]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/sparc/signal.c
0cc3db5570e847ca677e2e8cf6973a4fdc51ca3e
[mirror_qemu.git] / linux-user / sparc / signal.c
1 /*
2 * Emulation of Linux signals
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qemu.h"
21 #include "signal-common.h"
22 #include "linux-user/trace.h"
23
24 /* A Sparc register window */
25 struct target_reg_window {
26 abi_ulong locals[8];
27 abi_ulong ins[8];
28 };
29
30 /* A Sparc stack frame. */
31 struct target_stackf {
32 /*
33 * Since qemu does not reference fp or callers_pc directly,
34 * it's simpler to treat fp and callers_pc as elements of ins[],
35 * and then bundle locals[] and ins[] into reg_window.
36 */
37 struct target_reg_window win;
38 /*
39 * Similarly, bundle structptr and xxargs into xargs[].
40 * This portion of the struct is part of the function call abi,
41 * and belongs to the callee for spilling argument registers.
42 */
43 abi_ulong xargs[8];
44 };
45
46 struct target_siginfo_fpu {
47 #ifdef TARGET_SPARC64
48 uint64_t si_double_regs[32];
49 uint64_t si_fsr;
50 uint64_t si_gsr;
51 uint64_t si_fprs;
52 #else
53 /* It is more convenient for qemu to move doubles, not singles. */
54 uint64_t si_double_regs[16];
55 uint32_t si_fsr;
56 uint32_t si_fpqdepth;
57 struct {
58 uint32_t insn_addr;
59 uint32_t insn;
60 } si_fpqueue [16];
61 #endif
62 };
63
64 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
65 struct target_signal_frame {
66 struct target_stackf ss;
67 struct target_pt_regs regs;
68 uint32_t si_mask;
69 abi_ulong fpu_save;
70 uint32_t insns[2] QEMU_ALIGNED(8);
71 abi_ulong extramask[TARGET_NSIG_WORDS - 1];
72 abi_ulong extra_size; /* Should be 0 */
73 abi_ulong rwin_save;
74 };
75 #endif
76
77 struct target_rt_signal_frame {
78 struct target_stackf ss;
79 target_siginfo_t info;
80 struct target_pt_regs regs;
81 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
82 abi_ulong fpu_save;
83 target_stack_t stack;
84 target_sigset_t mask;
85 #else
86 target_sigset_t mask;
87 abi_ulong fpu_save;
88 uint32_t insns[2];
89 target_stack_t stack;
90 abi_ulong extra_size; /* Should be 0 */
91 #endif
92 abi_ulong rwin_save;
93 };
94
95 static abi_ulong get_sigframe(struct target_sigaction *sa,
96 CPUSPARCState *env,
97 size_t framesize)
98 {
99 abi_ulong sp = get_sp_from_cpustate(env);
100
101 /*
102 * If we are on the alternate signal stack and would overflow it, don't.
103 * Return an always-bogus address instead so we will die with SIGSEGV.
104 */
105 if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
106 return -1;
107 }
108
109 /* This is the X/Open sanctioned signal stack switching. */
110 sp = target_sigsp(sp, sa) - framesize;
111
112 /*
113 * Always align the stack frame. This handles two cases. First,
114 * sigaltstack need not be mindful of platform specific stack
115 * alignment. Second, if we took this signal because the stack
116 * is not aligned properly, we'd like to take the signal cleanly
117 * and report that.
118 */
119 sp &= ~15UL;
120
121 return sp;
122 }
123
124 static void save_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
125 {
126 int i;
127
128 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
129 __put_user(sparc64_tstate(env), &regs->tstate);
130 /* TODO: magic should contain PT_REG_MAGIC + %tt. */
131 __put_user(0, &regs->magic);
132 #else
133 __put_user(cpu_get_psr(env), &regs->psr);
134 #endif
135
136 __put_user(env->pc, &regs->pc);
137 __put_user(env->npc, &regs->npc);
138 __put_user(env->y, &regs->y);
139
140 for (i = 0; i < 8; i++) {
141 __put_user(env->gregs[i], &regs->u_regs[i]);
142 }
143 for (i = 0; i < 8; i++) {
144 __put_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
145 }
146 }
147
148 static void restore_pt_regs(struct target_pt_regs *regs, CPUSPARCState *env)
149 {
150 int i;
151
152 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
153 /* User can only change condition codes and %asi in %tstate. */
154 uint64_t tstate;
155 __get_user(tstate, &regs->tstate);
156 cpu_put_ccr(env, tstate >> 32);
157 env->asi = extract64(tstate, 24, 8);
158 #else
159 /*
160 * User can only change condition codes and FPU enabling in %psr.
161 * But don't bother with FPU enabling, since a real kernel would
162 * just re-enable the FPU upon the next fpu trap.
163 */
164 uint32_t psr;
165 __get_user(psr, &regs->psr);
166 env->psr = (psr & PSR_ICC) | (env->psr & ~PSR_ICC);
167 #endif
168
169 /* Note that pc and npc are handled in the caller. */
170
171 __get_user(env->y, &regs->y);
172
173 for (i = 0; i < 8; i++) {
174 __get_user(env->gregs[i], &regs->u_regs[i]);
175 }
176 for (i = 0; i < 8; i++) {
177 __get_user(env->regwptr[WREG_O0 + i], &regs->u_regs[i + 8]);
178 }
179 }
180
181 static void save_reg_win(struct target_reg_window *win, CPUSPARCState *env)
182 {
183 int i;
184
185 for (i = 0; i < 8; i++) {
186 __put_user(env->regwptr[i + WREG_L0], &win->locals[i]);
187 }
188 for (i = 0; i < 8; i++) {
189 __put_user(env->regwptr[i + WREG_I0], &win->ins[i]);
190 }
191 }
192
193 static void save_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
194 {
195 int i;
196
197 #ifdef TARGET_SPARC64
198 for (i = 0; i < 32; ++i) {
199 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
200 }
201 __put_user(env->fsr, &fpu->si_fsr);
202 __put_user(env->gsr, &fpu->si_gsr);
203 __put_user(env->fprs, &fpu->si_fprs);
204 #else
205 for (i = 0; i < 16; ++i) {
206 __put_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
207 }
208 __put_user(env->fsr, &fpu->si_fsr);
209 __put_user(0, &fpu->si_fpqdepth);
210 #endif
211 }
212
213 static void restore_fpu(struct target_siginfo_fpu *fpu, CPUSPARCState *env)
214 {
215 int i;
216
217 #ifdef TARGET_SPARC64
218 uint64_t fprs;
219 __get_user(fprs, &fpu->si_fprs);
220
221 /* In case the user mucks about with FPRS, restore as directed. */
222 if (fprs & FPRS_DL) {
223 for (i = 0; i < 16; ++i) {
224 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
225 }
226 }
227 if (fprs & FPRS_DU) {
228 for (i = 16; i < 32; ++i) {
229 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
230 }
231 }
232 __get_user(env->fsr, &fpu->si_fsr);
233 __get_user(env->gsr, &fpu->si_gsr);
234 env->fprs |= fprs;
235 #else
236 for (i = 0; i < 16; ++i) {
237 __get_user(env->fpr[i].ll, &fpu->si_double_regs[i]);
238 }
239 __get_user(env->fsr, &fpu->si_fsr);
240 #endif
241 }
242
243 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
244 void setup_frame(int sig, struct target_sigaction *ka,
245 target_sigset_t *set, CPUSPARCState *env)
246 {
247 abi_ulong sf_addr;
248 struct target_signal_frame *sf;
249 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
250 int i;
251
252 sf_addr = get_sigframe(ka, env, sf_size);
253 trace_user_setup_frame(env, sf_addr);
254
255 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
256 if (!sf) {
257 force_sigsegv(sig);
258 return;
259 }
260
261 /* 2. Save the current process state */
262 save_pt_regs(&sf->regs, env);
263 __put_user(0, &sf->extra_size);
264
265 save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
266 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
267
268 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */
269
270 __put_user(set->sig[0], &sf->si_mask);
271 for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
272 __put_user(set->sig[i + 1], &sf->extramask[i]);
273 }
274
275 save_reg_win(&sf->ss.win, env);
276
277 /* 3. signal handler back-trampoline and parameters */
278 env->regwptr[WREG_SP] = sf_addr;
279 env->regwptr[WREG_O0] = sig;
280 env->regwptr[WREG_O1] = sf_addr +
281 offsetof(struct target_signal_frame, regs);
282 env->regwptr[WREG_O2] = sf_addr +
283 offsetof(struct target_signal_frame, regs);
284
285 /* 4. signal handler */
286 env->pc = ka->_sa_handler;
287 env->npc = env->pc + 4;
288
289 /* 5. return to kernel instructions */
290 if (ka->ka_restorer) {
291 env->regwptr[WREG_O7] = ka->ka_restorer;
292 } else {
293 env->regwptr[WREG_O7] = sf_addr +
294 offsetof(struct target_signal_frame, insns) - 2 * 4;
295
296 /* mov __NR_sigreturn, %g1 */
297 __put_user(0x821020d8u, &sf->insns[0]);
298 /* t 0x10 */
299 __put_user(0x91d02010u, &sf->insns[1]);
300 }
301 unlock_user(sf, sf_addr, sf_size);
302 }
303 #endif /* TARGET_ARCH_HAS_SETUP_FRAME */
304
305 void setup_rt_frame(int sig, struct target_sigaction *ka,
306 target_siginfo_t *info,
307 target_sigset_t *set, CPUSPARCState *env)
308 {
309 abi_ulong sf_addr;
310 struct target_rt_signal_frame *sf;
311 size_t sf_size = sizeof(*sf) + sizeof(struct target_siginfo_fpu);
312
313 sf_addr = get_sigframe(ka, env, sf_size);
314 trace_user_setup_rt_frame(env, sf_addr);
315
316 sf = lock_user(VERIFY_WRITE, sf_addr, sf_size, 0);
317 if (!sf) {
318 force_sigsegv(sig);
319 return;
320 }
321
322 /* 2. Save the current process state */
323 save_reg_win(&sf->ss.win, env);
324 save_pt_regs(&sf->regs, env);
325
326 save_fpu((struct target_siginfo_fpu *)(sf + 1), env);
327 __put_user(sf_addr + sizeof(*sf), &sf->fpu_save);
328
329 __put_user(0, &sf->rwin_save); /* TODO: save_rwin_state */
330
331 tswap_siginfo(&sf->info, info);
332 tswap_sigset(&sf->mask, set);
333 target_save_altstack(&sf->stack, env);
334
335 #ifdef TARGET_ABI32
336 __put_user(0, &sf->extra_size);
337 #endif
338
339 /* 3. signal handler back-trampoline and parameters */
340 env->regwptr[WREG_SP] = sf_addr - TARGET_STACK_BIAS;
341 env->regwptr[WREG_O0] = sig;
342 env->regwptr[WREG_O1] =
343 sf_addr + offsetof(struct target_rt_signal_frame, info);
344 #ifdef TARGET_ABI32
345 env->regwptr[WREG_O2] =
346 sf_addr + offsetof(struct target_rt_signal_frame, regs);
347 #else
348 env->regwptr[WREG_O2] = env->regwptr[WREG_O1];
349 #endif
350
351 /* 4. signal handler */
352 env->pc = ka->_sa_handler;
353 env->npc = env->pc + 4;
354
355 /* 5. return to kernel instructions */
356 #ifdef TARGET_ABI32
357 if (ka->ka_restorer) {
358 env->regwptr[WREG_O7] = ka->ka_restorer;
359 } else {
360 env->regwptr[WREG_O7] =
361 sf_addr + offsetof(struct target_rt_signal_frame, insns) - 2 * 4;
362
363 /* mov __NR_rt_sigreturn, %g1 */
364 __put_user(0x82102065u, &sf->insns[0]);
365 /* t 0x10 */
366 __put_user(0x91d02010u, &sf->insns[1]);
367 }
368 #else
369 env->regwptr[WREG_O7] = ka->ka_restorer;
370 #endif
371
372 unlock_user(sf, sf_addr, sf_size);
373 }
374
375 long do_sigreturn(CPUSPARCState *env)
376 {
377 #ifdef TARGET_ARCH_HAS_SETUP_FRAME
378 abi_ulong sf_addr;
379 struct target_signal_frame *sf = NULL;
380 abi_ulong pc, npc, ptr;
381 target_sigset_t set;
382 sigset_t host_set;
383 int i;
384
385 sf_addr = env->regwptr[WREG_SP];
386 trace_user_do_sigreturn(env, sf_addr);
387
388 /* 1. Make sure we are not getting garbage from the user */
389 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
390 goto segv_and_exit;
391 }
392
393 /* Make sure stack pointer is aligned. */
394 __get_user(ptr, &sf->regs.u_regs[14]);
395 if (ptr & 7) {
396 goto segv_and_exit;
397 }
398
399 /* Make sure instruction pointers are aligned. */
400 __get_user(pc, &sf->regs.pc);
401 __get_user(npc, &sf->regs.npc);
402 if ((pc | npc) & 3) {
403 goto segv_and_exit;
404 }
405
406 /* 2. Restore the state */
407 restore_pt_regs(&sf->regs, env);
408 env->pc = pc;
409 env->npc = npc;
410
411 __get_user(ptr, &sf->fpu_save);
412 if (ptr) {
413 struct target_siginfo_fpu *fpu;
414 if ((ptr & 3) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
415 goto segv_and_exit;
416 }
417 restore_fpu(fpu, env);
418 unlock_user_struct(fpu, ptr, 0);
419 }
420
421 __get_user(ptr, &sf->rwin_save);
422 if (ptr) {
423 goto segv_and_exit; /* TODO: restore_rwin */
424 }
425
426 __get_user(set.sig[0], &sf->si_mask);
427 for (i = 1; i < TARGET_NSIG_WORDS; i++) {
428 __get_user(set.sig[i], &sf->extramask[i - 1]);
429 }
430
431 target_to_host_sigset_internal(&host_set, &set);
432 set_sigmask(&host_set);
433
434 unlock_user_struct(sf, sf_addr, 0);
435 return -TARGET_QEMU_ESIGRETURN;
436
437 segv_and_exit:
438 unlock_user_struct(sf, sf_addr, 0);
439 force_sig(TARGET_SIGSEGV);
440 return -TARGET_QEMU_ESIGRETURN;
441 #else
442 return -TARGET_ENOSYS;
443 #endif
444 }
445
446 long do_rt_sigreturn(CPUSPARCState *env)
447 {
448 abi_ulong sf_addr, tpc, tnpc, ptr;
449 struct target_rt_signal_frame *sf = NULL;
450 sigset_t set;
451
452 sf_addr = get_sp_from_cpustate(env);
453 trace_user_do_rt_sigreturn(env, sf_addr);
454
455 /* 1. Make sure we are not getting garbage from the user */
456 if ((sf_addr & 15) || !lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
457 goto segv_and_exit;
458 }
459
460 /* Validate SP alignment. */
461 __get_user(ptr, &sf->regs.u_regs[8 + WREG_SP]);
462 if ((ptr + TARGET_STACK_BIAS) & 7) {
463 goto segv_and_exit;
464 }
465
466 /* Validate PC and NPC alignment. */
467 __get_user(tpc, &sf->regs.pc);
468 __get_user(tnpc, &sf->regs.npc);
469 if ((tpc | tnpc) & 3) {
470 goto segv_and_exit;
471 }
472
473 /* 2. Restore the state */
474 restore_pt_regs(&sf->regs, env);
475
476 __get_user(ptr, &sf->fpu_save);
477 if (ptr) {
478 struct target_siginfo_fpu *fpu;
479 if ((ptr & 7) || !lock_user_struct(VERIFY_READ, fpu, ptr, 1)) {
480 goto segv_and_exit;
481 }
482 restore_fpu(fpu, env);
483 unlock_user_struct(fpu, ptr, 0);
484 }
485
486 __get_user(ptr, &sf->rwin_save);
487 if (ptr) {
488 goto segv_and_exit; /* TODO: restore_rwin_state */
489 }
490
491 target_restore_altstack(&sf->stack, env);
492 target_to_host_sigset(&set, &sf->mask);
493 set_sigmask(&set);
494
495 env->pc = tpc;
496 env->npc = tnpc;
497
498 unlock_user_struct(sf, sf_addr, 0);
499 return -TARGET_QEMU_ESIGRETURN;
500
501 segv_and_exit:
502 unlock_user_struct(sf, sf_addr, 0);
503 force_sig(TARGET_SIGSEGV);
504 return -TARGET_QEMU_ESIGRETURN;
505 }
506
507 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
508 #define SPARC_MC_TSTATE 0
509 #define SPARC_MC_PC 1
510 #define SPARC_MC_NPC 2
511 #define SPARC_MC_Y 3
512 #define SPARC_MC_G1 4
513 #define SPARC_MC_G2 5
514 #define SPARC_MC_G3 6
515 #define SPARC_MC_G4 7
516 #define SPARC_MC_G5 8
517 #define SPARC_MC_G6 9
518 #define SPARC_MC_G7 10
519 #define SPARC_MC_O0 11
520 #define SPARC_MC_O1 12
521 #define SPARC_MC_O2 13
522 #define SPARC_MC_O3 14
523 #define SPARC_MC_O4 15
524 #define SPARC_MC_O5 16
525 #define SPARC_MC_O6 17
526 #define SPARC_MC_O7 18
527 #define SPARC_MC_NGREG 19
528
529 typedef abi_ulong target_mc_greg_t;
530 typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
531
532 struct target_mc_fq {
533 abi_ulong mcfq_addr;
534 uint32_t mcfq_insn;
535 };
536
537 /*
538 * Note the manual 16-alignment; the kernel gets this because it
539 * includes a "long double qregs[16]" in the mcpu_fregs union,
540 * which we can't do.
541 */
542 struct target_mc_fpu {
543 union {
544 uint32_t sregs[32];
545 uint64_t dregs[32];
546 //uint128_t qregs[16];
547 } mcfpu_fregs;
548 abi_ulong mcfpu_fsr;
549 abi_ulong mcfpu_fprs;
550 abi_ulong mcfpu_gsr;
551 abi_ulong mcfpu_fq;
552 unsigned char mcfpu_qcnt;
553 unsigned char mcfpu_qentsz;
554 unsigned char mcfpu_enab;
555 } __attribute__((aligned(16)));
556 typedef struct target_mc_fpu target_mc_fpu_t;
557
558 typedef struct {
559 target_mc_gregset_t mc_gregs;
560 target_mc_greg_t mc_fp;
561 target_mc_greg_t mc_i7;
562 target_mc_fpu_t mc_fpregs;
563 } target_mcontext_t;
564
565 struct target_ucontext {
566 abi_ulong tuc_link;
567 abi_ulong tuc_flags;
568 target_sigset_t tuc_sigmask;
569 target_mcontext_t tuc_mcontext;
570 };
571
572 /* {set, get}context() needed for 64-bit SparcLinux userland. */
573 void sparc64_set_context(CPUSPARCState *env)
574 {
575 abi_ulong ucp_addr;
576 struct target_ucontext *ucp;
577 target_mc_gregset_t *grp;
578 target_mc_fpu_t *fpup;
579 abi_ulong pc, npc, tstate;
580 unsigned int i;
581 unsigned char fenab;
582
583 ucp_addr = env->regwptr[WREG_O0];
584 if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
585 goto do_sigsegv;
586 }
587 grp = &ucp->tuc_mcontext.mc_gregs;
588 __get_user(pc, &((*grp)[SPARC_MC_PC]));
589 __get_user(npc, &((*grp)[SPARC_MC_NPC]));
590 if ((pc | npc) & 3) {
591 goto do_sigsegv;
592 }
593 if (env->regwptr[WREG_O1]) {
594 target_sigset_t target_set;
595 sigset_t set;
596
597 if (TARGET_NSIG_WORDS == 1) {
598 __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
599 } else {
600 abi_ulong *src, *dst;
601 src = ucp->tuc_sigmask.sig;
602 dst = target_set.sig;
603 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
604 __get_user(*dst, src);
605 }
606 }
607 target_to_host_sigset_internal(&set, &target_set);
608 set_sigmask(&set);
609 }
610 env->pc = pc;
611 env->npc = npc;
612 __get_user(env->y, &((*grp)[SPARC_MC_Y]));
613 __get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
614 /* Honour TSTATE_ASI, TSTATE_ICC and TSTATE_XCC only */
615 env->asi = (tstate >> 24) & 0xff;
616 cpu_put_ccr(env, (tstate >> 32) & 0xff);
617 __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
618 __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
619 __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
620 __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
621 __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
622 __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
623 /* Skip g7 as that's the thread register in userspace */
624
625 /*
626 * Note that unlike the kernel, we didn't need to mess with the
627 * guest register window state to save it into a pt_regs to run
628 * the kernel. So for us the guest's O regs are still in WREG_O*
629 * (unlike the kernel which has put them in UREG_I* in a pt_regs)
630 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
631 * need to be written back to userspace memory.
632 */
633 __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0]));
634 __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1]));
635 __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2]));
636 __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3]));
637 __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4]));
638 __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5]));
639 __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6]));
640 __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7]));
641
642 __get_user(env->regwptr[WREG_FP], &(ucp->tuc_mcontext.mc_fp));
643 __get_user(env->regwptr[WREG_I7], &(ucp->tuc_mcontext.mc_i7));
644
645 fpup = &ucp->tuc_mcontext.mc_fpregs;
646
647 __get_user(fenab, &(fpup->mcfpu_enab));
648 if (fenab) {
649 abi_ulong fprs;
650
651 /*
652 * We use the FPRS from the guest only in deciding whether
653 * to restore the upper, lower, or both banks of the FPU regs.
654 * The kernel here writes the FPU register data into the
655 * process's current_thread_info state and unconditionally
656 * clears FPRS and TSTATE_PEF: this disables the FPU so that the
657 * next FPU-disabled trap will copy the data out of
658 * current_thread_info and into the real FPU registers.
659 * QEMU doesn't need to handle lazy-FPU-state-restoring like that,
660 * so we always load the data directly into the FPU registers
661 * and leave FPRS and TSTATE_PEF alone (so the FPU stays enabled).
662 * Note that because we (and the kernel) always write zeroes for
663 * the fenab and fprs in sparc64_get_context() none of this code
664 * will execute unless the guest manually constructed or changed
665 * the context structure.
666 */
667 __get_user(fprs, &(fpup->mcfpu_fprs));
668 if (fprs & FPRS_DL) {
669 for (i = 0; i < 16; i++) {
670 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
671 }
672 }
673 if (fprs & FPRS_DU) {
674 for (i = 16; i < 32; i++) {
675 __get_user(env->fpr[i].ll, &(fpup->mcfpu_fregs.dregs[i]));
676 }
677 }
678 __get_user(env->fsr, &(fpup->mcfpu_fsr));
679 __get_user(env->gsr, &(fpup->mcfpu_gsr));
680 }
681 unlock_user_struct(ucp, ucp_addr, 0);
682 return;
683 do_sigsegv:
684 unlock_user_struct(ucp, ucp_addr, 0);
685 force_sig(TARGET_SIGSEGV);
686 }
687
688 void sparc64_get_context(CPUSPARCState *env)
689 {
690 abi_ulong ucp_addr;
691 struct target_ucontext *ucp;
692 target_mc_gregset_t *grp;
693 target_mcontext_t *mcp;
694 int err;
695 unsigned int i;
696 target_sigset_t target_set;
697 sigset_t set;
698
699 ucp_addr = env->regwptr[WREG_O0];
700 if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
701 goto do_sigsegv;
702 }
703
704 memset(ucp, 0, sizeof(*ucp));
705
706 mcp = &ucp->tuc_mcontext;
707 grp = &mcp->mc_gregs;
708
709 /* Skip over the trap instruction, first. */
710 env->pc = env->npc;
711 env->npc += 4;
712
713 /* If we're only reading the signal mask then do_sigprocmask()
714 * is guaranteed not to fail, which is important because we don't
715 * have any way to signal a failure or restart this operation since
716 * this is not a normal syscall.
717 */
718 err = do_sigprocmask(0, NULL, &set);
719 assert(err == 0);
720 host_to_target_sigset_internal(&target_set, &set);
721 if (TARGET_NSIG_WORDS == 1) {
722 __put_user(target_set.sig[0],
723 (abi_ulong *)&ucp->tuc_sigmask);
724 } else {
725 abi_ulong *src, *dst;
726 src = target_set.sig;
727 dst = ucp->tuc_sigmask.sig;
728 for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
729 __put_user(*src, dst);
730 }
731 }
732
733 __put_user(sparc64_tstate(env), &((*grp)[SPARC_MC_TSTATE]));
734 __put_user(env->pc, &((*grp)[SPARC_MC_PC]));
735 __put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
736 __put_user(env->y, &((*grp)[SPARC_MC_Y]));
737 __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
738 __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
739 __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
740 __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
741 __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
742 __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
743 __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
744
745 /*
746 * Note that unlike the kernel, we didn't need to mess with the
747 * guest register window state to save it into a pt_regs to run
748 * the kernel. So for us the guest's O regs are still in WREG_O*
749 * (unlike the kernel which has put them in UREG_I* in a pt_regs)
750 * and the fp and i7 are still in WREG_I6 and WREG_I7 and don't
751 * need to be fished out of userspace memory.
752 */
753 __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0]));
754 __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1]));
755 __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2]));
756 __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3]));
757 __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4]));
758 __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5]));
759 __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6]));
760 __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7]));
761
762 __put_user(env->regwptr[WREG_FP], &(mcp->mc_fp));
763 __put_user(env->regwptr[WREG_I7], &(mcp->mc_i7));
764
765 /*
766 * We don't write out the FPU state. This matches the kernel's
767 * implementation (which has the code for doing this but
768 * hidden behind an "if (fenab)" where fenab is always 0).
769 */
770
771 unlock_user_struct(ucp, ucp_addr, 1);
772 return;
773 do_sigsegv:
774 unlock_user_struct(ucp, ucp_addr, 1);
775 force_sig(TARGET_SIGSEGV);
776 }
777 #endif