]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/elfload.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20190201' into...
[mirror_qemu.git] / linux-user / elfload.c
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4
5 #include <sys/resource.h>
6
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20
21 #define ELF_OSABI ELFOSABI_SYSV
22
23 /* from personality.h */
24
25 /*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
42 };
43
44 /*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
74 };
75
76 /*
77 * Return the base personality without flags.
78 */
79 #define personality(pers) (pers & PER_MASK)
80
81 int info_is_fdpic(struct image_info *info)
82 {
83 return info->personality == PER_LINUX_FDPIC;
84 }
85
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA ELFDATA2MSB
98 #else
99 #define ELF_DATA ELFDATA2LSB
100 #endif
101
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong target_elf_greg_t;
104 #define tswapreg(ptr) tswap64(ptr)
105 #else
106 typedef abi_ulong target_elf_greg_t;
107 #define tswapreg(ptr) tswapal(ptr)
108 #endif
109
110 #ifdef USE_UID16
111 typedef abi_ushort target_uid_t;
112 typedef abi_ushort target_gid_t;
113 #else
114 typedef abi_uint target_uid_t;
115 typedef abi_uint target_gid_t;
116 #endif
117 typedef abi_int target_pid_t;
118
119 #ifdef TARGET_I386
120
121 #define ELF_PLATFORM get_elf_platform()
122
123 static const char *get_elf_platform(void)
124 {
125 static char elf_platform[] = "i386";
126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132 }
133
134 #define ELF_HWCAP get_elf_hwcap()
135
136 static uint32_t get_elf_hwcap(void)
137 {
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
141 }
142
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
148
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154 }
155
156 #define ELF_NREG 27
157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
158
159 /*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196
197 #else
198
199 #define ELF_START_MMAP 0x80000000
200
201 /*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206 /*
207 * These are used to set parameters in the core dumps.
208 */
209 #define ELF_CLASS ELFCLASS32
210 #define ELF_ARCH EM_386
211
212 static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
214 {
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
226 }
227
228 #define ELF_NREG 17
229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
230
231 /*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE 4096
262
263 #endif
264
265 #ifdef TARGET_ARM
266
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269
270 #define ELF_START_MMAP 0x80000000
271
272 #define ELF_ARCH EM_ARM
273 #define ELF_CLASS ELFCLASS32
274
275 static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
277 {
278 abi_long stack = infop->start_stack;
279 memset(regs, 0, sizeof(*regs));
280
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
287 /* FIXME - what to for failure of get_user()? */
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
290 /* XXX: it seems that r0 is zeroed after ! */
291 regs->uregs[0] = 0;
292 /* For uClinux PIC binaries. */
293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294 regs->uregs[10] = infop->start_data;
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
314 }
315
316 #define ELF_NREG 18
317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
318
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE 4096
344
345 enum
346 {
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
369 };
370
371 enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377 };
378
379 /* The commpage only exists for 32 bit kernels */
380
381 /* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
389 static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
391 {
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
406 */
407 if (test_page_addr >= guest_base
408 && test_page_addr < (guest_base + guest_size)) {
409 return -1;
410 }
411
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443 }
444
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447
448 static uint32_t get_elf_hwcap(void)
449 {
450 ARMCPU *cpu = ARM_CPU(thread_cpu);
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457
458 /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461
462 #define GET_FEATURE_ID(feat, hwcap) \
463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464
465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
474 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479 * to our VFP_FP16 feature bit.
480 */
481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
483
484 return hwcaps;
485 }
486
487 static uint32_t get_elf_hwcap2(void)
488 {
489 ARMCPU *cpu = ARM_CPU(thread_cpu);
490 uint32_t hwcaps = 0;
491
492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
497 return hwcaps;
498 }
499
500 #undef GET_FEATURE
501 #undef GET_FEATURE_ID
502
503 #else
504 /* 64 bit ARM definitions */
505 #define ELF_START_MMAP 0x80000000
506
507 #define ELF_ARCH EM_AARCH64
508 #define ELF_CLASS ELFCLASS64
509 #define ELF_PLATFORM "aarch64"
510
511 static inline void init_thread(struct target_pt_regs *regs,
512 struct image_info *infop)
513 {
514 abi_long stack = infop->start_stack;
515 memset(regs, 0, sizeof(*regs));
516
517 regs->pc = infop->entry & ~0x3ULL;
518 regs->sp = stack;
519 }
520
521 #define ELF_NREG 34
522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
523
524 static void elf_core_copy_regs(target_elf_gregset_t *regs,
525 const CPUARMState *env)
526 {
527 int i;
528
529 for (i = 0; i < 32; i++) {
530 (*regs)[i] = tswapreg(env->xregs[i]);
531 }
532 (*regs)[32] = tswapreg(env->pc);
533 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534 }
535
536 #define USE_ELF_CORE_DUMP
537 #define ELF_EXEC_PAGESIZE 4096
538
539 enum {
540 ARM_HWCAP_A64_FP = 1 << 0,
541 ARM_HWCAP_A64_ASIMD = 1 << 1,
542 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
543 ARM_HWCAP_A64_AES = 1 << 3,
544 ARM_HWCAP_A64_PMULL = 1 << 4,
545 ARM_HWCAP_A64_SHA1 = 1 << 5,
546 ARM_HWCAP_A64_SHA2 = 1 << 6,
547 ARM_HWCAP_A64_CRC32 = 1 << 7,
548 ARM_HWCAP_A64_ATOMICS = 1 << 8,
549 ARM_HWCAP_A64_FPHP = 1 << 9,
550 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
551 ARM_HWCAP_A64_CPUID = 1 << 11,
552 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
553 ARM_HWCAP_A64_JSCVT = 1 << 13,
554 ARM_HWCAP_A64_FCMA = 1 << 14,
555 ARM_HWCAP_A64_LRCPC = 1 << 15,
556 ARM_HWCAP_A64_DCPOP = 1 << 16,
557 ARM_HWCAP_A64_SHA3 = 1 << 17,
558 ARM_HWCAP_A64_SM3 = 1 << 18,
559 ARM_HWCAP_A64_SM4 = 1 << 19,
560 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
561 ARM_HWCAP_A64_SHA512 = 1 << 21,
562 ARM_HWCAP_A64_SVE = 1 << 22,
563 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
564 ARM_HWCAP_A64_DIT = 1 << 24,
565 ARM_HWCAP_A64_USCAT = 1 << 25,
566 ARM_HWCAP_A64_ILRCPC = 1 << 26,
567 ARM_HWCAP_A64_FLAGM = 1 << 27,
568 ARM_HWCAP_A64_SSBS = 1 << 28,
569 ARM_HWCAP_A64_SB = 1 << 29,
570 ARM_HWCAP_A64_PACA = 1 << 30,
571 ARM_HWCAP_A64_PACG = 1UL << 31,
572 };
573
574 #define ELF_HWCAP get_elf_hwcap()
575
576 static uint32_t get_elf_hwcap(void)
577 {
578 ARMCPU *cpu = ARM_CPU(thread_cpu);
579 uint32_t hwcaps = 0;
580
581 hwcaps |= ARM_HWCAP_A64_FP;
582 hwcaps |= ARM_HWCAP_A64_ASIMD;
583
584 /* probe for the extra features */
585 #define GET_FEATURE_ID(feat, hwcap) \
586 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
587
588 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
589 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
590 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
591 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
592 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
593 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
594 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
595 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
596 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
597 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
598 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
599 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
600 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
601 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
602 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
603 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
604
605 #undef GET_FEATURE_ID
606
607 return hwcaps;
608 }
609
610 #endif /* not TARGET_AARCH64 */
611 #endif /* TARGET_ARM */
612
613 #ifdef TARGET_SPARC
614 #ifdef TARGET_SPARC64
615
616 #define ELF_START_MMAP 0x80000000
617 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
618 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
619 #ifndef TARGET_ABI32
620 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
621 #else
622 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
623 #endif
624
625 #define ELF_CLASS ELFCLASS64
626 #define ELF_ARCH EM_SPARCV9
627
628 #define STACK_BIAS 2047
629
630 static inline void init_thread(struct target_pt_regs *regs,
631 struct image_info *infop)
632 {
633 #ifndef TARGET_ABI32
634 regs->tstate = 0;
635 #endif
636 regs->pc = infop->entry;
637 regs->npc = regs->pc + 4;
638 regs->y = 0;
639 #ifdef TARGET_ABI32
640 regs->u_regs[14] = infop->start_stack - 16 * 4;
641 #else
642 if (personality(infop->personality) == PER_LINUX32)
643 regs->u_regs[14] = infop->start_stack - 16 * 4;
644 else
645 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
646 #endif
647 }
648
649 #else
650 #define ELF_START_MMAP 0x80000000
651 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
652 | HWCAP_SPARC_MULDIV)
653
654 #define ELF_CLASS ELFCLASS32
655 #define ELF_ARCH EM_SPARC
656
657 static inline void init_thread(struct target_pt_regs *regs,
658 struct image_info *infop)
659 {
660 regs->psr = 0;
661 regs->pc = infop->entry;
662 regs->npc = regs->pc + 4;
663 regs->y = 0;
664 regs->u_regs[14] = infop->start_stack - 16 * 4;
665 }
666
667 #endif
668 #endif
669
670 #ifdef TARGET_PPC
671
672 #define ELF_MACHINE PPC_ELF_MACHINE
673 #define ELF_START_MMAP 0x80000000
674
675 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
676
677 #define elf_check_arch(x) ( (x) == EM_PPC64 )
678
679 #define ELF_CLASS ELFCLASS64
680
681 #else
682
683 #define ELF_CLASS ELFCLASS32
684
685 #endif
686
687 #define ELF_ARCH EM_PPC
688
689 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
690 See arch/powerpc/include/asm/cputable.h. */
691 enum {
692 QEMU_PPC_FEATURE_32 = 0x80000000,
693 QEMU_PPC_FEATURE_64 = 0x40000000,
694 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
695 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
696 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
697 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
698 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
699 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
700 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
701 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
702 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
703 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
704 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
705 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
706 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
707 QEMU_PPC_FEATURE_CELL = 0x00010000,
708 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
709 QEMU_PPC_FEATURE_SMT = 0x00004000,
710 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
711 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
712 QEMU_PPC_FEATURE_PA6T = 0x00000800,
713 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
714 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
715 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
716 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
717 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
718
719 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
720 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
721
722 /* Feature definitions in AT_HWCAP2. */
723 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
724 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
725 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
726 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
727 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
728 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
729 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
730 };
731
732 #define ELF_HWCAP get_elf_hwcap()
733
734 static uint32_t get_elf_hwcap(void)
735 {
736 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
737 uint32_t features = 0;
738
739 /* We don't have to be terribly complete here; the high points are
740 Altivec/FP/SPE support. Anything else is just a bonus. */
741 #define GET_FEATURE(flag, feature) \
742 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
743 #define GET_FEATURE2(flags, feature) \
744 do { \
745 if ((cpu->env.insns_flags2 & flags) == flags) { \
746 features |= feature; \
747 } \
748 } while (0)
749 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
750 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
751 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
752 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
753 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
754 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
755 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
756 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
757 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
758 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
759 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
760 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
761 QEMU_PPC_FEATURE_ARCH_2_06);
762 #undef GET_FEATURE
763 #undef GET_FEATURE2
764
765 return features;
766 }
767
768 #define ELF_HWCAP2 get_elf_hwcap2()
769
770 static uint32_t get_elf_hwcap2(void)
771 {
772 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
773 uint32_t features = 0;
774
775 #define GET_FEATURE(flag, feature) \
776 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
777 #define GET_FEATURE2(flag, feature) \
778 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
779
780 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
781 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
782 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
783 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
784 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
785
786 #undef GET_FEATURE
787 #undef GET_FEATURE2
788
789 return features;
790 }
791
792 /*
793 * The requirements here are:
794 * - keep the final alignment of sp (sp & 0xf)
795 * - make sure the 32-bit value at the first 16 byte aligned position of
796 * AUXV is greater than 16 for glibc compatibility.
797 * AT_IGNOREPPC is used for that.
798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
800 */
801 #define DLINFO_ARCH_ITEMS 5
802 #define ARCH_DLINFO \
803 do { \
804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
805 /* \
806 * Handle glibc compatibility: these magic entries must \
807 * be at the lowest addresses in the final auxv. \
808 */ \
809 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
810 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
811 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
812 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
813 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
814 } while (0)
815
816 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
817 {
818 _regs->gpr[1] = infop->start_stack;
819 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
820 if (get_ppc64_abi(infop) < 2) {
821 uint64_t val;
822 get_user_u64(val, infop->entry + 8);
823 _regs->gpr[2] = val + infop->load_bias;
824 get_user_u64(val, infop->entry);
825 infop->entry = val + infop->load_bias;
826 } else {
827 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
828 }
829 #endif
830 _regs->nip = infop->entry;
831 }
832
833 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
834 #define ELF_NREG 48
835 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
836
837 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
838 {
839 int i;
840 target_ulong ccr = 0;
841
842 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
843 (*regs)[i] = tswapreg(env->gpr[i]);
844 }
845
846 (*regs)[32] = tswapreg(env->nip);
847 (*regs)[33] = tswapreg(env->msr);
848 (*regs)[35] = tswapreg(env->ctr);
849 (*regs)[36] = tswapreg(env->lr);
850 (*regs)[37] = tswapreg(env->xer);
851
852 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
853 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
854 }
855 (*regs)[38] = tswapreg(ccr);
856 }
857
858 #define USE_ELF_CORE_DUMP
859 #define ELF_EXEC_PAGESIZE 4096
860
861 #endif
862
863 #ifdef TARGET_MIPS
864
865 #define ELF_START_MMAP 0x80000000
866
867 #ifdef TARGET_MIPS64
868 #define ELF_CLASS ELFCLASS64
869 #else
870 #define ELF_CLASS ELFCLASS32
871 #endif
872 #define ELF_ARCH EM_MIPS
873
874 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
875
876 static inline void init_thread(struct target_pt_regs *regs,
877 struct image_info *infop)
878 {
879 regs->cp0_status = 2 << CP0St_KSU;
880 regs->cp0_epc = infop->entry;
881 regs->regs[29] = infop->start_stack;
882 }
883
884 /* See linux kernel: arch/mips/include/asm/elf.h. */
885 #define ELF_NREG 45
886 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
887
888 /* See linux kernel: arch/mips/include/asm/reg.h. */
889 enum {
890 #ifdef TARGET_MIPS64
891 TARGET_EF_R0 = 0,
892 #else
893 TARGET_EF_R0 = 6,
894 #endif
895 TARGET_EF_R26 = TARGET_EF_R0 + 26,
896 TARGET_EF_R27 = TARGET_EF_R0 + 27,
897 TARGET_EF_LO = TARGET_EF_R0 + 32,
898 TARGET_EF_HI = TARGET_EF_R0 + 33,
899 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
900 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
901 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
902 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
903 };
904
905 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
906 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
907 {
908 int i;
909
910 for (i = 0; i < TARGET_EF_R0; i++) {
911 (*regs)[i] = 0;
912 }
913 (*regs)[TARGET_EF_R0] = 0;
914
915 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
916 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
917 }
918
919 (*regs)[TARGET_EF_R26] = 0;
920 (*regs)[TARGET_EF_R27] = 0;
921 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
922 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
923 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
924 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
925 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
926 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
927 }
928
929 #define USE_ELF_CORE_DUMP
930 #define ELF_EXEC_PAGESIZE 4096
931
932 /* See arch/mips/include/uapi/asm/hwcap.h. */
933 enum {
934 HWCAP_MIPS_R6 = (1 << 0),
935 HWCAP_MIPS_MSA = (1 << 1),
936 };
937
938 #define ELF_HWCAP get_elf_hwcap()
939
940 static uint32_t get_elf_hwcap(void)
941 {
942 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
943 uint32_t hwcaps = 0;
944
945 #define GET_FEATURE(flag, hwcap) \
946 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
947
948 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
949 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
950
951 #undef GET_FEATURE
952
953 return hwcaps;
954 }
955
956 #endif /* TARGET_MIPS */
957
958 #ifdef TARGET_MICROBLAZE
959
960 #define ELF_START_MMAP 0x80000000
961
962 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
963
964 #define ELF_CLASS ELFCLASS32
965 #define ELF_ARCH EM_MICROBLAZE
966
967 static inline void init_thread(struct target_pt_regs *regs,
968 struct image_info *infop)
969 {
970 regs->pc = infop->entry;
971 regs->r1 = infop->start_stack;
972
973 }
974
975 #define ELF_EXEC_PAGESIZE 4096
976
977 #define USE_ELF_CORE_DUMP
978 #define ELF_NREG 38
979 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
980
981 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
982 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
983 {
984 int i, pos = 0;
985
986 for (i = 0; i < 32; i++) {
987 (*regs)[pos++] = tswapreg(env->regs[i]);
988 }
989
990 for (i = 0; i < 6; i++) {
991 (*regs)[pos++] = tswapreg(env->sregs[i]);
992 }
993 }
994
995 #endif /* TARGET_MICROBLAZE */
996
997 #ifdef TARGET_NIOS2
998
999 #define ELF_START_MMAP 0x80000000
1000
1001 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1002
1003 #define ELF_CLASS ELFCLASS32
1004 #define ELF_ARCH EM_ALTERA_NIOS2
1005
1006 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1007 {
1008 regs->ea = infop->entry;
1009 regs->sp = infop->start_stack;
1010 regs->estatus = 0x3;
1011 }
1012
1013 #define ELF_EXEC_PAGESIZE 4096
1014
1015 #define USE_ELF_CORE_DUMP
1016 #define ELF_NREG 49
1017 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1018
1019 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1020 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1021 const CPUNios2State *env)
1022 {
1023 int i;
1024
1025 (*regs)[0] = -1;
1026 for (i = 1; i < 8; i++) /* r0-r7 */
1027 (*regs)[i] = tswapreg(env->regs[i + 7]);
1028
1029 for (i = 8; i < 16; i++) /* r8-r15 */
1030 (*regs)[i] = tswapreg(env->regs[i - 8]);
1031
1032 for (i = 16; i < 24; i++) /* r16-r23 */
1033 (*regs)[i] = tswapreg(env->regs[i + 7]);
1034 (*regs)[24] = -1; /* R_ET */
1035 (*regs)[25] = -1; /* R_BT */
1036 (*regs)[26] = tswapreg(env->regs[R_GP]);
1037 (*regs)[27] = tswapreg(env->regs[R_SP]);
1038 (*regs)[28] = tswapreg(env->regs[R_FP]);
1039 (*regs)[29] = tswapreg(env->regs[R_EA]);
1040 (*regs)[30] = -1; /* R_SSTATUS */
1041 (*regs)[31] = tswapreg(env->regs[R_RA]);
1042
1043 (*regs)[32] = tswapreg(env->regs[R_PC]);
1044
1045 (*regs)[33] = -1; /* R_STATUS */
1046 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1047
1048 for (i = 35; i < 49; i++) /* ... */
1049 (*regs)[i] = -1;
1050 }
1051
1052 #endif /* TARGET_NIOS2 */
1053
1054 #ifdef TARGET_OPENRISC
1055
1056 #define ELF_START_MMAP 0x08000000
1057
1058 #define ELF_ARCH EM_OPENRISC
1059 #define ELF_CLASS ELFCLASS32
1060 #define ELF_DATA ELFDATA2MSB
1061
1062 static inline void init_thread(struct target_pt_regs *regs,
1063 struct image_info *infop)
1064 {
1065 regs->pc = infop->entry;
1066 regs->gpr[1] = infop->start_stack;
1067 }
1068
1069 #define USE_ELF_CORE_DUMP
1070 #define ELF_EXEC_PAGESIZE 8192
1071
1072 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1073 #define ELF_NREG 34 /* gprs and pc, sr */
1074 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1075
1076 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1077 const CPUOpenRISCState *env)
1078 {
1079 int i;
1080
1081 for (i = 0; i < 32; i++) {
1082 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1083 }
1084 (*regs)[32] = tswapreg(env->pc);
1085 (*regs)[33] = tswapreg(cpu_get_sr(env));
1086 }
1087 #define ELF_HWCAP 0
1088 #define ELF_PLATFORM NULL
1089
1090 #endif /* TARGET_OPENRISC */
1091
1092 #ifdef TARGET_SH4
1093
1094 #define ELF_START_MMAP 0x80000000
1095
1096 #define ELF_CLASS ELFCLASS32
1097 #define ELF_ARCH EM_SH
1098
1099 static inline void init_thread(struct target_pt_regs *regs,
1100 struct image_info *infop)
1101 {
1102 /* Check other registers XXXXX */
1103 regs->pc = infop->entry;
1104 regs->regs[15] = infop->start_stack;
1105 }
1106
1107 /* See linux kernel: arch/sh/include/asm/elf.h. */
1108 #define ELF_NREG 23
1109 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1110
1111 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1112 enum {
1113 TARGET_REG_PC = 16,
1114 TARGET_REG_PR = 17,
1115 TARGET_REG_SR = 18,
1116 TARGET_REG_GBR = 19,
1117 TARGET_REG_MACH = 20,
1118 TARGET_REG_MACL = 21,
1119 TARGET_REG_SYSCALL = 22
1120 };
1121
1122 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1123 const CPUSH4State *env)
1124 {
1125 int i;
1126
1127 for (i = 0; i < 16; i++) {
1128 (*regs)[i] = tswapreg(env->gregs[i]);
1129 }
1130
1131 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1132 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1133 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1134 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1135 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1136 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1137 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1138 }
1139
1140 #define USE_ELF_CORE_DUMP
1141 #define ELF_EXEC_PAGESIZE 4096
1142
1143 enum {
1144 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1145 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1146 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1147 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1148 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1149 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1150 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1151 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1152 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1153 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1154 };
1155
1156 #define ELF_HWCAP get_elf_hwcap()
1157
1158 static uint32_t get_elf_hwcap(void)
1159 {
1160 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1161 uint32_t hwcap = 0;
1162
1163 hwcap |= SH_CPU_HAS_FPU;
1164
1165 if (cpu->env.features & SH_FEATURE_SH4A) {
1166 hwcap |= SH_CPU_HAS_LLSC;
1167 }
1168
1169 return hwcap;
1170 }
1171
1172 #endif
1173
1174 #ifdef TARGET_CRIS
1175
1176 #define ELF_START_MMAP 0x80000000
1177
1178 #define ELF_CLASS ELFCLASS32
1179 #define ELF_ARCH EM_CRIS
1180
1181 static inline void init_thread(struct target_pt_regs *regs,
1182 struct image_info *infop)
1183 {
1184 regs->erp = infop->entry;
1185 }
1186
1187 #define ELF_EXEC_PAGESIZE 8192
1188
1189 #endif
1190
1191 #ifdef TARGET_M68K
1192
1193 #define ELF_START_MMAP 0x80000000
1194
1195 #define ELF_CLASS ELFCLASS32
1196 #define ELF_ARCH EM_68K
1197
1198 /* ??? Does this need to do anything?
1199 #define ELF_PLAT_INIT(_r) */
1200
1201 static inline void init_thread(struct target_pt_regs *regs,
1202 struct image_info *infop)
1203 {
1204 regs->usp = infop->start_stack;
1205 regs->sr = 0;
1206 regs->pc = infop->entry;
1207 }
1208
1209 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1210 #define ELF_NREG 20
1211 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1212
1213 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1214 {
1215 (*regs)[0] = tswapreg(env->dregs[1]);
1216 (*regs)[1] = tswapreg(env->dregs[2]);
1217 (*regs)[2] = tswapreg(env->dregs[3]);
1218 (*regs)[3] = tswapreg(env->dregs[4]);
1219 (*regs)[4] = tswapreg(env->dregs[5]);
1220 (*regs)[5] = tswapreg(env->dregs[6]);
1221 (*regs)[6] = tswapreg(env->dregs[7]);
1222 (*regs)[7] = tswapreg(env->aregs[0]);
1223 (*regs)[8] = tswapreg(env->aregs[1]);
1224 (*regs)[9] = tswapreg(env->aregs[2]);
1225 (*regs)[10] = tswapreg(env->aregs[3]);
1226 (*regs)[11] = tswapreg(env->aregs[4]);
1227 (*regs)[12] = tswapreg(env->aregs[5]);
1228 (*regs)[13] = tswapreg(env->aregs[6]);
1229 (*regs)[14] = tswapreg(env->dregs[0]);
1230 (*regs)[15] = tswapreg(env->aregs[7]);
1231 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1232 (*regs)[17] = tswapreg(env->sr);
1233 (*regs)[18] = tswapreg(env->pc);
1234 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1235 }
1236
1237 #define USE_ELF_CORE_DUMP
1238 #define ELF_EXEC_PAGESIZE 8192
1239
1240 #endif
1241
1242 #ifdef TARGET_ALPHA
1243
1244 #define ELF_START_MMAP (0x30000000000ULL)
1245
1246 #define ELF_CLASS ELFCLASS64
1247 #define ELF_ARCH EM_ALPHA
1248
1249 static inline void init_thread(struct target_pt_regs *regs,
1250 struct image_info *infop)
1251 {
1252 regs->pc = infop->entry;
1253 regs->ps = 8;
1254 regs->usp = infop->start_stack;
1255 }
1256
1257 #define ELF_EXEC_PAGESIZE 8192
1258
1259 #endif /* TARGET_ALPHA */
1260
1261 #ifdef TARGET_S390X
1262
1263 #define ELF_START_MMAP (0x20000000000ULL)
1264
1265 #define ELF_CLASS ELFCLASS64
1266 #define ELF_DATA ELFDATA2MSB
1267 #define ELF_ARCH EM_S390
1268
1269 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1270 {
1271 regs->psw.addr = infop->entry;
1272 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1273 regs->gprs[15] = infop->start_stack;
1274 }
1275
1276 #endif /* TARGET_S390X */
1277
1278 #ifdef TARGET_TILEGX
1279
1280 /* 42 bits real used address, a half for user mode */
1281 #define ELF_START_MMAP (0x00000020000000000ULL)
1282
1283 #define elf_check_arch(x) ((x) == EM_TILEGX)
1284
1285 #define ELF_CLASS ELFCLASS64
1286 #define ELF_DATA ELFDATA2LSB
1287 #define ELF_ARCH EM_TILEGX
1288
1289 static inline void init_thread(struct target_pt_regs *regs,
1290 struct image_info *infop)
1291 {
1292 regs->pc = infop->entry;
1293 regs->sp = infop->start_stack;
1294
1295 }
1296
1297 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1298
1299 #endif /* TARGET_TILEGX */
1300
1301 #ifdef TARGET_RISCV
1302
1303 #define ELF_START_MMAP 0x80000000
1304 #define ELF_ARCH EM_RISCV
1305
1306 #ifdef TARGET_RISCV32
1307 #define ELF_CLASS ELFCLASS32
1308 #else
1309 #define ELF_CLASS ELFCLASS64
1310 #endif
1311
1312 static inline void init_thread(struct target_pt_regs *regs,
1313 struct image_info *infop)
1314 {
1315 regs->sepc = infop->entry;
1316 regs->sp = infop->start_stack;
1317 }
1318
1319 #define ELF_EXEC_PAGESIZE 4096
1320
1321 #endif /* TARGET_RISCV */
1322
1323 #ifdef TARGET_HPPA
1324
1325 #define ELF_START_MMAP 0x80000000
1326 #define ELF_CLASS ELFCLASS32
1327 #define ELF_ARCH EM_PARISC
1328 #define ELF_PLATFORM "PARISC"
1329 #define STACK_GROWS_DOWN 0
1330 #define STACK_ALIGNMENT 64
1331
1332 static inline void init_thread(struct target_pt_regs *regs,
1333 struct image_info *infop)
1334 {
1335 regs->iaoq[0] = infop->entry;
1336 regs->iaoq[1] = infop->entry + 4;
1337 regs->gr[23] = 0;
1338 regs->gr[24] = infop->arg_start;
1339 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1340 /* The top-of-stack contains a linkage buffer. */
1341 regs->gr[30] = infop->start_stack + 64;
1342 regs->gr[31] = infop->entry;
1343 }
1344
1345 #endif /* TARGET_HPPA */
1346
1347 #ifdef TARGET_XTENSA
1348
1349 #define ELF_START_MMAP 0x20000000
1350
1351 #define ELF_CLASS ELFCLASS32
1352 #define ELF_ARCH EM_XTENSA
1353
1354 static inline void init_thread(struct target_pt_regs *regs,
1355 struct image_info *infop)
1356 {
1357 regs->windowbase = 0;
1358 regs->windowstart = 1;
1359 regs->areg[1] = infop->start_stack;
1360 regs->pc = infop->entry;
1361 }
1362
1363 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1364 #define ELF_NREG 128
1365 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1366
1367 enum {
1368 TARGET_REG_PC,
1369 TARGET_REG_PS,
1370 TARGET_REG_LBEG,
1371 TARGET_REG_LEND,
1372 TARGET_REG_LCOUNT,
1373 TARGET_REG_SAR,
1374 TARGET_REG_WINDOWSTART,
1375 TARGET_REG_WINDOWBASE,
1376 TARGET_REG_THREADPTR,
1377 TARGET_REG_AR0 = 64,
1378 };
1379
1380 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1381 const CPUXtensaState *env)
1382 {
1383 unsigned i;
1384
1385 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1386 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1387 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1388 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1389 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1390 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1391 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1392 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1393 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1394 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1395 for (i = 0; i < env->config->nareg; ++i) {
1396 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1397 }
1398 }
1399
1400 #define USE_ELF_CORE_DUMP
1401 #define ELF_EXEC_PAGESIZE 4096
1402
1403 #endif /* TARGET_XTENSA */
1404
1405 #ifndef ELF_PLATFORM
1406 #define ELF_PLATFORM (NULL)
1407 #endif
1408
1409 #ifndef ELF_MACHINE
1410 #define ELF_MACHINE ELF_ARCH
1411 #endif
1412
1413 #ifndef elf_check_arch
1414 #define elf_check_arch(x) ((x) == ELF_ARCH)
1415 #endif
1416
1417 #ifndef ELF_HWCAP
1418 #define ELF_HWCAP 0
1419 #endif
1420
1421 #ifndef STACK_GROWS_DOWN
1422 #define STACK_GROWS_DOWN 1
1423 #endif
1424
1425 #ifndef STACK_ALIGNMENT
1426 #define STACK_ALIGNMENT 16
1427 #endif
1428
1429 #ifdef TARGET_ABI32
1430 #undef ELF_CLASS
1431 #define ELF_CLASS ELFCLASS32
1432 #undef bswaptls
1433 #define bswaptls(ptr) bswap32s(ptr)
1434 #endif
1435
1436 #include "elf.h"
1437
1438 struct exec
1439 {
1440 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1441 unsigned int a_text; /* length of text, in bytes */
1442 unsigned int a_data; /* length of data, in bytes */
1443 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1444 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1445 unsigned int a_entry; /* start address */
1446 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1447 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1448 };
1449
1450
1451 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1452 #define OMAGIC 0407
1453 #define NMAGIC 0410
1454 #define ZMAGIC 0413
1455 #define QMAGIC 0314
1456
1457 /* Necessary parameters */
1458 #define TARGET_ELF_EXEC_PAGESIZE \
1459 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1460 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1461 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1462 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1463 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1464 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1465
1466 #define DLINFO_ITEMS 15
1467
1468 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1469 {
1470 memcpy(to, from, n);
1471 }
1472
1473 #ifdef BSWAP_NEEDED
1474 static void bswap_ehdr(struct elfhdr *ehdr)
1475 {
1476 bswap16s(&ehdr->e_type); /* Object file type */
1477 bswap16s(&ehdr->e_machine); /* Architecture */
1478 bswap32s(&ehdr->e_version); /* Object file version */
1479 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1480 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1481 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1482 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1483 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1484 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1485 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1486 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1487 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1488 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1489 }
1490
1491 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1492 {
1493 int i;
1494 for (i = 0; i < phnum; ++i, ++phdr) {
1495 bswap32s(&phdr->p_type); /* Segment type */
1496 bswap32s(&phdr->p_flags); /* Segment flags */
1497 bswaptls(&phdr->p_offset); /* Segment file offset */
1498 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1499 bswaptls(&phdr->p_paddr); /* Segment physical address */
1500 bswaptls(&phdr->p_filesz); /* Segment size in file */
1501 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1502 bswaptls(&phdr->p_align); /* Segment alignment */
1503 }
1504 }
1505
1506 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1507 {
1508 int i;
1509 for (i = 0; i < shnum; ++i, ++shdr) {
1510 bswap32s(&shdr->sh_name);
1511 bswap32s(&shdr->sh_type);
1512 bswaptls(&shdr->sh_flags);
1513 bswaptls(&shdr->sh_addr);
1514 bswaptls(&shdr->sh_offset);
1515 bswaptls(&shdr->sh_size);
1516 bswap32s(&shdr->sh_link);
1517 bswap32s(&shdr->sh_info);
1518 bswaptls(&shdr->sh_addralign);
1519 bswaptls(&shdr->sh_entsize);
1520 }
1521 }
1522
1523 static void bswap_sym(struct elf_sym *sym)
1524 {
1525 bswap32s(&sym->st_name);
1526 bswaptls(&sym->st_value);
1527 bswaptls(&sym->st_size);
1528 bswap16s(&sym->st_shndx);
1529 }
1530
1531 #ifdef TARGET_MIPS
1532 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1533 {
1534 bswap16s(&abiflags->version);
1535 bswap32s(&abiflags->ases);
1536 bswap32s(&abiflags->isa_ext);
1537 bswap32s(&abiflags->flags1);
1538 bswap32s(&abiflags->flags2);
1539 }
1540 #endif
1541 #else
1542 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1543 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1544 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1545 static inline void bswap_sym(struct elf_sym *sym) { }
1546 #ifdef TARGET_MIPS
1547 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1548 #endif
1549 #endif
1550
1551 #ifdef USE_ELF_CORE_DUMP
1552 static int elf_core_dump(int, const CPUArchState *);
1553 #endif /* USE_ELF_CORE_DUMP */
1554 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1555
1556 /* Verify the portions of EHDR within E_IDENT for the target.
1557 This can be performed before bswapping the entire header. */
1558 static bool elf_check_ident(struct elfhdr *ehdr)
1559 {
1560 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1561 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1562 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1563 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1564 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1565 && ehdr->e_ident[EI_DATA] == ELF_DATA
1566 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1567 }
1568
1569 /* Verify the portions of EHDR outside of E_IDENT for the target.
1570 This has to wait until after bswapping the header. */
1571 static bool elf_check_ehdr(struct elfhdr *ehdr)
1572 {
1573 return (elf_check_arch(ehdr->e_machine)
1574 && ehdr->e_ehsize == sizeof(struct elfhdr)
1575 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1576 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1577 }
1578
1579 /*
1580 * 'copy_elf_strings()' copies argument/envelope strings from user
1581 * memory to free pages in kernel mem. These are in a format ready
1582 * to be put directly into the top of new user memory.
1583 *
1584 */
1585 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1586 abi_ulong p, abi_ulong stack_limit)
1587 {
1588 char *tmp;
1589 int len, i;
1590 abi_ulong top = p;
1591
1592 if (!p) {
1593 return 0; /* bullet-proofing */
1594 }
1595
1596 if (STACK_GROWS_DOWN) {
1597 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1598 for (i = argc - 1; i >= 0; --i) {
1599 tmp = argv[i];
1600 if (!tmp) {
1601 fprintf(stderr, "VFS: argc is wrong");
1602 exit(-1);
1603 }
1604 len = strlen(tmp) + 1;
1605 tmp += len;
1606
1607 if (len > (p - stack_limit)) {
1608 return 0;
1609 }
1610 while (len) {
1611 int bytes_to_copy = (len > offset) ? offset : len;
1612 tmp -= bytes_to_copy;
1613 p -= bytes_to_copy;
1614 offset -= bytes_to_copy;
1615 len -= bytes_to_copy;
1616
1617 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1618
1619 if (offset == 0) {
1620 memcpy_to_target(p, scratch, top - p);
1621 top = p;
1622 offset = TARGET_PAGE_SIZE;
1623 }
1624 }
1625 }
1626 if (p != top) {
1627 memcpy_to_target(p, scratch + offset, top - p);
1628 }
1629 } else {
1630 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1631 for (i = 0; i < argc; ++i) {
1632 tmp = argv[i];
1633 if (!tmp) {
1634 fprintf(stderr, "VFS: argc is wrong");
1635 exit(-1);
1636 }
1637 len = strlen(tmp) + 1;
1638 if (len > (stack_limit - p)) {
1639 return 0;
1640 }
1641 while (len) {
1642 int bytes_to_copy = (len > remaining) ? remaining : len;
1643
1644 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1645
1646 tmp += bytes_to_copy;
1647 remaining -= bytes_to_copy;
1648 p += bytes_to_copy;
1649 len -= bytes_to_copy;
1650
1651 if (remaining == 0) {
1652 memcpy_to_target(top, scratch, p - top);
1653 top = p;
1654 remaining = TARGET_PAGE_SIZE;
1655 }
1656 }
1657 }
1658 if (p != top) {
1659 memcpy_to_target(top, scratch, p - top);
1660 }
1661 }
1662
1663 return p;
1664 }
1665
1666 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1667 * argument/environment space. Newer kernels (>2.6.33) allow more,
1668 * dependent on stack size, but guarantee at least 32 pages for
1669 * backwards compatibility.
1670 */
1671 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1672
1673 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1674 struct image_info *info)
1675 {
1676 abi_ulong size, error, guard;
1677
1678 size = guest_stack_size;
1679 if (size < STACK_LOWER_LIMIT) {
1680 size = STACK_LOWER_LIMIT;
1681 }
1682 guard = TARGET_PAGE_SIZE;
1683 if (guard < qemu_real_host_page_size) {
1684 guard = qemu_real_host_page_size;
1685 }
1686
1687 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1688 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1689 if (error == -1) {
1690 perror("mmap stack");
1691 exit(-1);
1692 }
1693
1694 /* We reserve one extra page at the top of the stack as guard. */
1695 if (STACK_GROWS_DOWN) {
1696 target_mprotect(error, guard, PROT_NONE);
1697 info->stack_limit = error + guard;
1698 return info->stack_limit + size - sizeof(void *);
1699 } else {
1700 target_mprotect(error + size, guard, PROT_NONE);
1701 info->stack_limit = error + size;
1702 return error;
1703 }
1704 }
1705
1706 /* Map and zero the bss. We need to explicitly zero any fractional pages
1707 after the data section (i.e. bss). */
1708 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1709 {
1710 uintptr_t host_start, host_map_start, host_end;
1711
1712 last_bss = TARGET_PAGE_ALIGN(last_bss);
1713
1714 /* ??? There is confusion between qemu_real_host_page_size and
1715 qemu_host_page_size here and elsewhere in target_mmap, which
1716 may lead to the end of the data section mapping from the file
1717 not being mapped. At least there was an explicit test and
1718 comment for that here, suggesting that "the file size must
1719 be known". The comment probably pre-dates the introduction
1720 of the fstat system call in target_mmap which does in fact
1721 find out the size. What isn't clear is if the workaround
1722 here is still actually needed. For now, continue with it,
1723 but merge it with the "normal" mmap that would allocate the bss. */
1724
1725 host_start = (uintptr_t) g2h(elf_bss);
1726 host_end = (uintptr_t) g2h(last_bss);
1727 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1728
1729 if (host_map_start < host_end) {
1730 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1731 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1732 if (p == MAP_FAILED) {
1733 perror("cannot mmap brk");
1734 exit(-1);
1735 }
1736 }
1737
1738 /* Ensure that the bss page(s) are valid */
1739 if ((page_get_flags(last_bss-1) & prot) != prot) {
1740 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1741 }
1742
1743 if (host_start < host_map_start) {
1744 memset((void *)host_start, 0, host_map_start - host_start);
1745 }
1746 }
1747
1748 #ifdef TARGET_ARM
1749 static int elf_is_fdpic(struct elfhdr *exec)
1750 {
1751 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1752 }
1753 #else
1754 /* Default implementation, always false. */
1755 static int elf_is_fdpic(struct elfhdr *exec)
1756 {
1757 return 0;
1758 }
1759 #endif
1760
1761 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1762 {
1763 uint16_t n;
1764 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1765
1766 /* elf32_fdpic_loadseg */
1767 n = info->nsegs;
1768 while (n--) {
1769 sp -= 12;
1770 put_user_u32(loadsegs[n].addr, sp+0);
1771 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1772 put_user_u32(loadsegs[n].p_memsz, sp+8);
1773 }
1774
1775 /* elf32_fdpic_loadmap */
1776 sp -= 4;
1777 put_user_u16(0, sp+0); /* version */
1778 put_user_u16(info->nsegs, sp+2); /* nsegs */
1779
1780 info->personality = PER_LINUX_FDPIC;
1781 info->loadmap_addr = sp;
1782
1783 return sp;
1784 }
1785
1786 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1787 struct elfhdr *exec,
1788 struct image_info *info,
1789 struct image_info *interp_info)
1790 {
1791 abi_ulong sp;
1792 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1793 int size;
1794 int i;
1795 abi_ulong u_rand_bytes;
1796 uint8_t k_rand_bytes[16];
1797 abi_ulong u_platform;
1798 const char *k_platform;
1799 const int n = sizeof(elf_addr_t);
1800
1801 sp = p;
1802
1803 /* Needs to be before we load the env/argc/... */
1804 if (elf_is_fdpic(exec)) {
1805 /* Need 4 byte alignment for these structs */
1806 sp &= ~3;
1807 sp = loader_build_fdpic_loadmap(info, sp);
1808 info->other_info = interp_info;
1809 if (interp_info) {
1810 interp_info->other_info = info;
1811 sp = loader_build_fdpic_loadmap(interp_info, sp);
1812 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1813 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1814 } else {
1815 info->interpreter_loadmap_addr = 0;
1816 info->interpreter_pt_dynamic_addr = 0;
1817 }
1818 }
1819
1820 u_platform = 0;
1821 k_platform = ELF_PLATFORM;
1822 if (k_platform) {
1823 size_t len = strlen(k_platform) + 1;
1824 if (STACK_GROWS_DOWN) {
1825 sp -= (len + n - 1) & ~(n - 1);
1826 u_platform = sp;
1827 /* FIXME - check return value of memcpy_to_target() for failure */
1828 memcpy_to_target(sp, k_platform, len);
1829 } else {
1830 memcpy_to_target(sp, k_platform, len);
1831 u_platform = sp;
1832 sp += len + 1;
1833 }
1834 }
1835
1836 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1837 * the argv and envp pointers.
1838 */
1839 if (STACK_GROWS_DOWN) {
1840 sp = QEMU_ALIGN_DOWN(sp, 16);
1841 } else {
1842 sp = QEMU_ALIGN_UP(sp, 16);
1843 }
1844
1845 /*
1846 * Generate 16 random bytes for userspace PRNG seeding (not
1847 * cryptically secure but it's not the aim of QEMU).
1848 */
1849 for (i = 0; i < 16; i++) {
1850 k_rand_bytes[i] = rand();
1851 }
1852 if (STACK_GROWS_DOWN) {
1853 sp -= 16;
1854 u_rand_bytes = sp;
1855 /* FIXME - check return value of memcpy_to_target() for failure */
1856 memcpy_to_target(sp, k_rand_bytes, 16);
1857 } else {
1858 memcpy_to_target(sp, k_rand_bytes, 16);
1859 u_rand_bytes = sp;
1860 sp += 16;
1861 }
1862
1863 size = (DLINFO_ITEMS + 1) * 2;
1864 if (k_platform)
1865 size += 2;
1866 #ifdef DLINFO_ARCH_ITEMS
1867 size += DLINFO_ARCH_ITEMS * 2;
1868 #endif
1869 #ifdef ELF_HWCAP2
1870 size += 2;
1871 #endif
1872 info->auxv_len = size * n;
1873
1874 size += envc + argc + 2;
1875 size += 1; /* argc itself */
1876 size *= n;
1877
1878 /* Allocate space and finalize stack alignment for entry now. */
1879 if (STACK_GROWS_DOWN) {
1880 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1881 sp = u_argc;
1882 } else {
1883 u_argc = sp;
1884 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1885 }
1886
1887 u_argv = u_argc + n;
1888 u_envp = u_argv + (argc + 1) * n;
1889 u_auxv = u_envp + (envc + 1) * n;
1890 info->saved_auxv = u_auxv;
1891 info->arg_start = u_argv;
1892 info->arg_end = u_argv + argc * n;
1893
1894 /* This is correct because Linux defines
1895 * elf_addr_t as Elf32_Off / Elf64_Off
1896 */
1897 #define NEW_AUX_ENT(id, val) do { \
1898 put_user_ual(id, u_auxv); u_auxv += n; \
1899 put_user_ual(val, u_auxv); u_auxv += n; \
1900 } while(0)
1901
1902 #ifdef ARCH_DLINFO
1903 /*
1904 * ARCH_DLINFO must come first so platform specific code can enforce
1905 * special alignment requirements on the AUXV if necessary (eg. PPC).
1906 */
1907 ARCH_DLINFO;
1908 #endif
1909 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1910 * on info->auxv_len will trigger.
1911 */
1912 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1913 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1914 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1915 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1916 /* Target doesn't support host page size alignment */
1917 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1918 } else {
1919 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1920 qemu_host_page_size)));
1921 }
1922 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1923 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1924 NEW_AUX_ENT(AT_ENTRY, info->entry);
1925 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1926 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1927 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1928 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1929 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1930 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1931 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1932 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1933
1934 #ifdef ELF_HWCAP2
1935 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1936 #endif
1937
1938 if (u_platform) {
1939 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1940 }
1941 NEW_AUX_ENT (AT_NULL, 0);
1942 #undef NEW_AUX_ENT
1943
1944 /* Check that our initial calculation of the auxv length matches how much
1945 * we actually put into it.
1946 */
1947 assert(info->auxv_len == u_auxv - info->saved_auxv);
1948
1949 put_user_ual(argc, u_argc);
1950
1951 p = info->arg_strings;
1952 for (i = 0; i < argc; ++i) {
1953 put_user_ual(p, u_argv);
1954 u_argv += n;
1955 p += target_strlen(p) + 1;
1956 }
1957 put_user_ual(0, u_argv);
1958
1959 p = info->env_strings;
1960 for (i = 0; i < envc; ++i) {
1961 put_user_ual(p, u_envp);
1962 u_envp += n;
1963 p += target_strlen(p) + 1;
1964 }
1965 put_user_ual(0, u_envp);
1966
1967 return sp;
1968 }
1969
1970 unsigned long init_guest_space(unsigned long host_start,
1971 unsigned long host_size,
1972 unsigned long guest_start,
1973 bool fixed)
1974 {
1975 unsigned long current_start, aligned_start;
1976 int flags;
1977
1978 assert(host_start || host_size);
1979
1980 /* If just a starting address is given, then just verify that
1981 * address. */
1982 if (host_start && !host_size) {
1983 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1984 if (init_guest_commpage(host_start, host_size) != 1) {
1985 return (unsigned long)-1;
1986 }
1987 #endif
1988 return host_start;
1989 }
1990
1991 /* Setup the initial flags and start address. */
1992 current_start = host_start & qemu_host_page_mask;
1993 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1994 if (fixed) {
1995 flags |= MAP_FIXED;
1996 }
1997
1998 /* Otherwise, a non-zero size region of memory needs to be mapped
1999 * and validated. */
2000
2001 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2002 /* On 32-bit ARM, we need to map not just the usable memory, but
2003 * also the commpage. Try to find a suitable place by allocating
2004 * a big chunk for all of it. If host_start, then the naive
2005 * strategy probably does good enough.
2006 */
2007 if (!host_start) {
2008 unsigned long guest_full_size, host_full_size, real_start;
2009
2010 guest_full_size =
2011 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2012 host_full_size = guest_full_size - guest_start;
2013 real_start = (unsigned long)
2014 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2015 if (real_start == (unsigned long)-1) {
2016 if (host_size < host_full_size - qemu_host_page_size) {
2017 /* We failed to map a continous segment, but we're
2018 * allowed to have a gap between the usable memory and
2019 * the commpage where other things can be mapped.
2020 * This sparseness gives us more flexibility to find
2021 * an address range.
2022 */
2023 goto naive;
2024 }
2025 return (unsigned long)-1;
2026 }
2027 munmap((void *)real_start, host_full_size);
2028 if (real_start & ~qemu_host_page_mask) {
2029 /* The same thing again, but with an extra qemu_host_page_size
2030 * so that we can shift around alignment.
2031 */
2032 unsigned long real_size = host_full_size + qemu_host_page_size;
2033 real_start = (unsigned long)
2034 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2035 if (real_start == (unsigned long)-1) {
2036 if (host_size < host_full_size - qemu_host_page_size) {
2037 goto naive;
2038 }
2039 return (unsigned long)-1;
2040 }
2041 munmap((void *)real_start, real_size);
2042 real_start = HOST_PAGE_ALIGN(real_start);
2043 }
2044 current_start = real_start;
2045 }
2046 naive:
2047 #endif
2048
2049 while (1) {
2050 unsigned long real_start, real_size, aligned_size;
2051 aligned_size = real_size = host_size;
2052
2053 /* Do not use mmap_find_vma here because that is limited to the
2054 * guest address space. We are going to make the
2055 * guest address space fit whatever we're given.
2056 */
2057 real_start = (unsigned long)
2058 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2059 if (real_start == (unsigned long)-1) {
2060 return (unsigned long)-1;
2061 }
2062
2063 /* Check to see if the address is valid. */
2064 if (host_start && real_start != current_start) {
2065 goto try_again;
2066 }
2067
2068 /* Ensure the address is properly aligned. */
2069 if (real_start & ~qemu_host_page_mask) {
2070 /* Ideally, we adjust like
2071 *
2072 * pages: [ ][ ][ ][ ][ ]
2073 * old: [ real ]
2074 * [ aligned ]
2075 * new: [ real ]
2076 * [ aligned ]
2077 *
2078 * But if there is something else mapped right after it,
2079 * then obviously it won't have room to grow, and the
2080 * kernel will put the new larger real someplace else with
2081 * unknown alignment (if we made it to here, then
2082 * fixed=false). Which is why we grow real by a full page
2083 * size, instead of by part of one; so that even if we get
2084 * moved, we can still guarantee alignment. But this does
2085 * mean that there is a padding of < 1 page both before
2086 * and after the aligned range; the "after" could could
2087 * cause problems for ARM emulation where it could butt in
2088 * to where we need to put the commpage.
2089 */
2090 munmap((void *)real_start, host_size);
2091 real_size = aligned_size + qemu_host_page_size;
2092 real_start = (unsigned long)
2093 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2094 if (real_start == (unsigned long)-1) {
2095 return (unsigned long)-1;
2096 }
2097 aligned_start = HOST_PAGE_ALIGN(real_start);
2098 } else {
2099 aligned_start = real_start;
2100 }
2101
2102 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2103 /* On 32-bit ARM, we need to also be able to map the commpage. */
2104 int valid = init_guest_commpage(aligned_start - guest_start,
2105 aligned_size + guest_start);
2106 if (valid == -1) {
2107 munmap((void *)real_start, real_size);
2108 return (unsigned long)-1;
2109 } else if (valid == 0) {
2110 goto try_again;
2111 }
2112 #endif
2113
2114 /* If nothing has said `return -1` or `goto try_again` yet,
2115 * then the address we have is good.
2116 */
2117 break;
2118
2119 try_again:
2120 /* That address didn't work. Unmap and try a different one.
2121 * The address the host picked because is typically right at
2122 * the top of the host address space and leaves the guest with
2123 * no usable address space. Resort to a linear search. We
2124 * already compensated for mmap_min_addr, so this should not
2125 * happen often. Probably means we got unlucky and host
2126 * address space randomization put a shared library somewhere
2127 * inconvenient.
2128 *
2129 * This is probably a good strategy if host_start, but is
2130 * probably a bad strategy if not, which means we got here
2131 * because of trouble with ARM commpage setup.
2132 */
2133 munmap((void *)real_start, real_size);
2134 current_start += qemu_host_page_size;
2135 if (host_start == current_start) {
2136 /* Theoretically possible if host doesn't have any suitably
2137 * aligned areas. Normally the first mmap will fail.
2138 */
2139 return (unsigned long)-1;
2140 }
2141 }
2142
2143 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2144
2145 return aligned_start;
2146 }
2147
2148 static void probe_guest_base(const char *image_name,
2149 abi_ulong loaddr, abi_ulong hiaddr)
2150 {
2151 /* Probe for a suitable guest base address, if the user has not set
2152 * it explicitly, and set guest_base appropriately.
2153 * In case of error we will print a suitable message and exit.
2154 */
2155 const char *errmsg;
2156 if (!have_guest_base && !reserved_va) {
2157 unsigned long host_start, real_start, host_size;
2158
2159 /* Round addresses to page boundaries. */
2160 loaddr &= qemu_host_page_mask;
2161 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2162
2163 if (loaddr < mmap_min_addr) {
2164 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2165 } else {
2166 host_start = loaddr;
2167 if (host_start != loaddr) {
2168 errmsg = "Address overflow loading ELF binary";
2169 goto exit_errmsg;
2170 }
2171 }
2172 host_size = hiaddr - loaddr;
2173
2174 /* Setup the initial guest memory space with ranges gleaned from
2175 * the ELF image that is being loaded.
2176 */
2177 real_start = init_guest_space(host_start, host_size, loaddr, false);
2178 if (real_start == (unsigned long)-1) {
2179 errmsg = "Unable to find space for application";
2180 goto exit_errmsg;
2181 }
2182 guest_base = real_start - loaddr;
2183
2184 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2185 TARGET_ABI_FMT_lx " to 0x%lx\n",
2186 loaddr, real_start);
2187 }
2188 return;
2189
2190 exit_errmsg:
2191 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2192 exit(-1);
2193 }
2194
2195
2196 /* Load an ELF image into the address space.
2197
2198 IMAGE_NAME is the filename of the image, to use in error messages.
2199 IMAGE_FD is the open file descriptor for the image.
2200
2201 BPRM_BUF is a copy of the beginning of the file; this of course
2202 contains the elf file header at offset 0. It is assumed that this
2203 buffer is sufficiently aligned to present no problems to the host
2204 in accessing data at aligned offsets within the buffer.
2205
2206 On return: INFO values will be filled in, as necessary or available. */
2207
2208 static void load_elf_image(const char *image_name, int image_fd,
2209 struct image_info *info, char **pinterp_name,
2210 char bprm_buf[BPRM_BUF_SIZE])
2211 {
2212 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2213 struct elf_phdr *phdr;
2214 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2215 int i, retval;
2216 const char *errmsg;
2217
2218 /* First of all, some simple consistency checks */
2219 errmsg = "Invalid ELF image for this architecture";
2220 if (!elf_check_ident(ehdr)) {
2221 goto exit_errmsg;
2222 }
2223 bswap_ehdr(ehdr);
2224 if (!elf_check_ehdr(ehdr)) {
2225 goto exit_errmsg;
2226 }
2227
2228 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2229 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2230 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2231 } else {
2232 phdr = (struct elf_phdr *) alloca(i);
2233 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2234 if (retval != i) {
2235 goto exit_read;
2236 }
2237 }
2238 bswap_phdr(phdr, ehdr->e_phnum);
2239
2240 info->nsegs = 0;
2241 info->pt_dynamic_addr = 0;
2242
2243 mmap_lock();
2244
2245 /* Find the maximum size of the image and allocate an appropriate
2246 amount of memory to handle that. */
2247 loaddr = -1, hiaddr = 0;
2248 info->alignment = 0;
2249 for (i = 0; i < ehdr->e_phnum; ++i) {
2250 if (phdr[i].p_type == PT_LOAD) {
2251 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2252 if (a < loaddr) {
2253 loaddr = a;
2254 }
2255 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2256 if (a > hiaddr) {
2257 hiaddr = a;
2258 }
2259 ++info->nsegs;
2260 info->alignment |= phdr[i].p_align;
2261 }
2262 }
2263
2264 load_addr = loaddr;
2265 if (ehdr->e_type == ET_DYN) {
2266 /* The image indicates that it can be loaded anywhere. Find a
2267 location that can hold the memory space required. If the
2268 image is pre-linked, LOADDR will be non-zero. Since we do
2269 not supply MAP_FIXED here we'll use that address if and
2270 only if it remains available. */
2271 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2272 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2273 -1, 0);
2274 if (load_addr == -1) {
2275 goto exit_perror;
2276 }
2277 } else if (pinterp_name != NULL) {
2278 /* This is the main executable. Make sure that the low
2279 address does not conflict with MMAP_MIN_ADDR or the
2280 QEMU application itself. */
2281 probe_guest_base(image_name, loaddr, hiaddr);
2282 }
2283 load_bias = load_addr - loaddr;
2284
2285 if (elf_is_fdpic(ehdr)) {
2286 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2287 g_malloc(sizeof(*loadsegs) * info->nsegs);
2288
2289 for (i = 0; i < ehdr->e_phnum; ++i) {
2290 switch (phdr[i].p_type) {
2291 case PT_DYNAMIC:
2292 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2293 break;
2294 case PT_LOAD:
2295 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2296 loadsegs->p_vaddr = phdr[i].p_vaddr;
2297 loadsegs->p_memsz = phdr[i].p_memsz;
2298 ++loadsegs;
2299 break;
2300 }
2301 }
2302 }
2303
2304 info->load_bias = load_bias;
2305 info->load_addr = load_addr;
2306 info->entry = ehdr->e_entry + load_bias;
2307 info->start_code = -1;
2308 info->end_code = 0;
2309 info->start_data = -1;
2310 info->end_data = 0;
2311 info->brk = 0;
2312 info->elf_flags = ehdr->e_flags;
2313
2314 for (i = 0; i < ehdr->e_phnum; i++) {
2315 struct elf_phdr *eppnt = phdr + i;
2316 if (eppnt->p_type == PT_LOAD) {
2317 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2318 int elf_prot = 0;
2319
2320 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2321 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2322 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2323
2324 vaddr = load_bias + eppnt->p_vaddr;
2325 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2326 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2327 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2328
2329 error = target_mmap(vaddr_ps, vaddr_len,
2330 elf_prot, MAP_PRIVATE | MAP_FIXED,
2331 image_fd, eppnt->p_offset - vaddr_po);
2332 if (error == -1) {
2333 goto exit_perror;
2334 }
2335
2336 vaddr_ef = vaddr + eppnt->p_filesz;
2337 vaddr_em = vaddr + eppnt->p_memsz;
2338
2339 /* If the load segment requests extra zeros (e.g. bss), map it. */
2340 if (vaddr_ef < vaddr_em) {
2341 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2342 }
2343
2344 /* Find the full program boundaries. */
2345 if (elf_prot & PROT_EXEC) {
2346 if (vaddr < info->start_code) {
2347 info->start_code = vaddr;
2348 }
2349 if (vaddr_ef > info->end_code) {
2350 info->end_code = vaddr_ef;
2351 }
2352 }
2353 if (elf_prot & PROT_WRITE) {
2354 if (vaddr < info->start_data) {
2355 info->start_data = vaddr;
2356 }
2357 if (vaddr_ef > info->end_data) {
2358 info->end_data = vaddr_ef;
2359 }
2360 if (vaddr_em > info->brk) {
2361 info->brk = vaddr_em;
2362 }
2363 }
2364 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2365 char *interp_name;
2366
2367 if (*pinterp_name) {
2368 errmsg = "Multiple PT_INTERP entries";
2369 goto exit_errmsg;
2370 }
2371 interp_name = malloc(eppnt->p_filesz);
2372 if (!interp_name) {
2373 goto exit_perror;
2374 }
2375
2376 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2377 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2378 eppnt->p_filesz);
2379 } else {
2380 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2381 eppnt->p_offset);
2382 if (retval != eppnt->p_filesz) {
2383 goto exit_perror;
2384 }
2385 }
2386 if (interp_name[eppnt->p_filesz - 1] != 0) {
2387 errmsg = "Invalid PT_INTERP entry";
2388 goto exit_errmsg;
2389 }
2390 *pinterp_name = interp_name;
2391 #ifdef TARGET_MIPS
2392 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2393 Mips_elf_abiflags_v0 abiflags;
2394 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2395 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2396 goto exit_errmsg;
2397 }
2398 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2399 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2400 sizeof(Mips_elf_abiflags_v0));
2401 } else {
2402 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2403 eppnt->p_offset);
2404 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2405 goto exit_perror;
2406 }
2407 }
2408 bswap_mips_abiflags(&abiflags);
2409 info->fp_abi = abiflags.fp_abi;
2410 #endif
2411 }
2412 }
2413
2414 if (info->end_data == 0) {
2415 info->start_data = info->end_code;
2416 info->end_data = info->end_code;
2417 info->brk = info->end_code;
2418 }
2419
2420 if (qemu_log_enabled()) {
2421 load_symbols(ehdr, image_fd, load_bias);
2422 }
2423
2424 mmap_unlock();
2425
2426 close(image_fd);
2427 return;
2428
2429 exit_read:
2430 if (retval >= 0) {
2431 errmsg = "Incomplete read of file header";
2432 goto exit_errmsg;
2433 }
2434 exit_perror:
2435 errmsg = strerror(errno);
2436 exit_errmsg:
2437 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2438 exit(-1);
2439 }
2440
2441 static void load_elf_interp(const char *filename, struct image_info *info,
2442 char bprm_buf[BPRM_BUF_SIZE])
2443 {
2444 int fd, retval;
2445
2446 fd = open(path(filename), O_RDONLY);
2447 if (fd < 0) {
2448 goto exit_perror;
2449 }
2450
2451 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2452 if (retval < 0) {
2453 goto exit_perror;
2454 }
2455 if (retval < BPRM_BUF_SIZE) {
2456 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2457 }
2458
2459 load_elf_image(filename, fd, info, NULL, bprm_buf);
2460 return;
2461
2462 exit_perror:
2463 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2464 exit(-1);
2465 }
2466
2467 static int symfind(const void *s0, const void *s1)
2468 {
2469 target_ulong addr = *(target_ulong *)s0;
2470 struct elf_sym *sym = (struct elf_sym *)s1;
2471 int result = 0;
2472 if (addr < sym->st_value) {
2473 result = -1;
2474 } else if (addr >= sym->st_value + sym->st_size) {
2475 result = 1;
2476 }
2477 return result;
2478 }
2479
2480 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2481 {
2482 #if ELF_CLASS == ELFCLASS32
2483 struct elf_sym *syms = s->disas_symtab.elf32;
2484 #else
2485 struct elf_sym *syms = s->disas_symtab.elf64;
2486 #endif
2487
2488 // binary search
2489 struct elf_sym *sym;
2490
2491 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2492 if (sym != NULL) {
2493 return s->disas_strtab + sym->st_name;
2494 }
2495
2496 return "";
2497 }
2498
2499 /* FIXME: This should use elf_ops.h */
2500 static int symcmp(const void *s0, const void *s1)
2501 {
2502 struct elf_sym *sym0 = (struct elf_sym *)s0;
2503 struct elf_sym *sym1 = (struct elf_sym *)s1;
2504 return (sym0->st_value < sym1->st_value)
2505 ? -1
2506 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2507 }
2508
2509 /* Best attempt to load symbols from this ELF object. */
2510 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2511 {
2512 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2513 uint64_t segsz;
2514 struct elf_shdr *shdr;
2515 char *strings = NULL;
2516 struct syminfo *s = NULL;
2517 struct elf_sym *new_syms, *syms = NULL;
2518
2519 shnum = hdr->e_shnum;
2520 i = shnum * sizeof(struct elf_shdr);
2521 shdr = (struct elf_shdr *)alloca(i);
2522 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2523 return;
2524 }
2525
2526 bswap_shdr(shdr, shnum);
2527 for (i = 0; i < shnum; ++i) {
2528 if (shdr[i].sh_type == SHT_SYMTAB) {
2529 sym_idx = i;
2530 str_idx = shdr[i].sh_link;
2531 goto found;
2532 }
2533 }
2534
2535 /* There will be no symbol table if the file was stripped. */
2536 return;
2537
2538 found:
2539 /* Now know where the strtab and symtab are. Snarf them. */
2540 s = g_try_new(struct syminfo, 1);
2541 if (!s) {
2542 goto give_up;
2543 }
2544
2545 segsz = shdr[str_idx].sh_size;
2546 s->disas_strtab = strings = g_try_malloc(segsz);
2547 if (!strings ||
2548 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2549 goto give_up;
2550 }
2551
2552 segsz = shdr[sym_idx].sh_size;
2553 syms = g_try_malloc(segsz);
2554 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2555 goto give_up;
2556 }
2557
2558 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2559 /* Implausibly large symbol table: give up rather than ploughing
2560 * on with the number of symbols calculation overflowing
2561 */
2562 goto give_up;
2563 }
2564 nsyms = segsz / sizeof(struct elf_sym);
2565 for (i = 0; i < nsyms; ) {
2566 bswap_sym(syms + i);
2567 /* Throw away entries which we do not need. */
2568 if (syms[i].st_shndx == SHN_UNDEF
2569 || syms[i].st_shndx >= SHN_LORESERVE
2570 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2571 if (i < --nsyms) {
2572 syms[i] = syms[nsyms];
2573 }
2574 } else {
2575 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2576 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2577 syms[i].st_value &= ~(target_ulong)1;
2578 #endif
2579 syms[i].st_value += load_bias;
2580 i++;
2581 }
2582 }
2583
2584 /* No "useful" symbol. */
2585 if (nsyms == 0) {
2586 goto give_up;
2587 }
2588
2589 /* Attempt to free the storage associated with the local symbols
2590 that we threw away. Whether or not this has any effect on the
2591 memory allocation depends on the malloc implementation and how
2592 many symbols we managed to discard. */
2593 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2594 if (new_syms == NULL) {
2595 goto give_up;
2596 }
2597 syms = new_syms;
2598
2599 qsort(syms, nsyms, sizeof(*syms), symcmp);
2600
2601 s->disas_num_syms = nsyms;
2602 #if ELF_CLASS == ELFCLASS32
2603 s->disas_symtab.elf32 = syms;
2604 #else
2605 s->disas_symtab.elf64 = syms;
2606 #endif
2607 s->lookup_symbol = lookup_symbolxx;
2608 s->next = syminfos;
2609 syminfos = s;
2610
2611 return;
2612
2613 give_up:
2614 g_free(s);
2615 g_free(strings);
2616 g_free(syms);
2617 }
2618
2619 uint32_t get_elf_eflags(int fd)
2620 {
2621 struct elfhdr ehdr;
2622 off_t offset;
2623 int ret;
2624
2625 /* Read ELF header */
2626 offset = lseek(fd, 0, SEEK_SET);
2627 if (offset == (off_t) -1) {
2628 return 0;
2629 }
2630 ret = read(fd, &ehdr, sizeof(ehdr));
2631 if (ret < sizeof(ehdr)) {
2632 return 0;
2633 }
2634 offset = lseek(fd, offset, SEEK_SET);
2635 if (offset == (off_t) -1) {
2636 return 0;
2637 }
2638
2639 /* Check ELF signature */
2640 if (!elf_check_ident(&ehdr)) {
2641 return 0;
2642 }
2643
2644 /* check header */
2645 bswap_ehdr(&ehdr);
2646 if (!elf_check_ehdr(&ehdr)) {
2647 return 0;
2648 }
2649
2650 /* return architecture id */
2651 return ehdr.e_flags;
2652 }
2653
2654 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2655 {
2656 struct image_info interp_info;
2657 struct elfhdr elf_ex;
2658 char *elf_interpreter = NULL;
2659 char *scratch;
2660
2661 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2662
2663 load_elf_image(bprm->filename, bprm->fd, info,
2664 &elf_interpreter, bprm->buf);
2665
2666 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2667 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2668 when we load the interpreter. */
2669 elf_ex = *(struct elfhdr *)bprm->buf;
2670
2671 /* Do this so that we can load the interpreter, if need be. We will
2672 change some of these later */
2673 bprm->p = setup_arg_pages(bprm, info);
2674
2675 scratch = g_new0(char, TARGET_PAGE_SIZE);
2676 if (STACK_GROWS_DOWN) {
2677 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2678 bprm->p, info->stack_limit);
2679 info->file_string = bprm->p;
2680 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2681 bprm->p, info->stack_limit);
2682 info->env_strings = bprm->p;
2683 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2684 bprm->p, info->stack_limit);
2685 info->arg_strings = bprm->p;
2686 } else {
2687 info->arg_strings = bprm->p;
2688 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2689 bprm->p, info->stack_limit);
2690 info->env_strings = bprm->p;
2691 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2692 bprm->p, info->stack_limit);
2693 info->file_string = bprm->p;
2694 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2695 bprm->p, info->stack_limit);
2696 }
2697
2698 g_free(scratch);
2699
2700 if (!bprm->p) {
2701 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2702 exit(-1);
2703 }
2704
2705 if (elf_interpreter) {
2706 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2707
2708 /* If the program interpreter is one of these two, then assume
2709 an iBCS2 image. Otherwise assume a native linux image. */
2710
2711 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2712 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2713 info->personality = PER_SVR4;
2714
2715 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2716 and some applications "depend" upon this behavior. Since
2717 we do not have the power to recompile these, we emulate
2718 the SVr4 behavior. Sigh. */
2719 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2720 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2721 }
2722 #ifdef TARGET_MIPS
2723 info->interp_fp_abi = interp_info.fp_abi;
2724 #endif
2725 }
2726
2727 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2728 info, (elf_interpreter ? &interp_info : NULL));
2729 info->start_stack = bprm->p;
2730
2731 /* If we have an interpreter, set that as the program's entry point.
2732 Copy the load_bias as well, to help PPC64 interpret the entry
2733 point as a function descriptor. Do this after creating elf tables
2734 so that we copy the original program entry point into the AUXV. */
2735 if (elf_interpreter) {
2736 info->load_bias = interp_info.load_bias;
2737 info->entry = interp_info.entry;
2738 free(elf_interpreter);
2739 }
2740
2741 #ifdef USE_ELF_CORE_DUMP
2742 bprm->core_dump = &elf_core_dump;
2743 #endif
2744
2745 return 0;
2746 }
2747
2748 #ifdef USE_ELF_CORE_DUMP
2749 /*
2750 * Definitions to generate Intel SVR4-like core files.
2751 * These mostly have the same names as the SVR4 types with "target_elf_"
2752 * tacked on the front to prevent clashes with linux definitions,
2753 * and the typedef forms have been avoided. This is mostly like
2754 * the SVR4 structure, but more Linuxy, with things that Linux does
2755 * not support and which gdb doesn't really use excluded.
2756 *
2757 * Fields we don't dump (their contents is zero) in linux-user qemu
2758 * are marked with XXX.
2759 *
2760 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2761 *
2762 * Porting ELF coredump for target is (quite) simple process. First you
2763 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2764 * the target resides):
2765 *
2766 * #define USE_ELF_CORE_DUMP
2767 *
2768 * Next you define type of register set used for dumping. ELF specification
2769 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2770 *
2771 * typedef <target_regtype> target_elf_greg_t;
2772 * #define ELF_NREG <number of registers>
2773 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2774 *
2775 * Last step is to implement target specific function that copies registers
2776 * from given cpu into just specified register set. Prototype is:
2777 *
2778 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2779 * const CPUArchState *env);
2780 *
2781 * Parameters:
2782 * regs - copy register values into here (allocated and zeroed by caller)
2783 * env - copy registers from here
2784 *
2785 * Example for ARM target is provided in this file.
2786 */
2787
2788 /* An ELF note in memory */
2789 struct memelfnote {
2790 const char *name;
2791 size_t namesz;
2792 size_t namesz_rounded;
2793 int type;
2794 size_t datasz;
2795 size_t datasz_rounded;
2796 void *data;
2797 size_t notesz;
2798 };
2799
2800 struct target_elf_siginfo {
2801 abi_int si_signo; /* signal number */
2802 abi_int si_code; /* extra code */
2803 abi_int si_errno; /* errno */
2804 };
2805
2806 struct target_elf_prstatus {
2807 struct target_elf_siginfo pr_info; /* Info associated with signal */
2808 abi_short pr_cursig; /* Current signal */
2809 abi_ulong pr_sigpend; /* XXX */
2810 abi_ulong pr_sighold; /* XXX */
2811 target_pid_t pr_pid;
2812 target_pid_t pr_ppid;
2813 target_pid_t pr_pgrp;
2814 target_pid_t pr_sid;
2815 struct target_timeval pr_utime; /* XXX User time */
2816 struct target_timeval pr_stime; /* XXX System time */
2817 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2818 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2819 target_elf_gregset_t pr_reg; /* GP registers */
2820 abi_int pr_fpvalid; /* XXX */
2821 };
2822
2823 #define ELF_PRARGSZ (80) /* Number of chars for args */
2824
2825 struct target_elf_prpsinfo {
2826 char pr_state; /* numeric process state */
2827 char pr_sname; /* char for pr_state */
2828 char pr_zomb; /* zombie */
2829 char pr_nice; /* nice val */
2830 abi_ulong pr_flag; /* flags */
2831 target_uid_t pr_uid;
2832 target_gid_t pr_gid;
2833 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2834 /* Lots missing */
2835 char pr_fname[16]; /* filename of executable */
2836 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2837 };
2838
2839 /* Here is the structure in which status of each thread is captured. */
2840 struct elf_thread_status {
2841 QTAILQ_ENTRY(elf_thread_status) ets_link;
2842 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2843 #if 0
2844 elf_fpregset_t fpu; /* NT_PRFPREG */
2845 struct task_struct *thread;
2846 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2847 #endif
2848 struct memelfnote notes[1];
2849 int num_notes;
2850 };
2851
2852 struct elf_note_info {
2853 struct memelfnote *notes;
2854 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2855 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2856
2857 QTAILQ_HEAD(, elf_thread_status) thread_list;
2858 #if 0
2859 /*
2860 * Current version of ELF coredump doesn't support
2861 * dumping fp regs etc.
2862 */
2863 elf_fpregset_t *fpu;
2864 elf_fpxregset_t *xfpu;
2865 int thread_status_size;
2866 #endif
2867 int notes_size;
2868 int numnote;
2869 };
2870
2871 struct vm_area_struct {
2872 target_ulong vma_start; /* start vaddr of memory region */
2873 target_ulong vma_end; /* end vaddr of memory region */
2874 abi_ulong vma_flags; /* protection etc. flags for the region */
2875 QTAILQ_ENTRY(vm_area_struct) vma_link;
2876 };
2877
2878 struct mm_struct {
2879 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2880 int mm_count; /* number of mappings */
2881 };
2882
2883 static struct mm_struct *vma_init(void);
2884 static void vma_delete(struct mm_struct *);
2885 static int vma_add_mapping(struct mm_struct *, target_ulong,
2886 target_ulong, abi_ulong);
2887 static int vma_get_mapping_count(const struct mm_struct *);
2888 static struct vm_area_struct *vma_first(const struct mm_struct *);
2889 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2890 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2891 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2892 unsigned long flags);
2893
2894 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2895 static void fill_note(struct memelfnote *, const char *, int,
2896 unsigned int, void *);
2897 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2898 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2899 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2900 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2901 static size_t note_size(const struct memelfnote *);
2902 static void free_note_info(struct elf_note_info *);
2903 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2904 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2905 static int core_dump_filename(const TaskState *, char *, size_t);
2906
2907 static int dump_write(int, const void *, size_t);
2908 static int write_note(struct memelfnote *, int);
2909 static int write_note_info(struct elf_note_info *, int);
2910
2911 #ifdef BSWAP_NEEDED
2912 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2913 {
2914 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2915 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2916 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2917 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2918 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2919 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2920 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2921 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2922 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2923 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2924 /* cpu times are not filled, so we skip them */
2925 /* regs should be in correct format already */
2926 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2927 }
2928
2929 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2930 {
2931 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2932 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2933 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2934 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2935 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2936 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2937 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2938 }
2939
2940 static void bswap_note(struct elf_note *en)
2941 {
2942 bswap32s(&en->n_namesz);
2943 bswap32s(&en->n_descsz);
2944 bswap32s(&en->n_type);
2945 }
2946 #else
2947 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2948 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2949 static inline void bswap_note(struct elf_note *en) { }
2950 #endif /* BSWAP_NEEDED */
2951
2952 /*
2953 * Minimal support for linux memory regions. These are needed
2954 * when we are finding out what memory exactly belongs to
2955 * emulated process. No locks needed here, as long as
2956 * thread that received the signal is stopped.
2957 */
2958
2959 static struct mm_struct *vma_init(void)
2960 {
2961 struct mm_struct *mm;
2962
2963 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2964 return (NULL);
2965
2966 mm->mm_count = 0;
2967 QTAILQ_INIT(&mm->mm_mmap);
2968
2969 return (mm);
2970 }
2971
2972 static void vma_delete(struct mm_struct *mm)
2973 {
2974 struct vm_area_struct *vma;
2975
2976 while ((vma = vma_first(mm)) != NULL) {
2977 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2978 g_free(vma);
2979 }
2980 g_free(mm);
2981 }
2982
2983 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2984 target_ulong end, abi_ulong flags)
2985 {
2986 struct vm_area_struct *vma;
2987
2988 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2989 return (-1);
2990
2991 vma->vma_start = start;
2992 vma->vma_end = end;
2993 vma->vma_flags = flags;
2994
2995 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2996 mm->mm_count++;
2997
2998 return (0);
2999 }
3000
3001 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3002 {
3003 return (QTAILQ_FIRST(&mm->mm_mmap));
3004 }
3005
3006 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3007 {
3008 return (QTAILQ_NEXT(vma, vma_link));
3009 }
3010
3011 static int vma_get_mapping_count(const struct mm_struct *mm)
3012 {
3013 return (mm->mm_count);
3014 }
3015
3016 /*
3017 * Calculate file (dump) size of given memory region.
3018 */
3019 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3020 {
3021 /* if we cannot even read the first page, skip it */
3022 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3023 return (0);
3024
3025 /*
3026 * Usually we don't dump executable pages as they contain
3027 * non-writable code that debugger can read directly from
3028 * target library etc. However, thread stacks are marked
3029 * also executable so we read in first page of given region
3030 * and check whether it contains elf header. If there is
3031 * no elf header, we dump it.
3032 */
3033 if (vma->vma_flags & PROT_EXEC) {
3034 char page[TARGET_PAGE_SIZE];
3035
3036 copy_from_user(page, vma->vma_start, sizeof (page));
3037 if ((page[EI_MAG0] == ELFMAG0) &&
3038 (page[EI_MAG1] == ELFMAG1) &&
3039 (page[EI_MAG2] == ELFMAG2) &&
3040 (page[EI_MAG3] == ELFMAG3)) {
3041 /*
3042 * Mappings are possibly from ELF binary. Don't dump
3043 * them.
3044 */
3045 return (0);
3046 }
3047 }
3048
3049 return (vma->vma_end - vma->vma_start);
3050 }
3051
3052 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3053 unsigned long flags)
3054 {
3055 struct mm_struct *mm = (struct mm_struct *)priv;
3056
3057 vma_add_mapping(mm, start, end, flags);
3058 return (0);
3059 }
3060
3061 static void fill_note(struct memelfnote *note, const char *name, int type,
3062 unsigned int sz, void *data)
3063 {
3064 unsigned int namesz;
3065
3066 namesz = strlen(name) + 1;
3067 note->name = name;
3068 note->namesz = namesz;
3069 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3070 note->type = type;
3071 note->datasz = sz;
3072 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3073
3074 note->data = data;
3075
3076 /*
3077 * We calculate rounded up note size here as specified by
3078 * ELF document.
3079 */
3080 note->notesz = sizeof (struct elf_note) +
3081 note->namesz_rounded + note->datasz_rounded;
3082 }
3083
3084 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3085 uint32_t flags)
3086 {
3087 (void) memset(elf, 0, sizeof(*elf));
3088
3089 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3090 elf->e_ident[EI_CLASS] = ELF_CLASS;
3091 elf->e_ident[EI_DATA] = ELF_DATA;
3092 elf->e_ident[EI_VERSION] = EV_CURRENT;
3093 elf->e_ident[EI_OSABI] = ELF_OSABI;
3094
3095 elf->e_type = ET_CORE;
3096 elf->e_machine = machine;
3097 elf->e_version = EV_CURRENT;
3098 elf->e_phoff = sizeof(struct elfhdr);
3099 elf->e_flags = flags;
3100 elf->e_ehsize = sizeof(struct elfhdr);
3101 elf->e_phentsize = sizeof(struct elf_phdr);
3102 elf->e_phnum = segs;
3103
3104 bswap_ehdr(elf);
3105 }
3106
3107 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3108 {
3109 phdr->p_type = PT_NOTE;
3110 phdr->p_offset = offset;
3111 phdr->p_vaddr = 0;
3112 phdr->p_paddr = 0;
3113 phdr->p_filesz = sz;
3114 phdr->p_memsz = 0;
3115 phdr->p_flags = 0;
3116 phdr->p_align = 0;
3117
3118 bswap_phdr(phdr, 1);
3119 }
3120
3121 static size_t note_size(const struct memelfnote *note)
3122 {
3123 return (note->notesz);
3124 }
3125
3126 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3127 const TaskState *ts, int signr)
3128 {
3129 (void) memset(prstatus, 0, sizeof (*prstatus));
3130 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3131 prstatus->pr_pid = ts->ts_tid;
3132 prstatus->pr_ppid = getppid();
3133 prstatus->pr_pgrp = getpgrp();
3134 prstatus->pr_sid = getsid(0);
3135
3136 bswap_prstatus(prstatus);
3137 }
3138
3139 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3140 {
3141 char *base_filename;
3142 unsigned int i, len;
3143
3144 (void) memset(psinfo, 0, sizeof (*psinfo));
3145
3146 len = ts->info->arg_end - ts->info->arg_start;
3147 if (len >= ELF_PRARGSZ)
3148 len = ELF_PRARGSZ - 1;
3149 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3150 return -EFAULT;
3151 for (i = 0; i < len; i++)
3152 if (psinfo->pr_psargs[i] == 0)
3153 psinfo->pr_psargs[i] = ' ';
3154 psinfo->pr_psargs[len] = 0;
3155
3156 psinfo->pr_pid = getpid();
3157 psinfo->pr_ppid = getppid();
3158 psinfo->pr_pgrp = getpgrp();
3159 psinfo->pr_sid = getsid(0);
3160 psinfo->pr_uid = getuid();
3161 psinfo->pr_gid = getgid();
3162
3163 base_filename = g_path_get_basename(ts->bprm->filename);
3164 /*
3165 * Using strncpy here is fine: at max-length,
3166 * this field is not NUL-terminated.
3167 */
3168 (void) strncpy(psinfo->pr_fname, base_filename,
3169 sizeof(psinfo->pr_fname));
3170
3171 g_free(base_filename);
3172 bswap_psinfo(psinfo);
3173 return (0);
3174 }
3175
3176 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3177 {
3178 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3179 elf_addr_t orig_auxv = auxv;
3180 void *ptr;
3181 int len = ts->info->auxv_len;
3182
3183 /*
3184 * Auxiliary vector is stored in target process stack. It contains
3185 * {type, value} pairs that we need to dump into note. This is not
3186 * strictly necessary but we do it here for sake of completeness.
3187 */
3188
3189 /* read in whole auxv vector and copy it to memelfnote */
3190 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3191 if (ptr != NULL) {
3192 fill_note(note, "CORE", NT_AUXV, len, ptr);
3193 unlock_user(ptr, auxv, len);
3194 }
3195 }
3196
3197 /*
3198 * Constructs name of coredump file. We have following convention
3199 * for the name:
3200 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3201 *
3202 * Returns 0 in case of success, -1 otherwise (errno is set).
3203 */
3204 static int core_dump_filename(const TaskState *ts, char *buf,
3205 size_t bufsize)
3206 {
3207 char timestamp[64];
3208 char *base_filename = NULL;
3209 struct timeval tv;
3210 struct tm tm;
3211
3212 assert(bufsize >= PATH_MAX);
3213
3214 if (gettimeofday(&tv, NULL) < 0) {
3215 (void) fprintf(stderr, "unable to get current timestamp: %s",
3216 strerror(errno));
3217 return (-1);
3218 }
3219
3220 base_filename = g_path_get_basename(ts->bprm->filename);
3221 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3222 localtime_r(&tv.tv_sec, &tm));
3223 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3224 base_filename, timestamp, (int)getpid());
3225 g_free(base_filename);
3226
3227 return (0);
3228 }
3229
3230 static int dump_write(int fd, const void *ptr, size_t size)
3231 {
3232 const char *bufp = (const char *)ptr;
3233 ssize_t bytes_written, bytes_left;
3234 struct rlimit dumpsize;
3235 off_t pos;
3236
3237 bytes_written = 0;
3238 getrlimit(RLIMIT_CORE, &dumpsize);
3239 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3240 if (errno == ESPIPE) { /* not a seekable stream */
3241 bytes_left = size;
3242 } else {
3243 return pos;
3244 }
3245 } else {
3246 if (dumpsize.rlim_cur <= pos) {
3247 return -1;
3248 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3249 bytes_left = size;
3250 } else {
3251 size_t limit_left=dumpsize.rlim_cur - pos;
3252 bytes_left = limit_left >= size ? size : limit_left ;
3253 }
3254 }
3255
3256 /*
3257 * In normal conditions, single write(2) should do but
3258 * in case of socket etc. this mechanism is more portable.
3259 */
3260 do {
3261 bytes_written = write(fd, bufp, bytes_left);
3262 if (bytes_written < 0) {
3263 if (errno == EINTR)
3264 continue;
3265 return (-1);
3266 } else if (bytes_written == 0) { /* eof */
3267 return (-1);
3268 }
3269 bufp += bytes_written;
3270 bytes_left -= bytes_written;
3271 } while (bytes_left > 0);
3272
3273 return (0);
3274 }
3275
3276 static int write_note(struct memelfnote *men, int fd)
3277 {
3278 struct elf_note en;
3279
3280 en.n_namesz = men->namesz;
3281 en.n_type = men->type;
3282 en.n_descsz = men->datasz;
3283
3284 bswap_note(&en);
3285
3286 if (dump_write(fd, &en, sizeof(en)) != 0)
3287 return (-1);
3288 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3289 return (-1);
3290 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3291 return (-1);
3292
3293 return (0);
3294 }
3295
3296 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3297 {
3298 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3299 TaskState *ts = (TaskState *)cpu->opaque;
3300 struct elf_thread_status *ets;
3301
3302 ets = g_malloc0(sizeof (*ets));
3303 ets->num_notes = 1; /* only prstatus is dumped */
3304 fill_prstatus(&ets->prstatus, ts, 0);
3305 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3306 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3307 &ets->prstatus);
3308
3309 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3310
3311 info->notes_size += note_size(&ets->notes[0]);
3312 }
3313
3314 static void init_note_info(struct elf_note_info *info)
3315 {
3316 /* Initialize the elf_note_info structure so that it is at
3317 * least safe to call free_note_info() on it. Must be
3318 * called before calling fill_note_info().
3319 */
3320 memset(info, 0, sizeof (*info));
3321 QTAILQ_INIT(&info->thread_list);
3322 }
3323
3324 static int fill_note_info(struct elf_note_info *info,
3325 long signr, const CPUArchState *env)
3326 {
3327 #define NUMNOTES 3
3328 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3329 TaskState *ts = (TaskState *)cpu->opaque;
3330 int i;
3331
3332 info->notes = g_new0(struct memelfnote, NUMNOTES);
3333 if (info->notes == NULL)
3334 return (-ENOMEM);
3335 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3336 if (info->prstatus == NULL)
3337 return (-ENOMEM);
3338 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3339 if (info->prstatus == NULL)
3340 return (-ENOMEM);
3341
3342 /*
3343 * First fill in status (and registers) of current thread
3344 * including process info & aux vector.
3345 */
3346 fill_prstatus(info->prstatus, ts, signr);
3347 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3348 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3349 sizeof (*info->prstatus), info->prstatus);
3350 fill_psinfo(info->psinfo, ts);
3351 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3352 sizeof (*info->psinfo), info->psinfo);
3353 fill_auxv_note(&info->notes[2], ts);
3354 info->numnote = 3;
3355
3356 info->notes_size = 0;
3357 for (i = 0; i < info->numnote; i++)
3358 info->notes_size += note_size(&info->notes[i]);
3359
3360 /* read and fill status of all threads */
3361 cpu_list_lock();
3362 CPU_FOREACH(cpu) {
3363 if (cpu == thread_cpu) {
3364 continue;
3365 }
3366 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3367 }
3368 cpu_list_unlock();
3369
3370 return (0);
3371 }
3372
3373 static void free_note_info(struct elf_note_info *info)
3374 {
3375 struct elf_thread_status *ets;
3376
3377 while (!QTAILQ_EMPTY(&info->thread_list)) {
3378 ets = QTAILQ_FIRST(&info->thread_list);
3379 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3380 g_free(ets);
3381 }
3382
3383 g_free(info->prstatus);
3384 g_free(info->psinfo);
3385 g_free(info->notes);
3386 }
3387
3388 static int write_note_info(struct elf_note_info *info, int fd)
3389 {
3390 struct elf_thread_status *ets;
3391 int i, error = 0;
3392
3393 /* write prstatus, psinfo and auxv for current thread */
3394 for (i = 0; i < info->numnote; i++)
3395 if ((error = write_note(&info->notes[i], fd)) != 0)
3396 return (error);
3397
3398 /* write prstatus for each thread */
3399 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3400 if ((error = write_note(&ets->notes[0], fd)) != 0)
3401 return (error);
3402 }
3403
3404 return (0);
3405 }
3406
3407 /*
3408 * Write out ELF coredump.
3409 *
3410 * See documentation of ELF object file format in:
3411 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3412 *
3413 * Coredump format in linux is following:
3414 *
3415 * 0 +----------------------+ \
3416 * | ELF header | ET_CORE |
3417 * +----------------------+ |
3418 * | ELF program headers | |--- headers
3419 * | - NOTE section | |
3420 * | - PT_LOAD sections | |
3421 * +----------------------+ /
3422 * | NOTEs: |
3423 * | - NT_PRSTATUS |
3424 * | - NT_PRSINFO |
3425 * | - NT_AUXV |
3426 * +----------------------+ <-- aligned to target page
3427 * | Process memory dump |
3428 * : :
3429 * . .
3430 * : :
3431 * | |
3432 * +----------------------+
3433 *
3434 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3435 * NT_PRSINFO -> struct elf_prpsinfo
3436 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3437 *
3438 * Format follows System V format as close as possible. Current
3439 * version limitations are as follows:
3440 * - no floating point registers are dumped
3441 *
3442 * Function returns 0 in case of success, negative errno otherwise.
3443 *
3444 * TODO: make this work also during runtime: it should be
3445 * possible to force coredump from running process and then
3446 * continue processing. For example qemu could set up SIGUSR2
3447 * handler (provided that target process haven't registered
3448 * handler for that) that does the dump when signal is received.
3449 */
3450 static int elf_core_dump(int signr, const CPUArchState *env)
3451 {
3452 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3453 const TaskState *ts = (const TaskState *)cpu->opaque;
3454 struct vm_area_struct *vma = NULL;
3455 char corefile[PATH_MAX];
3456 struct elf_note_info info;
3457 struct elfhdr elf;
3458 struct elf_phdr phdr;
3459 struct rlimit dumpsize;
3460 struct mm_struct *mm = NULL;
3461 off_t offset = 0, data_offset = 0;
3462 int segs = 0;
3463 int fd = -1;
3464
3465 init_note_info(&info);
3466
3467 errno = 0;
3468 getrlimit(RLIMIT_CORE, &dumpsize);
3469 if (dumpsize.rlim_cur == 0)
3470 return 0;
3471
3472 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3473 return (-errno);
3474
3475 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3476 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3477 return (-errno);
3478
3479 /*
3480 * Walk through target process memory mappings and
3481 * set up structure containing this information. After
3482 * this point vma_xxx functions can be used.
3483 */
3484 if ((mm = vma_init()) == NULL)
3485 goto out;
3486
3487 walk_memory_regions(mm, vma_walker);
3488 segs = vma_get_mapping_count(mm);
3489
3490 /*
3491 * Construct valid coredump ELF header. We also
3492 * add one more segment for notes.
3493 */
3494 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3495 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3496 goto out;
3497
3498 /* fill in the in-memory version of notes */
3499 if (fill_note_info(&info, signr, env) < 0)
3500 goto out;
3501
3502 offset += sizeof (elf); /* elf header */
3503 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3504
3505 /* write out notes program header */
3506 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3507
3508 offset += info.notes_size;
3509 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3510 goto out;
3511
3512 /*
3513 * ELF specification wants data to start at page boundary so
3514 * we align it here.
3515 */
3516 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3517
3518 /*
3519 * Write program headers for memory regions mapped in
3520 * the target process.
3521 */
3522 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3523 (void) memset(&phdr, 0, sizeof (phdr));
3524
3525 phdr.p_type = PT_LOAD;
3526 phdr.p_offset = offset;
3527 phdr.p_vaddr = vma->vma_start;
3528 phdr.p_paddr = 0;
3529 phdr.p_filesz = vma_dump_size(vma);
3530 offset += phdr.p_filesz;
3531 phdr.p_memsz = vma->vma_end - vma->vma_start;
3532 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3533 if (vma->vma_flags & PROT_WRITE)
3534 phdr.p_flags |= PF_W;
3535 if (vma->vma_flags & PROT_EXEC)
3536 phdr.p_flags |= PF_X;
3537 phdr.p_align = ELF_EXEC_PAGESIZE;
3538
3539 bswap_phdr(&phdr, 1);
3540 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3541 goto out;
3542 }
3543 }
3544
3545 /*
3546 * Next we write notes just after program headers. No
3547 * alignment needed here.
3548 */
3549 if (write_note_info(&info, fd) < 0)
3550 goto out;
3551
3552 /* align data to page boundary */
3553 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3554 goto out;
3555
3556 /*
3557 * Finally we can dump process memory into corefile as well.
3558 */
3559 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3560 abi_ulong addr;
3561 abi_ulong end;
3562
3563 end = vma->vma_start + vma_dump_size(vma);
3564
3565 for (addr = vma->vma_start; addr < end;
3566 addr += TARGET_PAGE_SIZE) {
3567 char page[TARGET_PAGE_SIZE];
3568 int error;
3569
3570 /*
3571 * Read in page from target process memory and
3572 * write it to coredump file.
3573 */
3574 error = copy_from_user(page, addr, sizeof (page));
3575 if (error != 0) {
3576 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3577 addr);
3578 errno = -error;
3579 goto out;
3580 }
3581 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3582 goto out;
3583 }
3584 }
3585
3586 out:
3587 free_note_info(&info);
3588 if (mm != NULL)
3589 vma_delete(mm);
3590 (void) close(fd);
3591
3592 if (errno != 0)
3593 return (-errno);
3594 return (0);
3595 }
3596 #endif /* USE_ELF_CORE_DUMP */
3597
3598 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3599 {
3600 init_thread(regs, infop);
3601 }