]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/main.c
linux-user: Fix openrisc cpu_loop
[mirror_qemu.git] / linux-user / main.c
1 /*
2 * qemu user main
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu-version.h"
21 #include <sys/syscall.h>
22 #include <sys/resource.h>
23
24 #include "qapi/error.h"
25 #include "qemu.h"
26 #include "qemu/path.h"
27 #include "qemu/config-file.h"
28 #include "qemu/cutils.h"
29 #include "qemu/help_option.h"
30 #include "cpu.h"
31 #include "exec/exec-all.h"
32 #include "tcg.h"
33 #include "qemu/timer.h"
34 #include "qemu/envlist.h"
35 #include "elf.h"
36 #include "exec/log.h"
37 #include "trace/control.h"
38 #include "glib-compat.h"
39
40 char *exec_path;
41
42 int singlestep;
43 static const char *filename;
44 static const char *argv0;
45 static int gdbstub_port;
46 static envlist_t *envlist;
47 static const char *cpu_model;
48 unsigned long mmap_min_addr;
49 unsigned long guest_base;
50 int have_guest_base;
51
52 #define EXCP_DUMP(env, fmt, ...) \
53 do { \
54 CPUState *cs = ENV_GET_CPU(env); \
55 fprintf(stderr, fmt , ## __VA_ARGS__); \
56 cpu_dump_state(cs, stderr, fprintf, 0); \
57 if (qemu_log_separate()) { \
58 qemu_log(fmt, ## __VA_ARGS__); \
59 log_cpu_state(cs, 0); \
60 } \
61 } while (0)
62
63 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
64 /*
65 * When running 32-on-64 we should make sure we can fit all of the possible
66 * guest address space into a contiguous chunk of virtual host memory.
67 *
68 * This way we will never overlap with our own libraries or binaries or stack
69 * or anything else that QEMU maps.
70 */
71 # if defined(TARGET_MIPS) || defined(TARGET_NIOS2)
72 /*
73 * MIPS only supports 31 bits of virtual address space for user space.
74 * Nios2 also only supports 31 bits.
75 */
76 unsigned long reserved_va = 0x77000000;
77 # else
78 unsigned long reserved_va = 0xf7000000;
79 # endif
80 #else
81 unsigned long reserved_va;
82 #endif
83
84 static void usage(int exitcode);
85
86 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
87 const char *qemu_uname_release;
88
89 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
90 we allocate a bigger stack. Need a better solution, for example
91 by remapping the process stack directly at the right place */
92 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
93
94 void gemu_log(const char *fmt, ...)
95 {
96 va_list ap;
97
98 va_start(ap, fmt);
99 vfprintf(stderr, fmt, ap);
100 va_end(ap);
101 }
102
103 #if defined(TARGET_I386)
104 int cpu_get_pic_interrupt(CPUX86State *env)
105 {
106 return -1;
107 }
108 #endif
109
110 /***********************************************************/
111 /* Helper routines for implementing atomic operations. */
112
113 /* Make sure everything is in a consistent state for calling fork(). */
114 void fork_start(void)
115 {
116 cpu_list_lock();
117 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
118 mmap_fork_start();
119 }
120
121 void fork_end(int child)
122 {
123 mmap_fork_end(child);
124 if (child) {
125 CPUState *cpu, *next_cpu;
126 /* Child processes created by fork() only have a single thread.
127 Discard information about the parent threads. */
128 CPU_FOREACH_SAFE(cpu, next_cpu) {
129 if (cpu != thread_cpu) {
130 QTAILQ_REMOVE(&cpus, cpu, node);
131 }
132 }
133 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
134 qemu_init_cpu_list();
135 gdbserver_fork(thread_cpu);
136 } else {
137 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
138 cpu_list_unlock();
139 }
140 }
141
142 #ifdef TARGET_I386
143 /***********************************************************/
144 /* CPUX86 core interface */
145
146 uint64_t cpu_get_tsc(CPUX86State *env)
147 {
148 return cpu_get_host_ticks();
149 }
150
151 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
152 int flags)
153 {
154 unsigned int e1, e2;
155 uint32_t *p;
156 e1 = (addr << 16) | (limit & 0xffff);
157 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
158 e2 |= flags;
159 p = ptr;
160 p[0] = tswap32(e1);
161 p[1] = tswap32(e2);
162 }
163
164 static uint64_t *idt_table;
165 #ifdef TARGET_X86_64
166 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
167 uint64_t addr, unsigned int sel)
168 {
169 uint32_t *p, e1, e2;
170 e1 = (addr & 0xffff) | (sel << 16);
171 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
172 p = ptr;
173 p[0] = tswap32(e1);
174 p[1] = tswap32(e2);
175 p[2] = tswap32(addr >> 32);
176 p[3] = 0;
177 }
178 /* only dpl matters as we do only user space emulation */
179 static void set_idt(int n, unsigned int dpl)
180 {
181 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
182 }
183 #else
184 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
185 uint32_t addr, unsigned int sel)
186 {
187 uint32_t *p, e1, e2;
188 e1 = (addr & 0xffff) | (sel << 16);
189 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
190 p = ptr;
191 p[0] = tswap32(e1);
192 p[1] = tswap32(e2);
193 }
194
195 /* only dpl matters as we do only user space emulation */
196 static void set_idt(int n, unsigned int dpl)
197 {
198 set_gate(idt_table + n, 0, dpl, 0, 0);
199 }
200 #endif
201
202 void cpu_loop(CPUX86State *env)
203 {
204 CPUState *cs = CPU(x86_env_get_cpu(env));
205 int trapnr;
206 abi_ulong pc;
207 abi_ulong ret;
208 target_siginfo_t info;
209
210 for(;;) {
211 cpu_exec_start(cs);
212 trapnr = cpu_exec(cs);
213 cpu_exec_end(cs);
214 process_queued_cpu_work(cs);
215
216 switch(trapnr) {
217 case 0x80:
218 /* linux syscall from int $0x80 */
219 ret = do_syscall(env,
220 env->regs[R_EAX],
221 env->regs[R_EBX],
222 env->regs[R_ECX],
223 env->regs[R_EDX],
224 env->regs[R_ESI],
225 env->regs[R_EDI],
226 env->regs[R_EBP],
227 0, 0);
228 if (ret == -TARGET_ERESTARTSYS) {
229 env->eip -= 2;
230 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
231 env->regs[R_EAX] = ret;
232 }
233 break;
234 #ifndef TARGET_ABI32
235 case EXCP_SYSCALL:
236 /* linux syscall from syscall instruction */
237 ret = do_syscall(env,
238 env->regs[R_EAX],
239 env->regs[R_EDI],
240 env->regs[R_ESI],
241 env->regs[R_EDX],
242 env->regs[10],
243 env->regs[8],
244 env->regs[9],
245 0, 0);
246 if (ret == -TARGET_ERESTARTSYS) {
247 env->eip -= 2;
248 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
249 env->regs[R_EAX] = ret;
250 }
251 break;
252 #endif
253 case EXCP0B_NOSEG:
254 case EXCP0C_STACK:
255 info.si_signo = TARGET_SIGBUS;
256 info.si_errno = 0;
257 info.si_code = TARGET_SI_KERNEL;
258 info._sifields._sigfault._addr = 0;
259 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
260 break;
261 case EXCP0D_GPF:
262 /* XXX: potential problem if ABI32 */
263 #ifndef TARGET_X86_64
264 if (env->eflags & VM_MASK) {
265 handle_vm86_fault(env);
266 } else
267 #endif
268 {
269 info.si_signo = TARGET_SIGSEGV;
270 info.si_errno = 0;
271 info.si_code = TARGET_SI_KERNEL;
272 info._sifields._sigfault._addr = 0;
273 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
274 }
275 break;
276 case EXCP0E_PAGE:
277 info.si_signo = TARGET_SIGSEGV;
278 info.si_errno = 0;
279 if (!(env->error_code & 1))
280 info.si_code = TARGET_SEGV_MAPERR;
281 else
282 info.si_code = TARGET_SEGV_ACCERR;
283 info._sifields._sigfault._addr = env->cr[2];
284 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
285 break;
286 case EXCP00_DIVZ:
287 #ifndef TARGET_X86_64
288 if (env->eflags & VM_MASK) {
289 handle_vm86_trap(env, trapnr);
290 } else
291 #endif
292 {
293 /* division by zero */
294 info.si_signo = TARGET_SIGFPE;
295 info.si_errno = 0;
296 info.si_code = TARGET_FPE_INTDIV;
297 info._sifields._sigfault._addr = env->eip;
298 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
299 }
300 break;
301 case EXCP01_DB:
302 case EXCP03_INT3:
303 #ifndef TARGET_X86_64
304 if (env->eflags & VM_MASK) {
305 handle_vm86_trap(env, trapnr);
306 } else
307 #endif
308 {
309 info.si_signo = TARGET_SIGTRAP;
310 info.si_errno = 0;
311 if (trapnr == EXCP01_DB) {
312 info.si_code = TARGET_TRAP_BRKPT;
313 info._sifields._sigfault._addr = env->eip;
314 } else {
315 info.si_code = TARGET_SI_KERNEL;
316 info._sifields._sigfault._addr = 0;
317 }
318 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
319 }
320 break;
321 case EXCP04_INTO:
322 case EXCP05_BOUND:
323 #ifndef TARGET_X86_64
324 if (env->eflags & VM_MASK) {
325 handle_vm86_trap(env, trapnr);
326 } else
327 #endif
328 {
329 info.si_signo = TARGET_SIGSEGV;
330 info.si_errno = 0;
331 info.si_code = TARGET_SI_KERNEL;
332 info._sifields._sigfault._addr = 0;
333 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
334 }
335 break;
336 case EXCP06_ILLOP:
337 info.si_signo = TARGET_SIGILL;
338 info.si_errno = 0;
339 info.si_code = TARGET_ILL_ILLOPN;
340 info._sifields._sigfault._addr = env->eip;
341 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
342 break;
343 case EXCP_INTERRUPT:
344 /* just indicate that signals should be handled asap */
345 break;
346 case EXCP_DEBUG:
347 {
348 int sig;
349
350 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
351 if (sig)
352 {
353 info.si_signo = sig;
354 info.si_errno = 0;
355 info.si_code = TARGET_TRAP_BRKPT;
356 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
357 }
358 }
359 break;
360 case EXCP_ATOMIC:
361 cpu_exec_step_atomic(cs);
362 break;
363 default:
364 pc = env->segs[R_CS].base + env->eip;
365 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
366 (long)pc, trapnr);
367 abort();
368 }
369 process_pending_signals(env);
370 }
371 }
372 #endif
373
374 #ifdef TARGET_ARM
375
376 #define get_user_code_u32(x, gaddr, env) \
377 ({ abi_long __r = get_user_u32((x), (gaddr)); \
378 if (!__r && bswap_code(arm_sctlr_b(env))) { \
379 (x) = bswap32(x); \
380 } \
381 __r; \
382 })
383
384 #define get_user_code_u16(x, gaddr, env) \
385 ({ abi_long __r = get_user_u16((x), (gaddr)); \
386 if (!__r && bswap_code(arm_sctlr_b(env))) { \
387 (x) = bswap16(x); \
388 } \
389 __r; \
390 })
391
392 #define get_user_data_u32(x, gaddr, env) \
393 ({ abi_long __r = get_user_u32((x), (gaddr)); \
394 if (!__r && arm_cpu_bswap_data(env)) { \
395 (x) = bswap32(x); \
396 } \
397 __r; \
398 })
399
400 #define get_user_data_u16(x, gaddr, env) \
401 ({ abi_long __r = get_user_u16((x), (gaddr)); \
402 if (!__r && arm_cpu_bswap_data(env)) { \
403 (x) = bswap16(x); \
404 } \
405 __r; \
406 })
407
408 #define put_user_data_u32(x, gaddr, env) \
409 ({ typeof(x) __x = (x); \
410 if (arm_cpu_bswap_data(env)) { \
411 __x = bswap32(__x); \
412 } \
413 put_user_u32(__x, (gaddr)); \
414 })
415
416 #define put_user_data_u16(x, gaddr, env) \
417 ({ typeof(x) __x = (x); \
418 if (arm_cpu_bswap_data(env)) { \
419 __x = bswap16(__x); \
420 } \
421 put_user_u16(__x, (gaddr)); \
422 })
423
424 #ifdef TARGET_ABI32
425 /* Commpage handling -- there is no commpage for AArch64 */
426
427 /*
428 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
429 * Input:
430 * r0 = pointer to oldval
431 * r1 = pointer to newval
432 * r2 = pointer to target value
433 *
434 * Output:
435 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
436 * C set if *ptr was changed, clear if no exchange happened
437 *
438 * Note segv's in kernel helpers are a bit tricky, we can set the
439 * data address sensibly but the PC address is just the entry point.
440 */
441 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
442 {
443 uint64_t oldval, newval, val;
444 uint32_t addr, cpsr;
445 target_siginfo_t info;
446
447 /* Based on the 32 bit code in do_kernel_trap */
448
449 /* XXX: This only works between threads, not between processes.
450 It's probably possible to implement this with native host
451 operations. However things like ldrex/strex are much harder so
452 there's not much point trying. */
453 start_exclusive();
454 cpsr = cpsr_read(env);
455 addr = env->regs[2];
456
457 if (get_user_u64(oldval, env->regs[0])) {
458 env->exception.vaddress = env->regs[0];
459 goto segv;
460 };
461
462 if (get_user_u64(newval, env->regs[1])) {
463 env->exception.vaddress = env->regs[1];
464 goto segv;
465 };
466
467 if (get_user_u64(val, addr)) {
468 env->exception.vaddress = addr;
469 goto segv;
470 }
471
472 if (val == oldval) {
473 val = newval;
474
475 if (put_user_u64(val, addr)) {
476 env->exception.vaddress = addr;
477 goto segv;
478 };
479
480 env->regs[0] = 0;
481 cpsr |= CPSR_C;
482 } else {
483 env->regs[0] = -1;
484 cpsr &= ~CPSR_C;
485 }
486 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
487 end_exclusive();
488 return;
489
490 segv:
491 end_exclusive();
492 /* We get the PC of the entry address - which is as good as anything,
493 on a real kernel what you get depends on which mode it uses. */
494 info.si_signo = TARGET_SIGSEGV;
495 info.si_errno = 0;
496 /* XXX: check env->error_code */
497 info.si_code = TARGET_SEGV_MAPERR;
498 info._sifields._sigfault._addr = env->exception.vaddress;
499 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
500 }
501
502 /* Handle a jump to the kernel code page. */
503 static int
504 do_kernel_trap(CPUARMState *env)
505 {
506 uint32_t addr;
507 uint32_t cpsr;
508 uint32_t val;
509
510 switch (env->regs[15]) {
511 case 0xffff0fa0: /* __kernel_memory_barrier */
512 /* ??? No-op. Will need to do better for SMP. */
513 break;
514 case 0xffff0fc0: /* __kernel_cmpxchg */
515 /* XXX: This only works between threads, not between processes.
516 It's probably possible to implement this with native host
517 operations. However things like ldrex/strex are much harder so
518 there's not much point trying. */
519 start_exclusive();
520 cpsr = cpsr_read(env);
521 addr = env->regs[2];
522 /* FIXME: This should SEGV if the access fails. */
523 if (get_user_u32(val, addr))
524 val = ~env->regs[0];
525 if (val == env->regs[0]) {
526 val = env->regs[1];
527 /* FIXME: Check for segfaults. */
528 put_user_u32(val, addr);
529 env->regs[0] = 0;
530 cpsr |= CPSR_C;
531 } else {
532 env->regs[0] = -1;
533 cpsr &= ~CPSR_C;
534 }
535 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
536 end_exclusive();
537 break;
538 case 0xffff0fe0: /* __kernel_get_tls */
539 env->regs[0] = cpu_get_tls(env);
540 break;
541 case 0xffff0f60: /* __kernel_cmpxchg64 */
542 arm_kernel_cmpxchg64_helper(env);
543 break;
544
545 default:
546 return 1;
547 }
548 /* Jump back to the caller. */
549 addr = env->regs[14];
550 if (addr & 1) {
551 env->thumb = 1;
552 addr &= ~1;
553 }
554 env->regs[15] = addr;
555
556 return 0;
557 }
558
559 void cpu_loop(CPUARMState *env)
560 {
561 CPUState *cs = CPU(arm_env_get_cpu(env));
562 int trapnr;
563 unsigned int n, insn;
564 target_siginfo_t info;
565 uint32_t addr;
566 abi_ulong ret;
567
568 for(;;) {
569 cpu_exec_start(cs);
570 trapnr = cpu_exec(cs);
571 cpu_exec_end(cs);
572 process_queued_cpu_work(cs);
573
574 switch(trapnr) {
575 case EXCP_UDEF:
576 case EXCP_NOCP:
577 {
578 TaskState *ts = cs->opaque;
579 uint32_t opcode;
580 int rc;
581
582 /* we handle the FPU emulation here, as Linux */
583 /* we get the opcode */
584 /* FIXME - what to do if get_user() fails? */
585 get_user_code_u32(opcode, env->regs[15], env);
586
587 rc = EmulateAll(opcode, &ts->fpa, env);
588 if (rc == 0) { /* illegal instruction */
589 info.si_signo = TARGET_SIGILL;
590 info.si_errno = 0;
591 info.si_code = TARGET_ILL_ILLOPN;
592 info._sifields._sigfault._addr = env->regs[15];
593 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
594 } else if (rc < 0) { /* FP exception */
595 int arm_fpe=0;
596
597 /* translate softfloat flags to FPSR flags */
598 if (-rc & float_flag_invalid)
599 arm_fpe |= BIT_IOC;
600 if (-rc & float_flag_divbyzero)
601 arm_fpe |= BIT_DZC;
602 if (-rc & float_flag_overflow)
603 arm_fpe |= BIT_OFC;
604 if (-rc & float_flag_underflow)
605 arm_fpe |= BIT_UFC;
606 if (-rc & float_flag_inexact)
607 arm_fpe |= BIT_IXC;
608
609 FPSR fpsr = ts->fpa.fpsr;
610 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
611
612 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
613 info.si_signo = TARGET_SIGFPE;
614 info.si_errno = 0;
615
616 /* ordered by priority, least first */
617 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
618 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
619 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
620 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
621 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
622
623 info._sifields._sigfault._addr = env->regs[15];
624 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
625 } else {
626 env->regs[15] += 4;
627 }
628
629 /* accumulate unenabled exceptions */
630 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
631 fpsr |= BIT_IXC;
632 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
633 fpsr |= BIT_UFC;
634 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
635 fpsr |= BIT_OFC;
636 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
637 fpsr |= BIT_DZC;
638 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
639 fpsr |= BIT_IOC;
640 ts->fpa.fpsr=fpsr;
641 } else { /* everything OK */
642 /* increment PC */
643 env->regs[15] += 4;
644 }
645 }
646 break;
647 case EXCP_SWI:
648 case EXCP_BKPT:
649 {
650 env->eabi = 1;
651 /* system call */
652 if (trapnr == EXCP_BKPT) {
653 if (env->thumb) {
654 /* FIXME - what to do if get_user() fails? */
655 get_user_code_u16(insn, env->regs[15], env);
656 n = insn & 0xff;
657 env->regs[15] += 2;
658 } else {
659 /* FIXME - what to do if get_user() fails? */
660 get_user_code_u32(insn, env->regs[15], env);
661 n = (insn & 0xf) | ((insn >> 4) & 0xff0);
662 env->regs[15] += 4;
663 }
664 } else {
665 if (env->thumb) {
666 /* FIXME - what to do if get_user() fails? */
667 get_user_code_u16(insn, env->regs[15] - 2, env);
668 n = insn & 0xff;
669 } else {
670 /* FIXME - what to do if get_user() fails? */
671 get_user_code_u32(insn, env->regs[15] - 4, env);
672 n = insn & 0xffffff;
673 }
674 }
675
676 if (n == ARM_NR_cacheflush) {
677 /* nop */
678 } else if (n == ARM_NR_semihosting
679 || n == ARM_NR_thumb_semihosting) {
680 env->regs[0] = do_arm_semihosting (env);
681 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
682 /* linux syscall */
683 if (env->thumb || n == 0) {
684 n = env->regs[7];
685 } else {
686 n -= ARM_SYSCALL_BASE;
687 env->eabi = 0;
688 }
689 if ( n > ARM_NR_BASE) {
690 switch (n) {
691 case ARM_NR_cacheflush:
692 /* nop */
693 break;
694 case ARM_NR_set_tls:
695 cpu_set_tls(env, env->regs[0]);
696 env->regs[0] = 0;
697 break;
698 case ARM_NR_breakpoint:
699 env->regs[15] -= env->thumb ? 2 : 4;
700 goto excp_debug;
701 default:
702 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
703 n);
704 env->regs[0] = -TARGET_ENOSYS;
705 break;
706 }
707 } else {
708 ret = do_syscall(env,
709 n,
710 env->regs[0],
711 env->regs[1],
712 env->regs[2],
713 env->regs[3],
714 env->regs[4],
715 env->regs[5],
716 0, 0);
717 if (ret == -TARGET_ERESTARTSYS) {
718 env->regs[15] -= env->thumb ? 2 : 4;
719 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
720 env->regs[0] = ret;
721 }
722 }
723 } else {
724 goto error;
725 }
726 }
727 break;
728 case EXCP_SEMIHOST:
729 env->regs[0] = do_arm_semihosting(env);
730 break;
731 case EXCP_INTERRUPT:
732 /* just indicate that signals should be handled asap */
733 break;
734 case EXCP_PREFETCH_ABORT:
735 case EXCP_DATA_ABORT:
736 addr = env->exception.vaddress;
737 {
738 info.si_signo = TARGET_SIGSEGV;
739 info.si_errno = 0;
740 /* XXX: check env->error_code */
741 info.si_code = TARGET_SEGV_MAPERR;
742 info._sifields._sigfault._addr = addr;
743 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
744 }
745 break;
746 case EXCP_DEBUG:
747 excp_debug:
748 {
749 int sig;
750
751 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
752 if (sig)
753 {
754 info.si_signo = sig;
755 info.si_errno = 0;
756 info.si_code = TARGET_TRAP_BRKPT;
757 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
758 }
759 }
760 break;
761 case EXCP_KERNEL_TRAP:
762 if (do_kernel_trap(env))
763 goto error;
764 break;
765 case EXCP_YIELD:
766 /* nothing to do here for user-mode, just resume guest code */
767 break;
768 case EXCP_ATOMIC:
769 cpu_exec_step_atomic(cs);
770 break;
771 default:
772 error:
773 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
774 abort();
775 }
776 process_pending_signals(env);
777 }
778 }
779
780 #else
781
782 /* AArch64 main loop */
783 void cpu_loop(CPUARMState *env)
784 {
785 CPUState *cs = CPU(arm_env_get_cpu(env));
786 int trapnr, sig;
787 abi_long ret;
788 target_siginfo_t info;
789
790 for (;;) {
791 cpu_exec_start(cs);
792 trapnr = cpu_exec(cs);
793 cpu_exec_end(cs);
794 process_queued_cpu_work(cs);
795
796 switch (trapnr) {
797 case EXCP_SWI:
798 ret = do_syscall(env,
799 env->xregs[8],
800 env->xregs[0],
801 env->xregs[1],
802 env->xregs[2],
803 env->xregs[3],
804 env->xregs[4],
805 env->xregs[5],
806 0, 0);
807 if (ret == -TARGET_ERESTARTSYS) {
808 env->pc -= 4;
809 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
810 env->xregs[0] = ret;
811 }
812 break;
813 case EXCP_INTERRUPT:
814 /* just indicate that signals should be handled asap */
815 break;
816 case EXCP_UDEF:
817 info.si_signo = TARGET_SIGILL;
818 info.si_errno = 0;
819 info.si_code = TARGET_ILL_ILLOPN;
820 info._sifields._sigfault._addr = env->pc;
821 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
822 break;
823 case EXCP_PREFETCH_ABORT:
824 case EXCP_DATA_ABORT:
825 info.si_signo = TARGET_SIGSEGV;
826 info.si_errno = 0;
827 /* XXX: check env->error_code */
828 info.si_code = TARGET_SEGV_MAPERR;
829 info._sifields._sigfault._addr = env->exception.vaddress;
830 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
831 break;
832 case EXCP_DEBUG:
833 case EXCP_BKPT:
834 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
835 if (sig) {
836 info.si_signo = sig;
837 info.si_errno = 0;
838 info.si_code = TARGET_TRAP_BRKPT;
839 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
840 }
841 break;
842 case EXCP_SEMIHOST:
843 env->xregs[0] = do_arm_semihosting(env);
844 break;
845 case EXCP_YIELD:
846 /* nothing to do here for user-mode, just resume guest code */
847 break;
848 case EXCP_ATOMIC:
849 cpu_exec_step_atomic(cs);
850 break;
851 default:
852 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
853 abort();
854 }
855 process_pending_signals(env);
856 /* Exception return on AArch64 always clears the exclusive monitor,
857 * so any return to running guest code implies this.
858 */
859 env->exclusive_addr = -1;
860 }
861 }
862 #endif /* ndef TARGET_ABI32 */
863
864 #endif
865
866 #ifdef TARGET_UNICORE32
867
868 void cpu_loop(CPUUniCore32State *env)
869 {
870 CPUState *cs = CPU(uc32_env_get_cpu(env));
871 int trapnr;
872 unsigned int n, insn;
873 target_siginfo_t info;
874
875 for (;;) {
876 cpu_exec_start(cs);
877 trapnr = cpu_exec(cs);
878 cpu_exec_end(cs);
879 process_queued_cpu_work(cs);
880
881 switch (trapnr) {
882 case UC32_EXCP_PRIV:
883 {
884 /* system call */
885 get_user_u32(insn, env->regs[31] - 4);
886 n = insn & 0xffffff;
887
888 if (n >= UC32_SYSCALL_BASE) {
889 /* linux syscall */
890 n -= UC32_SYSCALL_BASE;
891 if (n == UC32_SYSCALL_NR_set_tls) {
892 cpu_set_tls(env, env->regs[0]);
893 env->regs[0] = 0;
894 } else {
895 abi_long ret = do_syscall(env,
896 n,
897 env->regs[0],
898 env->regs[1],
899 env->regs[2],
900 env->regs[3],
901 env->regs[4],
902 env->regs[5],
903 0, 0);
904 if (ret == -TARGET_ERESTARTSYS) {
905 env->regs[31] -= 4;
906 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
907 env->regs[0] = ret;
908 }
909 }
910 } else {
911 goto error;
912 }
913 }
914 break;
915 case UC32_EXCP_DTRAP:
916 case UC32_EXCP_ITRAP:
917 info.si_signo = TARGET_SIGSEGV;
918 info.si_errno = 0;
919 /* XXX: check env->error_code */
920 info.si_code = TARGET_SEGV_MAPERR;
921 info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
922 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
923 break;
924 case EXCP_INTERRUPT:
925 /* just indicate that signals should be handled asap */
926 break;
927 case EXCP_DEBUG:
928 {
929 int sig;
930
931 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
932 if (sig) {
933 info.si_signo = sig;
934 info.si_errno = 0;
935 info.si_code = TARGET_TRAP_BRKPT;
936 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
937 }
938 }
939 break;
940 case EXCP_ATOMIC:
941 cpu_exec_step_atomic(cs);
942 break;
943 default:
944 goto error;
945 }
946 process_pending_signals(env);
947 }
948
949 error:
950 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
951 abort();
952 }
953 #endif
954
955 #ifdef TARGET_SPARC
956 #define SPARC64_STACK_BIAS 2047
957
958 //#define DEBUG_WIN
959
960 /* WARNING: dealing with register windows _is_ complicated. More info
961 can be found at http://www.sics.se/~psm/sparcstack.html */
962 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
963 {
964 index = (index + cwp * 16) % (16 * env->nwindows);
965 /* wrap handling : if cwp is on the last window, then we use the
966 registers 'after' the end */
967 if (index < 8 && env->cwp == env->nwindows - 1)
968 index += 16 * env->nwindows;
969 return index;
970 }
971
972 /* save the register window 'cwp1' */
973 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
974 {
975 unsigned int i;
976 abi_ulong sp_ptr;
977
978 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
979 #ifdef TARGET_SPARC64
980 if (sp_ptr & 3)
981 sp_ptr += SPARC64_STACK_BIAS;
982 #endif
983 #if defined(DEBUG_WIN)
984 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
985 sp_ptr, cwp1);
986 #endif
987 for(i = 0; i < 16; i++) {
988 /* FIXME - what to do if put_user() fails? */
989 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
990 sp_ptr += sizeof(abi_ulong);
991 }
992 }
993
994 static void save_window(CPUSPARCState *env)
995 {
996 #ifndef TARGET_SPARC64
997 unsigned int new_wim;
998 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
999 ((1LL << env->nwindows) - 1);
1000 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1001 env->wim = new_wim;
1002 #else
1003 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1004 env->cansave++;
1005 env->canrestore--;
1006 #endif
1007 }
1008
1009 static void restore_window(CPUSPARCState *env)
1010 {
1011 #ifndef TARGET_SPARC64
1012 unsigned int new_wim;
1013 #endif
1014 unsigned int i, cwp1;
1015 abi_ulong sp_ptr;
1016
1017 #ifndef TARGET_SPARC64
1018 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1019 ((1LL << env->nwindows) - 1);
1020 #endif
1021
1022 /* restore the invalid window */
1023 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1024 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1025 #ifdef TARGET_SPARC64
1026 if (sp_ptr & 3)
1027 sp_ptr += SPARC64_STACK_BIAS;
1028 #endif
1029 #if defined(DEBUG_WIN)
1030 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1031 sp_ptr, cwp1);
1032 #endif
1033 for(i = 0; i < 16; i++) {
1034 /* FIXME - what to do if get_user() fails? */
1035 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1036 sp_ptr += sizeof(abi_ulong);
1037 }
1038 #ifdef TARGET_SPARC64
1039 env->canrestore++;
1040 if (env->cleanwin < env->nwindows - 1)
1041 env->cleanwin++;
1042 env->cansave--;
1043 #else
1044 env->wim = new_wim;
1045 #endif
1046 }
1047
1048 static void flush_windows(CPUSPARCState *env)
1049 {
1050 int offset, cwp1;
1051
1052 offset = 1;
1053 for(;;) {
1054 /* if restore would invoke restore_window(), then we can stop */
1055 cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1056 #ifndef TARGET_SPARC64
1057 if (env->wim & (1 << cwp1))
1058 break;
1059 #else
1060 if (env->canrestore == 0)
1061 break;
1062 env->cansave++;
1063 env->canrestore--;
1064 #endif
1065 save_window_offset(env, cwp1);
1066 offset++;
1067 }
1068 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1069 #ifndef TARGET_SPARC64
1070 /* set wim so that restore will reload the registers */
1071 env->wim = 1 << cwp1;
1072 #endif
1073 #if defined(DEBUG_WIN)
1074 printf("flush_windows: nb=%d\n", offset - 1);
1075 #endif
1076 }
1077
1078 void cpu_loop (CPUSPARCState *env)
1079 {
1080 CPUState *cs = CPU(sparc_env_get_cpu(env));
1081 int trapnr;
1082 abi_long ret;
1083 target_siginfo_t info;
1084
1085 while (1) {
1086 cpu_exec_start(cs);
1087 trapnr = cpu_exec(cs);
1088 cpu_exec_end(cs);
1089 process_queued_cpu_work(cs);
1090
1091 /* Compute PSR before exposing state. */
1092 if (env->cc_op != CC_OP_FLAGS) {
1093 cpu_get_psr(env);
1094 }
1095
1096 switch (trapnr) {
1097 #ifndef TARGET_SPARC64
1098 case 0x88:
1099 case 0x90:
1100 #else
1101 case 0x110:
1102 case 0x16d:
1103 #endif
1104 ret = do_syscall (env, env->gregs[1],
1105 env->regwptr[0], env->regwptr[1],
1106 env->regwptr[2], env->regwptr[3],
1107 env->regwptr[4], env->regwptr[5],
1108 0, 0);
1109 if (ret == -TARGET_ERESTARTSYS || ret == -TARGET_QEMU_ESIGRETURN) {
1110 break;
1111 }
1112 if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1113 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1114 env->xcc |= PSR_CARRY;
1115 #else
1116 env->psr |= PSR_CARRY;
1117 #endif
1118 ret = -ret;
1119 } else {
1120 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1121 env->xcc &= ~PSR_CARRY;
1122 #else
1123 env->psr &= ~PSR_CARRY;
1124 #endif
1125 }
1126 env->regwptr[0] = ret;
1127 /* next instruction */
1128 env->pc = env->npc;
1129 env->npc = env->npc + 4;
1130 break;
1131 case 0x83: /* flush windows */
1132 #ifdef TARGET_ABI32
1133 case 0x103:
1134 #endif
1135 flush_windows(env);
1136 /* next instruction */
1137 env->pc = env->npc;
1138 env->npc = env->npc + 4;
1139 break;
1140 #ifndef TARGET_SPARC64
1141 case TT_WIN_OVF: /* window overflow */
1142 save_window(env);
1143 break;
1144 case TT_WIN_UNF: /* window underflow */
1145 restore_window(env);
1146 break;
1147 case TT_TFAULT:
1148 case TT_DFAULT:
1149 {
1150 info.si_signo = TARGET_SIGSEGV;
1151 info.si_errno = 0;
1152 /* XXX: check env->error_code */
1153 info.si_code = TARGET_SEGV_MAPERR;
1154 info._sifields._sigfault._addr = env->mmuregs[4];
1155 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1156 }
1157 break;
1158 #else
1159 case TT_SPILL: /* window overflow */
1160 save_window(env);
1161 break;
1162 case TT_FILL: /* window underflow */
1163 restore_window(env);
1164 break;
1165 case TT_TFAULT:
1166 case TT_DFAULT:
1167 {
1168 info.si_signo = TARGET_SIGSEGV;
1169 info.si_errno = 0;
1170 /* XXX: check env->error_code */
1171 info.si_code = TARGET_SEGV_MAPERR;
1172 if (trapnr == TT_DFAULT)
1173 info._sifields._sigfault._addr = env->dmmu.mmuregs[4];
1174 else
1175 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1176 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1177 }
1178 break;
1179 #ifndef TARGET_ABI32
1180 case 0x16e:
1181 flush_windows(env);
1182 sparc64_get_context(env);
1183 break;
1184 case 0x16f:
1185 flush_windows(env);
1186 sparc64_set_context(env);
1187 break;
1188 #endif
1189 #endif
1190 case EXCP_INTERRUPT:
1191 /* just indicate that signals should be handled asap */
1192 break;
1193 case TT_ILL_INSN:
1194 {
1195 info.si_signo = TARGET_SIGILL;
1196 info.si_errno = 0;
1197 info.si_code = TARGET_ILL_ILLOPC;
1198 info._sifields._sigfault._addr = env->pc;
1199 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1200 }
1201 break;
1202 case EXCP_DEBUG:
1203 {
1204 int sig;
1205
1206 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1207 if (sig)
1208 {
1209 info.si_signo = sig;
1210 info.si_errno = 0;
1211 info.si_code = TARGET_TRAP_BRKPT;
1212 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1213 }
1214 }
1215 break;
1216 case EXCP_ATOMIC:
1217 cpu_exec_step_atomic(cs);
1218 break;
1219 default:
1220 printf ("Unhandled trap: 0x%x\n", trapnr);
1221 cpu_dump_state(cs, stderr, fprintf, 0);
1222 exit(EXIT_FAILURE);
1223 }
1224 process_pending_signals (env);
1225 }
1226 }
1227
1228 #endif
1229
1230 #ifdef TARGET_PPC
1231 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1232 {
1233 return cpu_get_host_ticks();
1234 }
1235
1236 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1237 {
1238 return cpu_ppc_get_tb(env);
1239 }
1240
1241 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1242 {
1243 return cpu_ppc_get_tb(env) >> 32;
1244 }
1245
1246 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1247 {
1248 return cpu_ppc_get_tb(env);
1249 }
1250
1251 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1252 {
1253 return cpu_ppc_get_tb(env) >> 32;
1254 }
1255
1256 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1257 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1258
1259 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1260 {
1261 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1262 }
1263
1264 /* XXX: to be fixed */
1265 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1266 {
1267 return -1;
1268 }
1269
1270 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1271 {
1272 return -1;
1273 }
1274
1275 static int do_store_exclusive(CPUPPCState *env)
1276 {
1277 target_ulong addr;
1278 target_ulong page_addr;
1279 target_ulong val, val2 __attribute__((unused)) = 0;
1280 int flags;
1281 int segv = 0;
1282
1283 addr = env->reserve_ea;
1284 page_addr = addr & TARGET_PAGE_MASK;
1285 start_exclusive();
1286 mmap_lock();
1287 flags = page_get_flags(page_addr);
1288 if ((flags & PAGE_READ) == 0) {
1289 segv = 1;
1290 } else {
1291 int reg = env->reserve_info & 0x1f;
1292 int size = env->reserve_info >> 5;
1293 int stored = 0;
1294
1295 if (addr == env->reserve_addr) {
1296 switch (size) {
1297 case 1: segv = get_user_u8(val, addr); break;
1298 case 2: segv = get_user_u16(val, addr); break;
1299 case 4: segv = get_user_u32(val, addr); break;
1300 #if defined(TARGET_PPC64)
1301 case 8: segv = get_user_u64(val, addr); break;
1302 case 16: {
1303 segv = get_user_u64(val, addr);
1304 if (!segv) {
1305 segv = get_user_u64(val2, addr + 8);
1306 }
1307 break;
1308 }
1309 #endif
1310 default: abort();
1311 }
1312 if (!segv && val == env->reserve_val) {
1313 val = env->gpr[reg];
1314 switch (size) {
1315 case 1: segv = put_user_u8(val, addr); break;
1316 case 2: segv = put_user_u16(val, addr); break;
1317 case 4: segv = put_user_u32(val, addr); break;
1318 #if defined(TARGET_PPC64)
1319 case 8: segv = put_user_u64(val, addr); break;
1320 case 16: {
1321 if (val2 == env->reserve_val2) {
1322 if (msr_le) {
1323 val2 = val;
1324 val = env->gpr[reg+1];
1325 } else {
1326 val2 = env->gpr[reg+1];
1327 }
1328 segv = put_user_u64(val, addr);
1329 if (!segv) {
1330 segv = put_user_u64(val2, addr + 8);
1331 }
1332 }
1333 break;
1334 }
1335 #endif
1336 default: abort();
1337 }
1338 if (!segv) {
1339 stored = 1;
1340 }
1341 }
1342 }
1343 env->crf[0] = (stored << 1) | xer_so;
1344 env->reserve_addr = (target_ulong)-1;
1345 }
1346 if (!segv) {
1347 env->nip += 4;
1348 }
1349 mmap_unlock();
1350 end_exclusive();
1351 return segv;
1352 }
1353
1354 void cpu_loop(CPUPPCState *env)
1355 {
1356 CPUState *cs = CPU(ppc_env_get_cpu(env));
1357 target_siginfo_t info;
1358 int trapnr;
1359 target_ulong ret;
1360
1361 for(;;) {
1362 cpu_exec_start(cs);
1363 trapnr = cpu_exec(cs);
1364 cpu_exec_end(cs);
1365 process_queued_cpu_work(cs);
1366
1367 switch(trapnr) {
1368 case POWERPC_EXCP_NONE:
1369 /* Just go on */
1370 break;
1371 case POWERPC_EXCP_CRITICAL: /* Critical input */
1372 cpu_abort(cs, "Critical interrupt while in user mode. "
1373 "Aborting\n");
1374 break;
1375 case POWERPC_EXCP_MCHECK: /* Machine check exception */
1376 cpu_abort(cs, "Machine check exception while in user mode. "
1377 "Aborting\n");
1378 break;
1379 case POWERPC_EXCP_DSI: /* Data storage exception */
1380 /* XXX: check this. Seems bugged */
1381 switch (env->error_code & 0xFF000000) {
1382 case 0x40000000:
1383 case 0x42000000:
1384 info.si_signo = TARGET_SIGSEGV;
1385 info.si_errno = 0;
1386 info.si_code = TARGET_SEGV_MAPERR;
1387 break;
1388 case 0x04000000:
1389 info.si_signo = TARGET_SIGILL;
1390 info.si_errno = 0;
1391 info.si_code = TARGET_ILL_ILLADR;
1392 break;
1393 case 0x08000000:
1394 info.si_signo = TARGET_SIGSEGV;
1395 info.si_errno = 0;
1396 info.si_code = TARGET_SEGV_ACCERR;
1397 break;
1398 default:
1399 /* Let's send a regular segfault... */
1400 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1401 env->error_code);
1402 info.si_signo = TARGET_SIGSEGV;
1403 info.si_errno = 0;
1404 info.si_code = TARGET_SEGV_MAPERR;
1405 break;
1406 }
1407 info._sifields._sigfault._addr = env->nip;
1408 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1409 break;
1410 case POWERPC_EXCP_ISI: /* Instruction storage exception */
1411 /* XXX: check this */
1412 switch (env->error_code & 0xFF000000) {
1413 case 0x40000000:
1414 info.si_signo = TARGET_SIGSEGV;
1415 info.si_errno = 0;
1416 info.si_code = TARGET_SEGV_MAPERR;
1417 break;
1418 case 0x10000000:
1419 case 0x08000000:
1420 info.si_signo = TARGET_SIGSEGV;
1421 info.si_errno = 0;
1422 info.si_code = TARGET_SEGV_ACCERR;
1423 break;
1424 default:
1425 /* Let's send a regular segfault... */
1426 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1427 env->error_code);
1428 info.si_signo = TARGET_SIGSEGV;
1429 info.si_errno = 0;
1430 info.si_code = TARGET_SEGV_MAPERR;
1431 break;
1432 }
1433 info._sifields._sigfault._addr = env->nip - 4;
1434 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1435 break;
1436 case POWERPC_EXCP_EXTERNAL: /* External input */
1437 cpu_abort(cs, "External interrupt while in user mode. "
1438 "Aborting\n");
1439 break;
1440 case POWERPC_EXCP_ALIGN: /* Alignment exception */
1441 /* XXX: check this */
1442 info.si_signo = TARGET_SIGBUS;
1443 info.si_errno = 0;
1444 info.si_code = TARGET_BUS_ADRALN;
1445 info._sifields._sigfault._addr = env->nip;
1446 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1447 break;
1448 case POWERPC_EXCP_PROGRAM: /* Program exception */
1449 case POWERPC_EXCP_HV_EMU: /* HV emulation */
1450 /* XXX: check this */
1451 switch (env->error_code & ~0xF) {
1452 case POWERPC_EXCP_FP:
1453 info.si_signo = TARGET_SIGFPE;
1454 info.si_errno = 0;
1455 switch (env->error_code & 0xF) {
1456 case POWERPC_EXCP_FP_OX:
1457 info.si_code = TARGET_FPE_FLTOVF;
1458 break;
1459 case POWERPC_EXCP_FP_UX:
1460 info.si_code = TARGET_FPE_FLTUND;
1461 break;
1462 case POWERPC_EXCP_FP_ZX:
1463 case POWERPC_EXCP_FP_VXZDZ:
1464 info.si_code = TARGET_FPE_FLTDIV;
1465 break;
1466 case POWERPC_EXCP_FP_XX:
1467 info.si_code = TARGET_FPE_FLTRES;
1468 break;
1469 case POWERPC_EXCP_FP_VXSOFT:
1470 info.si_code = TARGET_FPE_FLTINV;
1471 break;
1472 case POWERPC_EXCP_FP_VXSNAN:
1473 case POWERPC_EXCP_FP_VXISI:
1474 case POWERPC_EXCP_FP_VXIDI:
1475 case POWERPC_EXCP_FP_VXIMZ:
1476 case POWERPC_EXCP_FP_VXVC:
1477 case POWERPC_EXCP_FP_VXSQRT:
1478 case POWERPC_EXCP_FP_VXCVI:
1479 info.si_code = TARGET_FPE_FLTSUB;
1480 break;
1481 default:
1482 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1483 env->error_code);
1484 break;
1485 }
1486 break;
1487 case POWERPC_EXCP_INVAL:
1488 info.si_signo = TARGET_SIGILL;
1489 info.si_errno = 0;
1490 switch (env->error_code & 0xF) {
1491 case POWERPC_EXCP_INVAL_INVAL:
1492 info.si_code = TARGET_ILL_ILLOPC;
1493 break;
1494 case POWERPC_EXCP_INVAL_LSWX:
1495 info.si_code = TARGET_ILL_ILLOPN;
1496 break;
1497 case POWERPC_EXCP_INVAL_SPR:
1498 info.si_code = TARGET_ILL_PRVREG;
1499 break;
1500 case POWERPC_EXCP_INVAL_FP:
1501 info.si_code = TARGET_ILL_COPROC;
1502 break;
1503 default:
1504 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1505 env->error_code & 0xF);
1506 info.si_code = TARGET_ILL_ILLADR;
1507 break;
1508 }
1509 break;
1510 case POWERPC_EXCP_PRIV:
1511 info.si_signo = TARGET_SIGILL;
1512 info.si_errno = 0;
1513 switch (env->error_code & 0xF) {
1514 case POWERPC_EXCP_PRIV_OPC:
1515 info.si_code = TARGET_ILL_PRVOPC;
1516 break;
1517 case POWERPC_EXCP_PRIV_REG:
1518 info.si_code = TARGET_ILL_PRVREG;
1519 break;
1520 default:
1521 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1522 env->error_code & 0xF);
1523 info.si_code = TARGET_ILL_PRVOPC;
1524 break;
1525 }
1526 break;
1527 case POWERPC_EXCP_TRAP:
1528 cpu_abort(cs, "Tried to call a TRAP\n");
1529 break;
1530 default:
1531 /* Should not happen ! */
1532 cpu_abort(cs, "Unknown program exception (%02x)\n",
1533 env->error_code);
1534 break;
1535 }
1536 info._sifields._sigfault._addr = env->nip;
1537 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1538 break;
1539 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
1540 info.si_signo = TARGET_SIGILL;
1541 info.si_errno = 0;
1542 info.si_code = TARGET_ILL_COPROC;
1543 info._sifields._sigfault._addr = env->nip;
1544 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1545 break;
1546 case POWERPC_EXCP_SYSCALL: /* System call exception */
1547 cpu_abort(cs, "Syscall exception while in user mode. "
1548 "Aborting\n");
1549 break;
1550 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
1551 info.si_signo = TARGET_SIGILL;
1552 info.si_errno = 0;
1553 info.si_code = TARGET_ILL_COPROC;
1554 info._sifields._sigfault._addr = env->nip;
1555 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1556 break;
1557 case POWERPC_EXCP_DECR: /* Decrementer exception */
1558 cpu_abort(cs, "Decrementer interrupt while in user mode. "
1559 "Aborting\n");
1560 break;
1561 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
1562 cpu_abort(cs, "Fix interval timer interrupt while in user mode. "
1563 "Aborting\n");
1564 break;
1565 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
1566 cpu_abort(cs, "Watchdog timer interrupt while in user mode. "
1567 "Aborting\n");
1568 break;
1569 case POWERPC_EXCP_DTLB: /* Data TLB error */
1570 cpu_abort(cs, "Data TLB exception while in user mode. "
1571 "Aborting\n");
1572 break;
1573 case POWERPC_EXCP_ITLB: /* Instruction TLB error */
1574 cpu_abort(cs, "Instruction TLB exception while in user mode. "
1575 "Aborting\n");
1576 break;
1577 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */
1578 info.si_signo = TARGET_SIGILL;
1579 info.si_errno = 0;
1580 info.si_code = TARGET_ILL_COPROC;
1581 info._sifields._sigfault._addr = env->nip;
1582 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1583 break;
1584 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */
1585 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n");
1586 break;
1587 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */
1588 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n");
1589 break;
1590 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */
1591 cpu_abort(cs, "Performance monitor exception not handled\n");
1592 break;
1593 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
1594 cpu_abort(cs, "Doorbell interrupt while in user mode. "
1595 "Aborting\n");
1596 break;
1597 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
1598 cpu_abort(cs, "Doorbell critical interrupt while in user mode. "
1599 "Aborting\n");
1600 break;
1601 case POWERPC_EXCP_RESET: /* System reset exception */
1602 cpu_abort(cs, "Reset interrupt while in user mode. "
1603 "Aborting\n");
1604 break;
1605 case POWERPC_EXCP_DSEG: /* Data segment exception */
1606 cpu_abort(cs, "Data segment exception while in user mode. "
1607 "Aborting\n");
1608 break;
1609 case POWERPC_EXCP_ISEG: /* Instruction segment exception */
1610 cpu_abort(cs, "Instruction segment exception "
1611 "while in user mode. Aborting\n");
1612 break;
1613 /* PowerPC 64 with hypervisor mode support */
1614 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
1615 cpu_abort(cs, "Hypervisor decrementer interrupt "
1616 "while in user mode. Aborting\n");
1617 break;
1618 case POWERPC_EXCP_TRACE: /* Trace exception */
1619 /* Nothing to do:
1620 * we use this exception to emulate step-by-step execution mode.
1621 */
1622 break;
1623 /* PowerPC 64 with hypervisor mode support */
1624 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
1625 cpu_abort(cs, "Hypervisor data storage exception "
1626 "while in user mode. Aborting\n");
1627 break;
1628 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */
1629 cpu_abort(cs, "Hypervisor instruction storage exception "
1630 "while in user mode. Aborting\n");
1631 break;
1632 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
1633 cpu_abort(cs, "Hypervisor data segment exception "
1634 "while in user mode. Aborting\n");
1635 break;
1636 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */
1637 cpu_abort(cs, "Hypervisor instruction segment exception "
1638 "while in user mode. Aborting\n");
1639 break;
1640 case POWERPC_EXCP_VPU: /* Vector unavailable exception */
1641 info.si_signo = TARGET_SIGILL;
1642 info.si_errno = 0;
1643 info.si_code = TARGET_ILL_COPROC;
1644 info._sifields._sigfault._addr = env->nip;
1645 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1646 break;
1647 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */
1648 cpu_abort(cs, "Programmable interval timer interrupt "
1649 "while in user mode. Aborting\n");
1650 break;
1651 case POWERPC_EXCP_IO: /* IO error exception */
1652 cpu_abort(cs, "IO error exception while in user mode. "
1653 "Aborting\n");
1654 break;
1655 case POWERPC_EXCP_RUNM: /* Run mode exception */
1656 cpu_abort(cs, "Run mode exception while in user mode. "
1657 "Aborting\n");
1658 break;
1659 case POWERPC_EXCP_EMUL: /* Emulation trap exception */
1660 cpu_abort(cs, "Emulation trap exception not handled\n");
1661 break;
1662 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
1663 cpu_abort(cs, "Instruction fetch TLB exception "
1664 "while in user-mode. Aborting");
1665 break;
1666 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
1667 cpu_abort(cs, "Data load TLB exception while in user-mode. "
1668 "Aborting");
1669 break;
1670 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
1671 cpu_abort(cs, "Data store TLB exception while in user-mode. "
1672 "Aborting");
1673 break;
1674 case POWERPC_EXCP_FPA: /* Floating-point assist exception */
1675 cpu_abort(cs, "Floating-point assist exception not handled\n");
1676 break;
1677 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
1678 cpu_abort(cs, "Instruction address breakpoint exception "
1679 "not handled\n");
1680 break;
1681 case POWERPC_EXCP_SMI: /* System management interrupt */
1682 cpu_abort(cs, "System management interrupt while in user mode. "
1683 "Aborting\n");
1684 break;
1685 case POWERPC_EXCP_THERM: /* Thermal interrupt */
1686 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. "
1687 "Aborting\n");
1688 break;
1689 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */
1690 cpu_abort(cs, "Performance monitor exception not handled\n");
1691 break;
1692 case POWERPC_EXCP_VPUA: /* Vector assist exception */
1693 cpu_abort(cs, "Vector assist exception not handled\n");
1694 break;
1695 case POWERPC_EXCP_SOFTP: /* Soft patch exception */
1696 cpu_abort(cs, "Soft patch exception not handled\n");
1697 break;
1698 case POWERPC_EXCP_MAINT: /* Maintenance exception */
1699 cpu_abort(cs, "Maintenance exception while in user mode. "
1700 "Aborting\n");
1701 break;
1702 case POWERPC_EXCP_STOP: /* stop translation */
1703 /* We did invalidate the instruction cache. Go on */
1704 break;
1705 case POWERPC_EXCP_BRANCH: /* branch instruction: */
1706 /* We just stopped because of a branch. Go on */
1707 break;
1708 case POWERPC_EXCP_SYSCALL_USER:
1709 /* system call in user-mode emulation */
1710 /* WARNING:
1711 * PPC ABI uses overflow flag in cr0 to signal an error
1712 * in syscalls.
1713 */
1714 env->crf[0] &= ~0x1;
1715 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1716 env->gpr[5], env->gpr[6], env->gpr[7],
1717 env->gpr[8], 0, 0);
1718 if (ret == -TARGET_ERESTARTSYS) {
1719 break;
1720 }
1721 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
1722 /* Returning from a successful sigreturn syscall.
1723 Avoid corrupting register state. */
1724 break;
1725 }
1726 env->nip += 4;
1727 if (ret > (target_ulong)(-515)) {
1728 env->crf[0] |= 0x1;
1729 ret = -ret;
1730 }
1731 env->gpr[3] = ret;
1732 break;
1733 case POWERPC_EXCP_STCX:
1734 if (do_store_exclusive(env)) {
1735 info.si_signo = TARGET_SIGSEGV;
1736 info.si_errno = 0;
1737 info.si_code = TARGET_SEGV_MAPERR;
1738 info._sifields._sigfault._addr = env->nip;
1739 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1740 }
1741 break;
1742 case EXCP_DEBUG:
1743 {
1744 int sig;
1745
1746 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1747 if (sig) {
1748 info.si_signo = sig;
1749 info.si_errno = 0;
1750 info.si_code = TARGET_TRAP_BRKPT;
1751 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
1752 }
1753 }
1754 break;
1755 case EXCP_INTERRUPT:
1756 /* just indicate that signals should be handled asap */
1757 break;
1758 case EXCP_ATOMIC:
1759 cpu_exec_step_atomic(cs);
1760 break;
1761 default:
1762 cpu_abort(cs, "Unknown exception 0x%x. Aborting\n", trapnr);
1763 break;
1764 }
1765 process_pending_signals(env);
1766 }
1767 }
1768 #endif
1769
1770 #ifdef TARGET_MIPS
1771
1772 # ifdef TARGET_ABI_MIPSO32
1773 # define MIPS_SYS(name, args) args,
1774 static const uint8_t mips_syscall_args[] = {
1775 MIPS_SYS(sys_syscall , 8) /* 4000 */
1776 MIPS_SYS(sys_exit , 1)
1777 MIPS_SYS(sys_fork , 0)
1778 MIPS_SYS(sys_read , 3)
1779 MIPS_SYS(sys_write , 3)
1780 MIPS_SYS(sys_open , 3) /* 4005 */
1781 MIPS_SYS(sys_close , 1)
1782 MIPS_SYS(sys_waitpid , 3)
1783 MIPS_SYS(sys_creat , 2)
1784 MIPS_SYS(sys_link , 2)
1785 MIPS_SYS(sys_unlink , 1) /* 4010 */
1786 MIPS_SYS(sys_execve , 0)
1787 MIPS_SYS(sys_chdir , 1)
1788 MIPS_SYS(sys_time , 1)
1789 MIPS_SYS(sys_mknod , 3)
1790 MIPS_SYS(sys_chmod , 2) /* 4015 */
1791 MIPS_SYS(sys_lchown , 3)
1792 MIPS_SYS(sys_ni_syscall , 0)
1793 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */
1794 MIPS_SYS(sys_lseek , 3)
1795 MIPS_SYS(sys_getpid , 0) /* 4020 */
1796 MIPS_SYS(sys_mount , 5)
1797 MIPS_SYS(sys_umount , 1)
1798 MIPS_SYS(sys_setuid , 1)
1799 MIPS_SYS(sys_getuid , 0)
1800 MIPS_SYS(sys_stime , 1) /* 4025 */
1801 MIPS_SYS(sys_ptrace , 4)
1802 MIPS_SYS(sys_alarm , 1)
1803 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */
1804 MIPS_SYS(sys_pause , 0)
1805 MIPS_SYS(sys_utime , 2) /* 4030 */
1806 MIPS_SYS(sys_ni_syscall , 0)
1807 MIPS_SYS(sys_ni_syscall , 0)
1808 MIPS_SYS(sys_access , 2)
1809 MIPS_SYS(sys_nice , 1)
1810 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */
1811 MIPS_SYS(sys_sync , 0)
1812 MIPS_SYS(sys_kill , 2)
1813 MIPS_SYS(sys_rename , 2)
1814 MIPS_SYS(sys_mkdir , 2)
1815 MIPS_SYS(sys_rmdir , 1) /* 4040 */
1816 MIPS_SYS(sys_dup , 1)
1817 MIPS_SYS(sys_pipe , 0)
1818 MIPS_SYS(sys_times , 1)
1819 MIPS_SYS(sys_ni_syscall , 0)
1820 MIPS_SYS(sys_brk , 1) /* 4045 */
1821 MIPS_SYS(sys_setgid , 1)
1822 MIPS_SYS(sys_getgid , 0)
1823 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */
1824 MIPS_SYS(sys_geteuid , 0)
1825 MIPS_SYS(sys_getegid , 0) /* 4050 */
1826 MIPS_SYS(sys_acct , 0)
1827 MIPS_SYS(sys_umount2 , 2)
1828 MIPS_SYS(sys_ni_syscall , 0)
1829 MIPS_SYS(sys_ioctl , 3)
1830 MIPS_SYS(sys_fcntl , 3) /* 4055 */
1831 MIPS_SYS(sys_ni_syscall , 2)
1832 MIPS_SYS(sys_setpgid , 2)
1833 MIPS_SYS(sys_ni_syscall , 0)
1834 MIPS_SYS(sys_olduname , 1)
1835 MIPS_SYS(sys_umask , 1) /* 4060 */
1836 MIPS_SYS(sys_chroot , 1)
1837 MIPS_SYS(sys_ustat , 2)
1838 MIPS_SYS(sys_dup2 , 2)
1839 MIPS_SYS(sys_getppid , 0)
1840 MIPS_SYS(sys_getpgrp , 0) /* 4065 */
1841 MIPS_SYS(sys_setsid , 0)
1842 MIPS_SYS(sys_sigaction , 3)
1843 MIPS_SYS(sys_sgetmask , 0)
1844 MIPS_SYS(sys_ssetmask , 1)
1845 MIPS_SYS(sys_setreuid , 2) /* 4070 */
1846 MIPS_SYS(sys_setregid , 2)
1847 MIPS_SYS(sys_sigsuspend , 0)
1848 MIPS_SYS(sys_sigpending , 1)
1849 MIPS_SYS(sys_sethostname , 2)
1850 MIPS_SYS(sys_setrlimit , 2) /* 4075 */
1851 MIPS_SYS(sys_getrlimit , 2)
1852 MIPS_SYS(sys_getrusage , 2)
1853 MIPS_SYS(sys_gettimeofday, 2)
1854 MIPS_SYS(sys_settimeofday, 2)
1855 MIPS_SYS(sys_getgroups , 2) /* 4080 */
1856 MIPS_SYS(sys_setgroups , 2)
1857 MIPS_SYS(sys_ni_syscall , 0) /* old_select */
1858 MIPS_SYS(sys_symlink , 2)
1859 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */
1860 MIPS_SYS(sys_readlink , 3) /* 4085 */
1861 MIPS_SYS(sys_uselib , 1)
1862 MIPS_SYS(sys_swapon , 2)
1863 MIPS_SYS(sys_reboot , 3)
1864 MIPS_SYS(old_readdir , 3)
1865 MIPS_SYS(old_mmap , 6) /* 4090 */
1866 MIPS_SYS(sys_munmap , 2)
1867 MIPS_SYS(sys_truncate , 2)
1868 MIPS_SYS(sys_ftruncate , 2)
1869 MIPS_SYS(sys_fchmod , 2)
1870 MIPS_SYS(sys_fchown , 3) /* 4095 */
1871 MIPS_SYS(sys_getpriority , 2)
1872 MIPS_SYS(sys_setpriority , 3)
1873 MIPS_SYS(sys_ni_syscall , 0)
1874 MIPS_SYS(sys_statfs , 2)
1875 MIPS_SYS(sys_fstatfs , 2) /* 4100 */
1876 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */
1877 MIPS_SYS(sys_socketcall , 2)
1878 MIPS_SYS(sys_syslog , 3)
1879 MIPS_SYS(sys_setitimer , 3)
1880 MIPS_SYS(sys_getitimer , 2) /* 4105 */
1881 MIPS_SYS(sys_newstat , 2)
1882 MIPS_SYS(sys_newlstat , 2)
1883 MIPS_SYS(sys_newfstat , 2)
1884 MIPS_SYS(sys_uname , 1)
1885 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */
1886 MIPS_SYS(sys_vhangup , 0)
1887 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */
1888 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */
1889 MIPS_SYS(sys_wait4 , 4)
1890 MIPS_SYS(sys_swapoff , 1) /* 4115 */
1891 MIPS_SYS(sys_sysinfo , 1)
1892 MIPS_SYS(sys_ipc , 6)
1893 MIPS_SYS(sys_fsync , 1)
1894 MIPS_SYS(sys_sigreturn , 0)
1895 MIPS_SYS(sys_clone , 6) /* 4120 */
1896 MIPS_SYS(sys_setdomainname, 2)
1897 MIPS_SYS(sys_newuname , 1)
1898 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */
1899 MIPS_SYS(sys_adjtimex , 1)
1900 MIPS_SYS(sys_mprotect , 3) /* 4125 */
1901 MIPS_SYS(sys_sigprocmask , 3)
1902 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */
1903 MIPS_SYS(sys_init_module , 5)
1904 MIPS_SYS(sys_delete_module, 1)
1905 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */
1906 MIPS_SYS(sys_quotactl , 0)
1907 MIPS_SYS(sys_getpgid , 1)
1908 MIPS_SYS(sys_fchdir , 1)
1909 MIPS_SYS(sys_bdflush , 2)
1910 MIPS_SYS(sys_sysfs , 3) /* 4135 */
1911 MIPS_SYS(sys_personality , 1)
1912 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */
1913 MIPS_SYS(sys_setfsuid , 1)
1914 MIPS_SYS(sys_setfsgid , 1)
1915 MIPS_SYS(sys_llseek , 5) /* 4140 */
1916 MIPS_SYS(sys_getdents , 3)
1917 MIPS_SYS(sys_select , 5)
1918 MIPS_SYS(sys_flock , 2)
1919 MIPS_SYS(sys_msync , 3)
1920 MIPS_SYS(sys_readv , 3) /* 4145 */
1921 MIPS_SYS(sys_writev , 3)
1922 MIPS_SYS(sys_cacheflush , 3)
1923 MIPS_SYS(sys_cachectl , 3)
1924 MIPS_SYS(sys_sysmips , 4)
1925 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */
1926 MIPS_SYS(sys_getsid , 1)
1927 MIPS_SYS(sys_fdatasync , 0)
1928 MIPS_SYS(sys_sysctl , 1)
1929 MIPS_SYS(sys_mlock , 2)
1930 MIPS_SYS(sys_munlock , 2) /* 4155 */
1931 MIPS_SYS(sys_mlockall , 1)
1932 MIPS_SYS(sys_munlockall , 0)
1933 MIPS_SYS(sys_sched_setparam, 2)
1934 MIPS_SYS(sys_sched_getparam, 2)
1935 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */
1936 MIPS_SYS(sys_sched_getscheduler, 1)
1937 MIPS_SYS(sys_sched_yield , 0)
1938 MIPS_SYS(sys_sched_get_priority_max, 1)
1939 MIPS_SYS(sys_sched_get_priority_min, 1)
1940 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */
1941 MIPS_SYS(sys_nanosleep, 2)
1942 MIPS_SYS(sys_mremap , 5)
1943 MIPS_SYS(sys_accept , 3)
1944 MIPS_SYS(sys_bind , 3)
1945 MIPS_SYS(sys_connect , 3) /* 4170 */
1946 MIPS_SYS(sys_getpeername , 3)
1947 MIPS_SYS(sys_getsockname , 3)
1948 MIPS_SYS(sys_getsockopt , 5)
1949 MIPS_SYS(sys_listen , 2)
1950 MIPS_SYS(sys_recv , 4) /* 4175 */
1951 MIPS_SYS(sys_recvfrom , 6)
1952 MIPS_SYS(sys_recvmsg , 3)
1953 MIPS_SYS(sys_send , 4)
1954 MIPS_SYS(sys_sendmsg , 3)
1955 MIPS_SYS(sys_sendto , 6) /* 4180 */
1956 MIPS_SYS(sys_setsockopt , 5)
1957 MIPS_SYS(sys_shutdown , 2)
1958 MIPS_SYS(sys_socket , 3)
1959 MIPS_SYS(sys_socketpair , 4)
1960 MIPS_SYS(sys_setresuid , 3) /* 4185 */
1961 MIPS_SYS(sys_getresuid , 3)
1962 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */
1963 MIPS_SYS(sys_poll , 3)
1964 MIPS_SYS(sys_nfsservctl , 3)
1965 MIPS_SYS(sys_setresgid , 3) /* 4190 */
1966 MIPS_SYS(sys_getresgid , 3)
1967 MIPS_SYS(sys_prctl , 5)
1968 MIPS_SYS(sys_rt_sigreturn, 0)
1969 MIPS_SYS(sys_rt_sigaction, 4)
1970 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */
1971 MIPS_SYS(sys_rt_sigpending, 2)
1972 MIPS_SYS(sys_rt_sigtimedwait, 4)
1973 MIPS_SYS(sys_rt_sigqueueinfo, 3)
1974 MIPS_SYS(sys_rt_sigsuspend, 0)
1975 MIPS_SYS(sys_pread64 , 6) /* 4200 */
1976 MIPS_SYS(sys_pwrite64 , 6)
1977 MIPS_SYS(sys_chown , 3)
1978 MIPS_SYS(sys_getcwd , 2)
1979 MIPS_SYS(sys_capget , 2)
1980 MIPS_SYS(sys_capset , 2) /* 4205 */
1981 MIPS_SYS(sys_sigaltstack , 2)
1982 MIPS_SYS(sys_sendfile , 4)
1983 MIPS_SYS(sys_ni_syscall , 0)
1984 MIPS_SYS(sys_ni_syscall , 0)
1985 MIPS_SYS(sys_mmap2 , 6) /* 4210 */
1986 MIPS_SYS(sys_truncate64 , 4)
1987 MIPS_SYS(sys_ftruncate64 , 4)
1988 MIPS_SYS(sys_stat64 , 2)
1989 MIPS_SYS(sys_lstat64 , 2)
1990 MIPS_SYS(sys_fstat64 , 2) /* 4215 */
1991 MIPS_SYS(sys_pivot_root , 2)
1992 MIPS_SYS(sys_mincore , 3)
1993 MIPS_SYS(sys_madvise , 3)
1994 MIPS_SYS(sys_getdents64 , 3)
1995 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */
1996 MIPS_SYS(sys_ni_syscall , 0)
1997 MIPS_SYS(sys_gettid , 0)
1998 MIPS_SYS(sys_readahead , 5)
1999 MIPS_SYS(sys_setxattr , 5)
2000 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */
2001 MIPS_SYS(sys_fsetxattr , 5)
2002 MIPS_SYS(sys_getxattr , 4)
2003 MIPS_SYS(sys_lgetxattr , 4)
2004 MIPS_SYS(sys_fgetxattr , 4)
2005 MIPS_SYS(sys_listxattr , 3) /* 4230 */
2006 MIPS_SYS(sys_llistxattr , 3)
2007 MIPS_SYS(sys_flistxattr , 3)
2008 MIPS_SYS(sys_removexattr , 2)
2009 MIPS_SYS(sys_lremovexattr, 2)
2010 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */
2011 MIPS_SYS(sys_tkill , 2)
2012 MIPS_SYS(sys_sendfile64 , 5)
2013 MIPS_SYS(sys_futex , 6)
2014 MIPS_SYS(sys_sched_setaffinity, 3)
2015 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */
2016 MIPS_SYS(sys_io_setup , 2)
2017 MIPS_SYS(sys_io_destroy , 1)
2018 MIPS_SYS(sys_io_getevents, 5)
2019 MIPS_SYS(sys_io_submit , 3)
2020 MIPS_SYS(sys_io_cancel , 3) /* 4245 */
2021 MIPS_SYS(sys_exit_group , 1)
2022 MIPS_SYS(sys_lookup_dcookie, 3)
2023 MIPS_SYS(sys_epoll_create, 1)
2024 MIPS_SYS(sys_epoll_ctl , 4)
2025 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */
2026 MIPS_SYS(sys_remap_file_pages, 5)
2027 MIPS_SYS(sys_set_tid_address, 1)
2028 MIPS_SYS(sys_restart_syscall, 0)
2029 MIPS_SYS(sys_fadvise64_64, 7)
2030 MIPS_SYS(sys_statfs64 , 3) /* 4255 */
2031 MIPS_SYS(sys_fstatfs64 , 2)
2032 MIPS_SYS(sys_timer_create, 3)
2033 MIPS_SYS(sys_timer_settime, 4)
2034 MIPS_SYS(sys_timer_gettime, 2)
2035 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */
2036 MIPS_SYS(sys_timer_delete, 1)
2037 MIPS_SYS(sys_clock_settime, 2)
2038 MIPS_SYS(sys_clock_gettime, 2)
2039 MIPS_SYS(sys_clock_getres, 2)
2040 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */
2041 MIPS_SYS(sys_tgkill , 3)
2042 MIPS_SYS(sys_utimes , 2)
2043 MIPS_SYS(sys_mbind , 4)
2044 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */
2045 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */
2046 MIPS_SYS(sys_mq_open , 4)
2047 MIPS_SYS(sys_mq_unlink , 1)
2048 MIPS_SYS(sys_mq_timedsend, 5)
2049 MIPS_SYS(sys_mq_timedreceive, 5)
2050 MIPS_SYS(sys_mq_notify , 2) /* 4275 */
2051 MIPS_SYS(sys_mq_getsetattr, 3)
2052 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */
2053 MIPS_SYS(sys_waitid , 4)
2054 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */
2055 MIPS_SYS(sys_add_key , 5)
2056 MIPS_SYS(sys_request_key, 4)
2057 MIPS_SYS(sys_keyctl , 5)
2058 MIPS_SYS(sys_set_thread_area, 1)
2059 MIPS_SYS(sys_inotify_init, 0)
2060 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2061 MIPS_SYS(sys_inotify_rm_watch, 2)
2062 MIPS_SYS(sys_migrate_pages, 4)
2063 MIPS_SYS(sys_openat, 4)
2064 MIPS_SYS(sys_mkdirat, 3)
2065 MIPS_SYS(sys_mknodat, 4) /* 4290 */
2066 MIPS_SYS(sys_fchownat, 5)
2067 MIPS_SYS(sys_futimesat, 3)
2068 MIPS_SYS(sys_fstatat64, 4)
2069 MIPS_SYS(sys_unlinkat, 3)
2070 MIPS_SYS(sys_renameat, 4) /* 4295 */
2071 MIPS_SYS(sys_linkat, 5)
2072 MIPS_SYS(sys_symlinkat, 3)
2073 MIPS_SYS(sys_readlinkat, 4)
2074 MIPS_SYS(sys_fchmodat, 3)
2075 MIPS_SYS(sys_faccessat, 3) /* 4300 */
2076 MIPS_SYS(sys_pselect6, 6)
2077 MIPS_SYS(sys_ppoll, 5)
2078 MIPS_SYS(sys_unshare, 1)
2079 MIPS_SYS(sys_splice, 6)
2080 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2081 MIPS_SYS(sys_tee, 4)
2082 MIPS_SYS(sys_vmsplice, 4)
2083 MIPS_SYS(sys_move_pages, 6)
2084 MIPS_SYS(sys_set_robust_list, 2)
2085 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2086 MIPS_SYS(sys_kexec_load, 4)
2087 MIPS_SYS(sys_getcpu, 3)
2088 MIPS_SYS(sys_epoll_pwait, 6)
2089 MIPS_SYS(sys_ioprio_set, 3)
2090 MIPS_SYS(sys_ioprio_get, 2)
2091 MIPS_SYS(sys_utimensat, 4)
2092 MIPS_SYS(sys_signalfd, 3)
2093 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */
2094 MIPS_SYS(sys_eventfd, 1)
2095 MIPS_SYS(sys_fallocate, 6) /* 4320 */
2096 MIPS_SYS(sys_timerfd_create, 2)
2097 MIPS_SYS(sys_timerfd_gettime, 2)
2098 MIPS_SYS(sys_timerfd_settime, 4)
2099 MIPS_SYS(sys_signalfd4, 4)
2100 MIPS_SYS(sys_eventfd2, 2) /* 4325 */
2101 MIPS_SYS(sys_epoll_create1, 1)
2102 MIPS_SYS(sys_dup3, 3)
2103 MIPS_SYS(sys_pipe2, 2)
2104 MIPS_SYS(sys_inotify_init1, 1)
2105 MIPS_SYS(sys_preadv, 5) /* 4330 */
2106 MIPS_SYS(sys_pwritev, 5)
2107 MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2108 MIPS_SYS(sys_perf_event_open, 5)
2109 MIPS_SYS(sys_accept4, 4)
2110 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */
2111 MIPS_SYS(sys_fanotify_init, 2)
2112 MIPS_SYS(sys_fanotify_mark, 6)
2113 MIPS_SYS(sys_prlimit64, 4)
2114 MIPS_SYS(sys_name_to_handle_at, 5)
2115 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2116 MIPS_SYS(sys_clock_adjtime, 2)
2117 MIPS_SYS(sys_syncfs, 1)
2118 MIPS_SYS(sys_sendmmsg, 4)
2119 MIPS_SYS(sys_setns, 2)
2120 MIPS_SYS(sys_process_vm_readv, 6) /* 345 */
2121 MIPS_SYS(sys_process_vm_writev, 6)
2122 MIPS_SYS(sys_kcmp, 5)
2123 MIPS_SYS(sys_finit_module, 3)
2124 MIPS_SYS(sys_sched_setattr, 2)
2125 MIPS_SYS(sys_sched_getattr, 3) /* 350 */
2126 MIPS_SYS(sys_renameat2, 5)
2127 MIPS_SYS(sys_seccomp, 3)
2128 MIPS_SYS(sys_getrandom, 3)
2129 MIPS_SYS(sys_memfd_create, 2)
2130 MIPS_SYS(sys_bpf, 3) /* 355 */
2131 MIPS_SYS(sys_execveat, 5)
2132 MIPS_SYS(sys_userfaultfd, 1)
2133 MIPS_SYS(sys_membarrier, 2)
2134 MIPS_SYS(sys_mlock2, 3)
2135 MIPS_SYS(sys_copy_file_range, 6) /* 360 */
2136 MIPS_SYS(sys_preadv2, 6)
2137 MIPS_SYS(sys_pwritev2, 6)
2138 };
2139 # undef MIPS_SYS
2140 # endif /* O32 */
2141
2142 static int do_store_exclusive(CPUMIPSState *env)
2143 {
2144 target_ulong addr;
2145 target_ulong page_addr;
2146 target_ulong val;
2147 int flags;
2148 int segv = 0;
2149 int reg;
2150 int d;
2151
2152 addr = env->lladdr;
2153 page_addr = addr & TARGET_PAGE_MASK;
2154 start_exclusive();
2155 mmap_lock();
2156 flags = page_get_flags(page_addr);
2157 if ((flags & PAGE_READ) == 0) {
2158 segv = 1;
2159 } else {
2160 reg = env->llreg & 0x1f;
2161 d = (env->llreg & 0x20) != 0;
2162 if (d) {
2163 segv = get_user_s64(val, addr);
2164 } else {
2165 segv = get_user_s32(val, addr);
2166 }
2167 if (!segv) {
2168 if (val != env->llval) {
2169 env->active_tc.gpr[reg] = 0;
2170 } else {
2171 if (d) {
2172 segv = put_user_u64(env->llnewval, addr);
2173 } else {
2174 segv = put_user_u32(env->llnewval, addr);
2175 }
2176 if (!segv) {
2177 env->active_tc.gpr[reg] = 1;
2178 }
2179 }
2180 }
2181 }
2182 env->lladdr = -1;
2183 if (!segv) {
2184 env->active_tc.PC += 4;
2185 }
2186 mmap_unlock();
2187 end_exclusive();
2188 return segv;
2189 }
2190
2191 /* Break codes */
2192 enum {
2193 BRK_OVERFLOW = 6,
2194 BRK_DIVZERO = 7
2195 };
2196
2197 static int do_break(CPUMIPSState *env, target_siginfo_t *info,
2198 unsigned int code)
2199 {
2200 int ret = -1;
2201
2202 switch (code) {
2203 case BRK_OVERFLOW:
2204 case BRK_DIVZERO:
2205 info->si_signo = TARGET_SIGFPE;
2206 info->si_errno = 0;
2207 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV;
2208 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info);
2209 ret = 0;
2210 break;
2211 default:
2212 info->si_signo = TARGET_SIGTRAP;
2213 info->si_errno = 0;
2214 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info);
2215 ret = 0;
2216 break;
2217 }
2218
2219 return ret;
2220 }
2221
2222 void cpu_loop(CPUMIPSState *env)
2223 {
2224 CPUState *cs = CPU(mips_env_get_cpu(env));
2225 target_siginfo_t info;
2226 int trapnr;
2227 abi_long ret;
2228 # ifdef TARGET_ABI_MIPSO32
2229 unsigned int syscall_num;
2230 # endif
2231
2232 for(;;) {
2233 cpu_exec_start(cs);
2234 trapnr = cpu_exec(cs);
2235 cpu_exec_end(cs);
2236 process_queued_cpu_work(cs);
2237
2238 switch(trapnr) {
2239 case EXCP_SYSCALL:
2240 env->active_tc.PC += 4;
2241 # ifdef TARGET_ABI_MIPSO32
2242 syscall_num = env->active_tc.gpr[2] - 4000;
2243 if (syscall_num >= sizeof(mips_syscall_args)) {
2244 ret = -TARGET_ENOSYS;
2245 } else {
2246 int nb_args;
2247 abi_ulong sp_reg;
2248 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2249
2250 nb_args = mips_syscall_args[syscall_num];
2251 sp_reg = env->active_tc.gpr[29];
2252 switch (nb_args) {
2253 /* these arguments are taken from the stack */
2254 case 8:
2255 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2256 goto done_syscall;
2257 }
2258 case 7:
2259 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2260 goto done_syscall;
2261 }
2262 case 6:
2263 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2264 goto done_syscall;
2265 }
2266 case 5:
2267 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2268 goto done_syscall;
2269 }
2270 default:
2271 break;
2272 }
2273 ret = do_syscall(env, env->active_tc.gpr[2],
2274 env->active_tc.gpr[4],
2275 env->active_tc.gpr[5],
2276 env->active_tc.gpr[6],
2277 env->active_tc.gpr[7],
2278 arg5, arg6, arg7, arg8);
2279 }
2280 done_syscall:
2281 # else
2282 ret = do_syscall(env, env->active_tc.gpr[2],
2283 env->active_tc.gpr[4], env->active_tc.gpr[5],
2284 env->active_tc.gpr[6], env->active_tc.gpr[7],
2285 env->active_tc.gpr[8], env->active_tc.gpr[9],
2286 env->active_tc.gpr[10], env->active_tc.gpr[11]);
2287 # endif /* O32 */
2288 if (ret == -TARGET_ERESTARTSYS) {
2289 env->active_tc.PC -= 4;
2290 break;
2291 }
2292 if (ret == -TARGET_QEMU_ESIGRETURN) {
2293 /* Returning from a successful sigreturn syscall.
2294 Avoid clobbering register state. */
2295 break;
2296 }
2297 if ((abi_ulong)ret >= (abi_ulong)-1133) {
2298 env->active_tc.gpr[7] = 1; /* error flag */
2299 ret = -ret;
2300 } else {
2301 env->active_tc.gpr[7] = 0; /* error flag */
2302 }
2303 env->active_tc.gpr[2] = ret;
2304 break;
2305 case EXCP_TLBL:
2306 case EXCP_TLBS:
2307 case EXCP_AdEL:
2308 case EXCP_AdES:
2309 info.si_signo = TARGET_SIGSEGV;
2310 info.si_errno = 0;
2311 /* XXX: check env->error_code */
2312 info.si_code = TARGET_SEGV_MAPERR;
2313 info._sifields._sigfault._addr = env->CP0_BadVAddr;
2314 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2315 break;
2316 case EXCP_CpU:
2317 case EXCP_RI:
2318 info.si_signo = TARGET_SIGILL;
2319 info.si_errno = 0;
2320 info.si_code = 0;
2321 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2322 break;
2323 case EXCP_INTERRUPT:
2324 /* just indicate that signals should be handled asap */
2325 break;
2326 case EXCP_DEBUG:
2327 {
2328 int sig;
2329
2330 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2331 if (sig)
2332 {
2333 info.si_signo = sig;
2334 info.si_errno = 0;
2335 info.si_code = TARGET_TRAP_BRKPT;
2336 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2337 }
2338 }
2339 break;
2340 case EXCP_SC:
2341 if (do_store_exclusive(env)) {
2342 info.si_signo = TARGET_SIGSEGV;
2343 info.si_errno = 0;
2344 info.si_code = TARGET_SEGV_MAPERR;
2345 info._sifields._sigfault._addr = env->active_tc.PC;
2346 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2347 }
2348 break;
2349 case EXCP_DSPDIS:
2350 info.si_signo = TARGET_SIGILL;
2351 info.si_errno = 0;
2352 info.si_code = TARGET_ILL_ILLOPC;
2353 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2354 break;
2355 /* The code below was inspired by the MIPS Linux kernel trap
2356 * handling code in arch/mips/kernel/traps.c.
2357 */
2358 case EXCP_BREAK:
2359 {
2360 abi_ulong trap_instr;
2361 unsigned int code;
2362
2363 if (env->hflags & MIPS_HFLAG_M16) {
2364 if (env->insn_flags & ASE_MICROMIPS) {
2365 /* microMIPS mode */
2366 ret = get_user_u16(trap_instr, env->active_tc.PC);
2367 if (ret != 0) {
2368 goto error;
2369 }
2370
2371 if ((trap_instr >> 10) == 0x11) {
2372 /* 16-bit instruction */
2373 code = trap_instr & 0xf;
2374 } else {
2375 /* 32-bit instruction */
2376 abi_ulong instr_lo;
2377
2378 ret = get_user_u16(instr_lo,
2379 env->active_tc.PC + 2);
2380 if (ret != 0) {
2381 goto error;
2382 }
2383 trap_instr = (trap_instr << 16) | instr_lo;
2384 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2385 /* Unfortunately, microMIPS also suffers from
2386 the old assembler bug... */
2387 if (code >= (1 << 10)) {
2388 code >>= 10;
2389 }
2390 }
2391 } else {
2392 /* MIPS16e mode */
2393 ret = get_user_u16(trap_instr, env->active_tc.PC);
2394 if (ret != 0) {
2395 goto error;
2396 }
2397 code = (trap_instr >> 6) & 0x3f;
2398 }
2399 } else {
2400 ret = get_user_u32(trap_instr, env->active_tc.PC);
2401 if (ret != 0) {
2402 goto error;
2403 }
2404
2405 /* As described in the original Linux kernel code, the
2406 * below checks on 'code' are to work around an old
2407 * assembly bug.
2408 */
2409 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2410 if (code >= (1 << 10)) {
2411 code >>= 10;
2412 }
2413 }
2414
2415 if (do_break(env, &info, code) != 0) {
2416 goto error;
2417 }
2418 }
2419 break;
2420 case EXCP_TRAP:
2421 {
2422 abi_ulong trap_instr;
2423 unsigned int code = 0;
2424
2425 if (env->hflags & MIPS_HFLAG_M16) {
2426 /* microMIPS mode */
2427 abi_ulong instr[2];
2428
2429 ret = get_user_u16(instr[0], env->active_tc.PC) ||
2430 get_user_u16(instr[1], env->active_tc.PC + 2);
2431
2432 trap_instr = (instr[0] << 16) | instr[1];
2433 } else {
2434 ret = get_user_u32(trap_instr, env->active_tc.PC);
2435 }
2436
2437 if (ret != 0) {
2438 goto error;
2439 }
2440
2441 /* The immediate versions don't provide a code. */
2442 if (!(trap_instr & 0xFC000000)) {
2443 if (env->hflags & MIPS_HFLAG_M16) {
2444 /* microMIPS mode */
2445 code = ((trap_instr >> 12) & ((1 << 4) - 1));
2446 } else {
2447 code = ((trap_instr >> 6) & ((1 << 10) - 1));
2448 }
2449 }
2450
2451 if (do_break(env, &info, code) != 0) {
2452 goto error;
2453 }
2454 }
2455 break;
2456 case EXCP_ATOMIC:
2457 cpu_exec_step_atomic(cs);
2458 break;
2459 default:
2460 error:
2461 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
2462 abort();
2463 }
2464 process_pending_signals(env);
2465 }
2466 }
2467 #endif
2468
2469 #ifdef TARGET_NIOS2
2470
2471 void cpu_loop(CPUNios2State *env)
2472 {
2473 CPUState *cs = ENV_GET_CPU(env);
2474 Nios2CPU *cpu = NIOS2_CPU(cs);
2475 target_siginfo_t info;
2476 int trapnr, gdbsig, ret;
2477
2478 for (;;) {
2479 cpu_exec_start(cs);
2480 trapnr = cpu_exec(cs);
2481 cpu_exec_end(cs);
2482 gdbsig = 0;
2483
2484 switch (trapnr) {
2485 case EXCP_INTERRUPT:
2486 /* just indicate that signals should be handled asap */
2487 break;
2488 case EXCP_TRAP:
2489 if (env->regs[R_AT] == 0) {
2490 abi_long ret;
2491 qemu_log_mask(CPU_LOG_INT, "\nSyscall\n");
2492
2493 ret = do_syscall(env, env->regs[2],
2494 env->regs[4], env->regs[5], env->regs[6],
2495 env->regs[7], env->regs[8], env->regs[9],
2496 0, 0);
2497
2498 if (env->regs[2] == 0) { /* FIXME: syscall 0 workaround */
2499 ret = 0;
2500 }
2501
2502 env->regs[2] = abs(ret);
2503 /* Return value is 0..4096 */
2504 env->regs[7] = (ret > 0xfffffffffffff000ULL);
2505 env->regs[CR_ESTATUS] = env->regs[CR_STATUS];
2506 env->regs[CR_STATUS] &= ~0x3;
2507 env->regs[R_EA] = env->regs[R_PC] + 4;
2508 env->regs[R_PC] += 4;
2509 break;
2510 } else {
2511 qemu_log_mask(CPU_LOG_INT, "\nTrap\n");
2512
2513 env->regs[CR_ESTATUS] = env->regs[CR_STATUS];
2514 env->regs[CR_STATUS] &= ~0x3;
2515 env->regs[R_EA] = env->regs[R_PC] + 4;
2516 env->regs[R_PC] = cpu->exception_addr;
2517
2518 gdbsig = TARGET_SIGTRAP;
2519 break;
2520 }
2521 case 0xaa:
2522 switch (env->regs[R_PC]) {
2523 /*case 0x1000:*/ /* TODO:__kuser_helper_version */
2524 case 0x1004: /* __kuser_cmpxchg */
2525 start_exclusive();
2526 if (env->regs[4] & 0x3) {
2527 goto kuser_fail;
2528 }
2529 ret = get_user_u32(env->regs[2], env->regs[4]);
2530 if (ret) {
2531 end_exclusive();
2532 goto kuser_fail;
2533 }
2534 env->regs[2] -= env->regs[5];
2535 if (env->regs[2] == 0) {
2536 put_user_u32(env->regs[6], env->regs[4]);
2537 }
2538 end_exclusive();
2539 env->regs[R_PC] = env->regs[R_RA];
2540 break;
2541 /*case 0x1040:*/ /* TODO:__kuser_sigtramp */
2542 default:
2543 ;
2544 kuser_fail:
2545 info.si_signo = TARGET_SIGSEGV;
2546 info.si_errno = 0;
2547 /* TODO: check env->error_code */
2548 info.si_code = TARGET_SEGV_MAPERR;
2549 info._sifields._sigfault._addr = env->regs[R_PC];
2550 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2551 }
2552 break;
2553 default:
2554 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n",
2555 trapnr);
2556 gdbsig = TARGET_SIGILL;
2557 break;
2558 }
2559 if (gdbsig) {
2560 gdb_handlesig(cs, gdbsig);
2561 if (gdbsig != TARGET_SIGTRAP) {
2562 exit(EXIT_FAILURE);
2563 }
2564 }
2565
2566 process_pending_signals(env);
2567 }
2568 }
2569
2570 #endif /* TARGET_NIOS2 */
2571
2572 #ifdef TARGET_OPENRISC
2573
2574 void cpu_loop(CPUOpenRISCState *env)
2575 {
2576 CPUState *cs = CPU(openrisc_env_get_cpu(env));
2577 int trapnr;
2578 abi_long ret;
2579 target_siginfo_t info;
2580
2581 for (;;) {
2582 cpu_exec_start(cs);
2583 trapnr = cpu_exec(cs);
2584 cpu_exec_end(cs);
2585 process_queued_cpu_work(cs);
2586
2587 switch (trapnr) {
2588 case EXCP_SYSCALL:
2589 env->pc += 4; /* 0xc00; */
2590 ret = do_syscall(env,
2591 env->gpr[11], /* return value */
2592 env->gpr[3], /* r3 - r7 are params */
2593 env->gpr[4],
2594 env->gpr[5],
2595 env->gpr[6],
2596 env->gpr[7],
2597 env->gpr[8], 0, 0);
2598 if (ret == -TARGET_ERESTARTSYS) {
2599 env->pc -= 4;
2600 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2601 env->gpr[11] = ret;
2602 }
2603 break;
2604 case EXCP_DPF:
2605 case EXCP_IPF:
2606 case EXCP_RANGE:
2607 info.si_signo = TARGET_SIGSEGV;
2608 info.si_errno = 0;
2609 info.si_code = TARGET_SEGV_MAPERR;
2610 info._sifields._sigfault._addr = env->pc;
2611 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2612 break;
2613 case EXCP_ALIGN:
2614 info.si_signo = TARGET_SIGBUS;
2615 info.si_errno = 0;
2616 info.si_code = TARGET_BUS_ADRALN;
2617 info._sifields._sigfault._addr = env->pc;
2618 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2619 break;
2620 case EXCP_ILLEGAL:
2621 info.si_signo = TARGET_SIGILL;
2622 info.si_errno = 0;
2623 info.si_code = TARGET_ILL_ILLOPC;
2624 info._sifields._sigfault._addr = env->pc;
2625 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2626 break;
2627 case EXCP_FPE:
2628 info.si_signo = TARGET_SIGFPE;
2629 info.si_errno = 0;
2630 info.si_code = 0;
2631 info._sifields._sigfault._addr = env->pc;
2632 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2633 break;
2634 case EXCP_INTERRUPT:
2635 /* We processed the pending cpu work above. */
2636 break;
2637 case EXCP_DEBUG:
2638 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP);
2639 if (trapnr) {
2640 info.si_signo = trapnr;
2641 info.si_errno = 0;
2642 info.si_code = TARGET_TRAP_BRKPT;
2643 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2644 }
2645 break;
2646 case EXCP_ATOMIC:
2647 cpu_exec_step_atomic(cs);
2648 break;
2649 default:
2650 g_assert_not_reached();
2651 }
2652 process_pending_signals(env);
2653 }
2654 }
2655
2656 #endif /* TARGET_OPENRISC */
2657
2658 #ifdef TARGET_SH4
2659 void cpu_loop(CPUSH4State *env)
2660 {
2661 CPUState *cs = CPU(sh_env_get_cpu(env));
2662 int trapnr, ret;
2663 target_siginfo_t info;
2664
2665 while (1) {
2666 cpu_exec_start(cs);
2667 trapnr = cpu_exec(cs);
2668 cpu_exec_end(cs);
2669 process_queued_cpu_work(cs);
2670
2671 switch (trapnr) {
2672 case 0x160:
2673 env->pc += 2;
2674 ret = do_syscall(env,
2675 env->gregs[3],
2676 env->gregs[4],
2677 env->gregs[5],
2678 env->gregs[6],
2679 env->gregs[7],
2680 env->gregs[0],
2681 env->gregs[1],
2682 0, 0);
2683 if (ret == -TARGET_ERESTARTSYS) {
2684 env->pc -= 2;
2685 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2686 env->gregs[0] = ret;
2687 }
2688 break;
2689 case EXCP_INTERRUPT:
2690 /* just indicate that signals should be handled asap */
2691 break;
2692 case EXCP_DEBUG:
2693 {
2694 int sig;
2695
2696 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2697 if (sig)
2698 {
2699 info.si_signo = sig;
2700 info.si_errno = 0;
2701 info.si_code = TARGET_TRAP_BRKPT;
2702 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2703 }
2704 }
2705 break;
2706 case 0xa0:
2707 case 0xc0:
2708 info.si_signo = TARGET_SIGSEGV;
2709 info.si_errno = 0;
2710 info.si_code = TARGET_SEGV_MAPERR;
2711 info._sifields._sigfault._addr = env->tea;
2712 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2713 break;
2714
2715 case EXCP_ATOMIC:
2716 cpu_exec_step_atomic(cs);
2717 break;
2718 default:
2719 printf ("Unhandled trap: 0x%x\n", trapnr);
2720 cpu_dump_state(cs, stderr, fprintf, 0);
2721 exit(EXIT_FAILURE);
2722 }
2723 process_pending_signals (env);
2724 }
2725 }
2726 #endif
2727
2728 #ifdef TARGET_CRIS
2729 void cpu_loop(CPUCRISState *env)
2730 {
2731 CPUState *cs = CPU(cris_env_get_cpu(env));
2732 int trapnr, ret;
2733 target_siginfo_t info;
2734
2735 while (1) {
2736 cpu_exec_start(cs);
2737 trapnr = cpu_exec(cs);
2738 cpu_exec_end(cs);
2739 process_queued_cpu_work(cs);
2740
2741 switch (trapnr) {
2742 case 0xaa:
2743 {
2744 info.si_signo = TARGET_SIGSEGV;
2745 info.si_errno = 0;
2746 /* XXX: check env->error_code */
2747 info.si_code = TARGET_SEGV_MAPERR;
2748 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2749 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2750 }
2751 break;
2752 case EXCP_INTERRUPT:
2753 /* just indicate that signals should be handled asap */
2754 break;
2755 case EXCP_BREAK:
2756 ret = do_syscall(env,
2757 env->regs[9],
2758 env->regs[10],
2759 env->regs[11],
2760 env->regs[12],
2761 env->regs[13],
2762 env->pregs[7],
2763 env->pregs[11],
2764 0, 0);
2765 if (ret == -TARGET_ERESTARTSYS) {
2766 env->pc -= 2;
2767 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2768 env->regs[10] = ret;
2769 }
2770 break;
2771 case EXCP_DEBUG:
2772 {
2773 int sig;
2774
2775 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2776 if (sig)
2777 {
2778 info.si_signo = sig;
2779 info.si_errno = 0;
2780 info.si_code = TARGET_TRAP_BRKPT;
2781 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2782 }
2783 }
2784 break;
2785 case EXCP_ATOMIC:
2786 cpu_exec_step_atomic(cs);
2787 break;
2788 default:
2789 printf ("Unhandled trap: 0x%x\n", trapnr);
2790 cpu_dump_state(cs, stderr, fprintf, 0);
2791 exit(EXIT_FAILURE);
2792 }
2793 process_pending_signals (env);
2794 }
2795 }
2796 #endif
2797
2798 #ifdef TARGET_MICROBLAZE
2799 void cpu_loop(CPUMBState *env)
2800 {
2801 CPUState *cs = CPU(mb_env_get_cpu(env));
2802 int trapnr, ret;
2803 target_siginfo_t info;
2804
2805 while (1) {
2806 cpu_exec_start(cs);
2807 trapnr = cpu_exec(cs);
2808 cpu_exec_end(cs);
2809 process_queued_cpu_work(cs);
2810
2811 switch (trapnr) {
2812 case 0xaa:
2813 {
2814 info.si_signo = TARGET_SIGSEGV;
2815 info.si_errno = 0;
2816 /* XXX: check env->error_code */
2817 info.si_code = TARGET_SEGV_MAPERR;
2818 info._sifields._sigfault._addr = 0;
2819 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2820 }
2821 break;
2822 case EXCP_INTERRUPT:
2823 /* just indicate that signals should be handled asap */
2824 break;
2825 case EXCP_BREAK:
2826 /* Return address is 4 bytes after the call. */
2827 env->regs[14] += 4;
2828 env->sregs[SR_PC] = env->regs[14];
2829 ret = do_syscall(env,
2830 env->regs[12],
2831 env->regs[5],
2832 env->regs[6],
2833 env->regs[7],
2834 env->regs[8],
2835 env->regs[9],
2836 env->regs[10],
2837 0, 0);
2838 if (ret == -TARGET_ERESTARTSYS) {
2839 /* Wind back to before the syscall. */
2840 env->sregs[SR_PC] -= 4;
2841 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2842 env->regs[3] = ret;
2843 }
2844 /* All syscall exits result in guest r14 being equal to the
2845 * PC we return to, because the kernel syscall exit "rtbd" does
2846 * this. (This is true even for sigreturn(); note that r14 is
2847 * not a userspace-usable register, as the kernel may clobber it
2848 * at any point.)
2849 */
2850 env->regs[14] = env->sregs[SR_PC];
2851 break;
2852 case EXCP_HW_EXCP:
2853 env->regs[17] = env->sregs[SR_PC] + 4;
2854 if (env->iflags & D_FLAG) {
2855 env->sregs[SR_ESR] |= 1 << 12;
2856 env->sregs[SR_PC] -= 4;
2857 /* FIXME: if branch was immed, replay the imm as well. */
2858 }
2859
2860 env->iflags &= ~(IMM_FLAG | D_FLAG);
2861
2862 switch (env->sregs[SR_ESR] & 31) {
2863 case ESR_EC_DIVZERO:
2864 info.si_signo = TARGET_SIGFPE;
2865 info.si_errno = 0;
2866 info.si_code = TARGET_FPE_FLTDIV;
2867 info._sifields._sigfault._addr = 0;
2868 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2869 break;
2870 case ESR_EC_FPU:
2871 info.si_signo = TARGET_SIGFPE;
2872 info.si_errno = 0;
2873 if (env->sregs[SR_FSR] & FSR_IO) {
2874 info.si_code = TARGET_FPE_FLTINV;
2875 }
2876 if (env->sregs[SR_FSR] & FSR_DZ) {
2877 info.si_code = TARGET_FPE_FLTDIV;
2878 }
2879 info._sifields._sigfault._addr = 0;
2880 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2881 break;
2882 default:
2883 printf ("Unhandled hw-exception: 0x%x\n",
2884 env->sregs[SR_ESR] & ESR_EC_MASK);
2885 cpu_dump_state(cs, stderr, fprintf, 0);
2886 exit(EXIT_FAILURE);
2887 break;
2888 }
2889 break;
2890 case EXCP_DEBUG:
2891 {
2892 int sig;
2893
2894 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2895 if (sig)
2896 {
2897 info.si_signo = sig;
2898 info.si_errno = 0;
2899 info.si_code = TARGET_TRAP_BRKPT;
2900 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2901 }
2902 }
2903 break;
2904 case EXCP_ATOMIC:
2905 cpu_exec_step_atomic(cs);
2906 break;
2907 default:
2908 printf ("Unhandled trap: 0x%x\n", trapnr);
2909 cpu_dump_state(cs, stderr, fprintf, 0);
2910 exit(EXIT_FAILURE);
2911 }
2912 process_pending_signals (env);
2913 }
2914 }
2915 #endif
2916
2917 #ifdef TARGET_M68K
2918
2919 void cpu_loop(CPUM68KState *env)
2920 {
2921 CPUState *cs = CPU(m68k_env_get_cpu(env));
2922 int trapnr;
2923 unsigned int n;
2924 target_siginfo_t info;
2925 TaskState *ts = cs->opaque;
2926
2927 for(;;) {
2928 cpu_exec_start(cs);
2929 trapnr = cpu_exec(cs);
2930 cpu_exec_end(cs);
2931 process_queued_cpu_work(cs);
2932
2933 switch(trapnr) {
2934 case EXCP_ILLEGAL:
2935 {
2936 if (ts->sim_syscalls) {
2937 uint16_t nr;
2938 get_user_u16(nr, env->pc + 2);
2939 env->pc += 4;
2940 do_m68k_simcall(env, nr);
2941 } else {
2942 goto do_sigill;
2943 }
2944 }
2945 break;
2946 case EXCP_HALT_INSN:
2947 /* Semihosing syscall. */
2948 env->pc += 4;
2949 do_m68k_semihosting(env, env->dregs[0]);
2950 break;
2951 case EXCP_LINEA:
2952 case EXCP_LINEF:
2953 case EXCP_UNSUPPORTED:
2954 do_sigill:
2955 info.si_signo = TARGET_SIGILL;
2956 info.si_errno = 0;
2957 info.si_code = TARGET_ILL_ILLOPN;
2958 info._sifields._sigfault._addr = env->pc;
2959 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2960 break;
2961 case EXCP_DIV0:
2962 info.si_signo = TARGET_SIGFPE;
2963 info.si_errno = 0;
2964 info.si_code = TARGET_FPE_INTDIV;
2965 info._sifields._sigfault._addr = env->pc;
2966 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
2967 break;
2968 case EXCP_TRAP0:
2969 {
2970 abi_long ret;
2971 ts->sim_syscalls = 0;
2972 n = env->dregs[0];
2973 env->pc += 2;
2974 ret = do_syscall(env,
2975 n,
2976 env->dregs[1],
2977 env->dregs[2],
2978 env->dregs[3],
2979 env->dregs[4],
2980 env->dregs[5],
2981 env->aregs[0],
2982 0, 0);
2983 if (ret == -TARGET_ERESTARTSYS) {
2984 env->pc -= 2;
2985 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2986 env->dregs[0] = ret;
2987 }
2988 }
2989 break;
2990 case EXCP_INTERRUPT:
2991 /* just indicate that signals should be handled asap */
2992 break;
2993 case EXCP_ACCESS:
2994 {
2995 info.si_signo = TARGET_SIGSEGV;
2996 info.si_errno = 0;
2997 /* XXX: check env->error_code */
2998 info.si_code = TARGET_SEGV_MAPERR;
2999 info._sifields._sigfault._addr = env->mmu.ar;
3000 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3001 }
3002 break;
3003 case EXCP_DEBUG:
3004 {
3005 int sig;
3006
3007 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3008 if (sig)
3009 {
3010 info.si_signo = sig;
3011 info.si_errno = 0;
3012 info.si_code = TARGET_TRAP_BRKPT;
3013 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3014 }
3015 }
3016 break;
3017 case EXCP_ATOMIC:
3018 cpu_exec_step_atomic(cs);
3019 break;
3020 default:
3021 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
3022 abort();
3023 }
3024 process_pending_signals(env);
3025 }
3026 }
3027 #endif /* TARGET_M68K */
3028
3029 #ifdef TARGET_ALPHA
3030 void cpu_loop(CPUAlphaState *env)
3031 {
3032 CPUState *cs = CPU(alpha_env_get_cpu(env));
3033 int trapnr;
3034 target_siginfo_t info;
3035 abi_long sysret;
3036
3037 while (1) {
3038 cpu_exec_start(cs);
3039 trapnr = cpu_exec(cs);
3040 cpu_exec_end(cs);
3041 process_queued_cpu_work(cs);
3042
3043 /* All of the traps imply a transition through PALcode, which
3044 implies an REI instruction has been executed. Which means
3045 that the intr_flag should be cleared. */
3046 env->intr_flag = 0;
3047
3048 switch (trapnr) {
3049 case EXCP_RESET:
3050 fprintf(stderr, "Reset requested. Exit\n");
3051 exit(EXIT_FAILURE);
3052 break;
3053 case EXCP_MCHK:
3054 fprintf(stderr, "Machine check exception. Exit\n");
3055 exit(EXIT_FAILURE);
3056 break;
3057 case EXCP_SMP_INTERRUPT:
3058 case EXCP_CLK_INTERRUPT:
3059 case EXCP_DEV_INTERRUPT:
3060 fprintf(stderr, "External interrupt. Exit\n");
3061 exit(EXIT_FAILURE);
3062 break;
3063 case EXCP_MMFAULT:
3064 env->lock_addr = -1;
3065 info.si_signo = TARGET_SIGSEGV;
3066 info.si_errno = 0;
3067 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
3068 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
3069 info._sifields._sigfault._addr = env->trap_arg0;
3070 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3071 break;
3072 case EXCP_UNALIGN:
3073 env->lock_addr = -1;
3074 info.si_signo = TARGET_SIGBUS;
3075 info.si_errno = 0;
3076 info.si_code = TARGET_BUS_ADRALN;
3077 info._sifields._sigfault._addr = env->trap_arg0;
3078 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3079 break;
3080 case EXCP_OPCDEC:
3081 do_sigill:
3082 env->lock_addr = -1;
3083 info.si_signo = TARGET_SIGILL;
3084 info.si_errno = 0;
3085 info.si_code = TARGET_ILL_ILLOPC;
3086 info._sifields._sigfault._addr = env->pc;
3087 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3088 break;
3089 case EXCP_ARITH:
3090 env->lock_addr = -1;
3091 info.si_signo = TARGET_SIGFPE;
3092 info.si_errno = 0;
3093 info.si_code = TARGET_FPE_FLTINV;
3094 info._sifields._sigfault._addr = env->pc;
3095 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3096 break;
3097 case EXCP_FEN:
3098 /* No-op. Linux simply re-enables the FPU. */
3099 break;
3100 case EXCP_CALL_PAL:
3101 env->lock_addr = -1;
3102 switch (env->error_code) {
3103 case 0x80:
3104 /* BPT */
3105 info.si_signo = TARGET_SIGTRAP;
3106 info.si_errno = 0;
3107 info.si_code = TARGET_TRAP_BRKPT;
3108 info._sifields._sigfault._addr = env->pc;
3109 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3110 break;
3111 case 0x81:
3112 /* BUGCHK */
3113 info.si_signo = TARGET_SIGTRAP;
3114 info.si_errno = 0;
3115 info.si_code = 0;
3116 info._sifields._sigfault._addr = env->pc;
3117 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3118 break;
3119 case 0x83:
3120 /* CALLSYS */
3121 trapnr = env->ir[IR_V0];
3122 sysret = do_syscall(env, trapnr,
3123 env->ir[IR_A0], env->ir[IR_A1],
3124 env->ir[IR_A2], env->ir[IR_A3],
3125 env->ir[IR_A4], env->ir[IR_A5],
3126 0, 0);
3127 if (sysret == -TARGET_ERESTARTSYS) {
3128 env->pc -= 4;
3129 break;
3130 }
3131 if (sysret == -TARGET_QEMU_ESIGRETURN) {
3132 break;
3133 }
3134 /* Syscall writes 0 to V0 to bypass error check, similar
3135 to how this is handled internal to Linux kernel.
3136 (Ab)use trapnr temporarily as boolean indicating error. */
3137 trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
3138 env->ir[IR_V0] = (trapnr ? -sysret : sysret);
3139 env->ir[IR_A3] = trapnr;
3140 break;
3141 case 0x86:
3142 /* IMB */
3143 /* ??? We can probably elide the code using page_unprotect
3144 that is checking for self-modifying code. Instead we
3145 could simply call tb_flush here. Until we work out the
3146 changes required to turn off the extra write protection,
3147 this can be a no-op. */
3148 break;
3149 case 0x9E:
3150 /* RDUNIQUE */
3151 /* Handled in the translator for usermode. */
3152 abort();
3153 case 0x9F:
3154 /* WRUNIQUE */
3155 /* Handled in the translator for usermode. */
3156 abort();
3157 case 0xAA:
3158 /* GENTRAP */
3159 info.si_signo = TARGET_SIGFPE;
3160 switch (env->ir[IR_A0]) {
3161 case TARGET_GEN_INTOVF:
3162 info.si_code = TARGET_FPE_INTOVF;
3163 break;
3164 case TARGET_GEN_INTDIV:
3165 info.si_code = TARGET_FPE_INTDIV;
3166 break;
3167 case TARGET_GEN_FLTOVF:
3168 info.si_code = TARGET_FPE_FLTOVF;
3169 break;
3170 case TARGET_GEN_FLTUND:
3171 info.si_code = TARGET_FPE_FLTUND;
3172 break;
3173 case TARGET_GEN_FLTINV:
3174 info.si_code = TARGET_FPE_FLTINV;
3175 break;
3176 case TARGET_GEN_FLTINE:
3177 info.si_code = TARGET_FPE_FLTRES;
3178 break;
3179 case TARGET_GEN_ROPRAND:
3180 info.si_code = 0;
3181 break;
3182 default:
3183 info.si_signo = TARGET_SIGTRAP;
3184 info.si_code = 0;
3185 break;
3186 }
3187 info.si_errno = 0;
3188 info._sifields._sigfault._addr = env->pc;
3189 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3190 break;
3191 default:
3192 goto do_sigill;
3193 }
3194 break;
3195 case EXCP_DEBUG:
3196 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP);
3197 if (info.si_signo) {
3198 env->lock_addr = -1;
3199 info.si_errno = 0;
3200 info.si_code = TARGET_TRAP_BRKPT;
3201 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3202 }
3203 break;
3204 case EXCP_INTERRUPT:
3205 /* Just indicate that signals should be handled asap. */
3206 break;
3207 case EXCP_ATOMIC:
3208 cpu_exec_step_atomic(cs);
3209 break;
3210 default:
3211 printf ("Unhandled trap: 0x%x\n", trapnr);
3212 cpu_dump_state(cs, stderr, fprintf, 0);
3213 exit(EXIT_FAILURE);
3214 }
3215 process_pending_signals (env);
3216 }
3217 }
3218 #endif /* TARGET_ALPHA */
3219
3220 #ifdef TARGET_S390X
3221 void cpu_loop(CPUS390XState *env)
3222 {
3223 CPUState *cs = CPU(s390_env_get_cpu(env));
3224 int trapnr, n, sig;
3225 target_siginfo_t info;
3226 target_ulong addr;
3227 abi_long ret;
3228
3229 while (1) {
3230 cpu_exec_start(cs);
3231 trapnr = cpu_exec(cs);
3232 cpu_exec_end(cs);
3233 process_queued_cpu_work(cs);
3234
3235 switch (trapnr) {
3236 case EXCP_INTERRUPT:
3237 /* Just indicate that signals should be handled asap. */
3238 break;
3239
3240 case EXCP_SVC:
3241 n = env->int_svc_code;
3242 if (!n) {
3243 /* syscalls > 255 */
3244 n = env->regs[1];
3245 }
3246 env->psw.addr += env->int_svc_ilen;
3247 ret = do_syscall(env, n, env->regs[2], env->regs[3],
3248 env->regs[4], env->regs[5],
3249 env->regs[6], env->regs[7], 0, 0);
3250 if (ret == -TARGET_ERESTARTSYS) {
3251 env->psw.addr -= env->int_svc_ilen;
3252 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
3253 env->regs[2] = ret;
3254 }
3255 break;
3256
3257 case EXCP_DEBUG:
3258 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3259 if (sig) {
3260 n = TARGET_TRAP_BRKPT;
3261 goto do_signal_pc;
3262 }
3263 break;
3264 case EXCP_PGM:
3265 n = env->int_pgm_code;
3266 switch (n) {
3267 case PGM_OPERATION:
3268 case PGM_PRIVILEGED:
3269 sig = TARGET_SIGILL;
3270 n = TARGET_ILL_ILLOPC;
3271 goto do_signal_pc;
3272 case PGM_PROTECTION:
3273 case PGM_ADDRESSING:
3274 sig = TARGET_SIGSEGV;
3275 /* XXX: check env->error_code */
3276 n = TARGET_SEGV_MAPERR;
3277 addr = env->__excp_addr;
3278 goto do_signal;
3279 case PGM_EXECUTE:
3280 case PGM_SPECIFICATION:
3281 case PGM_SPECIAL_OP:
3282 case PGM_OPERAND:
3283 do_sigill_opn:
3284 sig = TARGET_SIGILL;
3285 n = TARGET_ILL_ILLOPN;
3286 goto do_signal_pc;
3287
3288 case PGM_FIXPT_OVERFLOW:
3289 sig = TARGET_SIGFPE;
3290 n = TARGET_FPE_INTOVF;
3291 goto do_signal_pc;
3292 case PGM_FIXPT_DIVIDE:
3293 sig = TARGET_SIGFPE;
3294 n = TARGET_FPE_INTDIV;
3295 goto do_signal_pc;
3296
3297 case PGM_DATA:
3298 n = (env->fpc >> 8) & 0xff;
3299 if (n == 0xff) {
3300 /* compare-and-trap */
3301 goto do_sigill_opn;
3302 } else {
3303 /* An IEEE exception, simulated or otherwise. */
3304 if (n & 0x80) {
3305 n = TARGET_FPE_FLTINV;
3306 } else if (n & 0x40) {
3307 n = TARGET_FPE_FLTDIV;
3308 } else if (n & 0x20) {
3309 n = TARGET_FPE_FLTOVF;
3310 } else if (n & 0x10) {
3311 n = TARGET_FPE_FLTUND;
3312 } else if (n & 0x08) {
3313 n = TARGET_FPE_FLTRES;
3314 } else {
3315 /* ??? Quantum exception; BFP, DFP error. */
3316 goto do_sigill_opn;
3317 }
3318 sig = TARGET_SIGFPE;
3319 goto do_signal_pc;
3320 }
3321
3322 default:
3323 fprintf(stderr, "Unhandled program exception: %#x\n", n);
3324 cpu_dump_state(cs, stderr, fprintf, 0);
3325 exit(EXIT_FAILURE);
3326 }
3327 break;
3328
3329 do_signal_pc:
3330 addr = env->psw.addr;
3331 do_signal:
3332 info.si_signo = sig;
3333 info.si_errno = 0;
3334 info.si_code = n;
3335 info._sifields._sigfault._addr = addr;
3336 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3337 break;
3338
3339 case EXCP_ATOMIC:
3340 cpu_exec_step_atomic(cs);
3341 break;
3342 default:
3343 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
3344 cpu_dump_state(cs, stderr, fprintf, 0);
3345 exit(EXIT_FAILURE);
3346 }
3347 process_pending_signals (env);
3348 }
3349 }
3350
3351 #endif /* TARGET_S390X */
3352
3353 #ifdef TARGET_TILEGX
3354
3355 static void gen_sigill_reg(CPUTLGState *env)
3356 {
3357 target_siginfo_t info;
3358
3359 info.si_signo = TARGET_SIGILL;
3360 info.si_errno = 0;
3361 info.si_code = TARGET_ILL_PRVREG;
3362 info._sifields._sigfault._addr = env->pc;
3363 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3364 }
3365
3366 static void do_signal(CPUTLGState *env, int signo, int sigcode)
3367 {
3368 target_siginfo_t info;
3369
3370 info.si_signo = signo;
3371 info.si_errno = 0;
3372 info._sifields._sigfault._addr = env->pc;
3373
3374 if (signo == TARGET_SIGSEGV) {
3375 /* The passed in sigcode is a dummy; check for a page mapping
3376 and pass either MAPERR or ACCERR. */
3377 target_ulong addr = env->excaddr;
3378 info._sifields._sigfault._addr = addr;
3379 if (page_check_range(addr, 1, PAGE_VALID) < 0) {
3380 sigcode = TARGET_SEGV_MAPERR;
3381 } else {
3382 sigcode = TARGET_SEGV_ACCERR;
3383 }
3384 }
3385 info.si_code = sigcode;
3386
3387 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3388 }
3389
3390 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr)
3391 {
3392 env->excaddr = addr;
3393 do_signal(env, TARGET_SIGSEGV, 0);
3394 }
3395
3396 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val)
3397 {
3398 if (unlikely(reg >= TILEGX_R_COUNT)) {
3399 switch (reg) {
3400 case TILEGX_R_SN:
3401 case TILEGX_R_ZERO:
3402 return;
3403 case TILEGX_R_IDN0:
3404 case TILEGX_R_IDN1:
3405 case TILEGX_R_UDN0:
3406 case TILEGX_R_UDN1:
3407 case TILEGX_R_UDN2:
3408 case TILEGX_R_UDN3:
3409 gen_sigill_reg(env);
3410 return;
3411 default:
3412 g_assert_not_reached();
3413 }
3414 }
3415 env->regs[reg] = val;
3416 }
3417
3418 /*
3419 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in
3420 * memory at the address held in the first source register. If the values are
3421 * not equal, then no memory operation is performed. If the values are equal,
3422 * the 8-byte quantity from the second source register is written into memory
3423 * at the address held in the first source register. In either case, the result
3424 * of the instruction is the value read from memory. The compare and write to
3425 * memory are atomic and thus can be used for synchronization purposes. This
3426 * instruction only operates for addresses aligned to a 8-byte boundary.
3427 * Unaligned memory access causes an Unaligned Data Reference interrupt.
3428 *
3429 * Functional Description (64-bit)
3430 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
3431 * rf[Dest] = memVal;
3432 * if (memVal == SPR[CmpValueSPR])
3433 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
3434 *
3435 * Functional Description (32-bit)
3436 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
3437 * rf[Dest] = memVal;
3438 * if (memVal == signExtend32 (SPR[CmpValueSPR]))
3439 * memoryWriteWord (rf[SrcA], rf[SrcB]);
3440 *
3441 *
3442 * This function also processes exch and exch4 which need not process SPR.
3443 */
3444 static void do_exch(CPUTLGState *env, bool quad, bool cmp)
3445 {
3446 target_ulong addr;
3447 target_long val, sprval;
3448
3449 start_exclusive();
3450
3451 addr = env->atomic_srca;
3452 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3453 goto sigsegv_maperr;
3454 }
3455
3456 if (cmp) {
3457 if (quad) {
3458 sprval = env->spregs[TILEGX_SPR_CMPEXCH];
3459 } else {
3460 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32);
3461 }
3462 }
3463
3464 if (!cmp || val == sprval) {
3465 target_long valb = env->atomic_srcb;
3466 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
3467 goto sigsegv_maperr;
3468 }
3469 }
3470
3471 set_regval(env, env->atomic_dstr, val);
3472 end_exclusive();
3473 return;
3474
3475 sigsegv_maperr:
3476 end_exclusive();
3477 gen_sigsegv_maperr(env, addr);
3478 }
3479
3480 static void do_fetch(CPUTLGState *env, int trapnr, bool quad)
3481 {
3482 int8_t write = 1;
3483 target_ulong addr;
3484 target_long val, valb;
3485
3486 start_exclusive();
3487
3488 addr = env->atomic_srca;
3489 valb = env->atomic_srcb;
3490 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3491 goto sigsegv_maperr;
3492 }
3493
3494 switch (trapnr) {
3495 case TILEGX_EXCP_OPCODE_FETCHADD:
3496 case TILEGX_EXCP_OPCODE_FETCHADD4:
3497 valb += val;
3498 break;
3499 case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
3500 valb += val;
3501 if (valb < 0) {
3502 write = 0;
3503 }
3504 break;
3505 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
3506 valb += val;
3507 if ((int32_t)valb < 0) {
3508 write = 0;
3509 }
3510 break;
3511 case TILEGX_EXCP_OPCODE_FETCHAND:
3512 case TILEGX_EXCP_OPCODE_FETCHAND4:
3513 valb &= val;
3514 break;
3515 case TILEGX_EXCP_OPCODE_FETCHOR:
3516 case TILEGX_EXCP_OPCODE_FETCHOR4:
3517 valb |= val;
3518 break;
3519 default:
3520 g_assert_not_reached();
3521 }
3522
3523 if (write) {
3524 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
3525 goto sigsegv_maperr;
3526 }
3527 }
3528
3529 set_regval(env, env->atomic_dstr, val);
3530 end_exclusive();
3531 return;
3532
3533 sigsegv_maperr:
3534 end_exclusive();
3535 gen_sigsegv_maperr(env, addr);
3536 }
3537
3538 void cpu_loop(CPUTLGState *env)
3539 {
3540 CPUState *cs = CPU(tilegx_env_get_cpu(env));
3541 int trapnr;
3542
3543 while (1) {
3544 cpu_exec_start(cs);
3545 trapnr = cpu_exec(cs);
3546 cpu_exec_end(cs);
3547 process_queued_cpu_work(cs);
3548
3549 switch (trapnr) {
3550 case TILEGX_EXCP_SYSCALL:
3551 {
3552 abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR],
3553 env->regs[0], env->regs[1],
3554 env->regs[2], env->regs[3],
3555 env->regs[4], env->regs[5],
3556 env->regs[6], env->regs[7]);
3557 if (ret == -TARGET_ERESTARTSYS) {
3558 env->pc -= 8;
3559 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
3560 env->regs[TILEGX_R_RE] = ret;
3561 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0;
3562 }
3563 break;
3564 }
3565 case TILEGX_EXCP_OPCODE_EXCH:
3566 do_exch(env, true, false);
3567 break;
3568 case TILEGX_EXCP_OPCODE_EXCH4:
3569 do_exch(env, false, false);
3570 break;
3571 case TILEGX_EXCP_OPCODE_CMPEXCH:
3572 do_exch(env, true, true);
3573 break;
3574 case TILEGX_EXCP_OPCODE_CMPEXCH4:
3575 do_exch(env, false, true);
3576 break;
3577 case TILEGX_EXCP_OPCODE_FETCHADD:
3578 case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
3579 case TILEGX_EXCP_OPCODE_FETCHAND:
3580 case TILEGX_EXCP_OPCODE_FETCHOR:
3581 do_fetch(env, trapnr, true);
3582 break;
3583 case TILEGX_EXCP_OPCODE_FETCHADD4:
3584 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
3585 case TILEGX_EXCP_OPCODE_FETCHAND4:
3586 case TILEGX_EXCP_OPCODE_FETCHOR4:
3587 do_fetch(env, trapnr, false);
3588 break;
3589 case TILEGX_EXCP_SIGNAL:
3590 do_signal(env, env->signo, env->sigcode);
3591 break;
3592 case TILEGX_EXCP_REG_IDN_ACCESS:
3593 case TILEGX_EXCP_REG_UDN_ACCESS:
3594 gen_sigill_reg(env);
3595 break;
3596 case EXCP_ATOMIC:
3597 cpu_exec_step_atomic(cs);
3598 break;
3599 default:
3600 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr);
3601 g_assert_not_reached();
3602 }
3603 process_pending_signals(env);
3604 }
3605 }
3606
3607 #endif
3608
3609 #ifdef TARGET_HPPA
3610
3611 static abi_ulong hppa_lws(CPUHPPAState *env)
3612 {
3613 uint32_t which = env->gr[20];
3614 abi_ulong addr = env->gr[26];
3615 abi_ulong old = env->gr[25];
3616 abi_ulong new = env->gr[24];
3617 abi_ulong size, ret;
3618
3619 switch (which) {
3620 default:
3621 return -TARGET_ENOSYS;
3622
3623 case 0: /* elf32 atomic 32bit cmpxchg */
3624 if ((addr & 3) || !access_ok(VERIFY_WRITE, addr, 4)) {
3625 return -TARGET_EFAULT;
3626 }
3627 old = tswap32(old);
3628 new = tswap32(new);
3629 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new);
3630 ret = tswap32(ret);
3631 break;
3632
3633 case 2: /* elf32 atomic "new" cmpxchg */
3634 size = env->gr[23];
3635 if (size >= 4) {
3636 return -TARGET_ENOSYS;
3637 }
3638 if (((addr | old | new) & ((1 << size) - 1))
3639 || !access_ok(VERIFY_WRITE, addr, 1 << size)
3640 || !access_ok(VERIFY_READ, old, 1 << size)
3641 || !access_ok(VERIFY_READ, new, 1 << size)) {
3642 return -TARGET_EFAULT;
3643 }
3644 /* Note that below we use host-endian loads so that the cmpxchg
3645 can be host-endian as well. */
3646 switch (size) {
3647 case 0:
3648 old = *(uint8_t *)g2h(old);
3649 new = *(uint8_t *)g2h(new);
3650 ret = atomic_cmpxchg((uint8_t *)g2h(addr), old, new);
3651 ret = ret != old;
3652 break;
3653 case 1:
3654 old = *(uint16_t *)g2h(old);
3655 new = *(uint16_t *)g2h(new);
3656 ret = atomic_cmpxchg((uint16_t *)g2h(addr), old, new);
3657 ret = ret != old;
3658 break;
3659 case 2:
3660 old = *(uint32_t *)g2h(old);
3661 new = *(uint32_t *)g2h(new);
3662 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new);
3663 ret = ret != old;
3664 break;
3665 case 3:
3666 {
3667 uint64_t o64, n64, r64;
3668 o64 = *(uint64_t *)g2h(old);
3669 n64 = *(uint64_t *)g2h(new);
3670 #ifdef CONFIG_ATOMIC64
3671 r64 = atomic_cmpxchg__nocheck((uint64_t *)g2h(addr), o64, n64);
3672 ret = r64 != o64;
3673 #else
3674 start_exclusive();
3675 r64 = *(uint64_t *)g2h(addr);
3676 ret = 1;
3677 if (r64 == o64) {
3678 *(uint64_t *)g2h(addr) = n64;
3679 ret = 0;
3680 }
3681 end_exclusive();
3682 #endif
3683 }
3684 break;
3685 }
3686 break;
3687 }
3688
3689 env->gr[28] = ret;
3690 return 0;
3691 }
3692
3693 void cpu_loop(CPUHPPAState *env)
3694 {
3695 CPUState *cs = CPU(hppa_env_get_cpu(env));
3696 target_siginfo_t info;
3697 abi_ulong ret;
3698 int trapnr;
3699
3700 while (1) {
3701 cpu_exec_start(cs);
3702 trapnr = cpu_exec(cs);
3703 cpu_exec_end(cs);
3704 process_queued_cpu_work(cs);
3705
3706 switch (trapnr) {
3707 case EXCP_SYSCALL:
3708 ret = do_syscall(env, env->gr[20],
3709 env->gr[26], env->gr[25],
3710 env->gr[24], env->gr[23],
3711 env->gr[22], env->gr[21], 0, 0);
3712 switch (ret) {
3713 default:
3714 env->gr[28] = ret;
3715 /* We arrived here by faking the gateway page. Return. */
3716 env->iaoq_f = env->gr[31];
3717 env->iaoq_b = env->gr[31] + 4;
3718 break;
3719 case -TARGET_ERESTARTSYS:
3720 case -TARGET_QEMU_ESIGRETURN:
3721 break;
3722 }
3723 break;
3724 case EXCP_SYSCALL_LWS:
3725 env->gr[21] = hppa_lws(env);
3726 /* We arrived here by faking the gateway page. Return. */
3727 env->iaoq_f = env->gr[31];
3728 env->iaoq_b = env->gr[31] + 4;
3729 break;
3730 case EXCP_SIGSEGV:
3731 info.si_signo = TARGET_SIGSEGV;
3732 info.si_errno = 0;
3733 info.si_code = TARGET_SEGV_ACCERR;
3734 info._sifields._sigfault._addr = env->ior;
3735 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3736 break;
3737 case EXCP_SIGILL:
3738 info.si_signo = TARGET_SIGILL;
3739 info.si_errno = 0;
3740 info.si_code = TARGET_ILL_ILLOPN;
3741 info._sifields._sigfault._addr = env->iaoq_f;
3742 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3743 break;
3744 case EXCP_SIGFPE:
3745 info.si_signo = TARGET_SIGFPE;
3746 info.si_errno = 0;
3747 info.si_code = 0;
3748 info._sifields._sigfault._addr = env->iaoq_f;
3749 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
3750 break;
3751 case EXCP_DEBUG:
3752 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP);
3753 if (trapnr) {
3754 info.si_signo = trapnr;
3755 info.si_errno = 0;
3756 info.si_code = TARGET_TRAP_BRKPT;
3757 queue_signal(env, trapnr, QEMU_SI_FAULT, &info);
3758 }
3759 break;
3760 case EXCP_INTERRUPT:
3761 /* just indicate that signals should be handled asap */
3762 break;
3763 default:
3764 g_assert_not_reached();
3765 }
3766 process_pending_signals(env);
3767 }
3768 }
3769
3770 #endif /* TARGET_HPPA */
3771
3772 THREAD CPUState *thread_cpu;
3773
3774 bool qemu_cpu_is_self(CPUState *cpu)
3775 {
3776 return thread_cpu == cpu;
3777 }
3778
3779 void qemu_cpu_kick(CPUState *cpu)
3780 {
3781 cpu_exit(cpu);
3782 }
3783
3784 void task_settid(TaskState *ts)
3785 {
3786 if (ts->ts_tid == 0) {
3787 ts->ts_tid = (pid_t)syscall(SYS_gettid);
3788 }
3789 }
3790
3791 void stop_all_tasks(void)
3792 {
3793 /*
3794 * We trust that when using NPTL, start_exclusive()
3795 * handles thread stopping correctly.
3796 */
3797 start_exclusive();
3798 }
3799
3800 /* Assumes contents are already zeroed. */
3801 void init_task_state(TaskState *ts)
3802 {
3803 ts->used = 1;
3804 }
3805
3806 CPUArchState *cpu_copy(CPUArchState *env)
3807 {
3808 CPUState *cpu = ENV_GET_CPU(env);
3809 CPUState *new_cpu = cpu_init(cpu_model);
3810 CPUArchState *new_env = new_cpu->env_ptr;
3811 CPUBreakpoint *bp;
3812 CPUWatchpoint *wp;
3813
3814 /* Reset non arch specific state */
3815 cpu_reset(new_cpu);
3816
3817 memcpy(new_env, env, sizeof(CPUArchState));
3818
3819 /* Clone all break/watchpoints.
3820 Note: Once we support ptrace with hw-debug register access, make sure
3821 BP_CPU break/watchpoints are handled correctly on clone. */
3822 QTAILQ_INIT(&new_cpu->breakpoints);
3823 QTAILQ_INIT(&new_cpu->watchpoints);
3824 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
3825 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL);
3826 }
3827 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
3828 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL);
3829 }
3830
3831 return new_env;
3832 }
3833
3834 static void handle_arg_help(const char *arg)
3835 {
3836 usage(EXIT_SUCCESS);
3837 }
3838
3839 static void handle_arg_log(const char *arg)
3840 {
3841 int mask;
3842
3843 mask = qemu_str_to_log_mask(arg);
3844 if (!mask) {
3845 qemu_print_log_usage(stdout);
3846 exit(EXIT_FAILURE);
3847 }
3848 qemu_log_needs_buffers();
3849 qemu_set_log(mask);
3850 }
3851
3852 static void handle_arg_log_filename(const char *arg)
3853 {
3854 qemu_set_log_filename(arg, &error_fatal);
3855 }
3856
3857 static void handle_arg_set_env(const char *arg)
3858 {
3859 char *r, *p, *token;
3860 r = p = strdup(arg);
3861 while ((token = strsep(&p, ",")) != NULL) {
3862 if (envlist_setenv(envlist, token) != 0) {
3863 usage(EXIT_FAILURE);
3864 }
3865 }
3866 free(r);
3867 }
3868
3869 static void handle_arg_unset_env(const char *arg)
3870 {
3871 char *r, *p, *token;
3872 r = p = strdup(arg);
3873 while ((token = strsep(&p, ",")) != NULL) {
3874 if (envlist_unsetenv(envlist, token) != 0) {
3875 usage(EXIT_FAILURE);
3876 }
3877 }
3878 free(r);
3879 }
3880
3881 static void handle_arg_argv0(const char *arg)
3882 {
3883 argv0 = strdup(arg);
3884 }
3885
3886 static void handle_arg_stack_size(const char *arg)
3887 {
3888 char *p;
3889 guest_stack_size = strtoul(arg, &p, 0);
3890 if (guest_stack_size == 0) {
3891 usage(EXIT_FAILURE);
3892 }
3893
3894 if (*p == 'M') {
3895 guest_stack_size *= 1024 * 1024;
3896 } else if (*p == 'k' || *p == 'K') {
3897 guest_stack_size *= 1024;
3898 }
3899 }
3900
3901 static void handle_arg_ld_prefix(const char *arg)
3902 {
3903 interp_prefix = strdup(arg);
3904 }
3905
3906 static void handle_arg_pagesize(const char *arg)
3907 {
3908 qemu_host_page_size = atoi(arg);
3909 if (qemu_host_page_size == 0 ||
3910 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3911 fprintf(stderr, "page size must be a power of two\n");
3912 exit(EXIT_FAILURE);
3913 }
3914 }
3915
3916 static void handle_arg_randseed(const char *arg)
3917 {
3918 unsigned long long seed;
3919
3920 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) {
3921 fprintf(stderr, "Invalid seed number: %s\n", arg);
3922 exit(EXIT_FAILURE);
3923 }
3924 srand(seed);
3925 }
3926
3927 static void handle_arg_gdb(const char *arg)
3928 {
3929 gdbstub_port = atoi(arg);
3930 }
3931
3932 static void handle_arg_uname(const char *arg)
3933 {
3934 qemu_uname_release = strdup(arg);
3935 }
3936
3937 static void handle_arg_cpu(const char *arg)
3938 {
3939 cpu_model = strdup(arg);
3940 if (cpu_model == NULL || is_help_option(cpu_model)) {
3941 /* XXX: implement xxx_cpu_list for targets that still miss it */
3942 #if defined(cpu_list)
3943 cpu_list(stdout, &fprintf);
3944 #endif
3945 exit(EXIT_FAILURE);
3946 }
3947 }
3948
3949 static void handle_arg_guest_base(const char *arg)
3950 {
3951 guest_base = strtol(arg, NULL, 0);
3952 have_guest_base = 1;
3953 }
3954
3955 static void handle_arg_reserved_va(const char *arg)
3956 {
3957 char *p;
3958 int shift = 0;
3959 reserved_va = strtoul(arg, &p, 0);
3960 switch (*p) {
3961 case 'k':
3962 case 'K':
3963 shift = 10;
3964 break;
3965 case 'M':
3966 shift = 20;
3967 break;
3968 case 'G':
3969 shift = 30;
3970 break;
3971 }
3972 if (shift) {
3973 unsigned long unshifted = reserved_va;
3974 p++;
3975 reserved_va <<= shift;
3976 if (((reserved_va >> shift) != unshifted)
3977 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3978 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3979 #endif
3980 ) {
3981 fprintf(stderr, "Reserved virtual address too big\n");
3982 exit(EXIT_FAILURE);
3983 }
3984 }
3985 if (*p) {
3986 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3987 exit(EXIT_FAILURE);
3988 }
3989 }
3990
3991 static void handle_arg_singlestep(const char *arg)
3992 {
3993 singlestep = 1;
3994 }
3995
3996 static void handle_arg_strace(const char *arg)
3997 {
3998 do_strace = 1;
3999 }
4000
4001 static void handle_arg_version(const char *arg)
4002 {
4003 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
4004 "\n" QEMU_COPYRIGHT "\n");
4005 exit(EXIT_SUCCESS);
4006 }
4007
4008 static char *trace_file;
4009 static void handle_arg_trace(const char *arg)
4010 {
4011 g_free(trace_file);
4012 trace_file = trace_opt_parse(arg);
4013 }
4014
4015 struct qemu_argument {
4016 const char *argv;
4017 const char *env;
4018 bool has_arg;
4019 void (*handle_opt)(const char *arg);
4020 const char *example;
4021 const char *help;
4022 };
4023
4024 static const struct qemu_argument arg_table[] = {
4025 {"h", "", false, handle_arg_help,
4026 "", "print this help"},
4027 {"help", "", false, handle_arg_help,
4028 "", ""},
4029 {"g", "QEMU_GDB", true, handle_arg_gdb,
4030 "port", "wait gdb connection to 'port'"},
4031 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix,
4032 "path", "set the elf interpreter prefix to 'path'"},
4033 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size,
4034 "size", "set the stack size to 'size' bytes"},
4035 {"cpu", "QEMU_CPU", true, handle_arg_cpu,
4036 "model", "select CPU (-cpu help for list)"},
4037 {"E", "QEMU_SET_ENV", true, handle_arg_set_env,
4038 "var=value", "sets targets environment variable (see below)"},
4039 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env,
4040 "var", "unsets targets environment variable (see below)"},
4041 {"0", "QEMU_ARGV0", true, handle_arg_argv0,
4042 "argv0", "forces target process argv[0] to be 'argv0'"},
4043 {"r", "QEMU_UNAME", true, handle_arg_uname,
4044 "uname", "set qemu uname release string to 'uname'"},
4045 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base,
4046 "address", "set guest_base address to 'address'"},
4047 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va,
4048 "size", "reserve 'size' bytes for guest virtual address space"},
4049 {"d", "QEMU_LOG", true, handle_arg_log,
4050 "item[,...]", "enable logging of specified items "
4051 "(use '-d help' for a list of items)"},
4052 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
4053 "logfile", "write logs to 'logfile' (default stderr)"},
4054 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize,
4055 "pagesize", "set the host page size to 'pagesize'"},
4056 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep,
4057 "", "run in singlestep mode"},
4058 {"strace", "QEMU_STRACE", false, handle_arg_strace,
4059 "", "log system calls"},
4060 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed,
4061 "", "Seed for pseudo-random number generator"},
4062 {"trace", "QEMU_TRACE", true, handle_arg_trace,
4063 "", "[[enable=]<pattern>][,events=<file>][,file=<file>]"},
4064 {"version", "QEMU_VERSION", false, handle_arg_version,
4065 "", "display version information and exit"},
4066 {NULL, NULL, false, NULL, NULL, NULL}
4067 };
4068
4069 static void usage(int exitcode)
4070 {
4071 const struct qemu_argument *arginfo;
4072 int maxarglen;
4073 int maxenvlen;
4074
4075 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
4076 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n"
4077 "\n"
4078 "Options and associated environment variables:\n"
4079 "\n");
4080
4081 /* Calculate column widths. We must always have at least enough space
4082 * for the column header.
4083 */
4084 maxarglen = strlen("Argument");
4085 maxenvlen = strlen("Env-variable");
4086
4087 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4088 int arglen = strlen(arginfo->argv);
4089 if (arginfo->has_arg) {
4090 arglen += strlen(arginfo->example) + 1;
4091 }
4092 if (strlen(arginfo->env) > maxenvlen) {
4093 maxenvlen = strlen(arginfo->env);
4094 }
4095 if (arglen > maxarglen) {
4096 maxarglen = arglen;
4097 }
4098 }
4099
4100 printf("%-*s %-*s Description\n", maxarglen+1, "Argument",
4101 maxenvlen, "Env-variable");
4102
4103 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4104 if (arginfo->has_arg) {
4105 printf("-%s %-*s %-*s %s\n", arginfo->argv,
4106 (int)(maxarglen - strlen(arginfo->argv) - 1),
4107 arginfo->example, maxenvlen, arginfo->env, arginfo->help);
4108 } else {
4109 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv,
4110 maxenvlen, arginfo->env,
4111 arginfo->help);
4112 }
4113 }
4114
4115 printf("\n"
4116 "Defaults:\n"
4117 "QEMU_LD_PREFIX = %s\n"
4118 "QEMU_STACK_SIZE = %ld byte\n",
4119 interp_prefix,
4120 guest_stack_size);
4121
4122 printf("\n"
4123 "You can use -E and -U options or the QEMU_SET_ENV and\n"
4124 "QEMU_UNSET_ENV environment variables to set and unset\n"
4125 "environment variables for the target process.\n"
4126 "It is possible to provide several variables by separating them\n"
4127 "by commas in getsubopt(3) style. Additionally it is possible to\n"
4128 "provide the -E and -U options multiple times.\n"
4129 "The following lines are equivalent:\n"
4130 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
4131 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
4132 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
4133 "Note that if you provide several changes to a single variable\n"
4134 "the last change will stay in effect.\n");
4135
4136 exit(exitcode);
4137 }
4138
4139 static int parse_args(int argc, char **argv)
4140 {
4141 const char *r;
4142 int optind;
4143 const struct qemu_argument *arginfo;
4144
4145 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4146 if (arginfo->env == NULL) {
4147 continue;
4148 }
4149
4150 r = getenv(arginfo->env);
4151 if (r != NULL) {
4152 arginfo->handle_opt(r);
4153 }
4154 }
4155
4156 optind = 1;
4157 for (;;) {
4158 if (optind >= argc) {
4159 break;
4160 }
4161 r = argv[optind];
4162 if (r[0] != '-') {
4163 break;
4164 }
4165 optind++;
4166 r++;
4167 if (!strcmp(r, "-")) {
4168 break;
4169 }
4170 /* Treat --foo the same as -foo. */
4171 if (r[0] == '-') {
4172 r++;
4173 }
4174
4175 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4176 if (!strcmp(r, arginfo->argv)) {
4177 if (arginfo->has_arg) {
4178 if (optind >= argc) {
4179 (void) fprintf(stderr,
4180 "qemu: missing argument for option '%s'\n", r);
4181 exit(EXIT_FAILURE);
4182 }
4183 arginfo->handle_opt(argv[optind]);
4184 optind++;
4185 } else {
4186 arginfo->handle_opt(NULL);
4187 }
4188 break;
4189 }
4190 }
4191
4192 /* no option matched the current argv */
4193 if (arginfo->handle_opt == NULL) {
4194 (void) fprintf(stderr, "qemu: unknown option '%s'\n", r);
4195 exit(EXIT_FAILURE);
4196 }
4197 }
4198
4199 if (optind >= argc) {
4200 (void) fprintf(stderr, "qemu: no user program specified\n");
4201 exit(EXIT_FAILURE);
4202 }
4203
4204 filename = argv[optind];
4205 exec_path = argv[optind];
4206
4207 return optind;
4208 }
4209
4210 int main(int argc, char **argv, char **envp)
4211 {
4212 struct target_pt_regs regs1, *regs = &regs1;
4213 struct image_info info1, *info = &info1;
4214 struct linux_binprm bprm;
4215 TaskState *ts;
4216 CPUArchState *env;
4217 CPUState *cpu;
4218 int optind;
4219 char **target_environ, **wrk;
4220 char **target_argv;
4221 int target_argc;
4222 int i;
4223 int ret;
4224 int execfd;
4225
4226 module_call_init(MODULE_INIT_TRACE);
4227 qemu_init_cpu_list();
4228 module_call_init(MODULE_INIT_QOM);
4229
4230 if ((envlist = envlist_create()) == NULL) {
4231 (void) fprintf(stderr, "Unable to allocate envlist\n");
4232 exit(EXIT_FAILURE);
4233 }
4234
4235 /* add current environment into the list */
4236 for (wrk = environ; *wrk != NULL; wrk++) {
4237 (void) envlist_setenv(envlist, *wrk);
4238 }
4239
4240 /* Read the stack limit from the kernel. If it's "unlimited",
4241 then we can do little else besides use the default. */
4242 {
4243 struct rlimit lim;
4244 if (getrlimit(RLIMIT_STACK, &lim) == 0
4245 && lim.rlim_cur != RLIM_INFINITY
4246 && lim.rlim_cur == (target_long)lim.rlim_cur) {
4247 guest_stack_size = lim.rlim_cur;
4248 }
4249 }
4250
4251 cpu_model = NULL;
4252
4253 srand(time(NULL));
4254
4255 qemu_add_opts(&qemu_trace_opts);
4256
4257 optind = parse_args(argc, argv);
4258
4259 if (!trace_init_backends()) {
4260 exit(1);
4261 }
4262 trace_init_file(trace_file);
4263
4264 /* Zero out regs */
4265 memset(regs, 0, sizeof(struct target_pt_regs));
4266
4267 /* Zero out image_info */
4268 memset(info, 0, sizeof(struct image_info));
4269
4270 memset(&bprm, 0, sizeof (bprm));
4271
4272 /* Scan interp_prefix dir for replacement files. */
4273 init_paths(interp_prefix);
4274
4275 init_qemu_uname_release();
4276
4277 if (cpu_model == NULL) {
4278 #if defined(TARGET_I386)
4279 #ifdef TARGET_X86_64
4280 cpu_model = "qemu64";
4281 #else
4282 cpu_model = "qemu32";
4283 #endif
4284 #elif defined(TARGET_ARM)
4285 cpu_model = "any";
4286 #elif defined(TARGET_UNICORE32)
4287 cpu_model = "any";
4288 #elif defined(TARGET_M68K)
4289 cpu_model = "any";
4290 #elif defined(TARGET_SPARC)
4291 #ifdef TARGET_SPARC64
4292 cpu_model = "TI UltraSparc II";
4293 #else
4294 cpu_model = "Fujitsu MB86904";
4295 #endif
4296 #elif defined(TARGET_MIPS)
4297 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
4298 cpu_model = "5KEf";
4299 #else
4300 cpu_model = "24Kf";
4301 #endif
4302 #elif defined TARGET_OPENRISC
4303 cpu_model = "or1200";
4304 #elif defined(TARGET_PPC)
4305 # ifdef TARGET_PPC64
4306 cpu_model = "POWER8";
4307 # else
4308 cpu_model = "750";
4309 # endif
4310 #elif defined TARGET_SH4
4311 cpu_model = TYPE_SH7785_CPU;
4312 #elif defined TARGET_S390X
4313 cpu_model = "qemu";
4314 #else
4315 cpu_model = "any";
4316 #endif
4317 }
4318 tcg_exec_init(0);
4319 /* NOTE: we need to init the CPU at this stage to get
4320 qemu_host_page_size */
4321 cpu = cpu_init(cpu_model);
4322 if (!cpu) {
4323 fprintf(stderr, "Unable to find CPU definition\n");
4324 exit(EXIT_FAILURE);
4325 }
4326 env = cpu->env_ptr;
4327 cpu_reset(cpu);
4328
4329 thread_cpu = cpu;
4330
4331 if (getenv("QEMU_STRACE")) {
4332 do_strace = 1;
4333 }
4334
4335 if (getenv("QEMU_RAND_SEED")) {
4336 handle_arg_randseed(getenv("QEMU_RAND_SEED"));
4337 }
4338
4339 target_environ = envlist_to_environ(envlist, NULL);
4340 envlist_free(envlist);
4341
4342 /*
4343 * Now that page sizes are configured in cpu_init() we can do
4344 * proper page alignment for guest_base.
4345 */
4346 guest_base = HOST_PAGE_ALIGN(guest_base);
4347
4348 if (reserved_va || have_guest_base) {
4349 guest_base = init_guest_space(guest_base, reserved_va, 0,
4350 have_guest_base);
4351 if (guest_base == (unsigned long)-1) {
4352 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
4353 "space for use as guest address space (check your virtual "
4354 "memory ulimit setting or reserve less using -R option)\n",
4355 reserved_va);
4356 exit(EXIT_FAILURE);
4357 }
4358
4359 if (reserved_va) {
4360 mmap_next_start = reserved_va;
4361 }
4362 }
4363
4364 /*
4365 * Read in mmap_min_addr kernel parameter. This value is used
4366 * When loading the ELF image to determine whether guest_base
4367 * is needed. It is also used in mmap_find_vma.
4368 */
4369 {
4370 FILE *fp;
4371
4372 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
4373 unsigned long tmp;
4374 if (fscanf(fp, "%lu", &tmp) == 1) {
4375 mmap_min_addr = tmp;
4376 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
4377 }
4378 fclose(fp);
4379 }
4380 }
4381
4382 /*
4383 * Prepare copy of argv vector for target.
4384 */
4385 target_argc = argc - optind;
4386 target_argv = calloc(target_argc + 1, sizeof (char *));
4387 if (target_argv == NULL) {
4388 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
4389 exit(EXIT_FAILURE);
4390 }
4391
4392 /*
4393 * If argv0 is specified (using '-0' switch) we replace
4394 * argv[0] pointer with the given one.
4395 */
4396 i = 0;
4397 if (argv0 != NULL) {
4398 target_argv[i++] = strdup(argv0);
4399 }
4400 for (; i < target_argc; i++) {
4401 target_argv[i] = strdup(argv[optind + i]);
4402 }
4403 target_argv[target_argc] = NULL;
4404
4405 ts = g_new0(TaskState, 1);
4406 init_task_state(ts);
4407 /* build Task State */
4408 ts->info = info;
4409 ts->bprm = &bprm;
4410 cpu->opaque = ts;
4411 task_settid(ts);
4412
4413 execfd = qemu_getauxval(AT_EXECFD);
4414 if (execfd == 0) {
4415 execfd = open(filename, O_RDONLY);
4416 if (execfd < 0) {
4417 printf("Error while loading %s: %s\n", filename, strerror(errno));
4418 _exit(EXIT_FAILURE);
4419 }
4420 }
4421
4422 ret = loader_exec(execfd, filename, target_argv, target_environ, regs,
4423 info, &bprm);
4424 if (ret != 0) {
4425 printf("Error while loading %s: %s\n", filename, strerror(-ret));
4426 _exit(EXIT_FAILURE);
4427 }
4428
4429 for (wrk = target_environ; *wrk; wrk++) {
4430 free(*wrk);
4431 }
4432
4433 free(target_environ);
4434
4435 if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
4436 qemu_log("guest_base 0x%lx\n", guest_base);
4437 log_page_dump();
4438
4439 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
4440 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
4441 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", info->start_code);
4442 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", info->start_data);
4443 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
4444 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", info->start_stack);
4445 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
4446 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
4447 qemu_log("argv_start 0x" TARGET_ABI_FMT_lx "\n", info->arg_start);
4448 qemu_log("env_start 0x" TARGET_ABI_FMT_lx "\n",
4449 info->arg_end + (abi_ulong)sizeof(abi_ulong));
4450 qemu_log("auxv_start 0x" TARGET_ABI_FMT_lx "\n", info->saved_auxv);
4451 }
4452
4453 target_set_brk(info->brk);
4454 syscall_init();
4455 signal_init();
4456
4457 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4458 generating the prologue until now so that the prologue can take
4459 the real value of GUEST_BASE into account. */
4460 tcg_prologue_init(&tcg_ctx);
4461
4462 #if defined(TARGET_I386)
4463 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
4464 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
4465 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
4466 env->cr[4] |= CR4_OSFXSR_MASK;
4467 env->hflags |= HF_OSFXSR_MASK;
4468 }
4469 #ifndef TARGET_ABI32
4470 /* enable 64 bit mode if possible */
4471 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
4472 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
4473 exit(EXIT_FAILURE);
4474 }
4475 env->cr[4] |= CR4_PAE_MASK;
4476 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
4477 env->hflags |= HF_LMA_MASK;
4478 #endif
4479
4480 /* flags setup : we activate the IRQs by default as in user mode */
4481 env->eflags |= IF_MASK;
4482
4483 /* linux register setup */
4484 #ifndef TARGET_ABI32
4485 env->regs[R_EAX] = regs->rax;
4486 env->regs[R_EBX] = regs->rbx;
4487 env->regs[R_ECX] = regs->rcx;
4488 env->regs[R_EDX] = regs->rdx;
4489 env->regs[R_ESI] = regs->rsi;
4490 env->regs[R_EDI] = regs->rdi;
4491 env->regs[R_EBP] = regs->rbp;
4492 env->regs[R_ESP] = regs->rsp;
4493 env->eip = regs->rip;
4494 #else
4495 env->regs[R_EAX] = regs->eax;
4496 env->regs[R_EBX] = regs->ebx;
4497 env->regs[R_ECX] = regs->ecx;
4498 env->regs[R_EDX] = regs->edx;
4499 env->regs[R_ESI] = regs->esi;
4500 env->regs[R_EDI] = regs->edi;
4501 env->regs[R_EBP] = regs->ebp;
4502 env->regs[R_ESP] = regs->esp;
4503 env->eip = regs->eip;
4504 #endif
4505
4506 /* linux interrupt setup */
4507 #ifndef TARGET_ABI32
4508 env->idt.limit = 511;
4509 #else
4510 env->idt.limit = 255;
4511 #endif
4512 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
4513 PROT_READ|PROT_WRITE,
4514 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4515 idt_table = g2h(env->idt.base);
4516 set_idt(0, 0);
4517 set_idt(1, 0);
4518 set_idt(2, 0);
4519 set_idt(3, 3);
4520 set_idt(4, 3);
4521 set_idt(5, 0);
4522 set_idt(6, 0);
4523 set_idt(7, 0);
4524 set_idt(8, 0);
4525 set_idt(9, 0);
4526 set_idt(10, 0);
4527 set_idt(11, 0);
4528 set_idt(12, 0);
4529 set_idt(13, 0);
4530 set_idt(14, 0);
4531 set_idt(15, 0);
4532 set_idt(16, 0);
4533 set_idt(17, 0);
4534 set_idt(18, 0);
4535 set_idt(19, 0);
4536 set_idt(0x80, 3);
4537
4538 /* linux segment setup */
4539 {
4540 uint64_t *gdt_table;
4541 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
4542 PROT_READ|PROT_WRITE,
4543 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4544 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
4545 gdt_table = g2h(env->gdt.base);
4546 #ifdef TARGET_ABI32
4547 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4548 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4549 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4550 #else
4551 /* 64 bit code segment */
4552 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4553 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4554 DESC_L_MASK |
4555 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4556 #endif
4557 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
4558 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4559 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
4560 }
4561 cpu_x86_load_seg(env, R_CS, __USER_CS);
4562 cpu_x86_load_seg(env, R_SS, __USER_DS);
4563 #ifdef TARGET_ABI32
4564 cpu_x86_load_seg(env, R_DS, __USER_DS);
4565 cpu_x86_load_seg(env, R_ES, __USER_DS);
4566 cpu_x86_load_seg(env, R_FS, __USER_DS);
4567 cpu_x86_load_seg(env, R_GS, __USER_DS);
4568 /* This hack makes Wine work... */
4569 env->segs[R_FS].selector = 0;
4570 #else
4571 cpu_x86_load_seg(env, R_DS, 0);
4572 cpu_x86_load_seg(env, R_ES, 0);
4573 cpu_x86_load_seg(env, R_FS, 0);
4574 cpu_x86_load_seg(env, R_GS, 0);
4575 #endif
4576 #elif defined(TARGET_AARCH64)
4577 {
4578 int i;
4579
4580 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) {
4581 fprintf(stderr,
4582 "The selected ARM CPU does not support 64 bit mode\n");
4583 exit(EXIT_FAILURE);
4584 }
4585
4586 for (i = 0; i < 31; i++) {
4587 env->xregs[i] = regs->regs[i];
4588 }
4589 env->pc = regs->pc;
4590 env->xregs[31] = regs->sp;
4591 }
4592 #elif defined(TARGET_ARM)
4593 {
4594 int i;
4595 cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC,
4596 CPSRWriteByInstr);
4597 for(i = 0; i < 16; i++) {
4598 env->regs[i] = regs->uregs[i];
4599 }
4600 #ifdef TARGET_WORDS_BIGENDIAN
4601 /* Enable BE8. */
4602 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
4603 && (info->elf_flags & EF_ARM_BE8)) {
4604 env->uncached_cpsr |= CPSR_E;
4605 env->cp15.sctlr_el[1] |= SCTLR_E0E;
4606 } else {
4607 env->cp15.sctlr_el[1] |= SCTLR_B;
4608 }
4609 #endif
4610 }
4611 #elif defined(TARGET_UNICORE32)
4612 {
4613 int i;
4614 cpu_asr_write(env, regs->uregs[32], 0xffffffff);
4615 for (i = 0; i < 32; i++) {
4616 env->regs[i] = regs->uregs[i];
4617 }
4618 }
4619 #elif defined(TARGET_SPARC)
4620 {
4621 int i;
4622 env->pc = regs->pc;
4623 env->npc = regs->npc;
4624 env->y = regs->y;
4625 for(i = 0; i < 8; i++)
4626 env->gregs[i] = regs->u_regs[i];
4627 for(i = 0; i < 8; i++)
4628 env->regwptr[i] = regs->u_regs[i + 8];
4629 }
4630 #elif defined(TARGET_PPC)
4631 {
4632 int i;
4633
4634 #if defined(TARGET_PPC64)
4635 int flag = (env->insns_flags2 & PPC2_BOOKE206) ? MSR_CM : MSR_SF;
4636 #if defined(TARGET_ABI32)
4637 env->msr &= ~((target_ulong)1 << flag);
4638 #else
4639 env->msr |= (target_ulong)1 << flag;
4640 #endif
4641 #endif
4642 env->nip = regs->nip;
4643 for(i = 0; i < 32; i++) {
4644 env->gpr[i] = regs->gpr[i];
4645 }
4646 }
4647 #elif defined(TARGET_M68K)
4648 {
4649 env->pc = regs->pc;
4650 env->dregs[0] = regs->d0;
4651 env->dregs[1] = regs->d1;
4652 env->dregs[2] = regs->d2;
4653 env->dregs[3] = regs->d3;
4654 env->dregs[4] = regs->d4;
4655 env->dregs[5] = regs->d5;
4656 env->dregs[6] = regs->d6;
4657 env->dregs[7] = regs->d7;
4658 env->aregs[0] = regs->a0;
4659 env->aregs[1] = regs->a1;
4660 env->aregs[2] = regs->a2;
4661 env->aregs[3] = regs->a3;
4662 env->aregs[4] = regs->a4;
4663 env->aregs[5] = regs->a5;
4664 env->aregs[6] = regs->a6;
4665 env->aregs[7] = regs->usp;
4666 env->sr = regs->sr;
4667 ts->sim_syscalls = 1;
4668 }
4669 #elif defined(TARGET_MICROBLAZE)
4670 {
4671 env->regs[0] = regs->r0;
4672 env->regs[1] = regs->r1;
4673 env->regs[2] = regs->r2;
4674 env->regs[3] = regs->r3;
4675 env->regs[4] = regs->r4;
4676 env->regs[5] = regs->r5;
4677 env->regs[6] = regs->r6;
4678 env->regs[7] = regs->r7;
4679 env->regs[8] = regs->r8;
4680 env->regs[9] = regs->r9;
4681 env->regs[10] = regs->r10;
4682 env->regs[11] = regs->r11;
4683 env->regs[12] = regs->r12;
4684 env->regs[13] = regs->r13;
4685 env->regs[14] = regs->r14;
4686 env->regs[15] = regs->r15;
4687 env->regs[16] = regs->r16;
4688 env->regs[17] = regs->r17;
4689 env->regs[18] = regs->r18;
4690 env->regs[19] = regs->r19;
4691 env->regs[20] = regs->r20;
4692 env->regs[21] = regs->r21;
4693 env->regs[22] = regs->r22;
4694 env->regs[23] = regs->r23;
4695 env->regs[24] = regs->r24;
4696 env->regs[25] = regs->r25;
4697 env->regs[26] = regs->r26;
4698 env->regs[27] = regs->r27;
4699 env->regs[28] = regs->r28;
4700 env->regs[29] = regs->r29;
4701 env->regs[30] = regs->r30;
4702 env->regs[31] = regs->r31;
4703 env->sregs[SR_PC] = regs->pc;
4704 }
4705 #elif defined(TARGET_MIPS)
4706 {
4707 int i;
4708
4709 for(i = 0; i < 32; i++) {
4710 env->active_tc.gpr[i] = regs->regs[i];
4711 }
4712 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
4713 if (regs->cp0_epc & 1) {
4714 env->hflags |= MIPS_HFLAG_M16;
4715 }
4716 if (((info->elf_flags & EF_MIPS_NAN2008) != 0) !=
4717 ((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) != 0)) {
4718 if ((env->active_fpu.fcr31_rw_bitmask &
4719 (1 << FCR31_NAN2008)) == 0) {
4720 fprintf(stderr, "ELF binary's NaN mode not supported by CPU\n");
4721 exit(1);
4722 }
4723 if ((info->elf_flags & EF_MIPS_NAN2008) != 0) {
4724 env->active_fpu.fcr31 |= (1 << FCR31_NAN2008);
4725 } else {
4726 env->active_fpu.fcr31 &= ~(1 << FCR31_NAN2008);
4727 }
4728 restore_snan_bit_mode(env);
4729 }
4730 }
4731 #elif defined(TARGET_NIOS2)
4732 {
4733 env->regs[0] = 0;
4734 env->regs[1] = regs->r1;
4735 env->regs[2] = regs->r2;
4736 env->regs[3] = regs->r3;
4737 env->regs[4] = regs->r4;
4738 env->regs[5] = regs->r5;
4739 env->regs[6] = regs->r6;
4740 env->regs[7] = regs->r7;
4741 env->regs[8] = regs->r8;
4742 env->regs[9] = regs->r9;
4743 env->regs[10] = regs->r10;
4744 env->regs[11] = regs->r11;
4745 env->regs[12] = regs->r12;
4746 env->regs[13] = regs->r13;
4747 env->regs[14] = regs->r14;
4748 env->regs[15] = regs->r15;
4749 /* TODO: unsigned long orig_r2; */
4750 env->regs[R_RA] = regs->ra;
4751 env->regs[R_FP] = regs->fp;
4752 env->regs[R_SP] = regs->sp;
4753 env->regs[R_GP] = regs->gp;
4754 env->regs[CR_ESTATUS] = regs->estatus;
4755 env->regs[R_EA] = regs->ea;
4756 /* TODO: unsigned long orig_r7; */
4757
4758 /* Emulate eret when starting thread. */
4759 env->regs[R_PC] = regs->ea;
4760 }
4761 #elif defined(TARGET_OPENRISC)
4762 {
4763 int i;
4764
4765 for (i = 0; i < 32; i++) {
4766 env->gpr[i] = regs->gpr[i];
4767 }
4768
4769 env->sr = regs->sr;
4770 env->pc = regs->pc;
4771 }
4772 #elif defined(TARGET_SH4)
4773 {
4774 int i;
4775
4776 for(i = 0; i < 16; i++) {
4777 env->gregs[i] = regs->regs[i];
4778 }
4779 env->pc = regs->pc;
4780 }
4781 #elif defined(TARGET_ALPHA)
4782 {
4783 int i;
4784
4785 for(i = 0; i < 28; i++) {
4786 env->ir[i] = ((abi_ulong *)regs)[i];
4787 }
4788 env->ir[IR_SP] = regs->usp;
4789 env->pc = regs->pc;
4790 }
4791 #elif defined(TARGET_CRIS)
4792 {
4793 env->regs[0] = regs->r0;
4794 env->regs[1] = regs->r1;
4795 env->regs[2] = regs->r2;
4796 env->regs[3] = regs->r3;
4797 env->regs[4] = regs->r4;
4798 env->regs[5] = regs->r5;
4799 env->regs[6] = regs->r6;
4800 env->regs[7] = regs->r7;
4801 env->regs[8] = regs->r8;
4802 env->regs[9] = regs->r9;
4803 env->regs[10] = regs->r10;
4804 env->regs[11] = regs->r11;
4805 env->regs[12] = regs->r12;
4806 env->regs[13] = regs->r13;
4807 env->regs[14] = info->start_stack;
4808 env->regs[15] = regs->acr;
4809 env->pc = regs->erp;
4810 }
4811 #elif defined(TARGET_S390X)
4812 {
4813 int i;
4814 for (i = 0; i < 16; i++) {
4815 env->regs[i] = regs->gprs[i];
4816 }
4817 env->psw.mask = regs->psw.mask;
4818 env->psw.addr = regs->psw.addr;
4819 }
4820 #elif defined(TARGET_TILEGX)
4821 {
4822 int i;
4823 for (i = 0; i < TILEGX_R_COUNT; i++) {
4824 env->regs[i] = regs->regs[i];
4825 }
4826 for (i = 0; i < TILEGX_SPR_COUNT; i++) {
4827 env->spregs[i] = 0;
4828 }
4829 env->pc = regs->pc;
4830 }
4831 #elif defined(TARGET_HPPA)
4832 {
4833 int i;
4834 for (i = 1; i < 32; i++) {
4835 env->gr[i] = regs->gr[i];
4836 }
4837 env->iaoq_f = regs->iaoq[0];
4838 env->iaoq_b = regs->iaoq[1];
4839 }
4840 #else
4841 #error unsupported target CPU
4842 #endif
4843
4844 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4845 ts->stack_base = info->start_stack;
4846 ts->heap_base = info->brk;
4847 /* This will be filled in on the first SYS_HEAPINFO call. */
4848 ts->heap_limit = 0;
4849 #endif
4850
4851 if (gdbstub_port) {
4852 if (gdbserver_start(gdbstub_port) < 0) {
4853 fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
4854 gdbstub_port);
4855 exit(EXIT_FAILURE);
4856 }
4857 gdb_handlesig(cpu, 0);
4858 }
4859 cpu_loop(env);
4860 /* never exits */
4861 return 0;
4862 }