]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/main.c
linux-user: Avoid possible misalignment in target_to_host_siginfo()
[mirror_qemu.git] / linux-user / main.c
1 /*
2 * qemu user main
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include <sys/mman.h>
21 #include <sys/syscall.h>
22 #include <sys/resource.h>
23
24 #include "qemu.h"
25 #include "qemu/path.h"
26 #include "qemu/cutils.h"
27 #include "qemu/help_option.h"
28 #include "cpu.h"
29 #include "exec/exec-all.h"
30 #include "tcg.h"
31 #include "qemu/timer.h"
32 #include "qemu/envlist.h"
33 #include "elf.h"
34 #include "exec/log.h"
35
36 char *exec_path;
37
38 int singlestep;
39 static const char *filename;
40 static const char *argv0;
41 static int gdbstub_port;
42 static envlist_t *envlist;
43 static const char *cpu_model;
44 unsigned long mmap_min_addr;
45 unsigned long guest_base;
46 int have_guest_base;
47
48 #define EXCP_DUMP(env, fmt, ...) \
49 do { \
50 CPUState *cs = ENV_GET_CPU(env); \
51 fprintf(stderr, fmt , ## __VA_ARGS__); \
52 cpu_dump_state(cs, stderr, fprintf, 0); \
53 if (qemu_log_separate()) { \
54 qemu_log(fmt, ## __VA_ARGS__); \
55 log_cpu_state(cs, 0); \
56 } \
57 } while (0)
58
59 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
60 /*
61 * When running 32-on-64 we should make sure we can fit all of the possible
62 * guest address space into a contiguous chunk of virtual host memory.
63 *
64 * This way we will never overlap with our own libraries or binaries or stack
65 * or anything else that QEMU maps.
66 */
67 # ifdef TARGET_MIPS
68 /* MIPS only supports 31 bits of virtual address space for user space */
69 unsigned long reserved_va = 0x77000000;
70 # else
71 unsigned long reserved_va = 0xf7000000;
72 # endif
73 #else
74 unsigned long reserved_va;
75 #endif
76
77 static void usage(int exitcode);
78
79 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
80 const char *qemu_uname_release;
81
82 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
83 we allocate a bigger stack. Need a better solution, for example
84 by remapping the process stack directly at the right place */
85 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
86
87 void gemu_log(const char *fmt, ...)
88 {
89 va_list ap;
90
91 va_start(ap, fmt);
92 vfprintf(stderr, fmt, ap);
93 va_end(ap);
94 }
95
96 #if defined(TARGET_I386)
97 int cpu_get_pic_interrupt(CPUX86State *env)
98 {
99 return -1;
100 }
101 #endif
102
103 /***********************************************************/
104 /* Helper routines for implementing atomic operations. */
105
106 /* To implement exclusive operations we force all cpus to syncronise.
107 We don't require a full sync, only that no cpus are executing guest code.
108 The alternative is to map target atomic ops onto host equivalents,
109 which requires quite a lot of per host/target work. */
110 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER;
111 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER;
112 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER;
113 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER;
114 static int pending_cpus;
115
116 /* Make sure everything is in a consistent state for calling fork(). */
117 void fork_start(void)
118 {
119 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
120 pthread_mutex_lock(&exclusive_lock);
121 mmap_fork_start();
122 }
123
124 void fork_end(int child)
125 {
126 mmap_fork_end(child);
127 if (child) {
128 CPUState *cpu, *next_cpu;
129 /* Child processes created by fork() only have a single thread.
130 Discard information about the parent threads. */
131 CPU_FOREACH_SAFE(cpu, next_cpu) {
132 if (cpu != thread_cpu) {
133 QTAILQ_REMOVE(&cpus, thread_cpu, node);
134 }
135 }
136 pending_cpus = 0;
137 pthread_mutex_init(&exclusive_lock, NULL);
138 pthread_mutex_init(&cpu_list_mutex, NULL);
139 pthread_cond_init(&exclusive_cond, NULL);
140 pthread_cond_init(&exclusive_resume, NULL);
141 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
142 gdbserver_fork(thread_cpu);
143 } else {
144 pthread_mutex_unlock(&exclusive_lock);
145 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
146 }
147 }
148
149 /* Wait for pending exclusive operations to complete. The exclusive lock
150 must be held. */
151 static inline void exclusive_idle(void)
152 {
153 while (pending_cpus) {
154 pthread_cond_wait(&exclusive_resume, &exclusive_lock);
155 }
156 }
157
158 /* Start an exclusive operation.
159 Must only be called from outside cpu_arm_exec. */
160 static inline void start_exclusive(void)
161 {
162 CPUState *other_cpu;
163
164 pthread_mutex_lock(&exclusive_lock);
165 exclusive_idle();
166
167 pending_cpus = 1;
168 /* Make all other cpus stop executing. */
169 CPU_FOREACH(other_cpu) {
170 if (other_cpu->running) {
171 pending_cpus++;
172 cpu_exit(other_cpu);
173 }
174 }
175 if (pending_cpus > 1) {
176 pthread_cond_wait(&exclusive_cond, &exclusive_lock);
177 }
178 }
179
180 /* Finish an exclusive operation. */
181 static inline void __attribute__((unused)) end_exclusive(void)
182 {
183 pending_cpus = 0;
184 pthread_cond_broadcast(&exclusive_resume);
185 pthread_mutex_unlock(&exclusive_lock);
186 }
187
188 /* Wait for exclusive ops to finish, and begin cpu execution. */
189 static inline void cpu_exec_start(CPUState *cpu)
190 {
191 pthread_mutex_lock(&exclusive_lock);
192 exclusive_idle();
193 cpu->running = true;
194 pthread_mutex_unlock(&exclusive_lock);
195 }
196
197 /* Mark cpu as not executing, and release pending exclusive ops. */
198 static inline void cpu_exec_end(CPUState *cpu)
199 {
200 pthread_mutex_lock(&exclusive_lock);
201 cpu->running = false;
202 if (pending_cpus > 1) {
203 pending_cpus--;
204 if (pending_cpus == 1) {
205 pthread_cond_signal(&exclusive_cond);
206 }
207 }
208 exclusive_idle();
209 pthread_mutex_unlock(&exclusive_lock);
210 }
211
212 void cpu_list_lock(void)
213 {
214 pthread_mutex_lock(&cpu_list_mutex);
215 }
216
217 void cpu_list_unlock(void)
218 {
219 pthread_mutex_unlock(&cpu_list_mutex);
220 }
221
222
223 #ifdef TARGET_I386
224 /***********************************************************/
225 /* CPUX86 core interface */
226
227 uint64_t cpu_get_tsc(CPUX86State *env)
228 {
229 return cpu_get_host_ticks();
230 }
231
232 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
233 int flags)
234 {
235 unsigned int e1, e2;
236 uint32_t *p;
237 e1 = (addr << 16) | (limit & 0xffff);
238 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
239 e2 |= flags;
240 p = ptr;
241 p[0] = tswap32(e1);
242 p[1] = tswap32(e2);
243 }
244
245 static uint64_t *idt_table;
246 #ifdef TARGET_X86_64
247 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
248 uint64_t addr, unsigned int sel)
249 {
250 uint32_t *p, e1, e2;
251 e1 = (addr & 0xffff) | (sel << 16);
252 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
253 p = ptr;
254 p[0] = tswap32(e1);
255 p[1] = tswap32(e2);
256 p[2] = tswap32(addr >> 32);
257 p[3] = 0;
258 }
259 /* only dpl matters as we do only user space emulation */
260 static void set_idt(int n, unsigned int dpl)
261 {
262 set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
263 }
264 #else
265 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
266 uint32_t addr, unsigned int sel)
267 {
268 uint32_t *p, e1, e2;
269 e1 = (addr & 0xffff) | (sel << 16);
270 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
271 p = ptr;
272 p[0] = tswap32(e1);
273 p[1] = tswap32(e2);
274 }
275
276 /* only dpl matters as we do only user space emulation */
277 static void set_idt(int n, unsigned int dpl)
278 {
279 set_gate(idt_table + n, 0, dpl, 0, 0);
280 }
281 #endif
282
283 void cpu_loop(CPUX86State *env)
284 {
285 CPUState *cs = CPU(x86_env_get_cpu(env));
286 int trapnr;
287 abi_ulong pc;
288 abi_ulong ret;
289 target_siginfo_t info;
290
291 for(;;) {
292 cpu_exec_start(cs);
293 trapnr = cpu_x86_exec(cs);
294 cpu_exec_end(cs);
295 switch(trapnr) {
296 case 0x80:
297 /* linux syscall from int $0x80 */
298 ret = do_syscall(env,
299 env->regs[R_EAX],
300 env->regs[R_EBX],
301 env->regs[R_ECX],
302 env->regs[R_EDX],
303 env->regs[R_ESI],
304 env->regs[R_EDI],
305 env->regs[R_EBP],
306 0, 0);
307 if (ret == -TARGET_ERESTARTSYS) {
308 env->eip -= 2;
309 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
310 env->regs[R_EAX] = ret;
311 }
312 break;
313 #ifndef TARGET_ABI32
314 case EXCP_SYSCALL:
315 /* linux syscall from syscall instruction */
316 ret = do_syscall(env,
317 env->regs[R_EAX],
318 env->regs[R_EDI],
319 env->regs[R_ESI],
320 env->regs[R_EDX],
321 env->regs[10],
322 env->regs[8],
323 env->regs[9],
324 0, 0);
325 if (ret == -TARGET_ERESTARTSYS) {
326 env->eip -= 2;
327 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
328 env->regs[R_EAX] = ret;
329 }
330 break;
331 #endif
332 case EXCP0B_NOSEG:
333 case EXCP0C_STACK:
334 info.si_signo = TARGET_SIGBUS;
335 info.si_errno = 0;
336 info.si_code = TARGET_SI_KERNEL;
337 info._sifields._sigfault._addr = 0;
338 queue_signal(env, info.si_signo, &info);
339 break;
340 case EXCP0D_GPF:
341 /* XXX: potential problem if ABI32 */
342 #ifndef TARGET_X86_64
343 if (env->eflags & VM_MASK) {
344 handle_vm86_fault(env);
345 } else
346 #endif
347 {
348 info.si_signo = TARGET_SIGSEGV;
349 info.si_errno = 0;
350 info.si_code = TARGET_SI_KERNEL;
351 info._sifields._sigfault._addr = 0;
352 queue_signal(env, info.si_signo, &info);
353 }
354 break;
355 case EXCP0E_PAGE:
356 info.si_signo = TARGET_SIGSEGV;
357 info.si_errno = 0;
358 if (!(env->error_code & 1))
359 info.si_code = TARGET_SEGV_MAPERR;
360 else
361 info.si_code = TARGET_SEGV_ACCERR;
362 info._sifields._sigfault._addr = env->cr[2];
363 queue_signal(env, info.si_signo, &info);
364 break;
365 case EXCP00_DIVZ:
366 #ifndef TARGET_X86_64
367 if (env->eflags & VM_MASK) {
368 handle_vm86_trap(env, trapnr);
369 } else
370 #endif
371 {
372 /* division by zero */
373 info.si_signo = TARGET_SIGFPE;
374 info.si_errno = 0;
375 info.si_code = TARGET_FPE_INTDIV;
376 info._sifields._sigfault._addr = env->eip;
377 queue_signal(env, info.si_signo, &info);
378 }
379 break;
380 case EXCP01_DB:
381 case EXCP03_INT3:
382 #ifndef TARGET_X86_64
383 if (env->eflags & VM_MASK) {
384 handle_vm86_trap(env, trapnr);
385 } else
386 #endif
387 {
388 info.si_signo = TARGET_SIGTRAP;
389 info.si_errno = 0;
390 if (trapnr == EXCP01_DB) {
391 info.si_code = TARGET_TRAP_BRKPT;
392 info._sifields._sigfault._addr = env->eip;
393 } else {
394 info.si_code = TARGET_SI_KERNEL;
395 info._sifields._sigfault._addr = 0;
396 }
397 queue_signal(env, info.si_signo, &info);
398 }
399 break;
400 case EXCP04_INTO:
401 case EXCP05_BOUND:
402 #ifndef TARGET_X86_64
403 if (env->eflags & VM_MASK) {
404 handle_vm86_trap(env, trapnr);
405 } else
406 #endif
407 {
408 info.si_signo = TARGET_SIGSEGV;
409 info.si_errno = 0;
410 info.si_code = TARGET_SI_KERNEL;
411 info._sifields._sigfault._addr = 0;
412 queue_signal(env, info.si_signo, &info);
413 }
414 break;
415 case EXCP06_ILLOP:
416 info.si_signo = TARGET_SIGILL;
417 info.si_errno = 0;
418 info.si_code = TARGET_ILL_ILLOPN;
419 info._sifields._sigfault._addr = env->eip;
420 queue_signal(env, info.si_signo, &info);
421 break;
422 case EXCP_INTERRUPT:
423 /* just indicate that signals should be handled asap */
424 break;
425 case EXCP_DEBUG:
426 {
427 int sig;
428
429 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
430 if (sig)
431 {
432 info.si_signo = sig;
433 info.si_errno = 0;
434 info.si_code = TARGET_TRAP_BRKPT;
435 queue_signal(env, info.si_signo, &info);
436 }
437 }
438 break;
439 default:
440 pc = env->segs[R_CS].base + env->eip;
441 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
442 (long)pc, trapnr);
443 abort();
444 }
445 process_pending_signals(env);
446 }
447 }
448 #endif
449
450 #ifdef TARGET_ARM
451
452 #define get_user_code_u32(x, gaddr, env) \
453 ({ abi_long __r = get_user_u32((x), (gaddr)); \
454 if (!__r && bswap_code(arm_sctlr_b(env))) { \
455 (x) = bswap32(x); \
456 } \
457 __r; \
458 })
459
460 #define get_user_code_u16(x, gaddr, env) \
461 ({ abi_long __r = get_user_u16((x), (gaddr)); \
462 if (!__r && bswap_code(arm_sctlr_b(env))) { \
463 (x) = bswap16(x); \
464 } \
465 __r; \
466 })
467
468 #define get_user_data_u32(x, gaddr, env) \
469 ({ abi_long __r = get_user_u32((x), (gaddr)); \
470 if (!__r && arm_cpu_bswap_data(env)) { \
471 (x) = bswap32(x); \
472 } \
473 __r; \
474 })
475
476 #define get_user_data_u16(x, gaddr, env) \
477 ({ abi_long __r = get_user_u16((x), (gaddr)); \
478 if (!__r && arm_cpu_bswap_data(env)) { \
479 (x) = bswap16(x); \
480 } \
481 __r; \
482 })
483
484 #define put_user_data_u32(x, gaddr, env) \
485 ({ typeof(x) __x = (x); \
486 if (arm_cpu_bswap_data(env)) { \
487 __x = bswap32(__x); \
488 } \
489 put_user_u32(__x, (gaddr)); \
490 })
491
492 #define put_user_data_u16(x, gaddr, env) \
493 ({ typeof(x) __x = (x); \
494 if (arm_cpu_bswap_data(env)) { \
495 __x = bswap16(__x); \
496 } \
497 put_user_u16(__x, (gaddr)); \
498 })
499
500 #ifdef TARGET_ABI32
501 /* Commpage handling -- there is no commpage for AArch64 */
502
503 /*
504 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
505 * Input:
506 * r0 = pointer to oldval
507 * r1 = pointer to newval
508 * r2 = pointer to target value
509 *
510 * Output:
511 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
512 * C set if *ptr was changed, clear if no exchange happened
513 *
514 * Note segv's in kernel helpers are a bit tricky, we can set the
515 * data address sensibly but the PC address is just the entry point.
516 */
517 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
518 {
519 uint64_t oldval, newval, val;
520 uint32_t addr, cpsr;
521 target_siginfo_t info;
522
523 /* Based on the 32 bit code in do_kernel_trap */
524
525 /* XXX: This only works between threads, not between processes.
526 It's probably possible to implement this with native host
527 operations. However things like ldrex/strex are much harder so
528 there's not much point trying. */
529 start_exclusive();
530 cpsr = cpsr_read(env);
531 addr = env->regs[2];
532
533 if (get_user_u64(oldval, env->regs[0])) {
534 env->exception.vaddress = env->regs[0];
535 goto segv;
536 };
537
538 if (get_user_u64(newval, env->regs[1])) {
539 env->exception.vaddress = env->regs[1];
540 goto segv;
541 };
542
543 if (get_user_u64(val, addr)) {
544 env->exception.vaddress = addr;
545 goto segv;
546 }
547
548 if (val == oldval) {
549 val = newval;
550
551 if (put_user_u64(val, addr)) {
552 env->exception.vaddress = addr;
553 goto segv;
554 };
555
556 env->regs[0] = 0;
557 cpsr |= CPSR_C;
558 } else {
559 env->regs[0] = -1;
560 cpsr &= ~CPSR_C;
561 }
562 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
563 end_exclusive();
564 return;
565
566 segv:
567 end_exclusive();
568 /* We get the PC of the entry address - which is as good as anything,
569 on a real kernel what you get depends on which mode it uses. */
570 info.si_signo = TARGET_SIGSEGV;
571 info.si_errno = 0;
572 /* XXX: check env->error_code */
573 info.si_code = TARGET_SEGV_MAPERR;
574 info._sifields._sigfault._addr = env->exception.vaddress;
575 queue_signal(env, info.si_signo, &info);
576 }
577
578 /* Handle a jump to the kernel code page. */
579 static int
580 do_kernel_trap(CPUARMState *env)
581 {
582 uint32_t addr;
583 uint32_t cpsr;
584 uint32_t val;
585
586 switch (env->regs[15]) {
587 case 0xffff0fa0: /* __kernel_memory_barrier */
588 /* ??? No-op. Will need to do better for SMP. */
589 break;
590 case 0xffff0fc0: /* __kernel_cmpxchg */
591 /* XXX: This only works between threads, not between processes.
592 It's probably possible to implement this with native host
593 operations. However things like ldrex/strex are much harder so
594 there's not much point trying. */
595 start_exclusive();
596 cpsr = cpsr_read(env);
597 addr = env->regs[2];
598 /* FIXME: This should SEGV if the access fails. */
599 if (get_user_u32(val, addr))
600 val = ~env->regs[0];
601 if (val == env->regs[0]) {
602 val = env->regs[1];
603 /* FIXME: Check for segfaults. */
604 put_user_u32(val, addr);
605 env->regs[0] = 0;
606 cpsr |= CPSR_C;
607 } else {
608 env->regs[0] = -1;
609 cpsr &= ~CPSR_C;
610 }
611 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
612 end_exclusive();
613 break;
614 case 0xffff0fe0: /* __kernel_get_tls */
615 env->regs[0] = cpu_get_tls(env);
616 break;
617 case 0xffff0f60: /* __kernel_cmpxchg64 */
618 arm_kernel_cmpxchg64_helper(env);
619 break;
620
621 default:
622 return 1;
623 }
624 /* Jump back to the caller. */
625 addr = env->regs[14];
626 if (addr & 1) {
627 env->thumb = 1;
628 addr &= ~1;
629 }
630 env->regs[15] = addr;
631
632 return 0;
633 }
634
635 /* Store exclusive handling for AArch32 */
636 static int do_strex(CPUARMState *env)
637 {
638 uint64_t val;
639 int size;
640 int rc = 1;
641 int segv = 0;
642 uint32_t addr;
643 start_exclusive();
644 if (env->exclusive_addr != env->exclusive_test) {
645 goto fail;
646 }
647 /* We know we're always AArch32 so the address is in uint32_t range
648 * unless it was the -1 exclusive-monitor-lost value (which won't
649 * match exclusive_test above).
650 */
651 assert(extract64(env->exclusive_addr, 32, 32) == 0);
652 addr = env->exclusive_addr;
653 size = env->exclusive_info & 0xf;
654 switch (size) {
655 case 0:
656 segv = get_user_u8(val, addr);
657 break;
658 case 1:
659 segv = get_user_data_u16(val, addr, env);
660 break;
661 case 2:
662 case 3:
663 segv = get_user_data_u32(val, addr, env);
664 break;
665 default:
666 abort();
667 }
668 if (segv) {
669 env->exception.vaddress = addr;
670 goto done;
671 }
672 if (size == 3) {
673 uint32_t valhi;
674 segv = get_user_data_u32(valhi, addr + 4, env);
675 if (segv) {
676 env->exception.vaddress = addr + 4;
677 goto done;
678 }
679 if (arm_cpu_bswap_data(env)) {
680 val = deposit64((uint64_t)valhi, 32, 32, val);
681 } else {
682 val = deposit64(val, 32, 32, valhi);
683 }
684 }
685 if (val != env->exclusive_val) {
686 goto fail;
687 }
688
689 val = env->regs[(env->exclusive_info >> 8) & 0xf];
690 switch (size) {
691 case 0:
692 segv = put_user_u8(val, addr);
693 break;
694 case 1:
695 segv = put_user_data_u16(val, addr, env);
696 break;
697 case 2:
698 case 3:
699 segv = put_user_data_u32(val, addr, env);
700 break;
701 }
702 if (segv) {
703 env->exception.vaddress = addr;
704 goto done;
705 }
706 if (size == 3) {
707 val = env->regs[(env->exclusive_info >> 12) & 0xf];
708 segv = put_user_data_u32(val, addr + 4, env);
709 if (segv) {
710 env->exception.vaddress = addr + 4;
711 goto done;
712 }
713 }
714 rc = 0;
715 fail:
716 env->regs[15] += 4;
717 env->regs[(env->exclusive_info >> 4) & 0xf] = rc;
718 done:
719 end_exclusive();
720 return segv;
721 }
722
723 void cpu_loop(CPUARMState *env)
724 {
725 CPUState *cs = CPU(arm_env_get_cpu(env));
726 int trapnr;
727 unsigned int n, insn;
728 target_siginfo_t info;
729 uint32_t addr;
730 abi_ulong ret;
731
732 for(;;) {
733 cpu_exec_start(cs);
734 trapnr = cpu_arm_exec(cs);
735 cpu_exec_end(cs);
736 switch(trapnr) {
737 case EXCP_UDEF:
738 {
739 TaskState *ts = cs->opaque;
740 uint32_t opcode;
741 int rc;
742
743 /* we handle the FPU emulation here, as Linux */
744 /* we get the opcode */
745 /* FIXME - what to do if get_user() fails? */
746 get_user_code_u32(opcode, env->regs[15], env);
747
748 rc = EmulateAll(opcode, &ts->fpa, env);
749 if (rc == 0) { /* illegal instruction */
750 info.si_signo = TARGET_SIGILL;
751 info.si_errno = 0;
752 info.si_code = TARGET_ILL_ILLOPN;
753 info._sifields._sigfault._addr = env->regs[15];
754 queue_signal(env, info.si_signo, &info);
755 } else if (rc < 0) { /* FP exception */
756 int arm_fpe=0;
757
758 /* translate softfloat flags to FPSR flags */
759 if (-rc & float_flag_invalid)
760 arm_fpe |= BIT_IOC;
761 if (-rc & float_flag_divbyzero)
762 arm_fpe |= BIT_DZC;
763 if (-rc & float_flag_overflow)
764 arm_fpe |= BIT_OFC;
765 if (-rc & float_flag_underflow)
766 arm_fpe |= BIT_UFC;
767 if (-rc & float_flag_inexact)
768 arm_fpe |= BIT_IXC;
769
770 FPSR fpsr = ts->fpa.fpsr;
771 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
772
773 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
774 info.si_signo = TARGET_SIGFPE;
775 info.si_errno = 0;
776
777 /* ordered by priority, least first */
778 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
779 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
780 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
781 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
782 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
783
784 info._sifields._sigfault._addr = env->regs[15];
785 queue_signal(env, info.si_signo, &info);
786 } else {
787 env->regs[15] += 4;
788 }
789
790 /* accumulate unenabled exceptions */
791 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
792 fpsr |= BIT_IXC;
793 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
794 fpsr |= BIT_UFC;
795 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
796 fpsr |= BIT_OFC;
797 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
798 fpsr |= BIT_DZC;
799 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
800 fpsr |= BIT_IOC;
801 ts->fpa.fpsr=fpsr;
802 } else { /* everything OK */
803 /* increment PC */
804 env->regs[15] += 4;
805 }
806 }
807 break;
808 case EXCP_SWI:
809 case EXCP_BKPT:
810 {
811 env->eabi = 1;
812 /* system call */
813 if (trapnr == EXCP_BKPT) {
814 if (env->thumb) {
815 /* FIXME - what to do if get_user() fails? */
816 get_user_code_u16(insn, env->regs[15], env);
817 n = insn & 0xff;
818 env->regs[15] += 2;
819 } else {
820 /* FIXME - what to do if get_user() fails? */
821 get_user_code_u32(insn, env->regs[15], env);
822 n = (insn & 0xf) | ((insn >> 4) & 0xff0);
823 env->regs[15] += 4;
824 }
825 } else {
826 if (env->thumb) {
827 /* FIXME - what to do if get_user() fails? */
828 get_user_code_u16(insn, env->regs[15] - 2, env);
829 n = insn & 0xff;
830 } else {
831 /* FIXME - what to do if get_user() fails? */
832 get_user_code_u32(insn, env->regs[15] - 4, env);
833 n = insn & 0xffffff;
834 }
835 }
836
837 if (n == ARM_NR_cacheflush) {
838 /* nop */
839 } else if (n == ARM_NR_semihosting
840 || n == ARM_NR_thumb_semihosting) {
841 env->regs[0] = do_arm_semihosting (env);
842 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
843 /* linux syscall */
844 if (env->thumb || n == 0) {
845 n = env->regs[7];
846 } else {
847 n -= ARM_SYSCALL_BASE;
848 env->eabi = 0;
849 }
850 if ( n > ARM_NR_BASE) {
851 switch (n) {
852 case ARM_NR_cacheflush:
853 /* nop */
854 break;
855 case ARM_NR_set_tls:
856 cpu_set_tls(env, env->regs[0]);
857 env->regs[0] = 0;
858 break;
859 case ARM_NR_breakpoint:
860 env->regs[15] -= env->thumb ? 2 : 4;
861 goto excp_debug;
862 default:
863 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
864 n);
865 env->regs[0] = -TARGET_ENOSYS;
866 break;
867 }
868 } else {
869 ret = do_syscall(env,
870 n,
871 env->regs[0],
872 env->regs[1],
873 env->regs[2],
874 env->regs[3],
875 env->regs[4],
876 env->regs[5],
877 0, 0);
878 if (ret == -TARGET_ERESTARTSYS) {
879 env->regs[15] -= env->thumb ? 2 : 4;
880 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
881 env->regs[0] = ret;
882 }
883 }
884 } else {
885 goto error;
886 }
887 }
888 break;
889 case EXCP_INTERRUPT:
890 /* just indicate that signals should be handled asap */
891 break;
892 case EXCP_STREX:
893 if (!do_strex(env)) {
894 break;
895 }
896 /* fall through for segv */
897 case EXCP_PREFETCH_ABORT:
898 case EXCP_DATA_ABORT:
899 addr = env->exception.vaddress;
900 {
901 info.si_signo = TARGET_SIGSEGV;
902 info.si_errno = 0;
903 /* XXX: check env->error_code */
904 info.si_code = TARGET_SEGV_MAPERR;
905 info._sifields._sigfault._addr = addr;
906 queue_signal(env, info.si_signo, &info);
907 }
908 break;
909 case EXCP_DEBUG:
910 excp_debug:
911 {
912 int sig;
913
914 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
915 if (sig)
916 {
917 info.si_signo = sig;
918 info.si_errno = 0;
919 info.si_code = TARGET_TRAP_BRKPT;
920 queue_signal(env, info.si_signo, &info);
921 }
922 }
923 break;
924 case EXCP_KERNEL_TRAP:
925 if (do_kernel_trap(env))
926 goto error;
927 break;
928 case EXCP_YIELD:
929 /* nothing to do here for user-mode, just resume guest code */
930 break;
931 default:
932 error:
933 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
934 abort();
935 }
936 process_pending_signals(env);
937 }
938 }
939
940 #else
941
942 /*
943 * Handle AArch64 store-release exclusive
944 *
945 * rs = gets the status result of store exclusive
946 * rt = is the register that is stored
947 * rt2 = is the second register store (in STP)
948 *
949 */
950 static int do_strex_a64(CPUARMState *env)
951 {
952 uint64_t val;
953 int size;
954 bool is_pair;
955 int rc = 1;
956 int segv = 0;
957 uint64_t addr;
958 int rs, rt, rt2;
959
960 start_exclusive();
961 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
962 size = extract32(env->exclusive_info, 0, 2);
963 is_pair = extract32(env->exclusive_info, 2, 1);
964 rs = extract32(env->exclusive_info, 4, 5);
965 rt = extract32(env->exclusive_info, 9, 5);
966 rt2 = extract32(env->exclusive_info, 14, 5);
967
968 addr = env->exclusive_addr;
969
970 if (addr != env->exclusive_test) {
971 goto finish;
972 }
973
974 switch (size) {
975 case 0:
976 segv = get_user_u8(val, addr);
977 break;
978 case 1:
979 segv = get_user_u16(val, addr);
980 break;
981 case 2:
982 segv = get_user_u32(val, addr);
983 break;
984 case 3:
985 segv = get_user_u64(val, addr);
986 break;
987 default:
988 abort();
989 }
990 if (segv) {
991 env->exception.vaddress = addr;
992 goto error;
993 }
994 if (val != env->exclusive_val) {
995 goto finish;
996 }
997 if (is_pair) {
998 if (size == 2) {
999 segv = get_user_u32(val, addr + 4);
1000 } else {
1001 segv = get_user_u64(val, addr + 8);
1002 }
1003 if (segv) {
1004 env->exception.vaddress = addr + (size == 2 ? 4 : 8);
1005 goto error;
1006 }
1007 if (val != env->exclusive_high) {
1008 goto finish;
1009 }
1010 }
1011 /* handle the zero register */
1012 val = rt == 31 ? 0 : env->xregs[rt];
1013 switch (size) {
1014 case 0:
1015 segv = put_user_u8(val, addr);
1016 break;
1017 case 1:
1018 segv = put_user_u16(val, addr);
1019 break;
1020 case 2:
1021 segv = put_user_u32(val, addr);
1022 break;
1023 case 3:
1024 segv = put_user_u64(val, addr);
1025 break;
1026 }
1027 if (segv) {
1028 goto error;
1029 }
1030 if (is_pair) {
1031 /* handle the zero register */
1032 val = rt2 == 31 ? 0 : env->xregs[rt2];
1033 if (size == 2) {
1034 segv = put_user_u32(val, addr + 4);
1035 } else {
1036 segv = put_user_u64(val, addr + 8);
1037 }
1038 if (segv) {
1039 env->exception.vaddress = addr + (size == 2 ? 4 : 8);
1040 goto error;
1041 }
1042 }
1043 rc = 0;
1044 finish:
1045 env->pc += 4;
1046 /* rs == 31 encodes a write to the ZR, thus throwing away
1047 * the status return. This is rather silly but valid.
1048 */
1049 if (rs < 31) {
1050 env->xregs[rs] = rc;
1051 }
1052 error:
1053 /* instruction faulted, PC does not advance */
1054 /* either way a strex releases any exclusive lock we have */
1055 env->exclusive_addr = -1;
1056 end_exclusive();
1057 return segv;
1058 }
1059
1060 /* AArch64 main loop */
1061 void cpu_loop(CPUARMState *env)
1062 {
1063 CPUState *cs = CPU(arm_env_get_cpu(env));
1064 int trapnr, sig;
1065 abi_long ret;
1066 target_siginfo_t info;
1067
1068 for (;;) {
1069 cpu_exec_start(cs);
1070 trapnr = cpu_arm_exec(cs);
1071 cpu_exec_end(cs);
1072
1073 switch (trapnr) {
1074 case EXCP_SWI:
1075 ret = do_syscall(env,
1076 env->xregs[8],
1077 env->xregs[0],
1078 env->xregs[1],
1079 env->xregs[2],
1080 env->xregs[3],
1081 env->xregs[4],
1082 env->xregs[5],
1083 0, 0);
1084 if (ret == -TARGET_ERESTARTSYS) {
1085 env->pc -= 4;
1086 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
1087 env->xregs[0] = ret;
1088 }
1089 break;
1090 case EXCP_INTERRUPT:
1091 /* just indicate that signals should be handled asap */
1092 break;
1093 case EXCP_UDEF:
1094 info.si_signo = TARGET_SIGILL;
1095 info.si_errno = 0;
1096 info.si_code = TARGET_ILL_ILLOPN;
1097 info._sifields._sigfault._addr = env->pc;
1098 queue_signal(env, info.si_signo, &info);
1099 break;
1100 case EXCP_STREX:
1101 if (!do_strex_a64(env)) {
1102 break;
1103 }
1104 /* fall through for segv */
1105 case EXCP_PREFETCH_ABORT:
1106 case EXCP_DATA_ABORT:
1107 info.si_signo = TARGET_SIGSEGV;
1108 info.si_errno = 0;
1109 /* XXX: check env->error_code */
1110 info.si_code = TARGET_SEGV_MAPERR;
1111 info._sifields._sigfault._addr = env->exception.vaddress;
1112 queue_signal(env, info.si_signo, &info);
1113 break;
1114 case EXCP_DEBUG:
1115 case EXCP_BKPT:
1116 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1117 if (sig) {
1118 info.si_signo = sig;
1119 info.si_errno = 0;
1120 info.si_code = TARGET_TRAP_BRKPT;
1121 queue_signal(env, info.si_signo, &info);
1122 }
1123 break;
1124 case EXCP_SEMIHOST:
1125 env->xregs[0] = do_arm_semihosting(env);
1126 break;
1127 case EXCP_YIELD:
1128 /* nothing to do here for user-mode, just resume guest code */
1129 break;
1130 default:
1131 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
1132 abort();
1133 }
1134 process_pending_signals(env);
1135 /* Exception return on AArch64 always clears the exclusive monitor,
1136 * so any return to running guest code implies this.
1137 * A strex (successful or otherwise) also clears the monitor, so
1138 * we don't need to specialcase EXCP_STREX.
1139 */
1140 env->exclusive_addr = -1;
1141 }
1142 }
1143 #endif /* ndef TARGET_ABI32 */
1144
1145 #endif
1146
1147 #ifdef TARGET_UNICORE32
1148
1149 void cpu_loop(CPUUniCore32State *env)
1150 {
1151 CPUState *cs = CPU(uc32_env_get_cpu(env));
1152 int trapnr;
1153 unsigned int n, insn;
1154 target_siginfo_t info;
1155
1156 for (;;) {
1157 cpu_exec_start(cs);
1158 trapnr = uc32_cpu_exec(cs);
1159 cpu_exec_end(cs);
1160 switch (trapnr) {
1161 case UC32_EXCP_PRIV:
1162 {
1163 /* system call */
1164 get_user_u32(insn, env->regs[31] - 4);
1165 n = insn & 0xffffff;
1166
1167 if (n >= UC32_SYSCALL_BASE) {
1168 /* linux syscall */
1169 n -= UC32_SYSCALL_BASE;
1170 if (n == UC32_SYSCALL_NR_set_tls) {
1171 cpu_set_tls(env, env->regs[0]);
1172 env->regs[0] = 0;
1173 } else {
1174 abi_long ret = do_syscall(env,
1175 n,
1176 env->regs[0],
1177 env->regs[1],
1178 env->regs[2],
1179 env->regs[3],
1180 env->regs[4],
1181 env->regs[5],
1182 0, 0);
1183 if (ret == -TARGET_ERESTARTSYS) {
1184 env->regs[31] -= 4;
1185 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
1186 env->regs[0] = ret;
1187 }
1188 }
1189 } else {
1190 goto error;
1191 }
1192 }
1193 break;
1194 case UC32_EXCP_DTRAP:
1195 case UC32_EXCP_ITRAP:
1196 info.si_signo = TARGET_SIGSEGV;
1197 info.si_errno = 0;
1198 /* XXX: check env->error_code */
1199 info.si_code = TARGET_SEGV_MAPERR;
1200 info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
1201 queue_signal(env, info.si_signo, &info);
1202 break;
1203 case EXCP_INTERRUPT:
1204 /* just indicate that signals should be handled asap */
1205 break;
1206 case EXCP_DEBUG:
1207 {
1208 int sig;
1209
1210 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1211 if (sig) {
1212 info.si_signo = sig;
1213 info.si_errno = 0;
1214 info.si_code = TARGET_TRAP_BRKPT;
1215 queue_signal(env, info.si_signo, &info);
1216 }
1217 }
1218 break;
1219 default:
1220 goto error;
1221 }
1222 process_pending_signals(env);
1223 }
1224
1225 error:
1226 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
1227 abort();
1228 }
1229 #endif
1230
1231 #ifdef TARGET_SPARC
1232 #define SPARC64_STACK_BIAS 2047
1233
1234 //#define DEBUG_WIN
1235
1236 /* WARNING: dealing with register windows _is_ complicated. More info
1237 can be found at http://www.sics.se/~psm/sparcstack.html */
1238 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
1239 {
1240 index = (index + cwp * 16) % (16 * env->nwindows);
1241 /* wrap handling : if cwp is on the last window, then we use the
1242 registers 'after' the end */
1243 if (index < 8 && env->cwp == env->nwindows - 1)
1244 index += 16 * env->nwindows;
1245 return index;
1246 }
1247
1248 /* save the register window 'cwp1' */
1249 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
1250 {
1251 unsigned int i;
1252 abi_ulong sp_ptr;
1253
1254 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1255 #ifdef TARGET_SPARC64
1256 if (sp_ptr & 3)
1257 sp_ptr += SPARC64_STACK_BIAS;
1258 #endif
1259 #if defined(DEBUG_WIN)
1260 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
1261 sp_ptr, cwp1);
1262 #endif
1263 for(i = 0; i < 16; i++) {
1264 /* FIXME - what to do if put_user() fails? */
1265 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1266 sp_ptr += sizeof(abi_ulong);
1267 }
1268 }
1269
1270 static void save_window(CPUSPARCState *env)
1271 {
1272 #ifndef TARGET_SPARC64
1273 unsigned int new_wim;
1274 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
1275 ((1LL << env->nwindows) - 1);
1276 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1277 env->wim = new_wim;
1278 #else
1279 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1280 env->cansave++;
1281 env->canrestore--;
1282 #endif
1283 }
1284
1285 static void restore_window(CPUSPARCState *env)
1286 {
1287 #ifndef TARGET_SPARC64
1288 unsigned int new_wim;
1289 #endif
1290 unsigned int i, cwp1;
1291 abi_ulong sp_ptr;
1292
1293 #ifndef TARGET_SPARC64
1294 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1295 ((1LL << env->nwindows) - 1);
1296 #endif
1297
1298 /* restore the invalid window */
1299 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1300 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1301 #ifdef TARGET_SPARC64
1302 if (sp_ptr & 3)
1303 sp_ptr += SPARC64_STACK_BIAS;
1304 #endif
1305 #if defined(DEBUG_WIN)
1306 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1307 sp_ptr, cwp1);
1308 #endif
1309 for(i = 0; i < 16; i++) {
1310 /* FIXME - what to do if get_user() fails? */
1311 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1312 sp_ptr += sizeof(abi_ulong);
1313 }
1314 #ifdef TARGET_SPARC64
1315 env->canrestore++;
1316 if (env->cleanwin < env->nwindows - 1)
1317 env->cleanwin++;
1318 env->cansave--;
1319 #else
1320 env->wim = new_wim;
1321 #endif
1322 }
1323
1324 static void flush_windows(CPUSPARCState *env)
1325 {
1326 int offset, cwp1;
1327
1328 offset = 1;
1329 for(;;) {
1330 /* if restore would invoke restore_window(), then we can stop */
1331 cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1332 #ifndef TARGET_SPARC64
1333 if (env->wim & (1 << cwp1))
1334 break;
1335 #else
1336 if (env->canrestore == 0)
1337 break;
1338 env->cansave++;
1339 env->canrestore--;
1340 #endif
1341 save_window_offset(env, cwp1);
1342 offset++;
1343 }
1344 cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1345 #ifndef TARGET_SPARC64
1346 /* set wim so that restore will reload the registers */
1347 env->wim = 1 << cwp1;
1348 #endif
1349 #if defined(DEBUG_WIN)
1350 printf("flush_windows: nb=%d\n", offset - 1);
1351 #endif
1352 }
1353
1354 void cpu_loop (CPUSPARCState *env)
1355 {
1356 CPUState *cs = CPU(sparc_env_get_cpu(env));
1357 int trapnr;
1358 abi_long ret;
1359 target_siginfo_t info;
1360
1361 while (1) {
1362 cpu_exec_start(cs);
1363 trapnr = cpu_sparc_exec(cs);
1364 cpu_exec_end(cs);
1365
1366 /* Compute PSR before exposing state. */
1367 if (env->cc_op != CC_OP_FLAGS) {
1368 cpu_get_psr(env);
1369 }
1370
1371 switch (trapnr) {
1372 #ifndef TARGET_SPARC64
1373 case 0x88:
1374 case 0x90:
1375 #else
1376 case 0x110:
1377 case 0x16d:
1378 #endif
1379 ret = do_syscall (env, env->gregs[1],
1380 env->regwptr[0], env->regwptr[1],
1381 env->regwptr[2], env->regwptr[3],
1382 env->regwptr[4], env->regwptr[5],
1383 0, 0);
1384 if (ret == -TARGET_ERESTARTSYS || ret == -TARGET_QEMU_ESIGRETURN) {
1385 break;
1386 }
1387 if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1388 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1389 env->xcc |= PSR_CARRY;
1390 #else
1391 env->psr |= PSR_CARRY;
1392 #endif
1393 ret = -ret;
1394 } else {
1395 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1396 env->xcc &= ~PSR_CARRY;
1397 #else
1398 env->psr &= ~PSR_CARRY;
1399 #endif
1400 }
1401 env->regwptr[0] = ret;
1402 /* next instruction */
1403 env->pc = env->npc;
1404 env->npc = env->npc + 4;
1405 break;
1406 case 0x83: /* flush windows */
1407 #ifdef TARGET_ABI32
1408 case 0x103:
1409 #endif
1410 flush_windows(env);
1411 /* next instruction */
1412 env->pc = env->npc;
1413 env->npc = env->npc + 4;
1414 break;
1415 #ifndef TARGET_SPARC64
1416 case TT_WIN_OVF: /* window overflow */
1417 save_window(env);
1418 break;
1419 case TT_WIN_UNF: /* window underflow */
1420 restore_window(env);
1421 break;
1422 case TT_TFAULT:
1423 case TT_DFAULT:
1424 {
1425 info.si_signo = TARGET_SIGSEGV;
1426 info.si_errno = 0;
1427 /* XXX: check env->error_code */
1428 info.si_code = TARGET_SEGV_MAPERR;
1429 info._sifields._sigfault._addr = env->mmuregs[4];
1430 queue_signal(env, info.si_signo, &info);
1431 }
1432 break;
1433 #else
1434 case TT_SPILL: /* window overflow */
1435 save_window(env);
1436 break;
1437 case TT_FILL: /* window underflow */
1438 restore_window(env);
1439 break;
1440 case TT_TFAULT:
1441 case TT_DFAULT:
1442 {
1443 info.si_signo = TARGET_SIGSEGV;
1444 info.si_errno = 0;
1445 /* XXX: check env->error_code */
1446 info.si_code = TARGET_SEGV_MAPERR;
1447 if (trapnr == TT_DFAULT)
1448 info._sifields._sigfault._addr = env->dmmuregs[4];
1449 else
1450 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1451 queue_signal(env, info.si_signo, &info);
1452 }
1453 break;
1454 #ifndef TARGET_ABI32
1455 case 0x16e:
1456 flush_windows(env);
1457 sparc64_get_context(env);
1458 break;
1459 case 0x16f:
1460 flush_windows(env);
1461 sparc64_set_context(env);
1462 break;
1463 #endif
1464 #endif
1465 case EXCP_INTERRUPT:
1466 /* just indicate that signals should be handled asap */
1467 break;
1468 case TT_ILL_INSN:
1469 {
1470 info.si_signo = TARGET_SIGILL;
1471 info.si_errno = 0;
1472 info.si_code = TARGET_ILL_ILLOPC;
1473 info._sifields._sigfault._addr = env->pc;
1474 queue_signal(env, info.si_signo, &info);
1475 }
1476 break;
1477 case EXCP_DEBUG:
1478 {
1479 int sig;
1480
1481 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1482 if (sig)
1483 {
1484 info.si_signo = sig;
1485 info.si_errno = 0;
1486 info.si_code = TARGET_TRAP_BRKPT;
1487 queue_signal(env, info.si_signo, &info);
1488 }
1489 }
1490 break;
1491 default:
1492 printf ("Unhandled trap: 0x%x\n", trapnr);
1493 cpu_dump_state(cs, stderr, fprintf, 0);
1494 exit(EXIT_FAILURE);
1495 }
1496 process_pending_signals (env);
1497 }
1498 }
1499
1500 #endif
1501
1502 #ifdef TARGET_PPC
1503 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1504 {
1505 return cpu_get_host_ticks();
1506 }
1507
1508 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1509 {
1510 return cpu_ppc_get_tb(env);
1511 }
1512
1513 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1514 {
1515 return cpu_ppc_get_tb(env) >> 32;
1516 }
1517
1518 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1519 {
1520 return cpu_ppc_get_tb(env);
1521 }
1522
1523 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1524 {
1525 return cpu_ppc_get_tb(env) >> 32;
1526 }
1527
1528 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1529 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1530
1531 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1532 {
1533 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1534 }
1535
1536 /* XXX: to be fixed */
1537 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1538 {
1539 return -1;
1540 }
1541
1542 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1543 {
1544 return -1;
1545 }
1546
1547 static int do_store_exclusive(CPUPPCState *env)
1548 {
1549 target_ulong addr;
1550 target_ulong page_addr;
1551 target_ulong val, val2 __attribute__((unused)) = 0;
1552 int flags;
1553 int segv = 0;
1554
1555 addr = env->reserve_ea;
1556 page_addr = addr & TARGET_PAGE_MASK;
1557 start_exclusive();
1558 mmap_lock();
1559 flags = page_get_flags(page_addr);
1560 if ((flags & PAGE_READ) == 0) {
1561 segv = 1;
1562 } else {
1563 int reg = env->reserve_info & 0x1f;
1564 int size = env->reserve_info >> 5;
1565 int stored = 0;
1566
1567 if (addr == env->reserve_addr) {
1568 switch (size) {
1569 case 1: segv = get_user_u8(val, addr); break;
1570 case 2: segv = get_user_u16(val, addr); break;
1571 case 4: segv = get_user_u32(val, addr); break;
1572 #if defined(TARGET_PPC64)
1573 case 8: segv = get_user_u64(val, addr); break;
1574 case 16: {
1575 segv = get_user_u64(val, addr);
1576 if (!segv) {
1577 segv = get_user_u64(val2, addr + 8);
1578 }
1579 break;
1580 }
1581 #endif
1582 default: abort();
1583 }
1584 if (!segv && val == env->reserve_val) {
1585 val = env->gpr[reg];
1586 switch (size) {
1587 case 1: segv = put_user_u8(val, addr); break;
1588 case 2: segv = put_user_u16(val, addr); break;
1589 case 4: segv = put_user_u32(val, addr); break;
1590 #if defined(TARGET_PPC64)
1591 case 8: segv = put_user_u64(val, addr); break;
1592 case 16: {
1593 if (val2 == env->reserve_val2) {
1594 if (msr_le) {
1595 val2 = val;
1596 val = env->gpr[reg+1];
1597 } else {
1598 val2 = env->gpr[reg+1];
1599 }
1600 segv = put_user_u64(val, addr);
1601 if (!segv) {
1602 segv = put_user_u64(val2, addr + 8);
1603 }
1604 }
1605 break;
1606 }
1607 #endif
1608 default: abort();
1609 }
1610 if (!segv) {
1611 stored = 1;
1612 }
1613 }
1614 }
1615 env->crf[0] = (stored << 1) | xer_so;
1616 env->reserve_addr = (target_ulong)-1;
1617 }
1618 if (!segv) {
1619 env->nip += 4;
1620 }
1621 mmap_unlock();
1622 end_exclusive();
1623 return segv;
1624 }
1625
1626 void cpu_loop(CPUPPCState *env)
1627 {
1628 CPUState *cs = CPU(ppc_env_get_cpu(env));
1629 target_siginfo_t info;
1630 int trapnr;
1631 target_ulong ret;
1632
1633 for(;;) {
1634 cpu_exec_start(cs);
1635 trapnr = cpu_ppc_exec(cs);
1636 cpu_exec_end(cs);
1637 switch(trapnr) {
1638 case POWERPC_EXCP_NONE:
1639 /* Just go on */
1640 break;
1641 case POWERPC_EXCP_CRITICAL: /* Critical input */
1642 cpu_abort(cs, "Critical interrupt while in user mode. "
1643 "Aborting\n");
1644 break;
1645 case POWERPC_EXCP_MCHECK: /* Machine check exception */
1646 cpu_abort(cs, "Machine check exception while in user mode. "
1647 "Aborting\n");
1648 break;
1649 case POWERPC_EXCP_DSI: /* Data storage exception */
1650 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n",
1651 env->spr[SPR_DAR]);
1652 /* XXX: check this. Seems bugged */
1653 switch (env->error_code & 0xFF000000) {
1654 case 0x40000000:
1655 info.si_signo = TARGET_SIGSEGV;
1656 info.si_errno = 0;
1657 info.si_code = TARGET_SEGV_MAPERR;
1658 break;
1659 case 0x04000000:
1660 info.si_signo = TARGET_SIGILL;
1661 info.si_errno = 0;
1662 info.si_code = TARGET_ILL_ILLADR;
1663 break;
1664 case 0x08000000:
1665 info.si_signo = TARGET_SIGSEGV;
1666 info.si_errno = 0;
1667 info.si_code = TARGET_SEGV_ACCERR;
1668 break;
1669 default:
1670 /* Let's send a regular segfault... */
1671 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1672 env->error_code);
1673 info.si_signo = TARGET_SIGSEGV;
1674 info.si_errno = 0;
1675 info.si_code = TARGET_SEGV_MAPERR;
1676 break;
1677 }
1678 info._sifields._sigfault._addr = env->nip;
1679 queue_signal(env, info.si_signo, &info);
1680 break;
1681 case POWERPC_EXCP_ISI: /* Instruction storage exception */
1682 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1683 "\n", env->spr[SPR_SRR0]);
1684 /* XXX: check this */
1685 switch (env->error_code & 0xFF000000) {
1686 case 0x40000000:
1687 info.si_signo = TARGET_SIGSEGV;
1688 info.si_errno = 0;
1689 info.si_code = TARGET_SEGV_MAPERR;
1690 break;
1691 case 0x10000000:
1692 case 0x08000000:
1693 info.si_signo = TARGET_SIGSEGV;
1694 info.si_errno = 0;
1695 info.si_code = TARGET_SEGV_ACCERR;
1696 break;
1697 default:
1698 /* Let's send a regular segfault... */
1699 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1700 env->error_code);
1701 info.si_signo = TARGET_SIGSEGV;
1702 info.si_errno = 0;
1703 info.si_code = TARGET_SEGV_MAPERR;
1704 break;
1705 }
1706 info._sifields._sigfault._addr = env->nip - 4;
1707 queue_signal(env, info.si_signo, &info);
1708 break;
1709 case POWERPC_EXCP_EXTERNAL: /* External input */
1710 cpu_abort(cs, "External interrupt while in user mode. "
1711 "Aborting\n");
1712 break;
1713 case POWERPC_EXCP_ALIGN: /* Alignment exception */
1714 EXCP_DUMP(env, "Unaligned memory access\n");
1715 /* XXX: check this */
1716 info.si_signo = TARGET_SIGBUS;
1717 info.si_errno = 0;
1718 info.si_code = TARGET_BUS_ADRALN;
1719 info._sifields._sigfault._addr = env->nip;
1720 queue_signal(env, info.si_signo, &info);
1721 break;
1722 case POWERPC_EXCP_PROGRAM: /* Program exception */
1723 /* XXX: check this */
1724 switch (env->error_code & ~0xF) {
1725 case POWERPC_EXCP_FP:
1726 EXCP_DUMP(env, "Floating point program exception\n");
1727 info.si_signo = TARGET_SIGFPE;
1728 info.si_errno = 0;
1729 switch (env->error_code & 0xF) {
1730 case POWERPC_EXCP_FP_OX:
1731 info.si_code = TARGET_FPE_FLTOVF;
1732 break;
1733 case POWERPC_EXCP_FP_UX:
1734 info.si_code = TARGET_FPE_FLTUND;
1735 break;
1736 case POWERPC_EXCP_FP_ZX:
1737 case POWERPC_EXCP_FP_VXZDZ:
1738 info.si_code = TARGET_FPE_FLTDIV;
1739 break;
1740 case POWERPC_EXCP_FP_XX:
1741 info.si_code = TARGET_FPE_FLTRES;
1742 break;
1743 case POWERPC_EXCP_FP_VXSOFT:
1744 info.si_code = TARGET_FPE_FLTINV;
1745 break;
1746 case POWERPC_EXCP_FP_VXSNAN:
1747 case POWERPC_EXCP_FP_VXISI:
1748 case POWERPC_EXCP_FP_VXIDI:
1749 case POWERPC_EXCP_FP_VXIMZ:
1750 case POWERPC_EXCP_FP_VXVC:
1751 case POWERPC_EXCP_FP_VXSQRT:
1752 case POWERPC_EXCP_FP_VXCVI:
1753 info.si_code = TARGET_FPE_FLTSUB;
1754 break;
1755 default:
1756 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1757 env->error_code);
1758 break;
1759 }
1760 break;
1761 case POWERPC_EXCP_INVAL:
1762 EXCP_DUMP(env, "Invalid instruction\n");
1763 info.si_signo = TARGET_SIGILL;
1764 info.si_errno = 0;
1765 switch (env->error_code & 0xF) {
1766 case POWERPC_EXCP_INVAL_INVAL:
1767 info.si_code = TARGET_ILL_ILLOPC;
1768 break;
1769 case POWERPC_EXCP_INVAL_LSWX:
1770 info.si_code = TARGET_ILL_ILLOPN;
1771 break;
1772 case POWERPC_EXCP_INVAL_SPR:
1773 info.si_code = TARGET_ILL_PRVREG;
1774 break;
1775 case POWERPC_EXCP_INVAL_FP:
1776 info.si_code = TARGET_ILL_COPROC;
1777 break;
1778 default:
1779 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1780 env->error_code & 0xF);
1781 info.si_code = TARGET_ILL_ILLADR;
1782 break;
1783 }
1784 break;
1785 case POWERPC_EXCP_PRIV:
1786 EXCP_DUMP(env, "Privilege violation\n");
1787 info.si_signo = TARGET_SIGILL;
1788 info.si_errno = 0;
1789 switch (env->error_code & 0xF) {
1790 case POWERPC_EXCP_PRIV_OPC:
1791 info.si_code = TARGET_ILL_PRVOPC;
1792 break;
1793 case POWERPC_EXCP_PRIV_REG:
1794 info.si_code = TARGET_ILL_PRVREG;
1795 break;
1796 default:
1797 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1798 env->error_code & 0xF);
1799 info.si_code = TARGET_ILL_PRVOPC;
1800 break;
1801 }
1802 break;
1803 case POWERPC_EXCP_TRAP:
1804 cpu_abort(cs, "Tried to call a TRAP\n");
1805 break;
1806 default:
1807 /* Should not happen ! */
1808 cpu_abort(cs, "Unknown program exception (%02x)\n",
1809 env->error_code);
1810 break;
1811 }
1812 info._sifields._sigfault._addr = env->nip - 4;
1813 queue_signal(env, info.si_signo, &info);
1814 break;
1815 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */
1816 EXCP_DUMP(env, "No floating point allowed\n");
1817 info.si_signo = TARGET_SIGILL;
1818 info.si_errno = 0;
1819 info.si_code = TARGET_ILL_COPROC;
1820 info._sifields._sigfault._addr = env->nip - 4;
1821 queue_signal(env, info.si_signo, &info);
1822 break;
1823 case POWERPC_EXCP_SYSCALL: /* System call exception */
1824 cpu_abort(cs, "Syscall exception while in user mode. "
1825 "Aborting\n");
1826 break;
1827 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */
1828 EXCP_DUMP(env, "No APU instruction allowed\n");
1829 info.si_signo = TARGET_SIGILL;
1830 info.si_errno = 0;
1831 info.si_code = TARGET_ILL_COPROC;
1832 info._sifields._sigfault._addr = env->nip - 4;
1833 queue_signal(env, info.si_signo, &info);
1834 break;
1835 case POWERPC_EXCP_DECR: /* Decrementer exception */
1836 cpu_abort(cs, "Decrementer interrupt while in user mode. "
1837 "Aborting\n");
1838 break;
1839 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */
1840 cpu_abort(cs, "Fix interval timer interrupt while in user mode. "
1841 "Aborting\n");
1842 break;
1843 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */
1844 cpu_abort(cs, "Watchdog timer interrupt while in user mode. "
1845 "Aborting\n");
1846 break;
1847 case POWERPC_EXCP_DTLB: /* Data TLB error */
1848 cpu_abort(cs, "Data TLB exception while in user mode. "
1849 "Aborting\n");
1850 break;
1851 case POWERPC_EXCP_ITLB: /* Instruction TLB error */
1852 cpu_abort(cs, "Instruction TLB exception while in user mode. "
1853 "Aborting\n");
1854 break;
1855 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */
1856 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n");
1857 info.si_signo = TARGET_SIGILL;
1858 info.si_errno = 0;
1859 info.si_code = TARGET_ILL_COPROC;
1860 info._sifields._sigfault._addr = env->nip - 4;
1861 queue_signal(env, info.si_signo, &info);
1862 break;
1863 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */
1864 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n");
1865 break;
1866 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */
1867 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n");
1868 break;
1869 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */
1870 cpu_abort(cs, "Performance monitor exception not handled\n");
1871 break;
1872 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */
1873 cpu_abort(cs, "Doorbell interrupt while in user mode. "
1874 "Aborting\n");
1875 break;
1876 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */
1877 cpu_abort(cs, "Doorbell critical interrupt while in user mode. "
1878 "Aborting\n");
1879 break;
1880 case POWERPC_EXCP_RESET: /* System reset exception */
1881 cpu_abort(cs, "Reset interrupt while in user mode. "
1882 "Aborting\n");
1883 break;
1884 case POWERPC_EXCP_DSEG: /* Data segment exception */
1885 cpu_abort(cs, "Data segment exception while in user mode. "
1886 "Aborting\n");
1887 break;
1888 case POWERPC_EXCP_ISEG: /* Instruction segment exception */
1889 cpu_abort(cs, "Instruction segment exception "
1890 "while in user mode. Aborting\n");
1891 break;
1892 /* PowerPC 64 with hypervisor mode support */
1893 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */
1894 cpu_abort(cs, "Hypervisor decrementer interrupt "
1895 "while in user mode. Aborting\n");
1896 break;
1897 case POWERPC_EXCP_TRACE: /* Trace exception */
1898 /* Nothing to do:
1899 * we use this exception to emulate step-by-step execution mode.
1900 */
1901 break;
1902 /* PowerPC 64 with hypervisor mode support */
1903 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */
1904 cpu_abort(cs, "Hypervisor data storage exception "
1905 "while in user mode. Aborting\n");
1906 break;
1907 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */
1908 cpu_abort(cs, "Hypervisor instruction storage exception "
1909 "while in user mode. Aborting\n");
1910 break;
1911 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */
1912 cpu_abort(cs, "Hypervisor data segment exception "
1913 "while in user mode. Aborting\n");
1914 break;
1915 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */
1916 cpu_abort(cs, "Hypervisor instruction segment exception "
1917 "while in user mode. Aborting\n");
1918 break;
1919 case POWERPC_EXCP_VPU: /* Vector unavailable exception */
1920 EXCP_DUMP(env, "No Altivec instructions allowed\n");
1921 info.si_signo = TARGET_SIGILL;
1922 info.si_errno = 0;
1923 info.si_code = TARGET_ILL_COPROC;
1924 info._sifields._sigfault._addr = env->nip - 4;
1925 queue_signal(env, info.si_signo, &info);
1926 break;
1927 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */
1928 cpu_abort(cs, "Programmable interval timer interrupt "
1929 "while in user mode. Aborting\n");
1930 break;
1931 case POWERPC_EXCP_IO: /* IO error exception */
1932 cpu_abort(cs, "IO error exception while in user mode. "
1933 "Aborting\n");
1934 break;
1935 case POWERPC_EXCP_RUNM: /* Run mode exception */
1936 cpu_abort(cs, "Run mode exception while in user mode. "
1937 "Aborting\n");
1938 break;
1939 case POWERPC_EXCP_EMUL: /* Emulation trap exception */
1940 cpu_abort(cs, "Emulation trap exception not handled\n");
1941 break;
1942 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */
1943 cpu_abort(cs, "Instruction fetch TLB exception "
1944 "while in user-mode. Aborting");
1945 break;
1946 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */
1947 cpu_abort(cs, "Data load TLB exception while in user-mode. "
1948 "Aborting");
1949 break;
1950 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */
1951 cpu_abort(cs, "Data store TLB exception while in user-mode. "
1952 "Aborting");
1953 break;
1954 case POWERPC_EXCP_FPA: /* Floating-point assist exception */
1955 cpu_abort(cs, "Floating-point assist exception not handled\n");
1956 break;
1957 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */
1958 cpu_abort(cs, "Instruction address breakpoint exception "
1959 "not handled\n");
1960 break;
1961 case POWERPC_EXCP_SMI: /* System management interrupt */
1962 cpu_abort(cs, "System management interrupt while in user mode. "
1963 "Aborting\n");
1964 break;
1965 case POWERPC_EXCP_THERM: /* Thermal interrupt */
1966 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. "
1967 "Aborting\n");
1968 break;
1969 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */
1970 cpu_abort(cs, "Performance monitor exception not handled\n");
1971 break;
1972 case POWERPC_EXCP_VPUA: /* Vector assist exception */
1973 cpu_abort(cs, "Vector assist exception not handled\n");
1974 break;
1975 case POWERPC_EXCP_SOFTP: /* Soft patch exception */
1976 cpu_abort(cs, "Soft patch exception not handled\n");
1977 break;
1978 case POWERPC_EXCP_MAINT: /* Maintenance exception */
1979 cpu_abort(cs, "Maintenance exception while in user mode. "
1980 "Aborting\n");
1981 break;
1982 case POWERPC_EXCP_STOP: /* stop translation */
1983 /* We did invalidate the instruction cache. Go on */
1984 break;
1985 case POWERPC_EXCP_BRANCH: /* branch instruction: */
1986 /* We just stopped because of a branch. Go on */
1987 break;
1988 case POWERPC_EXCP_SYSCALL_USER:
1989 /* system call in user-mode emulation */
1990 /* WARNING:
1991 * PPC ABI uses overflow flag in cr0 to signal an error
1992 * in syscalls.
1993 */
1994 env->crf[0] &= ~0x1;
1995 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1996 env->gpr[5], env->gpr[6], env->gpr[7],
1997 env->gpr[8], 0, 0);
1998 if (ret == -TARGET_ERESTARTSYS) {
1999 env->nip -= 4;
2000 break;
2001 }
2002 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
2003 /* Returning from a successful sigreturn syscall.
2004 Avoid corrupting register state. */
2005 break;
2006 }
2007 if (ret > (target_ulong)(-515)) {
2008 env->crf[0] |= 0x1;
2009 ret = -ret;
2010 }
2011 env->gpr[3] = ret;
2012 break;
2013 case POWERPC_EXCP_STCX:
2014 if (do_store_exclusive(env)) {
2015 info.si_signo = TARGET_SIGSEGV;
2016 info.si_errno = 0;
2017 info.si_code = TARGET_SEGV_MAPERR;
2018 info._sifields._sigfault._addr = env->nip;
2019 queue_signal(env, info.si_signo, &info);
2020 }
2021 break;
2022 case EXCP_DEBUG:
2023 {
2024 int sig;
2025
2026 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2027 if (sig) {
2028 info.si_signo = sig;
2029 info.si_errno = 0;
2030 info.si_code = TARGET_TRAP_BRKPT;
2031 queue_signal(env, info.si_signo, &info);
2032 }
2033 }
2034 break;
2035 case EXCP_INTERRUPT:
2036 /* just indicate that signals should be handled asap */
2037 break;
2038 default:
2039 cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr);
2040 break;
2041 }
2042 process_pending_signals(env);
2043 }
2044 }
2045 #endif
2046
2047 #ifdef TARGET_MIPS
2048
2049 # ifdef TARGET_ABI_MIPSO32
2050 # define MIPS_SYS(name, args) args,
2051 static const uint8_t mips_syscall_args[] = {
2052 MIPS_SYS(sys_syscall , 8) /* 4000 */
2053 MIPS_SYS(sys_exit , 1)
2054 MIPS_SYS(sys_fork , 0)
2055 MIPS_SYS(sys_read , 3)
2056 MIPS_SYS(sys_write , 3)
2057 MIPS_SYS(sys_open , 3) /* 4005 */
2058 MIPS_SYS(sys_close , 1)
2059 MIPS_SYS(sys_waitpid , 3)
2060 MIPS_SYS(sys_creat , 2)
2061 MIPS_SYS(sys_link , 2)
2062 MIPS_SYS(sys_unlink , 1) /* 4010 */
2063 MIPS_SYS(sys_execve , 0)
2064 MIPS_SYS(sys_chdir , 1)
2065 MIPS_SYS(sys_time , 1)
2066 MIPS_SYS(sys_mknod , 3)
2067 MIPS_SYS(sys_chmod , 2) /* 4015 */
2068 MIPS_SYS(sys_lchown , 3)
2069 MIPS_SYS(sys_ni_syscall , 0)
2070 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */
2071 MIPS_SYS(sys_lseek , 3)
2072 MIPS_SYS(sys_getpid , 0) /* 4020 */
2073 MIPS_SYS(sys_mount , 5)
2074 MIPS_SYS(sys_umount , 1)
2075 MIPS_SYS(sys_setuid , 1)
2076 MIPS_SYS(sys_getuid , 0)
2077 MIPS_SYS(sys_stime , 1) /* 4025 */
2078 MIPS_SYS(sys_ptrace , 4)
2079 MIPS_SYS(sys_alarm , 1)
2080 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */
2081 MIPS_SYS(sys_pause , 0)
2082 MIPS_SYS(sys_utime , 2) /* 4030 */
2083 MIPS_SYS(sys_ni_syscall , 0)
2084 MIPS_SYS(sys_ni_syscall , 0)
2085 MIPS_SYS(sys_access , 2)
2086 MIPS_SYS(sys_nice , 1)
2087 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */
2088 MIPS_SYS(sys_sync , 0)
2089 MIPS_SYS(sys_kill , 2)
2090 MIPS_SYS(sys_rename , 2)
2091 MIPS_SYS(sys_mkdir , 2)
2092 MIPS_SYS(sys_rmdir , 1) /* 4040 */
2093 MIPS_SYS(sys_dup , 1)
2094 MIPS_SYS(sys_pipe , 0)
2095 MIPS_SYS(sys_times , 1)
2096 MIPS_SYS(sys_ni_syscall , 0)
2097 MIPS_SYS(sys_brk , 1) /* 4045 */
2098 MIPS_SYS(sys_setgid , 1)
2099 MIPS_SYS(sys_getgid , 0)
2100 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */
2101 MIPS_SYS(sys_geteuid , 0)
2102 MIPS_SYS(sys_getegid , 0) /* 4050 */
2103 MIPS_SYS(sys_acct , 0)
2104 MIPS_SYS(sys_umount2 , 2)
2105 MIPS_SYS(sys_ni_syscall , 0)
2106 MIPS_SYS(sys_ioctl , 3)
2107 MIPS_SYS(sys_fcntl , 3) /* 4055 */
2108 MIPS_SYS(sys_ni_syscall , 2)
2109 MIPS_SYS(sys_setpgid , 2)
2110 MIPS_SYS(sys_ni_syscall , 0)
2111 MIPS_SYS(sys_olduname , 1)
2112 MIPS_SYS(sys_umask , 1) /* 4060 */
2113 MIPS_SYS(sys_chroot , 1)
2114 MIPS_SYS(sys_ustat , 2)
2115 MIPS_SYS(sys_dup2 , 2)
2116 MIPS_SYS(sys_getppid , 0)
2117 MIPS_SYS(sys_getpgrp , 0) /* 4065 */
2118 MIPS_SYS(sys_setsid , 0)
2119 MIPS_SYS(sys_sigaction , 3)
2120 MIPS_SYS(sys_sgetmask , 0)
2121 MIPS_SYS(sys_ssetmask , 1)
2122 MIPS_SYS(sys_setreuid , 2) /* 4070 */
2123 MIPS_SYS(sys_setregid , 2)
2124 MIPS_SYS(sys_sigsuspend , 0)
2125 MIPS_SYS(sys_sigpending , 1)
2126 MIPS_SYS(sys_sethostname , 2)
2127 MIPS_SYS(sys_setrlimit , 2) /* 4075 */
2128 MIPS_SYS(sys_getrlimit , 2)
2129 MIPS_SYS(sys_getrusage , 2)
2130 MIPS_SYS(sys_gettimeofday, 2)
2131 MIPS_SYS(sys_settimeofday, 2)
2132 MIPS_SYS(sys_getgroups , 2) /* 4080 */
2133 MIPS_SYS(sys_setgroups , 2)
2134 MIPS_SYS(sys_ni_syscall , 0) /* old_select */
2135 MIPS_SYS(sys_symlink , 2)
2136 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */
2137 MIPS_SYS(sys_readlink , 3) /* 4085 */
2138 MIPS_SYS(sys_uselib , 1)
2139 MIPS_SYS(sys_swapon , 2)
2140 MIPS_SYS(sys_reboot , 3)
2141 MIPS_SYS(old_readdir , 3)
2142 MIPS_SYS(old_mmap , 6) /* 4090 */
2143 MIPS_SYS(sys_munmap , 2)
2144 MIPS_SYS(sys_truncate , 2)
2145 MIPS_SYS(sys_ftruncate , 2)
2146 MIPS_SYS(sys_fchmod , 2)
2147 MIPS_SYS(sys_fchown , 3) /* 4095 */
2148 MIPS_SYS(sys_getpriority , 2)
2149 MIPS_SYS(sys_setpriority , 3)
2150 MIPS_SYS(sys_ni_syscall , 0)
2151 MIPS_SYS(sys_statfs , 2)
2152 MIPS_SYS(sys_fstatfs , 2) /* 4100 */
2153 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */
2154 MIPS_SYS(sys_socketcall , 2)
2155 MIPS_SYS(sys_syslog , 3)
2156 MIPS_SYS(sys_setitimer , 3)
2157 MIPS_SYS(sys_getitimer , 2) /* 4105 */
2158 MIPS_SYS(sys_newstat , 2)
2159 MIPS_SYS(sys_newlstat , 2)
2160 MIPS_SYS(sys_newfstat , 2)
2161 MIPS_SYS(sys_uname , 1)
2162 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */
2163 MIPS_SYS(sys_vhangup , 0)
2164 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */
2165 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */
2166 MIPS_SYS(sys_wait4 , 4)
2167 MIPS_SYS(sys_swapoff , 1) /* 4115 */
2168 MIPS_SYS(sys_sysinfo , 1)
2169 MIPS_SYS(sys_ipc , 6)
2170 MIPS_SYS(sys_fsync , 1)
2171 MIPS_SYS(sys_sigreturn , 0)
2172 MIPS_SYS(sys_clone , 6) /* 4120 */
2173 MIPS_SYS(sys_setdomainname, 2)
2174 MIPS_SYS(sys_newuname , 1)
2175 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */
2176 MIPS_SYS(sys_adjtimex , 1)
2177 MIPS_SYS(sys_mprotect , 3) /* 4125 */
2178 MIPS_SYS(sys_sigprocmask , 3)
2179 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */
2180 MIPS_SYS(sys_init_module , 5)
2181 MIPS_SYS(sys_delete_module, 1)
2182 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */
2183 MIPS_SYS(sys_quotactl , 0)
2184 MIPS_SYS(sys_getpgid , 1)
2185 MIPS_SYS(sys_fchdir , 1)
2186 MIPS_SYS(sys_bdflush , 2)
2187 MIPS_SYS(sys_sysfs , 3) /* 4135 */
2188 MIPS_SYS(sys_personality , 1)
2189 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */
2190 MIPS_SYS(sys_setfsuid , 1)
2191 MIPS_SYS(sys_setfsgid , 1)
2192 MIPS_SYS(sys_llseek , 5) /* 4140 */
2193 MIPS_SYS(sys_getdents , 3)
2194 MIPS_SYS(sys_select , 5)
2195 MIPS_SYS(sys_flock , 2)
2196 MIPS_SYS(sys_msync , 3)
2197 MIPS_SYS(sys_readv , 3) /* 4145 */
2198 MIPS_SYS(sys_writev , 3)
2199 MIPS_SYS(sys_cacheflush , 3)
2200 MIPS_SYS(sys_cachectl , 3)
2201 MIPS_SYS(sys_sysmips , 4)
2202 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */
2203 MIPS_SYS(sys_getsid , 1)
2204 MIPS_SYS(sys_fdatasync , 0)
2205 MIPS_SYS(sys_sysctl , 1)
2206 MIPS_SYS(sys_mlock , 2)
2207 MIPS_SYS(sys_munlock , 2) /* 4155 */
2208 MIPS_SYS(sys_mlockall , 1)
2209 MIPS_SYS(sys_munlockall , 0)
2210 MIPS_SYS(sys_sched_setparam, 2)
2211 MIPS_SYS(sys_sched_getparam, 2)
2212 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */
2213 MIPS_SYS(sys_sched_getscheduler, 1)
2214 MIPS_SYS(sys_sched_yield , 0)
2215 MIPS_SYS(sys_sched_get_priority_max, 1)
2216 MIPS_SYS(sys_sched_get_priority_min, 1)
2217 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */
2218 MIPS_SYS(sys_nanosleep, 2)
2219 MIPS_SYS(sys_mremap , 5)
2220 MIPS_SYS(sys_accept , 3)
2221 MIPS_SYS(sys_bind , 3)
2222 MIPS_SYS(sys_connect , 3) /* 4170 */
2223 MIPS_SYS(sys_getpeername , 3)
2224 MIPS_SYS(sys_getsockname , 3)
2225 MIPS_SYS(sys_getsockopt , 5)
2226 MIPS_SYS(sys_listen , 2)
2227 MIPS_SYS(sys_recv , 4) /* 4175 */
2228 MIPS_SYS(sys_recvfrom , 6)
2229 MIPS_SYS(sys_recvmsg , 3)
2230 MIPS_SYS(sys_send , 4)
2231 MIPS_SYS(sys_sendmsg , 3)
2232 MIPS_SYS(sys_sendto , 6) /* 4180 */
2233 MIPS_SYS(sys_setsockopt , 5)
2234 MIPS_SYS(sys_shutdown , 2)
2235 MIPS_SYS(sys_socket , 3)
2236 MIPS_SYS(sys_socketpair , 4)
2237 MIPS_SYS(sys_setresuid , 3) /* 4185 */
2238 MIPS_SYS(sys_getresuid , 3)
2239 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */
2240 MIPS_SYS(sys_poll , 3)
2241 MIPS_SYS(sys_nfsservctl , 3)
2242 MIPS_SYS(sys_setresgid , 3) /* 4190 */
2243 MIPS_SYS(sys_getresgid , 3)
2244 MIPS_SYS(sys_prctl , 5)
2245 MIPS_SYS(sys_rt_sigreturn, 0)
2246 MIPS_SYS(sys_rt_sigaction, 4)
2247 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */
2248 MIPS_SYS(sys_rt_sigpending, 2)
2249 MIPS_SYS(sys_rt_sigtimedwait, 4)
2250 MIPS_SYS(sys_rt_sigqueueinfo, 3)
2251 MIPS_SYS(sys_rt_sigsuspend, 0)
2252 MIPS_SYS(sys_pread64 , 6) /* 4200 */
2253 MIPS_SYS(sys_pwrite64 , 6)
2254 MIPS_SYS(sys_chown , 3)
2255 MIPS_SYS(sys_getcwd , 2)
2256 MIPS_SYS(sys_capget , 2)
2257 MIPS_SYS(sys_capset , 2) /* 4205 */
2258 MIPS_SYS(sys_sigaltstack , 2)
2259 MIPS_SYS(sys_sendfile , 4)
2260 MIPS_SYS(sys_ni_syscall , 0)
2261 MIPS_SYS(sys_ni_syscall , 0)
2262 MIPS_SYS(sys_mmap2 , 6) /* 4210 */
2263 MIPS_SYS(sys_truncate64 , 4)
2264 MIPS_SYS(sys_ftruncate64 , 4)
2265 MIPS_SYS(sys_stat64 , 2)
2266 MIPS_SYS(sys_lstat64 , 2)
2267 MIPS_SYS(sys_fstat64 , 2) /* 4215 */
2268 MIPS_SYS(sys_pivot_root , 2)
2269 MIPS_SYS(sys_mincore , 3)
2270 MIPS_SYS(sys_madvise , 3)
2271 MIPS_SYS(sys_getdents64 , 3)
2272 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */
2273 MIPS_SYS(sys_ni_syscall , 0)
2274 MIPS_SYS(sys_gettid , 0)
2275 MIPS_SYS(sys_readahead , 5)
2276 MIPS_SYS(sys_setxattr , 5)
2277 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */
2278 MIPS_SYS(sys_fsetxattr , 5)
2279 MIPS_SYS(sys_getxattr , 4)
2280 MIPS_SYS(sys_lgetxattr , 4)
2281 MIPS_SYS(sys_fgetxattr , 4)
2282 MIPS_SYS(sys_listxattr , 3) /* 4230 */
2283 MIPS_SYS(sys_llistxattr , 3)
2284 MIPS_SYS(sys_flistxattr , 3)
2285 MIPS_SYS(sys_removexattr , 2)
2286 MIPS_SYS(sys_lremovexattr, 2)
2287 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */
2288 MIPS_SYS(sys_tkill , 2)
2289 MIPS_SYS(sys_sendfile64 , 5)
2290 MIPS_SYS(sys_futex , 6)
2291 MIPS_SYS(sys_sched_setaffinity, 3)
2292 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */
2293 MIPS_SYS(sys_io_setup , 2)
2294 MIPS_SYS(sys_io_destroy , 1)
2295 MIPS_SYS(sys_io_getevents, 5)
2296 MIPS_SYS(sys_io_submit , 3)
2297 MIPS_SYS(sys_io_cancel , 3) /* 4245 */
2298 MIPS_SYS(sys_exit_group , 1)
2299 MIPS_SYS(sys_lookup_dcookie, 3)
2300 MIPS_SYS(sys_epoll_create, 1)
2301 MIPS_SYS(sys_epoll_ctl , 4)
2302 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */
2303 MIPS_SYS(sys_remap_file_pages, 5)
2304 MIPS_SYS(sys_set_tid_address, 1)
2305 MIPS_SYS(sys_restart_syscall, 0)
2306 MIPS_SYS(sys_fadvise64_64, 7)
2307 MIPS_SYS(sys_statfs64 , 3) /* 4255 */
2308 MIPS_SYS(sys_fstatfs64 , 2)
2309 MIPS_SYS(sys_timer_create, 3)
2310 MIPS_SYS(sys_timer_settime, 4)
2311 MIPS_SYS(sys_timer_gettime, 2)
2312 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */
2313 MIPS_SYS(sys_timer_delete, 1)
2314 MIPS_SYS(sys_clock_settime, 2)
2315 MIPS_SYS(sys_clock_gettime, 2)
2316 MIPS_SYS(sys_clock_getres, 2)
2317 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */
2318 MIPS_SYS(sys_tgkill , 3)
2319 MIPS_SYS(sys_utimes , 2)
2320 MIPS_SYS(sys_mbind , 4)
2321 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */
2322 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */
2323 MIPS_SYS(sys_mq_open , 4)
2324 MIPS_SYS(sys_mq_unlink , 1)
2325 MIPS_SYS(sys_mq_timedsend, 5)
2326 MIPS_SYS(sys_mq_timedreceive, 5)
2327 MIPS_SYS(sys_mq_notify , 2) /* 4275 */
2328 MIPS_SYS(sys_mq_getsetattr, 3)
2329 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */
2330 MIPS_SYS(sys_waitid , 4)
2331 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */
2332 MIPS_SYS(sys_add_key , 5)
2333 MIPS_SYS(sys_request_key, 4)
2334 MIPS_SYS(sys_keyctl , 5)
2335 MIPS_SYS(sys_set_thread_area, 1)
2336 MIPS_SYS(sys_inotify_init, 0)
2337 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2338 MIPS_SYS(sys_inotify_rm_watch, 2)
2339 MIPS_SYS(sys_migrate_pages, 4)
2340 MIPS_SYS(sys_openat, 4)
2341 MIPS_SYS(sys_mkdirat, 3)
2342 MIPS_SYS(sys_mknodat, 4) /* 4290 */
2343 MIPS_SYS(sys_fchownat, 5)
2344 MIPS_SYS(sys_futimesat, 3)
2345 MIPS_SYS(sys_fstatat64, 4)
2346 MIPS_SYS(sys_unlinkat, 3)
2347 MIPS_SYS(sys_renameat, 4) /* 4295 */
2348 MIPS_SYS(sys_linkat, 5)
2349 MIPS_SYS(sys_symlinkat, 3)
2350 MIPS_SYS(sys_readlinkat, 4)
2351 MIPS_SYS(sys_fchmodat, 3)
2352 MIPS_SYS(sys_faccessat, 3) /* 4300 */
2353 MIPS_SYS(sys_pselect6, 6)
2354 MIPS_SYS(sys_ppoll, 5)
2355 MIPS_SYS(sys_unshare, 1)
2356 MIPS_SYS(sys_splice, 6)
2357 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2358 MIPS_SYS(sys_tee, 4)
2359 MIPS_SYS(sys_vmsplice, 4)
2360 MIPS_SYS(sys_move_pages, 6)
2361 MIPS_SYS(sys_set_robust_list, 2)
2362 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2363 MIPS_SYS(sys_kexec_load, 4)
2364 MIPS_SYS(sys_getcpu, 3)
2365 MIPS_SYS(sys_epoll_pwait, 6)
2366 MIPS_SYS(sys_ioprio_set, 3)
2367 MIPS_SYS(sys_ioprio_get, 2)
2368 MIPS_SYS(sys_utimensat, 4)
2369 MIPS_SYS(sys_signalfd, 3)
2370 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */
2371 MIPS_SYS(sys_eventfd, 1)
2372 MIPS_SYS(sys_fallocate, 6) /* 4320 */
2373 MIPS_SYS(sys_timerfd_create, 2)
2374 MIPS_SYS(sys_timerfd_gettime, 2)
2375 MIPS_SYS(sys_timerfd_settime, 4)
2376 MIPS_SYS(sys_signalfd4, 4)
2377 MIPS_SYS(sys_eventfd2, 2) /* 4325 */
2378 MIPS_SYS(sys_epoll_create1, 1)
2379 MIPS_SYS(sys_dup3, 3)
2380 MIPS_SYS(sys_pipe2, 2)
2381 MIPS_SYS(sys_inotify_init1, 1)
2382 MIPS_SYS(sys_preadv, 6) /* 4330 */
2383 MIPS_SYS(sys_pwritev, 6)
2384 MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2385 MIPS_SYS(sys_perf_event_open, 5)
2386 MIPS_SYS(sys_accept4, 4)
2387 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */
2388 MIPS_SYS(sys_fanotify_init, 2)
2389 MIPS_SYS(sys_fanotify_mark, 6)
2390 MIPS_SYS(sys_prlimit64, 4)
2391 MIPS_SYS(sys_name_to_handle_at, 5)
2392 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2393 MIPS_SYS(sys_clock_adjtime, 2)
2394 MIPS_SYS(sys_syncfs, 1)
2395 };
2396 # undef MIPS_SYS
2397 # endif /* O32 */
2398
2399 static int do_store_exclusive(CPUMIPSState *env)
2400 {
2401 target_ulong addr;
2402 target_ulong page_addr;
2403 target_ulong val;
2404 int flags;
2405 int segv = 0;
2406 int reg;
2407 int d;
2408
2409 addr = env->lladdr;
2410 page_addr = addr & TARGET_PAGE_MASK;
2411 start_exclusive();
2412 mmap_lock();
2413 flags = page_get_flags(page_addr);
2414 if ((flags & PAGE_READ) == 0) {
2415 segv = 1;
2416 } else {
2417 reg = env->llreg & 0x1f;
2418 d = (env->llreg & 0x20) != 0;
2419 if (d) {
2420 segv = get_user_s64(val, addr);
2421 } else {
2422 segv = get_user_s32(val, addr);
2423 }
2424 if (!segv) {
2425 if (val != env->llval) {
2426 env->active_tc.gpr[reg] = 0;
2427 } else {
2428 if (d) {
2429 segv = put_user_u64(env->llnewval, addr);
2430 } else {
2431 segv = put_user_u32(env->llnewval, addr);
2432 }
2433 if (!segv) {
2434 env->active_tc.gpr[reg] = 1;
2435 }
2436 }
2437 }
2438 }
2439 env->lladdr = -1;
2440 if (!segv) {
2441 env->active_tc.PC += 4;
2442 }
2443 mmap_unlock();
2444 end_exclusive();
2445 return segv;
2446 }
2447
2448 /* Break codes */
2449 enum {
2450 BRK_OVERFLOW = 6,
2451 BRK_DIVZERO = 7
2452 };
2453
2454 static int do_break(CPUMIPSState *env, target_siginfo_t *info,
2455 unsigned int code)
2456 {
2457 int ret = -1;
2458
2459 switch (code) {
2460 case BRK_OVERFLOW:
2461 case BRK_DIVZERO:
2462 info->si_signo = TARGET_SIGFPE;
2463 info->si_errno = 0;
2464 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV;
2465 queue_signal(env, info->si_signo, &*info);
2466 ret = 0;
2467 break;
2468 default:
2469 info->si_signo = TARGET_SIGTRAP;
2470 info->si_errno = 0;
2471 queue_signal(env, info->si_signo, &*info);
2472 ret = 0;
2473 break;
2474 }
2475
2476 return ret;
2477 }
2478
2479 void cpu_loop(CPUMIPSState *env)
2480 {
2481 CPUState *cs = CPU(mips_env_get_cpu(env));
2482 target_siginfo_t info;
2483 int trapnr;
2484 abi_long ret;
2485 # ifdef TARGET_ABI_MIPSO32
2486 unsigned int syscall_num;
2487 # endif
2488
2489 for(;;) {
2490 cpu_exec_start(cs);
2491 trapnr = cpu_mips_exec(cs);
2492 cpu_exec_end(cs);
2493 switch(trapnr) {
2494 case EXCP_SYSCALL:
2495 env->active_tc.PC += 4;
2496 # ifdef TARGET_ABI_MIPSO32
2497 syscall_num = env->active_tc.gpr[2] - 4000;
2498 if (syscall_num >= sizeof(mips_syscall_args)) {
2499 ret = -TARGET_ENOSYS;
2500 } else {
2501 int nb_args;
2502 abi_ulong sp_reg;
2503 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2504
2505 nb_args = mips_syscall_args[syscall_num];
2506 sp_reg = env->active_tc.gpr[29];
2507 switch (nb_args) {
2508 /* these arguments are taken from the stack */
2509 case 8:
2510 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2511 goto done_syscall;
2512 }
2513 case 7:
2514 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2515 goto done_syscall;
2516 }
2517 case 6:
2518 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2519 goto done_syscall;
2520 }
2521 case 5:
2522 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2523 goto done_syscall;
2524 }
2525 default:
2526 break;
2527 }
2528 ret = do_syscall(env, env->active_tc.gpr[2],
2529 env->active_tc.gpr[4],
2530 env->active_tc.gpr[5],
2531 env->active_tc.gpr[6],
2532 env->active_tc.gpr[7],
2533 arg5, arg6, arg7, arg8);
2534 }
2535 done_syscall:
2536 # else
2537 ret = do_syscall(env, env->active_tc.gpr[2],
2538 env->active_tc.gpr[4], env->active_tc.gpr[5],
2539 env->active_tc.gpr[6], env->active_tc.gpr[7],
2540 env->active_tc.gpr[8], env->active_tc.gpr[9],
2541 env->active_tc.gpr[10], env->active_tc.gpr[11]);
2542 # endif /* O32 */
2543 if (ret == -TARGET_ERESTARTSYS) {
2544 env->active_tc.PC -= 4;
2545 break;
2546 }
2547 if (ret == -TARGET_QEMU_ESIGRETURN) {
2548 /* Returning from a successful sigreturn syscall.
2549 Avoid clobbering register state. */
2550 break;
2551 }
2552 if ((abi_ulong)ret >= (abi_ulong)-1133) {
2553 env->active_tc.gpr[7] = 1; /* error flag */
2554 ret = -ret;
2555 } else {
2556 env->active_tc.gpr[7] = 0; /* error flag */
2557 }
2558 env->active_tc.gpr[2] = ret;
2559 break;
2560 case EXCP_TLBL:
2561 case EXCP_TLBS:
2562 case EXCP_AdEL:
2563 case EXCP_AdES:
2564 info.si_signo = TARGET_SIGSEGV;
2565 info.si_errno = 0;
2566 /* XXX: check env->error_code */
2567 info.si_code = TARGET_SEGV_MAPERR;
2568 info._sifields._sigfault._addr = env->CP0_BadVAddr;
2569 queue_signal(env, info.si_signo, &info);
2570 break;
2571 case EXCP_CpU:
2572 case EXCP_RI:
2573 info.si_signo = TARGET_SIGILL;
2574 info.si_errno = 0;
2575 info.si_code = 0;
2576 queue_signal(env, info.si_signo, &info);
2577 break;
2578 case EXCP_INTERRUPT:
2579 /* just indicate that signals should be handled asap */
2580 break;
2581 case EXCP_DEBUG:
2582 {
2583 int sig;
2584
2585 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2586 if (sig)
2587 {
2588 info.si_signo = sig;
2589 info.si_errno = 0;
2590 info.si_code = TARGET_TRAP_BRKPT;
2591 queue_signal(env, info.si_signo, &info);
2592 }
2593 }
2594 break;
2595 case EXCP_SC:
2596 if (do_store_exclusive(env)) {
2597 info.si_signo = TARGET_SIGSEGV;
2598 info.si_errno = 0;
2599 info.si_code = TARGET_SEGV_MAPERR;
2600 info._sifields._sigfault._addr = env->active_tc.PC;
2601 queue_signal(env, info.si_signo, &info);
2602 }
2603 break;
2604 case EXCP_DSPDIS:
2605 info.si_signo = TARGET_SIGILL;
2606 info.si_errno = 0;
2607 info.si_code = TARGET_ILL_ILLOPC;
2608 queue_signal(env, info.si_signo, &info);
2609 break;
2610 /* The code below was inspired by the MIPS Linux kernel trap
2611 * handling code in arch/mips/kernel/traps.c.
2612 */
2613 case EXCP_BREAK:
2614 {
2615 abi_ulong trap_instr;
2616 unsigned int code;
2617
2618 if (env->hflags & MIPS_HFLAG_M16) {
2619 if (env->insn_flags & ASE_MICROMIPS) {
2620 /* microMIPS mode */
2621 ret = get_user_u16(trap_instr, env->active_tc.PC);
2622 if (ret != 0) {
2623 goto error;
2624 }
2625
2626 if ((trap_instr >> 10) == 0x11) {
2627 /* 16-bit instruction */
2628 code = trap_instr & 0xf;
2629 } else {
2630 /* 32-bit instruction */
2631 abi_ulong instr_lo;
2632
2633 ret = get_user_u16(instr_lo,
2634 env->active_tc.PC + 2);
2635 if (ret != 0) {
2636 goto error;
2637 }
2638 trap_instr = (trap_instr << 16) | instr_lo;
2639 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2640 /* Unfortunately, microMIPS also suffers from
2641 the old assembler bug... */
2642 if (code >= (1 << 10)) {
2643 code >>= 10;
2644 }
2645 }
2646 } else {
2647 /* MIPS16e mode */
2648 ret = get_user_u16(trap_instr, env->active_tc.PC);
2649 if (ret != 0) {
2650 goto error;
2651 }
2652 code = (trap_instr >> 6) & 0x3f;
2653 }
2654 } else {
2655 ret = get_user_u32(trap_instr, env->active_tc.PC);
2656 if (ret != 0) {
2657 goto error;
2658 }
2659
2660 /* As described in the original Linux kernel code, the
2661 * below checks on 'code' are to work around an old
2662 * assembly bug.
2663 */
2664 code = ((trap_instr >> 6) & ((1 << 20) - 1));
2665 if (code >= (1 << 10)) {
2666 code >>= 10;
2667 }
2668 }
2669
2670 if (do_break(env, &info, code) != 0) {
2671 goto error;
2672 }
2673 }
2674 break;
2675 case EXCP_TRAP:
2676 {
2677 abi_ulong trap_instr;
2678 unsigned int code = 0;
2679
2680 if (env->hflags & MIPS_HFLAG_M16) {
2681 /* microMIPS mode */
2682 abi_ulong instr[2];
2683
2684 ret = get_user_u16(instr[0], env->active_tc.PC) ||
2685 get_user_u16(instr[1], env->active_tc.PC + 2);
2686
2687 trap_instr = (instr[0] << 16) | instr[1];
2688 } else {
2689 ret = get_user_u32(trap_instr, env->active_tc.PC);
2690 }
2691
2692 if (ret != 0) {
2693 goto error;
2694 }
2695
2696 /* The immediate versions don't provide a code. */
2697 if (!(trap_instr & 0xFC000000)) {
2698 if (env->hflags & MIPS_HFLAG_M16) {
2699 /* microMIPS mode */
2700 code = ((trap_instr >> 12) & ((1 << 4) - 1));
2701 } else {
2702 code = ((trap_instr >> 6) & ((1 << 10) - 1));
2703 }
2704 }
2705
2706 if (do_break(env, &info, code) != 0) {
2707 goto error;
2708 }
2709 }
2710 break;
2711 default:
2712 error:
2713 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
2714 abort();
2715 }
2716 process_pending_signals(env);
2717 }
2718 }
2719 #endif
2720
2721 #ifdef TARGET_OPENRISC
2722
2723 void cpu_loop(CPUOpenRISCState *env)
2724 {
2725 CPUState *cs = CPU(openrisc_env_get_cpu(env));
2726 int trapnr, gdbsig;
2727 abi_long ret;
2728
2729 for (;;) {
2730 cpu_exec_start(cs);
2731 trapnr = cpu_openrisc_exec(cs);
2732 cpu_exec_end(cs);
2733 gdbsig = 0;
2734
2735 switch (trapnr) {
2736 case EXCP_RESET:
2737 qemu_log_mask(CPU_LOG_INT, "\nReset request, exit, pc is %#x\n", env->pc);
2738 exit(EXIT_FAILURE);
2739 break;
2740 case EXCP_BUSERR:
2741 qemu_log_mask(CPU_LOG_INT, "\nBus error, exit, pc is %#x\n", env->pc);
2742 gdbsig = TARGET_SIGBUS;
2743 break;
2744 case EXCP_DPF:
2745 case EXCP_IPF:
2746 cpu_dump_state(cs, stderr, fprintf, 0);
2747 gdbsig = TARGET_SIGSEGV;
2748 break;
2749 case EXCP_TICK:
2750 qemu_log_mask(CPU_LOG_INT, "\nTick time interrupt pc is %#x\n", env->pc);
2751 break;
2752 case EXCP_ALIGN:
2753 qemu_log_mask(CPU_LOG_INT, "\nAlignment pc is %#x\n", env->pc);
2754 gdbsig = TARGET_SIGBUS;
2755 break;
2756 case EXCP_ILLEGAL:
2757 qemu_log_mask(CPU_LOG_INT, "\nIllegal instructionpc is %#x\n", env->pc);
2758 gdbsig = TARGET_SIGILL;
2759 break;
2760 case EXCP_INT:
2761 qemu_log_mask(CPU_LOG_INT, "\nExternal interruptpc is %#x\n", env->pc);
2762 break;
2763 case EXCP_DTLBMISS:
2764 case EXCP_ITLBMISS:
2765 qemu_log_mask(CPU_LOG_INT, "\nTLB miss\n");
2766 break;
2767 case EXCP_RANGE:
2768 qemu_log_mask(CPU_LOG_INT, "\nRange\n");
2769 gdbsig = TARGET_SIGSEGV;
2770 break;
2771 case EXCP_SYSCALL:
2772 env->pc += 4; /* 0xc00; */
2773 ret = do_syscall(env,
2774 env->gpr[11], /* return value */
2775 env->gpr[3], /* r3 - r7 are params */
2776 env->gpr[4],
2777 env->gpr[5],
2778 env->gpr[6],
2779 env->gpr[7],
2780 env->gpr[8], 0, 0);
2781 if (ret == -TARGET_ERESTARTSYS) {
2782 env->pc -= 4;
2783 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2784 env->gpr[11] = ret;
2785 }
2786 break;
2787 case EXCP_FPE:
2788 qemu_log_mask(CPU_LOG_INT, "\nFloating point error\n");
2789 break;
2790 case EXCP_TRAP:
2791 qemu_log_mask(CPU_LOG_INT, "\nTrap\n");
2792 gdbsig = TARGET_SIGTRAP;
2793 break;
2794 case EXCP_NR:
2795 qemu_log_mask(CPU_LOG_INT, "\nNR\n");
2796 break;
2797 default:
2798 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n",
2799 trapnr);
2800 gdbsig = TARGET_SIGILL;
2801 break;
2802 }
2803 if (gdbsig) {
2804 gdb_handlesig(cs, gdbsig);
2805 if (gdbsig != TARGET_SIGTRAP) {
2806 exit(EXIT_FAILURE);
2807 }
2808 }
2809
2810 process_pending_signals(env);
2811 }
2812 }
2813
2814 #endif /* TARGET_OPENRISC */
2815
2816 #ifdef TARGET_SH4
2817 void cpu_loop(CPUSH4State *env)
2818 {
2819 CPUState *cs = CPU(sh_env_get_cpu(env));
2820 int trapnr, ret;
2821 target_siginfo_t info;
2822
2823 while (1) {
2824 cpu_exec_start(cs);
2825 trapnr = cpu_sh4_exec(cs);
2826 cpu_exec_end(cs);
2827
2828 switch (trapnr) {
2829 case 0x160:
2830 env->pc += 2;
2831 ret = do_syscall(env,
2832 env->gregs[3],
2833 env->gregs[4],
2834 env->gregs[5],
2835 env->gregs[6],
2836 env->gregs[7],
2837 env->gregs[0],
2838 env->gregs[1],
2839 0, 0);
2840 if (ret == -TARGET_ERESTARTSYS) {
2841 env->pc -= 2;
2842 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2843 env->gregs[0] = ret;
2844 }
2845 break;
2846 case EXCP_INTERRUPT:
2847 /* just indicate that signals should be handled asap */
2848 break;
2849 case EXCP_DEBUG:
2850 {
2851 int sig;
2852
2853 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2854 if (sig)
2855 {
2856 info.si_signo = sig;
2857 info.si_errno = 0;
2858 info.si_code = TARGET_TRAP_BRKPT;
2859 queue_signal(env, info.si_signo, &info);
2860 }
2861 }
2862 break;
2863 case 0xa0:
2864 case 0xc0:
2865 info.si_signo = TARGET_SIGSEGV;
2866 info.si_errno = 0;
2867 info.si_code = TARGET_SEGV_MAPERR;
2868 info._sifields._sigfault._addr = env->tea;
2869 queue_signal(env, info.si_signo, &info);
2870 break;
2871
2872 default:
2873 printf ("Unhandled trap: 0x%x\n", trapnr);
2874 cpu_dump_state(cs, stderr, fprintf, 0);
2875 exit(EXIT_FAILURE);
2876 }
2877 process_pending_signals (env);
2878 }
2879 }
2880 #endif
2881
2882 #ifdef TARGET_CRIS
2883 void cpu_loop(CPUCRISState *env)
2884 {
2885 CPUState *cs = CPU(cris_env_get_cpu(env));
2886 int trapnr, ret;
2887 target_siginfo_t info;
2888
2889 while (1) {
2890 cpu_exec_start(cs);
2891 trapnr = cpu_cris_exec(cs);
2892 cpu_exec_end(cs);
2893 switch (trapnr) {
2894 case 0xaa:
2895 {
2896 info.si_signo = TARGET_SIGSEGV;
2897 info.si_errno = 0;
2898 /* XXX: check env->error_code */
2899 info.si_code = TARGET_SEGV_MAPERR;
2900 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2901 queue_signal(env, info.si_signo, &info);
2902 }
2903 break;
2904 case EXCP_INTERRUPT:
2905 /* just indicate that signals should be handled asap */
2906 break;
2907 case EXCP_BREAK:
2908 ret = do_syscall(env,
2909 env->regs[9],
2910 env->regs[10],
2911 env->regs[11],
2912 env->regs[12],
2913 env->regs[13],
2914 env->pregs[7],
2915 env->pregs[11],
2916 0, 0);
2917 if (ret == -TARGET_ERESTARTSYS) {
2918 env->pc -= 2;
2919 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2920 env->regs[10] = ret;
2921 }
2922 break;
2923 case EXCP_DEBUG:
2924 {
2925 int sig;
2926
2927 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2928 if (sig)
2929 {
2930 info.si_signo = sig;
2931 info.si_errno = 0;
2932 info.si_code = TARGET_TRAP_BRKPT;
2933 queue_signal(env, info.si_signo, &info);
2934 }
2935 }
2936 break;
2937 default:
2938 printf ("Unhandled trap: 0x%x\n", trapnr);
2939 cpu_dump_state(cs, stderr, fprintf, 0);
2940 exit(EXIT_FAILURE);
2941 }
2942 process_pending_signals (env);
2943 }
2944 }
2945 #endif
2946
2947 #ifdef TARGET_MICROBLAZE
2948 void cpu_loop(CPUMBState *env)
2949 {
2950 CPUState *cs = CPU(mb_env_get_cpu(env));
2951 int trapnr, ret;
2952 target_siginfo_t info;
2953
2954 while (1) {
2955 cpu_exec_start(cs);
2956 trapnr = cpu_mb_exec(cs);
2957 cpu_exec_end(cs);
2958 switch (trapnr) {
2959 case 0xaa:
2960 {
2961 info.si_signo = TARGET_SIGSEGV;
2962 info.si_errno = 0;
2963 /* XXX: check env->error_code */
2964 info.si_code = TARGET_SEGV_MAPERR;
2965 info._sifields._sigfault._addr = 0;
2966 queue_signal(env, info.si_signo, &info);
2967 }
2968 break;
2969 case EXCP_INTERRUPT:
2970 /* just indicate that signals should be handled asap */
2971 break;
2972 case EXCP_BREAK:
2973 /* Return address is 4 bytes after the call. */
2974 env->regs[14] += 4;
2975 env->sregs[SR_PC] = env->regs[14];
2976 ret = do_syscall(env,
2977 env->regs[12],
2978 env->regs[5],
2979 env->regs[6],
2980 env->regs[7],
2981 env->regs[8],
2982 env->regs[9],
2983 env->regs[10],
2984 0, 0);
2985 if (ret == -TARGET_ERESTARTSYS) {
2986 /* Wind back to before the syscall. */
2987 env->sregs[SR_PC] -= 4;
2988 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
2989 env->regs[3] = ret;
2990 }
2991 /* All syscall exits result in guest r14 being equal to the
2992 * PC we return to, because the kernel syscall exit "rtbd" does
2993 * this. (This is true even for sigreturn(); note that r14 is
2994 * not a userspace-usable register, as the kernel may clobber it
2995 * at any point.)
2996 */
2997 env->regs[14] = env->sregs[SR_PC];
2998 break;
2999 case EXCP_HW_EXCP:
3000 env->regs[17] = env->sregs[SR_PC] + 4;
3001 if (env->iflags & D_FLAG) {
3002 env->sregs[SR_ESR] |= 1 << 12;
3003 env->sregs[SR_PC] -= 4;
3004 /* FIXME: if branch was immed, replay the imm as well. */
3005 }
3006
3007 env->iflags &= ~(IMM_FLAG | D_FLAG);
3008
3009 switch (env->sregs[SR_ESR] & 31) {
3010 case ESR_EC_DIVZERO:
3011 info.si_signo = TARGET_SIGFPE;
3012 info.si_errno = 0;
3013 info.si_code = TARGET_FPE_FLTDIV;
3014 info._sifields._sigfault._addr = 0;
3015 queue_signal(env, info.si_signo, &info);
3016 break;
3017 case ESR_EC_FPU:
3018 info.si_signo = TARGET_SIGFPE;
3019 info.si_errno = 0;
3020 if (env->sregs[SR_FSR] & FSR_IO) {
3021 info.si_code = TARGET_FPE_FLTINV;
3022 }
3023 if (env->sregs[SR_FSR] & FSR_DZ) {
3024 info.si_code = TARGET_FPE_FLTDIV;
3025 }
3026 info._sifields._sigfault._addr = 0;
3027 queue_signal(env, info.si_signo, &info);
3028 break;
3029 default:
3030 printf ("Unhandled hw-exception: 0x%x\n",
3031 env->sregs[SR_ESR] & ESR_EC_MASK);
3032 cpu_dump_state(cs, stderr, fprintf, 0);
3033 exit(EXIT_FAILURE);
3034 break;
3035 }
3036 break;
3037 case EXCP_DEBUG:
3038 {
3039 int sig;
3040
3041 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3042 if (sig)
3043 {
3044 info.si_signo = sig;
3045 info.si_errno = 0;
3046 info.si_code = TARGET_TRAP_BRKPT;
3047 queue_signal(env, info.si_signo, &info);
3048 }
3049 }
3050 break;
3051 default:
3052 printf ("Unhandled trap: 0x%x\n", trapnr);
3053 cpu_dump_state(cs, stderr, fprintf, 0);
3054 exit(EXIT_FAILURE);
3055 }
3056 process_pending_signals (env);
3057 }
3058 }
3059 #endif
3060
3061 #ifdef TARGET_M68K
3062
3063 void cpu_loop(CPUM68KState *env)
3064 {
3065 CPUState *cs = CPU(m68k_env_get_cpu(env));
3066 int trapnr;
3067 unsigned int n;
3068 target_siginfo_t info;
3069 TaskState *ts = cs->opaque;
3070
3071 for(;;) {
3072 cpu_exec_start(cs);
3073 trapnr = cpu_m68k_exec(cs);
3074 cpu_exec_end(cs);
3075 switch(trapnr) {
3076 case EXCP_ILLEGAL:
3077 {
3078 if (ts->sim_syscalls) {
3079 uint16_t nr;
3080 get_user_u16(nr, env->pc + 2);
3081 env->pc += 4;
3082 do_m68k_simcall(env, nr);
3083 } else {
3084 goto do_sigill;
3085 }
3086 }
3087 break;
3088 case EXCP_HALT_INSN:
3089 /* Semihosing syscall. */
3090 env->pc += 4;
3091 do_m68k_semihosting(env, env->dregs[0]);
3092 break;
3093 case EXCP_LINEA:
3094 case EXCP_LINEF:
3095 case EXCP_UNSUPPORTED:
3096 do_sigill:
3097 info.si_signo = TARGET_SIGILL;
3098 info.si_errno = 0;
3099 info.si_code = TARGET_ILL_ILLOPN;
3100 info._sifields._sigfault._addr = env->pc;
3101 queue_signal(env, info.si_signo, &info);
3102 break;
3103 case EXCP_TRAP0:
3104 {
3105 abi_long ret;
3106 ts->sim_syscalls = 0;
3107 n = env->dregs[0];
3108 env->pc += 2;
3109 ret = do_syscall(env,
3110 n,
3111 env->dregs[1],
3112 env->dregs[2],
3113 env->dregs[3],
3114 env->dregs[4],
3115 env->dregs[5],
3116 env->aregs[0],
3117 0, 0);
3118 if (ret == -TARGET_ERESTARTSYS) {
3119 env->pc -= 2;
3120 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
3121 env->dregs[0] = ret;
3122 }
3123 }
3124 break;
3125 case EXCP_INTERRUPT:
3126 /* just indicate that signals should be handled asap */
3127 break;
3128 case EXCP_ACCESS:
3129 {
3130 info.si_signo = TARGET_SIGSEGV;
3131 info.si_errno = 0;
3132 /* XXX: check env->error_code */
3133 info.si_code = TARGET_SEGV_MAPERR;
3134 info._sifields._sigfault._addr = env->mmu.ar;
3135 queue_signal(env, info.si_signo, &info);
3136 }
3137 break;
3138 case EXCP_DEBUG:
3139 {
3140 int sig;
3141
3142 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3143 if (sig)
3144 {
3145 info.si_signo = sig;
3146 info.si_errno = 0;
3147 info.si_code = TARGET_TRAP_BRKPT;
3148 queue_signal(env, info.si_signo, &info);
3149 }
3150 }
3151 break;
3152 default:
3153 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
3154 abort();
3155 }
3156 process_pending_signals(env);
3157 }
3158 }
3159 #endif /* TARGET_M68K */
3160
3161 #ifdef TARGET_ALPHA
3162 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad)
3163 {
3164 target_ulong addr, val, tmp;
3165 target_siginfo_t info;
3166 int ret = 0;
3167
3168 addr = env->lock_addr;
3169 tmp = env->lock_st_addr;
3170 env->lock_addr = -1;
3171 env->lock_st_addr = 0;
3172
3173 start_exclusive();
3174 mmap_lock();
3175
3176 if (addr == tmp) {
3177 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3178 goto do_sigsegv;
3179 }
3180
3181 if (val == env->lock_value) {
3182 tmp = env->ir[reg];
3183 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) {
3184 goto do_sigsegv;
3185 }
3186 ret = 1;
3187 }
3188 }
3189 env->ir[reg] = ret;
3190 env->pc += 4;
3191
3192 mmap_unlock();
3193 end_exclusive();
3194 return;
3195
3196 do_sigsegv:
3197 mmap_unlock();
3198 end_exclusive();
3199
3200 info.si_signo = TARGET_SIGSEGV;
3201 info.si_errno = 0;
3202 info.si_code = TARGET_SEGV_MAPERR;
3203 info._sifields._sigfault._addr = addr;
3204 queue_signal(env, TARGET_SIGSEGV, &info);
3205 }
3206
3207 void cpu_loop(CPUAlphaState *env)
3208 {
3209 CPUState *cs = CPU(alpha_env_get_cpu(env));
3210 int trapnr;
3211 target_siginfo_t info;
3212 abi_long sysret;
3213
3214 while (1) {
3215 cpu_exec_start(cs);
3216 trapnr = cpu_alpha_exec(cs);
3217 cpu_exec_end(cs);
3218
3219 /* All of the traps imply a transition through PALcode, which
3220 implies an REI instruction has been executed. Which means
3221 that the intr_flag should be cleared. */
3222 env->intr_flag = 0;
3223
3224 switch (trapnr) {
3225 case EXCP_RESET:
3226 fprintf(stderr, "Reset requested. Exit\n");
3227 exit(EXIT_FAILURE);
3228 break;
3229 case EXCP_MCHK:
3230 fprintf(stderr, "Machine check exception. Exit\n");
3231 exit(EXIT_FAILURE);
3232 break;
3233 case EXCP_SMP_INTERRUPT:
3234 case EXCP_CLK_INTERRUPT:
3235 case EXCP_DEV_INTERRUPT:
3236 fprintf(stderr, "External interrupt. Exit\n");
3237 exit(EXIT_FAILURE);
3238 break;
3239 case EXCP_MMFAULT:
3240 env->lock_addr = -1;
3241 info.si_signo = TARGET_SIGSEGV;
3242 info.si_errno = 0;
3243 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
3244 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
3245 info._sifields._sigfault._addr = env->trap_arg0;
3246 queue_signal(env, info.si_signo, &info);
3247 break;
3248 case EXCP_UNALIGN:
3249 env->lock_addr = -1;
3250 info.si_signo = TARGET_SIGBUS;
3251 info.si_errno = 0;
3252 info.si_code = TARGET_BUS_ADRALN;
3253 info._sifields._sigfault._addr = env->trap_arg0;
3254 queue_signal(env, info.si_signo, &info);
3255 break;
3256 case EXCP_OPCDEC:
3257 do_sigill:
3258 env->lock_addr = -1;
3259 info.si_signo = TARGET_SIGILL;
3260 info.si_errno = 0;
3261 info.si_code = TARGET_ILL_ILLOPC;
3262 info._sifields._sigfault._addr = env->pc;
3263 queue_signal(env, info.si_signo, &info);
3264 break;
3265 case EXCP_ARITH:
3266 env->lock_addr = -1;
3267 info.si_signo = TARGET_SIGFPE;
3268 info.si_errno = 0;
3269 info.si_code = TARGET_FPE_FLTINV;
3270 info._sifields._sigfault._addr = env->pc;
3271 queue_signal(env, info.si_signo, &info);
3272 break;
3273 case EXCP_FEN:
3274 /* No-op. Linux simply re-enables the FPU. */
3275 break;
3276 case EXCP_CALL_PAL:
3277 env->lock_addr = -1;
3278 switch (env->error_code) {
3279 case 0x80:
3280 /* BPT */
3281 info.si_signo = TARGET_SIGTRAP;
3282 info.si_errno = 0;
3283 info.si_code = TARGET_TRAP_BRKPT;
3284 info._sifields._sigfault._addr = env->pc;
3285 queue_signal(env, info.si_signo, &info);
3286 break;
3287 case 0x81:
3288 /* BUGCHK */
3289 info.si_signo = TARGET_SIGTRAP;
3290 info.si_errno = 0;
3291 info.si_code = 0;
3292 info._sifields._sigfault._addr = env->pc;
3293 queue_signal(env, info.si_signo, &info);
3294 break;
3295 case 0x83:
3296 /* CALLSYS */
3297 trapnr = env->ir[IR_V0];
3298 sysret = do_syscall(env, trapnr,
3299 env->ir[IR_A0], env->ir[IR_A1],
3300 env->ir[IR_A2], env->ir[IR_A3],
3301 env->ir[IR_A4], env->ir[IR_A5],
3302 0, 0);
3303 if (sysret == -TARGET_ERESTARTSYS) {
3304 env->pc -= 4;
3305 break;
3306 }
3307 if (sysret == -TARGET_QEMU_ESIGRETURN) {
3308 break;
3309 }
3310 /* Syscall writes 0 to V0 to bypass error check, similar
3311 to how this is handled internal to Linux kernel.
3312 (Ab)use trapnr temporarily as boolean indicating error. */
3313 trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
3314 env->ir[IR_V0] = (trapnr ? -sysret : sysret);
3315 env->ir[IR_A3] = trapnr;
3316 break;
3317 case 0x86:
3318 /* IMB */
3319 /* ??? We can probably elide the code using page_unprotect
3320 that is checking for self-modifying code. Instead we
3321 could simply call tb_flush here. Until we work out the
3322 changes required to turn off the extra write protection,
3323 this can be a no-op. */
3324 break;
3325 case 0x9E:
3326 /* RDUNIQUE */
3327 /* Handled in the translator for usermode. */
3328 abort();
3329 case 0x9F:
3330 /* WRUNIQUE */
3331 /* Handled in the translator for usermode. */
3332 abort();
3333 case 0xAA:
3334 /* GENTRAP */
3335 info.si_signo = TARGET_SIGFPE;
3336 switch (env->ir[IR_A0]) {
3337 case TARGET_GEN_INTOVF:
3338 info.si_code = TARGET_FPE_INTOVF;
3339 break;
3340 case TARGET_GEN_INTDIV:
3341 info.si_code = TARGET_FPE_INTDIV;
3342 break;
3343 case TARGET_GEN_FLTOVF:
3344 info.si_code = TARGET_FPE_FLTOVF;
3345 break;
3346 case TARGET_GEN_FLTUND:
3347 info.si_code = TARGET_FPE_FLTUND;
3348 break;
3349 case TARGET_GEN_FLTINV:
3350 info.si_code = TARGET_FPE_FLTINV;
3351 break;
3352 case TARGET_GEN_FLTINE:
3353 info.si_code = TARGET_FPE_FLTRES;
3354 break;
3355 case TARGET_GEN_ROPRAND:
3356 info.si_code = 0;
3357 break;
3358 default:
3359 info.si_signo = TARGET_SIGTRAP;
3360 info.si_code = 0;
3361 break;
3362 }
3363 info.si_errno = 0;
3364 info._sifields._sigfault._addr = env->pc;
3365 queue_signal(env, info.si_signo, &info);
3366 break;
3367 default:
3368 goto do_sigill;
3369 }
3370 break;
3371 case EXCP_DEBUG:
3372 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP);
3373 if (info.si_signo) {
3374 env->lock_addr = -1;
3375 info.si_errno = 0;
3376 info.si_code = TARGET_TRAP_BRKPT;
3377 queue_signal(env, info.si_signo, &info);
3378 }
3379 break;
3380 case EXCP_STL_C:
3381 case EXCP_STQ_C:
3382 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C);
3383 break;
3384 case EXCP_INTERRUPT:
3385 /* Just indicate that signals should be handled asap. */
3386 break;
3387 default:
3388 printf ("Unhandled trap: 0x%x\n", trapnr);
3389 cpu_dump_state(cs, stderr, fprintf, 0);
3390 exit(EXIT_FAILURE);
3391 }
3392 process_pending_signals (env);
3393 }
3394 }
3395 #endif /* TARGET_ALPHA */
3396
3397 #ifdef TARGET_S390X
3398 void cpu_loop(CPUS390XState *env)
3399 {
3400 CPUState *cs = CPU(s390_env_get_cpu(env));
3401 int trapnr, n, sig;
3402 target_siginfo_t info;
3403 target_ulong addr;
3404 abi_long ret;
3405
3406 while (1) {
3407 cpu_exec_start(cs);
3408 trapnr = cpu_s390x_exec(cs);
3409 cpu_exec_end(cs);
3410 switch (trapnr) {
3411 case EXCP_INTERRUPT:
3412 /* Just indicate that signals should be handled asap. */
3413 break;
3414
3415 case EXCP_SVC:
3416 n = env->int_svc_code;
3417 if (!n) {
3418 /* syscalls > 255 */
3419 n = env->regs[1];
3420 }
3421 env->psw.addr += env->int_svc_ilen;
3422 ret = do_syscall(env, n, env->regs[2], env->regs[3],
3423 env->regs[4], env->regs[5],
3424 env->regs[6], env->regs[7], 0, 0);
3425 if (ret == -TARGET_ERESTARTSYS) {
3426 env->psw.addr -= env->int_svc_ilen;
3427 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
3428 env->regs[2] = ret;
3429 }
3430 break;
3431
3432 case EXCP_DEBUG:
3433 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3434 if (sig) {
3435 n = TARGET_TRAP_BRKPT;
3436 goto do_signal_pc;
3437 }
3438 break;
3439 case EXCP_PGM:
3440 n = env->int_pgm_code;
3441 switch (n) {
3442 case PGM_OPERATION:
3443 case PGM_PRIVILEGED:
3444 sig = TARGET_SIGILL;
3445 n = TARGET_ILL_ILLOPC;
3446 goto do_signal_pc;
3447 case PGM_PROTECTION:
3448 case PGM_ADDRESSING:
3449 sig = TARGET_SIGSEGV;
3450 /* XXX: check env->error_code */
3451 n = TARGET_SEGV_MAPERR;
3452 addr = env->__excp_addr;
3453 goto do_signal;
3454 case PGM_EXECUTE:
3455 case PGM_SPECIFICATION:
3456 case PGM_SPECIAL_OP:
3457 case PGM_OPERAND:
3458 do_sigill_opn:
3459 sig = TARGET_SIGILL;
3460 n = TARGET_ILL_ILLOPN;
3461 goto do_signal_pc;
3462
3463 case PGM_FIXPT_OVERFLOW:
3464 sig = TARGET_SIGFPE;
3465 n = TARGET_FPE_INTOVF;
3466 goto do_signal_pc;
3467 case PGM_FIXPT_DIVIDE:
3468 sig = TARGET_SIGFPE;
3469 n = TARGET_FPE_INTDIV;
3470 goto do_signal_pc;
3471
3472 case PGM_DATA:
3473 n = (env->fpc >> 8) & 0xff;
3474 if (n == 0xff) {
3475 /* compare-and-trap */
3476 goto do_sigill_opn;
3477 } else {
3478 /* An IEEE exception, simulated or otherwise. */
3479 if (n & 0x80) {
3480 n = TARGET_FPE_FLTINV;
3481 } else if (n & 0x40) {
3482 n = TARGET_FPE_FLTDIV;
3483 } else if (n & 0x20) {
3484 n = TARGET_FPE_FLTOVF;
3485 } else if (n & 0x10) {
3486 n = TARGET_FPE_FLTUND;
3487 } else if (n & 0x08) {
3488 n = TARGET_FPE_FLTRES;
3489 } else {
3490 /* ??? Quantum exception; BFP, DFP error. */
3491 goto do_sigill_opn;
3492 }
3493 sig = TARGET_SIGFPE;
3494 goto do_signal_pc;
3495 }
3496
3497 default:
3498 fprintf(stderr, "Unhandled program exception: %#x\n", n);
3499 cpu_dump_state(cs, stderr, fprintf, 0);
3500 exit(EXIT_FAILURE);
3501 }
3502 break;
3503
3504 do_signal_pc:
3505 addr = env->psw.addr;
3506 do_signal:
3507 info.si_signo = sig;
3508 info.si_errno = 0;
3509 info.si_code = n;
3510 info._sifields._sigfault._addr = addr;
3511 queue_signal(env, info.si_signo, &info);
3512 break;
3513
3514 default:
3515 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
3516 cpu_dump_state(cs, stderr, fprintf, 0);
3517 exit(EXIT_FAILURE);
3518 }
3519 process_pending_signals (env);
3520 }
3521 }
3522
3523 #endif /* TARGET_S390X */
3524
3525 #ifdef TARGET_TILEGX
3526
3527 static void gen_sigill_reg(CPUTLGState *env)
3528 {
3529 target_siginfo_t info;
3530
3531 info.si_signo = TARGET_SIGILL;
3532 info.si_errno = 0;
3533 info.si_code = TARGET_ILL_PRVREG;
3534 info._sifields._sigfault._addr = env->pc;
3535 queue_signal(env, info.si_signo, &info);
3536 }
3537
3538 static void do_signal(CPUTLGState *env, int signo, int sigcode)
3539 {
3540 target_siginfo_t info;
3541
3542 info.si_signo = signo;
3543 info.si_errno = 0;
3544 info._sifields._sigfault._addr = env->pc;
3545
3546 if (signo == TARGET_SIGSEGV) {
3547 /* The passed in sigcode is a dummy; check for a page mapping
3548 and pass either MAPERR or ACCERR. */
3549 target_ulong addr = env->excaddr;
3550 info._sifields._sigfault._addr = addr;
3551 if (page_check_range(addr, 1, PAGE_VALID) < 0) {
3552 sigcode = TARGET_SEGV_MAPERR;
3553 } else {
3554 sigcode = TARGET_SEGV_ACCERR;
3555 }
3556 }
3557 info.si_code = sigcode;
3558
3559 queue_signal(env, info.si_signo, &info);
3560 }
3561
3562 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr)
3563 {
3564 env->excaddr = addr;
3565 do_signal(env, TARGET_SIGSEGV, 0);
3566 }
3567
3568 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val)
3569 {
3570 if (unlikely(reg >= TILEGX_R_COUNT)) {
3571 switch (reg) {
3572 case TILEGX_R_SN:
3573 case TILEGX_R_ZERO:
3574 return;
3575 case TILEGX_R_IDN0:
3576 case TILEGX_R_IDN1:
3577 case TILEGX_R_UDN0:
3578 case TILEGX_R_UDN1:
3579 case TILEGX_R_UDN2:
3580 case TILEGX_R_UDN3:
3581 gen_sigill_reg(env);
3582 return;
3583 default:
3584 g_assert_not_reached();
3585 }
3586 }
3587 env->regs[reg] = val;
3588 }
3589
3590 /*
3591 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in
3592 * memory at the address held in the first source register. If the values are
3593 * not equal, then no memory operation is performed. If the values are equal,
3594 * the 8-byte quantity from the second source register is written into memory
3595 * at the address held in the first source register. In either case, the result
3596 * of the instruction is the value read from memory. The compare and write to
3597 * memory are atomic and thus can be used for synchronization purposes. This
3598 * instruction only operates for addresses aligned to a 8-byte boundary.
3599 * Unaligned memory access causes an Unaligned Data Reference interrupt.
3600 *
3601 * Functional Description (64-bit)
3602 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
3603 * rf[Dest] = memVal;
3604 * if (memVal == SPR[CmpValueSPR])
3605 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
3606 *
3607 * Functional Description (32-bit)
3608 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
3609 * rf[Dest] = memVal;
3610 * if (memVal == signExtend32 (SPR[CmpValueSPR]))
3611 * memoryWriteWord (rf[SrcA], rf[SrcB]);
3612 *
3613 *
3614 * This function also processes exch and exch4 which need not process SPR.
3615 */
3616 static void do_exch(CPUTLGState *env, bool quad, bool cmp)
3617 {
3618 target_ulong addr;
3619 target_long val, sprval;
3620
3621 start_exclusive();
3622
3623 addr = env->atomic_srca;
3624 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3625 goto sigsegv_maperr;
3626 }
3627
3628 if (cmp) {
3629 if (quad) {
3630 sprval = env->spregs[TILEGX_SPR_CMPEXCH];
3631 } else {
3632 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32);
3633 }
3634 }
3635
3636 if (!cmp || val == sprval) {
3637 target_long valb = env->atomic_srcb;
3638 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
3639 goto sigsegv_maperr;
3640 }
3641 }
3642
3643 set_regval(env, env->atomic_dstr, val);
3644 end_exclusive();
3645 return;
3646
3647 sigsegv_maperr:
3648 end_exclusive();
3649 gen_sigsegv_maperr(env, addr);
3650 }
3651
3652 static void do_fetch(CPUTLGState *env, int trapnr, bool quad)
3653 {
3654 int8_t write = 1;
3655 target_ulong addr;
3656 target_long val, valb;
3657
3658 start_exclusive();
3659
3660 addr = env->atomic_srca;
3661 valb = env->atomic_srcb;
3662 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3663 goto sigsegv_maperr;
3664 }
3665
3666 switch (trapnr) {
3667 case TILEGX_EXCP_OPCODE_FETCHADD:
3668 case TILEGX_EXCP_OPCODE_FETCHADD4:
3669 valb += val;
3670 break;
3671 case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
3672 valb += val;
3673 if (valb < 0) {
3674 write = 0;
3675 }
3676 break;
3677 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
3678 valb += val;
3679 if ((int32_t)valb < 0) {
3680 write = 0;
3681 }
3682 break;
3683 case TILEGX_EXCP_OPCODE_FETCHAND:
3684 case TILEGX_EXCP_OPCODE_FETCHAND4:
3685 valb &= val;
3686 break;
3687 case TILEGX_EXCP_OPCODE_FETCHOR:
3688 case TILEGX_EXCP_OPCODE_FETCHOR4:
3689 valb |= val;
3690 break;
3691 default:
3692 g_assert_not_reached();
3693 }
3694
3695 if (write) {
3696 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
3697 goto sigsegv_maperr;
3698 }
3699 }
3700
3701 set_regval(env, env->atomic_dstr, val);
3702 end_exclusive();
3703 return;
3704
3705 sigsegv_maperr:
3706 end_exclusive();
3707 gen_sigsegv_maperr(env, addr);
3708 }
3709
3710 void cpu_loop(CPUTLGState *env)
3711 {
3712 CPUState *cs = CPU(tilegx_env_get_cpu(env));
3713 int trapnr;
3714
3715 while (1) {
3716 cpu_exec_start(cs);
3717 trapnr = cpu_tilegx_exec(cs);
3718 cpu_exec_end(cs);
3719 switch (trapnr) {
3720 case TILEGX_EXCP_SYSCALL:
3721 {
3722 abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR],
3723 env->regs[0], env->regs[1],
3724 env->regs[2], env->regs[3],
3725 env->regs[4], env->regs[5],
3726 env->regs[6], env->regs[7]);
3727 if (ret == -TARGET_ERESTARTSYS) {
3728 env->pc -= 8;
3729 } else if (ret != -TARGET_QEMU_ESIGRETURN) {
3730 env->regs[TILEGX_R_RE] = ret;
3731 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0;
3732 }
3733 break;
3734 }
3735 case TILEGX_EXCP_OPCODE_EXCH:
3736 do_exch(env, true, false);
3737 break;
3738 case TILEGX_EXCP_OPCODE_EXCH4:
3739 do_exch(env, false, false);
3740 break;
3741 case TILEGX_EXCP_OPCODE_CMPEXCH:
3742 do_exch(env, true, true);
3743 break;
3744 case TILEGX_EXCP_OPCODE_CMPEXCH4:
3745 do_exch(env, false, true);
3746 break;
3747 case TILEGX_EXCP_OPCODE_FETCHADD:
3748 case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
3749 case TILEGX_EXCP_OPCODE_FETCHAND:
3750 case TILEGX_EXCP_OPCODE_FETCHOR:
3751 do_fetch(env, trapnr, true);
3752 break;
3753 case TILEGX_EXCP_OPCODE_FETCHADD4:
3754 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
3755 case TILEGX_EXCP_OPCODE_FETCHAND4:
3756 case TILEGX_EXCP_OPCODE_FETCHOR4:
3757 do_fetch(env, trapnr, false);
3758 break;
3759 case TILEGX_EXCP_SIGNAL:
3760 do_signal(env, env->signo, env->sigcode);
3761 break;
3762 case TILEGX_EXCP_REG_IDN_ACCESS:
3763 case TILEGX_EXCP_REG_UDN_ACCESS:
3764 gen_sigill_reg(env);
3765 break;
3766 default:
3767 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr);
3768 g_assert_not_reached();
3769 }
3770 process_pending_signals(env);
3771 }
3772 }
3773
3774 #endif
3775
3776 THREAD CPUState *thread_cpu;
3777
3778 void task_settid(TaskState *ts)
3779 {
3780 if (ts->ts_tid == 0) {
3781 ts->ts_tid = (pid_t)syscall(SYS_gettid);
3782 }
3783 }
3784
3785 void stop_all_tasks(void)
3786 {
3787 /*
3788 * We trust that when using NPTL, start_exclusive()
3789 * handles thread stopping correctly.
3790 */
3791 start_exclusive();
3792 }
3793
3794 /* Assumes contents are already zeroed. */
3795 void init_task_state(TaskState *ts)
3796 {
3797 ts->used = 1;
3798 }
3799
3800 CPUArchState *cpu_copy(CPUArchState *env)
3801 {
3802 CPUState *cpu = ENV_GET_CPU(env);
3803 CPUState *new_cpu = cpu_init(cpu_model);
3804 CPUArchState *new_env = new_cpu->env_ptr;
3805 CPUBreakpoint *bp;
3806 CPUWatchpoint *wp;
3807
3808 /* Reset non arch specific state */
3809 cpu_reset(new_cpu);
3810
3811 memcpy(new_env, env, sizeof(CPUArchState));
3812
3813 /* Clone all break/watchpoints.
3814 Note: Once we support ptrace with hw-debug register access, make sure
3815 BP_CPU break/watchpoints are handled correctly on clone. */
3816 QTAILQ_INIT(&new_cpu->breakpoints);
3817 QTAILQ_INIT(&new_cpu->watchpoints);
3818 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
3819 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL);
3820 }
3821 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
3822 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL);
3823 }
3824
3825 return new_env;
3826 }
3827
3828 static void handle_arg_help(const char *arg)
3829 {
3830 usage(EXIT_SUCCESS);
3831 }
3832
3833 static void handle_arg_log(const char *arg)
3834 {
3835 int mask;
3836
3837 mask = qemu_str_to_log_mask(arg);
3838 if (!mask) {
3839 qemu_print_log_usage(stdout);
3840 exit(EXIT_FAILURE);
3841 }
3842 qemu_log_needs_buffers();
3843 qemu_set_log(mask);
3844 }
3845
3846 static void handle_arg_log_filename(const char *arg)
3847 {
3848 qemu_set_log_filename(arg);
3849 }
3850
3851 static void handle_arg_set_env(const char *arg)
3852 {
3853 char *r, *p, *token;
3854 r = p = strdup(arg);
3855 while ((token = strsep(&p, ",")) != NULL) {
3856 if (envlist_setenv(envlist, token) != 0) {
3857 usage(EXIT_FAILURE);
3858 }
3859 }
3860 free(r);
3861 }
3862
3863 static void handle_arg_unset_env(const char *arg)
3864 {
3865 char *r, *p, *token;
3866 r = p = strdup(arg);
3867 while ((token = strsep(&p, ",")) != NULL) {
3868 if (envlist_unsetenv(envlist, token) != 0) {
3869 usage(EXIT_FAILURE);
3870 }
3871 }
3872 free(r);
3873 }
3874
3875 static void handle_arg_argv0(const char *arg)
3876 {
3877 argv0 = strdup(arg);
3878 }
3879
3880 static void handle_arg_stack_size(const char *arg)
3881 {
3882 char *p;
3883 guest_stack_size = strtoul(arg, &p, 0);
3884 if (guest_stack_size == 0) {
3885 usage(EXIT_FAILURE);
3886 }
3887
3888 if (*p == 'M') {
3889 guest_stack_size *= 1024 * 1024;
3890 } else if (*p == 'k' || *p == 'K') {
3891 guest_stack_size *= 1024;
3892 }
3893 }
3894
3895 static void handle_arg_ld_prefix(const char *arg)
3896 {
3897 interp_prefix = strdup(arg);
3898 }
3899
3900 static void handle_arg_pagesize(const char *arg)
3901 {
3902 qemu_host_page_size = atoi(arg);
3903 if (qemu_host_page_size == 0 ||
3904 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3905 fprintf(stderr, "page size must be a power of two\n");
3906 exit(EXIT_FAILURE);
3907 }
3908 }
3909
3910 static void handle_arg_randseed(const char *arg)
3911 {
3912 unsigned long long seed;
3913
3914 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) {
3915 fprintf(stderr, "Invalid seed number: %s\n", arg);
3916 exit(EXIT_FAILURE);
3917 }
3918 srand(seed);
3919 }
3920
3921 static void handle_arg_gdb(const char *arg)
3922 {
3923 gdbstub_port = atoi(arg);
3924 }
3925
3926 static void handle_arg_uname(const char *arg)
3927 {
3928 qemu_uname_release = strdup(arg);
3929 }
3930
3931 static void handle_arg_cpu(const char *arg)
3932 {
3933 cpu_model = strdup(arg);
3934 if (cpu_model == NULL || is_help_option(cpu_model)) {
3935 /* XXX: implement xxx_cpu_list for targets that still miss it */
3936 #if defined(cpu_list)
3937 cpu_list(stdout, &fprintf);
3938 #endif
3939 exit(EXIT_FAILURE);
3940 }
3941 }
3942
3943 static void handle_arg_guest_base(const char *arg)
3944 {
3945 guest_base = strtol(arg, NULL, 0);
3946 have_guest_base = 1;
3947 }
3948
3949 static void handle_arg_reserved_va(const char *arg)
3950 {
3951 char *p;
3952 int shift = 0;
3953 reserved_va = strtoul(arg, &p, 0);
3954 switch (*p) {
3955 case 'k':
3956 case 'K':
3957 shift = 10;
3958 break;
3959 case 'M':
3960 shift = 20;
3961 break;
3962 case 'G':
3963 shift = 30;
3964 break;
3965 }
3966 if (shift) {
3967 unsigned long unshifted = reserved_va;
3968 p++;
3969 reserved_va <<= shift;
3970 if (((reserved_va >> shift) != unshifted)
3971 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3972 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3973 #endif
3974 ) {
3975 fprintf(stderr, "Reserved virtual address too big\n");
3976 exit(EXIT_FAILURE);
3977 }
3978 }
3979 if (*p) {
3980 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3981 exit(EXIT_FAILURE);
3982 }
3983 }
3984
3985 static void handle_arg_singlestep(const char *arg)
3986 {
3987 singlestep = 1;
3988 }
3989
3990 static void handle_arg_strace(const char *arg)
3991 {
3992 do_strace = 1;
3993 }
3994
3995 static void handle_arg_version(const char *arg)
3996 {
3997 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
3998 ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3999 exit(EXIT_SUCCESS);
4000 }
4001
4002 struct qemu_argument {
4003 const char *argv;
4004 const char *env;
4005 bool has_arg;
4006 void (*handle_opt)(const char *arg);
4007 const char *example;
4008 const char *help;
4009 };
4010
4011 static const struct qemu_argument arg_table[] = {
4012 {"h", "", false, handle_arg_help,
4013 "", "print this help"},
4014 {"help", "", false, handle_arg_help,
4015 "", ""},
4016 {"g", "QEMU_GDB", true, handle_arg_gdb,
4017 "port", "wait gdb connection to 'port'"},
4018 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix,
4019 "path", "set the elf interpreter prefix to 'path'"},
4020 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size,
4021 "size", "set the stack size to 'size' bytes"},
4022 {"cpu", "QEMU_CPU", true, handle_arg_cpu,
4023 "model", "select CPU (-cpu help for list)"},
4024 {"E", "QEMU_SET_ENV", true, handle_arg_set_env,
4025 "var=value", "sets targets environment variable (see below)"},
4026 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env,
4027 "var", "unsets targets environment variable (see below)"},
4028 {"0", "QEMU_ARGV0", true, handle_arg_argv0,
4029 "argv0", "forces target process argv[0] to be 'argv0'"},
4030 {"r", "QEMU_UNAME", true, handle_arg_uname,
4031 "uname", "set qemu uname release string to 'uname'"},
4032 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base,
4033 "address", "set guest_base address to 'address'"},
4034 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va,
4035 "size", "reserve 'size' bytes for guest virtual address space"},
4036 {"d", "QEMU_LOG", true, handle_arg_log,
4037 "item[,...]", "enable logging of specified items "
4038 "(use '-d help' for a list of items)"},
4039 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
4040 "logfile", "write logs to 'logfile' (default stderr)"},
4041 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize,
4042 "pagesize", "set the host page size to 'pagesize'"},
4043 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep,
4044 "", "run in singlestep mode"},
4045 {"strace", "QEMU_STRACE", false, handle_arg_strace,
4046 "", "log system calls"},
4047 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed,
4048 "", "Seed for pseudo-random number generator"},
4049 {"version", "QEMU_VERSION", false, handle_arg_version,
4050 "", "display version information and exit"},
4051 {NULL, NULL, false, NULL, NULL, NULL}
4052 };
4053
4054 static void usage(int exitcode)
4055 {
4056 const struct qemu_argument *arginfo;
4057 int maxarglen;
4058 int maxenvlen;
4059
4060 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
4061 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n"
4062 "\n"
4063 "Options and associated environment variables:\n"
4064 "\n");
4065
4066 /* Calculate column widths. We must always have at least enough space
4067 * for the column header.
4068 */
4069 maxarglen = strlen("Argument");
4070 maxenvlen = strlen("Env-variable");
4071
4072 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4073 int arglen = strlen(arginfo->argv);
4074 if (arginfo->has_arg) {
4075 arglen += strlen(arginfo->example) + 1;
4076 }
4077 if (strlen(arginfo->env) > maxenvlen) {
4078 maxenvlen = strlen(arginfo->env);
4079 }
4080 if (arglen > maxarglen) {
4081 maxarglen = arglen;
4082 }
4083 }
4084
4085 printf("%-*s %-*s Description\n", maxarglen+1, "Argument",
4086 maxenvlen, "Env-variable");
4087
4088 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4089 if (arginfo->has_arg) {
4090 printf("-%s %-*s %-*s %s\n", arginfo->argv,
4091 (int)(maxarglen - strlen(arginfo->argv) - 1),
4092 arginfo->example, maxenvlen, arginfo->env, arginfo->help);
4093 } else {
4094 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv,
4095 maxenvlen, arginfo->env,
4096 arginfo->help);
4097 }
4098 }
4099
4100 printf("\n"
4101 "Defaults:\n"
4102 "QEMU_LD_PREFIX = %s\n"
4103 "QEMU_STACK_SIZE = %ld byte\n",
4104 interp_prefix,
4105 guest_stack_size);
4106
4107 printf("\n"
4108 "You can use -E and -U options or the QEMU_SET_ENV and\n"
4109 "QEMU_UNSET_ENV environment variables to set and unset\n"
4110 "environment variables for the target process.\n"
4111 "It is possible to provide several variables by separating them\n"
4112 "by commas in getsubopt(3) style. Additionally it is possible to\n"
4113 "provide the -E and -U options multiple times.\n"
4114 "The following lines are equivalent:\n"
4115 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
4116 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
4117 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
4118 "Note that if you provide several changes to a single variable\n"
4119 "the last change will stay in effect.\n");
4120
4121 exit(exitcode);
4122 }
4123
4124 static int parse_args(int argc, char **argv)
4125 {
4126 const char *r;
4127 int optind;
4128 const struct qemu_argument *arginfo;
4129
4130 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4131 if (arginfo->env == NULL) {
4132 continue;
4133 }
4134
4135 r = getenv(arginfo->env);
4136 if (r != NULL) {
4137 arginfo->handle_opt(r);
4138 }
4139 }
4140
4141 optind = 1;
4142 for (;;) {
4143 if (optind >= argc) {
4144 break;
4145 }
4146 r = argv[optind];
4147 if (r[0] != '-') {
4148 break;
4149 }
4150 optind++;
4151 r++;
4152 if (!strcmp(r, "-")) {
4153 break;
4154 }
4155 /* Treat --foo the same as -foo. */
4156 if (r[0] == '-') {
4157 r++;
4158 }
4159
4160 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
4161 if (!strcmp(r, arginfo->argv)) {
4162 if (arginfo->has_arg) {
4163 if (optind >= argc) {
4164 (void) fprintf(stderr,
4165 "qemu: missing argument for option '%s'\n", r);
4166 exit(EXIT_FAILURE);
4167 }
4168 arginfo->handle_opt(argv[optind]);
4169 optind++;
4170 } else {
4171 arginfo->handle_opt(NULL);
4172 }
4173 break;
4174 }
4175 }
4176
4177 /* no option matched the current argv */
4178 if (arginfo->handle_opt == NULL) {
4179 (void) fprintf(stderr, "qemu: unknown option '%s'\n", r);
4180 exit(EXIT_FAILURE);
4181 }
4182 }
4183
4184 if (optind >= argc) {
4185 (void) fprintf(stderr, "qemu: no user program specified\n");
4186 exit(EXIT_FAILURE);
4187 }
4188
4189 filename = argv[optind];
4190 exec_path = argv[optind];
4191
4192 return optind;
4193 }
4194
4195 int main(int argc, char **argv, char **envp)
4196 {
4197 struct target_pt_regs regs1, *regs = &regs1;
4198 struct image_info info1, *info = &info1;
4199 struct linux_binprm bprm;
4200 TaskState *ts;
4201 CPUArchState *env;
4202 CPUState *cpu;
4203 int optind;
4204 char **target_environ, **wrk;
4205 char **target_argv;
4206 int target_argc;
4207 int i;
4208 int ret;
4209 int execfd;
4210
4211 module_call_init(MODULE_INIT_QOM);
4212
4213 if ((envlist = envlist_create()) == NULL) {
4214 (void) fprintf(stderr, "Unable to allocate envlist\n");
4215 exit(EXIT_FAILURE);
4216 }
4217
4218 /* add current environment into the list */
4219 for (wrk = environ; *wrk != NULL; wrk++) {
4220 (void) envlist_setenv(envlist, *wrk);
4221 }
4222
4223 /* Read the stack limit from the kernel. If it's "unlimited",
4224 then we can do little else besides use the default. */
4225 {
4226 struct rlimit lim;
4227 if (getrlimit(RLIMIT_STACK, &lim) == 0
4228 && lim.rlim_cur != RLIM_INFINITY
4229 && lim.rlim_cur == (target_long)lim.rlim_cur) {
4230 guest_stack_size = lim.rlim_cur;
4231 }
4232 }
4233
4234 cpu_model = NULL;
4235
4236 srand(time(NULL));
4237
4238 optind = parse_args(argc, argv);
4239
4240 /* Zero out regs */
4241 memset(regs, 0, sizeof(struct target_pt_regs));
4242
4243 /* Zero out image_info */
4244 memset(info, 0, sizeof(struct image_info));
4245
4246 memset(&bprm, 0, sizeof (bprm));
4247
4248 /* Scan interp_prefix dir for replacement files. */
4249 init_paths(interp_prefix);
4250
4251 init_qemu_uname_release();
4252
4253 if (cpu_model == NULL) {
4254 #if defined(TARGET_I386)
4255 #ifdef TARGET_X86_64
4256 cpu_model = "qemu64";
4257 #else
4258 cpu_model = "qemu32";
4259 #endif
4260 #elif defined(TARGET_ARM)
4261 cpu_model = "any";
4262 #elif defined(TARGET_UNICORE32)
4263 cpu_model = "any";
4264 #elif defined(TARGET_M68K)
4265 cpu_model = "any";
4266 #elif defined(TARGET_SPARC)
4267 #ifdef TARGET_SPARC64
4268 cpu_model = "TI UltraSparc II";
4269 #else
4270 cpu_model = "Fujitsu MB86904";
4271 #endif
4272 #elif defined(TARGET_MIPS)
4273 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
4274 cpu_model = "5KEf";
4275 #else
4276 cpu_model = "24Kf";
4277 #endif
4278 #elif defined TARGET_OPENRISC
4279 cpu_model = "or1200";
4280 #elif defined(TARGET_PPC)
4281 # ifdef TARGET_PPC64
4282 cpu_model = "POWER8";
4283 # else
4284 cpu_model = "750";
4285 # endif
4286 #elif defined TARGET_SH4
4287 cpu_model = TYPE_SH7785_CPU;
4288 #else
4289 cpu_model = "any";
4290 #endif
4291 }
4292 tcg_exec_init(0);
4293 /* NOTE: we need to init the CPU at this stage to get
4294 qemu_host_page_size */
4295 cpu = cpu_init(cpu_model);
4296 if (!cpu) {
4297 fprintf(stderr, "Unable to find CPU definition\n");
4298 exit(EXIT_FAILURE);
4299 }
4300 env = cpu->env_ptr;
4301 cpu_reset(cpu);
4302
4303 thread_cpu = cpu;
4304
4305 if (getenv("QEMU_STRACE")) {
4306 do_strace = 1;
4307 }
4308
4309 if (getenv("QEMU_RAND_SEED")) {
4310 handle_arg_randseed(getenv("QEMU_RAND_SEED"));
4311 }
4312
4313 target_environ = envlist_to_environ(envlist, NULL);
4314 envlist_free(envlist);
4315
4316 /*
4317 * Now that page sizes are configured in cpu_init() we can do
4318 * proper page alignment for guest_base.
4319 */
4320 guest_base = HOST_PAGE_ALIGN(guest_base);
4321
4322 if (reserved_va || have_guest_base) {
4323 guest_base = init_guest_space(guest_base, reserved_va, 0,
4324 have_guest_base);
4325 if (guest_base == (unsigned long)-1) {
4326 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
4327 "space for use as guest address space (check your virtual "
4328 "memory ulimit setting or reserve less using -R option)\n",
4329 reserved_va);
4330 exit(EXIT_FAILURE);
4331 }
4332
4333 if (reserved_va) {
4334 mmap_next_start = reserved_va;
4335 }
4336 }
4337
4338 /*
4339 * Read in mmap_min_addr kernel parameter. This value is used
4340 * When loading the ELF image to determine whether guest_base
4341 * is needed. It is also used in mmap_find_vma.
4342 */
4343 {
4344 FILE *fp;
4345
4346 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
4347 unsigned long tmp;
4348 if (fscanf(fp, "%lu", &tmp) == 1) {
4349 mmap_min_addr = tmp;
4350 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
4351 }
4352 fclose(fp);
4353 }
4354 }
4355
4356 /*
4357 * Prepare copy of argv vector for target.
4358 */
4359 target_argc = argc - optind;
4360 target_argv = calloc(target_argc + 1, sizeof (char *));
4361 if (target_argv == NULL) {
4362 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
4363 exit(EXIT_FAILURE);
4364 }
4365
4366 /*
4367 * If argv0 is specified (using '-0' switch) we replace
4368 * argv[0] pointer with the given one.
4369 */
4370 i = 0;
4371 if (argv0 != NULL) {
4372 target_argv[i++] = strdup(argv0);
4373 }
4374 for (; i < target_argc; i++) {
4375 target_argv[i] = strdup(argv[optind + i]);
4376 }
4377 target_argv[target_argc] = NULL;
4378
4379 ts = g_new0(TaskState, 1);
4380 init_task_state(ts);
4381 /* build Task State */
4382 ts->info = info;
4383 ts->bprm = &bprm;
4384 cpu->opaque = ts;
4385 task_settid(ts);
4386
4387 execfd = qemu_getauxval(AT_EXECFD);
4388 if (execfd == 0) {
4389 execfd = open(filename, O_RDONLY);
4390 if (execfd < 0) {
4391 printf("Error while loading %s: %s\n", filename, strerror(errno));
4392 _exit(EXIT_FAILURE);
4393 }
4394 }
4395
4396 ret = loader_exec(execfd, filename, target_argv, target_environ, regs,
4397 info, &bprm);
4398 if (ret != 0) {
4399 printf("Error while loading %s: %s\n", filename, strerror(-ret));
4400 _exit(EXIT_FAILURE);
4401 }
4402
4403 for (wrk = target_environ; *wrk; wrk++) {
4404 free(*wrk);
4405 }
4406
4407 free(target_environ);
4408
4409 if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
4410 qemu_log("guest_base 0x%lx\n", guest_base);
4411 log_page_dump();
4412
4413 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
4414 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
4415 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n",
4416 info->start_code);
4417 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n",
4418 info->start_data);
4419 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
4420 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
4421 info->start_stack);
4422 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
4423 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
4424 }
4425
4426 target_set_brk(info->brk);
4427 syscall_init();
4428 signal_init();
4429
4430 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4431 generating the prologue until now so that the prologue can take
4432 the real value of GUEST_BASE into account. */
4433 tcg_prologue_init(&tcg_ctx);
4434
4435 #if defined(TARGET_I386)
4436 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
4437 env->hflags |= HF_PE_MASK | HF_CPL_MASK;
4438 if (env->features[FEAT_1_EDX] & CPUID_SSE) {
4439 env->cr[4] |= CR4_OSFXSR_MASK;
4440 env->hflags |= HF_OSFXSR_MASK;
4441 }
4442 #ifndef TARGET_ABI32
4443 /* enable 64 bit mode if possible */
4444 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
4445 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
4446 exit(EXIT_FAILURE);
4447 }
4448 env->cr[4] |= CR4_PAE_MASK;
4449 env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
4450 env->hflags |= HF_LMA_MASK;
4451 #endif
4452
4453 /* flags setup : we activate the IRQs by default as in user mode */
4454 env->eflags |= IF_MASK;
4455
4456 /* linux register setup */
4457 #ifndef TARGET_ABI32
4458 env->regs[R_EAX] = regs->rax;
4459 env->regs[R_EBX] = regs->rbx;
4460 env->regs[R_ECX] = regs->rcx;
4461 env->regs[R_EDX] = regs->rdx;
4462 env->regs[R_ESI] = regs->rsi;
4463 env->regs[R_EDI] = regs->rdi;
4464 env->regs[R_EBP] = regs->rbp;
4465 env->regs[R_ESP] = regs->rsp;
4466 env->eip = regs->rip;
4467 #else
4468 env->regs[R_EAX] = regs->eax;
4469 env->regs[R_EBX] = regs->ebx;
4470 env->regs[R_ECX] = regs->ecx;
4471 env->regs[R_EDX] = regs->edx;
4472 env->regs[R_ESI] = regs->esi;
4473 env->regs[R_EDI] = regs->edi;
4474 env->regs[R_EBP] = regs->ebp;
4475 env->regs[R_ESP] = regs->esp;
4476 env->eip = regs->eip;
4477 #endif
4478
4479 /* linux interrupt setup */
4480 #ifndef TARGET_ABI32
4481 env->idt.limit = 511;
4482 #else
4483 env->idt.limit = 255;
4484 #endif
4485 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
4486 PROT_READ|PROT_WRITE,
4487 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4488 idt_table = g2h(env->idt.base);
4489 set_idt(0, 0);
4490 set_idt(1, 0);
4491 set_idt(2, 0);
4492 set_idt(3, 3);
4493 set_idt(4, 3);
4494 set_idt(5, 0);
4495 set_idt(6, 0);
4496 set_idt(7, 0);
4497 set_idt(8, 0);
4498 set_idt(9, 0);
4499 set_idt(10, 0);
4500 set_idt(11, 0);
4501 set_idt(12, 0);
4502 set_idt(13, 0);
4503 set_idt(14, 0);
4504 set_idt(15, 0);
4505 set_idt(16, 0);
4506 set_idt(17, 0);
4507 set_idt(18, 0);
4508 set_idt(19, 0);
4509 set_idt(0x80, 3);
4510
4511 /* linux segment setup */
4512 {
4513 uint64_t *gdt_table;
4514 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
4515 PROT_READ|PROT_WRITE,
4516 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4517 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
4518 gdt_table = g2h(env->gdt.base);
4519 #ifdef TARGET_ABI32
4520 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4521 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4522 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4523 #else
4524 /* 64 bit code segment */
4525 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4526 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4527 DESC_L_MASK |
4528 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4529 #endif
4530 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
4531 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4532 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
4533 }
4534 cpu_x86_load_seg(env, R_CS, __USER_CS);
4535 cpu_x86_load_seg(env, R_SS, __USER_DS);
4536 #ifdef TARGET_ABI32
4537 cpu_x86_load_seg(env, R_DS, __USER_DS);
4538 cpu_x86_load_seg(env, R_ES, __USER_DS);
4539 cpu_x86_load_seg(env, R_FS, __USER_DS);
4540 cpu_x86_load_seg(env, R_GS, __USER_DS);
4541 /* This hack makes Wine work... */
4542 env->segs[R_FS].selector = 0;
4543 #else
4544 cpu_x86_load_seg(env, R_DS, 0);
4545 cpu_x86_load_seg(env, R_ES, 0);
4546 cpu_x86_load_seg(env, R_FS, 0);
4547 cpu_x86_load_seg(env, R_GS, 0);
4548 #endif
4549 #elif defined(TARGET_AARCH64)
4550 {
4551 int i;
4552
4553 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) {
4554 fprintf(stderr,
4555 "The selected ARM CPU does not support 64 bit mode\n");
4556 exit(EXIT_FAILURE);
4557 }
4558
4559 for (i = 0; i < 31; i++) {
4560 env->xregs[i] = regs->regs[i];
4561 }
4562 env->pc = regs->pc;
4563 env->xregs[31] = regs->sp;
4564 }
4565 #elif defined(TARGET_ARM)
4566 {
4567 int i;
4568 cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC,
4569 CPSRWriteByInstr);
4570 for(i = 0; i < 16; i++) {
4571 env->regs[i] = regs->uregs[i];
4572 }
4573 #ifdef TARGET_WORDS_BIGENDIAN
4574 /* Enable BE8. */
4575 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
4576 && (info->elf_flags & EF_ARM_BE8)) {
4577 env->uncached_cpsr |= CPSR_E;
4578 env->cp15.sctlr_el[1] |= SCTLR_E0E;
4579 } else {
4580 env->cp15.sctlr_el[1] |= SCTLR_B;
4581 }
4582 #endif
4583 }
4584 #elif defined(TARGET_UNICORE32)
4585 {
4586 int i;
4587 cpu_asr_write(env, regs->uregs[32], 0xffffffff);
4588 for (i = 0; i < 32; i++) {
4589 env->regs[i] = regs->uregs[i];
4590 }
4591 }
4592 #elif defined(TARGET_SPARC)
4593 {
4594 int i;
4595 env->pc = regs->pc;
4596 env->npc = regs->npc;
4597 env->y = regs->y;
4598 for(i = 0; i < 8; i++)
4599 env->gregs[i] = regs->u_regs[i];
4600 for(i = 0; i < 8; i++)
4601 env->regwptr[i] = regs->u_regs[i + 8];
4602 }
4603 #elif defined(TARGET_PPC)
4604 {
4605 int i;
4606
4607 #if defined(TARGET_PPC64)
4608 #if defined(TARGET_ABI32)
4609 env->msr &= ~((target_ulong)1 << MSR_SF);
4610 #else
4611 env->msr |= (target_ulong)1 << MSR_SF;
4612 #endif
4613 #endif
4614 env->nip = regs->nip;
4615 for(i = 0; i < 32; i++) {
4616 env->gpr[i] = regs->gpr[i];
4617 }
4618 }
4619 #elif defined(TARGET_M68K)
4620 {
4621 env->pc = regs->pc;
4622 env->dregs[0] = regs->d0;
4623 env->dregs[1] = regs->d1;
4624 env->dregs[2] = regs->d2;
4625 env->dregs[3] = regs->d3;
4626 env->dregs[4] = regs->d4;
4627 env->dregs[5] = regs->d5;
4628 env->dregs[6] = regs->d6;
4629 env->dregs[7] = regs->d7;
4630 env->aregs[0] = regs->a0;
4631 env->aregs[1] = regs->a1;
4632 env->aregs[2] = regs->a2;
4633 env->aregs[3] = regs->a3;
4634 env->aregs[4] = regs->a4;
4635 env->aregs[5] = regs->a5;
4636 env->aregs[6] = regs->a6;
4637 env->aregs[7] = regs->usp;
4638 env->sr = regs->sr;
4639 ts->sim_syscalls = 1;
4640 }
4641 #elif defined(TARGET_MICROBLAZE)
4642 {
4643 env->regs[0] = regs->r0;
4644 env->regs[1] = regs->r1;
4645 env->regs[2] = regs->r2;
4646 env->regs[3] = regs->r3;
4647 env->regs[4] = regs->r4;
4648 env->regs[5] = regs->r5;
4649 env->regs[6] = regs->r6;
4650 env->regs[7] = regs->r7;
4651 env->regs[8] = regs->r8;
4652 env->regs[9] = regs->r9;
4653 env->regs[10] = regs->r10;
4654 env->regs[11] = regs->r11;
4655 env->regs[12] = regs->r12;
4656 env->regs[13] = regs->r13;
4657 env->regs[14] = regs->r14;
4658 env->regs[15] = regs->r15;
4659 env->regs[16] = regs->r16;
4660 env->regs[17] = regs->r17;
4661 env->regs[18] = regs->r18;
4662 env->regs[19] = regs->r19;
4663 env->regs[20] = regs->r20;
4664 env->regs[21] = regs->r21;
4665 env->regs[22] = regs->r22;
4666 env->regs[23] = regs->r23;
4667 env->regs[24] = regs->r24;
4668 env->regs[25] = regs->r25;
4669 env->regs[26] = regs->r26;
4670 env->regs[27] = regs->r27;
4671 env->regs[28] = regs->r28;
4672 env->regs[29] = regs->r29;
4673 env->regs[30] = regs->r30;
4674 env->regs[31] = regs->r31;
4675 env->sregs[SR_PC] = regs->pc;
4676 }
4677 #elif defined(TARGET_MIPS)
4678 {
4679 int i;
4680
4681 for(i = 0; i < 32; i++) {
4682 env->active_tc.gpr[i] = regs->regs[i];
4683 }
4684 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
4685 if (regs->cp0_epc & 1) {
4686 env->hflags |= MIPS_HFLAG_M16;
4687 }
4688 }
4689 #elif defined(TARGET_OPENRISC)
4690 {
4691 int i;
4692
4693 for (i = 0; i < 32; i++) {
4694 env->gpr[i] = regs->gpr[i];
4695 }
4696
4697 env->sr = regs->sr;
4698 env->pc = regs->pc;
4699 }
4700 #elif defined(TARGET_SH4)
4701 {
4702 int i;
4703
4704 for(i = 0; i < 16; i++) {
4705 env->gregs[i] = regs->regs[i];
4706 }
4707 env->pc = regs->pc;
4708 }
4709 #elif defined(TARGET_ALPHA)
4710 {
4711 int i;
4712
4713 for(i = 0; i < 28; i++) {
4714 env->ir[i] = ((abi_ulong *)regs)[i];
4715 }
4716 env->ir[IR_SP] = regs->usp;
4717 env->pc = regs->pc;
4718 }
4719 #elif defined(TARGET_CRIS)
4720 {
4721 env->regs[0] = regs->r0;
4722 env->regs[1] = regs->r1;
4723 env->regs[2] = regs->r2;
4724 env->regs[3] = regs->r3;
4725 env->regs[4] = regs->r4;
4726 env->regs[5] = regs->r5;
4727 env->regs[6] = regs->r6;
4728 env->regs[7] = regs->r7;
4729 env->regs[8] = regs->r8;
4730 env->regs[9] = regs->r9;
4731 env->regs[10] = regs->r10;
4732 env->regs[11] = regs->r11;
4733 env->regs[12] = regs->r12;
4734 env->regs[13] = regs->r13;
4735 env->regs[14] = info->start_stack;
4736 env->regs[15] = regs->acr;
4737 env->pc = regs->erp;
4738 }
4739 #elif defined(TARGET_S390X)
4740 {
4741 int i;
4742 for (i = 0; i < 16; i++) {
4743 env->regs[i] = regs->gprs[i];
4744 }
4745 env->psw.mask = regs->psw.mask;
4746 env->psw.addr = regs->psw.addr;
4747 }
4748 #elif defined(TARGET_TILEGX)
4749 {
4750 int i;
4751 for (i = 0; i < TILEGX_R_COUNT; i++) {
4752 env->regs[i] = regs->regs[i];
4753 }
4754 for (i = 0; i < TILEGX_SPR_COUNT; i++) {
4755 env->spregs[i] = 0;
4756 }
4757 env->pc = regs->pc;
4758 }
4759 #else
4760 #error unsupported target CPU
4761 #endif
4762
4763 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4764 ts->stack_base = info->start_stack;
4765 ts->heap_base = info->brk;
4766 /* This will be filled in on the first SYS_HEAPINFO call. */
4767 ts->heap_limit = 0;
4768 #endif
4769
4770 if (gdbstub_port) {
4771 if (gdbserver_start(gdbstub_port) < 0) {
4772 fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
4773 gdbstub_port);
4774 exit(EXIT_FAILURE);
4775 }
4776 gdb_handlesig(cpu, 0);
4777 }
4778 cpu_loop(env);
4779 /* never exits */
4780 return 0;
4781 }