]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/i386/cpu_loop.c
linux-user: move i386/x86_64 cpu loop to i386 directory
[mirror_qemu.git] / linux-user / i386 / cpu_loop.c
1 /*
2 * qemu user cpu loop
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu.h"
22 #include "cpu_loop-common.h"
23
24 /***********************************************************/
25 /* CPUX86 core interface */
26
27 uint64_t cpu_get_tsc(CPUX86State *env)
28 {
29 return cpu_get_host_ticks();
30 }
31
32 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
33 int flags)
34 {
35 unsigned int e1, e2;
36 uint32_t *p;
37 e1 = (addr << 16) | (limit & 0xffff);
38 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
39 e2 |= flags;
40 p = ptr;
41 p[0] = tswap32(e1);
42 p[1] = tswap32(e2);
43 }
44
45 static uint64_t *idt_table;
46 #ifdef TARGET_X86_64
47 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
48 uint64_t addr, unsigned int sel)
49 {
50 uint32_t *p, e1, e2;
51 e1 = (addr & 0xffff) | (sel << 16);
52 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
53 p = ptr;
54 p[0] = tswap32(e1);
55 p[1] = tswap32(e2);
56 p[2] = tswap32(addr >> 32);
57 p[3] = 0;
58 }
59 /* only dpl matters as we do only user space emulation */
60 static void set_idt(int n, unsigned int dpl)
61 {
62 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
63 }
64 #else
65 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
66 uint32_t addr, unsigned int sel)
67 {
68 uint32_t *p, e1, e2;
69 e1 = (addr & 0xffff) | (sel << 16);
70 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
71 p = ptr;
72 p[0] = tswap32(e1);
73 p[1] = tswap32(e2);
74 }
75
76 /* only dpl matters as we do only user space emulation */
77 static void set_idt(int n, unsigned int dpl)
78 {
79 set_gate(idt_table + n, 0, dpl, 0, 0);
80 }
81 #endif
82
83 void cpu_loop(CPUX86State *env)
84 {
85 CPUState *cs = CPU(x86_env_get_cpu(env));
86 int trapnr;
87 abi_ulong pc;
88 abi_ulong ret;
89 target_siginfo_t info;
90
91 for(;;) {
92 cpu_exec_start(cs);
93 trapnr = cpu_exec(cs);
94 cpu_exec_end(cs);
95 process_queued_cpu_work(cs);
96
97 switch(trapnr) {
98 case 0x80:
99 /* linux syscall from int $0x80 */
100 ret = do_syscall(env,
101 env->regs[R_EAX],
102 env->regs[R_EBX],
103 env->regs[R_ECX],
104 env->regs[R_EDX],
105 env->regs[R_ESI],
106 env->regs[R_EDI],
107 env->regs[R_EBP],
108 0, 0);
109 if (ret == -TARGET_ERESTARTSYS) {
110 env->eip -= 2;
111 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
112 env->regs[R_EAX] = ret;
113 }
114 break;
115 #ifndef TARGET_ABI32
116 case EXCP_SYSCALL:
117 /* linux syscall from syscall instruction */
118 ret = do_syscall(env,
119 env->regs[R_EAX],
120 env->regs[R_EDI],
121 env->regs[R_ESI],
122 env->regs[R_EDX],
123 env->regs[10],
124 env->regs[8],
125 env->regs[9],
126 0, 0);
127 if (ret == -TARGET_ERESTARTSYS) {
128 env->eip -= 2;
129 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
130 env->regs[R_EAX] = ret;
131 }
132 break;
133 #endif
134 case EXCP0B_NOSEG:
135 case EXCP0C_STACK:
136 info.si_signo = TARGET_SIGBUS;
137 info.si_errno = 0;
138 info.si_code = TARGET_SI_KERNEL;
139 info._sifields._sigfault._addr = 0;
140 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
141 break;
142 case EXCP0D_GPF:
143 /* XXX: potential problem if ABI32 */
144 #ifndef TARGET_X86_64
145 if (env->eflags & VM_MASK) {
146 handle_vm86_fault(env);
147 } else
148 #endif
149 {
150 info.si_signo = TARGET_SIGSEGV;
151 info.si_errno = 0;
152 info.si_code = TARGET_SI_KERNEL;
153 info._sifields._sigfault._addr = 0;
154 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
155 }
156 break;
157 case EXCP0E_PAGE:
158 info.si_signo = TARGET_SIGSEGV;
159 info.si_errno = 0;
160 if (!(env->error_code & 1))
161 info.si_code = TARGET_SEGV_MAPERR;
162 else
163 info.si_code = TARGET_SEGV_ACCERR;
164 info._sifields._sigfault._addr = env->cr[2];
165 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
166 break;
167 case EXCP00_DIVZ:
168 #ifndef TARGET_X86_64
169 if (env->eflags & VM_MASK) {
170 handle_vm86_trap(env, trapnr);
171 } else
172 #endif
173 {
174 /* division by zero */
175 info.si_signo = TARGET_SIGFPE;
176 info.si_errno = 0;
177 info.si_code = TARGET_FPE_INTDIV;
178 info._sifields._sigfault._addr = env->eip;
179 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
180 }
181 break;
182 case EXCP01_DB:
183 case EXCP03_INT3:
184 #ifndef TARGET_X86_64
185 if (env->eflags & VM_MASK) {
186 handle_vm86_trap(env, trapnr);
187 } else
188 #endif
189 {
190 info.si_signo = TARGET_SIGTRAP;
191 info.si_errno = 0;
192 if (trapnr == EXCP01_DB) {
193 info.si_code = TARGET_TRAP_BRKPT;
194 info._sifields._sigfault._addr = env->eip;
195 } else {
196 info.si_code = TARGET_SI_KERNEL;
197 info._sifields._sigfault._addr = 0;
198 }
199 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
200 }
201 break;
202 case EXCP04_INTO:
203 case EXCP05_BOUND:
204 #ifndef TARGET_X86_64
205 if (env->eflags & VM_MASK) {
206 handle_vm86_trap(env, trapnr);
207 } else
208 #endif
209 {
210 info.si_signo = TARGET_SIGSEGV;
211 info.si_errno = 0;
212 info.si_code = TARGET_SI_KERNEL;
213 info._sifields._sigfault._addr = 0;
214 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
215 }
216 break;
217 case EXCP06_ILLOP:
218 info.si_signo = TARGET_SIGILL;
219 info.si_errno = 0;
220 info.si_code = TARGET_ILL_ILLOPN;
221 info._sifields._sigfault._addr = env->eip;
222 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
223 break;
224 case EXCP_INTERRUPT:
225 /* just indicate that signals should be handled asap */
226 break;
227 case EXCP_DEBUG:
228 {
229 int sig;
230
231 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
232 if (sig)
233 {
234 info.si_signo = sig;
235 info.si_errno = 0;
236 info.si_code = TARGET_TRAP_BRKPT;
237 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
238 }
239 }
240 break;
241 case EXCP_ATOMIC:
242 cpu_exec_step_atomic(cs);
243 break;
244 default:
245 pc = env->segs[R_CS].base + env->eip;
246 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
247 (long)pc, trapnr);
248 abort();
249 }
250 process_pending_signals(env);
251 }
252 }
253
254 void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
255 {
256 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
257 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
258 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
259 env->cr[4] |= CR4_OSFXSR_MASK;
260 env->hflags |= HF_OSFXSR_MASK;
261 }
262 #ifndef TARGET_ABI32
263 /* enable 64 bit mode if possible */
264 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
265 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
266 exit(EXIT_FAILURE);
267 }
268 env->cr[4] |= CR4_PAE_MASK;
269 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
270 env->hflags |= HF_LMA_MASK;
271 #endif
272
273 /* flags setup : we activate the IRQs by default as in user mode */
274 env->eflags |= IF_MASK;
275
276 /* linux register setup */
277 #ifndef TARGET_ABI32
278 env->regs[R_EAX] = regs->rax;
279 env->regs[R_EBX] = regs->rbx;
280 env->regs[R_ECX] = regs->rcx;
281 env->regs[R_EDX] = regs->rdx;
282 env->regs[R_ESI] = regs->rsi;
283 env->regs[R_EDI] = regs->rdi;
284 env->regs[R_EBP] = regs->rbp;
285 env->regs[R_ESP] = regs->rsp;
286 env->eip = regs->rip;
287 #else
288 env->regs[R_EAX] = regs->eax;
289 env->regs[R_EBX] = regs->ebx;
290 env->regs[R_ECX] = regs->ecx;
291 env->regs[R_EDX] = regs->edx;
292 env->regs[R_ESI] = regs->esi;
293 env->regs[R_EDI] = regs->edi;
294 env->regs[R_EBP] = regs->ebp;
295 env->regs[R_ESP] = regs->esp;
296 env->eip = regs->eip;
297 #endif
298
299 /* linux interrupt setup */
300 #ifndef TARGET_ABI32
301 env->idt.limit = 511;
302 #else
303 env->idt.limit = 255;
304 #endif
305 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
306 PROT_READ|PROT_WRITE,
307 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
308 idt_table = g2h(env->idt.base);
309 set_idt(0, 0);
310 set_idt(1, 0);
311 set_idt(2, 0);
312 set_idt(3, 3);
313 set_idt(4, 3);
314 set_idt(5, 0);
315 set_idt(6, 0);
316 set_idt(7, 0);
317 set_idt(8, 0);
318 set_idt(9, 0);
319 set_idt(10, 0);
320 set_idt(11, 0);
321 set_idt(12, 0);
322 set_idt(13, 0);
323 set_idt(14, 0);
324 set_idt(15, 0);
325 set_idt(16, 0);
326 set_idt(17, 0);
327 set_idt(18, 0);
328 set_idt(19, 0);
329 set_idt(0x80, 3);
330
331 /* linux segment setup */
332 {
333 uint64_t *gdt_table;
334 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
335 PROT_READ|PROT_WRITE,
336 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
337 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
338 gdt_table = g2h(env->gdt.base);
339 #ifdef TARGET_ABI32
340 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
341 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
342 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
343 #else
344 /* 64 bit code segment */
345 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
346 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
347 DESC_L_MASK |
348 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
349 #endif
350 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
351 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
352 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
353 }
354 cpu_x86_load_seg(env, R_CS, __USER_CS);
355 cpu_x86_load_seg(env, R_SS, __USER_DS);
356 #ifdef TARGET_ABI32
357 cpu_x86_load_seg(env, R_DS, __USER_DS);
358 cpu_x86_load_seg(env, R_ES, __USER_DS);
359 cpu_x86_load_seg(env, R_FS, __USER_DS);
360 cpu_x86_load_seg(env, R_GS, __USER_DS);
361 /* This hack makes Wine work... */
362 env->segs[R_FS].selector = 0;
363 #else
364 cpu_x86_load_seg(env, R_DS, 0);
365 cpu_x86_load_seg(env, R_ES, 0);
366 cpu_x86_load_seg(env, R_FS, 0);
367 cpu_x86_load_seg(env, R_GS, 0);
368 #endif
369 }