]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
Merge remote-tracking branch 'remotes/rth/tags/pull-rng-20190522' into staging
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 #include "qemu/guest-random.h"
11
12 #ifdef _ARCH_PPC64
13 #undef ARCH_DLINFO
14 #undef ELF_PLATFORM
15 #undef ELF_HWCAP
16 #undef ELF_HWCAP2
17 #undef ELF_CLASS
18 #undef ELF_DATA
19 #undef ELF_ARCH
20 #endif
21
22 #define ELF_OSABI ELFOSABI_SYSV
23
24 /* from personality.h */
25
26 /*
27 * Flags for bug emulation.
28 *
29 * These occupy the top three bytes.
30 */
31 enum {
32 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
33 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
34 descriptors (signal handling) */
35 MMAP_PAGE_ZERO = 0x0100000,
36 ADDR_COMPAT_LAYOUT = 0x0200000,
37 READ_IMPLIES_EXEC = 0x0400000,
38 ADDR_LIMIT_32BIT = 0x0800000,
39 SHORT_INODE = 0x1000000,
40 WHOLE_SECONDS = 0x2000000,
41 STICKY_TIMEOUTS = 0x4000000,
42 ADDR_LIMIT_3GB = 0x8000000,
43 };
44
45 /*
46 * Personality types.
47 *
48 * These go in the low byte. Avoid using the top bit, it will
49 * conflict with error returns.
50 */
51 enum {
52 PER_LINUX = 0x0000,
53 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
54 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
55 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
56 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
57 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
58 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
59 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
60 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
61 PER_BSD = 0x0006,
62 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
63 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_LINUX32 = 0x0008,
65 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
66 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
67 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
68 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
69 PER_RISCOS = 0x000c,
70 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
71 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
72 PER_OSF4 = 0x000f, /* OSF/1 v4 */
73 PER_HPUX = 0x0010,
74 PER_MASK = 0x00ff,
75 };
76
77 /*
78 * Return the base personality without flags.
79 */
80 #define personality(pers) (pers & PER_MASK)
81
82 int info_is_fdpic(struct image_info *info)
83 {
84 return info->personality == PER_LINUX_FDPIC;
85 }
86
87 /* this flag is uneffective under linux too, should be deleted */
88 #ifndef MAP_DENYWRITE
89 #define MAP_DENYWRITE 0
90 #endif
91
92 /* should probably go in elf.h */
93 #ifndef ELIBBAD
94 #define ELIBBAD 80
95 #endif
96
97 #ifdef TARGET_WORDS_BIGENDIAN
98 #define ELF_DATA ELFDATA2MSB
99 #else
100 #define ELF_DATA ELFDATA2LSB
101 #endif
102
103 #ifdef TARGET_ABI_MIPSN32
104 typedef abi_ullong target_elf_greg_t;
105 #define tswapreg(ptr) tswap64(ptr)
106 #else
107 typedef abi_ulong target_elf_greg_t;
108 #define tswapreg(ptr) tswapal(ptr)
109 #endif
110
111 #ifdef USE_UID16
112 typedef abi_ushort target_uid_t;
113 typedef abi_ushort target_gid_t;
114 #else
115 typedef abi_uint target_uid_t;
116 typedef abi_uint target_gid_t;
117 #endif
118 typedef abi_int target_pid_t;
119
120 #ifdef TARGET_I386
121
122 #define ELF_PLATFORM get_elf_platform()
123
124 static const char *get_elf_platform(void)
125 {
126 static char elf_platform[] = "i386";
127 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
128 if (family > 6)
129 family = 6;
130 if (family >= 3)
131 elf_platform[1] = '0' + family;
132 return elf_platform;
133 }
134
135 #define ELF_HWCAP get_elf_hwcap()
136
137 static uint32_t get_elf_hwcap(void)
138 {
139 X86CPU *cpu = X86_CPU(thread_cpu);
140
141 return cpu->env.features[FEAT_1_EDX];
142 }
143
144 #ifdef TARGET_X86_64
145 #define ELF_START_MMAP 0x2aaaaab000ULL
146
147 #define ELF_CLASS ELFCLASS64
148 #define ELF_ARCH EM_X86_64
149
150 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
151 {
152 regs->rax = 0;
153 regs->rsp = infop->start_stack;
154 regs->rip = infop->entry;
155 }
156
157 #define ELF_NREG 27
158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
159
160 /*
161 * Note that ELF_NREG should be 29 as there should be place for
162 * TRAPNO and ERR "registers" as well but linux doesn't dump
163 * those.
164 *
165 * See linux kernel: arch/x86/include/asm/elf.h
166 */
167 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
168 {
169 (*regs)[0] = env->regs[15];
170 (*regs)[1] = env->regs[14];
171 (*regs)[2] = env->regs[13];
172 (*regs)[3] = env->regs[12];
173 (*regs)[4] = env->regs[R_EBP];
174 (*regs)[5] = env->regs[R_EBX];
175 (*regs)[6] = env->regs[11];
176 (*regs)[7] = env->regs[10];
177 (*regs)[8] = env->regs[9];
178 (*regs)[9] = env->regs[8];
179 (*regs)[10] = env->regs[R_EAX];
180 (*regs)[11] = env->regs[R_ECX];
181 (*regs)[12] = env->regs[R_EDX];
182 (*regs)[13] = env->regs[R_ESI];
183 (*regs)[14] = env->regs[R_EDI];
184 (*regs)[15] = env->regs[R_EAX]; /* XXX */
185 (*regs)[16] = env->eip;
186 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
187 (*regs)[18] = env->eflags;
188 (*regs)[19] = env->regs[R_ESP];
189 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
190 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
191 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
192 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
193 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
194 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
195 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
196 }
197
198 #else
199
200 #define ELF_START_MMAP 0x80000000
201
202 /*
203 * This is used to ensure we don't load something for the wrong architecture.
204 */
205 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
206
207 /*
208 * These are used to set parameters in the core dumps.
209 */
210 #define ELF_CLASS ELFCLASS32
211 #define ELF_ARCH EM_386
212
213 static inline void init_thread(struct target_pt_regs *regs,
214 struct image_info *infop)
215 {
216 regs->esp = infop->start_stack;
217 regs->eip = infop->entry;
218
219 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
220 starts %edx contains a pointer to a function which might be
221 registered using `atexit'. This provides a mean for the
222 dynamic linker to call DT_FINI functions for shared libraries
223 that have been loaded before the code runs.
224
225 A value of 0 tells we have no such handler. */
226 regs->edx = 0;
227 }
228
229 #define ELF_NREG 17
230 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
231
232 /*
233 * Note that ELF_NREG should be 19 as there should be place for
234 * TRAPNO and ERR "registers" as well but linux doesn't dump
235 * those.
236 *
237 * See linux kernel: arch/x86/include/asm/elf.h
238 */
239 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
240 {
241 (*regs)[0] = env->regs[R_EBX];
242 (*regs)[1] = env->regs[R_ECX];
243 (*regs)[2] = env->regs[R_EDX];
244 (*regs)[3] = env->regs[R_ESI];
245 (*regs)[4] = env->regs[R_EDI];
246 (*regs)[5] = env->regs[R_EBP];
247 (*regs)[6] = env->regs[R_EAX];
248 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
249 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
250 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
251 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
252 (*regs)[11] = env->regs[R_EAX]; /* XXX */
253 (*regs)[12] = env->eip;
254 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
255 (*regs)[14] = env->eflags;
256 (*regs)[15] = env->regs[R_ESP];
257 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
258 }
259 #endif
260
261 #define USE_ELF_CORE_DUMP
262 #define ELF_EXEC_PAGESIZE 4096
263
264 #endif
265
266 #ifdef TARGET_ARM
267
268 #ifndef TARGET_AARCH64
269 /* 32 bit ARM definitions */
270
271 #define ELF_START_MMAP 0x80000000
272
273 #define ELF_ARCH EM_ARM
274 #define ELF_CLASS ELFCLASS32
275
276 static inline void init_thread(struct target_pt_regs *regs,
277 struct image_info *infop)
278 {
279 abi_long stack = infop->start_stack;
280 memset(regs, 0, sizeof(*regs));
281
282 regs->uregs[16] = ARM_CPU_MODE_USR;
283 if (infop->entry & 1) {
284 regs->uregs[16] |= CPSR_T;
285 }
286 regs->uregs[15] = infop->entry & 0xfffffffe;
287 regs->uregs[13] = infop->start_stack;
288 /* FIXME - what to for failure of get_user()? */
289 get_user_ual(regs->uregs[2], stack + 8); /* envp */
290 get_user_ual(regs->uregs[1], stack + 4); /* envp */
291 /* XXX: it seems that r0 is zeroed after ! */
292 regs->uregs[0] = 0;
293 /* For uClinux PIC binaries. */
294 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
295 regs->uregs[10] = infop->start_data;
296
297 /* Support ARM FDPIC. */
298 if (info_is_fdpic(infop)) {
299 /* As described in the ABI document, r7 points to the loadmap info
300 * prepared by the kernel. If an interpreter is needed, r8 points
301 * to the interpreter loadmap and r9 points to the interpreter
302 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
303 * r9 points to the main program PT_DYNAMIC info.
304 */
305 regs->uregs[7] = infop->loadmap_addr;
306 if (infop->interpreter_loadmap_addr) {
307 /* Executable is dynamically loaded. */
308 regs->uregs[8] = infop->interpreter_loadmap_addr;
309 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
310 } else {
311 regs->uregs[8] = 0;
312 regs->uregs[9] = infop->pt_dynamic_addr;
313 }
314 }
315 }
316
317 #define ELF_NREG 18
318 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
319
320 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
321 {
322 (*regs)[0] = tswapreg(env->regs[0]);
323 (*regs)[1] = tswapreg(env->regs[1]);
324 (*regs)[2] = tswapreg(env->regs[2]);
325 (*regs)[3] = tswapreg(env->regs[3]);
326 (*regs)[4] = tswapreg(env->regs[4]);
327 (*regs)[5] = tswapreg(env->regs[5]);
328 (*regs)[6] = tswapreg(env->regs[6]);
329 (*regs)[7] = tswapreg(env->regs[7]);
330 (*regs)[8] = tswapreg(env->regs[8]);
331 (*regs)[9] = tswapreg(env->regs[9]);
332 (*regs)[10] = tswapreg(env->regs[10]);
333 (*regs)[11] = tswapreg(env->regs[11]);
334 (*regs)[12] = tswapreg(env->regs[12]);
335 (*regs)[13] = tswapreg(env->regs[13]);
336 (*regs)[14] = tswapreg(env->regs[14]);
337 (*regs)[15] = tswapreg(env->regs[15]);
338
339 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
340 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
341 }
342
343 #define USE_ELF_CORE_DUMP
344 #define ELF_EXEC_PAGESIZE 4096
345
346 enum
347 {
348 ARM_HWCAP_ARM_SWP = 1 << 0,
349 ARM_HWCAP_ARM_HALF = 1 << 1,
350 ARM_HWCAP_ARM_THUMB = 1 << 2,
351 ARM_HWCAP_ARM_26BIT = 1 << 3,
352 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
353 ARM_HWCAP_ARM_FPA = 1 << 5,
354 ARM_HWCAP_ARM_VFP = 1 << 6,
355 ARM_HWCAP_ARM_EDSP = 1 << 7,
356 ARM_HWCAP_ARM_JAVA = 1 << 8,
357 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
358 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
359 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
360 ARM_HWCAP_ARM_NEON = 1 << 12,
361 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
362 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
363 ARM_HWCAP_ARM_TLS = 1 << 15,
364 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
365 ARM_HWCAP_ARM_IDIVA = 1 << 17,
366 ARM_HWCAP_ARM_IDIVT = 1 << 18,
367 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
368 ARM_HWCAP_ARM_LPAE = 1 << 20,
369 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
370 };
371
372 enum {
373 ARM_HWCAP2_ARM_AES = 1 << 0,
374 ARM_HWCAP2_ARM_PMULL = 1 << 1,
375 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
376 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
377 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
378 };
379
380 /* The commpage only exists for 32 bit kernels */
381
382 /* Return 1 if the proposed guest space is suitable for the guest.
383 * Return 0 if the proposed guest space isn't suitable, but another
384 * address space should be tried.
385 * Return -1 if there is no way the proposed guest space can be
386 * valid regardless of the base.
387 * The guest code may leave a page mapped and populate it if the
388 * address is suitable.
389 */
390 static int init_guest_commpage(unsigned long guest_base,
391 unsigned long guest_size)
392 {
393 unsigned long real_start, test_page_addr;
394
395 /* We need to check that we can force a fault on access to the
396 * commpage at 0xffff0fxx
397 */
398 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
399
400 /* If the commpage lies within the already allocated guest space,
401 * then there is no way we can allocate it.
402 *
403 * You may be thinking that that this check is redundant because
404 * we already validated the guest size against MAX_RESERVED_VA;
405 * but if qemu_host_page_mask is unusually large, then
406 * test_page_addr may be lower.
407 */
408 if (test_page_addr >= guest_base
409 && test_page_addr < (guest_base + guest_size)) {
410 return -1;
411 }
412
413 /* Note it needs to be writeable to let us initialise it */
414 real_start = (unsigned long)
415 mmap((void *)test_page_addr, qemu_host_page_size,
416 PROT_READ | PROT_WRITE,
417 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
418
419 /* If we can't map it then try another address */
420 if (real_start == -1ul) {
421 return 0;
422 }
423
424 if (real_start != test_page_addr) {
425 /* OS didn't put the page where we asked - unmap and reject */
426 munmap((void *)real_start, qemu_host_page_size);
427 return 0;
428 }
429
430 /* Leave the page mapped
431 * Populate it (mmap should have left it all 0'd)
432 */
433
434 /* Kernel helper versions */
435 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
436
437 /* Now it's populated make it RO */
438 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
439 perror("Protecting guest commpage");
440 exit(-1);
441 }
442
443 return 1; /* All good */
444 }
445
446 #define ELF_HWCAP get_elf_hwcap()
447 #define ELF_HWCAP2 get_elf_hwcap2()
448
449 static uint32_t get_elf_hwcap(void)
450 {
451 ARMCPU *cpu = ARM_CPU(thread_cpu);
452 uint32_t hwcaps = 0;
453
454 hwcaps |= ARM_HWCAP_ARM_SWP;
455 hwcaps |= ARM_HWCAP_ARM_HALF;
456 hwcaps |= ARM_HWCAP_ARM_THUMB;
457 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
458
459 /* probe for the extra features */
460 #define GET_FEATURE(feat, hwcap) \
461 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
462
463 #define GET_FEATURE_ID(feat, hwcap) \
464 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
465
466 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
467 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
468 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
469 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
470 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
471 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
472 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
473 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
474 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
475 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
476 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
477 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
478 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
479 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
480 * to our VFP_FP16 feature bit.
481 */
482 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
483 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
484
485 return hwcaps;
486 }
487
488 static uint32_t get_elf_hwcap2(void)
489 {
490 ARMCPU *cpu = ARM_CPU(thread_cpu);
491 uint32_t hwcaps = 0;
492
493 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
494 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
495 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
496 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
497 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
498 return hwcaps;
499 }
500
501 #undef GET_FEATURE
502 #undef GET_FEATURE_ID
503
504 #define ELF_PLATFORM get_elf_platform()
505
506 static const char *get_elf_platform(void)
507 {
508 CPUARMState *env = thread_cpu->env_ptr;
509
510 #ifdef TARGET_WORDS_BIGENDIAN
511 # define END "b"
512 #else
513 # define END "l"
514 #endif
515
516 if (arm_feature(env, ARM_FEATURE_V8)) {
517 return "v8" END;
518 } else if (arm_feature(env, ARM_FEATURE_V7)) {
519 if (arm_feature(env, ARM_FEATURE_M)) {
520 return "v7m" END;
521 } else {
522 return "v7" END;
523 }
524 } else if (arm_feature(env, ARM_FEATURE_V6)) {
525 return "v6" END;
526 } else if (arm_feature(env, ARM_FEATURE_V5)) {
527 return "v5" END;
528 } else {
529 return "v4" END;
530 }
531
532 #undef END
533 }
534
535 #else
536 /* 64 bit ARM definitions */
537 #define ELF_START_MMAP 0x80000000
538
539 #define ELF_ARCH EM_AARCH64
540 #define ELF_CLASS ELFCLASS64
541 #ifdef TARGET_WORDS_BIGENDIAN
542 # define ELF_PLATFORM "aarch64_be"
543 #else
544 # define ELF_PLATFORM "aarch64"
545 #endif
546
547 static inline void init_thread(struct target_pt_regs *regs,
548 struct image_info *infop)
549 {
550 abi_long stack = infop->start_stack;
551 memset(regs, 0, sizeof(*regs));
552
553 regs->pc = infop->entry & ~0x3ULL;
554 regs->sp = stack;
555 }
556
557 #define ELF_NREG 34
558 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
559
560 static void elf_core_copy_regs(target_elf_gregset_t *regs,
561 const CPUARMState *env)
562 {
563 int i;
564
565 for (i = 0; i < 32; i++) {
566 (*regs)[i] = tswapreg(env->xregs[i]);
567 }
568 (*regs)[32] = tswapreg(env->pc);
569 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
570 }
571
572 #define USE_ELF_CORE_DUMP
573 #define ELF_EXEC_PAGESIZE 4096
574
575 enum {
576 ARM_HWCAP_A64_FP = 1 << 0,
577 ARM_HWCAP_A64_ASIMD = 1 << 1,
578 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
579 ARM_HWCAP_A64_AES = 1 << 3,
580 ARM_HWCAP_A64_PMULL = 1 << 4,
581 ARM_HWCAP_A64_SHA1 = 1 << 5,
582 ARM_HWCAP_A64_SHA2 = 1 << 6,
583 ARM_HWCAP_A64_CRC32 = 1 << 7,
584 ARM_HWCAP_A64_ATOMICS = 1 << 8,
585 ARM_HWCAP_A64_FPHP = 1 << 9,
586 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
587 ARM_HWCAP_A64_CPUID = 1 << 11,
588 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
589 ARM_HWCAP_A64_JSCVT = 1 << 13,
590 ARM_HWCAP_A64_FCMA = 1 << 14,
591 ARM_HWCAP_A64_LRCPC = 1 << 15,
592 ARM_HWCAP_A64_DCPOP = 1 << 16,
593 ARM_HWCAP_A64_SHA3 = 1 << 17,
594 ARM_HWCAP_A64_SM3 = 1 << 18,
595 ARM_HWCAP_A64_SM4 = 1 << 19,
596 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
597 ARM_HWCAP_A64_SHA512 = 1 << 21,
598 ARM_HWCAP_A64_SVE = 1 << 22,
599 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
600 ARM_HWCAP_A64_DIT = 1 << 24,
601 ARM_HWCAP_A64_USCAT = 1 << 25,
602 ARM_HWCAP_A64_ILRCPC = 1 << 26,
603 ARM_HWCAP_A64_FLAGM = 1 << 27,
604 ARM_HWCAP_A64_SSBS = 1 << 28,
605 ARM_HWCAP_A64_SB = 1 << 29,
606 ARM_HWCAP_A64_PACA = 1 << 30,
607 ARM_HWCAP_A64_PACG = 1UL << 31,
608 };
609
610 #define ELF_HWCAP get_elf_hwcap()
611
612 static uint32_t get_elf_hwcap(void)
613 {
614 ARMCPU *cpu = ARM_CPU(thread_cpu);
615 uint32_t hwcaps = 0;
616
617 hwcaps |= ARM_HWCAP_A64_FP;
618 hwcaps |= ARM_HWCAP_A64_ASIMD;
619 hwcaps |= ARM_HWCAP_A64_CPUID;
620
621 /* probe for the extra features */
622 #define GET_FEATURE_ID(feat, hwcap) \
623 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
624
625 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
626 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
627 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
628 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
629 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
630 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
631 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
632 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
633 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
634 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
635 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
636 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
637 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
638 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
639 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
640 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
641 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
642 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
643 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
644 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
645
646 #undef GET_FEATURE_ID
647
648 return hwcaps;
649 }
650
651 #endif /* not TARGET_AARCH64 */
652 #endif /* TARGET_ARM */
653
654 #ifdef TARGET_SPARC
655 #ifdef TARGET_SPARC64
656
657 #define ELF_START_MMAP 0x80000000
658 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
659 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
660 #ifndef TARGET_ABI32
661 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
662 #else
663 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
664 #endif
665
666 #define ELF_CLASS ELFCLASS64
667 #define ELF_ARCH EM_SPARCV9
668
669 #define STACK_BIAS 2047
670
671 static inline void init_thread(struct target_pt_regs *regs,
672 struct image_info *infop)
673 {
674 #ifndef TARGET_ABI32
675 regs->tstate = 0;
676 #endif
677 regs->pc = infop->entry;
678 regs->npc = regs->pc + 4;
679 regs->y = 0;
680 #ifdef TARGET_ABI32
681 regs->u_regs[14] = infop->start_stack - 16 * 4;
682 #else
683 if (personality(infop->personality) == PER_LINUX32)
684 regs->u_regs[14] = infop->start_stack - 16 * 4;
685 else
686 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
687 #endif
688 }
689
690 #else
691 #define ELF_START_MMAP 0x80000000
692 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
693 | HWCAP_SPARC_MULDIV)
694
695 #define ELF_CLASS ELFCLASS32
696 #define ELF_ARCH EM_SPARC
697
698 static inline void init_thread(struct target_pt_regs *regs,
699 struct image_info *infop)
700 {
701 regs->psr = 0;
702 regs->pc = infop->entry;
703 regs->npc = regs->pc + 4;
704 regs->y = 0;
705 regs->u_regs[14] = infop->start_stack - 16 * 4;
706 }
707
708 #endif
709 #endif
710
711 #ifdef TARGET_PPC
712
713 #define ELF_MACHINE PPC_ELF_MACHINE
714 #define ELF_START_MMAP 0x80000000
715
716 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
717
718 #define elf_check_arch(x) ( (x) == EM_PPC64 )
719
720 #define ELF_CLASS ELFCLASS64
721
722 #else
723
724 #define ELF_CLASS ELFCLASS32
725
726 #endif
727
728 #define ELF_ARCH EM_PPC
729
730 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
731 See arch/powerpc/include/asm/cputable.h. */
732 enum {
733 QEMU_PPC_FEATURE_32 = 0x80000000,
734 QEMU_PPC_FEATURE_64 = 0x40000000,
735 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
736 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
737 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
738 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
739 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
740 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
741 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
742 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
743 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
744 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
745 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
746 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
747 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
748 QEMU_PPC_FEATURE_CELL = 0x00010000,
749 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
750 QEMU_PPC_FEATURE_SMT = 0x00004000,
751 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
752 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
753 QEMU_PPC_FEATURE_PA6T = 0x00000800,
754 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
755 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
756 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
757 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
758 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
759
760 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
761 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
762
763 /* Feature definitions in AT_HWCAP2. */
764 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
765 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
766 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
767 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
768 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
769 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
770 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
771 };
772
773 #define ELF_HWCAP get_elf_hwcap()
774
775 static uint32_t get_elf_hwcap(void)
776 {
777 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
778 uint32_t features = 0;
779
780 /* We don't have to be terribly complete here; the high points are
781 Altivec/FP/SPE support. Anything else is just a bonus. */
782 #define GET_FEATURE(flag, feature) \
783 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
784 #define GET_FEATURE2(flags, feature) \
785 do { \
786 if ((cpu->env.insns_flags2 & flags) == flags) { \
787 features |= feature; \
788 } \
789 } while (0)
790 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
791 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
792 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
793 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
794 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
795 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
796 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
797 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
798 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
799 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
800 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
801 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
802 QEMU_PPC_FEATURE_ARCH_2_06);
803 #undef GET_FEATURE
804 #undef GET_FEATURE2
805
806 return features;
807 }
808
809 #define ELF_HWCAP2 get_elf_hwcap2()
810
811 static uint32_t get_elf_hwcap2(void)
812 {
813 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
814 uint32_t features = 0;
815
816 #define GET_FEATURE(flag, feature) \
817 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
818 #define GET_FEATURE2(flag, feature) \
819 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
820
821 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
822 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
823 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
824 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
825 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
826
827 #undef GET_FEATURE
828 #undef GET_FEATURE2
829
830 return features;
831 }
832
833 /*
834 * The requirements here are:
835 * - keep the final alignment of sp (sp & 0xf)
836 * - make sure the 32-bit value at the first 16 byte aligned position of
837 * AUXV is greater than 16 for glibc compatibility.
838 * AT_IGNOREPPC is used for that.
839 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
840 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
841 */
842 #define DLINFO_ARCH_ITEMS 5
843 #define ARCH_DLINFO \
844 do { \
845 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
846 /* \
847 * Handle glibc compatibility: these magic entries must \
848 * be at the lowest addresses in the final auxv. \
849 */ \
850 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
851 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
852 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
853 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
854 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
855 } while (0)
856
857 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
858 {
859 _regs->gpr[1] = infop->start_stack;
860 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
861 if (get_ppc64_abi(infop) < 2) {
862 uint64_t val;
863 get_user_u64(val, infop->entry + 8);
864 _regs->gpr[2] = val + infop->load_bias;
865 get_user_u64(val, infop->entry);
866 infop->entry = val + infop->load_bias;
867 } else {
868 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
869 }
870 #endif
871 _regs->nip = infop->entry;
872 }
873
874 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
875 #define ELF_NREG 48
876 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
877
878 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
879 {
880 int i;
881 target_ulong ccr = 0;
882
883 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
884 (*regs)[i] = tswapreg(env->gpr[i]);
885 }
886
887 (*regs)[32] = tswapreg(env->nip);
888 (*regs)[33] = tswapreg(env->msr);
889 (*regs)[35] = tswapreg(env->ctr);
890 (*regs)[36] = tswapreg(env->lr);
891 (*regs)[37] = tswapreg(env->xer);
892
893 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
894 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
895 }
896 (*regs)[38] = tswapreg(ccr);
897 }
898
899 #define USE_ELF_CORE_DUMP
900 #define ELF_EXEC_PAGESIZE 4096
901
902 #endif
903
904 #ifdef TARGET_MIPS
905
906 #define ELF_START_MMAP 0x80000000
907
908 #ifdef TARGET_MIPS64
909 #define ELF_CLASS ELFCLASS64
910 #else
911 #define ELF_CLASS ELFCLASS32
912 #endif
913 #define ELF_ARCH EM_MIPS
914
915 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
916
917 static inline void init_thread(struct target_pt_regs *regs,
918 struct image_info *infop)
919 {
920 regs->cp0_status = 2 << CP0St_KSU;
921 regs->cp0_epc = infop->entry;
922 regs->regs[29] = infop->start_stack;
923 }
924
925 /* See linux kernel: arch/mips/include/asm/elf.h. */
926 #define ELF_NREG 45
927 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
928
929 /* See linux kernel: arch/mips/include/asm/reg.h. */
930 enum {
931 #ifdef TARGET_MIPS64
932 TARGET_EF_R0 = 0,
933 #else
934 TARGET_EF_R0 = 6,
935 #endif
936 TARGET_EF_R26 = TARGET_EF_R0 + 26,
937 TARGET_EF_R27 = TARGET_EF_R0 + 27,
938 TARGET_EF_LO = TARGET_EF_R0 + 32,
939 TARGET_EF_HI = TARGET_EF_R0 + 33,
940 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
941 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
942 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
943 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
944 };
945
946 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
947 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
948 {
949 int i;
950
951 for (i = 0; i < TARGET_EF_R0; i++) {
952 (*regs)[i] = 0;
953 }
954 (*regs)[TARGET_EF_R0] = 0;
955
956 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
957 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
958 }
959
960 (*regs)[TARGET_EF_R26] = 0;
961 (*regs)[TARGET_EF_R27] = 0;
962 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
963 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
964 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
965 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
966 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
967 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
968 }
969
970 #define USE_ELF_CORE_DUMP
971 #define ELF_EXEC_PAGESIZE 4096
972
973 /* See arch/mips/include/uapi/asm/hwcap.h. */
974 enum {
975 HWCAP_MIPS_R6 = (1 << 0),
976 HWCAP_MIPS_MSA = (1 << 1),
977 };
978
979 #define ELF_HWCAP get_elf_hwcap()
980
981 static uint32_t get_elf_hwcap(void)
982 {
983 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
984 uint32_t hwcaps = 0;
985
986 #define GET_FEATURE(flag, hwcap) \
987 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
988
989 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
990 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
991
992 #undef GET_FEATURE
993
994 return hwcaps;
995 }
996
997 #endif /* TARGET_MIPS */
998
999 #ifdef TARGET_MICROBLAZE
1000
1001 #define ELF_START_MMAP 0x80000000
1002
1003 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1004
1005 #define ELF_CLASS ELFCLASS32
1006 #define ELF_ARCH EM_MICROBLAZE
1007
1008 static inline void init_thread(struct target_pt_regs *regs,
1009 struct image_info *infop)
1010 {
1011 regs->pc = infop->entry;
1012 regs->r1 = infop->start_stack;
1013
1014 }
1015
1016 #define ELF_EXEC_PAGESIZE 4096
1017
1018 #define USE_ELF_CORE_DUMP
1019 #define ELF_NREG 38
1020 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1021
1022 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1023 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1024 {
1025 int i, pos = 0;
1026
1027 for (i = 0; i < 32; i++) {
1028 (*regs)[pos++] = tswapreg(env->regs[i]);
1029 }
1030
1031 for (i = 0; i < 6; i++) {
1032 (*regs)[pos++] = tswapreg(env->sregs[i]);
1033 }
1034 }
1035
1036 #endif /* TARGET_MICROBLAZE */
1037
1038 #ifdef TARGET_NIOS2
1039
1040 #define ELF_START_MMAP 0x80000000
1041
1042 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1043
1044 #define ELF_CLASS ELFCLASS32
1045 #define ELF_ARCH EM_ALTERA_NIOS2
1046
1047 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1048 {
1049 regs->ea = infop->entry;
1050 regs->sp = infop->start_stack;
1051 regs->estatus = 0x3;
1052 }
1053
1054 #define ELF_EXEC_PAGESIZE 4096
1055
1056 #define USE_ELF_CORE_DUMP
1057 #define ELF_NREG 49
1058 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1059
1060 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1061 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1062 const CPUNios2State *env)
1063 {
1064 int i;
1065
1066 (*regs)[0] = -1;
1067 for (i = 1; i < 8; i++) /* r0-r7 */
1068 (*regs)[i] = tswapreg(env->regs[i + 7]);
1069
1070 for (i = 8; i < 16; i++) /* r8-r15 */
1071 (*regs)[i] = tswapreg(env->regs[i - 8]);
1072
1073 for (i = 16; i < 24; i++) /* r16-r23 */
1074 (*regs)[i] = tswapreg(env->regs[i + 7]);
1075 (*regs)[24] = -1; /* R_ET */
1076 (*regs)[25] = -1; /* R_BT */
1077 (*regs)[26] = tswapreg(env->regs[R_GP]);
1078 (*regs)[27] = tswapreg(env->regs[R_SP]);
1079 (*regs)[28] = tswapreg(env->regs[R_FP]);
1080 (*regs)[29] = tswapreg(env->regs[R_EA]);
1081 (*regs)[30] = -1; /* R_SSTATUS */
1082 (*regs)[31] = tswapreg(env->regs[R_RA]);
1083
1084 (*regs)[32] = tswapreg(env->regs[R_PC]);
1085
1086 (*regs)[33] = -1; /* R_STATUS */
1087 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1088
1089 for (i = 35; i < 49; i++) /* ... */
1090 (*regs)[i] = -1;
1091 }
1092
1093 #endif /* TARGET_NIOS2 */
1094
1095 #ifdef TARGET_OPENRISC
1096
1097 #define ELF_START_MMAP 0x08000000
1098
1099 #define ELF_ARCH EM_OPENRISC
1100 #define ELF_CLASS ELFCLASS32
1101 #define ELF_DATA ELFDATA2MSB
1102
1103 static inline void init_thread(struct target_pt_regs *regs,
1104 struct image_info *infop)
1105 {
1106 regs->pc = infop->entry;
1107 regs->gpr[1] = infop->start_stack;
1108 }
1109
1110 #define USE_ELF_CORE_DUMP
1111 #define ELF_EXEC_PAGESIZE 8192
1112
1113 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1114 #define ELF_NREG 34 /* gprs and pc, sr */
1115 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1116
1117 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1118 const CPUOpenRISCState *env)
1119 {
1120 int i;
1121
1122 for (i = 0; i < 32; i++) {
1123 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1124 }
1125 (*regs)[32] = tswapreg(env->pc);
1126 (*regs)[33] = tswapreg(cpu_get_sr(env));
1127 }
1128 #define ELF_HWCAP 0
1129 #define ELF_PLATFORM NULL
1130
1131 #endif /* TARGET_OPENRISC */
1132
1133 #ifdef TARGET_SH4
1134
1135 #define ELF_START_MMAP 0x80000000
1136
1137 #define ELF_CLASS ELFCLASS32
1138 #define ELF_ARCH EM_SH
1139
1140 static inline void init_thread(struct target_pt_regs *regs,
1141 struct image_info *infop)
1142 {
1143 /* Check other registers XXXXX */
1144 regs->pc = infop->entry;
1145 regs->regs[15] = infop->start_stack;
1146 }
1147
1148 /* See linux kernel: arch/sh/include/asm/elf.h. */
1149 #define ELF_NREG 23
1150 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1151
1152 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1153 enum {
1154 TARGET_REG_PC = 16,
1155 TARGET_REG_PR = 17,
1156 TARGET_REG_SR = 18,
1157 TARGET_REG_GBR = 19,
1158 TARGET_REG_MACH = 20,
1159 TARGET_REG_MACL = 21,
1160 TARGET_REG_SYSCALL = 22
1161 };
1162
1163 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1164 const CPUSH4State *env)
1165 {
1166 int i;
1167
1168 for (i = 0; i < 16; i++) {
1169 (*regs)[i] = tswapreg(env->gregs[i]);
1170 }
1171
1172 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1173 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1174 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1175 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1176 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1177 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1178 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1179 }
1180
1181 #define USE_ELF_CORE_DUMP
1182 #define ELF_EXEC_PAGESIZE 4096
1183
1184 enum {
1185 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1186 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1187 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1188 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1189 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1190 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1191 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1192 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1193 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1194 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1195 };
1196
1197 #define ELF_HWCAP get_elf_hwcap()
1198
1199 static uint32_t get_elf_hwcap(void)
1200 {
1201 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1202 uint32_t hwcap = 0;
1203
1204 hwcap |= SH_CPU_HAS_FPU;
1205
1206 if (cpu->env.features & SH_FEATURE_SH4A) {
1207 hwcap |= SH_CPU_HAS_LLSC;
1208 }
1209
1210 return hwcap;
1211 }
1212
1213 #endif
1214
1215 #ifdef TARGET_CRIS
1216
1217 #define ELF_START_MMAP 0x80000000
1218
1219 #define ELF_CLASS ELFCLASS32
1220 #define ELF_ARCH EM_CRIS
1221
1222 static inline void init_thread(struct target_pt_regs *regs,
1223 struct image_info *infop)
1224 {
1225 regs->erp = infop->entry;
1226 }
1227
1228 #define ELF_EXEC_PAGESIZE 8192
1229
1230 #endif
1231
1232 #ifdef TARGET_M68K
1233
1234 #define ELF_START_MMAP 0x80000000
1235
1236 #define ELF_CLASS ELFCLASS32
1237 #define ELF_ARCH EM_68K
1238
1239 /* ??? Does this need to do anything?
1240 #define ELF_PLAT_INIT(_r) */
1241
1242 static inline void init_thread(struct target_pt_regs *regs,
1243 struct image_info *infop)
1244 {
1245 regs->usp = infop->start_stack;
1246 regs->sr = 0;
1247 regs->pc = infop->entry;
1248 }
1249
1250 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1251 #define ELF_NREG 20
1252 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1253
1254 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1255 {
1256 (*regs)[0] = tswapreg(env->dregs[1]);
1257 (*regs)[1] = tswapreg(env->dregs[2]);
1258 (*regs)[2] = tswapreg(env->dregs[3]);
1259 (*regs)[3] = tswapreg(env->dregs[4]);
1260 (*regs)[4] = tswapreg(env->dregs[5]);
1261 (*regs)[5] = tswapreg(env->dregs[6]);
1262 (*regs)[6] = tswapreg(env->dregs[7]);
1263 (*regs)[7] = tswapreg(env->aregs[0]);
1264 (*regs)[8] = tswapreg(env->aregs[1]);
1265 (*regs)[9] = tswapreg(env->aregs[2]);
1266 (*regs)[10] = tswapreg(env->aregs[3]);
1267 (*regs)[11] = tswapreg(env->aregs[4]);
1268 (*regs)[12] = tswapreg(env->aregs[5]);
1269 (*regs)[13] = tswapreg(env->aregs[6]);
1270 (*regs)[14] = tswapreg(env->dregs[0]);
1271 (*regs)[15] = tswapreg(env->aregs[7]);
1272 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1273 (*regs)[17] = tswapreg(env->sr);
1274 (*regs)[18] = tswapreg(env->pc);
1275 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1276 }
1277
1278 #define USE_ELF_CORE_DUMP
1279 #define ELF_EXEC_PAGESIZE 8192
1280
1281 #endif
1282
1283 #ifdef TARGET_ALPHA
1284
1285 #define ELF_START_MMAP (0x30000000000ULL)
1286
1287 #define ELF_CLASS ELFCLASS64
1288 #define ELF_ARCH EM_ALPHA
1289
1290 static inline void init_thread(struct target_pt_regs *regs,
1291 struct image_info *infop)
1292 {
1293 regs->pc = infop->entry;
1294 regs->ps = 8;
1295 regs->usp = infop->start_stack;
1296 }
1297
1298 #define ELF_EXEC_PAGESIZE 8192
1299
1300 #endif /* TARGET_ALPHA */
1301
1302 #ifdef TARGET_S390X
1303
1304 #define ELF_START_MMAP (0x20000000000ULL)
1305
1306 #define ELF_CLASS ELFCLASS64
1307 #define ELF_DATA ELFDATA2MSB
1308 #define ELF_ARCH EM_S390
1309
1310 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1311 {
1312 regs->psw.addr = infop->entry;
1313 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1314 regs->gprs[15] = infop->start_stack;
1315 }
1316
1317 #endif /* TARGET_S390X */
1318
1319 #ifdef TARGET_TILEGX
1320
1321 /* 42 bits real used address, a half for user mode */
1322 #define ELF_START_MMAP (0x00000020000000000ULL)
1323
1324 #define elf_check_arch(x) ((x) == EM_TILEGX)
1325
1326 #define ELF_CLASS ELFCLASS64
1327 #define ELF_DATA ELFDATA2LSB
1328 #define ELF_ARCH EM_TILEGX
1329
1330 static inline void init_thread(struct target_pt_regs *regs,
1331 struct image_info *infop)
1332 {
1333 regs->pc = infop->entry;
1334 regs->sp = infop->start_stack;
1335
1336 }
1337
1338 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1339
1340 #endif /* TARGET_TILEGX */
1341
1342 #ifdef TARGET_RISCV
1343
1344 #define ELF_START_MMAP 0x80000000
1345 #define ELF_ARCH EM_RISCV
1346
1347 #ifdef TARGET_RISCV32
1348 #define ELF_CLASS ELFCLASS32
1349 #else
1350 #define ELF_CLASS ELFCLASS64
1351 #endif
1352
1353 static inline void init_thread(struct target_pt_regs *regs,
1354 struct image_info *infop)
1355 {
1356 regs->sepc = infop->entry;
1357 regs->sp = infop->start_stack;
1358 }
1359
1360 #define ELF_EXEC_PAGESIZE 4096
1361
1362 #endif /* TARGET_RISCV */
1363
1364 #ifdef TARGET_HPPA
1365
1366 #define ELF_START_MMAP 0x80000000
1367 #define ELF_CLASS ELFCLASS32
1368 #define ELF_ARCH EM_PARISC
1369 #define ELF_PLATFORM "PARISC"
1370 #define STACK_GROWS_DOWN 0
1371 #define STACK_ALIGNMENT 64
1372
1373 static inline void init_thread(struct target_pt_regs *regs,
1374 struct image_info *infop)
1375 {
1376 regs->iaoq[0] = infop->entry;
1377 regs->iaoq[1] = infop->entry + 4;
1378 regs->gr[23] = 0;
1379 regs->gr[24] = infop->arg_start;
1380 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1381 /* The top-of-stack contains a linkage buffer. */
1382 regs->gr[30] = infop->start_stack + 64;
1383 regs->gr[31] = infop->entry;
1384 }
1385
1386 #endif /* TARGET_HPPA */
1387
1388 #ifdef TARGET_XTENSA
1389
1390 #define ELF_START_MMAP 0x20000000
1391
1392 #define ELF_CLASS ELFCLASS32
1393 #define ELF_ARCH EM_XTENSA
1394
1395 static inline void init_thread(struct target_pt_regs *regs,
1396 struct image_info *infop)
1397 {
1398 regs->windowbase = 0;
1399 regs->windowstart = 1;
1400 regs->areg[1] = infop->start_stack;
1401 regs->pc = infop->entry;
1402 }
1403
1404 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1405 #define ELF_NREG 128
1406 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1407
1408 enum {
1409 TARGET_REG_PC,
1410 TARGET_REG_PS,
1411 TARGET_REG_LBEG,
1412 TARGET_REG_LEND,
1413 TARGET_REG_LCOUNT,
1414 TARGET_REG_SAR,
1415 TARGET_REG_WINDOWSTART,
1416 TARGET_REG_WINDOWBASE,
1417 TARGET_REG_THREADPTR,
1418 TARGET_REG_AR0 = 64,
1419 };
1420
1421 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1422 const CPUXtensaState *env)
1423 {
1424 unsigned i;
1425
1426 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1427 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1428 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1429 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1430 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1431 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1432 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1433 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1434 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1435 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1436 for (i = 0; i < env->config->nareg; ++i) {
1437 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1438 }
1439 }
1440
1441 #define USE_ELF_CORE_DUMP
1442 #define ELF_EXEC_PAGESIZE 4096
1443
1444 #endif /* TARGET_XTENSA */
1445
1446 #ifndef ELF_PLATFORM
1447 #define ELF_PLATFORM (NULL)
1448 #endif
1449
1450 #ifndef ELF_MACHINE
1451 #define ELF_MACHINE ELF_ARCH
1452 #endif
1453
1454 #ifndef elf_check_arch
1455 #define elf_check_arch(x) ((x) == ELF_ARCH)
1456 #endif
1457
1458 #ifndef ELF_HWCAP
1459 #define ELF_HWCAP 0
1460 #endif
1461
1462 #ifndef STACK_GROWS_DOWN
1463 #define STACK_GROWS_DOWN 1
1464 #endif
1465
1466 #ifndef STACK_ALIGNMENT
1467 #define STACK_ALIGNMENT 16
1468 #endif
1469
1470 #ifdef TARGET_ABI32
1471 #undef ELF_CLASS
1472 #define ELF_CLASS ELFCLASS32
1473 #undef bswaptls
1474 #define bswaptls(ptr) bswap32s(ptr)
1475 #endif
1476
1477 #include "elf.h"
1478
1479 struct exec
1480 {
1481 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1482 unsigned int a_text; /* length of text, in bytes */
1483 unsigned int a_data; /* length of data, in bytes */
1484 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1485 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1486 unsigned int a_entry; /* start address */
1487 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1488 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1489 };
1490
1491
1492 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1493 #define OMAGIC 0407
1494 #define NMAGIC 0410
1495 #define ZMAGIC 0413
1496 #define QMAGIC 0314
1497
1498 /* Necessary parameters */
1499 #define TARGET_ELF_EXEC_PAGESIZE \
1500 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1501 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1502 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1503 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1504 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1505 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1506
1507 #define DLINFO_ITEMS 15
1508
1509 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1510 {
1511 memcpy(to, from, n);
1512 }
1513
1514 #ifdef BSWAP_NEEDED
1515 static void bswap_ehdr(struct elfhdr *ehdr)
1516 {
1517 bswap16s(&ehdr->e_type); /* Object file type */
1518 bswap16s(&ehdr->e_machine); /* Architecture */
1519 bswap32s(&ehdr->e_version); /* Object file version */
1520 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1521 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1522 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1523 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1524 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1525 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1526 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1527 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1528 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1529 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1530 }
1531
1532 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1533 {
1534 int i;
1535 for (i = 0; i < phnum; ++i, ++phdr) {
1536 bswap32s(&phdr->p_type); /* Segment type */
1537 bswap32s(&phdr->p_flags); /* Segment flags */
1538 bswaptls(&phdr->p_offset); /* Segment file offset */
1539 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1540 bswaptls(&phdr->p_paddr); /* Segment physical address */
1541 bswaptls(&phdr->p_filesz); /* Segment size in file */
1542 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1543 bswaptls(&phdr->p_align); /* Segment alignment */
1544 }
1545 }
1546
1547 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1548 {
1549 int i;
1550 for (i = 0; i < shnum; ++i, ++shdr) {
1551 bswap32s(&shdr->sh_name);
1552 bswap32s(&shdr->sh_type);
1553 bswaptls(&shdr->sh_flags);
1554 bswaptls(&shdr->sh_addr);
1555 bswaptls(&shdr->sh_offset);
1556 bswaptls(&shdr->sh_size);
1557 bswap32s(&shdr->sh_link);
1558 bswap32s(&shdr->sh_info);
1559 bswaptls(&shdr->sh_addralign);
1560 bswaptls(&shdr->sh_entsize);
1561 }
1562 }
1563
1564 static void bswap_sym(struct elf_sym *sym)
1565 {
1566 bswap32s(&sym->st_name);
1567 bswaptls(&sym->st_value);
1568 bswaptls(&sym->st_size);
1569 bswap16s(&sym->st_shndx);
1570 }
1571
1572 #ifdef TARGET_MIPS
1573 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1574 {
1575 bswap16s(&abiflags->version);
1576 bswap32s(&abiflags->ases);
1577 bswap32s(&abiflags->isa_ext);
1578 bswap32s(&abiflags->flags1);
1579 bswap32s(&abiflags->flags2);
1580 }
1581 #endif
1582 #else
1583 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1584 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1585 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1586 static inline void bswap_sym(struct elf_sym *sym) { }
1587 #ifdef TARGET_MIPS
1588 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1589 #endif
1590 #endif
1591
1592 #ifdef USE_ELF_CORE_DUMP
1593 static int elf_core_dump(int, const CPUArchState *);
1594 #endif /* USE_ELF_CORE_DUMP */
1595 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1596
1597 /* Verify the portions of EHDR within E_IDENT for the target.
1598 This can be performed before bswapping the entire header. */
1599 static bool elf_check_ident(struct elfhdr *ehdr)
1600 {
1601 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1602 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1603 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1604 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1605 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1606 && ehdr->e_ident[EI_DATA] == ELF_DATA
1607 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1608 }
1609
1610 /* Verify the portions of EHDR outside of E_IDENT for the target.
1611 This has to wait until after bswapping the header. */
1612 static bool elf_check_ehdr(struct elfhdr *ehdr)
1613 {
1614 return (elf_check_arch(ehdr->e_machine)
1615 && ehdr->e_ehsize == sizeof(struct elfhdr)
1616 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1617 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1618 }
1619
1620 /*
1621 * 'copy_elf_strings()' copies argument/envelope strings from user
1622 * memory to free pages in kernel mem. These are in a format ready
1623 * to be put directly into the top of new user memory.
1624 *
1625 */
1626 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1627 abi_ulong p, abi_ulong stack_limit)
1628 {
1629 char *tmp;
1630 int len, i;
1631 abi_ulong top = p;
1632
1633 if (!p) {
1634 return 0; /* bullet-proofing */
1635 }
1636
1637 if (STACK_GROWS_DOWN) {
1638 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1639 for (i = argc - 1; i >= 0; --i) {
1640 tmp = argv[i];
1641 if (!tmp) {
1642 fprintf(stderr, "VFS: argc is wrong");
1643 exit(-1);
1644 }
1645 len = strlen(tmp) + 1;
1646 tmp += len;
1647
1648 if (len > (p - stack_limit)) {
1649 return 0;
1650 }
1651 while (len) {
1652 int bytes_to_copy = (len > offset) ? offset : len;
1653 tmp -= bytes_to_copy;
1654 p -= bytes_to_copy;
1655 offset -= bytes_to_copy;
1656 len -= bytes_to_copy;
1657
1658 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1659
1660 if (offset == 0) {
1661 memcpy_to_target(p, scratch, top - p);
1662 top = p;
1663 offset = TARGET_PAGE_SIZE;
1664 }
1665 }
1666 }
1667 if (p != top) {
1668 memcpy_to_target(p, scratch + offset, top - p);
1669 }
1670 } else {
1671 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1672 for (i = 0; i < argc; ++i) {
1673 tmp = argv[i];
1674 if (!tmp) {
1675 fprintf(stderr, "VFS: argc is wrong");
1676 exit(-1);
1677 }
1678 len = strlen(tmp) + 1;
1679 if (len > (stack_limit - p)) {
1680 return 0;
1681 }
1682 while (len) {
1683 int bytes_to_copy = (len > remaining) ? remaining : len;
1684
1685 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1686
1687 tmp += bytes_to_copy;
1688 remaining -= bytes_to_copy;
1689 p += bytes_to_copy;
1690 len -= bytes_to_copy;
1691
1692 if (remaining == 0) {
1693 memcpy_to_target(top, scratch, p - top);
1694 top = p;
1695 remaining = TARGET_PAGE_SIZE;
1696 }
1697 }
1698 }
1699 if (p != top) {
1700 memcpy_to_target(top, scratch, p - top);
1701 }
1702 }
1703
1704 return p;
1705 }
1706
1707 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1708 * argument/environment space. Newer kernels (>2.6.33) allow more,
1709 * dependent on stack size, but guarantee at least 32 pages for
1710 * backwards compatibility.
1711 */
1712 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1713
1714 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1715 struct image_info *info)
1716 {
1717 abi_ulong size, error, guard;
1718
1719 size = guest_stack_size;
1720 if (size < STACK_LOWER_LIMIT) {
1721 size = STACK_LOWER_LIMIT;
1722 }
1723 guard = TARGET_PAGE_SIZE;
1724 if (guard < qemu_real_host_page_size) {
1725 guard = qemu_real_host_page_size;
1726 }
1727
1728 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1729 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1730 if (error == -1) {
1731 perror("mmap stack");
1732 exit(-1);
1733 }
1734
1735 /* We reserve one extra page at the top of the stack as guard. */
1736 if (STACK_GROWS_DOWN) {
1737 target_mprotect(error, guard, PROT_NONE);
1738 info->stack_limit = error + guard;
1739 return info->stack_limit + size - sizeof(void *);
1740 } else {
1741 target_mprotect(error + size, guard, PROT_NONE);
1742 info->stack_limit = error + size;
1743 return error;
1744 }
1745 }
1746
1747 /* Map and zero the bss. We need to explicitly zero any fractional pages
1748 after the data section (i.e. bss). */
1749 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1750 {
1751 uintptr_t host_start, host_map_start, host_end;
1752
1753 last_bss = TARGET_PAGE_ALIGN(last_bss);
1754
1755 /* ??? There is confusion between qemu_real_host_page_size and
1756 qemu_host_page_size here and elsewhere in target_mmap, which
1757 may lead to the end of the data section mapping from the file
1758 not being mapped. At least there was an explicit test and
1759 comment for that here, suggesting that "the file size must
1760 be known". The comment probably pre-dates the introduction
1761 of the fstat system call in target_mmap which does in fact
1762 find out the size. What isn't clear is if the workaround
1763 here is still actually needed. For now, continue with it,
1764 but merge it with the "normal" mmap that would allocate the bss. */
1765
1766 host_start = (uintptr_t) g2h(elf_bss);
1767 host_end = (uintptr_t) g2h(last_bss);
1768 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1769
1770 if (host_map_start < host_end) {
1771 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1772 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1773 if (p == MAP_FAILED) {
1774 perror("cannot mmap brk");
1775 exit(-1);
1776 }
1777 }
1778
1779 /* Ensure that the bss page(s) are valid */
1780 if ((page_get_flags(last_bss-1) & prot) != prot) {
1781 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1782 }
1783
1784 if (host_start < host_map_start) {
1785 memset((void *)host_start, 0, host_map_start - host_start);
1786 }
1787 }
1788
1789 #ifdef TARGET_ARM
1790 static int elf_is_fdpic(struct elfhdr *exec)
1791 {
1792 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1793 }
1794 #else
1795 /* Default implementation, always false. */
1796 static int elf_is_fdpic(struct elfhdr *exec)
1797 {
1798 return 0;
1799 }
1800 #endif
1801
1802 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1803 {
1804 uint16_t n;
1805 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1806
1807 /* elf32_fdpic_loadseg */
1808 n = info->nsegs;
1809 while (n--) {
1810 sp -= 12;
1811 put_user_u32(loadsegs[n].addr, sp+0);
1812 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1813 put_user_u32(loadsegs[n].p_memsz, sp+8);
1814 }
1815
1816 /* elf32_fdpic_loadmap */
1817 sp -= 4;
1818 put_user_u16(0, sp+0); /* version */
1819 put_user_u16(info->nsegs, sp+2); /* nsegs */
1820
1821 info->personality = PER_LINUX_FDPIC;
1822 info->loadmap_addr = sp;
1823
1824 return sp;
1825 }
1826
1827 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1828 struct elfhdr *exec,
1829 struct image_info *info,
1830 struct image_info *interp_info)
1831 {
1832 abi_ulong sp;
1833 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1834 int size;
1835 int i;
1836 abi_ulong u_rand_bytes;
1837 uint8_t k_rand_bytes[16];
1838 abi_ulong u_platform;
1839 const char *k_platform;
1840 const int n = sizeof(elf_addr_t);
1841
1842 sp = p;
1843
1844 /* Needs to be before we load the env/argc/... */
1845 if (elf_is_fdpic(exec)) {
1846 /* Need 4 byte alignment for these structs */
1847 sp &= ~3;
1848 sp = loader_build_fdpic_loadmap(info, sp);
1849 info->other_info = interp_info;
1850 if (interp_info) {
1851 interp_info->other_info = info;
1852 sp = loader_build_fdpic_loadmap(interp_info, sp);
1853 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1854 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1855 } else {
1856 info->interpreter_loadmap_addr = 0;
1857 info->interpreter_pt_dynamic_addr = 0;
1858 }
1859 }
1860
1861 u_platform = 0;
1862 k_platform = ELF_PLATFORM;
1863 if (k_platform) {
1864 size_t len = strlen(k_platform) + 1;
1865 if (STACK_GROWS_DOWN) {
1866 sp -= (len + n - 1) & ~(n - 1);
1867 u_platform = sp;
1868 /* FIXME - check return value of memcpy_to_target() for failure */
1869 memcpy_to_target(sp, k_platform, len);
1870 } else {
1871 memcpy_to_target(sp, k_platform, len);
1872 u_platform = sp;
1873 sp += len + 1;
1874 }
1875 }
1876
1877 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1878 * the argv and envp pointers.
1879 */
1880 if (STACK_GROWS_DOWN) {
1881 sp = QEMU_ALIGN_DOWN(sp, 16);
1882 } else {
1883 sp = QEMU_ALIGN_UP(sp, 16);
1884 }
1885
1886 /*
1887 * Generate 16 random bytes for userspace PRNG seeding.
1888 */
1889 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1890 if (STACK_GROWS_DOWN) {
1891 sp -= 16;
1892 u_rand_bytes = sp;
1893 /* FIXME - check return value of memcpy_to_target() for failure */
1894 memcpy_to_target(sp, k_rand_bytes, 16);
1895 } else {
1896 memcpy_to_target(sp, k_rand_bytes, 16);
1897 u_rand_bytes = sp;
1898 sp += 16;
1899 }
1900
1901 size = (DLINFO_ITEMS + 1) * 2;
1902 if (k_platform)
1903 size += 2;
1904 #ifdef DLINFO_ARCH_ITEMS
1905 size += DLINFO_ARCH_ITEMS * 2;
1906 #endif
1907 #ifdef ELF_HWCAP2
1908 size += 2;
1909 #endif
1910 info->auxv_len = size * n;
1911
1912 size += envc + argc + 2;
1913 size += 1; /* argc itself */
1914 size *= n;
1915
1916 /* Allocate space and finalize stack alignment for entry now. */
1917 if (STACK_GROWS_DOWN) {
1918 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1919 sp = u_argc;
1920 } else {
1921 u_argc = sp;
1922 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1923 }
1924
1925 u_argv = u_argc + n;
1926 u_envp = u_argv + (argc + 1) * n;
1927 u_auxv = u_envp + (envc + 1) * n;
1928 info->saved_auxv = u_auxv;
1929 info->arg_start = u_argv;
1930 info->arg_end = u_argv + argc * n;
1931
1932 /* This is correct because Linux defines
1933 * elf_addr_t as Elf32_Off / Elf64_Off
1934 */
1935 #define NEW_AUX_ENT(id, val) do { \
1936 put_user_ual(id, u_auxv); u_auxv += n; \
1937 put_user_ual(val, u_auxv); u_auxv += n; \
1938 } while(0)
1939
1940 #ifdef ARCH_DLINFO
1941 /*
1942 * ARCH_DLINFO must come first so platform specific code can enforce
1943 * special alignment requirements on the AUXV if necessary (eg. PPC).
1944 */
1945 ARCH_DLINFO;
1946 #endif
1947 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1948 * on info->auxv_len will trigger.
1949 */
1950 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1951 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1952 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1953 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1954 /* Target doesn't support host page size alignment */
1955 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1956 } else {
1957 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1958 qemu_host_page_size)));
1959 }
1960 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1961 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1962 NEW_AUX_ENT(AT_ENTRY, info->entry);
1963 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1964 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1965 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1966 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1967 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1968 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1969 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1970 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1971
1972 #ifdef ELF_HWCAP2
1973 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1974 #endif
1975
1976 if (u_platform) {
1977 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1978 }
1979 NEW_AUX_ENT (AT_NULL, 0);
1980 #undef NEW_AUX_ENT
1981
1982 /* Check that our initial calculation of the auxv length matches how much
1983 * we actually put into it.
1984 */
1985 assert(info->auxv_len == u_auxv - info->saved_auxv);
1986
1987 put_user_ual(argc, u_argc);
1988
1989 p = info->arg_strings;
1990 for (i = 0; i < argc; ++i) {
1991 put_user_ual(p, u_argv);
1992 u_argv += n;
1993 p += target_strlen(p) + 1;
1994 }
1995 put_user_ual(0, u_argv);
1996
1997 p = info->env_strings;
1998 for (i = 0; i < envc; ++i) {
1999 put_user_ual(p, u_envp);
2000 u_envp += n;
2001 p += target_strlen(p) + 1;
2002 }
2003 put_user_ual(0, u_envp);
2004
2005 return sp;
2006 }
2007
2008 unsigned long init_guest_space(unsigned long host_start,
2009 unsigned long host_size,
2010 unsigned long guest_start,
2011 bool fixed)
2012 {
2013 unsigned long current_start, aligned_start;
2014 int flags;
2015
2016 assert(host_start || host_size);
2017
2018 /* If just a starting address is given, then just verify that
2019 * address. */
2020 if (host_start && !host_size) {
2021 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2022 if (init_guest_commpage(host_start, host_size) != 1) {
2023 return (unsigned long)-1;
2024 }
2025 #endif
2026 return host_start;
2027 }
2028
2029 /* Setup the initial flags and start address. */
2030 current_start = host_start & qemu_host_page_mask;
2031 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2032 if (fixed) {
2033 flags |= MAP_FIXED;
2034 }
2035
2036 /* Otherwise, a non-zero size region of memory needs to be mapped
2037 * and validated. */
2038
2039 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2040 /* On 32-bit ARM, we need to map not just the usable memory, but
2041 * also the commpage. Try to find a suitable place by allocating
2042 * a big chunk for all of it. If host_start, then the naive
2043 * strategy probably does good enough.
2044 */
2045 if (!host_start) {
2046 unsigned long guest_full_size, host_full_size, real_start;
2047
2048 guest_full_size =
2049 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2050 host_full_size = guest_full_size - guest_start;
2051 real_start = (unsigned long)
2052 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2053 if (real_start == (unsigned long)-1) {
2054 if (host_size < host_full_size - qemu_host_page_size) {
2055 /* We failed to map a continous segment, but we're
2056 * allowed to have a gap between the usable memory and
2057 * the commpage where other things can be mapped.
2058 * This sparseness gives us more flexibility to find
2059 * an address range.
2060 */
2061 goto naive;
2062 }
2063 return (unsigned long)-1;
2064 }
2065 munmap((void *)real_start, host_full_size);
2066 if (real_start & ~qemu_host_page_mask) {
2067 /* The same thing again, but with an extra qemu_host_page_size
2068 * so that we can shift around alignment.
2069 */
2070 unsigned long real_size = host_full_size + qemu_host_page_size;
2071 real_start = (unsigned long)
2072 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2073 if (real_start == (unsigned long)-1) {
2074 if (host_size < host_full_size - qemu_host_page_size) {
2075 goto naive;
2076 }
2077 return (unsigned long)-1;
2078 }
2079 munmap((void *)real_start, real_size);
2080 real_start = HOST_PAGE_ALIGN(real_start);
2081 }
2082 current_start = real_start;
2083 }
2084 naive:
2085 #endif
2086
2087 while (1) {
2088 unsigned long real_start, real_size, aligned_size;
2089 aligned_size = real_size = host_size;
2090
2091 /* Do not use mmap_find_vma here because that is limited to the
2092 * guest address space. We are going to make the
2093 * guest address space fit whatever we're given.
2094 */
2095 real_start = (unsigned long)
2096 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2097 if (real_start == (unsigned long)-1) {
2098 return (unsigned long)-1;
2099 }
2100
2101 /* Check to see if the address is valid. */
2102 if (host_start && real_start != current_start) {
2103 goto try_again;
2104 }
2105
2106 /* Ensure the address is properly aligned. */
2107 if (real_start & ~qemu_host_page_mask) {
2108 /* Ideally, we adjust like
2109 *
2110 * pages: [ ][ ][ ][ ][ ]
2111 * old: [ real ]
2112 * [ aligned ]
2113 * new: [ real ]
2114 * [ aligned ]
2115 *
2116 * But if there is something else mapped right after it,
2117 * then obviously it won't have room to grow, and the
2118 * kernel will put the new larger real someplace else with
2119 * unknown alignment (if we made it to here, then
2120 * fixed=false). Which is why we grow real by a full page
2121 * size, instead of by part of one; so that even if we get
2122 * moved, we can still guarantee alignment. But this does
2123 * mean that there is a padding of < 1 page both before
2124 * and after the aligned range; the "after" could could
2125 * cause problems for ARM emulation where it could butt in
2126 * to where we need to put the commpage.
2127 */
2128 munmap((void *)real_start, host_size);
2129 real_size = aligned_size + qemu_host_page_size;
2130 real_start = (unsigned long)
2131 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2132 if (real_start == (unsigned long)-1) {
2133 return (unsigned long)-1;
2134 }
2135 aligned_start = HOST_PAGE_ALIGN(real_start);
2136 } else {
2137 aligned_start = real_start;
2138 }
2139
2140 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2141 /* On 32-bit ARM, we need to also be able to map the commpage. */
2142 int valid = init_guest_commpage(aligned_start - guest_start,
2143 aligned_size + guest_start);
2144 if (valid == -1) {
2145 munmap((void *)real_start, real_size);
2146 return (unsigned long)-1;
2147 } else if (valid == 0) {
2148 goto try_again;
2149 }
2150 #endif
2151
2152 /* If nothing has said `return -1` or `goto try_again` yet,
2153 * then the address we have is good.
2154 */
2155 break;
2156
2157 try_again:
2158 /* That address didn't work. Unmap and try a different one.
2159 * The address the host picked because is typically right at
2160 * the top of the host address space and leaves the guest with
2161 * no usable address space. Resort to a linear search. We
2162 * already compensated for mmap_min_addr, so this should not
2163 * happen often. Probably means we got unlucky and host
2164 * address space randomization put a shared library somewhere
2165 * inconvenient.
2166 *
2167 * This is probably a good strategy if host_start, but is
2168 * probably a bad strategy if not, which means we got here
2169 * because of trouble with ARM commpage setup.
2170 */
2171 munmap((void *)real_start, real_size);
2172 current_start += qemu_host_page_size;
2173 if (host_start == current_start) {
2174 /* Theoretically possible if host doesn't have any suitably
2175 * aligned areas. Normally the first mmap will fail.
2176 */
2177 return (unsigned long)-1;
2178 }
2179 }
2180
2181 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2182
2183 return aligned_start;
2184 }
2185
2186 static void probe_guest_base(const char *image_name,
2187 abi_ulong loaddr, abi_ulong hiaddr)
2188 {
2189 /* Probe for a suitable guest base address, if the user has not set
2190 * it explicitly, and set guest_base appropriately.
2191 * In case of error we will print a suitable message and exit.
2192 */
2193 const char *errmsg;
2194 if (!have_guest_base && !reserved_va) {
2195 unsigned long host_start, real_start, host_size;
2196
2197 /* Round addresses to page boundaries. */
2198 loaddr &= qemu_host_page_mask;
2199 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2200
2201 if (loaddr < mmap_min_addr) {
2202 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2203 } else {
2204 host_start = loaddr;
2205 if (host_start != loaddr) {
2206 errmsg = "Address overflow loading ELF binary";
2207 goto exit_errmsg;
2208 }
2209 }
2210 host_size = hiaddr - loaddr;
2211
2212 /* Setup the initial guest memory space with ranges gleaned from
2213 * the ELF image that is being loaded.
2214 */
2215 real_start = init_guest_space(host_start, host_size, loaddr, false);
2216 if (real_start == (unsigned long)-1) {
2217 errmsg = "Unable to find space for application";
2218 goto exit_errmsg;
2219 }
2220 guest_base = real_start - loaddr;
2221
2222 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2223 TARGET_ABI_FMT_lx " to 0x%lx\n",
2224 loaddr, real_start);
2225 }
2226 return;
2227
2228 exit_errmsg:
2229 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2230 exit(-1);
2231 }
2232
2233
2234 /* Load an ELF image into the address space.
2235
2236 IMAGE_NAME is the filename of the image, to use in error messages.
2237 IMAGE_FD is the open file descriptor for the image.
2238
2239 BPRM_BUF is a copy of the beginning of the file; this of course
2240 contains the elf file header at offset 0. It is assumed that this
2241 buffer is sufficiently aligned to present no problems to the host
2242 in accessing data at aligned offsets within the buffer.
2243
2244 On return: INFO values will be filled in, as necessary or available. */
2245
2246 static void load_elf_image(const char *image_name, int image_fd,
2247 struct image_info *info, char **pinterp_name,
2248 char bprm_buf[BPRM_BUF_SIZE])
2249 {
2250 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2251 struct elf_phdr *phdr;
2252 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2253 int i, retval;
2254 const char *errmsg;
2255
2256 /* First of all, some simple consistency checks */
2257 errmsg = "Invalid ELF image for this architecture";
2258 if (!elf_check_ident(ehdr)) {
2259 goto exit_errmsg;
2260 }
2261 bswap_ehdr(ehdr);
2262 if (!elf_check_ehdr(ehdr)) {
2263 goto exit_errmsg;
2264 }
2265
2266 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2267 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2268 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2269 } else {
2270 phdr = (struct elf_phdr *) alloca(i);
2271 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2272 if (retval != i) {
2273 goto exit_read;
2274 }
2275 }
2276 bswap_phdr(phdr, ehdr->e_phnum);
2277
2278 info->nsegs = 0;
2279 info->pt_dynamic_addr = 0;
2280
2281 mmap_lock();
2282
2283 /* Find the maximum size of the image and allocate an appropriate
2284 amount of memory to handle that. */
2285 loaddr = -1, hiaddr = 0;
2286 info->alignment = 0;
2287 for (i = 0; i < ehdr->e_phnum; ++i) {
2288 if (phdr[i].p_type == PT_LOAD) {
2289 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2290 if (a < loaddr) {
2291 loaddr = a;
2292 }
2293 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2294 if (a > hiaddr) {
2295 hiaddr = a;
2296 }
2297 ++info->nsegs;
2298 info->alignment |= phdr[i].p_align;
2299 }
2300 }
2301
2302 load_addr = loaddr;
2303 if (ehdr->e_type == ET_DYN) {
2304 /* The image indicates that it can be loaded anywhere. Find a
2305 location that can hold the memory space required. If the
2306 image is pre-linked, LOADDR will be non-zero. Since we do
2307 not supply MAP_FIXED here we'll use that address if and
2308 only if it remains available. */
2309 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2310 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2311 -1, 0);
2312 if (load_addr == -1) {
2313 goto exit_perror;
2314 }
2315 } else if (pinterp_name != NULL) {
2316 /* This is the main executable. Make sure that the low
2317 address does not conflict with MMAP_MIN_ADDR or the
2318 QEMU application itself. */
2319 probe_guest_base(image_name, loaddr, hiaddr);
2320 }
2321 load_bias = load_addr - loaddr;
2322
2323 if (elf_is_fdpic(ehdr)) {
2324 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2325 g_malloc(sizeof(*loadsegs) * info->nsegs);
2326
2327 for (i = 0; i < ehdr->e_phnum; ++i) {
2328 switch (phdr[i].p_type) {
2329 case PT_DYNAMIC:
2330 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2331 break;
2332 case PT_LOAD:
2333 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2334 loadsegs->p_vaddr = phdr[i].p_vaddr;
2335 loadsegs->p_memsz = phdr[i].p_memsz;
2336 ++loadsegs;
2337 break;
2338 }
2339 }
2340 }
2341
2342 info->load_bias = load_bias;
2343 info->load_addr = load_addr;
2344 info->entry = ehdr->e_entry + load_bias;
2345 info->start_code = -1;
2346 info->end_code = 0;
2347 info->start_data = -1;
2348 info->end_data = 0;
2349 info->brk = 0;
2350 info->elf_flags = ehdr->e_flags;
2351
2352 for (i = 0; i < ehdr->e_phnum; i++) {
2353 struct elf_phdr *eppnt = phdr + i;
2354 if (eppnt->p_type == PT_LOAD) {
2355 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2356 int elf_prot = 0;
2357
2358 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2359 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2360 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2361
2362 vaddr = load_bias + eppnt->p_vaddr;
2363 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2364 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2365 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2366
2367 /*
2368 * Some segments may be completely empty without any backing file
2369 * segment, in that case just let zero_bss allocate an empty buffer
2370 * for it.
2371 */
2372 if (eppnt->p_filesz != 0) {
2373 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2374 MAP_PRIVATE | MAP_FIXED,
2375 image_fd, eppnt->p_offset - vaddr_po);
2376
2377 if (error == -1) {
2378 goto exit_perror;
2379 }
2380 }
2381
2382 vaddr_ef = vaddr + eppnt->p_filesz;
2383 vaddr_em = vaddr + eppnt->p_memsz;
2384
2385 /* If the load segment requests extra zeros (e.g. bss), map it. */
2386 if (vaddr_ef < vaddr_em) {
2387 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2388 }
2389
2390 /* Find the full program boundaries. */
2391 if (elf_prot & PROT_EXEC) {
2392 if (vaddr < info->start_code) {
2393 info->start_code = vaddr;
2394 }
2395 if (vaddr_ef > info->end_code) {
2396 info->end_code = vaddr_ef;
2397 }
2398 }
2399 if (elf_prot & PROT_WRITE) {
2400 if (vaddr < info->start_data) {
2401 info->start_data = vaddr;
2402 }
2403 if (vaddr_ef > info->end_data) {
2404 info->end_data = vaddr_ef;
2405 }
2406 if (vaddr_em > info->brk) {
2407 info->brk = vaddr_em;
2408 }
2409 }
2410 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2411 char *interp_name;
2412
2413 if (*pinterp_name) {
2414 errmsg = "Multiple PT_INTERP entries";
2415 goto exit_errmsg;
2416 }
2417 interp_name = malloc(eppnt->p_filesz);
2418 if (!interp_name) {
2419 goto exit_perror;
2420 }
2421
2422 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2423 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2424 eppnt->p_filesz);
2425 } else {
2426 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2427 eppnt->p_offset);
2428 if (retval != eppnt->p_filesz) {
2429 goto exit_perror;
2430 }
2431 }
2432 if (interp_name[eppnt->p_filesz - 1] != 0) {
2433 errmsg = "Invalid PT_INTERP entry";
2434 goto exit_errmsg;
2435 }
2436 *pinterp_name = interp_name;
2437 #ifdef TARGET_MIPS
2438 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2439 Mips_elf_abiflags_v0 abiflags;
2440 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2441 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2442 goto exit_errmsg;
2443 }
2444 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2445 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2446 sizeof(Mips_elf_abiflags_v0));
2447 } else {
2448 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2449 eppnt->p_offset);
2450 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2451 goto exit_perror;
2452 }
2453 }
2454 bswap_mips_abiflags(&abiflags);
2455 info->fp_abi = abiflags.fp_abi;
2456 #endif
2457 }
2458 }
2459
2460 if (info->end_data == 0) {
2461 info->start_data = info->end_code;
2462 info->end_data = info->end_code;
2463 info->brk = info->end_code;
2464 }
2465
2466 if (qemu_log_enabled()) {
2467 load_symbols(ehdr, image_fd, load_bias);
2468 }
2469
2470 mmap_unlock();
2471
2472 close(image_fd);
2473 return;
2474
2475 exit_read:
2476 if (retval >= 0) {
2477 errmsg = "Incomplete read of file header";
2478 goto exit_errmsg;
2479 }
2480 exit_perror:
2481 errmsg = strerror(errno);
2482 exit_errmsg:
2483 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2484 exit(-1);
2485 }
2486
2487 static void load_elf_interp(const char *filename, struct image_info *info,
2488 char bprm_buf[BPRM_BUF_SIZE])
2489 {
2490 int fd, retval;
2491
2492 fd = open(path(filename), O_RDONLY);
2493 if (fd < 0) {
2494 goto exit_perror;
2495 }
2496
2497 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2498 if (retval < 0) {
2499 goto exit_perror;
2500 }
2501 if (retval < BPRM_BUF_SIZE) {
2502 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2503 }
2504
2505 load_elf_image(filename, fd, info, NULL, bprm_buf);
2506 return;
2507
2508 exit_perror:
2509 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2510 exit(-1);
2511 }
2512
2513 static int symfind(const void *s0, const void *s1)
2514 {
2515 target_ulong addr = *(target_ulong *)s0;
2516 struct elf_sym *sym = (struct elf_sym *)s1;
2517 int result = 0;
2518 if (addr < sym->st_value) {
2519 result = -1;
2520 } else if (addr >= sym->st_value + sym->st_size) {
2521 result = 1;
2522 }
2523 return result;
2524 }
2525
2526 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2527 {
2528 #if ELF_CLASS == ELFCLASS32
2529 struct elf_sym *syms = s->disas_symtab.elf32;
2530 #else
2531 struct elf_sym *syms = s->disas_symtab.elf64;
2532 #endif
2533
2534 // binary search
2535 struct elf_sym *sym;
2536
2537 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2538 if (sym != NULL) {
2539 return s->disas_strtab + sym->st_name;
2540 }
2541
2542 return "";
2543 }
2544
2545 /* FIXME: This should use elf_ops.h */
2546 static int symcmp(const void *s0, const void *s1)
2547 {
2548 struct elf_sym *sym0 = (struct elf_sym *)s0;
2549 struct elf_sym *sym1 = (struct elf_sym *)s1;
2550 return (sym0->st_value < sym1->st_value)
2551 ? -1
2552 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2553 }
2554
2555 /* Best attempt to load symbols from this ELF object. */
2556 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2557 {
2558 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2559 uint64_t segsz;
2560 struct elf_shdr *shdr;
2561 char *strings = NULL;
2562 struct syminfo *s = NULL;
2563 struct elf_sym *new_syms, *syms = NULL;
2564
2565 shnum = hdr->e_shnum;
2566 i = shnum * sizeof(struct elf_shdr);
2567 shdr = (struct elf_shdr *)alloca(i);
2568 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2569 return;
2570 }
2571
2572 bswap_shdr(shdr, shnum);
2573 for (i = 0; i < shnum; ++i) {
2574 if (shdr[i].sh_type == SHT_SYMTAB) {
2575 sym_idx = i;
2576 str_idx = shdr[i].sh_link;
2577 goto found;
2578 }
2579 }
2580
2581 /* There will be no symbol table if the file was stripped. */
2582 return;
2583
2584 found:
2585 /* Now know where the strtab and symtab are. Snarf them. */
2586 s = g_try_new(struct syminfo, 1);
2587 if (!s) {
2588 goto give_up;
2589 }
2590
2591 segsz = shdr[str_idx].sh_size;
2592 s->disas_strtab = strings = g_try_malloc(segsz);
2593 if (!strings ||
2594 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2595 goto give_up;
2596 }
2597
2598 segsz = shdr[sym_idx].sh_size;
2599 syms = g_try_malloc(segsz);
2600 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2601 goto give_up;
2602 }
2603
2604 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2605 /* Implausibly large symbol table: give up rather than ploughing
2606 * on with the number of symbols calculation overflowing
2607 */
2608 goto give_up;
2609 }
2610 nsyms = segsz / sizeof(struct elf_sym);
2611 for (i = 0; i < nsyms; ) {
2612 bswap_sym(syms + i);
2613 /* Throw away entries which we do not need. */
2614 if (syms[i].st_shndx == SHN_UNDEF
2615 || syms[i].st_shndx >= SHN_LORESERVE
2616 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2617 if (i < --nsyms) {
2618 syms[i] = syms[nsyms];
2619 }
2620 } else {
2621 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2622 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2623 syms[i].st_value &= ~(target_ulong)1;
2624 #endif
2625 syms[i].st_value += load_bias;
2626 i++;
2627 }
2628 }
2629
2630 /* No "useful" symbol. */
2631 if (nsyms == 0) {
2632 goto give_up;
2633 }
2634
2635 /* Attempt to free the storage associated with the local symbols
2636 that we threw away. Whether or not this has any effect on the
2637 memory allocation depends on the malloc implementation and how
2638 many symbols we managed to discard. */
2639 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2640 if (new_syms == NULL) {
2641 goto give_up;
2642 }
2643 syms = new_syms;
2644
2645 qsort(syms, nsyms, sizeof(*syms), symcmp);
2646
2647 s->disas_num_syms = nsyms;
2648 #if ELF_CLASS == ELFCLASS32
2649 s->disas_symtab.elf32 = syms;
2650 #else
2651 s->disas_symtab.elf64 = syms;
2652 #endif
2653 s->lookup_symbol = lookup_symbolxx;
2654 s->next = syminfos;
2655 syminfos = s;
2656
2657 return;
2658
2659 give_up:
2660 g_free(s);
2661 g_free(strings);
2662 g_free(syms);
2663 }
2664
2665 uint32_t get_elf_eflags(int fd)
2666 {
2667 struct elfhdr ehdr;
2668 off_t offset;
2669 int ret;
2670
2671 /* Read ELF header */
2672 offset = lseek(fd, 0, SEEK_SET);
2673 if (offset == (off_t) -1) {
2674 return 0;
2675 }
2676 ret = read(fd, &ehdr, sizeof(ehdr));
2677 if (ret < sizeof(ehdr)) {
2678 return 0;
2679 }
2680 offset = lseek(fd, offset, SEEK_SET);
2681 if (offset == (off_t) -1) {
2682 return 0;
2683 }
2684
2685 /* Check ELF signature */
2686 if (!elf_check_ident(&ehdr)) {
2687 return 0;
2688 }
2689
2690 /* check header */
2691 bswap_ehdr(&ehdr);
2692 if (!elf_check_ehdr(&ehdr)) {
2693 return 0;
2694 }
2695
2696 /* return architecture id */
2697 return ehdr.e_flags;
2698 }
2699
2700 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2701 {
2702 struct image_info interp_info;
2703 struct elfhdr elf_ex;
2704 char *elf_interpreter = NULL;
2705 char *scratch;
2706
2707 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2708
2709 load_elf_image(bprm->filename, bprm->fd, info,
2710 &elf_interpreter, bprm->buf);
2711
2712 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2713 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2714 when we load the interpreter. */
2715 elf_ex = *(struct elfhdr *)bprm->buf;
2716
2717 /* Do this so that we can load the interpreter, if need be. We will
2718 change some of these later */
2719 bprm->p = setup_arg_pages(bprm, info);
2720
2721 scratch = g_new0(char, TARGET_PAGE_SIZE);
2722 if (STACK_GROWS_DOWN) {
2723 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2724 bprm->p, info->stack_limit);
2725 info->file_string = bprm->p;
2726 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2727 bprm->p, info->stack_limit);
2728 info->env_strings = bprm->p;
2729 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2730 bprm->p, info->stack_limit);
2731 info->arg_strings = bprm->p;
2732 } else {
2733 info->arg_strings = bprm->p;
2734 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2735 bprm->p, info->stack_limit);
2736 info->env_strings = bprm->p;
2737 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2738 bprm->p, info->stack_limit);
2739 info->file_string = bprm->p;
2740 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2741 bprm->p, info->stack_limit);
2742 }
2743
2744 g_free(scratch);
2745
2746 if (!bprm->p) {
2747 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2748 exit(-1);
2749 }
2750
2751 if (elf_interpreter) {
2752 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2753
2754 /* If the program interpreter is one of these two, then assume
2755 an iBCS2 image. Otherwise assume a native linux image. */
2756
2757 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2758 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2759 info->personality = PER_SVR4;
2760
2761 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2762 and some applications "depend" upon this behavior. Since
2763 we do not have the power to recompile these, we emulate
2764 the SVr4 behavior. Sigh. */
2765 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2766 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2767 }
2768 #ifdef TARGET_MIPS
2769 info->interp_fp_abi = interp_info.fp_abi;
2770 #endif
2771 }
2772
2773 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2774 info, (elf_interpreter ? &interp_info : NULL));
2775 info->start_stack = bprm->p;
2776
2777 /* If we have an interpreter, set that as the program's entry point.
2778 Copy the load_bias as well, to help PPC64 interpret the entry
2779 point as a function descriptor. Do this after creating elf tables
2780 so that we copy the original program entry point into the AUXV. */
2781 if (elf_interpreter) {
2782 info->load_bias = interp_info.load_bias;
2783 info->entry = interp_info.entry;
2784 free(elf_interpreter);
2785 }
2786
2787 #ifdef USE_ELF_CORE_DUMP
2788 bprm->core_dump = &elf_core_dump;
2789 #endif
2790
2791 return 0;
2792 }
2793
2794 #ifdef USE_ELF_CORE_DUMP
2795 /*
2796 * Definitions to generate Intel SVR4-like core files.
2797 * These mostly have the same names as the SVR4 types with "target_elf_"
2798 * tacked on the front to prevent clashes with linux definitions,
2799 * and the typedef forms have been avoided. This is mostly like
2800 * the SVR4 structure, but more Linuxy, with things that Linux does
2801 * not support and which gdb doesn't really use excluded.
2802 *
2803 * Fields we don't dump (their contents is zero) in linux-user qemu
2804 * are marked with XXX.
2805 *
2806 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2807 *
2808 * Porting ELF coredump for target is (quite) simple process. First you
2809 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2810 * the target resides):
2811 *
2812 * #define USE_ELF_CORE_DUMP
2813 *
2814 * Next you define type of register set used for dumping. ELF specification
2815 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2816 *
2817 * typedef <target_regtype> target_elf_greg_t;
2818 * #define ELF_NREG <number of registers>
2819 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2820 *
2821 * Last step is to implement target specific function that copies registers
2822 * from given cpu into just specified register set. Prototype is:
2823 *
2824 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2825 * const CPUArchState *env);
2826 *
2827 * Parameters:
2828 * regs - copy register values into here (allocated and zeroed by caller)
2829 * env - copy registers from here
2830 *
2831 * Example for ARM target is provided in this file.
2832 */
2833
2834 /* An ELF note in memory */
2835 struct memelfnote {
2836 const char *name;
2837 size_t namesz;
2838 size_t namesz_rounded;
2839 int type;
2840 size_t datasz;
2841 size_t datasz_rounded;
2842 void *data;
2843 size_t notesz;
2844 };
2845
2846 struct target_elf_siginfo {
2847 abi_int si_signo; /* signal number */
2848 abi_int si_code; /* extra code */
2849 abi_int si_errno; /* errno */
2850 };
2851
2852 struct target_elf_prstatus {
2853 struct target_elf_siginfo pr_info; /* Info associated with signal */
2854 abi_short pr_cursig; /* Current signal */
2855 abi_ulong pr_sigpend; /* XXX */
2856 abi_ulong pr_sighold; /* XXX */
2857 target_pid_t pr_pid;
2858 target_pid_t pr_ppid;
2859 target_pid_t pr_pgrp;
2860 target_pid_t pr_sid;
2861 struct target_timeval pr_utime; /* XXX User time */
2862 struct target_timeval pr_stime; /* XXX System time */
2863 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2864 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2865 target_elf_gregset_t pr_reg; /* GP registers */
2866 abi_int pr_fpvalid; /* XXX */
2867 };
2868
2869 #define ELF_PRARGSZ (80) /* Number of chars for args */
2870
2871 struct target_elf_prpsinfo {
2872 char pr_state; /* numeric process state */
2873 char pr_sname; /* char for pr_state */
2874 char pr_zomb; /* zombie */
2875 char pr_nice; /* nice val */
2876 abi_ulong pr_flag; /* flags */
2877 target_uid_t pr_uid;
2878 target_gid_t pr_gid;
2879 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2880 /* Lots missing */
2881 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
2882 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2883 };
2884
2885 /* Here is the structure in which status of each thread is captured. */
2886 struct elf_thread_status {
2887 QTAILQ_ENTRY(elf_thread_status) ets_link;
2888 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2889 #if 0
2890 elf_fpregset_t fpu; /* NT_PRFPREG */
2891 struct task_struct *thread;
2892 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2893 #endif
2894 struct memelfnote notes[1];
2895 int num_notes;
2896 };
2897
2898 struct elf_note_info {
2899 struct memelfnote *notes;
2900 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2901 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2902
2903 QTAILQ_HEAD(, elf_thread_status) thread_list;
2904 #if 0
2905 /*
2906 * Current version of ELF coredump doesn't support
2907 * dumping fp regs etc.
2908 */
2909 elf_fpregset_t *fpu;
2910 elf_fpxregset_t *xfpu;
2911 int thread_status_size;
2912 #endif
2913 int notes_size;
2914 int numnote;
2915 };
2916
2917 struct vm_area_struct {
2918 target_ulong vma_start; /* start vaddr of memory region */
2919 target_ulong vma_end; /* end vaddr of memory region */
2920 abi_ulong vma_flags; /* protection etc. flags for the region */
2921 QTAILQ_ENTRY(vm_area_struct) vma_link;
2922 };
2923
2924 struct mm_struct {
2925 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2926 int mm_count; /* number of mappings */
2927 };
2928
2929 static struct mm_struct *vma_init(void);
2930 static void vma_delete(struct mm_struct *);
2931 static int vma_add_mapping(struct mm_struct *, target_ulong,
2932 target_ulong, abi_ulong);
2933 static int vma_get_mapping_count(const struct mm_struct *);
2934 static struct vm_area_struct *vma_first(const struct mm_struct *);
2935 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2936 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2937 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2938 unsigned long flags);
2939
2940 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2941 static void fill_note(struct memelfnote *, const char *, int,
2942 unsigned int, void *);
2943 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2944 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2945 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2946 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2947 static size_t note_size(const struct memelfnote *);
2948 static void free_note_info(struct elf_note_info *);
2949 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2950 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2951 static int core_dump_filename(const TaskState *, char *, size_t);
2952
2953 static int dump_write(int, const void *, size_t);
2954 static int write_note(struct memelfnote *, int);
2955 static int write_note_info(struct elf_note_info *, int);
2956
2957 #ifdef BSWAP_NEEDED
2958 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2959 {
2960 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2961 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2962 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2963 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2964 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2965 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2966 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2967 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2968 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2969 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2970 /* cpu times are not filled, so we skip them */
2971 /* regs should be in correct format already */
2972 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2973 }
2974
2975 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2976 {
2977 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2978 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2979 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2980 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2981 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2982 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2983 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2984 }
2985
2986 static void bswap_note(struct elf_note *en)
2987 {
2988 bswap32s(&en->n_namesz);
2989 bswap32s(&en->n_descsz);
2990 bswap32s(&en->n_type);
2991 }
2992 #else
2993 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2994 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2995 static inline void bswap_note(struct elf_note *en) { }
2996 #endif /* BSWAP_NEEDED */
2997
2998 /*
2999 * Minimal support for linux memory regions. These are needed
3000 * when we are finding out what memory exactly belongs to
3001 * emulated process. No locks needed here, as long as
3002 * thread that received the signal is stopped.
3003 */
3004
3005 static struct mm_struct *vma_init(void)
3006 {
3007 struct mm_struct *mm;
3008
3009 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3010 return (NULL);
3011
3012 mm->mm_count = 0;
3013 QTAILQ_INIT(&mm->mm_mmap);
3014
3015 return (mm);
3016 }
3017
3018 static void vma_delete(struct mm_struct *mm)
3019 {
3020 struct vm_area_struct *vma;
3021
3022 while ((vma = vma_first(mm)) != NULL) {
3023 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3024 g_free(vma);
3025 }
3026 g_free(mm);
3027 }
3028
3029 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3030 target_ulong end, abi_ulong flags)
3031 {
3032 struct vm_area_struct *vma;
3033
3034 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3035 return (-1);
3036
3037 vma->vma_start = start;
3038 vma->vma_end = end;
3039 vma->vma_flags = flags;
3040
3041 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3042 mm->mm_count++;
3043
3044 return (0);
3045 }
3046
3047 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3048 {
3049 return (QTAILQ_FIRST(&mm->mm_mmap));
3050 }
3051
3052 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3053 {
3054 return (QTAILQ_NEXT(vma, vma_link));
3055 }
3056
3057 static int vma_get_mapping_count(const struct mm_struct *mm)
3058 {
3059 return (mm->mm_count);
3060 }
3061
3062 /*
3063 * Calculate file (dump) size of given memory region.
3064 */
3065 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3066 {
3067 /* if we cannot even read the first page, skip it */
3068 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3069 return (0);
3070
3071 /*
3072 * Usually we don't dump executable pages as they contain
3073 * non-writable code that debugger can read directly from
3074 * target library etc. However, thread stacks are marked
3075 * also executable so we read in first page of given region
3076 * and check whether it contains elf header. If there is
3077 * no elf header, we dump it.
3078 */
3079 if (vma->vma_flags & PROT_EXEC) {
3080 char page[TARGET_PAGE_SIZE];
3081
3082 copy_from_user(page, vma->vma_start, sizeof (page));
3083 if ((page[EI_MAG0] == ELFMAG0) &&
3084 (page[EI_MAG1] == ELFMAG1) &&
3085 (page[EI_MAG2] == ELFMAG2) &&
3086 (page[EI_MAG3] == ELFMAG3)) {
3087 /*
3088 * Mappings are possibly from ELF binary. Don't dump
3089 * them.
3090 */
3091 return (0);
3092 }
3093 }
3094
3095 return (vma->vma_end - vma->vma_start);
3096 }
3097
3098 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3099 unsigned long flags)
3100 {
3101 struct mm_struct *mm = (struct mm_struct *)priv;
3102
3103 vma_add_mapping(mm, start, end, flags);
3104 return (0);
3105 }
3106
3107 static void fill_note(struct memelfnote *note, const char *name, int type,
3108 unsigned int sz, void *data)
3109 {
3110 unsigned int namesz;
3111
3112 namesz = strlen(name) + 1;
3113 note->name = name;
3114 note->namesz = namesz;
3115 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3116 note->type = type;
3117 note->datasz = sz;
3118 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3119
3120 note->data = data;
3121
3122 /*
3123 * We calculate rounded up note size here as specified by
3124 * ELF document.
3125 */
3126 note->notesz = sizeof (struct elf_note) +
3127 note->namesz_rounded + note->datasz_rounded;
3128 }
3129
3130 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3131 uint32_t flags)
3132 {
3133 (void) memset(elf, 0, sizeof(*elf));
3134
3135 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3136 elf->e_ident[EI_CLASS] = ELF_CLASS;
3137 elf->e_ident[EI_DATA] = ELF_DATA;
3138 elf->e_ident[EI_VERSION] = EV_CURRENT;
3139 elf->e_ident[EI_OSABI] = ELF_OSABI;
3140
3141 elf->e_type = ET_CORE;
3142 elf->e_machine = machine;
3143 elf->e_version = EV_CURRENT;
3144 elf->e_phoff = sizeof(struct elfhdr);
3145 elf->e_flags = flags;
3146 elf->e_ehsize = sizeof(struct elfhdr);
3147 elf->e_phentsize = sizeof(struct elf_phdr);
3148 elf->e_phnum = segs;
3149
3150 bswap_ehdr(elf);
3151 }
3152
3153 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3154 {
3155 phdr->p_type = PT_NOTE;
3156 phdr->p_offset = offset;
3157 phdr->p_vaddr = 0;
3158 phdr->p_paddr = 0;
3159 phdr->p_filesz = sz;
3160 phdr->p_memsz = 0;
3161 phdr->p_flags = 0;
3162 phdr->p_align = 0;
3163
3164 bswap_phdr(phdr, 1);
3165 }
3166
3167 static size_t note_size(const struct memelfnote *note)
3168 {
3169 return (note->notesz);
3170 }
3171
3172 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3173 const TaskState *ts, int signr)
3174 {
3175 (void) memset(prstatus, 0, sizeof (*prstatus));
3176 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3177 prstatus->pr_pid = ts->ts_tid;
3178 prstatus->pr_ppid = getppid();
3179 prstatus->pr_pgrp = getpgrp();
3180 prstatus->pr_sid = getsid(0);
3181
3182 bswap_prstatus(prstatus);
3183 }
3184
3185 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3186 {
3187 char *base_filename;
3188 unsigned int i, len;
3189
3190 (void) memset(psinfo, 0, sizeof (*psinfo));
3191
3192 len = ts->info->arg_end - ts->info->arg_start;
3193 if (len >= ELF_PRARGSZ)
3194 len = ELF_PRARGSZ - 1;
3195 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3196 return -EFAULT;
3197 for (i = 0; i < len; i++)
3198 if (psinfo->pr_psargs[i] == 0)
3199 psinfo->pr_psargs[i] = ' ';
3200 psinfo->pr_psargs[len] = 0;
3201
3202 psinfo->pr_pid = getpid();
3203 psinfo->pr_ppid = getppid();
3204 psinfo->pr_pgrp = getpgrp();
3205 psinfo->pr_sid = getsid(0);
3206 psinfo->pr_uid = getuid();
3207 psinfo->pr_gid = getgid();
3208
3209 base_filename = g_path_get_basename(ts->bprm->filename);
3210 /*
3211 * Using strncpy here is fine: at max-length,
3212 * this field is not NUL-terminated.
3213 */
3214 (void) strncpy(psinfo->pr_fname, base_filename,
3215 sizeof(psinfo->pr_fname));
3216
3217 g_free(base_filename);
3218 bswap_psinfo(psinfo);
3219 return (0);
3220 }
3221
3222 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3223 {
3224 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3225 elf_addr_t orig_auxv = auxv;
3226 void *ptr;
3227 int len = ts->info->auxv_len;
3228
3229 /*
3230 * Auxiliary vector is stored in target process stack. It contains
3231 * {type, value} pairs that we need to dump into note. This is not
3232 * strictly necessary but we do it here for sake of completeness.
3233 */
3234
3235 /* read in whole auxv vector and copy it to memelfnote */
3236 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3237 if (ptr != NULL) {
3238 fill_note(note, "CORE", NT_AUXV, len, ptr);
3239 unlock_user(ptr, auxv, len);
3240 }
3241 }
3242
3243 /*
3244 * Constructs name of coredump file. We have following convention
3245 * for the name:
3246 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3247 *
3248 * Returns 0 in case of success, -1 otherwise (errno is set).
3249 */
3250 static int core_dump_filename(const TaskState *ts, char *buf,
3251 size_t bufsize)
3252 {
3253 char timestamp[64];
3254 char *base_filename = NULL;
3255 struct timeval tv;
3256 struct tm tm;
3257
3258 assert(bufsize >= PATH_MAX);
3259
3260 if (gettimeofday(&tv, NULL) < 0) {
3261 (void) fprintf(stderr, "unable to get current timestamp: %s",
3262 strerror(errno));
3263 return (-1);
3264 }
3265
3266 base_filename = g_path_get_basename(ts->bprm->filename);
3267 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3268 localtime_r(&tv.tv_sec, &tm));
3269 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3270 base_filename, timestamp, (int)getpid());
3271 g_free(base_filename);
3272
3273 return (0);
3274 }
3275
3276 static int dump_write(int fd, const void *ptr, size_t size)
3277 {
3278 const char *bufp = (const char *)ptr;
3279 ssize_t bytes_written, bytes_left;
3280 struct rlimit dumpsize;
3281 off_t pos;
3282
3283 bytes_written = 0;
3284 getrlimit(RLIMIT_CORE, &dumpsize);
3285 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3286 if (errno == ESPIPE) { /* not a seekable stream */
3287 bytes_left = size;
3288 } else {
3289 return pos;
3290 }
3291 } else {
3292 if (dumpsize.rlim_cur <= pos) {
3293 return -1;
3294 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3295 bytes_left = size;
3296 } else {
3297 size_t limit_left=dumpsize.rlim_cur - pos;
3298 bytes_left = limit_left >= size ? size : limit_left ;
3299 }
3300 }
3301
3302 /*
3303 * In normal conditions, single write(2) should do but
3304 * in case of socket etc. this mechanism is more portable.
3305 */
3306 do {
3307 bytes_written = write(fd, bufp, bytes_left);
3308 if (bytes_written < 0) {
3309 if (errno == EINTR)
3310 continue;
3311 return (-1);
3312 } else if (bytes_written == 0) { /* eof */
3313 return (-1);
3314 }
3315 bufp += bytes_written;
3316 bytes_left -= bytes_written;
3317 } while (bytes_left > 0);
3318
3319 return (0);
3320 }
3321
3322 static int write_note(struct memelfnote *men, int fd)
3323 {
3324 struct elf_note en;
3325
3326 en.n_namesz = men->namesz;
3327 en.n_type = men->type;
3328 en.n_descsz = men->datasz;
3329
3330 bswap_note(&en);
3331
3332 if (dump_write(fd, &en, sizeof(en)) != 0)
3333 return (-1);
3334 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3335 return (-1);
3336 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3337 return (-1);
3338
3339 return (0);
3340 }
3341
3342 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3343 {
3344 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3345 TaskState *ts = (TaskState *)cpu->opaque;
3346 struct elf_thread_status *ets;
3347
3348 ets = g_malloc0(sizeof (*ets));
3349 ets->num_notes = 1; /* only prstatus is dumped */
3350 fill_prstatus(&ets->prstatus, ts, 0);
3351 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3352 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3353 &ets->prstatus);
3354
3355 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3356
3357 info->notes_size += note_size(&ets->notes[0]);
3358 }
3359
3360 static void init_note_info(struct elf_note_info *info)
3361 {
3362 /* Initialize the elf_note_info structure so that it is at
3363 * least safe to call free_note_info() on it. Must be
3364 * called before calling fill_note_info().
3365 */
3366 memset(info, 0, sizeof (*info));
3367 QTAILQ_INIT(&info->thread_list);
3368 }
3369
3370 static int fill_note_info(struct elf_note_info *info,
3371 long signr, const CPUArchState *env)
3372 {
3373 #define NUMNOTES 3
3374 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3375 TaskState *ts = (TaskState *)cpu->opaque;
3376 int i;
3377
3378 info->notes = g_new0(struct memelfnote, NUMNOTES);
3379 if (info->notes == NULL)
3380 return (-ENOMEM);
3381 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3382 if (info->prstatus == NULL)
3383 return (-ENOMEM);
3384 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3385 if (info->prstatus == NULL)
3386 return (-ENOMEM);
3387
3388 /*
3389 * First fill in status (and registers) of current thread
3390 * including process info & aux vector.
3391 */
3392 fill_prstatus(info->prstatus, ts, signr);
3393 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3394 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3395 sizeof (*info->prstatus), info->prstatus);
3396 fill_psinfo(info->psinfo, ts);
3397 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3398 sizeof (*info->psinfo), info->psinfo);
3399 fill_auxv_note(&info->notes[2], ts);
3400 info->numnote = 3;
3401
3402 info->notes_size = 0;
3403 for (i = 0; i < info->numnote; i++)
3404 info->notes_size += note_size(&info->notes[i]);
3405
3406 /* read and fill status of all threads */
3407 cpu_list_lock();
3408 CPU_FOREACH(cpu) {
3409 if (cpu == thread_cpu) {
3410 continue;
3411 }
3412 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3413 }
3414 cpu_list_unlock();
3415
3416 return (0);
3417 }
3418
3419 static void free_note_info(struct elf_note_info *info)
3420 {
3421 struct elf_thread_status *ets;
3422
3423 while (!QTAILQ_EMPTY(&info->thread_list)) {
3424 ets = QTAILQ_FIRST(&info->thread_list);
3425 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3426 g_free(ets);
3427 }
3428
3429 g_free(info->prstatus);
3430 g_free(info->psinfo);
3431 g_free(info->notes);
3432 }
3433
3434 static int write_note_info(struct elf_note_info *info, int fd)
3435 {
3436 struct elf_thread_status *ets;
3437 int i, error = 0;
3438
3439 /* write prstatus, psinfo and auxv for current thread */
3440 for (i = 0; i < info->numnote; i++)
3441 if ((error = write_note(&info->notes[i], fd)) != 0)
3442 return (error);
3443
3444 /* write prstatus for each thread */
3445 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3446 if ((error = write_note(&ets->notes[0], fd)) != 0)
3447 return (error);
3448 }
3449
3450 return (0);
3451 }
3452
3453 /*
3454 * Write out ELF coredump.
3455 *
3456 * See documentation of ELF object file format in:
3457 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3458 *
3459 * Coredump format in linux is following:
3460 *
3461 * 0 +----------------------+ \
3462 * | ELF header | ET_CORE |
3463 * +----------------------+ |
3464 * | ELF program headers | |--- headers
3465 * | - NOTE section | |
3466 * | - PT_LOAD sections | |
3467 * +----------------------+ /
3468 * | NOTEs: |
3469 * | - NT_PRSTATUS |
3470 * | - NT_PRSINFO |
3471 * | - NT_AUXV |
3472 * +----------------------+ <-- aligned to target page
3473 * | Process memory dump |
3474 * : :
3475 * . .
3476 * : :
3477 * | |
3478 * +----------------------+
3479 *
3480 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3481 * NT_PRSINFO -> struct elf_prpsinfo
3482 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3483 *
3484 * Format follows System V format as close as possible. Current
3485 * version limitations are as follows:
3486 * - no floating point registers are dumped
3487 *
3488 * Function returns 0 in case of success, negative errno otherwise.
3489 *
3490 * TODO: make this work also during runtime: it should be
3491 * possible to force coredump from running process and then
3492 * continue processing. For example qemu could set up SIGUSR2
3493 * handler (provided that target process haven't registered
3494 * handler for that) that does the dump when signal is received.
3495 */
3496 static int elf_core_dump(int signr, const CPUArchState *env)
3497 {
3498 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3499 const TaskState *ts = (const TaskState *)cpu->opaque;
3500 struct vm_area_struct *vma = NULL;
3501 char corefile[PATH_MAX];
3502 struct elf_note_info info;
3503 struct elfhdr elf;
3504 struct elf_phdr phdr;
3505 struct rlimit dumpsize;
3506 struct mm_struct *mm = NULL;
3507 off_t offset = 0, data_offset = 0;
3508 int segs = 0;
3509 int fd = -1;
3510
3511 init_note_info(&info);
3512
3513 errno = 0;
3514 getrlimit(RLIMIT_CORE, &dumpsize);
3515 if (dumpsize.rlim_cur == 0)
3516 return 0;
3517
3518 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3519 return (-errno);
3520
3521 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3522 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3523 return (-errno);
3524
3525 /*
3526 * Walk through target process memory mappings and
3527 * set up structure containing this information. After
3528 * this point vma_xxx functions can be used.
3529 */
3530 if ((mm = vma_init()) == NULL)
3531 goto out;
3532
3533 walk_memory_regions(mm, vma_walker);
3534 segs = vma_get_mapping_count(mm);
3535
3536 /*
3537 * Construct valid coredump ELF header. We also
3538 * add one more segment for notes.
3539 */
3540 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3541 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3542 goto out;
3543
3544 /* fill in the in-memory version of notes */
3545 if (fill_note_info(&info, signr, env) < 0)
3546 goto out;
3547
3548 offset += sizeof (elf); /* elf header */
3549 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3550
3551 /* write out notes program header */
3552 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3553
3554 offset += info.notes_size;
3555 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3556 goto out;
3557
3558 /*
3559 * ELF specification wants data to start at page boundary so
3560 * we align it here.
3561 */
3562 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3563
3564 /*
3565 * Write program headers for memory regions mapped in
3566 * the target process.
3567 */
3568 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3569 (void) memset(&phdr, 0, sizeof (phdr));
3570
3571 phdr.p_type = PT_LOAD;
3572 phdr.p_offset = offset;
3573 phdr.p_vaddr = vma->vma_start;
3574 phdr.p_paddr = 0;
3575 phdr.p_filesz = vma_dump_size(vma);
3576 offset += phdr.p_filesz;
3577 phdr.p_memsz = vma->vma_end - vma->vma_start;
3578 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3579 if (vma->vma_flags & PROT_WRITE)
3580 phdr.p_flags |= PF_W;
3581 if (vma->vma_flags & PROT_EXEC)
3582 phdr.p_flags |= PF_X;
3583 phdr.p_align = ELF_EXEC_PAGESIZE;
3584
3585 bswap_phdr(&phdr, 1);
3586 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3587 goto out;
3588 }
3589 }
3590
3591 /*
3592 * Next we write notes just after program headers. No
3593 * alignment needed here.
3594 */
3595 if (write_note_info(&info, fd) < 0)
3596 goto out;
3597
3598 /* align data to page boundary */
3599 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3600 goto out;
3601
3602 /*
3603 * Finally we can dump process memory into corefile as well.
3604 */
3605 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3606 abi_ulong addr;
3607 abi_ulong end;
3608
3609 end = vma->vma_start + vma_dump_size(vma);
3610
3611 for (addr = vma->vma_start; addr < end;
3612 addr += TARGET_PAGE_SIZE) {
3613 char page[TARGET_PAGE_SIZE];
3614 int error;
3615
3616 /*
3617 * Read in page from target process memory and
3618 * write it to coredump file.
3619 */
3620 error = copy_from_user(page, addr, sizeof (page));
3621 if (error != 0) {
3622 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3623 addr);
3624 errno = -error;
3625 goto out;
3626 }
3627 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3628 goto out;
3629 }
3630 }
3631
3632 out:
3633 free_note_info(&info);
3634 if (mm != NULL)
3635 vma_delete(mm);
3636 (void) close(fd);
3637
3638 if (errno != 0)
3639 return (-errno);
3640 return (0);
3641 }
3642 #endif /* USE_ELF_CORE_DUMP */
3643
3644 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3645 {
3646 init_thread(regs, infop);
3647 }