]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/signal.c
tests/unit/test-smp-parse: Pass machine type as argument to tests
[mirror_qemu.git] / linux-user / signal.c
1 /*
2 * Emulation of Linux signals
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "exec/gdbstub.h"
22 #include "hw/core/tcg-cpu-ops.h"
23
24 #include <sys/ucontext.h>
25 #include <sys/resource.h>
26
27 #include "qemu.h"
28 #include "user-internals.h"
29 #include "strace.h"
30 #include "loader.h"
31 #include "trace.h"
32 #include "signal-common.h"
33 #include "host-signal.h"
34 #include "user/safe-syscall.h"
35
36 static struct target_sigaction sigact_table[TARGET_NSIG];
37
38 static void host_signal_handler(int host_signum, siginfo_t *info,
39 void *puc);
40
41 /* Fallback addresses into sigtramp page. */
42 abi_ulong default_sigreturn;
43 abi_ulong default_rt_sigreturn;
44
45 /*
46 * System includes define _NSIG as SIGRTMAX + 1,
47 * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX
48 * and the first signal is SIGHUP defined as 1
49 * Signal number 0 is reserved for use as kill(pid, 0), to test whether
50 * a process exists without sending it a signal.
51 */
52 #ifdef __SIGRTMAX
53 QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
54 #endif
55 static uint8_t host_to_target_signal_table[_NSIG] = {
56 [SIGHUP] = TARGET_SIGHUP,
57 [SIGINT] = TARGET_SIGINT,
58 [SIGQUIT] = TARGET_SIGQUIT,
59 [SIGILL] = TARGET_SIGILL,
60 [SIGTRAP] = TARGET_SIGTRAP,
61 [SIGABRT] = TARGET_SIGABRT,
62 /* [SIGIOT] = TARGET_SIGIOT,*/
63 [SIGBUS] = TARGET_SIGBUS,
64 [SIGFPE] = TARGET_SIGFPE,
65 [SIGKILL] = TARGET_SIGKILL,
66 [SIGUSR1] = TARGET_SIGUSR1,
67 [SIGSEGV] = TARGET_SIGSEGV,
68 [SIGUSR2] = TARGET_SIGUSR2,
69 [SIGPIPE] = TARGET_SIGPIPE,
70 [SIGALRM] = TARGET_SIGALRM,
71 [SIGTERM] = TARGET_SIGTERM,
72 #ifdef SIGSTKFLT
73 [SIGSTKFLT] = TARGET_SIGSTKFLT,
74 #endif
75 [SIGCHLD] = TARGET_SIGCHLD,
76 [SIGCONT] = TARGET_SIGCONT,
77 [SIGSTOP] = TARGET_SIGSTOP,
78 [SIGTSTP] = TARGET_SIGTSTP,
79 [SIGTTIN] = TARGET_SIGTTIN,
80 [SIGTTOU] = TARGET_SIGTTOU,
81 [SIGURG] = TARGET_SIGURG,
82 [SIGXCPU] = TARGET_SIGXCPU,
83 [SIGXFSZ] = TARGET_SIGXFSZ,
84 [SIGVTALRM] = TARGET_SIGVTALRM,
85 [SIGPROF] = TARGET_SIGPROF,
86 [SIGWINCH] = TARGET_SIGWINCH,
87 [SIGIO] = TARGET_SIGIO,
88 [SIGPWR] = TARGET_SIGPWR,
89 [SIGSYS] = TARGET_SIGSYS,
90 /* next signals stay the same */
91 };
92
93 static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
94
95 /* valid sig is between 1 and _NSIG - 1 */
96 int host_to_target_signal(int sig)
97 {
98 if (sig < 1 || sig >= _NSIG) {
99 return sig;
100 }
101 return host_to_target_signal_table[sig];
102 }
103
104 /* valid sig is between 1 and TARGET_NSIG */
105 int target_to_host_signal(int sig)
106 {
107 if (sig < 1 || sig > TARGET_NSIG) {
108 return sig;
109 }
110 return target_to_host_signal_table[sig];
111 }
112
113 static inline void target_sigaddset(target_sigset_t *set, int signum)
114 {
115 signum--;
116 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
117 set->sig[signum / TARGET_NSIG_BPW] |= mask;
118 }
119
120 static inline int target_sigismember(const target_sigset_t *set, int signum)
121 {
122 signum--;
123 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
124 return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
125 }
126
127 void host_to_target_sigset_internal(target_sigset_t *d,
128 const sigset_t *s)
129 {
130 int host_sig, target_sig;
131 target_sigemptyset(d);
132 for (host_sig = 1; host_sig < _NSIG; host_sig++) {
133 target_sig = host_to_target_signal(host_sig);
134 if (target_sig < 1 || target_sig > TARGET_NSIG) {
135 continue;
136 }
137 if (sigismember(s, host_sig)) {
138 target_sigaddset(d, target_sig);
139 }
140 }
141 }
142
143 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
144 {
145 target_sigset_t d1;
146 int i;
147
148 host_to_target_sigset_internal(&d1, s);
149 for(i = 0;i < TARGET_NSIG_WORDS; i++)
150 d->sig[i] = tswapal(d1.sig[i]);
151 }
152
153 void target_to_host_sigset_internal(sigset_t *d,
154 const target_sigset_t *s)
155 {
156 int host_sig, target_sig;
157 sigemptyset(d);
158 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
159 host_sig = target_to_host_signal(target_sig);
160 if (host_sig < 1 || host_sig >= _NSIG) {
161 continue;
162 }
163 if (target_sigismember(s, target_sig)) {
164 sigaddset(d, host_sig);
165 }
166 }
167 }
168
169 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
170 {
171 target_sigset_t s1;
172 int i;
173
174 for(i = 0;i < TARGET_NSIG_WORDS; i++)
175 s1.sig[i] = tswapal(s->sig[i]);
176 target_to_host_sigset_internal(d, &s1);
177 }
178
179 void host_to_target_old_sigset(abi_ulong *old_sigset,
180 const sigset_t *sigset)
181 {
182 target_sigset_t d;
183 host_to_target_sigset(&d, sigset);
184 *old_sigset = d.sig[0];
185 }
186
187 void target_to_host_old_sigset(sigset_t *sigset,
188 const abi_ulong *old_sigset)
189 {
190 target_sigset_t d;
191 int i;
192
193 d.sig[0] = *old_sigset;
194 for(i = 1;i < TARGET_NSIG_WORDS; i++)
195 d.sig[i] = 0;
196 target_to_host_sigset(sigset, &d);
197 }
198
199 int block_signals(void)
200 {
201 TaskState *ts = (TaskState *)thread_cpu->opaque;
202 sigset_t set;
203
204 /* It's OK to block everything including SIGSEGV, because we won't
205 * run any further guest code before unblocking signals in
206 * process_pending_signals().
207 */
208 sigfillset(&set);
209 sigprocmask(SIG_SETMASK, &set, 0);
210
211 return qatomic_xchg(&ts->signal_pending, 1);
212 }
213
214 /* Wrapper for sigprocmask function
215 * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
216 * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if
217 * a signal was already pending and the syscall must be restarted, or
218 * 0 on success.
219 * If set is NULL, this is guaranteed not to fail.
220 */
221 int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
222 {
223 TaskState *ts = (TaskState *)thread_cpu->opaque;
224
225 if (oldset) {
226 *oldset = ts->signal_mask;
227 }
228
229 if (set) {
230 int i;
231
232 if (block_signals()) {
233 return -QEMU_ERESTARTSYS;
234 }
235
236 switch (how) {
237 case SIG_BLOCK:
238 sigorset(&ts->signal_mask, &ts->signal_mask, set);
239 break;
240 case SIG_UNBLOCK:
241 for (i = 1; i <= NSIG; ++i) {
242 if (sigismember(set, i)) {
243 sigdelset(&ts->signal_mask, i);
244 }
245 }
246 break;
247 case SIG_SETMASK:
248 ts->signal_mask = *set;
249 break;
250 default:
251 g_assert_not_reached();
252 }
253
254 /* Silently ignore attempts to change blocking status of KILL or STOP */
255 sigdelset(&ts->signal_mask, SIGKILL);
256 sigdelset(&ts->signal_mask, SIGSTOP);
257 }
258 return 0;
259 }
260
261 #if !defined(TARGET_NIOS2)
262 /* Just set the guest's signal mask to the specified value; the
263 * caller is assumed to have called block_signals() already.
264 */
265 void set_sigmask(const sigset_t *set)
266 {
267 TaskState *ts = (TaskState *)thread_cpu->opaque;
268
269 ts->signal_mask = *set;
270 }
271 #endif
272
273 /* sigaltstack management */
274
275 int on_sig_stack(unsigned long sp)
276 {
277 TaskState *ts = (TaskState *)thread_cpu->opaque;
278
279 return (sp - ts->sigaltstack_used.ss_sp
280 < ts->sigaltstack_used.ss_size);
281 }
282
283 int sas_ss_flags(unsigned long sp)
284 {
285 TaskState *ts = (TaskState *)thread_cpu->opaque;
286
287 return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
288 : on_sig_stack(sp) ? SS_ONSTACK : 0);
289 }
290
291 abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
292 {
293 /*
294 * This is the X/Open sanctioned signal stack switching.
295 */
296 TaskState *ts = (TaskState *)thread_cpu->opaque;
297
298 if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
299 return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
300 }
301 return sp;
302 }
303
304 void target_save_altstack(target_stack_t *uss, CPUArchState *env)
305 {
306 TaskState *ts = (TaskState *)thread_cpu->opaque;
307
308 __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
309 __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
310 __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
311 }
312
313 abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
314 {
315 TaskState *ts = (TaskState *)thread_cpu->opaque;
316 size_t minstacksize = TARGET_MINSIGSTKSZ;
317 target_stack_t ss;
318
319 #if defined(TARGET_PPC64)
320 /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
321 struct image_info *image = ts->info;
322 if (get_ppc64_abi(image) > 1) {
323 minstacksize = 4096;
324 }
325 #endif
326
327 __get_user(ss.ss_sp, &uss->ss_sp);
328 __get_user(ss.ss_size, &uss->ss_size);
329 __get_user(ss.ss_flags, &uss->ss_flags);
330
331 if (on_sig_stack(get_sp_from_cpustate(env))) {
332 return -TARGET_EPERM;
333 }
334
335 switch (ss.ss_flags) {
336 default:
337 return -TARGET_EINVAL;
338
339 case TARGET_SS_DISABLE:
340 ss.ss_size = 0;
341 ss.ss_sp = 0;
342 break;
343
344 case TARGET_SS_ONSTACK:
345 case 0:
346 if (ss.ss_size < minstacksize) {
347 return -TARGET_ENOMEM;
348 }
349 break;
350 }
351
352 ts->sigaltstack_used.ss_sp = ss.ss_sp;
353 ts->sigaltstack_used.ss_size = ss.ss_size;
354 return 0;
355 }
356
357 /* siginfo conversion */
358
359 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
360 const siginfo_t *info)
361 {
362 int sig = host_to_target_signal(info->si_signo);
363 int si_code = info->si_code;
364 int si_type;
365 tinfo->si_signo = sig;
366 tinfo->si_errno = 0;
367 tinfo->si_code = info->si_code;
368
369 /* This memset serves two purposes:
370 * (1) ensure we don't leak random junk to the guest later
371 * (2) placate false positives from gcc about fields
372 * being used uninitialized if it chooses to inline both this
373 * function and tswap_siginfo() into host_to_target_siginfo().
374 */
375 memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
376
377 /* This is awkward, because we have to use a combination of
378 * the si_code and si_signo to figure out which of the union's
379 * members are valid. (Within the host kernel it is always possible
380 * to tell, but the kernel carefully avoids giving userspace the
381 * high 16 bits of si_code, so we don't have the information to
382 * do this the easy way...) We therefore make our best guess,
383 * bearing in mind that a guest can spoof most of the si_codes
384 * via rt_sigqueueinfo() if it likes.
385 *
386 * Once we have made our guess, we record it in the top 16 bits of
387 * the si_code, so that tswap_siginfo() later can use it.
388 * tswap_siginfo() will strip these top bits out before writing
389 * si_code to the guest (sign-extending the lower bits).
390 */
391
392 switch (si_code) {
393 case SI_USER:
394 case SI_TKILL:
395 case SI_KERNEL:
396 /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
397 * These are the only unspoofable si_code values.
398 */
399 tinfo->_sifields._kill._pid = info->si_pid;
400 tinfo->_sifields._kill._uid = info->si_uid;
401 si_type = QEMU_SI_KILL;
402 break;
403 default:
404 /* Everything else is spoofable. Make best guess based on signal */
405 switch (sig) {
406 case TARGET_SIGCHLD:
407 tinfo->_sifields._sigchld._pid = info->si_pid;
408 tinfo->_sifields._sigchld._uid = info->si_uid;
409 tinfo->_sifields._sigchld._status = info->si_status;
410 tinfo->_sifields._sigchld._utime = info->si_utime;
411 tinfo->_sifields._sigchld._stime = info->si_stime;
412 si_type = QEMU_SI_CHLD;
413 break;
414 case TARGET_SIGIO:
415 tinfo->_sifields._sigpoll._band = info->si_band;
416 tinfo->_sifields._sigpoll._fd = info->si_fd;
417 si_type = QEMU_SI_POLL;
418 break;
419 default:
420 /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
421 tinfo->_sifields._rt._pid = info->si_pid;
422 tinfo->_sifields._rt._uid = info->si_uid;
423 /* XXX: potential problem if 64 bit */
424 tinfo->_sifields._rt._sigval.sival_ptr
425 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
426 si_type = QEMU_SI_RT;
427 break;
428 }
429 break;
430 }
431
432 tinfo->si_code = deposit32(si_code, 16, 16, si_type);
433 }
434
435 void tswap_siginfo(target_siginfo_t *tinfo,
436 const target_siginfo_t *info)
437 {
438 int si_type = extract32(info->si_code, 16, 16);
439 int si_code = sextract32(info->si_code, 0, 16);
440
441 __put_user(info->si_signo, &tinfo->si_signo);
442 __put_user(info->si_errno, &tinfo->si_errno);
443 __put_user(si_code, &tinfo->si_code);
444
445 /* We can use our internal marker of which fields in the structure
446 * are valid, rather than duplicating the guesswork of
447 * host_to_target_siginfo_noswap() here.
448 */
449 switch (si_type) {
450 case QEMU_SI_KILL:
451 __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
452 __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
453 break;
454 case QEMU_SI_TIMER:
455 __put_user(info->_sifields._timer._timer1,
456 &tinfo->_sifields._timer._timer1);
457 __put_user(info->_sifields._timer._timer2,
458 &tinfo->_sifields._timer._timer2);
459 break;
460 case QEMU_SI_POLL:
461 __put_user(info->_sifields._sigpoll._band,
462 &tinfo->_sifields._sigpoll._band);
463 __put_user(info->_sifields._sigpoll._fd,
464 &tinfo->_sifields._sigpoll._fd);
465 break;
466 case QEMU_SI_FAULT:
467 __put_user(info->_sifields._sigfault._addr,
468 &tinfo->_sifields._sigfault._addr);
469 break;
470 case QEMU_SI_CHLD:
471 __put_user(info->_sifields._sigchld._pid,
472 &tinfo->_sifields._sigchld._pid);
473 __put_user(info->_sifields._sigchld._uid,
474 &tinfo->_sifields._sigchld._uid);
475 __put_user(info->_sifields._sigchld._status,
476 &tinfo->_sifields._sigchld._status);
477 __put_user(info->_sifields._sigchld._utime,
478 &tinfo->_sifields._sigchld._utime);
479 __put_user(info->_sifields._sigchld._stime,
480 &tinfo->_sifields._sigchld._stime);
481 break;
482 case QEMU_SI_RT:
483 __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
484 __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
485 __put_user(info->_sifields._rt._sigval.sival_ptr,
486 &tinfo->_sifields._rt._sigval.sival_ptr);
487 break;
488 default:
489 g_assert_not_reached();
490 }
491 }
492
493 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
494 {
495 target_siginfo_t tgt_tmp;
496 host_to_target_siginfo_noswap(&tgt_tmp, info);
497 tswap_siginfo(tinfo, &tgt_tmp);
498 }
499
500 /* XXX: we support only POSIX RT signals are used. */
501 /* XXX: find a solution for 64 bit (additional malloced data is needed) */
502 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
503 {
504 /* This conversion is used only for the rt_sigqueueinfo syscall,
505 * and so we know that the _rt fields are the valid ones.
506 */
507 abi_ulong sival_ptr;
508
509 __get_user(info->si_signo, &tinfo->si_signo);
510 __get_user(info->si_errno, &tinfo->si_errno);
511 __get_user(info->si_code, &tinfo->si_code);
512 __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
513 __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
514 __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
515 info->si_value.sival_ptr = (void *)(long)sival_ptr;
516 }
517
518 static int fatal_signal (int sig)
519 {
520 switch (sig) {
521 case TARGET_SIGCHLD:
522 case TARGET_SIGURG:
523 case TARGET_SIGWINCH:
524 /* Ignored by default. */
525 return 0;
526 case TARGET_SIGCONT:
527 case TARGET_SIGSTOP:
528 case TARGET_SIGTSTP:
529 case TARGET_SIGTTIN:
530 case TARGET_SIGTTOU:
531 /* Job control signals. */
532 return 0;
533 default:
534 return 1;
535 }
536 }
537
538 /* returns 1 if given signal should dump core if not handled */
539 static int core_dump_signal(int sig)
540 {
541 switch (sig) {
542 case TARGET_SIGABRT:
543 case TARGET_SIGFPE:
544 case TARGET_SIGILL:
545 case TARGET_SIGQUIT:
546 case TARGET_SIGSEGV:
547 case TARGET_SIGTRAP:
548 case TARGET_SIGBUS:
549 return (1);
550 default:
551 return (0);
552 }
553 }
554
555 static void signal_table_init(void)
556 {
557 int host_sig, target_sig, count;
558
559 /*
560 * Signals are supported starting from TARGET_SIGRTMIN and going up
561 * until we run out of host realtime signals.
562 * glibc at least uses only the lower 2 rt signals and probably
563 * nobody's using the upper ones.
564 * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32)
565 * To fix this properly we need to do manual signal delivery multiplexed
566 * over a single host signal.
567 * Attempts for configure "missing" signals via sigaction will be
568 * silently ignored.
569 */
570 for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) {
571 target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN;
572 if (target_sig <= TARGET_NSIG) {
573 host_to_target_signal_table[host_sig] = target_sig;
574 }
575 }
576
577 /* generate signal conversion tables */
578 for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
579 target_to_host_signal_table[target_sig] = _NSIG; /* poison */
580 }
581 for (host_sig = 1; host_sig < _NSIG; host_sig++) {
582 if (host_to_target_signal_table[host_sig] == 0) {
583 host_to_target_signal_table[host_sig] = host_sig;
584 }
585 target_sig = host_to_target_signal_table[host_sig];
586 if (target_sig <= TARGET_NSIG) {
587 target_to_host_signal_table[target_sig] = host_sig;
588 }
589 }
590
591 if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) {
592 for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) {
593 if (target_to_host_signal_table[target_sig] == _NSIG) {
594 count++;
595 }
596 }
597 trace_signal_table_init(count);
598 }
599 }
600
601 void signal_init(void)
602 {
603 TaskState *ts = (TaskState *)thread_cpu->opaque;
604 struct sigaction act;
605 struct sigaction oact;
606 int i;
607 int host_sig;
608
609 /* initialize signal conversion tables */
610 signal_table_init();
611
612 /* Set the signal mask from the host mask. */
613 sigprocmask(0, 0, &ts->signal_mask);
614
615 sigfillset(&act.sa_mask);
616 act.sa_flags = SA_SIGINFO;
617 act.sa_sigaction = host_signal_handler;
618 for(i = 1; i <= TARGET_NSIG; i++) {
619 #ifdef CONFIG_GPROF
620 if (i == TARGET_SIGPROF) {
621 continue;
622 }
623 #endif
624 host_sig = target_to_host_signal(i);
625 sigaction(host_sig, NULL, &oact);
626 if (oact.sa_sigaction == (void *)SIG_IGN) {
627 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
628 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
629 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
630 }
631 /* If there's already a handler installed then something has
632 gone horribly wrong, so don't even try to handle that case. */
633 /* Install some handlers for our own use. We need at least
634 SIGSEGV and SIGBUS, to detect exceptions. We can not just
635 trap all signals because it affects syscall interrupt
636 behavior. But do trap all default-fatal signals. */
637 if (fatal_signal (i))
638 sigaction(host_sig, &act, NULL);
639 }
640 }
641
642 /* Force a synchronously taken signal. The kernel force_sig() function
643 * also forces the signal to "not blocked, not ignored", but for QEMU
644 * that work is done in process_pending_signals().
645 */
646 void force_sig(int sig)
647 {
648 CPUState *cpu = thread_cpu;
649 CPUArchState *env = cpu->env_ptr;
650 target_siginfo_t info = {};
651
652 info.si_signo = sig;
653 info.si_errno = 0;
654 info.si_code = TARGET_SI_KERNEL;
655 info._sifields._kill._pid = 0;
656 info._sifields._kill._uid = 0;
657 queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
658 }
659
660 /*
661 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
662 * 'force' part is handled in process_pending_signals().
663 */
664 void force_sig_fault(int sig, int code, abi_ulong addr)
665 {
666 CPUState *cpu = thread_cpu;
667 CPUArchState *env = cpu->env_ptr;
668 target_siginfo_t info = {};
669
670 info.si_signo = sig;
671 info.si_errno = 0;
672 info.si_code = code;
673 info._sifields._sigfault._addr = addr;
674 queue_signal(env, sig, QEMU_SI_FAULT, &info);
675 }
676
677 /* Force a SIGSEGV if we couldn't write to memory trying to set
678 * up the signal frame. oldsig is the signal we were trying to handle
679 * at the point of failure.
680 */
681 #if !defined(TARGET_RISCV)
682 void force_sigsegv(int oldsig)
683 {
684 if (oldsig == SIGSEGV) {
685 /* Make sure we don't try to deliver the signal again; this will
686 * end up with handle_pending_signal() calling dump_core_and_abort().
687 */
688 sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
689 }
690 force_sig(TARGET_SIGSEGV);
691 }
692 #endif
693
694 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
695 MMUAccessType access_type, bool maperr, uintptr_t ra)
696 {
697 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
698
699 if (tcg_ops->record_sigsegv) {
700 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
701 }
702
703 force_sig_fault(TARGET_SIGSEGV,
704 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
705 addr);
706 cpu->exception_index = EXCP_INTERRUPT;
707 cpu_loop_exit_restore(cpu, ra);
708 }
709
710 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
711 MMUAccessType access_type, uintptr_t ra)
712 {
713 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
714
715 if (tcg_ops->record_sigbus) {
716 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
717 }
718
719 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
720 cpu->exception_index = EXCP_INTERRUPT;
721 cpu_loop_exit_restore(cpu, ra);
722 }
723
724 /* abort execution with signal */
725 static void QEMU_NORETURN dump_core_and_abort(int target_sig)
726 {
727 CPUState *cpu = thread_cpu;
728 CPUArchState *env = cpu->env_ptr;
729 TaskState *ts = (TaskState *)cpu->opaque;
730 int host_sig, core_dumped = 0;
731 struct sigaction act;
732
733 host_sig = target_to_host_signal(target_sig);
734 trace_user_force_sig(env, target_sig, host_sig);
735 gdb_signalled(env, target_sig);
736
737 /* dump core if supported by target binary format */
738 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
739 stop_all_tasks();
740 core_dumped =
741 ((*ts->bprm->core_dump)(target_sig, env) == 0);
742 }
743 if (core_dumped) {
744 /* we already dumped the core of target process, we don't want
745 * a coredump of qemu itself */
746 struct rlimit nodump;
747 getrlimit(RLIMIT_CORE, &nodump);
748 nodump.rlim_cur=0;
749 setrlimit(RLIMIT_CORE, &nodump);
750 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
751 target_sig, strsignal(host_sig), "core dumped" );
752 }
753
754 /* The proper exit code for dying from an uncaught signal is
755 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
756 * a negative value. To get the proper exit code we need to
757 * actually die from an uncaught signal. Here the default signal
758 * handler is installed, we send ourself a signal and we wait for
759 * it to arrive. */
760 sigfillset(&act.sa_mask);
761 act.sa_handler = SIG_DFL;
762 act.sa_flags = 0;
763 sigaction(host_sig, &act, NULL);
764
765 /* For some reason raise(host_sig) doesn't send the signal when
766 * statically linked on x86-64. */
767 kill(getpid(), host_sig);
768
769 /* Make sure the signal isn't masked (just reuse the mask inside
770 of act) */
771 sigdelset(&act.sa_mask, host_sig);
772 sigsuspend(&act.sa_mask);
773
774 /* unreachable */
775 abort();
776 }
777
778 /* queue a signal so that it will be send to the virtual CPU as soon
779 as possible */
780 int queue_signal(CPUArchState *env, int sig, int si_type,
781 target_siginfo_t *info)
782 {
783 CPUState *cpu = env_cpu(env);
784 TaskState *ts = cpu->opaque;
785
786 trace_user_queue_signal(env, sig);
787
788 info->si_code = deposit32(info->si_code, 16, 16, si_type);
789
790 ts->sync_signal.info = *info;
791 ts->sync_signal.pending = sig;
792 /* signal that a new signal is pending */
793 qatomic_set(&ts->signal_pending, 1);
794 return 1; /* indicates that the signal was queued */
795 }
796
797
798 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
799 static inline void rewind_if_in_safe_syscall(void *puc)
800 {
801 ucontext_t *uc = (ucontext_t *)puc;
802 uintptr_t pcreg = host_signal_pc(uc);
803
804 if (pcreg > (uintptr_t)safe_syscall_start
805 && pcreg < (uintptr_t)safe_syscall_end) {
806 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
807 }
808 }
809
810 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
811 {
812 CPUArchState *env = thread_cpu->env_ptr;
813 CPUState *cpu = env_cpu(env);
814 TaskState *ts = cpu->opaque;
815 target_siginfo_t tinfo;
816 ucontext_t *uc = puc;
817 struct emulated_sigtable *k;
818 int guest_sig;
819 uintptr_t pc = 0;
820 bool sync_sig = false;
821
822 /*
823 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
824 * handling wrt signal blocking and unwinding.
825 */
826 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
827 MMUAccessType access_type;
828 uintptr_t host_addr;
829 abi_ptr guest_addr;
830 bool is_write;
831
832 host_addr = (uintptr_t)info->si_addr;
833
834 /*
835 * Convert forcefully to guest address space: addresses outside
836 * reserved_va are still valid to report via SEGV_MAPERR.
837 */
838 guest_addr = h2g_nocheck(host_addr);
839
840 pc = host_signal_pc(uc);
841 is_write = host_signal_write(info, uc);
842 access_type = adjust_signal_pc(&pc, is_write);
843
844 if (host_sig == SIGSEGV) {
845 bool maperr = true;
846
847 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
848 /* If this was a write to a TB protected page, restart. */
849 if (is_write &&
850 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
851 pc, guest_addr)) {
852 return;
853 }
854
855 /*
856 * With reserved_va, the whole address space is PROT_NONE,
857 * which means that we may get ACCERR when we want MAPERR.
858 */
859 if (page_get_flags(guest_addr) & PAGE_VALID) {
860 maperr = false;
861 } else {
862 info->si_code = SEGV_MAPERR;
863 }
864 }
865
866 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
867 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
868 } else {
869 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
870 if (info->si_code == BUS_ADRALN) {
871 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
872 }
873 }
874
875 sync_sig = true;
876 }
877
878 /* get target signal number */
879 guest_sig = host_to_target_signal(host_sig);
880 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
881 return;
882 }
883 trace_user_host_signal(env, host_sig, guest_sig);
884
885 host_to_target_siginfo_noswap(&tinfo, info);
886 k = &ts->sigtab[guest_sig - 1];
887 k->info = tinfo;
888 k->pending = guest_sig;
889 ts->signal_pending = 1;
890
891 /*
892 * For synchronous signals, unwind the cpu state to the faulting
893 * insn and then exit back to the main loop so that the signal
894 * is delivered immediately.
895 */
896 if (sync_sig) {
897 cpu->exception_index = EXCP_INTERRUPT;
898 cpu_loop_exit_restore(cpu, pc);
899 }
900
901 rewind_if_in_safe_syscall(puc);
902
903 /*
904 * Block host signals until target signal handler entered. We
905 * can't block SIGSEGV or SIGBUS while we're executing guest
906 * code in case the guest code provokes one in the window between
907 * now and it getting out to the main loop. Signals will be
908 * unblocked again in process_pending_signals().
909 *
910 * WARNING: we cannot use sigfillset() here because the uc_sigmask
911 * field is a kernel sigset_t, which is much smaller than the
912 * libc sigset_t which sigfillset() operates on. Using sigfillset()
913 * would write 0xff bytes off the end of the structure and trash
914 * data on the struct.
915 * We can't use sizeof(uc->uc_sigmask) either, because the libc
916 * headers define the struct field with the wrong (too large) type.
917 */
918 memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE);
919 sigdelset(&uc->uc_sigmask, SIGSEGV);
920 sigdelset(&uc->uc_sigmask, SIGBUS);
921
922 /* interrupt the virtual CPU as soon as possible */
923 cpu_exit(thread_cpu);
924 }
925
926 /* do_sigaltstack() returns target values and errnos. */
927 /* compare linux/kernel/signal.c:do_sigaltstack() */
928 abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
929 CPUArchState *env)
930 {
931 target_stack_t oss, *uoss = NULL;
932 abi_long ret = -TARGET_EFAULT;
933
934 if (uoss_addr) {
935 /* Verify writability now, but do not alter user memory yet. */
936 if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
937 goto out;
938 }
939 target_save_altstack(&oss, env);
940 }
941
942 if (uss_addr) {
943 target_stack_t *uss;
944
945 if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
946 goto out;
947 }
948 ret = target_restore_altstack(uss, env);
949 if (ret) {
950 goto out;
951 }
952 }
953
954 if (uoss_addr) {
955 memcpy(uoss, &oss, sizeof(oss));
956 unlock_user_struct(uoss, uoss_addr, 1);
957 uoss = NULL;
958 }
959 ret = 0;
960
961 out:
962 if (uoss) {
963 unlock_user_struct(uoss, uoss_addr, 0);
964 }
965 return ret;
966 }
967
968 /* do_sigaction() return target values and host errnos */
969 int do_sigaction(int sig, const struct target_sigaction *act,
970 struct target_sigaction *oact, abi_ulong ka_restorer)
971 {
972 struct target_sigaction *k;
973 struct sigaction act1;
974 int host_sig;
975 int ret = 0;
976
977 trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
978
979 if (sig < 1 || sig > TARGET_NSIG) {
980 return -TARGET_EINVAL;
981 }
982
983 if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) {
984 return -TARGET_EINVAL;
985 }
986
987 if (block_signals()) {
988 return -QEMU_ERESTARTSYS;
989 }
990
991 k = &sigact_table[sig - 1];
992 if (oact) {
993 __put_user(k->_sa_handler, &oact->_sa_handler);
994 __put_user(k->sa_flags, &oact->sa_flags);
995 #ifdef TARGET_ARCH_HAS_SA_RESTORER
996 __put_user(k->sa_restorer, &oact->sa_restorer);
997 #endif
998 /* Not swapped. */
999 oact->sa_mask = k->sa_mask;
1000 }
1001 if (act) {
1002 /* FIXME: This is not threadsafe. */
1003 __get_user(k->_sa_handler, &act->_sa_handler);
1004 __get_user(k->sa_flags, &act->sa_flags);
1005 #ifdef TARGET_ARCH_HAS_SA_RESTORER
1006 __get_user(k->sa_restorer, &act->sa_restorer);
1007 #endif
1008 #ifdef TARGET_ARCH_HAS_KA_RESTORER
1009 k->ka_restorer = ka_restorer;
1010 #endif
1011 /* To be swapped in target_to_host_sigset. */
1012 k->sa_mask = act->sa_mask;
1013
1014 /* we update the host linux signal state */
1015 host_sig = target_to_host_signal(sig);
1016 trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
1017 if (host_sig > SIGRTMAX) {
1018 /* we don't have enough host signals to map all target signals */
1019 qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
1020 sig);
1021 /*
1022 * we don't return an error here because some programs try to
1023 * register an handler for all possible rt signals even if they
1024 * don't need it.
1025 * An error here can abort them whereas there can be no problem
1026 * to not have the signal available later.
1027 * This is the case for golang,
1028 * See https://github.com/golang/go/issues/33746
1029 * So we silently ignore the error.
1030 */
1031 return 0;
1032 }
1033 if (host_sig != SIGSEGV && host_sig != SIGBUS) {
1034 sigfillset(&act1.sa_mask);
1035 act1.sa_flags = SA_SIGINFO;
1036 if (k->sa_flags & TARGET_SA_RESTART)
1037 act1.sa_flags |= SA_RESTART;
1038 /* NOTE: it is important to update the host kernel signal
1039 ignore state to avoid getting unexpected interrupted
1040 syscalls */
1041 if (k->_sa_handler == TARGET_SIG_IGN) {
1042 act1.sa_sigaction = (void *)SIG_IGN;
1043 } else if (k->_sa_handler == TARGET_SIG_DFL) {
1044 if (fatal_signal (sig))
1045 act1.sa_sigaction = host_signal_handler;
1046 else
1047 act1.sa_sigaction = (void *)SIG_DFL;
1048 } else {
1049 act1.sa_sigaction = host_signal_handler;
1050 }
1051 ret = sigaction(host_sig, &act1, NULL);
1052 }
1053 }
1054 return ret;
1055 }
1056
1057 static void handle_pending_signal(CPUArchState *cpu_env, int sig,
1058 struct emulated_sigtable *k)
1059 {
1060 CPUState *cpu = env_cpu(cpu_env);
1061 abi_ulong handler;
1062 sigset_t set;
1063 target_sigset_t target_old_set;
1064 struct target_sigaction *sa;
1065 TaskState *ts = cpu->opaque;
1066
1067 trace_user_handle_signal(cpu_env, sig);
1068 /* dequeue signal */
1069 k->pending = 0;
1070
1071 sig = gdb_handlesig(cpu, sig);
1072 if (!sig) {
1073 sa = NULL;
1074 handler = TARGET_SIG_IGN;
1075 } else {
1076 sa = &sigact_table[sig - 1];
1077 handler = sa->_sa_handler;
1078 }
1079
1080 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
1081 print_taken_signal(sig, &k->info);
1082 }
1083
1084 if (handler == TARGET_SIG_DFL) {
1085 /* default handler : ignore some signal. The other are job control or fatal */
1086 if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
1087 kill(getpid(),SIGSTOP);
1088 } else if (sig != TARGET_SIGCHLD &&
1089 sig != TARGET_SIGURG &&
1090 sig != TARGET_SIGWINCH &&
1091 sig != TARGET_SIGCONT) {
1092 dump_core_and_abort(sig);
1093 }
1094 } else if (handler == TARGET_SIG_IGN) {
1095 /* ignore sig */
1096 } else if (handler == TARGET_SIG_ERR) {
1097 dump_core_and_abort(sig);
1098 } else {
1099 /* compute the blocked signals during the handler execution */
1100 sigset_t *blocked_set;
1101
1102 target_to_host_sigset(&set, &sa->sa_mask);
1103 /* SA_NODEFER indicates that the current signal should not be
1104 blocked during the handler */
1105 if (!(sa->sa_flags & TARGET_SA_NODEFER))
1106 sigaddset(&set, target_to_host_signal(sig));
1107
1108 /* save the previous blocked signal state to restore it at the
1109 end of the signal execution (see do_sigreturn) */
1110 host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
1111
1112 /* block signals in the handler */
1113 blocked_set = ts->in_sigsuspend ?
1114 &ts->sigsuspend_mask : &ts->signal_mask;
1115 sigorset(&ts->signal_mask, blocked_set, &set);
1116 ts->in_sigsuspend = 0;
1117
1118 /* if the CPU is in VM86 mode, we restore the 32 bit values */
1119 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
1120 {
1121 CPUX86State *env = cpu_env;
1122 if (env->eflags & VM_MASK)
1123 save_v86_state(env);
1124 }
1125 #endif
1126 /* prepare the stack frame of the virtual CPU */
1127 #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
1128 if (sa->sa_flags & TARGET_SA_SIGINFO) {
1129 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1130 } else {
1131 setup_frame(sig, sa, &target_old_set, cpu_env);
1132 }
1133 #else
1134 /* These targets do not have traditional signals. */
1135 setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
1136 #endif
1137 if (sa->sa_flags & TARGET_SA_RESETHAND) {
1138 sa->_sa_handler = TARGET_SIG_DFL;
1139 }
1140 }
1141 }
1142
1143 void process_pending_signals(CPUArchState *cpu_env)
1144 {
1145 CPUState *cpu = env_cpu(cpu_env);
1146 int sig;
1147 TaskState *ts = cpu->opaque;
1148 sigset_t set;
1149 sigset_t *blocked_set;
1150
1151 while (qatomic_read(&ts->signal_pending)) {
1152 /* FIXME: This is not threadsafe. */
1153 sigfillset(&set);
1154 sigprocmask(SIG_SETMASK, &set, 0);
1155
1156 restart_scan:
1157 sig = ts->sync_signal.pending;
1158 if (sig) {
1159 /* Synchronous signals are forced,
1160 * see force_sig_info() and callers in Linux
1161 * Note that not all of our queue_signal() calls in QEMU correspond
1162 * to force_sig_info() calls in Linux (some are send_sig_info()).
1163 * However it seems like a kernel bug to me to allow the process
1164 * to block a synchronous signal since it could then just end up
1165 * looping round and round indefinitely.
1166 */
1167 if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
1168 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
1169 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
1170 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
1171 }
1172
1173 handle_pending_signal(cpu_env, sig, &ts->sync_signal);
1174 }
1175
1176 for (sig = 1; sig <= TARGET_NSIG; sig++) {
1177 blocked_set = ts->in_sigsuspend ?
1178 &ts->sigsuspend_mask : &ts->signal_mask;
1179
1180 if (ts->sigtab[sig - 1].pending &&
1181 (!sigismember(blocked_set,
1182 target_to_host_signal_table[sig]))) {
1183 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
1184 /* Restart scan from the beginning, as handle_pending_signal
1185 * might have resulted in a new synchronous signal (eg SIGSEGV).
1186 */
1187 goto restart_scan;
1188 }
1189 }
1190
1191 /* if no signal is pending, unblock signals and recheck (the act
1192 * of unblocking might cause us to take another host signal which
1193 * will set signal_pending again).
1194 */
1195 qatomic_set(&ts->signal_pending, 0);
1196 ts->in_sigsuspend = 0;
1197 set = ts->signal_mask;
1198 sigdelset(&set, SIGSEGV);
1199 sigdelset(&set, SIGBUS);
1200 sigprocmask(SIG_SETMASK, &set, 0);
1201 }
1202 ts->in_sigsuspend = 0;
1203 }