]> git.proxmox.com Git - qemu.git/blob - linux-user/signal.c
41affb56e701453f76df032779571977684800f6
[qemu.git] / linux-user / signal.c
1 /*
2 * Emulation of Linux signals
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <stdarg.h>
24 #include <unistd.h>
25 #include <signal.h>
26 #include <errno.h>
27 #include <sys/ucontext.h>
28
29 #ifdef __ia64__
30 #undef uc_mcontext
31 #undef uc_sigmask
32 #undef uc_stack
33 #undef uc_link
34 #endif
35
36 #include "qemu.h"
37
38 //#define DEBUG_SIGNAL
39
40 #define MAX_SIGQUEUE_SIZE 1024
41
42 struct sigqueue {
43 struct sigqueue *next;
44 target_siginfo_t info;
45 };
46
47 struct emulated_sigaction {
48 struct target_sigaction sa;
49 int pending; /* true if signal is pending */
50 struct sigqueue *first;
51 struct sigqueue info; /* in order to always have memory for the
52 first signal, we put it here */
53 };
54
55 static struct emulated_sigaction sigact_table[TARGET_NSIG];
56 static struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
57 static struct sigqueue *first_free; /* first free siginfo queue entry */
58 static int signal_pending; /* non zero if a signal may be pending */
59
60 static void host_signal_handler(int host_signum, siginfo_t *info,
61 void *puc);
62
63 static uint8_t host_to_target_signal_table[65] = {
64 [SIGHUP] = TARGET_SIGHUP,
65 [SIGINT] = TARGET_SIGINT,
66 [SIGQUIT] = TARGET_SIGQUIT,
67 [SIGILL] = TARGET_SIGILL,
68 [SIGTRAP] = TARGET_SIGTRAP,
69 [SIGABRT] = TARGET_SIGABRT,
70 /* [SIGIOT] = TARGET_SIGIOT,*/
71 [SIGBUS] = TARGET_SIGBUS,
72 [SIGFPE] = TARGET_SIGFPE,
73 [SIGKILL] = TARGET_SIGKILL,
74 [SIGUSR1] = TARGET_SIGUSR1,
75 [SIGSEGV] = TARGET_SIGSEGV,
76 [SIGUSR2] = TARGET_SIGUSR2,
77 [SIGPIPE] = TARGET_SIGPIPE,
78 [SIGALRM] = TARGET_SIGALRM,
79 [SIGTERM] = TARGET_SIGTERM,
80 #ifdef SIGSTKFLT
81 [SIGSTKFLT] = TARGET_SIGSTKFLT,
82 #endif
83 [SIGCHLD] = TARGET_SIGCHLD,
84 [SIGCONT] = TARGET_SIGCONT,
85 [SIGSTOP] = TARGET_SIGSTOP,
86 [SIGTSTP] = TARGET_SIGTSTP,
87 [SIGTTIN] = TARGET_SIGTTIN,
88 [SIGTTOU] = TARGET_SIGTTOU,
89 [SIGURG] = TARGET_SIGURG,
90 [SIGXCPU] = TARGET_SIGXCPU,
91 [SIGXFSZ] = TARGET_SIGXFSZ,
92 [SIGVTALRM] = TARGET_SIGVTALRM,
93 [SIGPROF] = TARGET_SIGPROF,
94 [SIGWINCH] = TARGET_SIGWINCH,
95 [SIGIO] = TARGET_SIGIO,
96 [SIGPWR] = TARGET_SIGPWR,
97 [SIGSYS] = TARGET_SIGSYS,
98 /* next signals stay the same */
99 };
100 static uint8_t target_to_host_signal_table[65];
101
102 static inline int host_to_target_signal(int sig)
103 {
104 return host_to_target_signal_table[sig];
105 }
106
107 static inline int target_to_host_signal(int sig)
108 {
109 return target_to_host_signal_table[sig];
110 }
111
112 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
113 {
114 int i;
115 unsigned long sigmask;
116 uint32_t target_sigmask;
117
118 sigmask = ((unsigned long *)s)[0];
119 target_sigmask = 0;
120 for(i = 0; i < 32; i++) {
121 if (sigmask & (1 << i))
122 target_sigmask |= 1 << (host_to_target_signal(i + 1) - 1);
123 }
124 #if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32
125 d->sig[0] = tswapl(target_sigmask);
126 for(i = 1;i < TARGET_NSIG_WORDS; i++) {
127 d->sig[i] = tswapl(((unsigned long *)s)[i]);
128 }
129 #elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
130 d->sig[0] = tswapl(target_sigmask);
131 d->sig[1] = tswapl(sigmask >> 32);
132 #else
133 #error host_to_target_sigset
134 #endif
135 }
136
137 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
138 {
139 int i;
140 unsigned long sigmask;
141 target_ulong target_sigmask;
142
143 target_sigmask = tswapl(s->sig[0]);
144 sigmask = 0;
145 for(i = 0; i < 32; i++) {
146 if (target_sigmask & (1 << i))
147 sigmask |= 1 << (target_to_host_signal(i + 1) - 1);
148 }
149 #if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32
150 ((unsigned long *)d)[0] = sigmask;
151 for(i = 1;i < TARGET_NSIG_WORDS; i++) {
152 ((unsigned long *)d)[i] = tswapl(s->sig[i]);
153 }
154 #elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
155 ((unsigned long *)d)[0] = sigmask | ((unsigned long)tswapl(s->sig[1]) << 32);
156 #else
157 #error target_to_host_sigset
158 #endif /* TARGET_LONG_BITS */
159 }
160
161 void host_to_target_old_sigset(target_ulong *old_sigset,
162 const sigset_t *sigset)
163 {
164 target_sigset_t d;
165 host_to_target_sigset(&d, sigset);
166 *old_sigset = d.sig[0];
167 }
168
169 void target_to_host_old_sigset(sigset_t *sigset,
170 const target_ulong *old_sigset)
171 {
172 target_sigset_t d;
173 int i;
174
175 d.sig[0] = *old_sigset;
176 for(i = 1;i < TARGET_NSIG_WORDS; i++)
177 d.sig[i] = 0;
178 target_to_host_sigset(sigset, &d);
179 }
180
181 /* siginfo conversion */
182
183 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
184 const siginfo_t *info)
185 {
186 int sig;
187 sig = host_to_target_signal(info->si_signo);
188 tinfo->si_signo = sig;
189 tinfo->si_errno = 0;
190 tinfo->si_code = 0;
191 if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
192 sig == SIGBUS || sig == SIGTRAP) {
193 /* should never come here, but who knows. The information for
194 the target is irrelevant */
195 tinfo->_sifields._sigfault._addr = 0;
196 } else if (sig >= TARGET_SIGRTMIN) {
197 tinfo->_sifields._rt._pid = info->si_pid;
198 tinfo->_sifields._rt._uid = info->si_uid;
199 /* XXX: potential problem if 64 bit */
200 tinfo->_sifields._rt._sigval.sival_ptr =
201 (target_ulong)info->si_value.sival_ptr;
202 }
203 }
204
205 static void tswap_siginfo(target_siginfo_t *tinfo,
206 const target_siginfo_t *info)
207 {
208 int sig;
209 sig = info->si_signo;
210 tinfo->si_signo = tswap32(sig);
211 tinfo->si_errno = tswap32(info->si_errno);
212 tinfo->si_code = tswap32(info->si_code);
213 if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
214 sig == SIGBUS || sig == SIGTRAP) {
215 tinfo->_sifields._sigfault._addr =
216 tswapl(info->_sifields._sigfault._addr);
217 } else if (sig >= TARGET_SIGRTMIN) {
218 tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid);
219 tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid);
220 tinfo->_sifields._rt._sigval.sival_ptr =
221 tswapl(info->_sifields._rt._sigval.sival_ptr);
222 }
223 }
224
225
226 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
227 {
228 host_to_target_siginfo_noswap(tinfo, info);
229 tswap_siginfo(tinfo, tinfo);
230 }
231
232 /* XXX: we support only POSIX RT signals are used. */
233 /* XXX: find a solution for 64 bit (additionnal malloced data is needed) */
234 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
235 {
236 info->si_signo = tswap32(tinfo->si_signo);
237 info->si_errno = tswap32(tinfo->si_errno);
238 info->si_code = tswap32(tinfo->si_code);
239 info->si_pid = tswap32(tinfo->_sifields._rt._pid);
240 info->si_uid = tswap32(tinfo->_sifields._rt._uid);
241 info->si_value.sival_ptr =
242 (void *)tswapl(tinfo->_sifields._rt._sigval.sival_ptr);
243 }
244
245 void signal_init(void)
246 {
247 struct sigaction act;
248 int i, j;
249
250 /* generate signal conversion tables */
251 for(i = 1; i <= 64; i++) {
252 if (host_to_target_signal_table[i] == 0)
253 host_to_target_signal_table[i] = i;
254 }
255 for(i = 1; i <= 64; i++) {
256 j = host_to_target_signal_table[i];
257 target_to_host_signal_table[j] = i;
258 }
259
260 /* set all host signal handlers. ALL signals are blocked during
261 the handlers to serialize them. */
262 sigfillset(&act.sa_mask);
263 act.sa_flags = SA_SIGINFO;
264 act.sa_sigaction = host_signal_handler;
265 for(i = 1; i < NSIG; i++) {
266 sigaction(i, &act, NULL);
267 }
268
269 memset(sigact_table, 0, sizeof(sigact_table));
270
271 first_free = &sigqueue_table[0];
272 for(i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++)
273 sigqueue_table[i].next = &sigqueue_table[i + 1];
274 sigqueue_table[MAX_SIGQUEUE_SIZE - 1].next = NULL;
275 }
276
277 /* signal queue handling */
278
279 static inline struct sigqueue *alloc_sigqueue(void)
280 {
281 struct sigqueue *q = first_free;
282 if (!q)
283 return NULL;
284 first_free = q->next;
285 return q;
286 }
287
288 static inline void free_sigqueue(struct sigqueue *q)
289 {
290 q->next = first_free;
291 first_free = q;
292 }
293
294 /* abort execution with signal */
295 void __attribute((noreturn)) force_sig(int sig)
296 {
297 int host_sig;
298 host_sig = target_to_host_signal(sig);
299 fprintf(stderr, "qemu: uncaught target signal %d (%s) - exiting\n",
300 sig, strsignal(host_sig));
301 #if 1
302 _exit(-host_sig);
303 #else
304 {
305 struct sigaction act;
306 sigemptyset(&act.sa_mask);
307 act.sa_flags = SA_SIGINFO;
308 act.sa_sigaction = SIG_DFL;
309 sigaction(SIGABRT, &act, NULL);
310 abort();
311 }
312 #endif
313 }
314
315 /* queue a signal so that it will be send to the virtual CPU as soon
316 as possible */
317 int queue_signal(int sig, target_siginfo_t *info)
318 {
319 struct emulated_sigaction *k;
320 struct sigqueue *q, **pq;
321 target_ulong handler;
322
323 #if defined(DEBUG_SIGNAL)
324 fprintf(stderr, "queue_signal: sig=%d\n",
325 sig);
326 #endif
327 k = &sigact_table[sig - 1];
328 handler = k->sa._sa_handler;
329 if (handler == TARGET_SIG_DFL) {
330 /* default handler : ignore some signal. The other are fatal */
331 if (sig != TARGET_SIGCHLD &&
332 sig != TARGET_SIGURG &&
333 sig != TARGET_SIGWINCH) {
334 force_sig(sig);
335 } else {
336 return 0; /* indicate ignored */
337 }
338 } else if (handler == TARGET_SIG_IGN) {
339 /* ignore signal */
340 return 0;
341 } else if (handler == TARGET_SIG_ERR) {
342 force_sig(sig);
343 } else {
344 pq = &k->first;
345 if (sig < TARGET_SIGRTMIN) {
346 /* if non real time signal, we queue exactly one signal */
347 if (!k->pending)
348 q = &k->info;
349 else
350 return 0;
351 } else {
352 if (!k->pending) {
353 /* first signal */
354 q = &k->info;
355 } else {
356 q = alloc_sigqueue();
357 if (!q)
358 return -EAGAIN;
359 while (*pq != NULL)
360 pq = &(*pq)->next;
361 }
362 }
363 *pq = q;
364 q->info = *info;
365 q->next = NULL;
366 k->pending = 1;
367 /* signal that a new signal is pending */
368 signal_pending = 1;
369 return 1; /* indicates that the signal was queued */
370 }
371 }
372
373 static void host_signal_handler(int host_signum, siginfo_t *info,
374 void *puc)
375 {
376 int sig;
377 target_siginfo_t tinfo;
378
379 /* the CPU emulator uses some host signals to detect exceptions,
380 we we forward to it some signals */
381 if (host_signum == SIGSEGV || host_signum == SIGBUS
382 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
383 || host_signum == SIGFPE
384 #endif
385 ) {
386 if (cpu_signal_handler(host_signum, info, puc))
387 return;
388 }
389
390 /* get target signal number */
391 sig = host_to_target_signal(host_signum);
392 if (sig < 1 || sig > TARGET_NSIG)
393 return;
394 #if defined(DEBUG_SIGNAL)
395 fprintf(stderr, "qemu: got signal %d\n", sig);
396 #endif
397 host_to_target_siginfo_noswap(&tinfo, info);
398 if (queue_signal(sig, &tinfo) == 1) {
399 /* interrupt the virtual CPU as soon as possible */
400 cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
401 }
402 }
403
404 int do_sigaction(int sig, const struct target_sigaction *act,
405 struct target_sigaction *oact)
406 {
407 struct emulated_sigaction *k;
408 struct sigaction act1;
409 int host_sig;
410
411 if (sig < 1 || sig > TARGET_NSIG)
412 return -EINVAL;
413 k = &sigact_table[sig - 1];
414 #if defined(DEBUG_SIGNAL)
415 fprintf(stderr, "sigaction sig=%d act=0x%08x, oact=0x%08x\n",
416 sig, (int)act, (int)oact);
417 #endif
418 if (oact) {
419 oact->_sa_handler = tswapl(k->sa._sa_handler);
420 oact->sa_flags = tswapl(k->sa.sa_flags);
421 oact->sa_restorer = tswapl(k->sa.sa_restorer);
422 oact->sa_mask = k->sa.sa_mask;
423 }
424 if (act) {
425 k->sa._sa_handler = tswapl(act->_sa_handler);
426 k->sa.sa_flags = tswapl(act->sa_flags);
427 k->sa.sa_restorer = tswapl(act->sa_restorer);
428 k->sa.sa_mask = act->sa_mask;
429
430 /* we update the host linux signal state */
431 host_sig = target_to_host_signal(sig);
432 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
433 sigfillset(&act1.sa_mask);
434 act1.sa_flags = SA_SIGINFO;
435 if (k->sa.sa_flags & TARGET_SA_RESTART)
436 act1.sa_flags |= SA_RESTART;
437 /* NOTE: it is important to update the host kernel signal
438 ignore state to avoid getting unexpected interrupted
439 syscalls */
440 if (k->sa._sa_handler == TARGET_SIG_IGN) {
441 act1.sa_sigaction = (void *)SIG_IGN;
442 } else if (k->sa._sa_handler == TARGET_SIG_DFL) {
443 act1.sa_sigaction = (void *)SIG_DFL;
444 } else {
445 act1.sa_sigaction = host_signal_handler;
446 }
447 sigaction(host_sig, &act1, NULL);
448 }
449 }
450 return 0;
451 }
452
453 #ifndef offsetof
454 #define offsetof(type, field) ((size_t) &((type *)0)->field)
455 #endif
456
457 static inline int copy_siginfo_to_user(target_siginfo_t *tinfo,
458 const target_siginfo_t *info)
459 {
460 tswap_siginfo(tinfo, info);
461 return 0;
462 }
463
464 #ifdef TARGET_I386
465
466 /* from the Linux kernel */
467
468 struct target_fpreg {
469 uint16_t significand[4];
470 uint16_t exponent;
471 };
472
473 struct target_fpxreg {
474 uint16_t significand[4];
475 uint16_t exponent;
476 uint16_t padding[3];
477 };
478
479 struct target_xmmreg {
480 target_ulong element[4];
481 };
482
483 struct target_fpstate {
484 /* Regular FPU environment */
485 target_ulong cw;
486 target_ulong sw;
487 target_ulong tag;
488 target_ulong ipoff;
489 target_ulong cssel;
490 target_ulong dataoff;
491 target_ulong datasel;
492 struct target_fpreg _st[8];
493 uint16_t status;
494 uint16_t magic; /* 0xffff = regular FPU data only */
495
496 /* FXSR FPU environment */
497 target_ulong _fxsr_env[6]; /* FXSR FPU env is ignored */
498 target_ulong mxcsr;
499 target_ulong reserved;
500 struct target_fpxreg _fxsr_st[8]; /* FXSR FPU reg data is ignored */
501 struct target_xmmreg _xmm[8];
502 target_ulong padding[56];
503 };
504
505 #define X86_FXSR_MAGIC 0x0000
506
507 struct target_sigcontext {
508 uint16_t gs, __gsh;
509 uint16_t fs, __fsh;
510 uint16_t es, __esh;
511 uint16_t ds, __dsh;
512 target_ulong edi;
513 target_ulong esi;
514 target_ulong ebp;
515 target_ulong esp;
516 target_ulong ebx;
517 target_ulong edx;
518 target_ulong ecx;
519 target_ulong eax;
520 target_ulong trapno;
521 target_ulong err;
522 target_ulong eip;
523 uint16_t cs, __csh;
524 target_ulong eflags;
525 target_ulong esp_at_signal;
526 uint16_t ss, __ssh;
527 target_ulong fpstate; /* pointer */
528 target_ulong oldmask;
529 target_ulong cr2;
530 };
531
532 typedef struct target_sigaltstack {
533 target_ulong ss_sp;
534 int ss_flags;
535 target_ulong ss_size;
536 } target_stack_t;
537
538 struct target_ucontext {
539 target_ulong uc_flags;
540 target_ulong uc_link;
541 target_stack_t uc_stack;
542 struct target_sigcontext uc_mcontext;
543 target_sigset_t uc_sigmask; /* mask last for extensibility */
544 };
545
546 struct sigframe
547 {
548 target_ulong pretcode;
549 int sig;
550 struct target_sigcontext sc;
551 struct target_fpstate fpstate;
552 target_ulong extramask[TARGET_NSIG_WORDS-1];
553 char retcode[8];
554 };
555
556 struct rt_sigframe
557 {
558 target_ulong pretcode;
559 int sig;
560 target_ulong pinfo;
561 target_ulong puc;
562 struct target_siginfo info;
563 struct target_ucontext uc;
564 struct target_fpstate fpstate;
565 char retcode[8];
566 };
567
568 /*
569 * Set up a signal frame.
570 */
571
572 /* XXX: save x87 state */
573 static int
574 setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate,
575 CPUX86State *env, unsigned long mask)
576 {
577 int err = 0;
578
579 err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs);
580 err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs);
581 err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es);
582 err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds);
583 err |= __put_user(env->regs[R_EDI], &sc->edi);
584 err |= __put_user(env->regs[R_ESI], &sc->esi);
585 err |= __put_user(env->regs[R_EBP], &sc->ebp);
586 err |= __put_user(env->regs[R_ESP], &sc->esp);
587 err |= __put_user(env->regs[R_EBX], &sc->ebx);
588 err |= __put_user(env->regs[R_EDX], &sc->edx);
589 err |= __put_user(env->regs[R_ECX], &sc->ecx);
590 err |= __put_user(env->regs[R_EAX], &sc->eax);
591 err |= __put_user(env->exception_index, &sc->trapno);
592 err |= __put_user(env->error_code, &sc->err);
593 err |= __put_user(env->eip, &sc->eip);
594 err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs);
595 err |= __put_user(env->eflags, &sc->eflags);
596 err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal);
597 err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss);
598
599 cpu_x86_fsave(env, (void *)fpstate, 1);
600 fpstate->status = fpstate->sw;
601 err |= __put_user(0xffff, &fpstate->magic);
602 err |= __put_user(fpstate, &sc->fpstate);
603
604 /* non-iBCS2 extensions.. */
605 err |= __put_user(mask, &sc->oldmask);
606 err |= __put_user(env->cr[2], &sc->cr2);
607 return err;
608 }
609
610 /*
611 * Determine which stack to use..
612 */
613
614 static inline void *
615 get_sigframe(struct emulated_sigaction *ka, CPUX86State *env, size_t frame_size)
616 {
617 unsigned long esp;
618
619 /* Default to using normal stack */
620 esp = env->regs[R_ESP];
621 #if 0
622 /* This is the X/Open sanctioned signal stack switching. */
623 if (ka->sa.sa_flags & SA_ONSTACK) {
624 if (sas_ss_flags(esp) == 0)
625 esp = current->sas_ss_sp + current->sas_ss_size;
626 }
627
628 /* This is the legacy signal stack switching. */
629 else
630 #endif
631 if ((env->segs[R_SS].selector & 0xffff) != __USER_DS &&
632 !(ka->sa.sa_flags & TARGET_SA_RESTORER) &&
633 ka->sa.sa_restorer) {
634 esp = (unsigned long) ka->sa.sa_restorer;
635 }
636 return (void *)((esp - frame_size) & -8ul);
637 }
638
639 static void setup_frame(int sig, struct emulated_sigaction *ka,
640 target_sigset_t *set, CPUX86State *env)
641 {
642 struct sigframe *frame;
643 int err = 0;
644
645 frame = get_sigframe(ka, env, sizeof(*frame));
646
647 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
648 goto give_sigsegv;
649 err |= __put_user((/*current->exec_domain
650 && current->exec_domain->signal_invmap
651 && sig < 32
652 ? current->exec_domain->signal_invmap[sig]
653 : */ sig),
654 &frame->sig);
655 if (err)
656 goto give_sigsegv;
657
658 setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0]);
659 if (err)
660 goto give_sigsegv;
661
662 if (TARGET_NSIG_WORDS > 1) {
663 err |= __copy_to_user(frame->extramask, &set->sig[1],
664 sizeof(frame->extramask));
665 }
666 if (err)
667 goto give_sigsegv;
668
669 /* Set up to return from userspace. If provided, use a stub
670 already in userspace. */
671 if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
672 err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
673 } else {
674 err |= __put_user(frame->retcode, &frame->pretcode);
675 /* This is popl %eax ; movl $,%eax ; int $0x80 */
676 err |= __put_user(0xb858, (short *)(frame->retcode+0));
677 err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2));
678 err |= __put_user(0x80cd, (short *)(frame->retcode+6));
679 }
680
681 if (err)
682 goto give_sigsegv;
683
684 /* Set up registers for signal handler */
685 env->regs[R_ESP] = (unsigned long) frame;
686 env->eip = (unsigned long) ka->sa._sa_handler;
687
688 cpu_x86_load_seg(env, R_DS, __USER_DS);
689 cpu_x86_load_seg(env, R_ES, __USER_DS);
690 cpu_x86_load_seg(env, R_SS, __USER_DS);
691 cpu_x86_load_seg(env, R_CS, __USER_CS);
692 env->eflags &= ~TF_MASK;
693
694 return;
695
696 give_sigsegv:
697 if (sig == TARGET_SIGSEGV)
698 ka->sa._sa_handler = TARGET_SIG_DFL;
699 force_sig(TARGET_SIGSEGV /* , current */);
700 }
701
702 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
703 target_siginfo_t *info,
704 target_sigset_t *set, CPUX86State *env)
705 {
706 struct rt_sigframe *frame;
707 int err = 0;
708
709 frame = get_sigframe(ka, env, sizeof(*frame));
710
711 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
712 goto give_sigsegv;
713
714 err |= __put_user((/*current->exec_domain
715 && current->exec_domain->signal_invmap
716 && sig < 32
717 ? current->exec_domain->signal_invmap[sig]
718 : */sig),
719 &frame->sig);
720 err |= __put_user((target_ulong)&frame->info, &frame->pinfo);
721 err |= __put_user((target_ulong)&frame->uc, &frame->puc);
722 err |= copy_siginfo_to_user(&frame->info, info);
723 if (err)
724 goto give_sigsegv;
725
726 /* Create the ucontext. */
727 err |= __put_user(0, &frame->uc.uc_flags);
728 err |= __put_user(0, &frame->uc.uc_link);
729 err |= __put_user(/*current->sas_ss_sp*/ 0, &frame->uc.uc_stack.ss_sp);
730 err |= __put_user(/* sas_ss_flags(regs->esp) */ 0,
731 &frame->uc.uc_stack.ss_flags);
732 err |= __put_user(/* current->sas_ss_size */ 0, &frame->uc.uc_stack.ss_size);
733 err |= setup_sigcontext(&frame->uc.uc_mcontext, &frame->fpstate,
734 env, set->sig[0]);
735 err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));
736 if (err)
737 goto give_sigsegv;
738
739 /* Set up to return from userspace. If provided, use a stub
740 already in userspace. */
741 if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
742 err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
743 } else {
744 err |= __put_user(frame->retcode, &frame->pretcode);
745 /* This is movl $,%eax ; int $0x80 */
746 err |= __put_user(0xb8, (char *)(frame->retcode+0));
747 err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1));
748 err |= __put_user(0x80cd, (short *)(frame->retcode+5));
749 }
750
751 if (err)
752 goto give_sigsegv;
753
754 /* Set up registers for signal handler */
755 env->regs[R_ESP] = (unsigned long) frame;
756 env->eip = (unsigned long) ka->sa._sa_handler;
757
758 cpu_x86_load_seg(env, R_DS, __USER_DS);
759 cpu_x86_load_seg(env, R_ES, __USER_DS);
760 cpu_x86_load_seg(env, R_SS, __USER_DS);
761 cpu_x86_load_seg(env, R_CS, __USER_CS);
762 env->eflags &= ~TF_MASK;
763
764 return;
765
766 give_sigsegv:
767 if (sig == TARGET_SIGSEGV)
768 ka->sa._sa_handler = TARGET_SIG_DFL;
769 force_sig(TARGET_SIGSEGV /* , current */);
770 }
771
772 static int
773 restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax)
774 {
775 unsigned int err = 0;
776
777 cpu_x86_load_seg(env, R_GS, lduw(&sc->gs));
778 cpu_x86_load_seg(env, R_FS, lduw(&sc->fs));
779 cpu_x86_load_seg(env, R_ES, lduw(&sc->es));
780 cpu_x86_load_seg(env, R_DS, lduw(&sc->ds));
781
782 env->regs[R_EDI] = ldl(&sc->edi);
783 env->regs[R_ESI] = ldl(&sc->esi);
784 env->regs[R_EBP] = ldl(&sc->ebp);
785 env->regs[R_ESP] = ldl(&sc->esp);
786 env->regs[R_EBX] = ldl(&sc->ebx);
787 env->regs[R_EDX] = ldl(&sc->edx);
788 env->regs[R_ECX] = ldl(&sc->ecx);
789 env->eip = ldl(&sc->eip);
790
791 cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3);
792 cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3);
793
794 {
795 unsigned int tmpflags;
796 tmpflags = ldl(&sc->eflags);
797 env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5);
798 // regs->orig_eax = -1; /* disable syscall checks */
799 }
800
801 {
802 struct _fpstate * buf;
803 buf = (void *)ldl(&sc->fpstate);
804 if (buf) {
805 #if 0
806 if (verify_area(VERIFY_READ, buf, sizeof(*buf)))
807 goto badframe;
808 #endif
809 cpu_x86_frstor(env, (void *)buf, 1);
810 }
811 }
812
813 *peax = ldl(&sc->eax);
814 return err;
815 #if 0
816 badframe:
817 return 1;
818 #endif
819 }
820
821 long do_sigreturn(CPUX86State *env)
822 {
823 struct sigframe *frame = (struct sigframe *)(env->regs[R_ESP] - 8);
824 target_sigset_t target_set;
825 sigset_t set;
826 int eax, i;
827
828 #if defined(DEBUG_SIGNAL)
829 fprintf(stderr, "do_sigreturn\n");
830 #endif
831 /* set blocked signals */
832 target_set.sig[0] = frame->sc.oldmask;
833 for(i = 1; i < TARGET_NSIG_WORDS; i++)
834 target_set.sig[i] = frame->extramask[i - 1];
835
836 target_to_host_sigset(&set, &target_set);
837 sigprocmask(SIG_SETMASK, &set, NULL);
838
839 /* restore registers */
840 if (restore_sigcontext(env, &frame->sc, &eax))
841 goto badframe;
842 return eax;
843
844 badframe:
845 force_sig(TARGET_SIGSEGV);
846 return 0;
847 }
848
849 long do_rt_sigreturn(CPUX86State *env)
850 {
851 struct rt_sigframe *frame = (struct rt_sigframe *)(env->regs[R_ESP] - 4);
852 target_sigset_t target_set;
853 sigset_t set;
854 // stack_t st;
855 int eax;
856
857 #if 0
858 if (verify_area(VERIFY_READ, frame, sizeof(*frame)))
859 goto badframe;
860 #endif
861 memcpy(&target_set, &frame->uc.uc_sigmask, sizeof(target_sigset_t));
862
863 target_to_host_sigset(&set, &target_set);
864 sigprocmask(SIG_SETMASK, &set, NULL);
865
866 if (restore_sigcontext(env, &frame->uc.uc_mcontext, &eax))
867 goto badframe;
868
869 #if 0
870 if (__copy_from_user(&st, &frame->uc.uc_stack, sizeof(st)))
871 goto badframe;
872 /* It is more difficult to avoid calling this function than to
873 call it and ignore errors. */
874 do_sigaltstack(&st, NULL, regs->esp);
875 #endif
876 return eax;
877
878 badframe:
879 force_sig(TARGET_SIGSEGV);
880 return 0;
881 }
882
883 #elif defined(TARGET_ARM)
884
885 struct target_sigcontext {
886 target_ulong trap_no;
887 target_ulong error_code;
888 target_ulong oldmask;
889 target_ulong arm_r0;
890 target_ulong arm_r1;
891 target_ulong arm_r2;
892 target_ulong arm_r3;
893 target_ulong arm_r4;
894 target_ulong arm_r5;
895 target_ulong arm_r6;
896 target_ulong arm_r7;
897 target_ulong arm_r8;
898 target_ulong arm_r9;
899 target_ulong arm_r10;
900 target_ulong arm_fp;
901 target_ulong arm_ip;
902 target_ulong arm_sp;
903 target_ulong arm_lr;
904 target_ulong arm_pc;
905 target_ulong arm_cpsr;
906 target_ulong fault_address;
907 };
908
909 typedef struct target_sigaltstack {
910 target_ulong ss_sp;
911 int ss_flags;
912 target_ulong ss_size;
913 } target_stack_t;
914
915 struct target_ucontext {
916 target_ulong uc_flags;
917 target_ulong uc_link;
918 target_stack_t uc_stack;
919 struct target_sigcontext uc_mcontext;
920 target_sigset_t uc_sigmask; /* mask last for extensibility */
921 };
922
923 struct sigframe
924 {
925 struct target_sigcontext sc;
926 target_ulong extramask[TARGET_NSIG_WORDS-1];
927 target_ulong retcode;
928 };
929
930 struct rt_sigframe
931 {
932 struct target_siginfo *pinfo;
933 void *puc;
934 struct target_siginfo info;
935 struct target_ucontext uc;
936 target_ulong retcode;
937 };
938
939 #define TARGET_CONFIG_CPU_32 1
940
941 /*
942 * For ARM syscalls, we encode the syscall number into the instruction.
943 */
944 #define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE))
945 #define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE))
946
947 /*
948 * For Thumb syscalls, we pass the syscall number via r7. We therefore
949 * need two 16-bit instructions.
950 */
951 #define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn))
952 #define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn))
953
954 static const target_ulong retcodes[4] = {
955 SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN,
956 SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN
957 };
958
959
960 #define __put_user_error(x,p,e) __put_user(x, p)
961 #define __get_user_error(x,p,e) __get_user(x, p)
962
963 static inline int valid_user_regs(CPUState *regs)
964 {
965 return 1;
966 }
967
968 static int
969 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
970 CPUState *env, unsigned long mask)
971 {
972 int err = 0;
973
974 __put_user_error(env->regs[0], &sc->arm_r0, err);
975 __put_user_error(env->regs[1], &sc->arm_r1, err);
976 __put_user_error(env->regs[2], &sc->arm_r2, err);
977 __put_user_error(env->regs[3], &sc->arm_r3, err);
978 __put_user_error(env->regs[4], &sc->arm_r4, err);
979 __put_user_error(env->regs[5], &sc->arm_r5, err);
980 __put_user_error(env->regs[6], &sc->arm_r6, err);
981 __put_user_error(env->regs[7], &sc->arm_r7, err);
982 __put_user_error(env->regs[8], &sc->arm_r8, err);
983 __put_user_error(env->regs[9], &sc->arm_r9, err);
984 __put_user_error(env->regs[10], &sc->arm_r10, err);
985 __put_user_error(env->regs[11], &sc->arm_fp, err);
986 __put_user_error(env->regs[12], &sc->arm_ip, err);
987 __put_user_error(env->regs[13], &sc->arm_sp, err);
988 __put_user_error(env->regs[14], &sc->arm_lr, err);
989 __put_user_error(env->regs[15], &sc->arm_pc, err);
990 #ifdef TARGET_CONFIG_CPU_32
991 __put_user_error(env->cpsr, &sc->arm_cpsr, err);
992 #endif
993
994 __put_user_error(/* current->thread.trap_no */ 0, &sc->trap_no, err);
995 __put_user_error(/* current->thread.error_code */ 0, &sc->error_code, err);
996 __put_user_error(/* current->thread.address */ 0, &sc->fault_address, err);
997 __put_user_error(mask, &sc->oldmask, err);
998
999 return err;
1000 }
1001
1002 static inline void *
1003 get_sigframe(struct emulated_sigaction *ka, CPUState *regs, int framesize)
1004 {
1005 unsigned long sp = regs->regs[13];
1006
1007 #if 0
1008 /*
1009 * This is the X/Open sanctioned signal stack switching.
1010 */
1011 if ((ka->sa.sa_flags & SA_ONSTACK) && !sas_ss_flags(sp))
1012 sp = current->sas_ss_sp + current->sas_ss_size;
1013 #endif
1014 /*
1015 * ATPCS B01 mandates 8-byte alignment
1016 */
1017 return (void *)((sp - framesize) & ~7);
1018 }
1019
1020 static int
1021 setup_return(CPUState *env, struct emulated_sigaction *ka,
1022 target_ulong *rc, void *frame, int usig)
1023 {
1024 target_ulong handler = (target_ulong)ka->sa._sa_handler;
1025 target_ulong retcode;
1026 int thumb = 0;
1027 #if defined(TARGET_CONFIG_CPU_32)
1028 target_ulong cpsr = env->cpsr;
1029
1030 #if 0
1031 /*
1032 * Maybe we need to deliver a 32-bit signal to a 26-bit task.
1033 */
1034 if (ka->sa.sa_flags & SA_THIRTYTWO)
1035 cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
1036
1037 #ifdef CONFIG_ARM_THUMB
1038 if (elf_hwcap & HWCAP_THUMB) {
1039 /*
1040 * The LSB of the handler determines if we're going to
1041 * be using THUMB or ARM mode for this signal handler.
1042 */
1043 thumb = handler & 1;
1044
1045 if (thumb)
1046 cpsr |= T_BIT;
1047 else
1048 cpsr &= ~T_BIT;
1049 }
1050 #endif
1051 #endif
1052 #endif /* TARGET_CONFIG_CPU_32 */
1053
1054 if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
1055 retcode = (target_ulong)ka->sa.sa_restorer;
1056 } else {
1057 unsigned int idx = thumb;
1058
1059 if (ka->sa.sa_flags & TARGET_SA_SIGINFO)
1060 idx += 2;
1061
1062 if (__put_user(retcodes[idx], rc))
1063 return 1;
1064 #if 0
1065 flush_icache_range((target_ulong)rc,
1066 (target_ulong)(rc + 1));
1067 #endif
1068 retcode = ((target_ulong)rc) + thumb;
1069 }
1070
1071 env->regs[0] = usig;
1072 env->regs[13] = (target_ulong)frame;
1073 env->regs[14] = retcode;
1074 env->regs[15] = handler & (thumb ? ~1 : ~3);
1075
1076 #ifdef TARGET_CONFIG_CPU_32
1077 env->cpsr = cpsr;
1078 #endif
1079
1080 return 0;
1081 }
1082
1083 static void setup_frame(int usig, struct emulated_sigaction *ka,
1084 target_sigset_t *set, CPUState *regs)
1085 {
1086 struct sigframe *frame = get_sigframe(ka, regs, sizeof(*frame));
1087 int err = 0;
1088
1089 err |= setup_sigcontext(&frame->sc, /*&frame->fpstate,*/ regs, set->sig[0]);
1090
1091 if (TARGET_NSIG_WORDS > 1) {
1092 err |= __copy_to_user(frame->extramask, &set->sig[1],
1093 sizeof(frame->extramask));
1094 }
1095
1096 if (err == 0)
1097 err = setup_return(regs, ka, &frame->retcode, frame, usig);
1098 // return err;
1099 }
1100
1101 static void setup_rt_frame(int usig, struct emulated_sigaction *ka,
1102 target_siginfo_t *info,
1103 target_sigset_t *set, CPUState *env)
1104 {
1105 struct rt_sigframe *frame = get_sigframe(ka, env, sizeof(*frame));
1106 int err = 0;
1107
1108 if (!access_ok(VERIFY_WRITE, frame, sizeof (*frame)))
1109 return /* 1 */;
1110
1111 __put_user_error(&frame->info, (target_ulong *)&frame->pinfo, err);
1112 __put_user_error(&frame->uc, (target_ulong *)&frame->puc, err);
1113 err |= copy_siginfo_to_user(&frame->info, info);
1114
1115 /* Clear all the bits of the ucontext we don't use. */
1116 err |= __clear_user(&frame->uc, offsetof(struct ucontext, uc_mcontext));
1117
1118 err |= setup_sigcontext(&frame->uc.uc_mcontext, /*&frame->fpstate,*/
1119 env, set->sig[0]);
1120 err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set));
1121
1122 if (err == 0)
1123 err = setup_return(env, ka, &frame->retcode, frame, usig);
1124
1125 if (err == 0) {
1126 /*
1127 * For realtime signals we must also set the second and third
1128 * arguments for the signal handler.
1129 * -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
1130 */
1131 env->regs[1] = (target_ulong)frame->pinfo;
1132 env->regs[2] = (target_ulong)frame->puc;
1133 }
1134
1135 // return err;
1136 }
1137
1138 static int
1139 restore_sigcontext(CPUState *env, struct target_sigcontext *sc)
1140 {
1141 int err = 0;
1142
1143 __get_user_error(env->regs[0], &sc->arm_r0, err);
1144 __get_user_error(env->regs[1], &sc->arm_r1, err);
1145 __get_user_error(env->regs[2], &sc->arm_r2, err);
1146 __get_user_error(env->regs[3], &sc->arm_r3, err);
1147 __get_user_error(env->regs[4], &sc->arm_r4, err);
1148 __get_user_error(env->regs[5], &sc->arm_r5, err);
1149 __get_user_error(env->regs[6], &sc->arm_r6, err);
1150 __get_user_error(env->regs[7], &sc->arm_r7, err);
1151 __get_user_error(env->regs[8], &sc->arm_r8, err);
1152 __get_user_error(env->regs[9], &sc->arm_r9, err);
1153 __get_user_error(env->regs[10], &sc->arm_r10, err);
1154 __get_user_error(env->regs[11], &sc->arm_fp, err);
1155 __get_user_error(env->regs[12], &sc->arm_ip, err);
1156 __get_user_error(env->regs[13], &sc->arm_sp, err);
1157 __get_user_error(env->regs[14], &sc->arm_lr, err);
1158 __get_user_error(env->regs[15], &sc->arm_pc, err);
1159 #ifdef TARGET_CONFIG_CPU_32
1160 __get_user_error(env->cpsr, &sc->arm_cpsr, err);
1161 #endif
1162
1163 err |= !valid_user_regs(env);
1164
1165 return err;
1166 }
1167
1168 long do_sigreturn(CPUState *env)
1169 {
1170 struct sigframe *frame;
1171 target_sigset_t set;
1172 sigset_t host_set;
1173
1174 /*
1175 * Since we stacked the signal on a 64-bit boundary,
1176 * then 'sp' should be word aligned here. If it's
1177 * not, then the user is trying to mess with us.
1178 */
1179 if (env->regs[13] & 7)
1180 goto badframe;
1181
1182 frame = (struct sigframe *)env->regs[13];
1183
1184 #if 0
1185 if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
1186 goto badframe;
1187 #endif
1188 if (__get_user(set.sig[0], &frame->sc.oldmask)
1189 || (TARGET_NSIG_WORDS > 1
1190 && __copy_from_user(&set.sig[1], &frame->extramask,
1191 sizeof(frame->extramask))))
1192 goto badframe;
1193
1194 target_to_host_sigset(&host_set, &set);
1195 sigprocmask(SIG_SETMASK, &host_set, NULL);
1196
1197 if (restore_sigcontext(env, &frame->sc))
1198 goto badframe;
1199
1200 #if 0
1201 /* Send SIGTRAP if we're single-stepping */
1202 if (ptrace_cancel_bpt(current))
1203 send_sig(SIGTRAP, current, 1);
1204 #endif
1205 return env->regs[0];
1206
1207 badframe:
1208 force_sig(SIGSEGV /* , current */);
1209 return 0;
1210 }
1211
1212 long do_rt_sigreturn(CPUState *env)
1213 {
1214 struct rt_sigframe *frame;
1215 target_sigset_t set;
1216 sigset_t host_set;
1217
1218 /*
1219 * Since we stacked the signal on a 64-bit boundary,
1220 * then 'sp' should be word aligned here. If it's
1221 * not, then the user is trying to mess with us.
1222 */
1223 if (env->regs[13] & 7)
1224 goto badframe;
1225
1226 frame = (struct rt_sigframe *)env->regs[13];
1227
1228 #if 0
1229 if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
1230 goto badframe;
1231 #endif
1232 if (__copy_from_user(&set, &frame->uc.uc_sigmask, sizeof(set)))
1233 goto badframe;
1234
1235 target_to_host_sigset(&host_set, &set);
1236 sigprocmask(SIG_SETMASK, &host_set, NULL);
1237
1238 if (restore_sigcontext(env, &frame->uc.uc_mcontext))
1239 goto badframe;
1240
1241 #if 0
1242 /* Send SIGTRAP if we're single-stepping */
1243 if (ptrace_cancel_bpt(current))
1244 send_sig(SIGTRAP, current, 1);
1245 #endif
1246 return env->regs[0];
1247
1248 badframe:
1249 force_sig(SIGSEGV /* , current */);
1250 return 0;
1251 }
1252
1253 #else
1254
1255 static void setup_frame(int sig, struct emulated_sigaction *ka,
1256 target_sigset_t *set, CPUState *env)
1257 {
1258 fprintf(stderr, "setup_frame: not implemented\n");
1259 }
1260
1261 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
1262 target_siginfo_t *info,
1263 target_sigset_t *set, CPUState *env)
1264 {
1265 fprintf(stderr, "setup_rt_frame: not implemented\n");
1266 }
1267
1268 long do_sigreturn(CPUState *env)
1269 {
1270 fprintf(stderr, "do_sigreturn: not implemented\n");
1271 return -ENOSYS;
1272 }
1273
1274 long do_rt_sigreturn(CPUState *env)
1275 {
1276 fprintf(stderr, "do_rt_sigreturn: not implemented\n");
1277 return -ENOSYS;
1278 }
1279
1280 #endif
1281
1282 void process_pending_signals(void *cpu_env)
1283 {
1284 int sig;
1285 target_ulong handler;
1286 sigset_t set, old_set;
1287 target_sigset_t target_old_set;
1288 struct emulated_sigaction *k;
1289 struct sigqueue *q;
1290
1291 if (!signal_pending)
1292 return;
1293
1294 k = sigact_table;
1295 for(sig = 1; sig <= TARGET_NSIG; sig++) {
1296 if (k->pending)
1297 goto handle_signal;
1298 k++;
1299 }
1300 /* if no signal is pending, just return */
1301 signal_pending = 0;
1302 return;
1303
1304 handle_signal:
1305 #ifdef DEBUG_SIGNAL
1306 fprintf(stderr, "qemu: process signal %d\n", sig);
1307 #endif
1308 /* dequeue signal */
1309 q = k->first;
1310 k->first = q->next;
1311 if (!k->first)
1312 k->pending = 0;
1313
1314 handler = k->sa._sa_handler;
1315 if (handler == TARGET_SIG_DFL) {
1316 /* default handler : ignore some signal. The other are fatal */
1317 if (sig != TARGET_SIGCHLD &&
1318 sig != TARGET_SIGURG &&
1319 sig != TARGET_SIGWINCH) {
1320 force_sig(sig);
1321 }
1322 } else if (handler == TARGET_SIG_IGN) {
1323 /* ignore sig */
1324 } else if (handler == TARGET_SIG_ERR) {
1325 force_sig(sig);
1326 } else {
1327 /* compute the blocked signals during the handler execution */
1328 target_to_host_sigset(&set, &k->sa.sa_mask);
1329 /* SA_NODEFER indicates that the current signal should not be
1330 blocked during the handler */
1331 if (!(k->sa.sa_flags & TARGET_SA_NODEFER))
1332 sigaddset(&set, target_to_host_signal(sig));
1333
1334 /* block signals in the handler using Linux */
1335 sigprocmask(SIG_BLOCK, &set, &old_set);
1336 /* save the previous blocked signal state to restore it at the
1337 end of the signal execution (see do_sigreturn) */
1338 host_to_target_sigset(&target_old_set, &old_set);
1339
1340 /* if the CPU is in VM86 mode, we restore the 32 bit values */
1341 #ifdef TARGET_I386
1342 {
1343 CPUX86State *env = cpu_env;
1344 if (env->eflags & VM_MASK)
1345 save_v86_state(env);
1346 }
1347 #endif
1348 /* prepare the stack frame of the virtual CPU */
1349 if (k->sa.sa_flags & TARGET_SA_SIGINFO)
1350 setup_rt_frame(sig, k, &q->info, &target_old_set, cpu_env);
1351 else
1352 setup_frame(sig, k, &target_old_set, cpu_env);
1353 if (k->sa.sa_flags & TARGET_SA_RESETHAND)
1354 k->sa._sa_handler = TARGET_SIG_DFL;
1355 }
1356 if (q != &k->info)
1357 free_sigqueue(q);
1358 }
1359
1360