]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/signal.c
SPARC merge
[mirror_qemu.git] / linux-user / signal.c
1 /*
2 * Emulation of Linux signals
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <string.h>
23 #include <stdarg.h>
24 #include <unistd.h>
25 #include <signal.h>
26 #include <errno.h>
27 #include <sys/ucontext.h>
28
29 #ifdef __ia64__
30 #undef uc_mcontext
31 #undef uc_sigmask
32 #undef uc_stack
33 #undef uc_link
34 #endif
35
36 #include "qemu.h"
37
38 //#define DEBUG_SIGNAL
39
40 #define MAX_SIGQUEUE_SIZE 1024
41
42 struct sigqueue {
43 struct sigqueue *next;
44 target_siginfo_t info;
45 };
46
47 struct emulated_sigaction {
48 struct target_sigaction sa;
49 int pending; /* true if signal is pending */
50 struct sigqueue *first;
51 struct sigqueue info; /* in order to always have memory for the
52 first signal, we put it here */
53 };
54
55 static struct emulated_sigaction sigact_table[TARGET_NSIG];
56 static struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
57 static struct sigqueue *first_free; /* first free siginfo queue entry */
58 static int signal_pending; /* non zero if a signal may be pending */
59
60 static void host_signal_handler(int host_signum, siginfo_t *info,
61 void *puc);
62
63 static uint8_t host_to_target_signal_table[65] = {
64 [SIGHUP] = TARGET_SIGHUP,
65 [SIGINT] = TARGET_SIGINT,
66 [SIGQUIT] = TARGET_SIGQUIT,
67 [SIGILL] = TARGET_SIGILL,
68 [SIGTRAP] = TARGET_SIGTRAP,
69 [SIGABRT] = TARGET_SIGABRT,
70 /* [SIGIOT] = TARGET_SIGIOT,*/
71 [SIGBUS] = TARGET_SIGBUS,
72 [SIGFPE] = TARGET_SIGFPE,
73 [SIGKILL] = TARGET_SIGKILL,
74 [SIGUSR1] = TARGET_SIGUSR1,
75 [SIGSEGV] = TARGET_SIGSEGV,
76 [SIGUSR2] = TARGET_SIGUSR2,
77 [SIGPIPE] = TARGET_SIGPIPE,
78 [SIGALRM] = TARGET_SIGALRM,
79 [SIGTERM] = TARGET_SIGTERM,
80 #ifdef SIGSTKFLT
81 [SIGSTKFLT] = TARGET_SIGSTKFLT,
82 #endif
83 [SIGCHLD] = TARGET_SIGCHLD,
84 [SIGCONT] = TARGET_SIGCONT,
85 [SIGSTOP] = TARGET_SIGSTOP,
86 [SIGTSTP] = TARGET_SIGTSTP,
87 [SIGTTIN] = TARGET_SIGTTIN,
88 [SIGTTOU] = TARGET_SIGTTOU,
89 [SIGURG] = TARGET_SIGURG,
90 [SIGXCPU] = TARGET_SIGXCPU,
91 [SIGXFSZ] = TARGET_SIGXFSZ,
92 [SIGVTALRM] = TARGET_SIGVTALRM,
93 [SIGPROF] = TARGET_SIGPROF,
94 [SIGWINCH] = TARGET_SIGWINCH,
95 [SIGIO] = TARGET_SIGIO,
96 [SIGPWR] = TARGET_SIGPWR,
97 [SIGSYS] = TARGET_SIGSYS,
98 /* next signals stay the same */
99 };
100 static uint8_t target_to_host_signal_table[65];
101
102 static inline int host_to_target_signal(int sig)
103 {
104 return host_to_target_signal_table[sig];
105 }
106
107 static inline int target_to_host_signal(int sig)
108 {
109 return target_to_host_signal_table[sig];
110 }
111
112 static void host_to_target_sigset_internal(target_sigset_t *d,
113 const sigset_t *s)
114 {
115 int i;
116 unsigned long sigmask;
117 uint32_t target_sigmask;
118
119 sigmask = ((unsigned long *)s)[0];
120 target_sigmask = 0;
121 for(i = 0; i < 32; i++) {
122 if (sigmask & (1 << i))
123 target_sigmask |= 1 << (host_to_target_signal(i + 1) - 1);
124 }
125 #if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32
126 d->sig[0] = target_sigmask;
127 for(i = 1;i < TARGET_NSIG_WORDS; i++) {
128 d->sig[i] = ((unsigned long *)s)[i];
129 }
130 #elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
131 d->sig[0] = target_sigmask;
132 d->sig[1] = sigmask >> 32;
133 #else
134 #error host_to_target_sigset
135 #endif
136 }
137
138 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
139 {
140 target_sigset_t d1;
141 int i;
142
143 host_to_target_sigset_internal(&d1, s);
144 for(i = 0;i < TARGET_NSIG_WORDS; i++)
145 __put_user(d1.sig[i], &d->sig[i]);
146 }
147
148 void target_to_host_sigset_internal(sigset_t *d, const target_sigset_t *s)
149 {
150 int i;
151 unsigned long sigmask;
152 target_ulong target_sigmask;
153
154 target_sigmask = s->sig[0];
155 sigmask = 0;
156 for(i = 0; i < 32; i++) {
157 if (target_sigmask & (1 << i))
158 sigmask |= 1 << (target_to_host_signal(i + 1) - 1);
159 }
160 #if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32
161 ((unsigned long *)d)[0] = sigmask;
162 for(i = 1;i < TARGET_NSIG_WORDS; i++) {
163 ((unsigned long *)d)[i] = s->sig[i];
164 }
165 #elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2
166 ((unsigned long *)d)[0] = sigmask | ((unsigned long)(s->sig[1]) << 32);
167 #else
168 #error target_to_host_sigset
169 #endif /* TARGET_LONG_BITS */
170 }
171
172 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
173 {
174 target_sigset_t s1;
175 int i;
176
177 for(i = 0;i < TARGET_NSIG_WORDS; i++)
178 __get_user(s1.sig[i], &s->sig[i]);
179 target_to_host_sigset_internal(d, &s1);
180 }
181
182 void host_to_target_old_sigset(target_ulong *old_sigset,
183 const sigset_t *sigset)
184 {
185 target_sigset_t d;
186 host_to_target_sigset(&d, sigset);
187 *old_sigset = d.sig[0];
188 }
189
190 void target_to_host_old_sigset(sigset_t *sigset,
191 const target_ulong *old_sigset)
192 {
193 target_sigset_t d;
194 int i;
195
196 d.sig[0] = *old_sigset;
197 for(i = 1;i < TARGET_NSIG_WORDS; i++)
198 d.sig[i] = 0;
199 target_to_host_sigset(sigset, &d);
200 }
201
202 /* siginfo conversion */
203
204 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
205 const siginfo_t *info)
206 {
207 int sig;
208 sig = host_to_target_signal(info->si_signo);
209 tinfo->si_signo = sig;
210 tinfo->si_errno = 0;
211 tinfo->si_code = 0;
212 if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
213 sig == SIGBUS || sig == SIGTRAP) {
214 /* should never come here, but who knows. The information for
215 the target is irrelevant */
216 tinfo->_sifields._sigfault._addr = 0;
217 } else if (sig >= TARGET_SIGRTMIN) {
218 tinfo->_sifields._rt._pid = info->si_pid;
219 tinfo->_sifields._rt._uid = info->si_uid;
220 /* XXX: potential problem if 64 bit */
221 tinfo->_sifields._rt._sigval.sival_ptr =
222 (target_ulong)info->si_value.sival_ptr;
223 }
224 }
225
226 static void tswap_siginfo(target_siginfo_t *tinfo,
227 const target_siginfo_t *info)
228 {
229 int sig;
230 sig = info->si_signo;
231 tinfo->si_signo = tswap32(sig);
232 tinfo->si_errno = tswap32(info->si_errno);
233 tinfo->si_code = tswap32(info->si_code);
234 if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV ||
235 sig == SIGBUS || sig == SIGTRAP) {
236 tinfo->_sifields._sigfault._addr =
237 tswapl(info->_sifields._sigfault._addr);
238 } else if (sig >= TARGET_SIGRTMIN) {
239 tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid);
240 tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid);
241 tinfo->_sifields._rt._sigval.sival_ptr =
242 tswapl(info->_sifields._rt._sigval.sival_ptr);
243 }
244 }
245
246
247 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
248 {
249 host_to_target_siginfo_noswap(tinfo, info);
250 tswap_siginfo(tinfo, tinfo);
251 }
252
253 /* XXX: we support only POSIX RT signals are used. */
254 /* XXX: find a solution for 64 bit (additionnal malloced data is needed) */
255 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
256 {
257 info->si_signo = tswap32(tinfo->si_signo);
258 info->si_errno = tswap32(tinfo->si_errno);
259 info->si_code = tswap32(tinfo->si_code);
260 info->si_pid = tswap32(tinfo->_sifields._rt._pid);
261 info->si_uid = tswap32(tinfo->_sifields._rt._uid);
262 info->si_value.sival_ptr =
263 (void *)tswapl(tinfo->_sifields._rt._sigval.sival_ptr);
264 }
265
266 void signal_init(void)
267 {
268 struct sigaction act;
269 int i, j;
270
271 /* generate signal conversion tables */
272 for(i = 1; i <= 64; i++) {
273 if (host_to_target_signal_table[i] == 0)
274 host_to_target_signal_table[i] = i;
275 }
276 for(i = 1; i <= 64; i++) {
277 j = host_to_target_signal_table[i];
278 target_to_host_signal_table[j] = i;
279 }
280
281 /* set all host signal handlers. ALL signals are blocked during
282 the handlers to serialize them. */
283 sigfillset(&act.sa_mask);
284 act.sa_flags = SA_SIGINFO;
285 act.sa_sigaction = host_signal_handler;
286 for(i = 1; i < NSIG; i++) {
287 sigaction(i, &act, NULL);
288 }
289
290 memset(sigact_table, 0, sizeof(sigact_table));
291
292 first_free = &sigqueue_table[0];
293 for(i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++)
294 sigqueue_table[i].next = &sigqueue_table[i + 1];
295 sigqueue_table[MAX_SIGQUEUE_SIZE - 1].next = NULL;
296 }
297
298 /* signal queue handling */
299
300 static inline struct sigqueue *alloc_sigqueue(void)
301 {
302 struct sigqueue *q = first_free;
303 if (!q)
304 return NULL;
305 first_free = q->next;
306 return q;
307 }
308
309 static inline void free_sigqueue(struct sigqueue *q)
310 {
311 q->next = first_free;
312 first_free = q;
313 }
314
315 /* abort execution with signal */
316 void __attribute((noreturn)) force_sig(int sig)
317 {
318 int host_sig;
319 host_sig = target_to_host_signal(sig);
320 fprintf(stderr, "qemu: uncaught target signal %d (%s) - exiting\n",
321 sig, strsignal(host_sig));
322 #if 1
323 _exit(-host_sig);
324 #else
325 {
326 struct sigaction act;
327 sigemptyset(&act.sa_mask);
328 act.sa_flags = SA_SIGINFO;
329 act.sa_sigaction = SIG_DFL;
330 sigaction(SIGABRT, &act, NULL);
331 abort();
332 }
333 #endif
334 }
335
336 /* queue a signal so that it will be send to the virtual CPU as soon
337 as possible */
338 int queue_signal(int sig, target_siginfo_t *info)
339 {
340 struct emulated_sigaction *k;
341 struct sigqueue *q, **pq;
342 target_ulong handler;
343
344 #if defined(DEBUG_SIGNAL)
345 fprintf(stderr, "queue_signal: sig=%d\n",
346 sig);
347 #endif
348 k = &sigact_table[sig - 1];
349 handler = k->sa._sa_handler;
350 if (handler == TARGET_SIG_DFL) {
351 /* default handler : ignore some signal. The other are fatal */
352 if (sig != TARGET_SIGCHLD &&
353 sig != TARGET_SIGURG &&
354 sig != TARGET_SIGWINCH) {
355 force_sig(sig);
356 } else {
357 return 0; /* indicate ignored */
358 }
359 } else if (handler == TARGET_SIG_IGN) {
360 /* ignore signal */
361 return 0;
362 } else if (handler == TARGET_SIG_ERR) {
363 force_sig(sig);
364 } else {
365 pq = &k->first;
366 if (sig < TARGET_SIGRTMIN) {
367 /* if non real time signal, we queue exactly one signal */
368 if (!k->pending)
369 q = &k->info;
370 else
371 return 0;
372 } else {
373 if (!k->pending) {
374 /* first signal */
375 q = &k->info;
376 } else {
377 q = alloc_sigqueue();
378 if (!q)
379 return -EAGAIN;
380 while (*pq != NULL)
381 pq = &(*pq)->next;
382 }
383 }
384 *pq = q;
385 q->info = *info;
386 q->next = NULL;
387 k->pending = 1;
388 /* signal that a new signal is pending */
389 signal_pending = 1;
390 return 1; /* indicates that the signal was queued */
391 }
392 }
393
394 static void host_signal_handler(int host_signum, siginfo_t *info,
395 void *puc)
396 {
397 int sig;
398 target_siginfo_t tinfo;
399
400 /* the CPU emulator uses some host signals to detect exceptions,
401 we we forward to it some signals */
402 if (host_signum == SIGSEGV || host_signum == SIGBUS
403 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
404 || host_signum == SIGFPE
405 #endif
406 ) {
407 if (cpu_signal_handler(host_signum, info, puc))
408 return;
409 }
410
411 /* get target signal number */
412 sig = host_to_target_signal(host_signum);
413 if (sig < 1 || sig > TARGET_NSIG)
414 return;
415 #if defined(DEBUG_SIGNAL)
416 fprintf(stderr, "qemu: got signal %d\n", sig);
417 #endif
418 host_to_target_siginfo_noswap(&tinfo, info);
419 if (queue_signal(sig, &tinfo) == 1) {
420 /* interrupt the virtual CPU as soon as possible */
421 cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
422 }
423 }
424
425 int do_sigaction(int sig, const struct target_sigaction *act,
426 struct target_sigaction *oact)
427 {
428 struct emulated_sigaction *k;
429 struct sigaction act1;
430 int host_sig;
431
432 if (sig < 1 || sig > TARGET_NSIG)
433 return -EINVAL;
434 k = &sigact_table[sig - 1];
435 #if defined(DEBUG_SIGNAL)
436 fprintf(stderr, "sigaction sig=%d act=0x%08x, oact=0x%08x\n",
437 sig, (int)act, (int)oact);
438 #endif
439 if (oact) {
440 oact->_sa_handler = tswapl(k->sa._sa_handler);
441 oact->sa_flags = tswapl(k->sa.sa_flags);
442 oact->sa_restorer = tswapl(k->sa.sa_restorer);
443 oact->sa_mask = k->sa.sa_mask;
444 }
445 if (act) {
446 k->sa._sa_handler = tswapl(act->_sa_handler);
447 k->sa.sa_flags = tswapl(act->sa_flags);
448 k->sa.sa_restorer = tswapl(act->sa_restorer);
449 k->sa.sa_mask = act->sa_mask;
450
451 /* we update the host linux signal state */
452 host_sig = target_to_host_signal(sig);
453 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
454 sigfillset(&act1.sa_mask);
455 act1.sa_flags = SA_SIGINFO;
456 if (k->sa.sa_flags & TARGET_SA_RESTART)
457 act1.sa_flags |= SA_RESTART;
458 /* NOTE: it is important to update the host kernel signal
459 ignore state to avoid getting unexpected interrupted
460 syscalls */
461 if (k->sa._sa_handler == TARGET_SIG_IGN) {
462 act1.sa_sigaction = (void *)SIG_IGN;
463 } else if (k->sa._sa_handler == TARGET_SIG_DFL) {
464 act1.sa_sigaction = (void *)SIG_DFL;
465 } else {
466 act1.sa_sigaction = host_signal_handler;
467 }
468 sigaction(host_sig, &act1, NULL);
469 }
470 }
471 return 0;
472 }
473
474 #ifndef offsetof
475 #define offsetof(type, field) ((size_t) &((type *)0)->field)
476 #endif
477
478 static inline int copy_siginfo_to_user(target_siginfo_t *tinfo,
479 const target_siginfo_t *info)
480 {
481 tswap_siginfo(tinfo, info);
482 return 0;
483 }
484
485 #ifdef TARGET_I386
486
487 /* from the Linux kernel */
488
489 struct target_fpreg {
490 uint16_t significand[4];
491 uint16_t exponent;
492 };
493
494 struct target_fpxreg {
495 uint16_t significand[4];
496 uint16_t exponent;
497 uint16_t padding[3];
498 };
499
500 struct target_xmmreg {
501 target_ulong element[4];
502 };
503
504 struct target_fpstate {
505 /* Regular FPU environment */
506 target_ulong cw;
507 target_ulong sw;
508 target_ulong tag;
509 target_ulong ipoff;
510 target_ulong cssel;
511 target_ulong dataoff;
512 target_ulong datasel;
513 struct target_fpreg _st[8];
514 uint16_t status;
515 uint16_t magic; /* 0xffff = regular FPU data only */
516
517 /* FXSR FPU environment */
518 target_ulong _fxsr_env[6]; /* FXSR FPU env is ignored */
519 target_ulong mxcsr;
520 target_ulong reserved;
521 struct target_fpxreg _fxsr_st[8]; /* FXSR FPU reg data is ignored */
522 struct target_xmmreg _xmm[8];
523 target_ulong padding[56];
524 };
525
526 #define X86_FXSR_MAGIC 0x0000
527
528 struct target_sigcontext {
529 uint16_t gs, __gsh;
530 uint16_t fs, __fsh;
531 uint16_t es, __esh;
532 uint16_t ds, __dsh;
533 target_ulong edi;
534 target_ulong esi;
535 target_ulong ebp;
536 target_ulong esp;
537 target_ulong ebx;
538 target_ulong edx;
539 target_ulong ecx;
540 target_ulong eax;
541 target_ulong trapno;
542 target_ulong err;
543 target_ulong eip;
544 uint16_t cs, __csh;
545 target_ulong eflags;
546 target_ulong esp_at_signal;
547 uint16_t ss, __ssh;
548 target_ulong fpstate; /* pointer */
549 target_ulong oldmask;
550 target_ulong cr2;
551 };
552
553 typedef struct target_sigaltstack {
554 target_ulong ss_sp;
555 int ss_flags;
556 target_ulong ss_size;
557 } target_stack_t;
558
559 struct target_ucontext {
560 target_ulong uc_flags;
561 target_ulong uc_link;
562 target_stack_t uc_stack;
563 struct target_sigcontext uc_mcontext;
564 target_sigset_t uc_sigmask; /* mask last for extensibility */
565 };
566
567 struct sigframe
568 {
569 target_ulong pretcode;
570 int sig;
571 struct target_sigcontext sc;
572 struct target_fpstate fpstate;
573 target_ulong extramask[TARGET_NSIG_WORDS-1];
574 char retcode[8];
575 };
576
577 struct rt_sigframe
578 {
579 target_ulong pretcode;
580 int sig;
581 target_ulong pinfo;
582 target_ulong puc;
583 struct target_siginfo info;
584 struct target_ucontext uc;
585 struct target_fpstate fpstate;
586 char retcode[8];
587 };
588
589 /*
590 * Set up a signal frame.
591 */
592
593 /* XXX: save x87 state */
594 static int
595 setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate,
596 CPUX86State *env, unsigned long mask)
597 {
598 int err = 0;
599
600 err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs);
601 err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs);
602 err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es);
603 err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds);
604 err |= __put_user(env->regs[R_EDI], &sc->edi);
605 err |= __put_user(env->regs[R_ESI], &sc->esi);
606 err |= __put_user(env->regs[R_EBP], &sc->ebp);
607 err |= __put_user(env->regs[R_ESP], &sc->esp);
608 err |= __put_user(env->regs[R_EBX], &sc->ebx);
609 err |= __put_user(env->regs[R_EDX], &sc->edx);
610 err |= __put_user(env->regs[R_ECX], &sc->ecx);
611 err |= __put_user(env->regs[R_EAX], &sc->eax);
612 err |= __put_user(env->exception_index, &sc->trapno);
613 err |= __put_user(env->error_code, &sc->err);
614 err |= __put_user(env->eip, &sc->eip);
615 err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs);
616 err |= __put_user(env->eflags, &sc->eflags);
617 err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal);
618 err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss);
619
620 cpu_x86_fsave(env, (void *)fpstate, 1);
621 fpstate->status = fpstate->sw;
622 err |= __put_user(0xffff, &fpstate->magic);
623 err |= __put_user(fpstate, &sc->fpstate);
624
625 /* non-iBCS2 extensions.. */
626 err |= __put_user(mask, &sc->oldmask);
627 err |= __put_user(env->cr[2], &sc->cr2);
628 return err;
629 }
630
631 /*
632 * Determine which stack to use..
633 */
634
635 static inline void *
636 get_sigframe(struct emulated_sigaction *ka, CPUX86State *env, size_t frame_size)
637 {
638 unsigned long esp;
639
640 /* Default to using normal stack */
641 esp = env->regs[R_ESP];
642 #if 0
643 /* This is the X/Open sanctioned signal stack switching. */
644 if (ka->sa.sa_flags & SA_ONSTACK) {
645 if (sas_ss_flags(esp) == 0)
646 esp = current->sas_ss_sp + current->sas_ss_size;
647 }
648
649 /* This is the legacy signal stack switching. */
650 else
651 #endif
652 if ((env->segs[R_SS].selector & 0xffff) != __USER_DS &&
653 !(ka->sa.sa_flags & TARGET_SA_RESTORER) &&
654 ka->sa.sa_restorer) {
655 esp = (unsigned long) ka->sa.sa_restorer;
656 }
657 return (void *)((esp - frame_size) & -8ul);
658 }
659
660 static void setup_frame(int sig, struct emulated_sigaction *ka,
661 target_sigset_t *set, CPUX86State *env)
662 {
663 struct sigframe *frame;
664 int i, err = 0;
665
666 frame = get_sigframe(ka, env, sizeof(*frame));
667
668 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
669 goto give_sigsegv;
670 err |= __put_user((/*current->exec_domain
671 && current->exec_domain->signal_invmap
672 && sig < 32
673 ? current->exec_domain->signal_invmap[sig]
674 : */ sig),
675 &frame->sig);
676 if (err)
677 goto give_sigsegv;
678
679 setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0]);
680 if (err)
681 goto give_sigsegv;
682
683 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
684 if (__put_user(set->sig[i], &frame->extramask[i - 1]))
685 goto give_sigsegv;
686 }
687
688 /* Set up to return from userspace. If provided, use a stub
689 already in userspace. */
690 if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
691 err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
692 } else {
693 err |= __put_user(frame->retcode, &frame->pretcode);
694 /* This is popl %eax ; movl $,%eax ; int $0x80 */
695 err |= __put_user(0xb858, (short *)(frame->retcode+0));
696 err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2));
697 err |= __put_user(0x80cd, (short *)(frame->retcode+6));
698 }
699
700 if (err)
701 goto give_sigsegv;
702
703 /* Set up registers for signal handler */
704 env->regs[R_ESP] = (unsigned long) frame;
705 env->eip = (unsigned long) ka->sa._sa_handler;
706
707 cpu_x86_load_seg(env, R_DS, __USER_DS);
708 cpu_x86_load_seg(env, R_ES, __USER_DS);
709 cpu_x86_load_seg(env, R_SS, __USER_DS);
710 cpu_x86_load_seg(env, R_CS, __USER_CS);
711 env->eflags &= ~TF_MASK;
712
713 return;
714
715 give_sigsegv:
716 if (sig == TARGET_SIGSEGV)
717 ka->sa._sa_handler = TARGET_SIG_DFL;
718 force_sig(TARGET_SIGSEGV /* , current */);
719 }
720
721 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
722 target_siginfo_t *info,
723 target_sigset_t *set, CPUX86State *env)
724 {
725 struct rt_sigframe *frame;
726 int i, err = 0;
727
728 frame = get_sigframe(ka, env, sizeof(*frame));
729
730 if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame)))
731 goto give_sigsegv;
732
733 err |= __put_user((/*current->exec_domain
734 && current->exec_domain->signal_invmap
735 && sig < 32
736 ? current->exec_domain->signal_invmap[sig]
737 : */sig),
738 &frame->sig);
739 err |= __put_user((target_ulong)&frame->info, &frame->pinfo);
740 err |= __put_user((target_ulong)&frame->uc, &frame->puc);
741 err |= copy_siginfo_to_user(&frame->info, info);
742 if (err)
743 goto give_sigsegv;
744
745 /* Create the ucontext. */
746 err |= __put_user(0, &frame->uc.uc_flags);
747 err |= __put_user(0, &frame->uc.uc_link);
748 err |= __put_user(/*current->sas_ss_sp*/ 0, &frame->uc.uc_stack.ss_sp);
749 err |= __put_user(/* sas_ss_flags(regs->esp) */ 0,
750 &frame->uc.uc_stack.ss_flags);
751 err |= __put_user(/* current->sas_ss_size */ 0, &frame->uc.uc_stack.ss_size);
752 err |= setup_sigcontext(&frame->uc.uc_mcontext, &frame->fpstate,
753 env, set->sig[0]);
754 for(i = 0; i < TARGET_NSIG_WORDS; i++) {
755 if (__put_user(set->sig[i], &frame->uc.uc_sigmask.sig[i]))
756 goto give_sigsegv;
757 }
758
759 /* Set up to return from userspace. If provided, use a stub
760 already in userspace. */
761 if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
762 err |= __put_user(ka->sa.sa_restorer, &frame->pretcode);
763 } else {
764 err |= __put_user(frame->retcode, &frame->pretcode);
765 /* This is movl $,%eax ; int $0x80 */
766 err |= __put_user(0xb8, (char *)(frame->retcode+0));
767 err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1));
768 err |= __put_user(0x80cd, (short *)(frame->retcode+5));
769 }
770
771 if (err)
772 goto give_sigsegv;
773
774 /* Set up registers for signal handler */
775 env->regs[R_ESP] = (unsigned long) frame;
776 env->eip = (unsigned long) ka->sa._sa_handler;
777
778 cpu_x86_load_seg(env, R_DS, __USER_DS);
779 cpu_x86_load_seg(env, R_ES, __USER_DS);
780 cpu_x86_load_seg(env, R_SS, __USER_DS);
781 cpu_x86_load_seg(env, R_CS, __USER_CS);
782 env->eflags &= ~TF_MASK;
783
784 return;
785
786 give_sigsegv:
787 if (sig == TARGET_SIGSEGV)
788 ka->sa._sa_handler = TARGET_SIG_DFL;
789 force_sig(TARGET_SIGSEGV /* , current */);
790 }
791
792 static int
793 restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax)
794 {
795 unsigned int err = 0;
796
797 cpu_x86_load_seg(env, R_GS, lduw(&sc->gs));
798 cpu_x86_load_seg(env, R_FS, lduw(&sc->fs));
799 cpu_x86_load_seg(env, R_ES, lduw(&sc->es));
800 cpu_x86_load_seg(env, R_DS, lduw(&sc->ds));
801
802 env->regs[R_EDI] = ldl(&sc->edi);
803 env->regs[R_ESI] = ldl(&sc->esi);
804 env->regs[R_EBP] = ldl(&sc->ebp);
805 env->regs[R_ESP] = ldl(&sc->esp);
806 env->regs[R_EBX] = ldl(&sc->ebx);
807 env->regs[R_EDX] = ldl(&sc->edx);
808 env->regs[R_ECX] = ldl(&sc->ecx);
809 env->eip = ldl(&sc->eip);
810
811 cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3);
812 cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3);
813
814 {
815 unsigned int tmpflags;
816 tmpflags = ldl(&sc->eflags);
817 env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5);
818 // regs->orig_eax = -1; /* disable syscall checks */
819 }
820
821 {
822 struct _fpstate * buf;
823 buf = (void *)ldl(&sc->fpstate);
824 if (buf) {
825 #if 0
826 if (verify_area(VERIFY_READ, buf, sizeof(*buf)))
827 goto badframe;
828 #endif
829 cpu_x86_frstor(env, (void *)buf, 1);
830 }
831 }
832
833 *peax = ldl(&sc->eax);
834 return err;
835 #if 0
836 badframe:
837 return 1;
838 #endif
839 }
840
841 long do_sigreturn(CPUX86State *env)
842 {
843 struct sigframe *frame = (struct sigframe *)(env->regs[R_ESP] - 8);
844 target_sigset_t target_set;
845 sigset_t set;
846 int eax, i;
847
848 #if defined(DEBUG_SIGNAL)
849 fprintf(stderr, "do_sigreturn\n");
850 #endif
851 /* set blocked signals */
852 if (__get_user(target_set.sig[0], &frame->sc.oldmask))
853 goto badframe;
854 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
855 if (__get_user(target_set.sig[i], &frame->extramask[i - 1]))
856 goto badframe;
857 }
858
859 target_to_host_sigset_internal(&set, &target_set);
860 sigprocmask(SIG_SETMASK, &set, NULL);
861
862 /* restore registers */
863 if (restore_sigcontext(env, &frame->sc, &eax))
864 goto badframe;
865 return eax;
866
867 badframe:
868 force_sig(TARGET_SIGSEGV);
869 return 0;
870 }
871
872 long do_rt_sigreturn(CPUX86State *env)
873 {
874 struct rt_sigframe *frame = (struct rt_sigframe *)(env->regs[R_ESP] - 4);
875 sigset_t set;
876 // stack_t st;
877 int eax;
878
879 #if 0
880 if (verify_area(VERIFY_READ, frame, sizeof(*frame)))
881 goto badframe;
882 #endif
883 target_to_host_sigset(&set, &frame->uc.uc_sigmask);
884 sigprocmask(SIG_SETMASK, &set, NULL);
885
886 if (restore_sigcontext(env, &frame->uc.uc_mcontext, &eax))
887 goto badframe;
888
889 #if 0
890 if (__copy_from_user(&st, &frame->uc.uc_stack, sizeof(st)))
891 goto badframe;
892 /* It is more difficult to avoid calling this function than to
893 call it and ignore errors. */
894 do_sigaltstack(&st, NULL, regs->esp);
895 #endif
896 return eax;
897
898 badframe:
899 force_sig(TARGET_SIGSEGV);
900 return 0;
901 }
902
903 #elif defined(TARGET_ARM)
904
905 struct target_sigcontext {
906 target_ulong trap_no;
907 target_ulong error_code;
908 target_ulong oldmask;
909 target_ulong arm_r0;
910 target_ulong arm_r1;
911 target_ulong arm_r2;
912 target_ulong arm_r3;
913 target_ulong arm_r4;
914 target_ulong arm_r5;
915 target_ulong arm_r6;
916 target_ulong arm_r7;
917 target_ulong arm_r8;
918 target_ulong arm_r9;
919 target_ulong arm_r10;
920 target_ulong arm_fp;
921 target_ulong arm_ip;
922 target_ulong arm_sp;
923 target_ulong arm_lr;
924 target_ulong arm_pc;
925 target_ulong arm_cpsr;
926 target_ulong fault_address;
927 };
928
929 typedef struct target_sigaltstack {
930 target_ulong ss_sp;
931 int ss_flags;
932 target_ulong ss_size;
933 } target_stack_t;
934
935 struct target_ucontext {
936 target_ulong uc_flags;
937 target_ulong uc_link;
938 target_stack_t uc_stack;
939 struct target_sigcontext uc_mcontext;
940 target_sigset_t uc_sigmask; /* mask last for extensibility */
941 };
942
943 struct sigframe
944 {
945 struct target_sigcontext sc;
946 target_ulong extramask[TARGET_NSIG_WORDS-1];
947 target_ulong retcode;
948 };
949
950 struct rt_sigframe
951 {
952 struct target_siginfo *pinfo;
953 void *puc;
954 struct target_siginfo info;
955 struct target_ucontext uc;
956 target_ulong retcode;
957 };
958
959 #define TARGET_CONFIG_CPU_32 1
960
961 /*
962 * For ARM syscalls, we encode the syscall number into the instruction.
963 */
964 #define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE))
965 #define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE))
966
967 /*
968 * For Thumb syscalls, we pass the syscall number via r7. We therefore
969 * need two 16-bit instructions.
970 */
971 #define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn))
972 #define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn))
973
974 static const target_ulong retcodes[4] = {
975 SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN,
976 SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN
977 };
978
979
980 #define __put_user_error(x,p,e) __put_user(x, p)
981 #define __get_user_error(x,p,e) __get_user(x, p)
982
983 static inline int valid_user_regs(CPUState *regs)
984 {
985 return 1;
986 }
987
988 static int
989 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
990 CPUState *env, unsigned long mask)
991 {
992 int err = 0;
993
994 __put_user_error(env->regs[0], &sc->arm_r0, err);
995 __put_user_error(env->regs[1], &sc->arm_r1, err);
996 __put_user_error(env->regs[2], &sc->arm_r2, err);
997 __put_user_error(env->regs[3], &sc->arm_r3, err);
998 __put_user_error(env->regs[4], &sc->arm_r4, err);
999 __put_user_error(env->regs[5], &sc->arm_r5, err);
1000 __put_user_error(env->regs[6], &sc->arm_r6, err);
1001 __put_user_error(env->regs[7], &sc->arm_r7, err);
1002 __put_user_error(env->regs[8], &sc->arm_r8, err);
1003 __put_user_error(env->regs[9], &sc->arm_r9, err);
1004 __put_user_error(env->regs[10], &sc->arm_r10, err);
1005 __put_user_error(env->regs[11], &sc->arm_fp, err);
1006 __put_user_error(env->regs[12], &sc->arm_ip, err);
1007 __put_user_error(env->regs[13], &sc->arm_sp, err);
1008 __put_user_error(env->regs[14], &sc->arm_lr, err);
1009 __put_user_error(env->regs[15], &sc->arm_pc, err);
1010 #ifdef TARGET_CONFIG_CPU_32
1011 __put_user_error(env->cpsr, &sc->arm_cpsr, err);
1012 #endif
1013
1014 __put_user_error(/* current->thread.trap_no */ 0, &sc->trap_no, err);
1015 __put_user_error(/* current->thread.error_code */ 0, &sc->error_code, err);
1016 __put_user_error(/* current->thread.address */ 0, &sc->fault_address, err);
1017 __put_user_error(mask, &sc->oldmask, err);
1018
1019 return err;
1020 }
1021
1022 static inline void *
1023 get_sigframe(struct emulated_sigaction *ka, CPUState *regs, int framesize)
1024 {
1025 unsigned long sp = regs->regs[13];
1026
1027 #if 0
1028 /*
1029 * This is the X/Open sanctioned signal stack switching.
1030 */
1031 if ((ka->sa.sa_flags & SA_ONSTACK) && !sas_ss_flags(sp))
1032 sp = current->sas_ss_sp + current->sas_ss_size;
1033 #endif
1034 /*
1035 * ATPCS B01 mandates 8-byte alignment
1036 */
1037 return (void *)((sp - framesize) & ~7);
1038 }
1039
1040 static int
1041 setup_return(CPUState *env, struct emulated_sigaction *ka,
1042 target_ulong *rc, void *frame, int usig)
1043 {
1044 target_ulong handler = (target_ulong)ka->sa._sa_handler;
1045 target_ulong retcode;
1046 int thumb = 0;
1047 #if defined(TARGET_CONFIG_CPU_32)
1048 target_ulong cpsr = env->cpsr;
1049
1050 #if 0
1051 /*
1052 * Maybe we need to deliver a 32-bit signal to a 26-bit task.
1053 */
1054 if (ka->sa.sa_flags & SA_THIRTYTWO)
1055 cpsr = (cpsr & ~MODE_MASK) | USR_MODE;
1056
1057 #ifdef CONFIG_ARM_THUMB
1058 if (elf_hwcap & HWCAP_THUMB) {
1059 /*
1060 * The LSB of the handler determines if we're going to
1061 * be using THUMB or ARM mode for this signal handler.
1062 */
1063 thumb = handler & 1;
1064
1065 if (thumb)
1066 cpsr |= T_BIT;
1067 else
1068 cpsr &= ~T_BIT;
1069 }
1070 #endif
1071 #endif
1072 #endif /* TARGET_CONFIG_CPU_32 */
1073
1074 if (ka->sa.sa_flags & TARGET_SA_RESTORER) {
1075 retcode = (target_ulong)ka->sa.sa_restorer;
1076 } else {
1077 unsigned int idx = thumb;
1078
1079 if (ka->sa.sa_flags & TARGET_SA_SIGINFO)
1080 idx += 2;
1081
1082 if (__put_user(retcodes[idx], rc))
1083 return 1;
1084 #if 0
1085 flush_icache_range((target_ulong)rc,
1086 (target_ulong)(rc + 1));
1087 #endif
1088 retcode = ((target_ulong)rc) + thumb;
1089 }
1090
1091 env->regs[0] = usig;
1092 env->regs[13] = (target_ulong)frame;
1093 env->regs[14] = retcode;
1094 env->regs[15] = handler & (thumb ? ~1 : ~3);
1095
1096 #ifdef TARGET_CONFIG_CPU_32
1097 env->cpsr = cpsr;
1098 #endif
1099
1100 return 0;
1101 }
1102
1103 static void setup_frame(int usig, struct emulated_sigaction *ka,
1104 target_sigset_t *set, CPUState *regs)
1105 {
1106 struct sigframe *frame = get_sigframe(ka, regs, sizeof(*frame));
1107 int i, err = 0;
1108
1109 err |= setup_sigcontext(&frame->sc, /*&frame->fpstate,*/ regs, set->sig[0]);
1110
1111 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1112 if (__put_user(set->sig[i], &frame->extramask[i - 1]))
1113 return;
1114 }
1115
1116 if (err == 0)
1117 err = setup_return(regs, ka, &frame->retcode, frame, usig);
1118 // return err;
1119 }
1120
1121 static void setup_rt_frame(int usig, struct emulated_sigaction *ka,
1122 target_siginfo_t *info,
1123 target_sigset_t *set, CPUState *env)
1124 {
1125 struct rt_sigframe *frame = get_sigframe(ka, env, sizeof(*frame));
1126 int i, err = 0;
1127
1128 if (!access_ok(VERIFY_WRITE, frame, sizeof (*frame)))
1129 return /* 1 */;
1130
1131 __put_user_error(&frame->info, (target_ulong *)&frame->pinfo, err);
1132 __put_user_error(&frame->uc, (target_ulong *)&frame->puc, err);
1133 err |= copy_siginfo_to_user(&frame->info, info);
1134
1135 /* Clear all the bits of the ucontext we don't use. */
1136 err |= __clear_user(&frame->uc, offsetof(struct ucontext, uc_mcontext));
1137
1138 err |= setup_sigcontext(&frame->uc.uc_mcontext, /*&frame->fpstate,*/
1139 env, set->sig[0]);
1140 for(i = 0; i < TARGET_NSIG_WORDS; i++) {
1141 if (__put_user(set->sig[i], &frame->uc.uc_sigmask.sig[i]))
1142 return;
1143 }
1144
1145 if (err == 0)
1146 err = setup_return(env, ka, &frame->retcode, frame, usig);
1147
1148 if (err == 0) {
1149 /*
1150 * For realtime signals we must also set the second and third
1151 * arguments for the signal handler.
1152 * -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06
1153 */
1154 env->regs[1] = (target_ulong)frame->pinfo;
1155 env->regs[2] = (target_ulong)frame->puc;
1156 }
1157
1158 // return err;
1159 }
1160
1161 static int
1162 restore_sigcontext(CPUState *env, struct target_sigcontext *sc)
1163 {
1164 int err = 0;
1165
1166 __get_user_error(env->regs[0], &sc->arm_r0, err);
1167 __get_user_error(env->regs[1], &sc->arm_r1, err);
1168 __get_user_error(env->regs[2], &sc->arm_r2, err);
1169 __get_user_error(env->regs[3], &sc->arm_r3, err);
1170 __get_user_error(env->regs[4], &sc->arm_r4, err);
1171 __get_user_error(env->regs[5], &sc->arm_r5, err);
1172 __get_user_error(env->regs[6], &sc->arm_r6, err);
1173 __get_user_error(env->regs[7], &sc->arm_r7, err);
1174 __get_user_error(env->regs[8], &sc->arm_r8, err);
1175 __get_user_error(env->regs[9], &sc->arm_r9, err);
1176 __get_user_error(env->regs[10], &sc->arm_r10, err);
1177 __get_user_error(env->regs[11], &sc->arm_fp, err);
1178 __get_user_error(env->regs[12], &sc->arm_ip, err);
1179 __get_user_error(env->regs[13], &sc->arm_sp, err);
1180 __get_user_error(env->regs[14], &sc->arm_lr, err);
1181 __get_user_error(env->regs[15], &sc->arm_pc, err);
1182 #ifdef TARGET_CONFIG_CPU_32
1183 __get_user_error(env->cpsr, &sc->arm_cpsr, err);
1184 #endif
1185
1186 err |= !valid_user_regs(env);
1187
1188 return err;
1189 }
1190
1191 long do_sigreturn(CPUState *env)
1192 {
1193 struct sigframe *frame;
1194 target_sigset_t set;
1195 sigset_t host_set;
1196 int i;
1197
1198 /*
1199 * Since we stacked the signal on a 64-bit boundary,
1200 * then 'sp' should be word aligned here. If it's
1201 * not, then the user is trying to mess with us.
1202 */
1203 if (env->regs[13] & 7)
1204 goto badframe;
1205
1206 frame = (struct sigframe *)env->regs[13];
1207
1208 #if 0
1209 if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
1210 goto badframe;
1211 #endif
1212 if (__get_user(set.sig[0], &frame->sc.oldmask))
1213 goto badframe;
1214 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1215 if (__get_user(set.sig[i], &frame->extramask[i - 1]))
1216 goto badframe;
1217 }
1218
1219 target_to_host_sigset_internal(&host_set, &set);
1220 sigprocmask(SIG_SETMASK, &host_set, NULL);
1221
1222 if (restore_sigcontext(env, &frame->sc))
1223 goto badframe;
1224
1225 #if 0
1226 /* Send SIGTRAP if we're single-stepping */
1227 if (ptrace_cancel_bpt(current))
1228 send_sig(SIGTRAP, current, 1);
1229 #endif
1230 return env->regs[0];
1231
1232 badframe:
1233 force_sig(SIGSEGV /* , current */);
1234 return 0;
1235 }
1236
1237 long do_rt_sigreturn(CPUState *env)
1238 {
1239 struct rt_sigframe *frame;
1240 sigset_t host_set;
1241
1242 /*
1243 * Since we stacked the signal on a 64-bit boundary,
1244 * then 'sp' should be word aligned here. If it's
1245 * not, then the user is trying to mess with us.
1246 */
1247 if (env->regs[13] & 7)
1248 goto badframe;
1249
1250 frame = (struct rt_sigframe *)env->regs[13];
1251
1252 #if 0
1253 if (verify_area(VERIFY_READ, frame, sizeof (*frame)))
1254 goto badframe;
1255 #endif
1256 target_to_host_sigset(&host_set, &frame->uc.uc_sigmask);
1257 sigprocmask(SIG_SETMASK, &host_set, NULL);
1258
1259 if (restore_sigcontext(env, &frame->uc.uc_mcontext))
1260 goto badframe;
1261
1262 #if 0
1263 /* Send SIGTRAP if we're single-stepping */
1264 if (ptrace_cancel_bpt(current))
1265 send_sig(SIGTRAP, current, 1);
1266 #endif
1267 return env->regs[0];
1268
1269 badframe:
1270 force_sig(SIGSEGV /* , current */);
1271 return 0;
1272 }
1273
1274 #elif defined(TARGET_SPARC)
1275 #define __SUNOS_MAXWIN 31
1276
1277 /* This is what SunOS does, so shall I. */
1278 struct target_sigcontext {
1279 target_ulong sigc_onstack; /* state to restore */
1280
1281 target_ulong sigc_mask; /* sigmask to restore */
1282 target_ulong sigc_sp; /* stack pointer */
1283 target_ulong sigc_pc; /* program counter */
1284 target_ulong sigc_npc; /* next program counter */
1285 target_ulong sigc_psr; /* for condition codes etc */
1286 target_ulong sigc_g1; /* User uses these two registers */
1287 target_ulong sigc_o0; /* within the trampoline code. */
1288
1289 /* Now comes information regarding the users window set
1290 * at the time of the signal.
1291 */
1292 target_ulong sigc_oswins; /* outstanding windows */
1293
1294 /* stack ptrs for each regwin buf */
1295 char *sigc_spbuf[__SUNOS_MAXWIN];
1296
1297 /* Windows to restore after signal */
1298 struct {
1299 target_ulong locals[8];
1300 target_ulong ins[8];
1301 } sigc_wbuf[__SUNOS_MAXWIN];
1302 };
1303 /* A Sparc stack frame */
1304 struct sparc_stackf {
1305 target_ulong locals[8];
1306 target_ulong ins[6];
1307 struct sparc_stackf *fp;
1308 target_ulong callers_pc;
1309 char *structptr;
1310 target_ulong xargs[6];
1311 target_ulong xxargs[1];
1312 };
1313
1314 typedef struct {
1315 struct {
1316 target_ulong psr;
1317 target_ulong pc;
1318 target_ulong npc;
1319 target_ulong y;
1320 target_ulong u_regs[16]; /* globals and ins */
1321 } si_regs;
1322 int si_mask;
1323 } __siginfo_t;
1324
1325 typedef struct {
1326 unsigned long si_float_regs [32];
1327 unsigned long si_fsr;
1328 unsigned long si_fpqdepth;
1329 struct {
1330 unsigned long *insn_addr;
1331 unsigned long insn;
1332 } si_fpqueue [16];
1333 } __siginfo_fpu_t;
1334
1335
1336 struct target_signal_frame {
1337 struct sparc_stackf ss;
1338 __siginfo_t info;
1339 __siginfo_fpu_t *fpu_save;
1340 target_ulong insns[2] __attribute__ ((aligned (8)));
1341 target_ulong extramask[TARGET_NSIG_WORDS - 1];
1342 target_ulong extra_size; /* Should be 0 */
1343 __siginfo_fpu_t fpu_state;
1344 };
1345 struct target_rt_signal_frame {
1346 struct sparc_stackf ss;
1347 siginfo_t info;
1348 target_ulong regs[20];
1349 sigset_t mask;
1350 __siginfo_fpu_t *fpu_save;
1351 unsigned int insns[2];
1352 stack_t stack;
1353 unsigned int extra_size; /* Should be 0 */
1354 __siginfo_fpu_t fpu_state;
1355 };
1356
1357 #define UREG_O0 16
1358 #define UREG_O6 22
1359 #define UREG_I0 0
1360 #define UREG_I1 1
1361 #define UREG_I2 2
1362 #define UREG_I6 6
1363 #define UREG_I7 7
1364 #define UREG_L0 8
1365 #define UREG_FP UREG_I6
1366 #define UREG_SP UREG_O6
1367
1368 static inline void *get_sigframe(struct emulated_sigaction *sa, CPUState *env, unsigned long framesize)
1369 {
1370 unsigned long sp;
1371
1372 sp = env->regwptr[UREG_FP];
1373 #if 0
1374
1375 /* This is the X/Open sanctioned signal stack switching. */
1376 if (sa->sa_flags & TARGET_SA_ONSTACK) {
1377 if (!on_sig_stack(sp) && !((current->sas_ss_sp + current->sas_ss_size) & 7))
1378 sp = current->sas_ss_sp + current->sas_ss_size;
1379 }
1380 #endif
1381 return (void *)(sp - framesize);
1382 }
1383
1384 static int
1385 setup___siginfo(__siginfo_t *si, CPUState *env, target_ulong mask)
1386 {
1387 int err = 0, i;
1388
1389 err |= __put_user(env->psr, &si->si_regs.psr);
1390 err |= __put_user(env->pc, &si->si_regs.pc);
1391 err |= __put_user(env->npc, &si->si_regs.npc);
1392 err |= __put_user(env->y, &si->si_regs.y);
1393 for (i=0; i < 7; i++) {
1394 err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]);
1395 }
1396 for (i=0; i < 7; i++) {
1397 err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]);
1398 }
1399 err |= __put_user(mask, &si->si_mask);
1400 return err;
1401 }
1402
1403 static int
1404 setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
1405 CPUState *env, unsigned long mask)
1406 {
1407 int err = 0;
1408
1409 err |= __put_user(mask, &sc->sigc_mask);
1410 err |= __put_user(env->regwptr[UREG_SP], &sc->sigc_sp);
1411 err |= __put_user(env->pc, &sc->sigc_pc);
1412 err |= __put_user(env->npc, &sc->sigc_npc);
1413 err |= __put_user(env->psr, &sc->sigc_psr);
1414 err |= __put_user(env->gregs[1], &sc->sigc_g1);
1415 err |= __put_user(env->regwptr[UREG_O0], &sc->sigc_o0);
1416
1417 return err;
1418 }
1419 #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7)))
1420
1421 static void setup_frame(int sig, struct emulated_sigaction *ka,
1422 target_sigset_t *set, CPUState *env)
1423 {
1424 struct target_signal_frame *sf;
1425 int sigframe_size, err, i;
1426
1427 /* 1. Make sure everything is clean */
1428 //synchronize_user_stack();
1429
1430 sigframe_size = NF_ALIGNEDSZ;
1431
1432 sf = (struct target_signal_frame *)
1433 get_sigframe(ka, env, sigframe_size);
1434
1435 //fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
1436 #if 0
1437 if (invalid_frame_pointer(sf, sigframe_size))
1438 goto sigill_and_return;
1439 #endif
1440 /* 2. Save the current process state */
1441 err = setup___siginfo(&sf->info, env, set->sig[0]);
1442 err |= __put_user(0, &sf->extra_size);
1443
1444 //err |= save_fpu_state(regs, &sf->fpu_state);
1445 //err |= __put_user(&sf->fpu_state, &sf->fpu_save);
1446
1447 err |= __put_user(set->sig[0], &sf->info.si_mask);
1448 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
1449 err |= __put_user(set->sig[i + 1], &sf->extramask[i]);
1450 }
1451
1452 for (i = 0; i < 7; i++) {
1453 err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]);
1454 }
1455 for (i = 0; i < 7; i++) {
1456 err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]);
1457 }
1458 if (err)
1459 goto sigsegv;
1460
1461 /* 3. signal handler back-trampoline and parameters */
1462 env->regwptr[UREG_FP] = (target_ulong) sf;
1463 env->regwptr[UREG_I0] = sig;
1464 env->regwptr[UREG_I1] = (target_ulong) &sf->info;
1465 env->regwptr[UREG_I2] = (target_ulong) &sf->info;
1466
1467 /* 4. signal handler */
1468 env->pc = (unsigned long) ka->sa._sa_handler;
1469 env->npc = (env->pc + 4);
1470 /* 5. return to kernel instructions */
1471 if (ka->sa.sa_restorer)
1472 env->regwptr[UREG_I7] = (unsigned long)ka->sa.sa_restorer;
1473 else {
1474 env->regwptr[UREG_I7] = (unsigned long)(&(sf->insns[0]) - 2);
1475
1476 /* mov __NR_sigreturn, %g1 */
1477 err |= __put_user(0x821020d8, &sf->insns[0]);
1478
1479 /* t 0x10 */
1480 err |= __put_user(0x91d02010, &sf->insns[1]);
1481 if (err)
1482 goto sigsegv;
1483
1484 /* Flush instruction space. */
1485 //flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
1486 tb_flush(env);
1487 }
1488 //cpu_dump_state(env, stderr, fprintf, 0);
1489 return;
1490
1491 sigill_and_return:
1492 force_sig(TARGET_SIGILL);
1493 sigsegv:
1494 //fprintf(stderr, "force_sig\n");
1495 force_sig(TARGET_SIGSEGV);
1496 }
1497 static inline int
1498 restore_fpu_state(CPUState *env, __siginfo_fpu_t *fpu)
1499 {
1500 int err;
1501 #if 0
1502 #ifdef CONFIG_SMP
1503 if (current->flags & PF_USEDFPU)
1504 regs->psr &= ~PSR_EF;
1505 #else
1506 if (current == last_task_used_math) {
1507 last_task_used_math = 0;
1508 regs->psr &= ~PSR_EF;
1509 }
1510 #endif
1511 current->used_math = 1;
1512 current->flags &= ~PF_USEDFPU;
1513 #endif
1514 #if 0
1515 if (verify_area (VERIFY_READ, fpu, sizeof(*fpu)))
1516 return -EFAULT;
1517 #endif
1518
1519 err = __copy_from_user(&env->fpr[0], &fpu->si_float_regs[0],
1520 (sizeof(unsigned long) * 32));
1521 err |= __get_user(env->fsr, &fpu->si_fsr);
1522 #if 0
1523 err |= __get_user(current->thread.fpqdepth, &fpu->si_fpqdepth);
1524 if (current->thread.fpqdepth != 0)
1525 err |= __copy_from_user(&current->thread.fpqueue[0],
1526 &fpu->si_fpqueue[0],
1527 ((sizeof(unsigned long) +
1528 (sizeof(unsigned long *)))*16));
1529 #endif
1530 return err;
1531 }
1532
1533
1534 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
1535 target_siginfo_t *info,
1536 target_sigset_t *set, CPUState *env)
1537 {
1538 fprintf(stderr, "setup_rt_frame: not implemented\n");
1539 }
1540
1541 long do_sigreturn(CPUState *env)
1542 {
1543 struct target_signal_frame *sf;
1544 uint32_t up_psr, pc, npc;
1545 target_sigset_t set;
1546 sigset_t host_set;
1547 __siginfo_fpu_t *fpu_save;
1548 int err, i;
1549
1550 sf = (struct target_signal_frame *) env->regwptr[UREG_FP];
1551 fprintf(stderr, "sigreturn\n");
1552 fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]);
1553 //cpu_dump_state(env, stderr, fprintf, 0);
1554
1555 /* 1. Make sure we are not getting garbage from the user */
1556 #if 0
1557 if (verify_area (VERIFY_READ, sf, sizeof (*sf)))
1558 goto segv_and_exit;
1559 #endif
1560
1561 if (((uint) sf) & 3)
1562 goto segv_and_exit;
1563
1564 err = __get_user(pc, &sf->info.si_regs.pc);
1565 err |= __get_user(npc, &sf->info.si_regs.npc);
1566
1567 fprintf(stderr, "pc: %lx npc %lx\n", pc, npc);
1568 if ((pc | npc) & 3)
1569 goto segv_and_exit;
1570
1571 /* 2. Restore the state */
1572 err |= __get_user(up_psr, &sf->info.si_regs.psr);
1573
1574 /* User can only change condition codes and FPU enabling in %psr. */
1575 env->psr = (up_psr & ~(PSR_ICC /* | PSR_EF */))
1576 | (env->psr & (PSR_ICC /* | PSR_EF */));
1577 fprintf(stderr, "psr: %x\n", env->psr);
1578 env->pc = pc-4;
1579 env->npc = pc;
1580 err |= __get_user(env->y, &sf->info.si_regs.y);
1581 for (i=0; i < 7; i++) {
1582 err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
1583 }
1584 for (i=0; i < 7; i++) {
1585 err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]);
1586 }
1587
1588 err |= __get_user(fpu_save, &sf->fpu_save);
1589
1590 //if (fpu_save)
1591 // err |= restore_fpu_state(env, fpu_save);
1592
1593 /* This is pretty much atomic, no amount locking would prevent
1594 * the races which exist anyways.
1595 */
1596 err |= __get_user(set.sig[0], &sf->info.si_mask);
1597 for(i = 1; i < TARGET_NSIG_WORDS; i++) {
1598 err |= (__get_user(set.sig[i], &sf->extramask[i - 1]));
1599 }
1600
1601 target_to_host_sigset_internal(&host_set, &set);
1602 sigprocmask(SIG_SETMASK, &host_set, NULL);
1603
1604 if (err)
1605 goto segv_and_exit;
1606
1607 fprintf(stderr, "returning %lx\n", env->regwptr[0]);
1608 return env->regwptr[0];
1609
1610 segv_and_exit:
1611 force_sig(TARGET_SIGSEGV);
1612 }
1613
1614 long do_rt_sigreturn(CPUState *env)
1615 {
1616 fprintf(stderr, "do_rt_sigreturn: not implemented\n");
1617 return -ENOSYS;
1618 }
1619
1620
1621 #else
1622
1623 static void setup_frame(int sig, struct emulated_sigaction *ka,
1624 target_sigset_t *set, CPUState *env)
1625 {
1626 fprintf(stderr, "setup_frame: not implemented\n");
1627 }
1628
1629 static void setup_rt_frame(int sig, struct emulated_sigaction *ka,
1630 target_siginfo_t *info,
1631 target_sigset_t *set, CPUState *env)
1632 {
1633 fprintf(stderr, "setup_rt_frame: not implemented\n");
1634 }
1635
1636 long do_sigreturn(CPUState *env)
1637 {
1638 fprintf(stderr, "do_sigreturn: not implemented\n");
1639 return -ENOSYS;
1640 }
1641
1642 long do_rt_sigreturn(CPUState *env)
1643 {
1644 fprintf(stderr, "do_rt_sigreturn: not implemented\n");
1645 return -ENOSYS;
1646 }
1647
1648 #endif
1649
1650 void process_pending_signals(void *cpu_env)
1651 {
1652 int sig;
1653 target_ulong handler;
1654 sigset_t set, old_set;
1655 target_sigset_t target_old_set;
1656 struct emulated_sigaction *k;
1657 struct sigqueue *q;
1658
1659 if (!signal_pending)
1660 return;
1661
1662 k = sigact_table;
1663 for(sig = 1; sig <= TARGET_NSIG; sig++) {
1664 if (k->pending)
1665 goto handle_signal;
1666 k++;
1667 }
1668 /* if no signal is pending, just return */
1669 signal_pending = 0;
1670 return;
1671
1672 handle_signal:
1673 #ifdef DEBUG_SIGNAL
1674 fprintf(stderr, "qemu: process signal %d\n", sig);
1675 #endif
1676 /* dequeue signal */
1677 q = k->first;
1678 k->first = q->next;
1679 if (!k->first)
1680 k->pending = 0;
1681
1682 handler = k->sa._sa_handler;
1683 if (handler == TARGET_SIG_DFL) {
1684 /* default handler : ignore some signal. The other are fatal */
1685 if (sig != TARGET_SIGCHLD &&
1686 sig != TARGET_SIGURG &&
1687 sig != TARGET_SIGWINCH) {
1688 force_sig(sig);
1689 }
1690 } else if (handler == TARGET_SIG_IGN) {
1691 /* ignore sig */
1692 } else if (handler == TARGET_SIG_ERR) {
1693 force_sig(sig);
1694 } else {
1695 /* compute the blocked signals during the handler execution */
1696 target_to_host_sigset(&set, &k->sa.sa_mask);
1697 /* SA_NODEFER indicates that the current signal should not be
1698 blocked during the handler */
1699 if (!(k->sa.sa_flags & TARGET_SA_NODEFER))
1700 sigaddset(&set, target_to_host_signal(sig));
1701
1702 /* block signals in the handler using Linux */
1703 sigprocmask(SIG_BLOCK, &set, &old_set);
1704 /* save the previous blocked signal state to restore it at the
1705 end of the signal execution (see do_sigreturn) */
1706 host_to_target_sigset_internal(&target_old_set, &old_set);
1707
1708 /* if the CPU is in VM86 mode, we restore the 32 bit values */
1709 #ifdef TARGET_I386
1710 {
1711 CPUX86State *env = cpu_env;
1712 if (env->eflags & VM_MASK)
1713 save_v86_state(env);
1714 }
1715 #endif
1716 /* prepare the stack frame of the virtual CPU */
1717 if (k->sa.sa_flags & TARGET_SA_SIGINFO)
1718 setup_rt_frame(sig, k, &q->info, &target_old_set, cpu_env);
1719 else
1720 setup_frame(sig, k, &target_old_set, cpu_env);
1721 if (k->sa.sa_flags & TARGET_SA_RESETHAND)
1722 k->sa._sa_handler = TARGET_SIG_DFL;
1723 }
1724 if (q != &k->info)
1725 free_sigqueue(q);
1726 }
1727
1728