]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
disas: Remove target_ulong from the interface
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qapi/error.h"
21 #include "qemu/error-report.h"
22 #include "target_signal.h"
23 #include "accel/tcg/debuginfo.h"
24
25 #ifdef _ARCH_PPC64
26 #undef ARCH_DLINFO
27 #undef ELF_PLATFORM
28 #undef ELF_HWCAP
29 #undef ELF_HWCAP2
30 #undef ELF_CLASS
31 #undef ELF_DATA
32 #undef ELF_ARCH
33 #endif
34
35 #define ELF_OSABI ELFOSABI_SYSV
36
37 /* from personality.h */
38
39 /*
40 * Flags for bug emulation.
41 *
42 * These occupy the top three bytes.
43 */
44 enum {
45 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
46 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
47 descriptors (signal handling) */
48 MMAP_PAGE_ZERO = 0x0100000,
49 ADDR_COMPAT_LAYOUT = 0x0200000,
50 READ_IMPLIES_EXEC = 0x0400000,
51 ADDR_LIMIT_32BIT = 0x0800000,
52 SHORT_INODE = 0x1000000,
53 WHOLE_SECONDS = 0x2000000,
54 STICKY_TIMEOUTS = 0x4000000,
55 ADDR_LIMIT_3GB = 0x8000000,
56 };
57
58 /*
59 * Personality types.
60 *
61 * These go in the low byte. Avoid using the top bit, it will
62 * conflict with error returns.
63 */
64 enum {
65 PER_LINUX = 0x0000,
66 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
67 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
68 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
69 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
71 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
72 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
73 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
74 PER_BSD = 0x0006,
75 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
76 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
77 PER_LINUX32 = 0x0008,
78 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
79 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
80 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
81 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
82 PER_RISCOS = 0x000c,
83 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
84 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
85 PER_OSF4 = 0x000f, /* OSF/1 v4 */
86 PER_HPUX = 0x0010,
87 PER_MASK = 0x00ff,
88 };
89
90 /*
91 * Return the base personality without flags.
92 */
93 #define personality(pers) (pers & PER_MASK)
94
95 int info_is_fdpic(struct image_info *info)
96 {
97 return info->personality == PER_LINUX_FDPIC;
98 }
99
100 /* this flag is uneffective under linux too, should be deleted */
101 #ifndef MAP_DENYWRITE
102 #define MAP_DENYWRITE 0
103 #endif
104
105 /* should probably go in elf.h */
106 #ifndef ELIBBAD
107 #define ELIBBAD 80
108 #endif
109
110 #if TARGET_BIG_ENDIAN
111 #define ELF_DATA ELFDATA2MSB
112 #else
113 #define ELF_DATA ELFDATA2LSB
114 #endif
115
116 #ifdef TARGET_ABI_MIPSN32
117 typedef abi_ullong target_elf_greg_t;
118 #define tswapreg(ptr) tswap64(ptr)
119 #else
120 typedef abi_ulong target_elf_greg_t;
121 #define tswapreg(ptr) tswapal(ptr)
122 #endif
123
124 #ifdef USE_UID16
125 typedef abi_ushort target_uid_t;
126 typedef abi_ushort target_gid_t;
127 #else
128 typedef abi_uint target_uid_t;
129 typedef abi_uint target_gid_t;
130 #endif
131 typedef abi_int target_pid_t;
132
133 #ifdef TARGET_I386
134
135 #define ELF_HWCAP get_elf_hwcap()
136
137 static uint32_t get_elf_hwcap(void)
138 {
139 X86CPU *cpu = X86_CPU(thread_cpu);
140
141 return cpu->env.features[FEAT_1_EDX];
142 }
143
144 #ifdef TARGET_X86_64
145 #define ELF_START_MMAP 0x2aaaaab000ULL
146
147 #define ELF_CLASS ELFCLASS64
148 #define ELF_ARCH EM_X86_64
149
150 #define ELF_PLATFORM "x86_64"
151
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154 regs->rax = 0;
155 regs->rsp = infop->start_stack;
156 regs->rip = infop->entry;
157 }
158
159 #define ELF_NREG 27
160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
161
162 /*
163 * Note that ELF_NREG should be 29 as there should be place for
164 * TRAPNO and ERR "registers" as well but linux doesn't dump
165 * those.
166 *
167 * See linux kernel: arch/x86/include/asm/elf.h
168 */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171 (*regs)[0] = tswapreg(env->regs[15]);
172 (*regs)[1] = tswapreg(env->regs[14]);
173 (*regs)[2] = tswapreg(env->regs[13]);
174 (*regs)[3] = tswapreg(env->regs[12]);
175 (*regs)[4] = tswapreg(env->regs[R_EBP]);
176 (*regs)[5] = tswapreg(env->regs[R_EBX]);
177 (*regs)[6] = tswapreg(env->regs[11]);
178 (*regs)[7] = tswapreg(env->regs[10]);
179 (*regs)[8] = tswapreg(env->regs[9]);
180 (*regs)[9] = tswapreg(env->regs[8]);
181 (*regs)[10] = tswapreg(env->regs[R_EAX]);
182 (*regs)[11] = tswapreg(env->regs[R_ECX]);
183 (*regs)[12] = tswapreg(env->regs[R_EDX]);
184 (*regs)[13] = tswapreg(env->regs[R_ESI]);
185 (*regs)[14] = tswapreg(env->regs[R_EDI]);
186 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
187 (*regs)[16] = tswapreg(env->eip);
188 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
189 (*regs)[18] = tswapreg(env->eflags);
190 (*regs)[19] = tswapreg(env->regs[R_ESP]);
191 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
192 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
193 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
194 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
195 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
196 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
197 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
198 }
199
200 #if ULONG_MAX > UINT32_MAX
201 #define INIT_GUEST_COMMPAGE
202 static bool init_guest_commpage(void)
203 {
204 /*
205 * The vsyscall page is at a high negative address aka kernel space,
206 * which means that we cannot actually allocate it with target_mmap.
207 * We still should be able to use page_set_flags, unless the user
208 * has specified -R reserved_va, which would trigger an assert().
209 */
210 if (reserved_va != 0 &&
211 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
212 error_report("Cannot allocate vsyscall page");
213 exit(EXIT_FAILURE);
214 }
215 page_set_flags(TARGET_VSYSCALL_PAGE,
216 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
217 PAGE_EXEC | PAGE_VALID);
218 return true;
219 }
220 #endif
221 #else
222
223 #define ELF_START_MMAP 0x80000000
224
225 /*
226 * This is used to ensure we don't load something for the wrong architecture.
227 */
228 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
229
230 /*
231 * These are used to set parameters in the core dumps.
232 */
233 #define ELF_CLASS ELFCLASS32
234 #define ELF_ARCH EM_386
235
236 #define ELF_PLATFORM get_elf_platform()
237 #define EXSTACK_DEFAULT true
238
239 static const char *get_elf_platform(void)
240 {
241 static char elf_platform[] = "i386";
242 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
243 if (family > 6) {
244 family = 6;
245 }
246 if (family >= 3) {
247 elf_platform[1] = '0' + family;
248 }
249 return elf_platform;
250 }
251
252 static inline void init_thread(struct target_pt_regs *regs,
253 struct image_info *infop)
254 {
255 regs->esp = infop->start_stack;
256 regs->eip = infop->entry;
257
258 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
259 starts %edx contains a pointer to a function which might be
260 registered using `atexit'. This provides a mean for the
261 dynamic linker to call DT_FINI functions for shared libraries
262 that have been loaded before the code runs.
263
264 A value of 0 tells we have no such handler. */
265 regs->edx = 0;
266 }
267
268 #define ELF_NREG 17
269 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
270
271 /*
272 * Note that ELF_NREG should be 19 as there should be place for
273 * TRAPNO and ERR "registers" as well but linux doesn't dump
274 * those.
275 *
276 * See linux kernel: arch/x86/include/asm/elf.h
277 */
278 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
279 {
280 (*regs)[0] = tswapreg(env->regs[R_EBX]);
281 (*regs)[1] = tswapreg(env->regs[R_ECX]);
282 (*regs)[2] = tswapreg(env->regs[R_EDX]);
283 (*regs)[3] = tswapreg(env->regs[R_ESI]);
284 (*regs)[4] = tswapreg(env->regs[R_EDI]);
285 (*regs)[5] = tswapreg(env->regs[R_EBP]);
286 (*regs)[6] = tswapreg(env->regs[R_EAX]);
287 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
288 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
289 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
290 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
291 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
292 (*regs)[12] = tswapreg(env->eip);
293 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
294 (*regs)[14] = tswapreg(env->eflags);
295 (*regs)[15] = tswapreg(env->regs[R_ESP]);
296 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
297 }
298 #endif
299
300 #define USE_ELF_CORE_DUMP
301 #define ELF_EXEC_PAGESIZE 4096
302
303 #endif
304
305 #ifdef TARGET_ARM
306
307 #ifndef TARGET_AARCH64
308 /* 32 bit ARM definitions */
309
310 #define ELF_START_MMAP 0x80000000
311
312 #define ELF_ARCH EM_ARM
313 #define ELF_CLASS ELFCLASS32
314 #define EXSTACK_DEFAULT true
315
316 static inline void init_thread(struct target_pt_regs *regs,
317 struct image_info *infop)
318 {
319 abi_long stack = infop->start_stack;
320 memset(regs, 0, sizeof(*regs));
321
322 regs->uregs[16] = ARM_CPU_MODE_USR;
323 if (infop->entry & 1) {
324 regs->uregs[16] |= CPSR_T;
325 }
326 regs->uregs[15] = infop->entry & 0xfffffffe;
327 regs->uregs[13] = infop->start_stack;
328 /* FIXME - what to for failure of get_user()? */
329 get_user_ual(regs->uregs[2], stack + 8); /* envp */
330 get_user_ual(regs->uregs[1], stack + 4); /* envp */
331 /* XXX: it seems that r0 is zeroed after ! */
332 regs->uregs[0] = 0;
333 /* For uClinux PIC binaries. */
334 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
335 regs->uregs[10] = infop->start_data;
336
337 /* Support ARM FDPIC. */
338 if (info_is_fdpic(infop)) {
339 /* As described in the ABI document, r7 points to the loadmap info
340 * prepared by the kernel. If an interpreter is needed, r8 points
341 * to the interpreter loadmap and r9 points to the interpreter
342 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
343 * r9 points to the main program PT_DYNAMIC info.
344 */
345 regs->uregs[7] = infop->loadmap_addr;
346 if (infop->interpreter_loadmap_addr) {
347 /* Executable is dynamically loaded. */
348 regs->uregs[8] = infop->interpreter_loadmap_addr;
349 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
350 } else {
351 regs->uregs[8] = 0;
352 regs->uregs[9] = infop->pt_dynamic_addr;
353 }
354 }
355 }
356
357 #define ELF_NREG 18
358 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
359
360 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
361 {
362 (*regs)[0] = tswapreg(env->regs[0]);
363 (*regs)[1] = tswapreg(env->regs[1]);
364 (*regs)[2] = tswapreg(env->regs[2]);
365 (*regs)[3] = tswapreg(env->regs[3]);
366 (*regs)[4] = tswapreg(env->regs[4]);
367 (*regs)[5] = tswapreg(env->regs[5]);
368 (*regs)[6] = tswapreg(env->regs[6]);
369 (*regs)[7] = tswapreg(env->regs[7]);
370 (*regs)[8] = tswapreg(env->regs[8]);
371 (*regs)[9] = tswapreg(env->regs[9]);
372 (*regs)[10] = tswapreg(env->regs[10]);
373 (*regs)[11] = tswapreg(env->regs[11]);
374 (*regs)[12] = tswapreg(env->regs[12]);
375 (*regs)[13] = tswapreg(env->regs[13]);
376 (*regs)[14] = tswapreg(env->regs[14]);
377 (*regs)[15] = tswapreg(env->regs[15]);
378
379 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
380 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
381 }
382
383 #define USE_ELF_CORE_DUMP
384 #define ELF_EXEC_PAGESIZE 4096
385
386 enum
387 {
388 ARM_HWCAP_ARM_SWP = 1 << 0,
389 ARM_HWCAP_ARM_HALF = 1 << 1,
390 ARM_HWCAP_ARM_THUMB = 1 << 2,
391 ARM_HWCAP_ARM_26BIT = 1 << 3,
392 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
393 ARM_HWCAP_ARM_FPA = 1 << 5,
394 ARM_HWCAP_ARM_VFP = 1 << 6,
395 ARM_HWCAP_ARM_EDSP = 1 << 7,
396 ARM_HWCAP_ARM_JAVA = 1 << 8,
397 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
398 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
399 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
400 ARM_HWCAP_ARM_NEON = 1 << 12,
401 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
402 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
403 ARM_HWCAP_ARM_TLS = 1 << 15,
404 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
405 ARM_HWCAP_ARM_IDIVA = 1 << 17,
406 ARM_HWCAP_ARM_IDIVT = 1 << 18,
407 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
408 ARM_HWCAP_ARM_LPAE = 1 << 20,
409 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
410 };
411
412 enum {
413 ARM_HWCAP2_ARM_AES = 1 << 0,
414 ARM_HWCAP2_ARM_PMULL = 1 << 1,
415 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
416 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
417 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
418 };
419
420 /* The commpage only exists for 32 bit kernels */
421
422 #define HI_COMMPAGE (intptr_t)0xffff0f00u
423
424 static bool init_guest_commpage(void)
425 {
426 abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size;
427 void *want = g2h_untagged(commpage);
428 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
429 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
430
431 if (addr == MAP_FAILED) {
432 perror("Allocating guest commpage");
433 exit(EXIT_FAILURE);
434 }
435 if (addr != want) {
436 return false;
437 }
438
439 /* Set kernel helper versions; rest of page is 0. */
440 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
441
442 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
443 perror("Protecting guest commpage");
444 exit(EXIT_FAILURE);
445 }
446
447 page_set_flags(commpage, commpage | ~qemu_host_page_mask,
448 PAGE_READ | PAGE_EXEC | PAGE_VALID);
449 return true;
450 }
451
452 #define ELF_HWCAP get_elf_hwcap()
453 #define ELF_HWCAP2 get_elf_hwcap2()
454
455 static uint32_t get_elf_hwcap(void)
456 {
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
459
460 hwcaps |= ARM_HWCAP_ARM_SWP;
461 hwcaps |= ARM_HWCAP_ARM_HALF;
462 hwcaps |= ARM_HWCAP_ARM_THUMB;
463 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
464
465 /* probe for the extra features */
466 #define GET_FEATURE(feat, hwcap) \
467 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
468
469 #define GET_FEATURE_ID(feat, hwcap) \
470 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
471
472 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
473 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
474 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
475 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
476 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
477 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
479 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
480 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
481 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
482
483 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
484 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
485 hwcaps |= ARM_HWCAP_ARM_VFPv3;
486 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
487 hwcaps |= ARM_HWCAP_ARM_VFPD32;
488 } else {
489 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
490 }
491 }
492 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
493
494 return hwcaps;
495 }
496
497 static uint32_t get_elf_hwcap2(void)
498 {
499 ARMCPU *cpu = ARM_CPU(thread_cpu);
500 uint32_t hwcaps = 0;
501
502 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
503 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
504 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
505 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
506 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
507 return hwcaps;
508 }
509
510 #undef GET_FEATURE
511 #undef GET_FEATURE_ID
512
513 #define ELF_PLATFORM get_elf_platform()
514
515 static const char *get_elf_platform(void)
516 {
517 CPUARMState *env = thread_cpu->env_ptr;
518
519 #if TARGET_BIG_ENDIAN
520 # define END "b"
521 #else
522 # define END "l"
523 #endif
524
525 if (arm_feature(env, ARM_FEATURE_V8)) {
526 return "v8" END;
527 } else if (arm_feature(env, ARM_FEATURE_V7)) {
528 if (arm_feature(env, ARM_FEATURE_M)) {
529 return "v7m" END;
530 } else {
531 return "v7" END;
532 }
533 } else if (arm_feature(env, ARM_FEATURE_V6)) {
534 return "v6" END;
535 } else if (arm_feature(env, ARM_FEATURE_V5)) {
536 return "v5" END;
537 } else {
538 return "v4" END;
539 }
540
541 #undef END
542 }
543
544 #else
545 /* 64 bit ARM definitions */
546 #define ELF_START_MMAP 0x80000000
547
548 #define ELF_ARCH EM_AARCH64
549 #define ELF_CLASS ELFCLASS64
550 #if TARGET_BIG_ENDIAN
551 # define ELF_PLATFORM "aarch64_be"
552 #else
553 # define ELF_PLATFORM "aarch64"
554 #endif
555
556 static inline void init_thread(struct target_pt_regs *regs,
557 struct image_info *infop)
558 {
559 abi_long stack = infop->start_stack;
560 memset(regs, 0, sizeof(*regs));
561
562 regs->pc = infop->entry & ~0x3ULL;
563 regs->sp = stack;
564 }
565
566 #define ELF_NREG 34
567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
568
569 static void elf_core_copy_regs(target_elf_gregset_t *regs,
570 const CPUARMState *env)
571 {
572 int i;
573
574 for (i = 0; i < 32; i++) {
575 (*regs)[i] = tswapreg(env->xregs[i]);
576 }
577 (*regs)[32] = tswapreg(env->pc);
578 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
579 }
580
581 #define USE_ELF_CORE_DUMP
582 #define ELF_EXEC_PAGESIZE 4096
583
584 enum {
585 ARM_HWCAP_A64_FP = 1 << 0,
586 ARM_HWCAP_A64_ASIMD = 1 << 1,
587 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
588 ARM_HWCAP_A64_AES = 1 << 3,
589 ARM_HWCAP_A64_PMULL = 1 << 4,
590 ARM_HWCAP_A64_SHA1 = 1 << 5,
591 ARM_HWCAP_A64_SHA2 = 1 << 6,
592 ARM_HWCAP_A64_CRC32 = 1 << 7,
593 ARM_HWCAP_A64_ATOMICS = 1 << 8,
594 ARM_HWCAP_A64_FPHP = 1 << 9,
595 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
596 ARM_HWCAP_A64_CPUID = 1 << 11,
597 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
598 ARM_HWCAP_A64_JSCVT = 1 << 13,
599 ARM_HWCAP_A64_FCMA = 1 << 14,
600 ARM_HWCAP_A64_LRCPC = 1 << 15,
601 ARM_HWCAP_A64_DCPOP = 1 << 16,
602 ARM_HWCAP_A64_SHA3 = 1 << 17,
603 ARM_HWCAP_A64_SM3 = 1 << 18,
604 ARM_HWCAP_A64_SM4 = 1 << 19,
605 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
606 ARM_HWCAP_A64_SHA512 = 1 << 21,
607 ARM_HWCAP_A64_SVE = 1 << 22,
608 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
609 ARM_HWCAP_A64_DIT = 1 << 24,
610 ARM_HWCAP_A64_USCAT = 1 << 25,
611 ARM_HWCAP_A64_ILRCPC = 1 << 26,
612 ARM_HWCAP_A64_FLAGM = 1 << 27,
613 ARM_HWCAP_A64_SSBS = 1 << 28,
614 ARM_HWCAP_A64_SB = 1 << 29,
615 ARM_HWCAP_A64_PACA = 1 << 30,
616 ARM_HWCAP_A64_PACG = 1UL << 31,
617
618 ARM_HWCAP2_A64_DCPODP = 1 << 0,
619 ARM_HWCAP2_A64_SVE2 = 1 << 1,
620 ARM_HWCAP2_A64_SVEAES = 1 << 2,
621 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
622 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
623 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
624 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
625 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
626 ARM_HWCAP2_A64_FRINT = 1 << 8,
627 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
628 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
629 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
630 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
631 ARM_HWCAP2_A64_I8MM = 1 << 13,
632 ARM_HWCAP2_A64_BF16 = 1 << 14,
633 ARM_HWCAP2_A64_DGH = 1 << 15,
634 ARM_HWCAP2_A64_RNG = 1 << 16,
635 ARM_HWCAP2_A64_BTI = 1 << 17,
636 ARM_HWCAP2_A64_MTE = 1 << 18,
637 ARM_HWCAP2_A64_ECV = 1 << 19,
638 ARM_HWCAP2_A64_AFP = 1 << 20,
639 ARM_HWCAP2_A64_RPRES = 1 << 21,
640 ARM_HWCAP2_A64_MTE3 = 1 << 22,
641 ARM_HWCAP2_A64_SME = 1 << 23,
642 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
643 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
644 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
645 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
646 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
647 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
648 ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
649 };
650
651 #define ELF_HWCAP get_elf_hwcap()
652 #define ELF_HWCAP2 get_elf_hwcap2()
653
654 #define GET_FEATURE_ID(feat, hwcap) \
655 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
656
657 static uint32_t get_elf_hwcap(void)
658 {
659 ARMCPU *cpu = ARM_CPU(thread_cpu);
660 uint32_t hwcaps = 0;
661
662 hwcaps |= ARM_HWCAP_A64_FP;
663 hwcaps |= ARM_HWCAP_A64_ASIMD;
664 hwcaps |= ARM_HWCAP_A64_CPUID;
665
666 /* probe for the extra features */
667
668 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
669 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
670 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
671 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
672 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
673 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
674 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
675 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
676 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
677 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
678 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
679 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
680 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
681 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
682 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
683 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
684 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
685 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
686 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
687 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
688 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
689 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
690 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
691
692 return hwcaps;
693 }
694
695 static uint32_t get_elf_hwcap2(void)
696 {
697 ARMCPU *cpu = ARM_CPU(thread_cpu);
698 uint32_t hwcaps = 0;
699
700 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
701 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
702 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
703 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
704 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
705 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
706 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
707 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
708 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
709 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
710 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
711 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
712 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
713 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
714 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
715 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
716 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
717 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
718 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
719 ARM_HWCAP2_A64_SME_F32F32 |
720 ARM_HWCAP2_A64_SME_B16F32 |
721 ARM_HWCAP2_A64_SME_F16F32 |
722 ARM_HWCAP2_A64_SME_I8I32));
723 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
724 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
725 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
726
727 return hwcaps;
728 }
729
730 #undef GET_FEATURE_ID
731
732 #endif /* not TARGET_AARCH64 */
733 #endif /* TARGET_ARM */
734
735 #ifdef TARGET_SPARC
736 #ifdef TARGET_SPARC64
737
738 #define ELF_START_MMAP 0x80000000
739 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
740 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
741 #ifndef TARGET_ABI32
742 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
743 #else
744 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
745 #endif
746
747 #define ELF_CLASS ELFCLASS64
748 #define ELF_ARCH EM_SPARCV9
749 #else
750 #define ELF_START_MMAP 0x80000000
751 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
752 | HWCAP_SPARC_MULDIV)
753 #define ELF_CLASS ELFCLASS32
754 #define ELF_ARCH EM_SPARC
755 #endif /* TARGET_SPARC64 */
756
757 static inline void init_thread(struct target_pt_regs *regs,
758 struct image_info *infop)
759 {
760 /* Note that target_cpu_copy_regs does not read psr/tstate. */
761 regs->pc = infop->entry;
762 regs->npc = regs->pc + 4;
763 regs->y = 0;
764 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
765 - TARGET_STACK_BIAS);
766 }
767 #endif /* TARGET_SPARC */
768
769 #ifdef TARGET_PPC
770
771 #define ELF_MACHINE PPC_ELF_MACHINE
772 #define ELF_START_MMAP 0x80000000
773
774 #if defined(TARGET_PPC64)
775
776 #define elf_check_arch(x) ( (x) == EM_PPC64 )
777
778 #define ELF_CLASS ELFCLASS64
779
780 #else
781
782 #define ELF_CLASS ELFCLASS32
783 #define EXSTACK_DEFAULT true
784
785 #endif
786
787 #define ELF_ARCH EM_PPC
788
789 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
790 See arch/powerpc/include/asm/cputable.h. */
791 enum {
792 QEMU_PPC_FEATURE_32 = 0x80000000,
793 QEMU_PPC_FEATURE_64 = 0x40000000,
794 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
795 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
796 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
797 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
798 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
799 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
800 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
801 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
802 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
803 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
804 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
805 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
806 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
807 QEMU_PPC_FEATURE_CELL = 0x00010000,
808 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
809 QEMU_PPC_FEATURE_SMT = 0x00004000,
810 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
811 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
812 QEMU_PPC_FEATURE_PA6T = 0x00000800,
813 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
814 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
815 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
816 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
817 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
818
819 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
820 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
821
822 /* Feature definitions in AT_HWCAP2. */
823 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
824 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
825 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
826 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
827 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
828 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
829 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
830 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
831 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
832 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
833 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
834 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
835 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
836 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
837 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
838 };
839
840 #define ELF_HWCAP get_elf_hwcap()
841
842 static uint32_t get_elf_hwcap(void)
843 {
844 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
845 uint32_t features = 0;
846
847 /* We don't have to be terribly complete here; the high points are
848 Altivec/FP/SPE support. Anything else is just a bonus. */
849 #define GET_FEATURE(flag, feature) \
850 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
851 #define GET_FEATURE2(flags, feature) \
852 do { \
853 if ((cpu->env.insns_flags2 & flags) == flags) { \
854 features |= feature; \
855 } \
856 } while (0)
857 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
858 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
859 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
860 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
861 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
862 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
863 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
864 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
865 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
866 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
867 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
868 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
869 QEMU_PPC_FEATURE_ARCH_2_06);
870 #undef GET_FEATURE
871 #undef GET_FEATURE2
872
873 return features;
874 }
875
876 #define ELF_HWCAP2 get_elf_hwcap2()
877
878 static uint32_t get_elf_hwcap2(void)
879 {
880 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
881 uint32_t features = 0;
882
883 #define GET_FEATURE(flag, feature) \
884 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
885 #define GET_FEATURE2(flag, feature) \
886 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
887
888 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
889 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
890 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
891 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
892 QEMU_PPC_FEATURE2_VEC_CRYPTO);
893 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
894 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
895 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
896 QEMU_PPC_FEATURE2_MMA);
897
898 #undef GET_FEATURE
899 #undef GET_FEATURE2
900
901 return features;
902 }
903
904 /*
905 * The requirements here are:
906 * - keep the final alignment of sp (sp & 0xf)
907 * - make sure the 32-bit value at the first 16 byte aligned position of
908 * AUXV is greater than 16 for glibc compatibility.
909 * AT_IGNOREPPC is used for that.
910 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
911 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
912 */
913 #define DLINFO_ARCH_ITEMS 5
914 #define ARCH_DLINFO \
915 do { \
916 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
917 /* \
918 * Handle glibc compatibility: these magic entries must \
919 * be at the lowest addresses in the final auxv. \
920 */ \
921 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
922 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
923 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
924 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
925 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
926 } while (0)
927
928 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
929 {
930 _regs->gpr[1] = infop->start_stack;
931 #if defined(TARGET_PPC64)
932 if (get_ppc64_abi(infop) < 2) {
933 uint64_t val;
934 get_user_u64(val, infop->entry + 8);
935 _regs->gpr[2] = val + infop->load_bias;
936 get_user_u64(val, infop->entry);
937 infop->entry = val + infop->load_bias;
938 } else {
939 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
940 }
941 #endif
942 _regs->nip = infop->entry;
943 }
944
945 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
946 #define ELF_NREG 48
947 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
948
949 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
950 {
951 int i;
952 target_ulong ccr = 0;
953
954 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
955 (*regs)[i] = tswapreg(env->gpr[i]);
956 }
957
958 (*regs)[32] = tswapreg(env->nip);
959 (*regs)[33] = tswapreg(env->msr);
960 (*regs)[35] = tswapreg(env->ctr);
961 (*regs)[36] = tswapreg(env->lr);
962 (*regs)[37] = tswapreg(cpu_read_xer(env));
963
964 ccr = ppc_get_cr(env);
965 (*regs)[38] = tswapreg(ccr);
966 }
967
968 #define USE_ELF_CORE_DUMP
969 #define ELF_EXEC_PAGESIZE 4096
970
971 #endif
972
973 #ifdef TARGET_LOONGARCH64
974
975 #define ELF_START_MMAP 0x80000000
976
977 #define ELF_CLASS ELFCLASS64
978 #define ELF_ARCH EM_LOONGARCH
979 #define EXSTACK_DEFAULT true
980
981 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
982
983 static inline void init_thread(struct target_pt_regs *regs,
984 struct image_info *infop)
985 {
986 /*Set crmd PG,DA = 1,0 */
987 regs->csr.crmd = 2 << 3;
988 regs->csr.era = infop->entry;
989 regs->regs[3] = infop->start_stack;
990 }
991
992 /* See linux kernel: arch/loongarch/include/asm/elf.h */
993 #define ELF_NREG 45
994 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
995
996 enum {
997 TARGET_EF_R0 = 0,
998 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
999 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1000 };
1001
1002 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1003 const CPULoongArchState *env)
1004 {
1005 int i;
1006
1007 (*regs)[TARGET_EF_R0] = 0;
1008
1009 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1010 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1011 }
1012
1013 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1014 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1015 }
1016
1017 #define USE_ELF_CORE_DUMP
1018 #define ELF_EXEC_PAGESIZE 4096
1019
1020 #define ELF_HWCAP get_elf_hwcap()
1021
1022 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1023 enum {
1024 HWCAP_LOONGARCH_CPUCFG = (1 << 0),
1025 HWCAP_LOONGARCH_LAM = (1 << 1),
1026 HWCAP_LOONGARCH_UAL = (1 << 2),
1027 HWCAP_LOONGARCH_FPU = (1 << 3),
1028 HWCAP_LOONGARCH_LSX = (1 << 4),
1029 HWCAP_LOONGARCH_LASX = (1 << 5),
1030 HWCAP_LOONGARCH_CRC32 = (1 << 6),
1031 HWCAP_LOONGARCH_COMPLEX = (1 << 7),
1032 HWCAP_LOONGARCH_CRYPTO = (1 << 8),
1033 HWCAP_LOONGARCH_LVZ = (1 << 9),
1034 HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
1035 HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
1036 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1037 };
1038
1039 static uint32_t get_elf_hwcap(void)
1040 {
1041 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1042 uint32_t hwcaps = 0;
1043
1044 hwcaps |= HWCAP_LOONGARCH_CRC32;
1045
1046 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1047 hwcaps |= HWCAP_LOONGARCH_UAL;
1048 }
1049
1050 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1051 hwcaps |= HWCAP_LOONGARCH_FPU;
1052 }
1053
1054 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1055 hwcaps |= HWCAP_LOONGARCH_LAM;
1056 }
1057
1058 return hwcaps;
1059 }
1060
1061 #define ELF_PLATFORM "loongarch"
1062
1063 #endif /* TARGET_LOONGARCH64 */
1064
1065 #ifdef TARGET_MIPS
1066
1067 #define ELF_START_MMAP 0x80000000
1068
1069 #ifdef TARGET_MIPS64
1070 #define ELF_CLASS ELFCLASS64
1071 #else
1072 #define ELF_CLASS ELFCLASS32
1073 #endif
1074 #define ELF_ARCH EM_MIPS
1075 #define EXSTACK_DEFAULT true
1076
1077 #ifdef TARGET_ABI_MIPSN32
1078 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1079 #else
1080 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1081 #endif
1082
1083 #define ELF_BASE_PLATFORM get_elf_base_platform()
1084
1085 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \
1086 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1087 { return _base_platform; } } while (0)
1088
1089 static const char *get_elf_base_platform(void)
1090 {
1091 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1092
1093 /* 64 bit ISAs goes first */
1094 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1095 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1096 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1097 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1098 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1099 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1100 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1101
1102 /* 32 bit ISAs */
1103 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1104 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1105 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1106 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1107 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1108
1109 /* Fallback */
1110 return "mips";
1111 }
1112 #undef MATCH_PLATFORM_INSN
1113
1114 static inline void init_thread(struct target_pt_regs *regs,
1115 struct image_info *infop)
1116 {
1117 regs->cp0_status = 2 << CP0St_KSU;
1118 regs->cp0_epc = infop->entry;
1119 regs->regs[29] = infop->start_stack;
1120 }
1121
1122 /* See linux kernel: arch/mips/include/asm/elf.h. */
1123 #define ELF_NREG 45
1124 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1125
1126 /* See linux kernel: arch/mips/include/asm/reg.h. */
1127 enum {
1128 #ifdef TARGET_MIPS64
1129 TARGET_EF_R0 = 0,
1130 #else
1131 TARGET_EF_R0 = 6,
1132 #endif
1133 TARGET_EF_R26 = TARGET_EF_R0 + 26,
1134 TARGET_EF_R27 = TARGET_EF_R0 + 27,
1135 TARGET_EF_LO = TARGET_EF_R0 + 32,
1136 TARGET_EF_HI = TARGET_EF_R0 + 33,
1137 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1138 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1139 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1140 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1141 };
1142
1143 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1144 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1145 {
1146 int i;
1147
1148 for (i = 0; i < TARGET_EF_R0; i++) {
1149 (*regs)[i] = 0;
1150 }
1151 (*regs)[TARGET_EF_R0] = 0;
1152
1153 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1154 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1155 }
1156
1157 (*regs)[TARGET_EF_R26] = 0;
1158 (*regs)[TARGET_EF_R27] = 0;
1159 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1160 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1161 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1162 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1163 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1164 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1165 }
1166
1167 #define USE_ELF_CORE_DUMP
1168 #define ELF_EXEC_PAGESIZE 4096
1169
1170 /* See arch/mips/include/uapi/asm/hwcap.h. */
1171 enum {
1172 HWCAP_MIPS_R6 = (1 << 0),
1173 HWCAP_MIPS_MSA = (1 << 1),
1174 HWCAP_MIPS_CRC32 = (1 << 2),
1175 HWCAP_MIPS_MIPS16 = (1 << 3),
1176 HWCAP_MIPS_MDMX = (1 << 4),
1177 HWCAP_MIPS_MIPS3D = (1 << 5),
1178 HWCAP_MIPS_SMARTMIPS = (1 << 6),
1179 HWCAP_MIPS_DSP = (1 << 7),
1180 HWCAP_MIPS_DSP2 = (1 << 8),
1181 HWCAP_MIPS_DSP3 = (1 << 9),
1182 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1183 HWCAP_LOONGSON_MMI = (1 << 11),
1184 HWCAP_LOONGSON_EXT = (1 << 12),
1185 HWCAP_LOONGSON_EXT2 = (1 << 13),
1186 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1187 };
1188
1189 #define ELF_HWCAP get_elf_hwcap()
1190
1191 #define GET_FEATURE_INSN(_flag, _hwcap) \
1192 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1193
1194 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1195 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1196
1197 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1198 do { \
1199 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1200 hwcaps |= _hwcap; \
1201 } \
1202 } while (0)
1203
1204 static uint32_t get_elf_hwcap(void)
1205 {
1206 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1207 uint32_t hwcaps = 0;
1208
1209 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1210 2, HWCAP_MIPS_R6);
1211 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1212 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1213 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1214
1215 return hwcaps;
1216 }
1217
1218 #undef GET_FEATURE_REG_EQU
1219 #undef GET_FEATURE_REG_SET
1220 #undef GET_FEATURE_INSN
1221
1222 #endif /* TARGET_MIPS */
1223
1224 #ifdef TARGET_MICROBLAZE
1225
1226 #define ELF_START_MMAP 0x80000000
1227
1228 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1229
1230 #define ELF_CLASS ELFCLASS32
1231 #define ELF_ARCH EM_MICROBLAZE
1232
1233 static inline void init_thread(struct target_pt_regs *regs,
1234 struct image_info *infop)
1235 {
1236 regs->pc = infop->entry;
1237 regs->r1 = infop->start_stack;
1238
1239 }
1240
1241 #define ELF_EXEC_PAGESIZE 4096
1242
1243 #define USE_ELF_CORE_DUMP
1244 #define ELF_NREG 38
1245 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1246
1247 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1248 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1249 {
1250 int i, pos = 0;
1251
1252 for (i = 0; i < 32; i++) {
1253 (*regs)[pos++] = tswapreg(env->regs[i]);
1254 }
1255
1256 (*regs)[pos++] = tswapreg(env->pc);
1257 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1258 (*regs)[pos++] = 0;
1259 (*regs)[pos++] = tswapreg(env->ear);
1260 (*regs)[pos++] = 0;
1261 (*regs)[pos++] = tswapreg(env->esr);
1262 }
1263
1264 #endif /* TARGET_MICROBLAZE */
1265
1266 #ifdef TARGET_NIOS2
1267
1268 #define ELF_START_MMAP 0x80000000
1269
1270 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1271
1272 #define ELF_CLASS ELFCLASS32
1273 #define ELF_ARCH EM_ALTERA_NIOS2
1274
1275 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1276 {
1277 regs->ea = infop->entry;
1278 regs->sp = infop->start_stack;
1279 }
1280
1281 #define LO_COMMPAGE TARGET_PAGE_SIZE
1282
1283 static bool init_guest_commpage(void)
1284 {
1285 static const uint8_t kuser_page[4 + 2 * 64] = {
1286 /* __kuser_helper_version */
1287 [0x00] = 0x02, 0x00, 0x00, 0x00,
1288
1289 /* __kuser_cmpxchg */
1290 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */
1291 0x3a, 0x28, 0x00, 0xf8, /* ret */
1292
1293 /* __kuser_sigtramp */
1294 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */
1295 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */
1296 };
1297
1298 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1299 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1300 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1301
1302 if (addr == MAP_FAILED) {
1303 perror("Allocating guest commpage");
1304 exit(EXIT_FAILURE);
1305 }
1306 if (addr != want) {
1307 return false;
1308 }
1309
1310 memcpy(addr, kuser_page, sizeof(kuser_page));
1311
1312 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1313 perror("Protecting guest commpage");
1314 exit(EXIT_FAILURE);
1315 }
1316
1317 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1318 PAGE_READ | PAGE_EXEC | PAGE_VALID);
1319 return true;
1320 }
1321
1322 #define ELF_EXEC_PAGESIZE 4096
1323
1324 #define USE_ELF_CORE_DUMP
1325 #define ELF_NREG 49
1326 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1327
1328 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1329 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1330 const CPUNios2State *env)
1331 {
1332 int i;
1333
1334 (*regs)[0] = -1;
1335 for (i = 1; i < 8; i++) /* r0-r7 */
1336 (*regs)[i] = tswapreg(env->regs[i + 7]);
1337
1338 for (i = 8; i < 16; i++) /* r8-r15 */
1339 (*regs)[i] = tswapreg(env->regs[i - 8]);
1340
1341 for (i = 16; i < 24; i++) /* r16-r23 */
1342 (*regs)[i] = tswapreg(env->regs[i + 7]);
1343 (*regs)[24] = -1; /* R_ET */
1344 (*regs)[25] = -1; /* R_BT */
1345 (*regs)[26] = tswapreg(env->regs[R_GP]);
1346 (*regs)[27] = tswapreg(env->regs[R_SP]);
1347 (*regs)[28] = tswapreg(env->regs[R_FP]);
1348 (*regs)[29] = tswapreg(env->regs[R_EA]);
1349 (*regs)[30] = -1; /* R_SSTATUS */
1350 (*regs)[31] = tswapreg(env->regs[R_RA]);
1351
1352 (*regs)[32] = tswapreg(env->pc);
1353
1354 (*regs)[33] = -1; /* R_STATUS */
1355 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1356
1357 for (i = 35; i < 49; i++) /* ... */
1358 (*regs)[i] = -1;
1359 }
1360
1361 #endif /* TARGET_NIOS2 */
1362
1363 #ifdef TARGET_OPENRISC
1364
1365 #define ELF_START_MMAP 0x08000000
1366
1367 #define ELF_ARCH EM_OPENRISC
1368 #define ELF_CLASS ELFCLASS32
1369 #define ELF_DATA ELFDATA2MSB
1370
1371 static inline void init_thread(struct target_pt_regs *regs,
1372 struct image_info *infop)
1373 {
1374 regs->pc = infop->entry;
1375 regs->gpr[1] = infop->start_stack;
1376 }
1377
1378 #define USE_ELF_CORE_DUMP
1379 #define ELF_EXEC_PAGESIZE 8192
1380
1381 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1382 #define ELF_NREG 34 /* gprs and pc, sr */
1383 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1384
1385 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1386 const CPUOpenRISCState *env)
1387 {
1388 int i;
1389
1390 for (i = 0; i < 32; i++) {
1391 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1392 }
1393 (*regs)[32] = tswapreg(env->pc);
1394 (*regs)[33] = tswapreg(cpu_get_sr(env));
1395 }
1396 #define ELF_HWCAP 0
1397 #define ELF_PLATFORM NULL
1398
1399 #endif /* TARGET_OPENRISC */
1400
1401 #ifdef TARGET_SH4
1402
1403 #define ELF_START_MMAP 0x80000000
1404
1405 #define ELF_CLASS ELFCLASS32
1406 #define ELF_ARCH EM_SH
1407
1408 static inline void init_thread(struct target_pt_regs *regs,
1409 struct image_info *infop)
1410 {
1411 /* Check other registers XXXXX */
1412 regs->pc = infop->entry;
1413 regs->regs[15] = infop->start_stack;
1414 }
1415
1416 /* See linux kernel: arch/sh/include/asm/elf.h. */
1417 #define ELF_NREG 23
1418 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1419
1420 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1421 enum {
1422 TARGET_REG_PC = 16,
1423 TARGET_REG_PR = 17,
1424 TARGET_REG_SR = 18,
1425 TARGET_REG_GBR = 19,
1426 TARGET_REG_MACH = 20,
1427 TARGET_REG_MACL = 21,
1428 TARGET_REG_SYSCALL = 22
1429 };
1430
1431 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1432 const CPUSH4State *env)
1433 {
1434 int i;
1435
1436 for (i = 0; i < 16; i++) {
1437 (*regs)[i] = tswapreg(env->gregs[i]);
1438 }
1439
1440 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1441 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1442 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1443 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1444 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1445 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1446 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1447 }
1448
1449 #define USE_ELF_CORE_DUMP
1450 #define ELF_EXEC_PAGESIZE 4096
1451
1452 enum {
1453 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1454 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1455 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1456 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1457 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1458 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1459 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1460 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1461 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1462 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1463 };
1464
1465 #define ELF_HWCAP get_elf_hwcap()
1466
1467 static uint32_t get_elf_hwcap(void)
1468 {
1469 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1470 uint32_t hwcap = 0;
1471
1472 hwcap |= SH_CPU_HAS_FPU;
1473
1474 if (cpu->env.features & SH_FEATURE_SH4A) {
1475 hwcap |= SH_CPU_HAS_LLSC;
1476 }
1477
1478 return hwcap;
1479 }
1480
1481 #endif
1482
1483 #ifdef TARGET_CRIS
1484
1485 #define ELF_START_MMAP 0x80000000
1486
1487 #define ELF_CLASS ELFCLASS32
1488 #define ELF_ARCH EM_CRIS
1489
1490 static inline void init_thread(struct target_pt_regs *regs,
1491 struct image_info *infop)
1492 {
1493 regs->erp = infop->entry;
1494 }
1495
1496 #define ELF_EXEC_PAGESIZE 8192
1497
1498 #endif
1499
1500 #ifdef TARGET_M68K
1501
1502 #define ELF_START_MMAP 0x80000000
1503
1504 #define ELF_CLASS ELFCLASS32
1505 #define ELF_ARCH EM_68K
1506
1507 /* ??? Does this need to do anything?
1508 #define ELF_PLAT_INIT(_r) */
1509
1510 static inline void init_thread(struct target_pt_regs *regs,
1511 struct image_info *infop)
1512 {
1513 regs->usp = infop->start_stack;
1514 regs->sr = 0;
1515 regs->pc = infop->entry;
1516 }
1517
1518 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1519 #define ELF_NREG 20
1520 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1521
1522 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1523 {
1524 (*regs)[0] = tswapreg(env->dregs[1]);
1525 (*regs)[1] = tswapreg(env->dregs[2]);
1526 (*regs)[2] = tswapreg(env->dregs[3]);
1527 (*regs)[3] = tswapreg(env->dregs[4]);
1528 (*regs)[4] = tswapreg(env->dregs[5]);
1529 (*regs)[5] = tswapreg(env->dregs[6]);
1530 (*regs)[6] = tswapreg(env->dregs[7]);
1531 (*regs)[7] = tswapreg(env->aregs[0]);
1532 (*regs)[8] = tswapreg(env->aregs[1]);
1533 (*regs)[9] = tswapreg(env->aregs[2]);
1534 (*regs)[10] = tswapreg(env->aregs[3]);
1535 (*regs)[11] = tswapreg(env->aregs[4]);
1536 (*regs)[12] = tswapreg(env->aregs[5]);
1537 (*regs)[13] = tswapreg(env->aregs[6]);
1538 (*regs)[14] = tswapreg(env->dregs[0]);
1539 (*regs)[15] = tswapreg(env->aregs[7]);
1540 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1541 (*regs)[17] = tswapreg(env->sr);
1542 (*regs)[18] = tswapreg(env->pc);
1543 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1544 }
1545
1546 #define USE_ELF_CORE_DUMP
1547 #define ELF_EXEC_PAGESIZE 8192
1548
1549 #endif
1550
1551 #ifdef TARGET_ALPHA
1552
1553 #define ELF_START_MMAP (0x30000000000ULL)
1554
1555 #define ELF_CLASS ELFCLASS64
1556 #define ELF_ARCH EM_ALPHA
1557
1558 static inline void init_thread(struct target_pt_regs *regs,
1559 struct image_info *infop)
1560 {
1561 regs->pc = infop->entry;
1562 regs->ps = 8;
1563 regs->usp = infop->start_stack;
1564 }
1565
1566 #define ELF_EXEC_PAGESIZE 8192
1567
1568 #endif /* TARGET_ALPHA */
1569
1570 #ifdef TARGET_S390X
1571
1572 #define ELF_START_MMAP (0x20000000000ULL)
1573
1574 #define ELF_CLASS ELFCLASS64
1575 #define ELF_DATA ELFDATA2MSB
1576 #define ELF_ARCH EM_S390
1577
1578 #include "elf.h"
1579
1580 #define ELF_HWCAP get_elf_hwcap()
1581
1582 #define GET_FEATURE(_feat, _hwcap) \
1583 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1584
1585 static uint32_t get_elf_hwcap(void)
1586 {
1587 /*
1588 * Let's assume we always have esan3 and zarch.
1589 * 31-bit processes can use 64-bit registers (high gprs).
1590 */
1591 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1592
1593 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1594 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1595 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1596 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1597 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1598 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1599 hwcap |= HWCAP_S390_ETF3EH;
1600 }
1601 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1602 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1603
1604 return hwcap;
1605 }
1606
1607 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1608 {
1609 regs->psw.addr = infop->entry;
1610 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1611 regs->gprs[15] = infop->start_stack;
1612 }
1613
1614 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1615 #define ELF_NREG 27
1616 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1617
1618 enum {
1619 TARGET_REG_PSWM = 0,
1620 TARGET_REG_PSWA = 1,
1621 TARGET_REG_GPRS = 2,
1622 TARGET_REG_ARS = 18,
1623 TARGET_REG_ORIG_R2 = 26,
1624 };
1625
1626 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1627 const CPUS390XState *env)
1628 {
1629 int i;
1630 uint32_t *aregs;
1631
1632 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1633 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1634 for (i = 0; i < 16; i++) {
1635 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1636 }
1637 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1638 for (i = 0; i < 16; i++) {
1639 aregs[i] = tswap32(env->aregs[i]);
1640 }
1641 (*regs)[TARGET_REG_ORIG_R2] = 0;
1642 }
1643
1644 #define USE_ELF_CORE_DUMP
1645 #define ELF_EXEC_PAGESIZE 4096
1646
1647 #endif /* TARGET_S390X */
1648
1649 #ifdef TARGET_RISCV
1650
1651 #define ELF_START_MMAP 0x80000000
1652 #define ELF_ARCH EM_RISCV
1653
1654 #ifdef TARGET_RISCV32
1655 #define ELF_CLASS ELFCLASS32
1656 #else
1657 #define ELF_CLASS ELFCLASS64
1658 #endif
1659
1660 #define ELF_HWCAP get_elf_hwcap()
1661
1662 static uint32_t get_elf_hwcap(void)
1663 {
1664 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1665 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1666 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1667 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1668
1669 return cpu->env.misa_ext & mask;
1670 #undef MISA_BIT
1671 }
1672
1673 static inline void init_thread(struct target_pt_regs *regs,
1674 struct image_info *infop)
1675 {
1676 regs->sepc = infop->entry;
1677 regs->sp = infop->start_stack;
1678 }
1679
1680 #define ELF_EXEC_PAGESIZE 4096
1681
1682 #endif /* TARGET_RISCV */
1683
1684 #ifdef TARGET_HPPA
1685
1686 #define ELF_START_MMAP 0x80000000
1687 #define ELF_CLASS ELFCLASS32
1688 #define ELF_ARCH EM_PARISC
1689 #define ELF_PLATFORM "PARISC"
1690 #define STACK_GROWS_DOWN 0
1691 #define STACK_ALIGNMENT 64
1692
1693 static inline void init_thread(struct target_pt_regs *regs,
1694 struct image_info *infop)
1695 {
1696 regs->iaoq[0] = infop->entry;
1697 regs->iaoq[1] = infop->entry + 4;
1698 regs->gr[23] = 0;
1699 regs->gr[24] = infop->argv;
1700 regs->gr[25] = infop->argc;
1701 /* The top-of-stack contains a linkage buffer. */
1702 regs->gr[30] = infop->start_stack + 64;
1703 regs->gr[31] = infop->entry;
1704 }
1705
1706 #define LO_COMMPAGE 0
1707
1708 static bool init_guest_commpage(void)
1709 {
1710 void *want = g2h_untagged(LO_COMMPAGE);
1711 void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1712 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1713
1714 if (addr == MAP_FAILED) {
1715 perror("Allocating guest commpage");
1716 exit(EXIT_FAILURE);
1717 }
1718 if (addr != want) {
1719 return false;
1720 }
1721
1722 /*
1723 * On Linux, page zero is normally marked execute only + gateway.
1724 * Normal read or write is supposed to fail (thus PROT_NONE above),
1725 * but specific offsets have kernel code mapped to raise permissions
1726 * and implement syscalls. Here, simply mark the page executable.
1727 * Special case the entry points during translation (see do_page_zero).
1728 */
1729 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1730 PAGE_EXEC | PAGE_VALID);
1731 return true;
1732 }
1733
1734 #endif /* TARGET_HPPA */
1735
1736 #ifdef TARGET_XTENSA
1737
1738 #define ELF_START_MMAP 0x20000000
1739
1740 #define ELF_CLASS ELFCLASS32
1741 #define ELF_ARCH EM_XTENSA
1742
1743 static inline void init_thread(struct target_pt_regs *regs,
1744 struct image_info *infop)
1745 {
1746 regs->windowbase = 0;
1747 regs->windowstart = 1;
1748 regs->areg[1] = infop->start_stack;
1749 regs->pc = infop->entry;
1750 if (info_is_fdpic(infop)) {
1751 regs->areg[4] = infop->loadmap_addr;
1752 regs->areg[5] = infop->interpreter_loadmap_addr;
1753 if (infop->interpreter_loadmap_addr) {
1754 regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1755 } else {
1756 regs->areg[6] = infop->pt_dynamic_addr;
1757 }
1758 }
1759 }
1760
1761 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1762 #define ELF_NREG 128
1763 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1764
1765 enum {
1766 TARGET_REG_PC,
1767 TARGET_REG_PS,
1768 TARGET_REG_LBEG,
1769 TARGET_REG_LEND,
1770 TARGET_REG_LCOUNT,
1771 TARGET_REG_SAR,
1772 TARGET_REG_WINDOWSTART,
1773 TARGET_REG_WINDOWBASE,
1774 TARGET_REG_THREADPTR,
1775 TARGET_REG_AR0 = 64,
1776 };
1777
1778 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1779 const CPUXtensaState *env)
1780 {
1781 unsigned i;
1782
1783 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1784 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1785 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1786 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1787 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1788 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1789 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1790 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1791 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1792 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1793 for (i = 0; i < env->config->nareg; ++i) {
1794 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1795 }
1796 }
1797
1798 #define USE_ELF_CORE_DUMP
1799 #define ELF_EXEC_PAGESIZE 4096
1800
1801 #endif /* TARGET_XTENSA */
1802
1803 #ifdef TARGET_HEXAGON
1804
1805 #define ELF_START_MMAP 0x20000000
1806
1807 #define ELF_CLASS ELFCLASS32
1808 #define ELF_ARCH EM_HEXAGON
1809
1810 static inline void init_thread(struct target_pt_regs *regs,
1811 struct image_info *infop)
1812 {
1813 regs->sepc = infop->entry;
1814 regs->sp = infop->start_stack;
1815 }
1816
1817 #endif /* TARGET_HEXAGON */
1818
1819 #ifndef ELF_BASE_PLATFORM
1820 #define ELF_BASE_PLATFORM (NULL)
1821 #endif
1822
1823 #ifndef ELF_PLATFORM
1824 #define ELF_PLATFORM (NULL)
1825 #endif
1826
1827 #ifndef ELF_MACHINE
1828 #define ELF_MACHINE ELF_ARCH
1829 #endif
1830
1831 #ifndef elf_check_arch
1832 #define elf_check_arch(x) ((x) == ELF_ARCH)
1833 #endif
1834
1835 #ifndef elf_check_abi
1836 #define elf_check_abi(x) (1)
1837 #endif
1838
1839 #ifndef ELF_HWCAP
1840 #define ELF_HWCAP 0
1841 #endif
1842
1843 #ifndef STACK_GROWS_DOWN
1844 #define STACK_GROWS_DOWN 1
1845 #endif
1846
1847 #ifndef STACK_ALIGNMENT
1848 #define STACK_ALIGNMENT 16
1849 #endif
1850
1851 #ifdef TARGET_ABI32
1852 #undef ELF_CLASS
1853 #define ELF_CLASS ELFCLASS32
1854 #undef bswaptls
1855 #define bswaptls(ptr) bswap32s(ptr)
1856 #endif
1857
1858 #ifndef EXSTACK_DEFAULT
1859 #define EXSTACK_DEFAULT false
1860 #endif
1861
1862 #include "elf.h"
1863
1864 /* We must delay the following stanzas until after "elf.h". */
1865 #if defined(TARGET_AARCH64)
1866
1867 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1868 const uint32_t *data,
1869 struct image_info *info,
1870 Error **errp)
1871 {
1872 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1873 if (pr_datasz != sizeof(uint32_t)) {
1874 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1875 return false;
1876 }
1877 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1878 info->note_flags = *data;
1879 }
1880 return true;
1881 }
1882 #define ARCH_USE_GNU_PROPERTY 1
1883
1884 #else
1885
1886 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1887 const uint32_t *data,
1888 struct image_info *info,
1889 Error **errp)
1890 {
1891 g_assert_not_reached();
1892 }
1893 #define ARCH_USE_GNU_PROPERTY 0
1894
1895 #endif
1896
1897 struct exec
1898 {
1899 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1900 unsigned int a_text; /* length of text, in bytes */
1901 unsigned int a_data; /* length of data, in bytes */
1902 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1903 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1904 unsigned int a_entry; /* start address */
1905 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1906 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1907 };
1908
1909
1910 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1911 #define OMAGIC 0407
1912 #define NMAGIC 0410
1913 #define ZMAGIC 0413
1914 #define QMAGIC 0314
1915
1916 /* Necessary parameters */
1917 #define TARGET_ELF_EXEC_PAGESIZE \
1918 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1919 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1920 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1921 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1922 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1923 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1924
1925 #define DLINFO_ITEMS 16
1926
1927 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1928 {
1929 memcpy(to, from, n);
1930 }
1931
1932 #ifdef BSWAP_NEEDED
1933 static void bswap_ehdr(struct elfhdr *ehdr)
1934 {
1935 bswap16s(&ehdr->e_type); /* Object file type */
1936 bswap16s(&ehdr->e_machine); /* Architecture */
1937 bswap32s(&ehdr->e_version); /* Object file version */
1938 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1939 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1940 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1941 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1942 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1943 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1944 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1945 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1946 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1947 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1948 }
1949
1950 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1951 {
1952 int i;
1953 for (i = 0; i < phnum; ++i, ++phdr) {
1954 bswap32s(&phdr->p_type); /* Segment type */
1955 bswap32s(&phdr->p_flags); /* Segment flags */
1956 bswaptls(&phdr->p_offset); /* Segment file offset */
1957 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1958 bswaptls(&phdr->p_paddr); /* Segment physical address */
1959 bswaptls(&phdr->p_filesz); /* Segment size in file */
1960 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1961 bswaptls(&phdr->p_align); /* Segment alignment */
1962 }
1963 }
1964
1965 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1966 {
1967 int i;
1968 for (i = 0; i < shnum; ++i, ++shdr) {
1969 bswap32s(&shdr->sh_name);
1970 bswap32s(&shdr->sh_type);
1971 bswaptls(&shdr->sh_flags);
1972 bswaptls(&shdr->sh_addr);
1973 bswaptls(&shdr->sh_offset);
1974 bswaptls(&shdr->sh_size);
1975 bswap32s(&shdr->sh_link);
1976 bswap32s(&shdr->sh_info);
1977 bswaptls(&shdr->sh_addralign);
1978 bswaptls(&shdr->sh_entsize);
1979 }
1980 }
1981
1982 static void bswap_sym(struct elf_sym *sym)
1983 {
1984 bswap32s(&sym->st_name);
1985 bswaptls(&sym->st_value);
1986 bswaptls(&sym->st_size);
1987 bswap16s(&sym->st_shndx);
1988 }
1989
1990 #ifdef TARGET_MIPS
1991 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1992 {
1993 bswap16s(&abiflags->version);
1994 bswap32s(&abiflags->ases);
1995 bswap32s(&abiflags->isa_ext);
1996 bswap32s(&abiflags->flags1);
1997 bswap32s(&abiflags->flags2);
1998 }
1999 #endif
2000 #else
2001 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2002 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2003 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2004 static inline void bswap_sym(struct elf_sym *sym) { }
2005 #ifdef TARGET_MIPS
2006 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2007 #endif
2008 #endif
2009
2010 #ifdef USE_ELF_CORE_DUMP
2011 static int elf_core_dump(int, const CPUArchState *);
2012 #endif /* USE_ELF_CORE_DUMP */
2013 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2014
2015 /* Verify the portions of EHDR within E_IDENT for the target.
2016 This can be performed before bswapping the entire header. */
2017 static bool elf_check_ident(struct elfhdr *ehdr)
2018 {
2019 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2020 && ehdr->e_ident[EI_MAG1] == ELFMAG1
2021 && ehdr->e_ident[EI_MAG2] == ELFMAG2
2022 && ehdr->e_ident[EI_MAG3] == ELFMAG3
2023 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2024 && ehdr->e_ident[EI_DATA] == ELF_DATA
2025 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2026 }
2027
2028 /* Verify the portions of EHDR outside of E_IDENT for the target.
2029 This has to wait until after bswapping the header. */
2030 static bool elf_check_ehdr(struct elfhdr *ehdr)
2031 {
2032 return (elf_check_arch(ehdr->e_machine)
2033 && elf_check_abi(ehdr->e_flags)
2034 && ehdr->e_ehsize == sizeof(struct elfhdr)
2035 && ehdr->e_phentsize == sizeof(struct elf_phdr)
2036 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2037 }
2038
2039 /*
2040 * 'copy_elf_strings()' copies argument/envelope strings from user
2041 * memory to free pages in kernel mem. These are in a format ready
2042 * to be put directly into the top of new user memory.
2043 *
2044 */
2045 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2046 abi_ulong p, abi_ulong stack_limit)
2047 {
2048 char *tmp;
2049 int len, i;
2050 abi_ulong top = p;
2051
2052 if (!p) {
2053 return 0; /* bullet-proofing */
2054 }
2055
2056 if (STACK_GROWS_DOWN) {
2057 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2058 for (i = argc - 1; i >= 0; --i) {
2059 tmp = argv[i];
2060 if (!tmp) {
2061 fprintf(stderr, "VFS: argc is wrong");
2062 exit(-1);
2063 }
2064 len = strlen(tmp) + 1;
2065 tmp += len;
2066
2067 if (len > (p - stack_limit)) {
2068 return 0;
2069 }
2070 while (len) {
2071 int bytes_to_copy = (len > offset) ? offset : len;
2072 tmp -= bytes_to_copy;
2073 p -= bytes_to_copy;
2074 offset -= bytes_to_copy;
2075 len -= bytes_to_copy;
2076
2077 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2078
2079 if (offset == 0) {
2080 memcpy_to_target(p, scratch, top - p);
2081 top = p;
2082 offset = TARGET_PAGE_SIZE;
2083 }
2084 }
2085 }
2086 if (p != top) {
2087 memcpy_to_target(p, scratch + offset, top - p);
2088 }
2089 } else {
2090 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2091 for (i = 0; i < argc; ++i) {
2092 tmp = argv[i];
2093 if (!tmp) {
2094 fprintf(stderr, "VFS: argc is wrong");
2095 exit(-1);
2096 }
2097 len = strlen(tmp) + 1;
2098 if (len > (stack_limit - p)) {
2099 return 0;
2100 }
2101 while (len) {
2102 int bytes_to_copy = (len > remaining) ? remaining : len;
2103
2104 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2105
2106 tmp += bytes_to_copy;
2107 remaining -= bytes_to_copy;
2108 p += bytes_to_copy;
2109 len -= bytes_to_copy;
2110
2111 if (remaining == 0) {
2112 memcpy_to_target(top, scratch, p - top);
2113 top = p;
2114 remaining = TARGET_PAGE_SIZE;
2115 }
2116 }
2117 }
2118 if (p != top) {
2119 memcpy_to_target(top, scratch, p - top);
2120 }
2121 }
2122
2123 return p;
2124 }
2125
2126 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2127 * argument/environment space. Newer kernels (>2.6.33) allow more,
2128 * dependent on stack size, but guarantee at least 32 pages for
2129 * backwards compatibility.
2130 */
2131 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2132
2133 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2134 struct image_info *info)
2135 {
2136 abi_ulong size, error, guard;
2137 int prot;
2138
2139 size = guest_stack_size;
2140 if (size < STACK_LOWER_LIMIT) {
2141 size = STACK_LOWER_LIMIT;
2142 }
2143
2144 if (STACK_GROWS_DOWN) {
2145 guard = TARGET_PAGE_SIZE;
2146 if (guard < qemu_real_host_page_size()) {
2147 guard = qemu_real_host_page_size();
2148 }
2149 } else {
2150 /* no guard page for hppa target where stack grows upwards. */
2151 guard = 0;
2152 }
2153
2154 prot = PROT_READ | PROT_WRITE;
2155 if (info->exec_stack) {
2156 prot |= PROT_EXEC;
2157 }
2158 error = target_mmap(0, size + guard, prot,
2159 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2160 if (error == -1) {
2161 perror("mmap stack");
2162 exit(-1);
2163 }
2164
2165 /* We reserve one extra page at the top of the stack as guard. */
2166 if (STACK_GROWS_DOWN) {
2167 target_mprotect(error, guard, PROT_NONE);
2168 info->stack_limit = error + guard;
2169 return info->stack_limit + size - sizeof(void *);
2170 } else {
2171 info->stack_limit = error + size;
2172 return error;
2173 }
2174 }
2175
2176 /* Map and zero the bss. We need to explicitly zero any fractional pages
2177 after the data section (i.e. bss). */
2178 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2179 {
2180 uintptr_t host_start, host_map_start, host_end;
2181
2182 last_bss = TARGET_PAGE_ALIGN(last_bss);
2183
2184 /* ??? There is confusion between qemu_real_host_page_size and
2185 qemu_host_page_size here and elsewhere in target_mmap, which
2186 may lead to the end of the data section mapping from the file
2187 not being mapped. At least there was an explicit test and
2188 comment for that here, suggesting that "the file size must
2189 be known". The comment probably pre-dates the introduction
2190 of the fstat system call in target_mmap which does in fact
2191 find out the size. What isn't clear is if the workaround
2192 here is still actually needed. For now, continue with it,
2193 but merge it with the "normal" mmap that would allocate the bss. */
2194
2195 host_start = (uintptr_t) g2h_untagged(elf_bss);
2196 host_end = (uintptr_t) g2h_untagged(last_bss);
2197 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2198
2199 if (host_map_start < host_end) {
2200 void *p = mmap((void *)host_map_start, host_end - host_map_start,
2201 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2202 if (p == MAP_FAILED) {
2203 perror("cannot mmap brk");
2204 exit(-1);
2205 }
2206 }
2207
2208 /* Ensure that the bss page(s) are valid */
2209 if ((page_get_flags(last_bss-1) & prot) != prot) {
2210 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2211 prot | PAGE_VALID);
2212 }
2213
2214 if (host_start < host_map_start) {
2215 memset((void *)host_start, 0, host_map_start - host_start);
2216 }
2217 }
2218
2219 #if defined(TARGET_ARM)
2220 static int elf_is_fdpic(struct elfhdr *exec)
2221 {
2222 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2223 }
2224 #elif defined(TARGET_XTENSA)
2225 static int elf_is_fdpic(struct elfhdr *exec)
2226 {
2227 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2228 }
2229 #else
2230 /* Default implementation, always false. */
2231 static int elf_is_fdpic(struct elfhdr *exec)
2232 {
2233 return 0;
2234 }
2235 #endif
2236
2237 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2238 {
2239 uint16_t n;
2240 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2241
2242 /* elf32_fdpic_loadseg */
2243 n = info->nsegs;
2244 while (n--) {
2245 sp -= 12;
2246 put_user_u32(loadsegs[n].addr, sp+0);
2247 put_user_u32(loadsegs[n].p_vaddr, sp+4);
2248 put_user_u32(loadsegs[n].p_memsz, sp+8);
2249 }
2250
2251 /* elf32_fdpic_loadmap */
2252 sp -= 4;
2253 put_user_u16(0, sp+0); /* version */
2254 put_user_u16(info->nsegs, sp+2); /* nsegs */
2255
2256 info->personality = PER_LINUX_FDPIC;
2257 info->loadmap_addr = sp;
2258
2259 return sp;
2260 }
2261
2262 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2263 struct elfhdr *exec,
2264 struct image_info *info,
2265 struct image_info *interp_info)
2266 {
2267 abi_ulong sp;
2268 abi_ulong u_argc, u_argv, u_envp, u_auxv;
2269 int size;
2270 int i;
2271 abi_ulong u_rand_bytes;
2272 uint8_t k_rand_bytes[16];
2273 abi_ulong u_platform, u_base_platform;
2274 const char *k_platform, *k_base_platform;
2275 const int n = sizeof(elf_addr_t);
2276
2277 sp = p;
2278
2279 /* Needs to be before we load the env/argc/... */
2280 if (elf_is_fdpic(exec)) {
2281 /* Need 4 byte alignment for these structs */
2282 sp &= ~3;
2283 sp = loader_build_fdpic_loadmap(info, sp);
2284 info->other_info = interp_info;
2285 if (interp_info) {
2286 interp_info->other_info = info;
2287 sp = loader_build_fdpic_loadmap(interp_info, sp);
2288 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2289 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2290 } else {
2291 info->interpreter_loadmap_addr = 0;
2292 info->interpreter_pt_dynamic_addr = 0;
2293 }
2294 }
2295
2296 u_base_platform = 0;
2297 k_base_platform = ELF_BASE_PLATFORM;
2298 if (k_base_platform) {
2299 size_t len = strlen(k_base_platform) + 1;
2300 if (STACK_GROWS_DOWN) {
2301 sp -= (len + n - 1) & ~(n - 1);
2302 u_base_platform = sp;
2303 /* FIXME - check return value of memcpy_to_target() for failure */
2304 memcpy_to_target(sp, k_base_platform, len);
2305 } else {
2306 memcpy_to_target(sp, k_base_platform, len);
2307 u_base_platform = sp;
2308 sp += len + 1;
2309 }
2310 }
2311
2312 u_platform = 0;
2313 k_platform = ELF_PLATFORM;
2314 if (k_platform) {
2315 size_t len = strlen(k_platform) + 1;
2316 if (STACK_GROWS_DOWN) {
2317 sp -= (len + n - 1) & ~(n - 1);
2318 u_platform = sp;
2319 /* FIXME - check return value of memcpy_to_target() for failure */
2320 memcpy_to_target(sp, k_platform, len);
2321 } else {
2322 memcpy_to_target(sp, k_platform, len);
2323 u_platform = sp;
2324 sp += len + 1;
2325 }
2326 }
2327
2328 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2329 * the argv and envp pointers.
2330 */
2331 if (STACK_GROWS_DOWN) {
2332 sp = QEMU_ALIGN_DOWN(sp, 16);
2333 } else {
2334 sp = QEMU_ALIGN_UP(sp, 16);
2335 }
2336
2337 /*
2338 * Generate 16 random bytes for userspace PRNG seeding.
2339 */
2340 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2341 if (STACK_GROWS_DOWN) {
2342 sp -= 16;
2343 u_rand_bytes = sp;
2344 /* FIXME - check return value of memcpy_to_target() for failure */
2345 memcpy_to_target(sp, k_rand_bytes, 16);
2346 } else {
2347 memcpy_to_target(sp, k_rand_bytes, 16);
2348 u_rand_bytes = sp;
2349 sp += 16;
2350 }
2351
2352 size = (DLINFO_ITEMS + 1) * 2;
2353 if (k_base_platform)
2354 size += 2;
2355 if (k_platform)
2356 size += 2;
2357 #ifdef DLINFO_ARCH_ITEMS
2358 size += DLINFO_ARCH_ITEMS * 2;
2359 #endif
2360 #ifdef ELF_HWCAP2
2361 size += 2;
2362 #endif
2363 info->auxv_len = size * n;
2364
2365 size += envc + argc + 2;
2366 size += 1; /* argc itself */
2367 size *= n;
2368
2369 /* Allocate space and finalize stack alignment for entry now. */
2370 if (STACK_GROWS_DOWN) {
2371 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2372 sp = u_argc;
2373 } else {
2374 u_argc = sp;
2375 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2376 }
2377
2378 u_argv = u_argc + n;
2379 u_envp = u_argv + (argc + 1) * n;
2380 u_auxv = u_envp + (envc + 1) * n;
2381 info->saved_auxv = u_auxv;
2382 info->argc = argc;
2383 info->envc = envc;
2384 info->argv = u_argv;
2385 info->envp = u_envp;
2386
2387 /* This is correct because Linux defines
2388 * elf_addr_t as Elf32_Off / Elf64_Off
2389 */
2390 #define NEW_AUX_ENT(id, val) do { \
2391 put_user_ual(id, u_auxv); u_auxv += n; \
2392 put_user_ual(val, u_auxv); u_auxv += n; \
2393 } while(0)
2394
2395 #ifdef ARCH_DLINFO
2396 /*
2397 * ARCH_DLINFO must come first so platform specific code can enforce
2398 * special alignment requirements on the AUXV if necessary (eg. PPC).
2399 */
2400 ARCH_DLINFO;
2401 #endif
2402 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2403 * on info->auxv_len will trigger.
2404 */
2405 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2406 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2407 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2408 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2409 /* Target doesn't support host page size alignment */
2410 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2411 } else {
2412 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2413 qemu_host_page_size)));
2414 }
2415 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2416 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2417 NEW_AUX_ENT(AT_ENTRY, info->entry);
2418 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2419 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2420 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2421 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2422 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2423 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2424 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2425 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2426 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2427
2428 #ifdef ELF_HWCAP2
2429 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2430 #endif
2431
2432 if (u_base_platform) {
2433 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2434 }
2435 if (u_platform) {
2436 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2437 }
2438 NEW_AUX_ENT (AT_NULL, 0);
2439 #undef NEW_AUX_ENT
2440
2441 /* Check that our initial calculation of the auxv length matches how much
2442 * we actually put into it.
2443 */
2444 assert(info->auxv_len == u_auxv - info->saved_auxv);
2445
2446 put_user_ual(argc, u_argc);
2447
2448 p = info->arg_strings;
2449 for (i = 0; i < argc; ++i) {
2450 put_user_ual(p, u_argv);
2451 u_argv += n;
2452 p += target_strlen(p) + 1;
2453 }
2454 put_user_ual(0, u_argv);
2455
2456 p = info->env_strings;
2457 for (i = 0; i < envc; ++i) {
2458 put_user_ual(p, u_envp);
2459 u_envp += n;
2460 p += target_strlen(p) + 1;
2461 }
2462 put_user_ual(0, u_envp);
2463
2464 return sp;
2465 }
2466
2467 #if defined(HI_COMMPAGE)
2468 #define LO_COMMPAGE -1
2469 #elif defined(LO_COMMPAGE)
2470 #define HI_COMMPAGE 0
2471 #else
2472 #define HI_COMMPAGE 0
2473 #define LO_COMMPAGE -1
2474 #ifndef INIT_GUEST_COMMPAGE
2475 #define init_guest_commpage() true
2476 #endif
2477 #endif
2478
2479 static void pgb_fail_in_use(const char *image_name)
2480 {
2481 error_report("%s: requires virtual address space that is in use "
2482 "(omit the -B option or choose a different value)",
2483 image_name);
2484 exit(EXIT_FAILURE);
2485 }
2486
2487 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2488 abi_ulong guest_hiaddr, long align)
2489 {
2490 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2491 void *addr, *test;
2492
2493 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2494 fprintf(stderr, "Requested guest base %p does not satisfy "
2495 "host minimum alignment (0x%lx)\n",
2496 (void *)guest_base, align);
2497 exit(EXIT_FAILURE);
2498 }
2499
2500 /* Sanity check the guest binary. */
2501 if (reserved_va) {
2502 if (guest_hiaddr > reserved_va) {
2503 error_report("%s: requires more than reserved virtual "
2504 "address space (0x%" PRIx64 " > 0x%lx)",
2505 image_name, (uint64_t)guest_hiaddr, reserved_va);
2506 exit(EXIT_FAILURE);
2507 }
2508 } else {
2509 #if HOST_LONG_BITS < TARGET_ABI_BITS
2510 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2511 error_report("%s: requires more virtual address space "
2512 "than the host can provide (0x%" PRIx64 ")",
2513 image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
2514 exit(EXIT_FAILURE);
2515 }
2516 #endif
2517 }
2518
2519 /*
2520 * Expand the allocation to the entire reserved_va.
2521 * Exclude the mmap_min_addr hole.
2522 */
2523 if (reserved_va) {
2524 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2525 : mmap_min_addr - guest_base);
2526 guest_hiaddr = reserved_va;
2527 }
2528
2529 /* Reserve the address space for the binary, or reserved_va. */
2530 test = g2h_untagged(guest_loaddr);
2531 addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
2532 if (test != addr) {
2533 pgb_fail_in_use(image_name);
2534 }
2535 qemu_log_mask(CPU_LOG_PAGE,
2536 "%s: base @ %p for %" PRIu64 " bytes\n",
2537 __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
2538 }
2539
2540 /**
2541 * pgd_find_hole_fallback: potential mmap address
2542 * @guest_size: size of available space
2543 * @brk: location of break
2544 * @align: memory alignment
2545 *
2546 * This is a fallback method for finding a hole in the host address
2547 * space if we don't have the benefit of being able to access
2548 * /proc/self/map. It can potentially take a very long time as we can
2549 * only dumbly iterate up the host address space seeing if the
2550 * allocation would work.
2551 */
2552 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2553 long align, uintptr_t offset)
2554 {
2555 uintptr_t base;
2556
2557 /* Start (aligned) at the bottom and work our way up */
2558 base = ROUND_UP(mmap_min_addr, align);
2559
2560 while (true) {
2561 uintptr_t align_start, end;
2562 align_start = ROUND_UP(base, align);
2563 end = align_start + guest_size + offset;
2564
2565 /* if brk is anywhere in the range give ourselves some room to grow. */
2566 if (align_start <= brk && brk < end) {
2567 base = brk + (16 * MiB);
2568 continue;
2569 } else if (align_start + guest_size < align_start) {
2570 /* we have run out of space */
2571 return -1;
2572 } else {
2573 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2574 MAP_FIXED_NOREPLACE;
2575 void * mmap_start = mmap((void *) align_start, guest_size,
2576 PROT_NONE, flags, -1, 0);
2577 if (mmap_start != MAP_FAILED) {
2578 munmap(mmap_start, guest_size);
2579 if (mmap_start == (void *) align_start) {
2580 qemu_log_mask(CPU_LOG_PAGE,
2581 "%s: base @ %p for %" PRIdPTR" bytes\n",
2582 __func__, mmap_start + offset, guest_size);
2583 return (uintptr_t) mmap_start + offset;
2584 }
2585 }
2586 base += qemu_host_page_size;
2587 }
2588 }
2589 }
2590
2591 /* Return value for guest_base, or -1 if no hole found. */
2592 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2593 long align, uintptr_t offset)
2594 {
2595 GSList *maps, *iter;
2596 uintptr_t this_start, this_end, next_start, brk;
2597 intptr_t ret = -1;
2598
2599 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2600
2601 maps = read_self_maps();
2602
2603 /* Read brk after we've read the maps, which will malloc. */
2604 brk = (uintptr_t)sbrk(0);
2605
2606 if (!maps) {
2607 return pgd_find_hole_fallback(guest_size, brk, align, offset);
2608 }
2609
2610 /* The first hole is before the first map entry. */
2611 this_start = mmap_min_addr;
2612
2613 for (iter = maps; iter;
2614 this_start = next_start, iter = g_slist_next(iter)) {
2615 uintptr_t align_start, hole_size;
2616
2617 this_end = ((MapInfo *)iter->data)->start;
2618 next_start = ((MapInfo *)iter->data)->end;
2619 align_start = ROUND_UP(this_start + offset, align);
2620
2621 /* Skip holes that are too small. */
2622 if (align_start >= this_end) {
2623 continue;
2624 }
2625 hole_size = this_end - align_start;
2626 if (hole_size < guest_size) {
2627 continue;
2628 }
2629
2630 /* If this hole contains brk, give ourselves some room to grow. */
2631 if (this_start <= brk && brk < this_end) {
2632 hole_size -= guest_size;
2633 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2634 align_start += 1 * GiB;
2635 } else if (hole_size >= 16 * MiB) {
2636 align_start += 16 * MiB;
2637 } else {
2638 align_start = (this_end - guest_size) & -align;
2639 if (align_start < this_start) {
2640 continue;
2641 }
2642 }
2643 }
2644
2645 /* Record the lowest successful match. */
2646 if (ret < 0) {
2647 ret = align_start;
2648 }
2649 /* If this hole contains the identity map, select it. */
2650 if (align_start <= guest_loaddr &&
2651 guest_loaddr + guest_size <= this_end) {
2652 ret = 0;
2653 }
2654 /* If this hole ends above the identity map, stop looking. */
2655 if (this_end >= guest_loaddr) {
2656 break;
2657 }
2658 }
2659 free_self_maps(maps);
2660
2661 if (ret != -1) {
2662 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2663 " for %" PRIuPTR " bytes\n",
2664 __func__, ret, guest_size);
2665 }
2666
2667 return ret;
2668 }
2669
2670 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2671 abi_ulong orig_hiaddr, long align)
2672 {
2673 uintptr_t loaddr = orig_loaddr;
2674 uintptr_t hiaddr = orig_hiaddr;
2675 uintptr_t offset = 0;
2676 uintptr_t addr;
2677
2678 if (hiaddr != orig_hiaddr) {
2679 error_report("%s: requires virtual address space that the "
2680 "host cannot provide (0x%" PRIx64 ")",
2681 image_name, (uint64_t)orig_hiaddr + 1);
2682 exit(EXIT_FAILURE);
2683 }
2684
2685 loaddr &= -align;
2686 if (HI_COMMPAGE) {
2687 /*
2688 * Extend the allocation to include the commpage.
2689 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2690 * need to ensure there is space bellow the guest_base so we
2691 * can map the commpage in the place needed when the address
2692 * arithmetic wraps around.
2693 */
2694 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2695 hiaddr = UINT32_MAX;
2696 } else {
2697 offset = -(HI_COMMPAGE & -align);
2698 }
2699 } else if (LO_COMMPAGE != -1) {
2700 loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2701 }
2702
2703 addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
2704 if (addr == -1) {
2705 /*
2706 * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2707 * that can satisfy both. But as the normal arm32 link base address
2708 * is ~32k, and we extend down to include the commpage, making the
2709 * overhead only ~96k, this is unlikely.
2710 */
2711 error_report("%s: Unable to allocate %#zx bytes of "
2712 "virtual address space", image_name,
2713 (size_t)(hiaddr - loaddr));
2714 exit(EXIT_FAILURE);
2715 }
2716
2717 guest_base = addr;
2718
2719 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2720 __func__, addr, hiaddr - loaddr);
2721 }
2722
2723 static void pgb_dynamic(const char *image_name, long align)
2724 {
2725 /*
2726 * The executable is dynamic and does not require a fixed address.
2727 * All we need is a commpage that satisfies align.
2728 * If we do not need a commpage, leave guest_base == 0.
2729 */
2730 if (HI_COMMPAGE) {
2731 uintptr_t addr, commpage;
2732
2733 /* 64-bit hosts should have used reserved_va. */
2734 assert(sizeof(uintptr_t) == 4);
2735
2736 /*
2737 * By putting the commpage at the first hole, that puts guest_base
2738 * just above that, and maximises the positive guest addresses.
2739 */
2740 commpage = HI_COMMPAGE & -align;
2741 addr = pgb_find_hole(commpage, -commpage, align, 0);
2742 assert(addr != -1);
2743 guest_base = addr;
2744 }
2745 }
2746
2747 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2748 abi_ulong guest_hiaddr, long align)
2749 {
2750 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2751 void *addr, *test;
2752
2753 if (guest_hiaddr > reserved_va) {
2754 error_report("%s: requires more than reserved virtual "
2755 "address space (0x%" PRIx64 " > 0x%lx)",
2756 image_name, (uint64_t)guest_hiaddr, reserved_va);
2757 exit(EXIT_FAILURE);
2758 }
2759
2760 /* Widen the "image" to the entire reserved address space. */
2761 pgb_static(image_name, 0, reserved_va, align);
2762
2763 /* osdep.h defines this as 0 if it's missing */
2764 flags |= MAP_FIXED_NOREPLACE;
2765
2766 /* Reserve the memory on the host. */
2767 assert(guest_base != 0);
2768 test = g2h_untagged(0);
2769 addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
2770 if (addr == MAP_FAILED || addr != test) {
2771 error_report("Unable to reserve 0x%lx bytes of virtual address "
2772 "space at %p (%s) for use as guest address space (check your "
2773 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2774 "using -R option)", reserved_va + 1, test, strerror(errno));
2775 exit(EXIT_FAILURE);
2776 }
2777
2778 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2779 __func__, addr, reserved_va + 1);
2780 }
2781
2782 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2783 abi_ulong guest_hiaddr)
2784 {
2785 /* In order to use host shmat, we must be able to honor SHMLBA. */
2786 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2787
2788 if (have_guest_base) {
2789 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2790 } else if (reserved_va) {
2791 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2792 } else if (guest_loaddr) {
2793 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2794 } else {
2795 pgb_dynamic(image_name, align);
2796 }
2797
2798 /* Reserve and initialize the commpage. */
2799 if (!init_guest_commpage()) {
2800 /*
2801 * With have_guest_base, the user has selected the address and
2802 * we are trying to work with that. Otherwise, we have selected
2803 * free space and init_guest_commpage must succeeded.
2804 */
2805 assert(have_guest_base);
2806 pgb_fail_in_use(image_name);
2807 }
2808
2809 assert(QEMU_IS_ALIGNED(guest_base, align));
2810 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2811 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2812 }
2813
2814 enum {
2815 /* The string "GNU\0" as a magic number. */
2816 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2817 NOTE_DATA_SZ = 1 * KiB,
2818 NOTE_NAME_SZ = 4,
2819 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2820 };
2821
2822 /*
2823 * Process a single gnu_property entry.
2824 * Return false for error.
2825 */
2826 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2827 struct image_info *info, bool have_prev_type,
2828 uint32_t *prev_type, Error **errp)
2829 {
2830 uint32_t pr_type, pr_datasz, step;
2831
2832 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2833 goto error_data;
2834 }
2835 datasz -= *off;
2836 data += *off / sizeof(uint32_t);
2837
2838 if (datasz < 2 * sizeof(uint32_t)) {
2839 goto error_data;
2840 }
2841 pr_type = data[0];
2842 pr_datasz = data[1];
2843 data += 2;
2844 datasz -= 2 * sizeof(uint32_t);
2845 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2846 if (step > datasz) {
2847 goto error_data;
2848 }
2849
2850 /* Properties are supposed to be unique and sorted on pr_type. */
2851 if (have_prev_type && pr_type <= *prev_type) {
2852 if (pr_type == *prev_type) {
2853 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2854 } else {
2855 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2856 }
2857 return false;
2858 }
2859 *prev_type = pr_type;
2860
2861 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2862 return false;
2863 }
2864
2865 *off += 2 * sizeof(uint32_t) + step;
2866 return true;
2867
2868 error_data:
2869 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2870 return false;
2871 }
2872
2873 /* Process NT_GNU_PROPERTY_TYPE_0. */
2874 static bool parse_elf_properties(int image_fd,
2875 struct image_info *info,
2876 const struct elf_phdr *phdr,
2877 char bprm_buf[BPRM_BUF_SIZE],
2878 Error **errp)
2879 {
2880 union {
2881 struct elf_note nhdr;
2882 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2883 } note;
2884
2885 int n, off, datasz;
2886 bool have_prev_type;
2887 uint32_t prev_type;
2888
2889 /* Unless the arch requires properties, ignore them. */
2890 if (!ARCH_USE_GNU_PROPERTY) {
2891 return true;
2892 }
2893
2894 /* If the properties are crazy large, that's too bad. */
2895 n = phdr->p_filesz;
2896 if (n > sizeof(note)) {
2897 error_setg(errp, "PT_GNU_PROPERTY too large");
2898 return false;
2899 }
2900 if (n < sizeof(note.nhdr)) {
2901 error_setg(errp, "PT_GNU_PROPERTY too small");
2902 return false;
2903 }
2904
2905 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2906 memcpy(&note, bprm_buf + phdr->p_offset, n);
2907 } else {
2908 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2909 if (len != n) {
2910 error_setg_errno(errp, errno, "Error reading file header");
2911 return false;
2912 }
2913 }
2914
2915 /*
2916 * The contents of a valid PT_GNU_PROPERTY is a sequence
2917 * of uint32_t -- swap them all now.
2918 */
2919 #ifdef BSWAP_NEEDED
2920 for (int i = 0; i < n / 4; i++) {
2921 bswap32s(note.data + i);
2922 }
2923 #endif
2924
2925 /*
2926 * Note that nhdr is 3 words, and that the "name" described by namesz
2927 * immediately follows nhdr and is thus at the 4th word. Further, all
2928 * of the inputs to the kernel's round_up are multiples of 4.
2929 */
2930 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2931 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2932 note.data[3] != GNU0_MAGIC) {
2933 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2934 return false;
2935 }
2936 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2937
2938 datasz = note.nhdr.n_descsz + off;
2939 if (datasz > n) {
2940 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2941 return false;
2942 }
2943
2944 have_prev_type = false;
2945 prev_type = 0;
2946 while (1) {
2947 if (off == datasz) {
2948 return true; /* end, exit ok */
2949 }
2950 if (!parse_elf_property(note.data, &off, datasz, info,
2951 have_prev_type, &prev_type, errp)) {
2952 return false;
2953 }
2954 have_prev_type = true;
2955 }
2956 }
2957
2958 /* Load an ELF image into the address space.
2959
2960 IMAGE_NAME is the filename of the image, to use in error messages.
2961 IMAGE_FD is the open file descriptor for the image.
2962
2963 BPRM_BUF is a copy of the beginning of the file; this of course
2964 contains the elf file header at offset 0. It is assumed that this
2965 buffer is sufficiently aligned to present no problems to the host
2966 in accessing data at aligned offsets within the buffer.
2967
2968 On return: INFO values will be filled in, as necessary or available. */
2969
2970 static void load_elf_image(const char *image_name, int image_fd,
2971 struct image_info *info, char **pinterp_name,
2972 char bprm_buf[BPRM_BUF_SIZE])
2973 {
2974 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2975 struct elf_phdr *phdr;
2976 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2977 int i, retval, prot_exec;
2978 Error *err = NULL;
2979
2980 /* First of all, some simple consistency checks */
2981 if (!elf_check_ident(ehdr)) {
2982 error_setg(&err, "Invalid ELF image for this architecture");
2983 goto exit_errmsg;
2984 }
2985 bswap_ehdr(ehdr);
2986 if (!elf_check_ehdr(ehdr)) {
2987 error_setg(&err, "Invalid ELF image for this architecture");
2988 goto exit_errmsg;
2989 }
2990
2991 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2992 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2993 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2994 } else {
2995 phdr = (struct elf_phdr *) alloca(i);
2996 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2997 if (retval != i) {
2998 goto exit_read;
2999 }
3000 }
3001 bswap_phdr(phdr, ehdr->e_phnum);
3002
3003 info->nsegs = 0;
3004 info->pt_dynamic_addr = 0;
3005
3006 mmap_lock();
3007
3008 /*
3009 * Find the maximum size of the image and allocate an appropriate
3010 * amount of memory to handle that. Locate the interpreter, if any.
3011 */
3012 loaddr = -1, hiaddr = 0;
3013 info->alignment = 0;
3014 info->exec_stack = EXSTACK_DEFAULT;
3015 for (i = 0; i < ehdr->e_phnum; ++i) {
3016 struct elf_phdr *eppnt = phdr + i;
3017 if (eppnt->p_type == PT_LOAD) {
3018 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3019 if (a < loaddr) {
3020 loaddr = a;
3021 }
3022 a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3023 if (a > hiaddr) {
3024 hiaddr = a;
3025 }
3026 ++info->nsegs;
3027 info->alignment |= eppnt->p_align;
3028 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3029 g_autofree char *interp_name = NULL;
3030
3031 if (*pinterp_name) {
3032 error_setg(&err, "Multiple PT_INTERP entries");
3033 goto exit_errmsg;
3034 }
3035
3036 interp_name = g_malloc(eppnt->p_filesz);
3037
3038 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3039 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3040 eppnt->p_filesz);
3041 } else {
3042 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3043 eppnt->p_offset);
3044 if (retval != eppnt->p_filesz) {
3045 goto exit_read;
3046 }
3047 }
3048 if (interp_name[eppnt->p_filesz - 1] != 0) {
3049 error_setg(&err, "Invalid PT_INTERP entry");
3050 goto exit_errmsg;
3051 }
3052 *pinterp_name = g_steal_pointer(&interp_name);
3053 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3054 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3055 goto exit_errmsg;
3056 }
3057 } else if (eppnt->p_type == PT_GNU_STACK) {
3058 info->exec_stack = eppnt->p_flags & PF_X;
3059 }
3060 }
3061
3062 if (pinterp_name != NULL) {
3063 /*
3064 * This is the main executable.
3065 *
3066 * Reserve extra space for brk.
3067 * We hold on to this space while placing the interpreter
3068 * and the stack, lest they be placed immediately after
3069 * the data segment and block allocation from the brk.
3070 *
3071 * 16MB is chosen as "large enough" without being so large as
3072 * to allow the result to not fit with a 32-bit guest on a
3073 * 32-bit host. However some 64 bit guests (e.g. s390x)
3074 * attempt to place their heap further ahead and currently
3075 * nothing stops them smashing into QEMUs address space.
3076 */
3077 #if TARGET_LONG_BITS == 64
3078 info->reserve_brk = 32 * MiB;
3079 #else
3080 info->reserve_brk = 16 * MiB;
3081 #endif
3082 hiaddr += info->reserve_brk;
3083
3084 if (ehdr->e_type == ET_EXEC) {
3085 /*
3086 * Make sure that the low address does not conflict with
3087 * MMAP_MIN_ADDR or the QEMU application itself.
3088 */
3089 probe_guest_base(image_name, loaddr, hiaddr);
3090 } else {
3091 /*
3092 * The binary is dynamic, but we still need to
3093 * select guest_base. In this case we pass a size.
3094 */
3095 probe_guest_base(image_name, 0, hiaddr - loaddr);
3096 }
3097 }
3098
3099 /*
3100 * Reserve address space for all of this.
3101 *
3102 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3103 * exactly the address range that is required.
3104 *
3105 * Otherwise this is ET_DYN, and we are searching for a location
3106 * that can hold the memory space required. If the image is
3107 * pre-linked, LOADDR will be non-zero, and the kernel should
3108 * honor that address if it happens to be free.
3109 *
3110 * In both cases, we will overwrite pages in this range with mappings
3111 * from the executable.
3112 */
3113 load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3114 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3115 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3116 -1, 0);
3117 if (load_addr == -1) {
3118 goto exit_mmap;
3119 }
3120 load_bias = load_addr - loaddr;
3121
3122 if (elf_is_fdpic(ehdr)) {
3123 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3124 g_malloc(sizeof(*loadsegs) * info->nsegs);
3125
3126 for (i = 0; i < ehdr->e_phnum; ++i) {
3127 switch (phdr[i].p_type) {
3128 case PT_DYNAMIC:
3129 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3130 break;
3131 case PT_LOAD:
3132 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3133 loadsegs->p_vaddr = phdr[i].p_vaddr;
3134 loadsegs->p_memsz = phdr[i].p_memsz;
3135 ++loadsegs;
3136 break;
3137 }
3138 }
3139 }
3140
3141 info->load_bias = load_bias;
3142 info->code_offset = load_bias;
3143 info->data_offset = load_bias;
3144 info->load_addr = load_addr;
3145 info->entry = ehdr->e_entry + load_bias;
3146 info->start_code = -1;
3147 info->end_code = 0;
3148 info->start_data = -1;
3149 info->end_data = 0;
3150 info->brk = 0;
3151 info->elf_flags = ehdr->e_flags;
3152
3153 prot_exec = PROT_EXEC;
3154 #ifdef TARGET_AARCH64
3155 /*
3156 * If the BTI feature is present, this indicates that the executable
3157 * pages of the startup binary should be mapped with PROT_BTI, so that
3158 * branch targets are enforced.
3159 *
3160 * The startup binary is either the interpreter or the static executable.
3161 * The interpreter is responsible for all pages of a dynamic executable.
3162 *
3163 * Elf notes are backward compatible to older cpus.
3164 * Do not enable BTI unless it is supported.
3165 */
3166 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3167 && (pinterp_name == NULL || *pinterp_name == 0)
3168 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3169 prot_exec |= TARGET_PROT_BTI;
3170 }
3171 #endif
3172
3173 for (i = 0; i < ehdr->e_phnum; i++) {
3174 struct elf_phdr *eppnt = phdr + i;
3175 if (eppnt->p_type == PT_LOAD) {
3176 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3177 int elf_prot = 0;
3178
3179 if (eppnt->p_flags & PF_R) {
3180 elf_prot |= PROT_READ;
3181 }
3182 if (eppnt->p_flags & PF_W) {
3183 elf_prot |= PROT_WRITE;
3184 }
3185 if (eppnt->p_flags & PF_X) {
3186 elf_prot |= prot_exec;
3187 }
3188
3189 vaddr = load_bias + eppnt->p_vaddr;
3190 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3191 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3192
3193 vaddr_ef = vaddr + eppnt->p_filesz;
3194 vaddr_em = vaddr + eppnt->p_memsz;
3195
3196 /*
3197 * Some segments may be completely empty, with a non-zero p_memsz
3198 * but no backing file segment.
3199 */
3200 if (eppnt->p_filesz != 0) {
3201 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3202 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3203 MAP_PRIVATE | MAP_FIXED,
3204 image_fd, eppnt->p_offset - vaddr_po);
3205
3206 if (error == -1) {
3207 goto exit_mmap;
3208 }
3209
3210 /*
3211 * If the load segment requests extra zeros (e.g. bss), map it.
3212 */
3213 if (eppnt->p_filesz < eppnt->p_memsz) {
3214 zero_bss(vaddr_ef, vaddr_em, elf_prot);
3215 }
3216 } else if (eppnt->p_memsz != 0) {
3217 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3218 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3219 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3220 -1, 0);
3221
3222 if (error == -1) {
3223 goto exit_mmap;
3224 }
3225 }
3226
3227 /* Find the full program boundaries. */
3228 if (elf_prot & PROT_EXEC) {
3229 if (vaddr < info->start_code) {
3230 info->start_code = vaddr;
3231 }
3232 if (vaddr_ef > info->end_code) {
3233 info->end_code = vaddr_ef;
3234 }
3235 }
3236 if (elf_prot & PROT_WRITE) {
3237 if (vaddr < info->start_data) {
3238 info->start_data = vaddr;
3239 }
3240 if (vaddr_ef > info->end_data) {
3241 info->end_data = vaddr_ef;
3242 }
3243 }
3244 if (vaddr_em > info->brk) {
3245 info->brk = vaddr_em;
3246 }
3247 #ifdef TARGET_MIPS
3248 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3249 Mips_elf_abiflags_v0 abiflags;
3250 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3251 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3252 goto exit_errmsg;
3253 }
3254 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3255 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3256 sizeof(Mips_elf_abiflags_v0));
3257 } else {
3258 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3259 eppnt->p_offset);
3260 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3261 goto exit_read;
3262 }
3263 }
3264 bswap_mips_abiflags(&abiflags);
3265 info->fp_abi = abiflags.fp_abi;
3266 #endif
3267 }
3268 }
3269
3270 if (info->end_data == 0) {
3271 info->start_data = info->end_code;
3272 info->end_data = info->end_code;
3273 }
3274
3275 if (qemu_log_enabled()) {
3276 load_symbols(ehdr, image_fd, load_bias);
3277 }
3278
3279 debuginfo_report_elf(image_name, image_fd, load_bias);
3280
3281 mmap_unlock();
3282
3283 close(image_fd);
3284 return;
3285
3286 exit_read:
3287 if (retval >= 0) {
3288 error_setg(&err, "Incomplete read of file header");
3289 } else {
3290 error_setg_errno(&err, errno, "Error reading file header");
3291 }
3292 goto exit_errmsg;
3293 exit_mmap:
3294 error_setg_errno(&err, errno, "Error mapping file");
3295 goto exit_errmsg;
3296 exit_errmsg:
3297 error_reportf_err(err, "%s: ", image_name);
3298 exit(-1);
3299 }
3300
3301 static void load_elf_interp(const char *filename, struct image_info *info,
3302 char bprm_buf[BPRM_BUF_SIZE])
3303 {
3304 int fd, retval;
3305 Error *err = NULL;
3306
3307 fd = open(path(filename), O_RDONLY);
3308 if (fd < 0) {
3309 error_setg_file_open(&err, errno, filename);
3310 error_report_err(err);
3311 exit(-1);
3312 }
3313
3314 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3315 if (retval < 0) {
3316 error_setg_errno(&err, errno, "Error reading file header");
3317 error_reportf_err(err, "%s: ", filename);
3318 exit(-1);
3319 }
3320
3321 if (retval < BPRM_BUF_SIZE) {
3322 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3323 }
3324
3325 load_elf_image(filename, fd, info, NULL, bprm_buf);
3326 }
3327
3328 static int symfind(const void *s0, const void *s1)
3329 {
3330 struct elf_sym *sym = (struct elf_sym *)s1;
3331 __typeof(sym->st_value) addr = *(uint64_t *)s0;
3332 int result = 0;
3333
3334 if (addr < sym->st_value) {
3335 result = -1;
3336 } else if (addr >= sym->st_value + sym->st_size) {
3337 result = 1;
3338 }
3339 return result;
3340 }
3341
3342 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3343 {
3344 #if ELF_CLASS == ELFCLASS32
3345 struct elf_sym *syms = s->disas_symtab.elf32;
3346 #else
3347 struct elf_sym *syms = s->disas_symtab.elf64;
3348 #endif
3349
3350 // binary search
3351 struct elf_sym *sym;
3352
3353 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3354 if (sym != NULL) {
3355 return s->disas_strtab + sym->st_name;
3356 }
3357
3358 return "";
3359 }
3360
3361 /* FIXME: This should use elf_ops.h */
3362 static int symcmp(const void *s0, const void *s1)
3363 {
3364 struct elf_sym *sym0 = (struct elf_sym *)s0;
3365 struct elf_sym *sym1 = (struct elf_sym *)s1;
3366 return (sym0->st_value < sym1->st_value)
3367 ? -1
3368 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3369 }
3370
3371 /* Best attempt to load symbols from this ELF object. */
3372 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3373 {
3374 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3375 uint64_t segsz;
3376 struct elf_shdr *shdr;
3377 char *strings = NULL;
3378 struct syminfo *s = NULL;
3379 struct elf_sym *new_syms, *syms = NULL;
3380
3381 shnum = hdr->e_shnum;
3382 i = shnum * sizeof(struct elf_shdr);
3383 shdr = (struct elf_shdr *)alloca(i);
3384 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3385 return;
3386 }
3387
3388 bswap_shdr(shdr, shnum);
3389 for (i = 0; i < shnum; ++i) {
3390 if (shdr[i].sh_type == SHT_SYMTAB) {
3391 sym_idx = i;
3392 str_idx = shdr[i].sh_link;
3393 goto found;
3394 }
3395 }
3396
3397 /* There will be no symbol table if the file was stripped. */
3398 return;
3399
3400 found:
3401 /* Now know where the strtab and symtab are. Snarf them. */
3402 s = g_try_new(struct syminfo, 1);
3403 if (!s) {
3404 goto give_up;
3405 }
3406
3407 segsz = shdr[str_idx].sh_size;
3408 s->disas_strtab = strings = g_try_malloc(segsz);
3409 if (!strings ||
3410 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3411 goto give_up;
3412 }
3413
3414 segsz = shdr[sym_idx].sh_size;
3415 syms = g_try_malloc(segsz);
3416 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3417 goto give_up;
3418 }
3419
3420 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3421 /* Implausibly large symbol table: give up rather than ploughing
3422 * on with the number of symbols calculation overflowing
3423 */
3424 goto give_up;
3425 }
3426 nsyms = segsz / sizeof(struct elf_sym);
3427 for (i = 0; i < nsyms; ) {
3428 bswap_sym(syms + i);
3429 /* Throw away entries which we do not need. */
3430 if (syms[i].st_shndx == SHN_UNDEF
3431 || syms[i].st_shndx >= SHN_LORESERVE
3432 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3433 if (i < --nsyms) {
3434 syms[i] = syms[nsyms];
3435 }
3436 } else {
3437 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3438 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3439 syms[i].st_value &= ~(target_ulong)1;
3440 #endif
3441 syms[i].st_value += load_bias;
3442 i++;
3443 }
3444 }
3445
3446 /* No "useful" symbol. */
3447 if (nsyms == 0) {
3448 goto give_up;
3449 }
3450
3451 /* Attempt to free the storage associated with the local symbols
3452 that we threw away. Whether or not this has any effect on the
3453 memory allocation depends on the malloc implementation and how
3454 many symbols we managed to discard. */
3455 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3456 if (new_syms == NULL) {
3457 goto give_up;
3458 }
3459 syms = new_syms;
3460
3461 qsort(syms, nsyms, sizeof(*syms), symcmp);
3462
3463 s->disas_num_syms = nsyms;
3464 #if ELF_CLASS == ELFCLASS32
3465 s->disas_symtab.elf32 = syms;
3466 #else
3467 s->disas_symtab.elf64 = syms;
3468 #endif
3469 s->lookup_symbol = lookup_symbolxx;
3470 s->next = syminfos;
3471 syminfos = s;
3472
3473 return;
3474
3475 give_up:
3476 g_free(s);
3477 g_free(strings);
3478 g_free(syms);
3479 }
3480
3481 uint32_t get_elf_eflags(int fd)
3482 {
3483 struct elfhdr ehdr;
3484 off_t offset;
3485 int ret;
3486
3487 /* Read ELF header */
3488 offset = lseek(fd, 0, SEEK_SET);
3489 if (offset == (off_t) -1) {
3490 return 0;
3491 }
3492 ret = read(fd, &ehdr, sizeof(ehdr));
3493 if (ret < sizeof(ehdr)) {
3494 return 0;
3495 }
3496 offset = lseek(fd, offset, SEEK_SET);
3497 if (offset == (off_t) -1) {
3498 return 0;
3499 }
3500
3501 /* Check ELF signature */
3502 if (!elf_check_ident(&ehdr)) {
3503 return 0;
3504 }
3505
3506 /* check header */
3507 bswap_ehdr(&ehdr);
3508 if (!elf_check_ehdr(&ehdr)) {
3509 return 0;
3510 }
3511
3512 /* return architecture id */
3513 return ehdr.e_flags;
3514 }
3515
3516 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3517 {
3518 struct image_info interp_info;
3519 struct elfhdr elf_ex;
3520 char *elf_interpreter = NULL;
3521 char *scratch;
3522
3523 memset(&interp_info, 0, sizeof(interp_info));
3524 #ifdef TARGET_MIPS
3525 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3526 #endif
3527
3528 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3529
3530 load_elf_image(bprm->filename, bprm->fd, info,
3531 &elf_interpreter, bprm->buf);
3532
3533 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3534 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3535 when we load the interpreter. */
3536 elf_ex = *(struct elfhdr *)bprm->buf;
3537
3538 /* Do this so that we can load the interpreter, if need be. We will
3539 change some of these later */
3540 bprm->p = setup_arg_pages(bprm, info);
3541
3542 scratch = g_new0(char, TARGET_PAGE_SIZE);
3543 if (STACK_GROWS_DOWN) {
3544 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3545 bprm->p, info->stack_limit);
3546 info->file_string = bprm->p;
3547 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3548 bprm->p, info->stack_limit);
3549 info->env_strings = bprm->p;
3550 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3551 bprm->p, info->stack_limit);
3552 info->arg_strings = bprm->p;
3553 } else {
3554 info->arg_strings = bprm->p;
3555 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3556 bprm->p, info->stack_limit);
3557 info->env_strings = bprm->p;
3558 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3559 bprm->p, info->stack_limit);
3560 info->file_string = bprm->p;
3561 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3562 bprm->p, info->stack_limit);
3563 }
3564
3565 g_free(scratch);
3566
3567 if (!bprm->p) {
3568 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3569 exit(-1);
3570 }
3571
3572 if (elf_interpreter) {
3573 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3574
3575 /* If the program interpreter is one of these two, then assume
3576 an iBCS2 image. Otherwise assume a native linux image. */
3577
3578 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3579 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3580 info->personality = PER_SVR4;
3581
3582 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3583 and some applications "depend" upon this behavior. Since
3584 we do not have the power to recompile these, we emulate
3585 the SVr4 behavior. Sigh. */
3586 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3587 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3588 }
3589 #ifdef TARGET_MIPS
3590 info->interp_fp_abi = interp_info.fp_abi;
3591 #endif
3592 }
3593
3594 /*
3595 * TODO: load a vdso, which would also contain the signal trampolines.
3596 * Otherwise, allocate a private page to hold them.
3597 */
3598 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3599 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3600 PROT_READ | PROT_WRITE,
3601 MAP_PRIVATE | MAP_ANON, -1, 0);
3602 if (tramp_page == -1) {
3603 return -errno;
3604 }
3605
3606 setup_sigtramp(tramp_page);
3607 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3608 }
3609
3610 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3611 info, (elf_interpreter ? &interp_info : NULL));
3612 info->start_stack = bprm->p;
3613
3614 /* If we have an interpreter, set that as the program's entry point.
3615 Copy the load_bias as well, to help PPC64 interpret the entry
3616 point as a function descriptor. Do this after creating elf tables
3617 so that we copy the original program entry point into the AUXV. */
3618 if (elf_interpreter) {
3619 info->load_bias = interp_info.load_bias;
3620 info->entry = interp_info.entry;
3621 g_free(elf_interpreter);
3622 }
3623
3624 #ifdef USE_ELF_CORE_DUMP
3625 bprm->core_dump = &elf_core_dump;
3626 #endif
3627
3628 /*
3629 * If we reserved extra space for brk, release it now.
3630 * The implementation of do_brk in syscalls.c expects to be able
3631 * to mmap pages in this space.
3632 */
3633 if (info->reserve_brk) {
3634 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3635 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3636 target_munmap(start_brk, end_brk - start_brk);
3637 }
3638
3639 return 0;
3640 }
3641
3642 #ifdef USE_ELF_CORE_DUMP
3643 /*
3644 * Definitions to generate Intel SVR4-like core files.
3645 * These mostly have the same names as the SVR4 types with "target_elf_"
3646 * tacked on the front to prevent clashes with linux definitions,
3647 * and the typedef forms have been avoided. This is mostly like
3648 * the SVR4 structure, but more Linuxy, with things that Linux does
3649 * not support and which gdb doesn't really use excluded.
3650 *
3651 * Fields we don't dump (their contents is zero) in linux-user qemu
3652 * are marked with XXX.
3653 *
3654 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3655 *
3656 * Porting ELF coredump for target is (quite) simple process. First you
3657 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3658 * the target resides):
3659 *
3660 * #define USE_ELF_CORE_DUMP
3661 *
3662 * Next you define type of register set used for dumping. ELF specification
3663 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3664 *
3665 * typedef <target_regtype> target_elf_greg_t;
3666 * #define ELF_NREG <number of registers>
3667 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3668 *
3669 * Last step is to implement target specific function that copies registers
3670 * from given cpu into just specified register set. Prototype is:
3671 *
3672 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3673 * const CPUArchState *env);
3674 *
3675 * Parameters:
3676 * regs - copy register values into here (allocated and zeroed by caller)
3677 * env - copy registers from here
3678 *
3679 * Example for ARM target is provided in this file.
3680 */
3681
3682 /* An ELF note in memory */
3683 struct memelfnote {
3684 const char *name;
3685 size_t namesz;
3686 size_t namesz_rounded;
3687 int type;
3688 size_t datasz;
3689 size_t datasz_rounded;
3690 void *data;
3691 size_t notesz;
3692 };
3693
3694 struct target_elf_siginfo {
3695 abi_int si_signo; /* signal number */
3696 abi_int si_code; /* extra code */
3697 abi_int si_errno; /* errno */
3698 };
3699
3700 struct target_elf_prstatus {
3701 struct target_elf_siginfo pr_info; /* Info associated with signal */
3702 abi_short pr_cursig; /* Current signal */
3703 abi_ulong pr_sigpend; /* XXX */
3704 abi_ulong pr_sighold; /* XXX */
3705 target_pid_t pr_pid;
3706 target_pid_t pr_ppid;
3707 target_pid_t pr_pgrp;
3708 target_pid_t pr_sid;
3709 struct target_timeval pr_utime; /* XXX User time */
3710 struct target_timeval pr_stime; /* XXX System time */
3711 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3712 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3713 target_elf_gregset_t pr_reg; /* GP registers */
3714 abi_int pr_fpvalid; /* XXX */
3715 };
3716
3717 #define ELF_PRARGSZ (80) /* Number of chars for args */
3718
3719 struct target_elf_prpsinfo {
3720 char pr_state; /* numeric process state */
3721 char pr_sname; /* char for pr_state */
3722 char pr_zomb; /* zombie */
3723 char pr_nice; /* nice val */
3724 abi_ulong pr_flag; /* flags */
3725 target_uid_t pr_uid;
3726 target_gid_t pr_gid;
3727 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3728 /* Lots missing */
3729 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3730 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3731 };
3732
3733 /* Here is the structure in which status of each thread is captured. */
3734 struct elf_thread_status {
3735 QTAILQ_ENTRY(elf_thread_status) ets_link;
3736 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3737 #if 0
3738 elf_fpregset_t fpu; /* NT_PRFPREG */
3739 struct task_struct *thread;
3740 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3741 #endif
3742 struct memelfnote notes[1];
3743 int num_notes;
3744 };
3745
3746 struct elf_note_info {
3747 struct memelfnote *notes;
3748 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3749 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3750
3751 QTAILQ_HEAD(, elf_thread_status) thread_list;
3752 #if 0
3753 /*
3754 * Current version of ELF coredump doesn't support
3755 * dumping fp regs etc.
3756 */
3757 elf_fpregset_t *fpu;
3758 elf_fpxregset_t *xfpu;
3759 int thread_status_size;
3760 #endif
3761 int notes_size;
3762 int numnote;
3763 };
3764
3765 struct vm_area_struct {
3766 target_ulong vma_start; /* start vaddr of memory region */
3767 target_ulong vma_end; /* end vaddr of memory region */
3768 abi_ulong vma_flags; /* protection etc. flags for the region */
3769 QTAILQ_ENTRY(vm_area_struct) vma_link;
3770 };
3771
3772 struct mm_struct {
3773 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3774 int mm_count; /* number of mappings */
3775 };
3776
3777 static struct mm_struct *vma_init(void);
3778 static void vma_delete(struct mm_struct *);
3779 static int vma_add_mapping(struct mm_struct *, target_ulong,
3780 target_ulong, abi_ulong);
3781 static int vma_get_mapping_count(const struct mm_struct *);
3782 static struct vm_area_struct *vma_first(const struct mm_struct *);
3783 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3784 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3785 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3786 unsigned long flags);
3787
3788 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3789 static void fill_note(struct memelfnote *, const char *, int,
3790 unsigned int, void *);
3791 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3792 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3793 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3794 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3795 static size_t note_size(const struct memelfnote *);
3796 static void free_note_info(struct elf_note_info *);
3797 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3798 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3799
3800 static int dump_write(int, const void *, size_t);
3801 static int write_note(struct memelfnote *, int);
3802 static int write_note_info(struct elf_note_info *, int);
3803
3804 #ifdef BSWAP_NEEDED
3805 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3806 {
3807 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3808 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3809 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3810 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3811 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3812 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3813 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3814 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3815 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3816 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3817 /* cpu times are not filled, so we skip them */
3818 /* regs should be in correct format already */
3819 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3820 }
3821
3822 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3823 {
3824 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3825 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3826 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3827 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3828 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3829 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3830 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3831 }
3832
3833 static void bswap_note(struct elf_note *en)
3834 {
3835 bswap32s(&en->n_namesz);
3836 bswap32s(&en->n_descsz);
3837 bswap32s(&en->n_type);
3838 }
3839 #else
3840 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3841 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3842 static inline void bswap_note(struct elf_note *en) { }
3843 #endif /* BSWAP_NEEDED */
3844
3845 /*
3846 * Minimal support for linux memory regions. These are needed
3847 * when we are finding out what memory exactly belongs to
3848 * emulated process. No locks needed here, as long as
3849 * thread that received the signal is stopped.
3850 */
3851
3852 static struct mm_struct *vma_init(void)
3853 {
3854 struct mm_struct *mm;
3855
3856 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3857 return (NULL);
3858
3859 mm->mm_count = 0;
3860 QTAILQ_INIT(&mm->mm_mmap);
3861
3862 return (mm);
3863 }
3864
3865 static void vma_delete(struct mm_struct *mm)
3866 {
3867 struct vm_area_struct *vma;
3868
3869 while ((vma = vma_first(mm)) != NULL) {
3870 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3871 g_free(vma);
3872 }
3873 g_free(mm);
3874 }
3875
3876 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3877 target_ulong end, abi_ulong flags)
3878 {
3879 struct vm_area_struct *vma;
3880
3881 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3882 return (-1);
3883
3884 vma->vma_start = start;
3885 vma->vma_end = end;
3886 vma->vma_flags = flags;
3887
3888 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3889 mm->mm_count++;
3890
3891 return (0);
3892 }
3893
3894 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3895 {
3896 return (QTAILQ_FIRST(&mm->mm_mmap));
3897 }
3898
3899 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3900 {
3901 return (QTAILQ_NEXT(vma, vma_link));
3902 }
3903
3904 static int vma_get_mapping_count(const struct mm_struct *mm)
3905 {
3906 return (mm->mm_count);
3907 }
3908
3909 /*
3910 * Calculate file (dump) size of given memory region.
3911 */
3912 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3913 {
3914 /* if we cannot even read the first page, skip it */
3915 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3916 return (0);
3917
3918 /*
3919 * Usually we don't dump executable pages as they contain
3920 * non-writable code that debugger can read directly from
3921 * target library etc. However, thread stacks are marked
3922 * also executable so we read in first page of given region
3923 * and check whether it contains elf header. If there is
3924 * no elf header, we dump it.
3925 */
3926 if (vma->vma_flags & PROT_EXEC) {
3927 char page[TARGET_PAGE_SIZE];
3928
3929 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3930 return 0;
3931 }
3932 if ((page[EI_MAG0] == ELFMAG0) &&
3933 (page[EI_MAG1] == ELFMAG1) &&
3934 (page[EI_MAG2] == ELFMAG2) &&
3935 (page[EI_MAG3] == ELFMAG3)) {
3936 /*
3937 * Mappings are possibly from ELF binary. Don't dump
3938 * them.
3939 */
3940 return (0);
3941 }
3942 }
3943
3944 return (vma->vma_end - vma->vma_start);
3945 }
3946
3947 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3948 unsigned long flags)
3949 {
3950 struct mm_struct *mm = (struct mm_struct *)priv;
3951
3952 vma_add_mapping(mm, start, end, flags);
3953 return (0);
3954 }
3955
3956 static void fill_note(struct memelfnote *note, const char *name, int type,
3957 unsigned int sz, void *data)
3958 {
3959 unsigned int namesz;
3960
3961 namesz = strlen(name) + 1;
3962 note->name = name;
3963 note->namesz = namesz;
3964 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3965 note->type = type;
3966 note->datasz = sz;
3967 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3968
3969 note->data = data;
3970
3971 /*
3972 * We calculate rounded up note size here as specified by
3973 * ELF document.
3974 */
3975 note->notesz = sizeof (struct elf_note) +
3976 note->namesz_rounded + note->datasz_rounded;
3977 }
3978
3979 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3980 uint32_t flags)
3981 {
3982 (void) memset(elf, 0, sizeof(*elf));
3983
3984 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3985 elf->e_ident[EI_CLASS] = ELF_CLASS;
3986 elf->e_ident[EI_DATA] = ELF_DATA;
3987 elf->e_ident[EI_VERSION] = EV_CURRENT;
3988 elf->e_ident[EI_OSABI] = ELF_OSABI;
3989
3990 elf->e_type = ET_CORE;
3991 elf->e_machine = machine;
3992 elf->e_version = EV_CURRENT;
3993 elf->e_phoff = sizeof(struct elfhdr);
3994 elf->e_flags = flags;
3995 elf->e_ehsize = sizeof(struct elfhdr);
3996 elf->e_phentsize = sizeof(struct elf_phdr);
3997 elf->e_phnum = segs;
3998
3999 bswap_ehdr(elf);
4000 }
4001
4002 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4003 {
4004 phdr->p_type = PT_NOTE;
4005 phdr->p_offset = offset;
4006 phdr->p_vaddr = 0;
4007 phdr->p_paddr = 0;
4008 phdr->p_filesz = sz;
4009 phdr->p_memsz = 0;
4010 phdr->p_flags = 0;
4011 phdr->p_align = 0;
4012
4013 bswap_phdr(phdr, 1);
4014 }
4015
4016 static size_t note_size(const struct memelfnote *note)
4017 {
4018 return (note->notesz);
4019 }
4020
4021 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4022 const TaskState *ts, int signr)
4023 {
4024 (void) memset(prstatus, 0, sizeof (*prstatus));
4025 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4026 prstatus->pr_pid = ts->ts_tid;
4027 prstatus->pr_ppid = getppid();
4028 prstatus->pr_pgrp = getpgrp();
4029 prstatus->pr_sid = getsid(0);
4030
4031 bswap_prstatus(prstatus);
4032 }
4033
4034 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4035 {
4036 char *base_filename;
4037 unsigned int i, len;
4038
4039 (void) memset(psinfo, 0, sizeof (*psinfo));
4040
4041 len = ts->info->env_strings - ts->info->arg_strings;
4042 if (len >= ELF_PRARGSZ)
4043 len = ELF_PRARGSZ - 1;
4044 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4045 return -EFAULT;
4046 }
4047 for (i = 0; i < len; i++)
4048 if (psinfo->pr_psargs[i] == 0)
4049 psinfo->pr_psargs[i] = ' ';
4050 psinfo->pr_psargs[len] = 0;
4051
4052 psinfo->pr_pid = getpid();
4053 psinfo->pr_ppid = getppid();
4054 psinfo->pr_pgrp = getpgrp();
4055 psinfo->pr_sid = getsid(0);
4056 psinfo->pr_uid = getuid();
4057 psinfo->pr_gid = getgid();
4058
4059 base_filename = g_path_get_basename(ts->bprm->filename);
4060 /*
4061 * Using strncpy here is fine: at max-length,
4062 * this field is not NUL-terminated.
4063 */
4064 (void) strncpy(psinfo->pr_fname, base_filename,
4065 sizeof(psinfo->pr_fname));
4066
4067 g_free(base_filename);
4068 bswap_psinfo(psinfo);
4069 return (0);
4070 }
4071
4072 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4073 {
4074 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4075 elf_addr_t orig_auxv = auxv;
4076 void *ptr;
4077 int len = ts->info->auxv_len;
4078
4079 /*
4080 * Auxiliary vector is stored in target process stack. It contains
4081 * {type, value} pairs that we need to dump into note. This is not
4082 * strictly necessary but we do it here for sake of completeness.
4083 */
4084
4085 /* read in whole auxv vector and copy it to memelfnote */
4086 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4087 if (ptr != NULL) {
4088 fill_note(note, "CORE", NT_AUXV, len, ptr);
4089 unlock_user(ptr, auxv, len);
4090 }
4091 }
4092
4093 /*
4094 * Constructs name of coredump file. We have following convention
4095 * for the name:
4096 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4097 *
4098 * Returns the filename
4099 */
4100 static char *core_dump_filename(const TaskState *ts)
4101 {
4102 g_autoptr(GDateTime) now = g_date_time_new_now_local();
4103 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4104 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4105
4106 return g_strdup_printf("qemu_%s_%s_%d.core",
4107 base_filename, nowstr, (int)getpid());
4108 }
4109
4110 static int dump_write(int fd, const void *ptr, size_t size)
4111 {
4112 const char *bufp = (const char *)ptr;
4113 ssize_t bytes_written, bytes_left;
4114 struct rlimit dumpsize;
4115 off_t pos;
4116
4117 bytes_written = 0;
4118 getrlimit(RLIMIT_CORE, &dumpsize);
4119 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4120 if (errno == ESPIPE) { /* not a seekable stream */
4121 bytes_left = size;
4122 } else {
4123 return pos;
4124 }
4125 } else {
4126 if (dumpsize.rlim_cur <= pos) {
4127 return -1;
4128 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4129 bytes_left = size;
4130 } else {
4131 size_t limit_left=dumpsize.rlim_cur - pos;
4132 bytes_left = limit_left >= size ? size : limit_left ;
4133 }
4134 }
4135
4136 /*
4137 * In normal conditions, single write(2) should do but
4138 * in case of socket etc. this mechanism is more portable.
4139 */
4140 do {
4141 bytes_written = write(fd, bufp, bytes_left);
4142 if (bytes_written < 0) {
4143 if (errno == EINTR)
4144 continue;
4145 return (-1);
4146 } else if (bytes_written == 0) { /* eof */
4147 return (-1);
4148 }
4149 bufp += bytes_written;
4150 bytes_left -= bytes_written;
4151 } while (bytes_left > 0);
4152
4153 return (0);
4154 }
4155
4156 static int write_note(struct memelfnote *men, int fd)
4157 {
4158 struct elf_note en;
4159
4160 en.n_namesz = men->namesz;
4161 en.n_type = men->type;
4162 en.n_descsz = men->datasz;
4163
4164 bswap_note(&en);
4165
4166 if (dump_write(fd, &en, sizeof(en)) != 0)
4167 return (-1);
4168 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4169 return (-1);
4170 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4171 return (-1);
4172
4173 return (0);
4174 }
4175
4176 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4177 {
4178 CPUState *cpu = env_cpu((CPUArchState *)env);
4179 TaskState *ts = (TaskState *)cpu->opaque;
4180 struct elf_thread_status *ets;
4181
4182 ets = g_malloc0(sizeof (*ets));
4183 ets->num_notes = 1; /* only prstatus is dumped */
4184 fill_prstatus(&ets->prstatus, ts, 0);
4185 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4186 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4187 &ets->prstatus);
4188
4189 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4190
4191 info->notes_size += note_size(&ets->notes[0]);
4192 }
4193
4194 static void init_note_info(struct elf_note_info *info)
4195 {
4196 /* Initialize the elf_note_info structure so that it is at
4197 * least safe to call free_note_info() on it. Must be
4198 * called before calling fill_note_info().
4199 */
4200 memset(info, 0, sizeof (*info));
4201 QTAILQ_INIT(&info->thread_list);
4202 }
4203
4204 static int fill_note_info(struct elf_note_info *info,
4205 long signr, const CPUArchState *env)
4206 {
4207 #define NUMNOTES 3
4208 CPUState *cpu = env_cpu((CPUArchState *)env);
4209 TaskState *ts = (TaskState *)cpu->opaque;
4210 int i;
4211
4212 info->notes = g_new0(struct memelfnote, NUMNOTES);
4213 if (info->notes == NULL)
4214 return (-ENOMEM);
4215 info->prstatus = g_malloc0(sizeof (*info->prstatus));
4216 if (info->prstatus == NULL)
4217 return (-ENOMEM);
4218 info->psinfo = g_malloc0(sizeof (*info->psinfo));
4219 if (info->prstatus == NULL)
4220 return (-ENOMEM);
4221
4222 /*
4223 * First fill in status (and registers) of current thread
4224 * including process info & aux vector.
4225 */
4226 fill_prstatus(info->prstatus, ts, signr);
4227 elf_core_copy_regs(&info->prstatus->pr_reg, env);
4228 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4229 sizeof (*info->prstatus), info->prstatus);
4230 fill_psinfo(info->psinfo, ts);
4231 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4232 sizeof (*info->psinfo), info->psinfo);
4233 fill_auxv_note(&info->notes[2], ts);
4234 info->numnote = 3;
4235
4236 info->notes_size = 0;
4237 for (i = 0; i < info->numnote; i++)
4238 info->notes_size += note_size(&info->notes[i]);
4239
4240 /* read and fill status of all threads */
4241 cpu_list_lock();
4242 CPU_FOREACH(cpu) {
4243 if (cpu == thread_cpu) {
4244 continue;
4245 }
4246 fill_thread_info(info, cpu->env_ptr);
4247 }
4248 cpu_list_unlock();
4249
4250 return (0);
4251 }
4252
4253 static void free_note_info(struct elf_note_info *info)
4254 {
4255 struct elf_thread_status *ets;
4256
4257 while (!QTAILQ_EMPTY(&info->thread_list)) {
4258 ets = QTAILQ_FIRST(&info->thread_list);
4259 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4260 g_free(ets);
4261 }
4262
4263 g_free(info->prstatus);
4264 g_free(info->psinfo);
4265 g_free(info->notes);
4266 }
4267
4268 static int write_note_info(struct elf_note_info *info, int fd)
4269 {
4270 struct elf_thread_status *ets;
4271 int i, error = 0;
4272
4273 /* write prstatus, psinfo and auxv for current thread */
4274 for (i = 0; i < info->numnote; i++)
4275 if ((error = write_note(&info->notes[i], fd)) != 0)
4276 return (error);
4277
4278 /* write prstatus for each thread */
4279 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4280 if ((error = write_note(&ets->notes[0], fd)) != 0)
4281 return (error);
4282 }
4283
4284 return (0);
4285 }
4286
4287 /*
4288 * Write out ELF coredump.
4289 *
4290 * See documentation of ELF object file format in:
4291 * http://www.caldera.com/developers/devspecs/gabi41.pdf
4292 *
4293 * Coredump format in linux is following:
4294 *
4295 * 0 +----------------------+ \
4296 * | ELF header | ET_CORE |
4297 * +----------------------+ |
4298 * | ELF program headers | |--- headers
4299 * | - NOTE section | |
4300 * | - PT_LOAD sections | |
4301 * +----------------------+ /
4302 * | NOTEs: |
4303 * | - NT_PRSTATUS |
4304 * | - NT_PRSINFO |
4305 * | - NT_AUXV |
4306 * +----------------------+ <-- aligned to target page
4307 * | Process memory dump |
4308 * : :
4309 * . .
4310 * : :
4311 * | |
4312 * +----------------------+
4313 *
4314 * NT_PRSTATUS -> struct elf_prstatus (per thread)
4315 * NT_PRSINFO -> struct elf_prpsinfo
4316 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4317 *
4318 * Format follows System V format as close as possible. Current
4319 * version limitations are as follows:
4320 * - no floating point registers are dumped
4321 *
4322 * Function returns 0 in case of success, negative errno otherwise.
4323 *
4324 * TODO: make this work also during runtime: it should be
4325 * possible to force coredump from running process and then
4326 * continue processing. For example qemu could set up SIGUSR2
4327 * handler (provided that target process haven't registered
4328 * handler for that) that does the dump when signal is received.
4329 */
4330 static int elf_core_dump(int signr, const CPUArchState *env)
4331 {
4332 const CPUState *cpu = env_cpu((CPUArchState *)env);
4333 const TaskState *ts = (const TaskState *)cpu->opaque;
4334 struct vm_area_struct *vma = NULL;
4335 g_autofree char *corefile = NULL;
4336 struct elf_note_info info;
4337 struct elfhdr elf;
4338 struct elf_phdr phdr;
4339 struct rlimit dumpsize;
4340 struct mm_struct *mm = NULL;
4341 off_t offset = 0, data_offset = 0;
4342 int segs = 0;
4343 int fd = -1;
4344
4345 init_note_info(&info);
4346
4347 errno = 0;
4348 getrlimit(RLIMIT_CORE, &dumpsize);
4349 if (dumpsize.rlim_cur == 0)
4350 return 0;
4351
4352 corefile = core_dump_filename(ts);
4353
4354 if ((fd = open(corefile, O_WRONLY | O_CREAT,
4355 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4356 return (-errno);
4357
4358 /*
4359 * Walk through target process memory mappings and
4360 * set up structure containing this information. After
4361 * this point vma_xxx functions can be used.
4362 */
4363 if ((mm = vma_init()) == NULL)
4364 goto out;
4365
4366 walk_memory_regions(mm, vma_walker);
4367 segs = vma_get_mapping_count(mm);
4368
4369 /*
4370 * Construct valid coredump ELF header. We also
4371 * add one more segment for notes.
4372 */
4373 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4374 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4375 goto out;
4376
4377 /* fill in the in-memory version of notes */
4378 if (fill_note_info(&info, signr, env) < 0)
4379 goto out;
4380
4381 offset += sizeof (elf); /* elf header */
4382 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4383
4384 /* write out notes program header */
4385 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4386
4387 offset += info.notes_size;
4388 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4389 goto out;
4390
4391 /*
4392 * ELF specification wants data to start at page boundary so
4393 * we align it here.
4394 */
4395 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4396
4397 /*
4398 * Write program headers for memory regions mapped in
4399 * the target process.
4400 */
4401 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4402 (void) memset(&phdr, 0, sizeof (phdr));
4403
4404 phdr.p_type = PT_LOAD;
4405 phdr.p_offset = offset;
4406 phdr.p_vaddr = vma->vma_start;
4407 phdr.p_paddr = 0;
4408 phdr.p_filesz = vma_dump_size(vma);
4409 offset += phdr.p_filesz;
4410 phdr.p_memsz = vma->vma_end - vma->vma_start;
4411 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4412 if (vma->vma_flags & PROT_WRITE)
4413 phdr.p_flags |= PF_W;
4414 if (vma->vma_flags & PROT_EXEC)
4415 phdr.p_flags |= PF_X;
4416 phdr.p_align = ELF_EXEC_PAGESIZE;
4417
4418 bswap_phdr(&phdr, 1);
4419 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4420 goto out;
4421 }
4422 }
4423
4424 /*
4425 * Next we write notes just after program headers. No
4426 * alignment needed here.
4427 */
4428 if (write_note_info(&info, fd) < 0)
4429 goto out;
4430
4431 /* align data to page boundary */
4432 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4433 goto out;
4434
4435 /*
4436 * Finally we can dump process memory into corefile as well.
4437 */
4438 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4439 abi_ulong addr;
4440 abi_ulong end;
4441
4442 end = vma->vma_start + vma_dump_size(vma);
4443
4444 for (addr = vma->vma_start; addr < end;
4445 addr += TARGET_PAGE_SIZE) {
4446 char page[TARGET_PAGE_SIZE];
4447 int error;
4448
4449 /*
4450 * Read in page from target process memory and
4451 * write it to coredump file.
4452 */
4453 error = copy_from_user(page, addr, sizeof (page));
4454 if (error != 0) {
4455 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4456 addr);
4457 errno = -error;
4458 goto out;
4459 }
4460 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4461 goto out;
4462 }
4463 }
4464
4465 out:
4466 free_note_info(&info);
4467 if (mm != NULL)
4468 vma_delete(mm);
4469 (void) close(fd);
4470
4471 if (errno != 0)
4472 return (-errno);
4473 return (0);
4474 }
4475 #endif /* USE_ELF_CORE_DUMP */
4476
4477 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4478 {
4479 init_thread(regs, infop);
4480 }