]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/qemu.h
Merge remote-tracking branch 'remotes/kraxel/tags/usb-20180227-pull-request' into...
[mirror_qemu.git] / linux-user / qemu.h
1 #ifndef QEMU_H
2 #define QEMU_H
3
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
12
13 #include "exec/user/abitypes.h"
14
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 #include "qemu/queue.h"
20
21 /* This is the size of the host kernel's sigset_t, needed where we make
22 * direct system calls that take a sigset_t pointer and a size.
23 */
24 #define SIGSET_T_SIZE (_NSIG / 8)
25
26 /* This struct is used to hold certain information about the image.
27 * Basically, it replicates in user space what would be certain
28 * task_struct fields in the kernel
29 */
30 struct image_info {
31 abi_ulong load_bias;
32 abi_ulong load_addr;
33 abi_ulong start_code;
34 abi_ulong end_code;
35 abi_ulong start_data;
36 abi_ulong end_data;
37 abi_ulong start_brk;
38 abi_ulong brk;
39 abi_ulong start_mmap;
40 abi_ulong start_stack;
41 abi_ulong stack_limit;
42 abi_ulong entry;
43 abi_ulong code_offset;
44 abi_ulong data_offset;
45 abi_ulong saved_auxv;
46 abi_ulong auxv_len;
47 abi_ulong arg_start;
48 abi_ulong arg_end;
49 abi_ulong arg_strings;
50 abi_ulong env_strings;
51 abi_ulong file_string;
52 uint32_t elf_flags;
53 int personality;
54 #ifdef CONFIG_USE_FDPIC
55 abi_ulong loadmap_addr;
56 uint16_t nsegs;
57 void *loadsegs;
58 abi_ulong pt_dynamic_addr;
59 struct image_info *other_info;
60 #endif
61 };
62
63 #ifdef TARGET_I386
64 /* Information about the current linux thread */
65 struct vm86_saved_state {
66 uint32_t eax; /* return code */
67 uint32_t ebx;
68 uint32_t ecx;
69 uint32_t edx;
70 uint32_t esi;
71 uint32_t edi;
72 uint32_t ebp;
73 uint32_t esp;
74 uint32_t eflags;
75 uint32_t eip;
76 uint16_t cs, ss, ds, es, fs, gs;
77 };
78 #endif
79
80 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
81 /* FPU emulator */
82 #include "nwfpe/fpa11.h"
83 #endif
84
85 #define MAX_SIGQUEUE_SIZE 1024
86
87 struct emulated_sigtable {
88 int pending; /* true if signal is pending */
89 target_siginfo_t info;
90 };
91
92 /* NOTE: we force a big alignment so that the stack stored after is
93 aligned too */
94 typedef struct TaskState {
95 pid_t ts_tid; /* tid (or pid) of this task */
96 #ifdef TARGET_ARM
97 # ifdef TARGET_ABI32
98 /* FPA state */
99 FPA11 fpa;
100 # endif
101 int swi_errno;
102 #endif
103 #ifdef TARGET_UNICORE32
104 int swi_errno;
105 #endif
106 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
107 abi_ulong target_v86;
108 struct vm86_saved_state vm86_saved_regs;
109 struct target_vm86plus_struct vm86plus;
110 uint32_t v86flags;
111 uint32_t v86mask;
112 #endif
113 abi_ulong child_tidptr;
114 #ifdef TARGET_M68K
115 int sim_syscalls;
116 abi_ulong tp_value;
117 #endif
118 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
119 /* Extra fields for semihosted binaries. */
120 abi_ulong heap_base;
121 abi_ulong heap_limit;
122 #endif
123 abi_ulong stack_base;
124 int used; /* non zero if used */
125 struct image_info *info;
126 struct linux_binprm *bprm;
127
128 struct emulated_sigtable sync_signal;
129 struct emulated_sigtable sigtab[TARGET_NSIG];
130 /* This thread's signal mask, as requested by the guest program.
131 * The actual signal mask of this thread may differ:
132 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
133 * + sometimes we block all signals to avoid races
134 */
135 sigset_t signal_mask;
136 /* The signal mask imposed by a guest sigsuspend syscall, if we are
137 * currently in the middle of such a syscall
138 */
139 sigset_t sigsuspend_mask;
140 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
141 int in_sigsuspend;
142
143 /* Nonzero if process_pending_signals() needs to do something (either
144 * handle a pending signal or unblock signals).
145 * This flag is written from a signal handler so should be accessed via
146 * the atomic_read() and atomic_write() functions. (It is not accessed
147 * from multiple threads.)
148 */
149 int signal_pending;
150
151 } __attribute__((aligned(16))) TaskState;
152
153 extern char *exec_path;
154 void init_task_state(TaskState *ts);
155 void task_settid(TaskState *);
156 void stop_all_tasks(void);
157 extern const char *qemu_uname_release;
158 extern unsigned long mmap_min_addr;
159
160 /* ??? See if we can avoid exposing so much of the loader internals. */
161
162 /* Read a good amount of data initially, to hopefully get all the
163 program headers loaded. */
164 #define BPRM_BUF_SIZE 1024
165
166 /*
167 * This structure is used to hold the arguments that are
168 * used when loading binaries.
169 */
170 struct linux_binprm {
171 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
172 abi_ulong p;
173 int fd;
174 int e_uid, e_gid;
175 int argc, envc;
176 char **argv;
177 char **envp;
178 char * filename; /* Name of binary */
179 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
180 };
181
182 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
183 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
184 abi_ulong stringp, int push_ptr);
185 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
186 struct target_pt_regs * regs, struct image_info *infop,
187 struct linux_binprm *);
188
189 uint32_t get_elf_eflags(int fd);
190 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
191 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
192
193 abi_long memcpy_to_target(abi_ulong dest, const void *src,
194 unsigned long len);
195 void target_set_brk(abi_ulong new_brk);
196 abi_long do_brk(abi_ulong new_brk);
197 void syscall_init(void);
198 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
199 abi_long arg2, abi_long arg3, abi_long arg4,
200 abi_long arg5, abi_long arg6, abi_long arg7,
201 abi_long arg8);
202 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
203 extern __thread CPUState *thread_cpu;
204 void cpu_loop(CPUArchState *env);
205 const char *target_strerror(int err);
206 int get_osversion(void);
207 void init_qemu_uname_release(void);
208 void fork_start(void);
209 void fork_end(int child);
210
211 /* Creates the initial guest address space in the host memory space using
212 * the given host start address hint and size. The guest_start parameter
213 * specifies the start address of the guest space. guest_base will be the
214 * difference between the host start address computed by this function and
215 * guest_start. If fixed is specified, then the mapped address space must
216 * start at host_start. The real start address of the mapped memory space is
217 * returned or -1 if there was an error.
218 */
219 unsigned long init_guest_space(unsigned long host_start,
220 unsigned long host_size,
221 unsigned long guest_start,
222 bool fixed);
223
224 #include "qemu/log.h"
225
226 /* safe_syscall.S */
227
228 /**
229 * safe_syscall:
230 * @int number: number of system call to make
231 * ...: arguments to the system call
232 *
233 * Call a system call if guest signal not pending.
234 * This has the same API as the libc syscall() function, except that it
235 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
236 *
237 * Returns: the system call result, or -1 with an error code in errno
238 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
239 * with any of the host errno values.)
240 */
241
242 /* A guide to using safe_syscall() to handle interactions between guest
243 * syscalls and guest signals:
244 *
245 * Guest syscalls come in two flavours:
246 *
247 * (1) Non-interruptible syscalls
248 *
249 * These are guest syscalls that never get interrupted by signals and
250 * so never return EINTR. They can be implemented straightforwardly in
251 * QEMU: just make sure that if the implementation code has to make any
252 * blocking calls that those calls are retried if they return EINTR.
253 * It's also OK to implement these with safe_syscall, though it will be
254 * a little less efficient if a signal is delivered at the 'wrong' moment.
255 *
256 * Some non-interruptible syscalls need to be handled using block_signals()
257 * to block signals for the duration of the syscall. This mainly applies
258 * to code which needs to modify the data structures used by the
259 * host_signal_handler() function and the functions it calls, including
260 * all syscalls which change the thread's signal mask.
261 *
262 * (2) Interruptible syscalls
263 *
264 * These are guest syscalls that can be interrupted by signals and
265 * for which we need to either return EINTR or arrange for the guest
266 * syscall to be restarted. This category includes both syscalls which
267 * always restart (and in the kernel return -ERESTARTNOINTR), ones
268 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
269 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
270 * if the handler was registered with SA_RESTART (kernel returns
271 * -ERESTARTSYS). System calls which are only interruptible in some
272 * situations (like 'open') also need to be handled this way.
273 *
274 * Here it is important that the host syscall is made
275 * via this safe_syscall() function, and *not* via the host libc.
276 * If the host libc is used then the implementation will appear to work
277 * most of the time, but there will be a race condition where a
278 * signal could arrive just before we make the host syscall inside libc,
279 * and then then guest syscall will not correctly be interrupted.
280 * Instead the implementation of the guest syscall can use the safe_syscall
281 * function but otherwise just return the result or errno in the usual
282 * way; the main loop code will take care of restarting the syscall
283 * if appropriate.
284 *
285 * (If the implementation needs to make multiple host syscalls this is
286 * OK; any which might really block must be via safe_syscall(); for those
287 * which are only technically blocking (ie which we know in practice won't
288 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
289 * You must be able to cope with backing out correctly if some safe_syscall
290 * you make in the implementation returns either -TARGET_ERESTARTSYS or
291 * EINTR though.)
292 *
293 * block_signals() cannot be used for interruptible syscalls.
294 *
295 *
296 * How and why the safe_syscall implementation works:
297 *
298 * The basic setup is that we make the host syscall via a known
299 * section of host native assembly. If a signal occurs, our signal
300 * handler checks the interrupted host PC against the addresse of that
301 * known section. If the PC is before or at the address of the syscall
302 * instruction then we change the PC to point at a "return
303 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
304 * (causing the safe_syscall() call to immediately return that value).
305 * Then in the main.c loop if we see this magic return value we adjust
306 * the guest PC to wind it back to before the system call, and invoke
307 * the guest signal handler as usual.
308 *
309 * This winding-back will happen in two cases:
310 * (1) signal came in just before we took the host syscall (a race);
311 * in this case we'll take the guest signal and have another go
312 * at the syscall afterwards, and this is indistinguishable for the
313 * guest from the timing having been different such that the guest
314 * signal really did win the race
315 * (2) signal came in while the host syscall was blocking, and the
316 * host kernel decided the syscall should be restarted;
317 * in this case we want to restart the guest syscall also, and so
318 * rewinding is the right thing. (Note that "restart" semantics mean
319 * "first call the signal handler, then reattempt the syscall".)
320 * The other situation to consider is when a signal came in while the
321 * host syscall was blocking, and the host kernel decided that the syscall
322 * should not be restarted; in this case QEMU's host signal handler will
323 * be invoked with the PC pointing just after the syscall instruction,
324 * with registers indicating an EINTR return; the special code in the
325 * handler will not kick in, and we will return EINTR to the guest as
326 * we should.
327 *
328 * Notice that we can leave the host kernel to make the decision for
329 * us about whether to do a restart of the syscall or not; we do not
330 * need to check SA_RESTART flags in QEMU or distinguish the various
331 * kinds of restartability.
332 */
333 #ifdef HAVE_SAFE_SYSCALL
334 /* The core part of this function is implemented in assembly */
335 extern long safe_syscall_base(int *pending, long number, ...);
336
337 #define safe_syscall(...) \
338 ({ \
339 long ret_; \
340 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
341 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
342 if (is_error(ret_)) { \
343 errno = -ret_; \
344 ret_ = -1; \
345 } \
346 ret_; \
347 })
348
349 #else
350
351 /* Fallback for architectures which don't yet provide a safe-syscall assembly
352 * fragment; note that this is racy!
353 * This should go away when all host architectures have been updated.
354 */
355 #define safe_syscall syscall
356
357 #endif
358
359 /* syscall.c */
360 int host_to_target_waitstatus(int status);
361
362 /* strace.c */
363 void print_syscall(int num,
364 abi_long arg1, abi_long arg2, abi_long arg3,
365 abi_long arg4, abi_long arg5, abi_long arg6);
366 void print_syscall_ret(int num, abi_long arg1);
367 /**
368 * print_taken_signal:
369 * @target_signum: target signal being taken
370 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
371 *
372 * Print strace output indicating that this signal is being taken by the guest,
373 * in a format similar to:
374 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
375 */
376 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
377 extern int do_strace;
378
379 /* signal.c */
380 void process_pending_signals(CPUArchState *cpu_env);
381 void signal_init(void);
382 int queue_signal(CPUArchState *env, int sig, int si_type,
383 target_siginfo_t *info);
384 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
385 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
386 int target_to_host_signal(int sig);
387 int host_to_target_signal(int sig);
388 long do_sigreturn(CPUArchState *env);
389 long do_rt_sigreturn(CPUArchState *env);
390 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
391 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
392 /**
393 * block_signals: block all signals while handling this guest syscall
394 *
395 * Block all signals, and arrange that the signal mask is returned to
396 * its correct value for the guest before we resume execution of guest code.
397 * If this function returns non-zero, then the caller should immediately
398 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
399 * signal and restart execution of the syscall.
400 * If block_signals() returns zero, then the caller can continue with
401 * emulation of the system call knowing that no signals can be taken
402 * (and therefore that no race conditions will result).
403 * This should only be called once, because if it is called a second time
404 * it will always return non-zero. (Think of it like a mutex that can't
405 * be recursively locked.)
406 * Signals will be unblocked again by process_pending_signals().
407 *
408 * Return value: non-zero if there was a pending signal, zero if not.
409 */
410 int block_signals(void); /* Returns non zero if signal pending */
411
412 #ifdef TARGET_I386
413 /* vm86.c */
414 void save_v86_state(CPUX86State *env);
415 void handle_vm86_trap(CPUX86State *env, int trapno);
416 void handle_vm86_fault(CPUX86State *env);
417 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
418 #elif defined(TARGET_SPARC64)
419 void sparc64_set_context(CPUSPARCState *env);
420 void sparc64_get_context(CPUSPARCState *env);
421 #endif
422
423 /* mmap.c */
424 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
425 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
426 int flags, int fd, abi_ulong offset);
427 int target_munmap(abi_ulong start, abi_ulong len);
428 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
429 abi_ulong new_size, unsigned long flags,
430 abi_ulong new_addr);
431 int target_msync(abi_ulong start, abi_ulong len, int flags);
432 extern unsigned long last_brk;
433 extern abi_ulong mmap_next_start;
434 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
435 void mmap_fork_start(void);
436 void mmap_fork_end(int child);
437
438 /* main.c */
439 extern unsigned long guest_stack_size;
440
441 /* user access */
442
443 #define VERIFY_READ 0
444 #define VERIFY_WRITE 1 /* implies read access */
445
446 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
447 {
448 return page_check_range((target_ulong)addr, size,
449 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
450 }
451
452 /* NOTE __get_user and __put_user use host pointers and don't check access.
453 These are usually used to access struct data members once the struct has
454 been locked - usually with lock_user_struct. */
455
456 /* Tricky points:
457 - Use __builtin_choose_expr to avoid type promotion from ?:,
458 - Invalid sizes result in a compile time error stemming from
459 the fact that abort has no parameters.
460 - It's easier to use the endian-specific unaligned load/store
461 functions than host-endian unaligned load/store plus tswapN. */
462
463 #define __put_user_e(x, hptr, e) \
464 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
465 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
466 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
467 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
468 ((hptr), (x)), (void)0)
469
470 #define __get_user_e(x, hptr, e) \
471 ((x) = (typeof(*hptr))( \
472 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
473 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
474 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
475 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
476 (hptr)), (void)0)
477
478 #ifdef TARGET_WORDS_BIGENDIAN
479 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
480 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
481 #else
482 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
483 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
484 #endif
485
486 /* put_user()/get_user() take a guest address and check access */
487 /* These are usually used to access an atomic data type, such as an int,
488 * that has been passed by address. These internally perform locking
489 * and unlocking on the data type.
490 */
491 #define put_user(x, gaddr, target_type) \
492 ({ \
493 abi_ulong __gaddr = (gaddr); \
494 target_type *__hptr; \
495 abi_long __ret = 0; \
496 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
497 __put_user((x), __hptr); \
498 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
499 } else \
500 __ret = -TARGET_EFAULT; \
501 __ret; \
502 })
503
504 #define get_user(x, gaddr, target_type) \
505 ({ \
506 abi_ulong __gaddr = (gaddr); \
507 target_type *__hptr; \
508 abi_long __ret = 0; \
509 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
510 __get_user((x), __hptr); \
511 unlock_user(__hptr, __gaddr, 0); \
512 } else { \
513 /* avoid warning */ \
514 (x) = 0; \
515 __ret = -TARGET_EFAULT; \
516 } \
517 __ret; \
518 })
519
520 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
521 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
522 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
523 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
524 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
525 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
526 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
527 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
528 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
529 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
530
531 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
532 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
533 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
534 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
535 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
536 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
537 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
538 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
539 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
540 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
541
542 /* copy_from_user() and copy_to_user() are usually used to copy data
543 * buffers between the target and host. These internally perform
544 * locking/unlocking of the memory.
545 */
546 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
547 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
548
549 /* Functions for accessing guest memory. The tget and tput functions
550 read/write single values, byteswapping as necessary. The lock_user function
551 gets a pointer to a contiguous area of guest memory, but does not perform
552 any byteswapping. lock_user may return either a pointer to the guest
553 memory, or a temporary buffer. */
554
555 /* Lock an area of guest memory into the host. If copy is true then the
556 host area will have the same contents as the guest. */
557 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
558 {
559 if (!access_ok(type, guest_addr, len))
560 return NULL;
561 #ifdef DEBUG_REMAP
562 {
563 void *addr;
564 addr = g_malloc(len);
565 if (copy)
566 memcpy(addr, g2h(guest_addr), len);
567 else
568 memset(addr, 0, len);
569 return addr;
570 }
571 #else
572 return g2h(guest_addr);
573 #endif
574 }
575
576 /* Unlock an area of guest memory. The first LEN bytes must be
577 flushed back to guest memory. host_ptr = NULL is explicitly
578 allowed and does nothing. */
579 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
580 long len)
581 {
582
583 #ifdef DEBUG_REMAP
584 if (!host_ptr)
585 return;
586 if (host_ptr == g2h(guest_addr))
587 return;
588 if (len > 0)
589 memcpy(g2h(guest_addr), host_ptr, len);
590 g_free(host_ptr);
591 #endif
592 }
593
594 /* Return the length of a string in target memory or -TARGET_EFAULT if
595 access error. */
596 abi_long target_strlen(abi_ulong gaddr);
597
598 /* Like lock_user but for null terminated strings. */
599 static inline void *lock_user_string(abi_ulong guest_addr)
600 {
601 abi_long len;
602 len = target_strlen(guest_addr);
603 if (len < 0)
604 return NULL;
605 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
606 }
607
608 /* Helper macros for locking/unlocking a target struct. */
609 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
610 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
611 #define unlock_user_struct(host_ptr, guest_addr, copy) \
612 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
613
614 #include <pthread.h>
615
616 /* Include target-specific struct and function definitions;
617 * they may need access to the target-independent structures
618 * above, so include them last.
619 */
620 #include "target_cpu.h"
621 #include "target_signal.h"
622 #include "target_structs.h"
623
624 #endif /* QEMU_H */