma_init()) == NULL)
2815 goto out;
2816
2817 walk_memory_regions(mm, vma_walker);
2818 segs = vma_get_mapping_count(mm);
2819
2820 /*
2821 * Construct valid coredump ELF header. We also
2822 * add one more segment for notes.
2823 */
2824 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2825 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2826 goto out;
2827
2828 /* fill in in-memory version of notes */
2829 if (fill_note_info(&info, signr, env) < 0)
2830 goto out;
2831
2832 offset += sizeof (elf); /* elf header */
2833 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2834
2835 /* write out notes program header */
2836 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2837
2838 offset += info.notes_size;
2839 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2840 goto out;
2841
2842 /*
2843 * ELF specification wants data to start at page boundary so
2844 * we align it here.
2845 */
2846 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2847
2848 /*
2849 * Write program headers for memory regions mapped in
2850 * the target process.
2851 */
2852 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2853 (void) memset(&phdr, 0, sizeof (phdr));
2854
2855 phdr.p_type = PT_LOAD;
2856 phdr.p_offset = offset;
2857 phdr.p_vaddr = vma->vma_start;
2858 phdr.p_paddr = 0;
2859 phdr.p_filesz = vma_dump_size(vma);
2860 offset += phdr.p_filesz;
2861 phdr.p_memsz = vma->vma_end - vma->vma_start;
2862 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2863 if (vma->vma_flags & PROT_WRITE)
2864 phdr.p_flags |= PF_W;
2865 if (vma->vma_flags & PROT_EXEC)
2866 phdr.p_flags |= PF_X;
2867 phdr.p_align = ELF_EXEC_PAGESIZE;
2868
2869 bswap_phdr(&phdr, 1);
2870 dump_write(fd, &phdr, sizeof (phdr));
2871 }
2872
2873 /*
2874 * Next we write notes just after program headers. No
2875 * alignment needed here.
2876 */
2877 if (write_note_info(&info, fd) < 0)
2878 goto out;
2879
2880 /* align data to page boundary */
2881 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2882 goto out;
2883
2884 /*
2885 * Finally we can dump process memory into corefile as well.
2886 */
2887 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2888 abi_ulong addr;
2889 abi_ulong end;
2890
2891 end = vma->vma_start + vma_dump_size(vma);
2892
2893 for (addr = vma->vma_start; addr < end;
2894 addr += TARGET_PAGE_SIZE) {
2895 char page[TARGET_PAGE_SIZE];
2896 int error;
2897
2898 /*
2899 * Read in page from target process memory and
2900 * write it to coredump file.
2901 */
2902 error = copy_from_user(page, addr, sizeof (page));
2903 if (error != 0) {
2904 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
2905 addr);
2906 errno = -error;
2907 goto out;
2908 }
2909 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2910 goto out;
2911 }
2912 }
2913
2914 out:
2915 free_note_info(&info);
2916 if (mm != NULL)
2917 vma_delete(mm);
2918 (void) close(fd);
2919
2920 if (errno != 0)
2921 return (-errno);
2922 return (0);
2923 }
2924 #endif /* USE_ELF_CORE_DUMP */
2925
2926 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2927 {
2928 init_thread(regs, infop);
2929 }