]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/qemu.h
Merge remote-tracking branch 'remotes/thibault/tags/samuel-thibault' into staging
[mirror_qemu.git] / linux-user / qemu.h
1 #ifndef QEMU_H
2 #define QEMU_H
3
4 #include "hostdep.h"
5 #include "cpu.h"
6 #include "exec/exec-all.h"
7 #include "exec/cpu_ldst.h"
8
9 #undef DEBUG_REMAP
10 #ifdef DEBUG_REMAP
11 #endif /* DEBUG_REMAP */
12
13 #include "exec/user/abitypes.h"
14
15 #include "exec/user/thunk.h"
16 #include "syscall_defs.h"
17 #include "target_syscall.h"
18 #include "exec/gdbstub.h"
19 #include "qemu/queue.h"
20
21 /* This is the size of the host kernel's sigset_t, needed where we make
22 * direct system calls that take a sigset_t pointer and a size.
23 */
24 #define SIGSET_T_SIZE (_NSIG / 8)
25
26 /* This struct is used to hold certain information about the image.
27 * Basically, it replicates in user space what would be certain
28 * task_struct fields in the kernel
29 */
30 struct image_info {
31 abi_ulong load_bias;
32 abi_ulong load_addr;
33 abi_ulong start_code;
34 abi_ulong end_code;
35 abi_ulong start_data;
36 abi_ulong end_data;
37 abi_ulong start_brk;
38 abi_ulong brk;
39 abi_ulong start_mmap;
40 abi_ulong start_stack;
41 abi_ulong stack_limit;
42 abi_ulong entry;
43 abi_ulong code_offset;
44 abi_ulong data_offset;
45 abi_ulong saved_auxv;
46 abi_ulong auxv_len;
47 abi_ulong arg_start;
48 abi_ulong arg_end;
49 abi_ulong arg_strings;
50 abi_ulong env_strings;
51 abi_ulong file_string;
52 uint32_t elf_flags;
53 int personality;
54
55 /* The fields below are used in FDPIC mode. */
56 abi_ulong loadmap_addr;
57 uint16_t nsegs;
58 void *loadsegs;
59 abi_ulong pt_dynamic_addr;
60 abi_ulong interpreter_loadmap_addr;
61 abi_ulong interpreter_pt_dynamic_addr;
62 struct image_info *other_info;
63 };
64
65 #ifdef TARGET_I386
66 /* Information about the current linux thread */
67 struct vm86_saved_state {
68 uint32_t eax; /* return code */
69 uint32_t ebx;
70 uint32_t ecx;
71 uint32_t edx;
72 uint32_t esi;
73 uint32_t edi;
74 uint32_t ebp;
75 uint32_t esp;
76 uint32_t eflags;
77 uint32_t eip;
78 uint16_t cs, ss, ds, es, fs, gs;
79 };
80 #endif
81
82 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
83 /* FPU emulator */
84 #include "nwfpe/fpa11.h"
85 #endif
86
87 #define MAX_SIGQUEUE_SIZE 1024
88
89 struct emulated_sigtable {
90 int pending; /* true if signal is pending */
91 target_siginfo_t info;
92 };
93
94 /* NOTE: we force a big alignment so that the stack stored after is
95 aligned too */
96 typedef struct TaskState {
97 pid_t ts_tid; /* tid (or pid) of this task */
98 #ifdef TARGET_ARM
99 # ifdef TARGET_ABI32
100 /* FPA state */
101 FPA11 fpa;
102 # endif
103 int swi_errno;
104 #endif
105 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
106 abi_ulong target_v86;
107 struct vm86_saved_state vm86_saved_regs;
108 struct target_vm86plus_struct vm86plus;
109 uint32_t v86flags;
110 uint32_t v86mask;
111 #endif
112 abi_ulong child_tidptr;
113 #ifdef TARGET_M68K
114 int sim_syscalls;
115 abi_ulong tp_value;
116 #endif
117 #if defined(TARGET_ARM) || defined(TARGET_M68K)
118 /* Extra fields for semihosted binaries. */
119 abi_ulong heap_base;
120 abi_ulong heap_limit;
121 #endif
122 abi_ulong stack_base;
123 int used; /* non zero if used */
124 struct image_info *info;
125 struct linux_binprm *bprm;
126
127 struct emulated_sigtable sync_signal;
128 struct emulated_sigtable sigtab[TARGET_NSIG];
129 /* This thread's signal mask, as requested by the guest program.
130 * The actual signal mask of this thread may differ:
131 * + we don't let SIGSEGV and SIGBUS be blocked while running guest code
132 * + sometimes we block all signals to avoid races
133 */
134 sigset_t signal_mask;
135 /* The signal mask imposed by a guest sigsuspend syscall, if we are
136 * currently in the middle of such a syscall
137 */
138 sigset_t sigsuspend_mask;
139 /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
140 int in_sigsuspend;
141
142 /* Nonzero if process_pending_signals() needs to do something (either
143 * handle a pending signal or unblock signals).
144 * This flag is written from a signal handler so should be accessed via
145 * the atomic_read() and atomic_write() functions. (It is not accessed
146 * from multiple threads.)
147 */
148 int signal_pending;
149
150 } __attribute__((aligned(16))) TaskState;
151
152 extern char *exec_path;
153 void init_task_state(TaskState *ts);
154 void task_settid(TaskState *);
155 void stop_all_tasks(void);
156 extern const char *qemu_uname_release;
157 extern unsigned long mmap_min_addr;
158
159 /* ??? See if we can avoid exposing so much of the loader internals. */
160
161 /* Read a good amount of data initially, to hopefully get all the
162 program headers loaded. */
163 #define BPRM_BUF_SIZE 1024
164
165 /*
166 * This structure is used to hold the arguments that are
167 * used when loading binaries.
168 */
169 struct linux_binprm {
170 char buf[BPRM_BUF_SIZE] __attribute__((aligned));
171 abi_ulong p;
172 int fd;
173 int e_uid, e_gid;
174 int argc, envc;
175 char **argv;
176 char **envp;
177 char * filename; /* Name of binary */
178 int (*core_dump)(int, const CPUArchState *); /* coredump routine */
179 };
180
181 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
182 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
183 abi_ulong stringp, int push_ptr);
184 int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
185 struct target_pt_regs * regs, struct image_info *infop,
186 struct linux_binprm *);
187
188 /* Returns true if the image uses the FDPIC ABI. If this is the case,
189 * we have to provide some information (loadmap, pt_dynamic_info) such
190 * that the program can be relocated adequately. This is also useful
191 * when handling signals.
192 */
193 int info_is_fdpic(struct image_info *info);
194
195 uint32_t get_elf_eflags(int fd);
196 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
197 int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
198
199 abi_long memcpy_to_target(abi_ulong dest, const void *src,
200 unsigned long len);
201 void target_set_brk(abi_ulong new_brk);
202 abi_long do_brk(abi_ulong new_brk);
203 void syscall_init(void);
204 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
205 abi_long arg2, abi_long arg3, abi_long arg4,
206 abi_long arg5, abi_long arg6, abi_long arg7,
207 abi_long arg8);
208 void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
209 extern __thread CPUState *thread_cpu;
210 void cpu_loop(CPUArchState *env);
211 const char *target_strerror(int err);
212 int get_osversion(void);
213 void init_qemu_uname_release(void);
214 void fork_start(void);
215 void fork_end(int child);
216
217 /* Creates the initial guest address space in the host memory space using
218 * the given host start address hint and size. The guest_start parameter
219 * specifies the start address of the guest space. guest_base will be the
220 * difference between the host start address computed by this function and
221 * guest_start. If fixed is specified, then the mapped address space must
222 * start at host_start. The real start address of the mapped memory space is
223 * returned or -1 if there was an error.
224 */
225 unsigned long init_guest_space(unsigned long host_start,
226 unsigned long host_size,
227 unsigned long guest_start,
228 bool fixed);
229
230 #include "qemu/log.h"
231
232 /* safe_syscall.S */
233
234 /**
235 * safe_syscall:
236 * @int number: number of system call to make
237 * ...: arguments to the system call
238 *
239 * Call a system call if guest signal not pending.
240 * This has the same API as the libc syscall() function, except that it
241 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
242 *
243 * Returns: the system call result, or -1 with an error code in errno
244 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
245 * with any of the host errno values.)
246 */
247
248 /* A guide to using safe_syscall() to handle interactions between guest
249 * syscalls and guest signals:
250 *
251 * Guest syscalls come in two flavours:
252 *
253 * (1) Non-interruptible syscalls
254 *
255 * These are guest syscalls that never get interrupted by signals and
256 * so never return EINTR. They can be implemented straightforwardly in
257 * QEMU: just make sure that if the implementation code has to make any
258 * blocking calls that those calls are retried if they return EINTR.
259 * It's also OK to implement these with safe_syscall, though it will be
260 * a little less efficient if a signal is delivered at the 'wrong' moment.
261 *
262 * Some non-interruptible syscalls need to be handled using block_signals()
263 * to block signals for the duration of the syscall. This mainly applies
264 * to code which needs to modify the data structures used by the
265 * host_signal_handler() function and the functions it calls, including
266 * all syscalls which change the thread's signal mask.
267 *
268 * (2) Interruptible syscalls
269 *
270 * These are guest syscalls that can be interrupted by signals and
271 * for which we need to either return EINTR or arrange for the guest
272 * syscall to be restarted. This category includes both syscalls which
273 * always restart (and in the kernel return -ERESTARTNOINTR), ones
274 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
275 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
276 * if the handler was registered with SA_RESTART (kernel returns
277 * -ERESTARTSYS). System calls which are only interruptible in some
278 * situations (like 'open') also need to be handled this way.
279 *
280 * Here it is important that the host syscall is made
281 * via this safe_syscall() function, and *not* via the host libc.
282 * If the host libc is used then the implementation will appear to work
283 * most of the time, but there will be a race condition where a
284 * signal could arrive just before we make the host syscall inside libc,
285 * and then then guest syscall will not correctly be interrupted.
286 * Instead the implementation of the guest syscall can use the safe_syscall
287 * function but otherwise just return the result or errno in the usual
288 * way; the main loop code will take care of restarting the syscall
289 * if appropriate.
290 *
291 * (If the implementation needs to make multiple host syscalls this is
292 * OK; any which might really block must be via safe_syscall(); for those
293 * which are only technically blocking (ie which we know in practice won't
294 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
295 * You must be able to cope with backing out correctly if some safe_syscall
296 * you make in the implementation returns either -TARGET_ERESTARTSYS or
297 * EINTR though.)
298 *
299 * block_signals() cannot be used for interruptible syscalls.
300 *
301 *
302 * How and why the safe_syscall implementation works:
303 *
304 * The basic setup is that we make the host syscall via a known
305 * section of host native assembly. If a signal occurs, our signal
306 * handler checks the interrupted host PC against the addresse of that
307 * known section. If the PC is before or at the address of the syscall
308 * instruction then we change the PC to point at a "return
309 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
310 * (causing the safe_syscall() call to immediately return that value).
311 * Then in the main.c loop if we see this magic return value we adjust
312 * the guest PC to wind it back to before the system call, and invoke
313 * the guest signal handler as usual.
314 *
315 * This winding-back will happen in two cases:
316 * (1) signal came in just before we took the host syscall (a race);
317 * in this case we'll take the guest signal and have another go
318 * at the syscall afterwards, and this is indistinguishable for the
319 * guest from the timing having been different such that the guest
320 * signal really did win the race
321 * (2) signal came in while the host syscall was blocking, and the
322 * host kernel decided the syscall should be restarted;
323 * in this case we want to restart the guest syscall also, and so
324 * rewinding is the right thing. (Note that "restart" semantics mean
325 * "first call the signal handler, then reattempt the syscall".)
326 * The other situation to consider is when a signal came in while the
327 * host syscall was blocking, and the host kernel decided that the syscall
328 * should not be restarted; in this case QEMU's host signal handler will
329 * be invoked with the PC pointing just after the syscall instruction,
330 * with registers indicating an EINTR return; the special code in the
331 * handler will not kick in, and we will return EINTR to the guest as
332 * we should.
333 *
334 * Notice that we can leave the host kernel to make the decision for
335 * us about whether to do a restart of the syscall or not; we do not
336 * need to check SA_RESTART flags in QEMU or distinguish the various
337 * kinds of restartability.
338 */
339 #ifdef HAVE_SAFE_SYSCALL
340 /* The core part of this function is implemented in assembly */
341 extern long safe_syscall_base(int *pending, long number, ...);
342
343 #define safe_syscall(...) \
344 ({ \
345 long ret_; \
346 int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
347 ret_ = safe_syscall_base(psp_, __VA_ARGS__); \
348 if (is_error(ret_)) { \
349 errno = -ret_; \
350 ret_ = -1; \
351 } \
352 ret_; \
353 })
354
355 #else
356
357 /* Fallback for architectures which don't yet provide a safe-syscall assembly
358 * fragment; note that this is racy!
359 * This should go away when all host architectures have been updated.
360 */
361 #define safe_syscall syscall
362
363 #endif
364
365 /* syscall.c */
366 int host_to_target_waitstatus(int status);
367
368 /* strace.c */
369 void print_syscall(int num,
370 abi_long arg1, abi_long arg2, abi_long arg3,
371 abi_long arg4, abi_long arg5, abi_long arg6);
372 void print_syscall_ret(int num, abi_long arg1);
373 /**
374 * print_taken_signal:
375 * @target_signum: target signal being taken
376 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
377 *
378 * Print strace output indicating that this signal is being taken by the guest,
379 * in a format similar to:
380 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
381 */
382 void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
383 extern int do_strace;
384
385 /* signal.c */
386 void process_pending_signals(CPUArchState *cpu_env);
387 void signal_init(void);
388 int queue_signal(CPUArchState *env, int sig, int si_type,
389 target_siginfo_t *info);
390 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
391 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
392 int target_to_host_signal(int sig);
393 int host_to_target_signal(int sig);
394 long do_sigreturn(CPUArchState *env);
395 long do_rt_sigreturn(CPUArchState *env);
396 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
397 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
398 /**
399 * block_signals: block all signals while handling this guest syscall
400 *
401 * Block all signals, and arrange that the signal mask is returned to
402 * its correct value for the guest before we resume execution of guest code.
403 * If this function returns non-zero, then the caller should immediately
404 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
405 * signal and restart execution of the syscall.
406 * If block_signals() returns zero, then the caller can continue with
407 * emulation of the system call knowing that no signals can be taken
408 * (and therefore that no race conditions will result).
409 * This should only be called once, because if it is called a second time
410 * it will always return non-zero. (Think of it like a mutex that can't
411 * be recursively locked.)
412 * Signals will be unblocked again by process_pending_signals().
413 *
414 * Return value: non-zero if there was a pending signal, zero if not.
415 */
416 int block_signals(void); /* Returns non zero if signal pending */
417
418 #ifdef TARGET_I386
419 /* vm86.c */
420 void save_v86_state(CPUX86State *env);
421 void handle_vm86_trap(CPUX86State *env, int trapno);
422 void handle_vm86_fault(CPUX86State *env);
423 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
424 #elif defined(TARGET_SPARC64)
425 void sparc64_set_context(CPUSPARCState *env);
426 void sparc64_get_context(CPUSPARCState *env);
427 #endif
428
429 /* mmap.c */
430 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
431 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
432 int flags, int fd, abi_ulong offset);
433 int target_munmap(abi_ulong start, abi_ulong len);
434 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
435 abi_ulong new_size, unsigned long flags,
436 abi_ulong new_addr);
437 extern unsigned long last_brk;
438 extern abi_ulong mmap_next_start;
439 abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
440 void mmap_fork_start(void);
441 void mmap_fork_end(int child);
442
443 /* main.c */
444 extern unsigned long guest_stack_size;
445
446 /* user access */
447
448 #define VERIFY_READ 0
449 #define VERIFY_WRITE 1 /* implies read access */
450
451 static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
452 {
453 return page_check_range((target_ulong)addr, size,
454 (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
455 }
456
457 /* NOTE __get_user and __put_user use host pointers and don't check access.
458 These are usually used to access struct data members once the struct has
459 been locked - usually with lock_user_struct. */
460
461 /* Tricky points:
462 - Use __builtin_choose_expr to avoid type promotion from ?:,
463 - Invalid sizes result in a compile time error stemming from
464 the fact that abort has no parameters.
465 - It's easier to use the endian-specific unaligned load/store
466 functions than host-endian unaligned load/store plus tswapN. */
467
468 #define __put_user_e(x, hptr, e) \
469 (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \
470 __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \
471 __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \
472 __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \
473 ((hptr), (x)), (void)0)
474
475 #define __get_user_e(x, hptr, e) \
476 ((x) = (typeof(*hptr))( \
477 __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \
478 __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \
479 __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \
480 __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \
481 (hptr)), (void)0)
482
483 #ifdef TARGET_WORDS_BIGENDIAN
484 # define __put_user(x, hptr) __put_user_e(x, hptr, be)
485 # define __get_user(x, hptr) __get_user_e(x, hptr, be)
486 #else
487 # define __put_user(x, hptr) __put_user_e(x, hptr, le)
488 # define __get_user(x, hptr) __get_user_e(x, hptr, le)
489 #endif
490
491 /* put_user()/get_user() take a guest address and check access */
492 /* These are usually used to access an atomic data type, such as an int,
493 * that has been passed by address. These internally perform locking
494 * and unlocking on the data type.
495 */
496 #define put_user(x, gaddr, target_type) \
497 ({ \
498 abi_ulong __gaddr = (gaddr); \
499 target_type *__hptr; \
500 abi_long __ret = 0; \
501 if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
502 __put_user((x), __hptr); \
503 unlock_user(__hptr, __gaddr, sizeof(target_type)); \
504 } else \
505 __ret = -TARGET_EFAULT; \
506 __ret; \
507 })
508
509 #define get_user(x, gaddr, target_type) \
510 ({ \
511 abi_ulong __gaddr = (gaddr); \
512 target_type *__hptr; \
513 abi_long __ret = 0; \
514 if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
515 __get_user((x), __hptr); \
516 unlock_user(__hptr, __gaddr, 0); \
517 } else { \
518 /* avoid warning */ \
519 (x) = 0; \
520 __ret = -TARGET_EFAULT; \
521 } \
522 __ret; \
523 })
524
525 #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
526 #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
527 #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
528 #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
529 #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
530 #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
531 #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
532 #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
533 #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t)
534 #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t)
535
536 #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
537 #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
538 #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
539 #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
540 #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
541 #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
542 #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
543 #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
544 #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t)
545 #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t)
546
547 /* copy_from_user() and copy_to_user() are usually used to copy data
548 * buffers between the target and host. These internally perform
549 * locking/unlocking of the memory.
550 */
551 abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
552 abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
553
554 /* Functions for accessing guest memory. The tget and tput functions
555 read/write single values, byteswapping as necessary. The lock_user function
556 gets a pointer to a contiguous area of guest memory, but does not perform
557 any byteswapping. lock_user may return either a pointer to the guest
558 memory, or a temporary buffer. */
559
560 /* Lock an area of guest memory into the host. If copy is true then the
561 host area will have the same contents as the guest. */
562 static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
563 {
564 if (!access_ok(type, guest_addr, len))
565 return NULL;
566 #ifdef DEBUG_REMAP
567 {
568 void *addr;
569 addr = g_malloc(len);
570 if (copy)
571 memcpy(addr, g2h(guest_addr), len);
572 else
573 memset(addr, 0, len);
574 return addr;
575 }
576 #else
577 return g2h(guest_addr);
578 #endif
579 }
580
581 /* Unlock an area of guest memory. The first LEN bytes must be
582 flushed back to guest memory. host_ptr = NULL is explicitly
583 allowed and does nothing. */
584 static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
585 long len)
586 {
587
588 #ifdef DEBUG_REMAP
589 if (!host_ptr)
590 return;
591 if (host_ptr == g2h(guest_addr))
592 return;
593 if (len > 0)
594 memcpy(g2h(guest_addr), host_ptr, len);
595 g_free(host_ptr);
596 #endif
597 }
598
599 /* Return the length of a string in target memory or -TARGET_EFAULT if
600 access error. */
601 abi_long target_strlen(abi_ulong gaddr);
602
603 /* Like lock_user but for null terminated strings. */
604 static inline void *lock_user_string(abi_ulong guest_addr)
605 {
606 abi_long len;
607 len = target_strlen(guest_addr);
608 if (len < 0)
609 return NULL;
610 return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
611 }
612
613 /* Helper macros for locking/unlocking a target struct. */
614 #define lock_user_struct(type, host_ptr, guest_addr, copy) \
615 (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
616 #define unlock_user_struct(host_ptr, guest_addr, copy) \
617 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
618
619 #include <pthread.h>
620
621 /* Include target-specific struct and function definitions;
622 * they may need access to the target-independent structures
623 * above, so include them last.
624 */
625 #include "target_cpu.h"
626 #include "target_structs.h"
627
628 #endif /* QEMU_H */