]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/syscall.c
target/xtensa: fix FPU2000 bugs
[mirror_qemu.git] / linux-user / syscall.c
1 /*
2 * Linux syscalls
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include <elf.h>
24 #include <endian.h>
25 #include <grp.h>
26 #include <sys/ipc.h>
27 #include <sys/msg.h>
28 #include <sys/wait.h>
29 #include <sys/mount.h>
30 #include <sys/file.h>
31 #include <sys/fsuid.h>
32 #include <sys/personality.h>
33 #include <sys/prctl.h>
34 #include <sys/resource.h>
35 #include <sys/swap.h>
36 #include <linux/capability.h>
37 #include <sched.h>
38 #include <sys/timex.h>
39 #include <sys/socket.h>
40 #include <sys/un.h>
41 #include <sys/uio.h>
42 #include <poll.h>
43 #include <sys/times.h>
44 #include <sys/shm.h>
45 #include <sys/sem.h>
46 #include <sys/statfs.h>
47 #include <utime.h>
48 #include <sys/sysinfo.h>
49 #include <sys/signalfd.h>
50 //#include <sys/user.h>
51 #include <netinet/ip.h>
52 #include <netinet/tcp.h>
53 #include <linux/wireless.h>
54 #include <linux/icmp.h>
55 #include <linux/icmpv6.h>
56 #include <linux/errqueue.h>
57 #include <linux/random.h>
58 #include "qemu-common.h"
59 #ifdef CONFIG_TIMERFD
60 #include <sys/timerfd.h>
61 #endif
62 #ifdef TARGET_GPROF
63 #include <sys/gmon.h>
64 #endif
65 #ifdef CONFIG_EVENTFD
66 #include <sys/eventfd.h>
67 #endif
68 #ifdef CONFIG_EPOLL
69 #include <sys/epoll.h>
70 #endif
71 #ifdef CONFIG_ATTR
72 #include "qemu/xattr.h"
73 #endif
74 #ifdef CONFIG_SENDFILE
75 #include <sys/sendfile.h>
76 #endif
77
78 #define termios host_termios
79 #define winsize host_winsize
80 #define termio host_termio
81 #define sgttyb host_sgttyb /* same as target */
82 #define tchars host_tchars /* same as target */
83 #define ltchars host_ltchars /* same as target */
84
85 #include <linux/termios.h>
86 #include <linux/unistd.h>
87 #include <linux/cdrom.h>
88 #include <linux/hdreg.h>
89 #include <linux/soundcard.h>
90 #include <linux/kd.h>
91 #include <linux/mtio.h>
92 #include <linux/fs.h>
93 #if defined(CONFIG_FIEMAP)
94 #include <linux/fiemap.h>
95 #endif
96 #include <linux/fb.h>
97 #include <linux/vt.h>
98 #include <linux/dm-ioctl.h>
99 #include <linux/reboot.h>
100 #include <linux/route.h>
101 #include <linux/filter.h>
102 #include <linux/blkpg.h>
103 #include <netpacket/packet.h>
104 #include <linux/netlink.h>
105 #ifdef CONFIG_RTNETLINK
106 #include <linux/rtnetlink.h>
107 #include <linux/if_bridge.h>
108 #endif
109 #include <linux/audit.h>
110 #include "linux_loop.h"
111 #include "uname.h"
112
113 #include "qemu.h"
114
115 #ifndef CLONE_IO
116 #define CLONE_IO 0x80000000 /* Clone io context */
117 #endif
118
119 /* We can't directly call the host clone syscall, because this will
120 * badly confuse libc (breaking mutexes, for example). So we must
121 * divide clone flags into:
122 * * flag combinations that look like pthread_create()
123 * * flag combinations that look like fork()
124 * * flags we can implement within QEMU itself
125 * * flags we can't support and will return an error for
126 */
127 /* For thread creation, all these flags must be present; for
128 * fork, none must be present.
129 */
130 #define CLONE_THREAD_FLAGS \
131 (CLONE_VM | CLONE_FS | CLONE_FILES | \
132 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
133
134 /* These flags are ignored:
135 * CLONE_DETACHED is now ignored by the kernel;
136 * CLONE_IO is just an optimisation hint to the I/O scheduler
137 */
138 #define CLONE_IGNORED_FLAGS \
139 (CLONE_DETACHED | CLONE_IO)
140
141 /* Flags for fork which we can implement within QEMU itself */
142 #define CLONE_OPTIONAL_FORK_FLAGS \
143 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
144 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
145
146 /* Flags for thread creation which we can implement within QEMU itself */
147 #define CLONE_OPTIONAL_THREAD_FLAGS \
148 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
149 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
150
151 #define CLONE_INVALID_FORK_FLAGS \
152 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
153
154 #define CLONE_INVALID_THREAD_FLAGS \
155 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
156 CLONE_IGNORED_FLAGS))
157
158 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
159 * have almost all been allocated. We cannot support any of
160 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
161 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
162 * The checks against the invalid thread masks above will catch these.
163 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
164 */
165
166 //#define DEBUG
167 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
168 * once. This exercises the codepaths for restart.
169 */
170 //#define DEBUG_ERESTARTSYS
171
172 //#include <linux/msdos_fs.h>
173 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
174 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
175
176 #undef _syscall0
177 #undef _syscall1
178 #undef _syscall2
179 #undef _syscall3
180 #undef _syscall4
181 #undef _syscall5
182 #undef _syscall6
183
184 #define _syscall0(type,name) \
185 static type name (void) \
186 { \
187 return syscall(__NR_##name); \
188 }
189
190 #define _syscall1(type,name,type1,arg1) \
191 static type name (type1 arg1) \
192 { \
193 return syscall(__NR_##name, arg1); \
194 }
195
196 #define _syscall2(type,name,type1,arg1,type2,arg2) \
197 static type name (type1 arg1,type2 arg2) \
198 { \
199 return syscall(__NR_##name, arg1, arg2); \
200 }
201
202 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
203 static type name (type1 arg1,type2 arg2,type3 arg3) \
204 { \
205 return syscall(__NR_##name, arg1, arg2, arg3); \
206 }
207
208 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
209 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
210 { \
211 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
212 }
213
214 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
215 type5,arg5) \
216 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
217 { \
218 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
219 }
220
221
222 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
223 type5,arg5,type6,arg6) \
224 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
225 type6 arg6) \
226 { \
227 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
228 }
229
230
231 #define __NR_sys_uname __NR_uname
232 #define __NR_sys_getcwd1 __NR_getcwd
233 #define __NR_sys_getdents __NR_getdents
234 #define __NR_sys_getdents64 __NR_getdents64
235 #define __NR_sys_getpriority __NR_getpriority
236 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
237 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
238 #define __NR_sys_syslog __NR_syslog
239 #define __NR_sys_futex __NR_futex
240 #define __NR_sys_inotify_init __NR_inotify_init
241 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
242 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
243
244 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
245 #define __NR__llseek __NR_lseek
246 #endif
247
248 /* Newer kernel ports have llseek() instead of _llseek() */
249 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
250 #define TARGET_NR__llseek TARGET_NR_llseek
251 #endif
252
253 #ifdef __NR_gettid
254 _syscall0(int, gettid)
255 #else
256 /* This is a replacement for the host gettid() and must return a host
257 errno. */
258 static int gettid(void) {
259 return -ENOSYS;
260 }
261 #endif
262
263 /* For the 64-bit guest on 32-bit host case we must emulate
264 * getdents using getdents64, because otherwise the host
265 * might hand us back more dirent records than we can fit
266 * into the guest buffer after structure format conversion.
267 * Otherwise we emulate getdents with getdents if the host has it.
268 */
269 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
270 #define EMULATE_GETDENTS_WITH_GETDENTS
271 #endif
272
273 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
274 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
275 #endif
276 #if (defined(TARGET_NR_getdents) && \
277 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
278 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
279 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
280 #endif
281 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
282 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
283 loff_t *, res, uint, wh);
284 #endif
285 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
286 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
287 siginfo_t *, uinfo)
288 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
289 #ifdef __NR_exit_group
290 _syscall1(int,exit_group,int,error_code)
291 #endif
292 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
293 _syscall1(int,set_tid_address,int *,tidptr)
294 #endif
295 #if defined(TARGET_NR_futex) && defined(__NR_futex)
296 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
297 const struct timespec *,timeout,int *,uaddr2,int,val3)
298 #endif
299 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
300 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
301 unsigned long *, user_mask_ptr);
302 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
303 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
304 unsigned long *, user_mask_ptr);
305 #define __NR_sys_getcpu __NR_getcpu
306 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
307 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
308 void *, arg);
309 _syscall2(int, capget, struct __user_cap_header_struct *, header,
310 struct __user_cap_data_struct *, data);
311 _syscall2(int, capset, struct __user_cap_header_struct *, header,
312 struct __user_cap_data_struct *, data);
313 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
314 _syscall2(int, ioprio_get, int, which, int, who)
315 #endif
316 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
317 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
318 #endif
319 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
320 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
321 #endif
322
323 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
324 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
325 unsigned long, idx1, unsigned long, idx2)
326 #endif
327
328 static bitmask_transtbl fcntl_flags_tbl[] = {
329 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
330 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
331 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
332 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
333 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
334 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
335 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
336 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
337 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
338 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
339 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
340 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
341 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
342 #if defined(O_DIRECT)
343 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
344 #endif
345 #if defined(O_NOATIME)
346 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
347 #endif
348 #if defined(O_CLOEXEC)
349 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
350 #endif
351 #if defined(O_PATH)
352 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
353 #endif
354 #if defined(O_TMPFILE)
355 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
356 #endif
357 /* Don't terminate the list prematurely on 64-bit host+guest. */
358 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
359 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
360 #endif
361 { 0, 0, 0, 0 }
362 };
363
364 enum {
365 QEMU_IFLA_BR_UNSPEC,
366 QEMU_IFLA_BR_FORWARD_DELAY,
367 QEMU_IFLA_BR_HELLO_TIME,
368 QEMU_IFLA_BR_MAX_AGE,
369 QEMU_IFLA_BR_AGEING_TIME,
370 QEMU_IFLA_BR_STP_STATE,
371 QEMU_IFLA_BR_PRIORITY,
372 QEMU_IFLA_BR_VLAN_FILTERING,
373 QEMU_IFLA_BR_VLAN_PROTOCOL,
374 QEMU_IFLA_BR_GROUP_FWD_MASK,
375 QEMU_IFLA_BR_ROOT_ID,
376 QEMU_IFLA_BR_BRIDGE_ID,
377 QEMU_IFLA_BR_ROOT_PORT,
378 QEMU_IFLA_BR_ROOT_PATH_COST,
379 QEMU_IFLA_BR_TOPOLOGY_CHANGE,
380 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED,
381 QEMU_IFLA_BR_HELLO_TIMER,
382 QEMU_IFLA_BR_TCN_TIMER,
383 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER,
384 QEMU_IFLA_BR_GC_TIMER,
385 QEMU_IFLA_BR_GROUP_ADDR,
386 QEMU_IFLA_BR_FDB_FLUSH,
387 QEMU_IFLA_BR_MCAST_ROUTER,
388 QEMU_IFLA_BR_MCAST_SNOOPING,
389 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR,
390 QEMU_IFLA_BR_MCAST_QUERIER,
391 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY,
392 QEMU_IFLA_BR_MCAST_HASH_MAX,
393 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT,
394 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT,
395 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL,
396 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL,
397 QEMU_IFLA_BR_MCAST_QUERIER_INTVL,
398 QEMU_IFLA_BR_MCAST_QUERY_INTVL,
399 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL,
400 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL,
401 QEMU_IFLA_BR_NF_CALL_IPTABLES,
402 QEMU_IFLA_BR_NF_CALL_IP6TABLES,
403 QEMU_IFLA_BR_NF_CALL_ARPTABLES,
404 QEMU_IFLA_BR_VLAN_DEFAULT_PVID,
405 QEMU_IFLA_BR_PAD,
406 QEMU_IFLA_BR_VLAN_STATS_ENABLED,
407 QEMU_IFLA_BR_MCAST_STATS_ENABLED,
408 QEMU_IFLA_BR_MCAST_IGMP_VERSION,
409 QEMU_IFLA_BR_MCAST_MLD_VERSION,
410 QEMU___IFLA_BR_MAX,
411 };
412
413 enum {
414 QEMU_IFLA_UNSPEC,
415 QEMU_IFLA_ADDRESS,
416 QEMU_IFLA_BROADCAST,
417 QEMU_IFLA_IFNAME,
418 QEMU_IFLA_MTU,
419 QEMU_IFLA_LINK,
420 QEMU_IFLA_QDISC,
421 QEMU_IFLA_STATS,
422 QEMU_IFLA_COST,
423 QEMU_IFLA_PRIORITY,
424 QEMU_IFLA_MASTER,
425 QEMU_IFLA_WIRELESS,
426 QEMU_IFLA_PROTINFO,
427 QEMU_IFLA_TXQLEN,
428 QEMU_IFLA_MAP,
429 QEMU_IFLA_WEIGHT,
430 QEMU_IFLA_OPERSTATE,
431 QEMU_IFLA_LINKMODE,
432 QEMU_IFLA_LINKINFO,
433 QEMU_IFLA_NET_NS_PID,
434 QEMU_IFLA_IFALIAS,
435 QEMU_IFLA_NUM_VF,
436 QEMU_IFLA_VFINFO_LIST,
437 QEMU_IFLA_STATS64,
438 QEMU_IFLA_VF_PORTS,
439 QEMU_IFLA_PORT_SELF,
440 QEMU_IFLA_AF_SPEC,
441 QEMU_IFLA_GROUP,
442 QEMU_IFLA_NET_NS_FD,
443 QEMU_IFLA_EXT_MASK,
444 QEMU_IFLA_PROMISCUITY,
445 QEMU_IFLA_NUM_TX_QUEUES,
446 QEMU_IFLA_NUM_RX_QUEUES,
447 QEMU_IFLA_CARRIER,
448 QEMU_IFLA_PHYS_PORT_ID,
449 QEMU_IFLA_CARRIER_CHANGES,
450 QEMU_IFLA_PHYS_SWITCH_ID,
451 QEMU_IFLA_LINK_NETNSID,
452 QEMU_IFLA_PHYS_PORT_NAME,
453 QEMU_IFLA_PROTO_DOWN,
454 QEMU_IFLA_GSO_MAX_SEGS,
455 QEMU_IFLA_GSO_MAX_SIZE,
456 QEMU_IFLA_PAD,
457 QEMU_IFLA_XDP,
458 QEMU_IFLA_EVENT,
459 QEMU_IFLA_NEW_NETNSID,
460 QEMU_IFLA_IF_NETNSID,
461 QEMU_IFLA_CARRIER_UP_COUNT,
462 QEMU_IFLA_CARRIER_DOWN_COUNT,
463 QEMU_IFLA_NEW_IFINDEX,
464 QEMU___IFLA_MAX
465 };
466
467 enum {
468 QEMU_IFLA_BRPORT_UNSPEC,
469 QEMU_IFLA_BRPORT_STATE,
470 QEMU_IFLA_BRPORT_PRIORITY,
471 QEMU_IFLA_BRPORT_COST,
472 QEMU_IFLA_BRPORT_MODE,
473 QEMU_IFLA_BRPORT_GUARD,
474 QEMU_IFLA_BRPORT_PROTECT,
475 QEMU_IFLA_BRPORT_FAST_LEAVE,
476 QEMU_IFLA_BRPORT_LEARNING,
477 QEMU_IFLA_BRPORT_UNICAST_FLOOD,
478 QEMU_IFLA_BRPORT_PROXYARP,
479 QEMU_IFLA_BRPORT_LEARNING_SYNC,
480 QEMU_IFLA_BRPORT_PROXYARP_WIFI,
481 QEMU_IFLA_BRPORT_ROOT_ID,
482 QEMU_IFLA_BRPORT_BRIDGE_ID,
483 QEMU_IFLA_BRPORT_DESIGNATED_PORT,
484 QEMU_IFLA_BRPORT_DESIGNATED_COST,
485 QEMU_IFLA_BRPORT_ID,
486 QEMU_IFLA_BRPORT_NO,
487 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK,
488 QEMU_IFLA_BRPORT_CONFIG_PENDING,
489 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER,
490 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER,
491 QEMU_IFLA_BRPORT_HOLD_TIMER,
492 QEMU_IFLA_BRPORT_FLUSH,
493 QEMU_IFLA_BRPORT_MULTICAST_ROUTER,
494 QEMU_IFLA_BRPORT_PAD,
495 QEMU_IFLA_BRPORT_MCAST_FLOOD,
496 QEMU_IFLA_BRPORT_MCAST_TO_UCAST,
497 QEMU_IFLA_BRPORT_VLAN_TUNNEL,
498 QEMU_IFLA_BRPORT_BCAST_FLOOD,
499 QEMU_IFLA_BRPORT_GROUP_FWD_MASK,
500 QEMU_IFLA_BRPORT_NEIGH_SUPPRESS,
501 QEMU___IFLA_BRPORT_MAX
502 };
503
504 enum {
505 QEMU_IFLA_INFO_UNSPEC,
506 QEMU_IFLA_INFO_KIND,
507 QEMU_IFLA_INFO_DATA,
508 QEMU_IFLA_INFO_XSTATS,
509 QEMU_IFLA_INFO_SLAVE_KIND,
510 QEMU_IFLA_INFO_SLAVE_DATA,
511 QEMU___IFLA_INFO_MAX,
512 };
513
514 enum {
515 QEMU_IFLA_INET_UNSPEC,
516 QEMU_IFLA_INET_CONF,
517 QEMU___IFLA_INET_MAX,
518 };
519
520 enum {
521 QEMU_IFLA_INET6_UNSPEC,
522 QEMU_IFLA_INET6_FLAGS,
523 QEMU_IFLA_INET6_CONF,
524 QEMU_IFLA_INET6_STATS,
525 QEMU_IFLA_INET6_MCAST,
526 QEMU_IFLA_INET6_CACHEINFO,
527 QEMU_IFLA_INET6_ICMP6STATS,
528 QEMU_IFLA_INET6_TOKEN,
529 QEMU_IFLA_INET6_ADDR_GEN_MODE,
530 QEMU___IFLA_INET6_MAX
531 };
532
533 enum {
534 QEMU_IFLA_XDP_UNSPEC,
535 QEMU_IFLA_XDP_FD,
536 QEMU_IFLA_XDP_ATTACHED,
537 QEMU_IFLA_XDP_FLAGS,
538 QEMU_IFLA_XDP_PROG_ID,
539 QEMU___IFLA_XDP_MAX,
540 };
541
542 typedef abi_long (*TargetFdDataFunc)(void *, size_t);
543 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t);
544 typedef struct TargetFdTrans {
545 TargetFdDataFunc host_to_target_data;
546 TargetFdDataFunc target_to_host_data;
547 TargetFdAddrFunc target_to_host_addr;
548 } TargetFdTrans;
549
550 static TargetFdTrans **target_fd_trans;
551
552 static unsigned int target_fd_max;
553
554 static TargetFdDataFunc fd_trans_target_to_host_data(int fd)
555 {
556 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
557 return target_fd_trans[fd]->target_to_host_data;
558 }
559 return NULL;
560 }
561
562 static TargetFdDataFunc fd_trans_host_to_target_data(int fd)
563 {
564 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
565 return target_fd_trans[fd]->host_to_target_data;
566 }
567 return NULL;
568 }
569
570 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd)
571 {
572 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
573 return target_fd_trans[fd]->target_to_host_addr;
574 }
575 return NULL;
576 }
577
578 static void fd_trans_register(int fd, TargetFdTrans *trans)
579 {
580 unsigned int oldmax;
581
582 if (fd >= target_fd_max) {
583 oldmax = target_fd_max;
584 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */
585 target_fd_trans = g_renew(TargetFdTrans *,
586 target_fd_trans, target_fd_max);
587 memset((void *)(target_fd_trans + oldmax), 0,
588 (target_fd_max - oldmax) * sizeof(TargetFdTrans *));
589 }
590 target_fd_trans[fd] = trans;
591 }
592
593 static void fd_trans_unregister(int fd)
594 {
595 if (fd >= 0 && fd < target_fd_max) {
596 target_fd_trans[fd] = NULL;
597 }
598 }
599
600 static void fd_trans_dup(int oldfd, int newfd)
601 {
602 fd_trans_unregister(newfd);
603 if (oldfd < target_fd_max && target_fd_trans[oldfd]) {
604 fd_trans_register(newfd, target_fd_trans[oldfd]);
605 }
606 }
607
608 static int sys_getcwd1(char *buf, size_t size)
609 {
610 if (getcwd(buf, size) == NULL) {
611 /* getcwd() sets errno */
612 return (-1);
613 }
614 return strlen(buf)+1;
615 }
616
617 #ifdef TARGET_NR_utimensat
618 #if defined(__NR_utimensat)
619 #define __NR_sys_utimensat __NR_utimensat
620 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
621 const struct timespec *,tsp,int,flags)
622 #else
623 static int sys_utimensat(int dirfd, const char *pathname,
624 const struct timespec times[2], int flags)
625 {
626 errno = ENOSYS;
627 return -1;
628 }
629 #endif
630 #endif /* TARGET_NR_utimensat */
631
632 #ifdef TARGET_NR_renameat2
633 #if defined(__NR_renameat2)
634 #define __NR_sys_renameat2 __NR_renameat2
635 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
636 const char *, new, unsigned int, flags)
637 #else
638 static int sys_renameat2(int oldfd, const char *old,
639 int newfd, const char *new, int flags)
640 {
641 if (flags == 0) {
642 return renameat(oldfd, old, newfd, new);
643 }
644 errno = ENOSYS;
645 return -1;
646 }
647 #endif
648 #endif /* TARGET_NR_renameat2 */
649
650 #ifdef CONFIG_INOTIFY
651 #include <sys/inotify.h>
652
653 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
654 static int sys_inotify_init(void)
655 {
656 return (inotify_init());
657 }
658 #endif
659 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
660 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
661 {
662 return (inotify_add_watch(fd, pathname, mask));
663 }
664 #endif
665 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
666 static int sys_inotify_rm_watch(int fd, int32_t wd)
667 {
668 return (inotify_rm_watch(fd, wd));
669 }
670 #endif
671 #ifdef CONFIG_INOTIFY1
672 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
673 static int sys_inotify_init1(int flags)
674 {
675 return (inotify_init1(flags));
676 }
677 #endif
678 #endif
679 #else
680 /* Userspace can usually survive runtime without inotify */
681 #undef TARGET_NR_inotify_init
682 #undef TARGET_NR_inotify_init1
683 #undef TARGET_NR_inotify_add_watch
684 #undef TARGET_NR_inotify_rm_watch
685 #endif /* CONFIG_INOTIFY */
686
687 #if defined(TARGET_NR_prlimit64)
688 #ifndef __NR_prlimit64
689 # define __NR_prlimit64 -1
690 #endif
691 #define __NR_sys_prlimit64 __NR_prlimit64
692 /* The glibc rlimit structure may not be that used by the underlying syscall */
693 struct host_rlimit64 {
694 uint64_t rlim_cur;
695 uint64_t rlim_max;
696 };
697 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
698 const struct host_rlimit64 *, new_limit,
699 struct host_rlimit64 *, old_limit)
700 #endif
701
702
703 #if defined(TARGET_NR_timer_create)
704 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
705 static timer_t g_posix_timers[32] = { 0, } ;
706
707 static inline int next_free_host_timer(void)
708 {
709 int k ;
710 /* FIXME: Does finding the next free slot require a lock? */
711 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
712 if (g_posix_timers[k] == 0) {
713 g_posix_timers[k] = (timer_t) 1;
714 return k;
715 }
716 }
717 return -1;
718 }
719 #endif
720
721 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
722 #ifdef TARGET_ARM
723 static inline int regpairs_aligned(void *cpu_env, int num)
724 {
725 return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
726 }
727 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
728 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
729 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
730 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
731 * of registers which translates to the same as ARM/MIPS, because we start with
732 * r3 as arg1 */
733 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
734 #elif defined(TARGET_SH4)
735 /* SH4 doesn't align register pairs, except for p{read,write}64 */
736 static inline int regpairs_aligned(void *cpu_env, int num)
737 {
738 switch (num) {
739 case TARGET_NR_pread64:
740 case TARGET_NR_pwrite64:
741 return 1;
742
743 default:
744 return 0;
745 }
746 }
747 #elif defined(TARGET_XTENSA)
748 static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
749 #else
750 static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
751 #endif
752
753 #define ERRNO_TABLE_SIZE 1200
754
755 /* target_to_host_errno_table[] is initialized from
756 * host_to_target_errno_table[] in syscall_init(). */
757 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
758 };
759
760 /*
761 * This list is the union of errno values overridden in asm-<arch>/errno.h
762 * minus the errnos that are not actually generic to all archs.
763 */
764 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
765 [EAGAIN] = TARGET_EAGAIN,
766 [EIDRM] = TARGET_EIDRM,
767 [ECHRNG] = TARGET_ECHRNG,
768 [EL2NSYNC] = TARGET_EL2NSYNC,
769 [EL3HLT] = TARGET_EL3HLT,
770 [EL3RST] = TARGET_EL3RST,
771 [ELNRNG] = TARGET_ELNRNG,
772 [EUNATCH] = TARGET_EUNATCH,
773 [ENOCSI] = TARGET_ENOCSI,
774 [EL2HLT] = TARGET_EL2HLT,
775 [EDEADLK] = TARGET_EDEADLK,
776 [ENOLCK] = TARGET_ENOLCK,
777 [EBADE] = TARGET_EBADE,
778 [EBADR] = TARGET_EBADR,
779 [EXFULL] = TARGET_EXFULL,
780 [ENOANO] = TARGET_ENOANO,
781 [EBADRQC] = TARGET_EBADRQC,
782 [EBADSLT] = TARGET_EBADSLT,
783 [EBFONT] = TARGET_EBFONT,
784 [ENOSTR] = TARGET_ENOSTR,
785 [ENODATA] = TARGET_ENODATA,
786 [ETIME] = TARGET_ETIME,
787 [ENOSR] = TARGET_ENOSR,
788 [ENONET] = TARGET_ENONET,
789 [ENOPKG] = TARGET_ENOPKG,
790 [EREMOTE] = TARGET_EREMOTE,
791 [ENOLINK] = TARGET_ENOLINK,
792 [EADV] = TARGET_EADV,
793 [ESRMNT] = TARGET_ESRMNT,
794 [ECOMM] = TARGET_ECOMM,
795 [EPROTO] = TARGET_EPROTO,
796 [EDOTDOT] = TARGET_EDOTDOT,
797 [EMULTIHOP] = TARGET_EMULTIHOP,
798 [EBADMSG] = TARGET_EBADMSG,
799 [ENAMETOOLONG] = TARGET_ENAMETOOLONG,
800 [EOVERFLOW] = TARGET_EOVERFLOW,
801 [ENOTUNIQ] = TARGET_ENOTUNIQ,
802 [EBADFD] = TARGET_EBADFD,
803 [EREMCHG] = TARGET_EREMCHG,
804 [ELIBACC] = TARGET_ELIBACC,
805 [ELIBBAD] = TARGET_ELIBBAD,
806 [ELIBSCN] = TARGET_ELIBSCN,
807 [ELIBMAX] = TARGET_ELIBMAX,
808 [ELIBEXEC] = TARGET_ELIBEXEC,
809 [EILSEQ] = TARGET_EILSEQ,
810 [ENOSYS] = TARGET_ENOSYS,
811 [ELOOP] = TARGET_ELOOP,
812 [ERESTART] = TARGET_ERESTART,
813 [ESTRPIPE] = TARGET_ESTRPIPE,
814 [ENOTEMPTY] = TARGET_ENOTEMPTY,
815 [EUSERS] = TARGET_EUSERS,
816 [ENOTSOCK] = TARGET_ENOTSOCK,
817 [EDESTADDRREQ] = TARGET_EDESTADDRREQ,
818 [EMSGSIZE] = TARGET_EMSGSIZE,
819 [EPROTOTYPE] = TARGET_EPROTOTYPE,
820 [ENOPROTOOPT] = TARGET_ENOPROTOOPT,
821 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT,
822 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT,
823 [EOPNOTSUPP] = TARGET_EOPNOTSUPP,
824 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT,
825 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT,
826 [EADDRINUSE] = TARGET_EADDRINUSE,
827 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL,
828 [ENETDOWN] = TARGET_ENETDOWN,
829 [ENETUNREACH] = TARGET_ENETUNREACH,
830 [ENETRESET] = TARGET_ENETRESET,
831 [ECONNABORTED] = TARGET_ECONNABORTED,
832 [ECONNRESET] = TARGET_ECONNRESET,
833 [ENOBUFS] = TARGET_ENOBUFS,
834 [EISCONN] = TARGET_EISCONN,
835 [ENOTCONN] = TARGET_ENOTCONN,
836 [EUCLEAN] = TARGET_EUCLEAN,
837 [ENOTNAM] = TARGET_ENOTNAM,
838 [ENAVAIL] = TARGET_ENAVAIL,
839 [EISNAM] = TARGET_EISNAM,
840 [EREMOTEIO] = TARGET_EREMOTEIO,
841 [EDQUOT] = TARGET_EDQUOT,
842 [ESHUTDOWN] = TARGET_ESHUTDOWN,
843 [ETOOMANYREFS] = TARGET_ETOOMANYREFS,
844 [ETIMEDOUT] = TARGET_ETIMEDOUT,
845 [ECONNREFUSED] = TARGET_ECONNREFUSED,
846 [EHOSTDOWN] = TARGET_EHOSTDOWN,
847 [EHOSTUNREACH] = TARGET_EHOSTUNREACH,
848 [EALREADY] = TARGET_EALREADY,
849 [EINPROGRESS] = TARGET_EINPROGRESS,
850 [ESTALE] = TARGET_ESTALE,
851 [ECANCELED] = TARGET_ECANCELED,
852 [ENOMEDIUM] = TARGET_ENOMEDIUM,
853 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE,
854 #ifdef ENOKEY
855 [ENOKEY] = TARGET_ENOKEY,
856 #endif
857 #ifdef EKEYEXPIRED
858 [EKEYEXPIRED] = TARGET_EKEYEXPIRED,
859 #endif
860 #ifdef EKEYREVOKED
861 [EKEYREVOKED] = TARGET_EKEYREVOKED,
862 #endif
863 #ifdef EKEYREJECTED
864 [EKEYREJECTED] = TARGET_EKEYREJECTED,
865 #endif
866 #ifdef EOWNERDEAD
867 [EOWNERDEAD] = TARGET_EOWNERDEAD,
868 #endif
869 #ifdef ENOTRECOVERABLE
870 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE,
871 #endif
872 #ifdef ENOMSG
873 [ENOMSG] = TARGET_ENOMSG,
874 #endif
875 #ifdef ERKFILL
876 [ERFKILL] = TARGET_ERFKILL,
877 #endif
878 #ifdef EHWPOISON
879 [EHWPOISON] = TARGET_EHWPOISON,
880 #endif
881 };
882
883 static inline int host_to_target_errno(int err)
884 {
885 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
886 host_to_target_errno_table[err]) {
887 return host_to_target_errno_table[err];
888 }
889 return err;
890 }
891
892 static inline int target_to_host_errno(int err)
893 {
894 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
895 target_to_host_errno_table[err]) {
896 return target_to_host_errno_table[err];
897 }
898 return err;
899 }
900
901 static inline abi_long get_errno(abi_long ret)
902 {
903 if (ret == -1)
904 return -host_to_target_errno(errno);
905 else
906 return ret;
907 }
908
909 const char *target_strerror(int err)
910 {
911 if (err == TARGET_ERESTARTSYS) {
912 return "To be restarted";
913 }
914 if (err == TARGET_QEMU_ESIGRETURN) {
915 return "Successful exit from sigreturn";
916 }
917
918 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
919 return NULL;
920 }
921 return strerror(target_to_host_errno(err));
922 }
923
924 #define safe_syscall0(type, name) \
925 static type safe_##name(void) \
926 { \
927 return safe_syscall(__NR_##name); \
928 }
929
930 #define safe_syscall1(type, name, type1, arg1) \
931 static type safe_##name(type1 arg1) \
932 { \
933 return safe_syscall(__NR_##name, arg1); \
934 }
935
936 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
937 static type safe_##name(type1 arg1, type2 arg2) \
938 { \
939 return safe_syscall(__NR_##name, arg1, arg2); \
940 }
941
942 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
943 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
944 { \
945 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
946 }
947
948 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
949 type4, arg4) \
950 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
951 { \
952 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
953 }
954
955 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
956 type4, arg4, type5, arg5) \
957 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
958 type5 arg5) \
959 { \
960 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
961 }
962
963 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
964 type4, arg4, type5, arg5, type6, arg6) \
965 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
966 type5 arg5, type6 arg6) \
967 { \
968 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
969 }
970
971 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
972 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
973 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
974 int, flags, mode_t, mode)
975 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
976 struct rusage *, rusage)
977 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
978 int, options, struct rusage *, rusage)
979 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
980 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
981 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
982 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
983 struct timespec *, tsp, const sigset_t *, sigmask,
984 size_t, sigsetsize)
985 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
986 int, maxevents, int, timeout, const sigset_t *, sigmask,
987 size_t, sigsetsize)
988 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
989 const struct timespec *,timeout,int *,uaddr2,int,val3)
990 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
991 safe_syscall2(int, kill, pid_t, pid, int, sig)
992 safe_syscall2(int, tkill, int, tid, int, sig)
993 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
994 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
995 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
996 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
997 unsigned long, pos_l, unsigned long, pos_h)
998 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
999 unsigned long, pos_l, unsigned long, pos_h)
1000 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
1001 socklen_t, addrlen)
1002 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
1003 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
1004 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
1005 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
1006 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
1007 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
1008 safe_syscall2(int, flock, int, fd, int, operation)
1009 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
1010 const struct timespec *, uts, size_t, sigsetsize)
1011 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
1012 int, flags)
1013 safe_syscall2(int, nanosleep, const struct timespec *, req,
1014 struct timespec *, rem)
1015 #ifdef TARGET_NR_clock_nanosleep
1016 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
1017 const struct timespec *, req, struct timespec *, rem)
1018 #endif
1019 #ifdef __NR_msgsnd
1020 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
1021 int, flags)
1022 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
1023 long, msgtype, int, flags)
1024 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
1025 unsigned, nsops, const struct timespec *, timeout)
1026 #else
1027 /* This host kernel architecture uses a single ipc syscall; fake up
1028 * wrappers for the sub-operations to hide this implementation detail.
1029 * Annoyingly we can't include linux/ipc.h to get the constant definitions
1030 * for the call parameter because some structs in there conflict with the
1031 * sys/ipc.h ones. So we just define them here, and rely on them being
1032 * the same for all host architectures.
1033 */
1034 #define Q_SEMTIMEDOP 4
1035 #define Q_MSGSND 11
1036 #define Q_MSGRCV 12
1037 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP))
1038
1039 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
1040 void *, ptr, long, fifth)
1041 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags)
1042 {
1043 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0);
1044 }
1045 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags)
1046 {
1047 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type);
1048 }
1049 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops,
1050 const struct timespec *timeout)
1051 {
1052 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops,
1053 (long)timeout);
1054 }
1055 #endif
1056 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1057 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
1058 size_t, len, unsigned, prio, const struct timespec *, timeout)
1059 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
1060 size_t, len, unsigned *, prio, const struct timespec *, timeout)
1061 #endif
1062 /* We do ioctl like this rather than via safe_syscall3 to preserve the
1063 * "third argument might be integer or pointer or not present" behaviour of
1064 * the libc function.
1065 */
1066 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
1067 /* Similarly for fcntl. Note that callers must always:
1068 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
1069 * use the flock64 struct rather than unsuffixed flock
1070 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
1071 */
1072 #ifdef __NR_fcntl64
1073 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
1074 #else
1075 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
1076 #endif
1077
1078 static inline int host_to_target_sock_type(int host_type)
1079 {
1080 int target_type;
1081
1082 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
1083 case SOCK_DGRAM:
1084 target_type = TARGET_SOCK_DGRAM;
1085 break;
1086 case SOCK_STREAM:
1087 target_type = TARGET_SOCK_STREAM;
1088 break;
1089 default:
1090 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
1091 break;
1092 }
1093
1094 #if defined(SOCK_CLOEXEC)
1095 if (host_type & SOCK_CLOEXEC) {
1096 target_type |= TARGET_SOCK_CLOEXEC;
1097 }
1098 #endif
1099
1100 #if defined(SOCK_NONBLOCK)
1101 if (host_type & SOCK_NONBLOCK) {
1102 target_type |= TARGET_SOCK_NONBLOCK;
1103 }
1104 #endif
1105
1106 return target_type;
1107 }
1108
1109 static abi_ulong target_brk;
1110 static abi_ulong target_original_brk;
1111 static abi_ulong brk_page;
1112
1113 void target_set_brk(abi_ulong new_brk)
1114 {
1115 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
1116 brk_page = HOST_PAGE_ALIGN(target_brk);
1117 }
1118
1119 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
1120 #define DEBUGF_BRK(message, args...)
1121
1122 /* do_brk() must return target values and target errnos. */
1123 abi_long do_brk(abi_ulong new_brk)
1124 {
1125 abi_long mapped_addr;
1126 abi_ulong new_alloc_size;
1127
1128 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
1129
1130 if (!new_brk) {
1131 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
1132 return target_brk;
1133 }
1134 if (new_brk < target_original_brk) {
1135 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
1136 target_brk);
1137 return target_brk;
1138 }
1139
1140 /* If the new brk is less than the highest page reserved to the
1141 * target heap allocation, set it and we're almost done... */
1142 if (new_brk <= brk_page) {
1143 /* Heap contents are initialized to zero, as for anonymous
1144 * mapped pages. */
1145 if (new_brk > target_brk) {
1146 memset(g2h(target_brk), 0, new_brk - target_brk);
1147 }
1148 target_brk = new_brk;
1149 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
1150 return target_brk;
1151 }
1152
1153 /* We need to allocate more memory after the brk... Note that
1154 * we don't use MAP_FIXED because that will map over the top of
1155 * any existing mapping (like the one with the host libc or qemu
1156 * itself); instead we treat "mapped but at wrong address" as
1157 * a failure and unmap again.
1158 */
1159 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
1160 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
1161 PROT_READ|PROT_WRITE,
1162 MAP_ANON|MAP_PRIVATE, 0, 0));
1163
1164 if (mapped_addr == brk_page) {
1165 /* Heap contents are initialized to zero, as for anonymous
1166 * mapped pages. Technically the new pages are already
1167 * initialized to zero since they *are* anonymous mapped
1168 * pages, however we have to take care with the contents that
1169 * come from the remaining part of the previous page: it may
1170 * contains garbage data due to a previous heap usage (grown
1171 * then shrunken). */
1172 memset(g2h(target_brk), 0, brk_page - target_brk);
1173
1174 target_brk = new_brk;
1175 brk_page = HOST_PAGE_ALIGN(target_brk);
1176 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
1177 target_brk);
1178 return target_brk;
1179 } else if (mapped_addr != -1) {
1180 /* Mapped but at wrong address, meaning there wasn't actually
1181 * enough space for this brk.
1182 */
1183 target_munmap(mapped_addr, new_alloc_size);
1184 mapped_addr = -1;
1185 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
1186 }
1187 else {
1188 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
1189 }
1190
1191 #if defined(TARGET_ALPHA)
1192 /* We (partially) emulate OSF/1 on Alpha, which requires we
1193 return a proper errno, not an unchanged brk value. */
1194 return -TARGET_ENOMEM;
1195 #endif
1196 /* For everything else, return the previous break. */
1197 return target_brk;
1198 }
1199
1200 static inline abi_long copy_from_user_fdset(fd_set *fds,
1201 abi_ulong target_fds_addr,
1202 int n)
1203 {
1204 int i, nw, j, k;
1205 abi_ulong b, *target_fds;
1206
1207 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1208 if (!(target_fds = lock_user(VERIFY_READ,
1209 target_fds_addr,
1210 sizeof(abi_ulong) * nw,
1211 1)))
1212 return -TARGET_EFAULT;
1213
1214 FD_ZERO(fds);
1215 k = 0;
1216 for (i = 0; i < nw; i++) {
1217 /* grab the abi_ulong */
1218 __get_user(b, &target_fds[i]);
1219 for (j = 0; j < TARGET_ABI_BITS; j++) {
1220 /* check the bit inside the abi_ulong */
1221 if ((b >> j) & 1)
1222 FD_SET(k, fds);
1223 k++;
1224 }
1225 }
1226
1227 unlock_user(target_fds, target_fds_addr, 0);
1228
1229 return 0;
1230 }
1231
1232 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
1233 abi_ulong target_fds_addr,
1234 int n)
1235 {
1236 if (target_fds_addr) {
1237 if (copy_from_user_fdset(fds, target_fds_addr, n))
1238 return -TARGET_EFAULT;
1239 *fds_ptr = fds;
1240 } else {
1241 *fds_ptr = NULL;
1242 }
1243 return 0;
1244 }
1245
1246 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
1247 const fd_set *fds,
1248 int n)
1249 {
1250 int i, nw, j, k;
1251 abi_long v;
1252 abi_ulong *target_fds;
1253
1254 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1255 if (!(target_fds = lock_user(VERIFY_WRITE,
1256 target_fds_addr,
1257 sizeof(abi_ulong) * nw,
1258 0)))
1259 return -TARGET_EFAULT;
1260
1261 k = 0;
1262 for (i = 0; i < nw; i++) {
1263 v = 0;
1264 for (j = 0; j < TARGET_ABI_BITS; j++) {
1265 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
1266 k++;
1267 }
1268 __put_user(v, &target_fds[i]);
1269 }
1270
1271 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
1272
1273 return 0;
1274 }
1275
1276 #if defined(__alpha__)
1277 #define HOST_HZ 1024
1278 #else
1279 #define HOST_HZ 100
1280 #endif
1281
1282 static inline abi_long host_to_target_clock_t(long ticks)
1283 {
1284 #if HOST_HZ == TARGET_HZ
1285 return ticks;
1286 #else
1287 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1288 #endif
1289 }
1290
1291 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1292 const struct rusage *rusage)
1293 {
1294 struct target_rusage *target_rusage;
1295
1296 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1297 return -TARGET_EFAULT;
1298 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1299 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1300 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1301 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1302 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1303 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1304 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1305 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1306 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1307 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1308 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1309 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1310 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1311 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1312 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1313 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1314 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1315 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1316 unlock_user_struct(target_rusage, target_addr, 1);
1317
1318 return 0;
1319 }
1320
1321 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1322 {
1323 abi_ulong target_rlim_swap;
1324 rlim_t result;
1325
1326 target_rlim_swap = tswapal(target_rlim);
1327 if (target_rlim_swap == TARGET_RLIM_INFINITY)
1328 return RLIM_INFINITY;
1329
1330 result = target_rlim_swap;
1331 if (target_rlim_swap != (rlim_t)result)
1332 return RLIM_INFINITY;
1333
1334 return result;
1335 }
1336
1337 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1338 {
1339 abi_ulong target_rlim_swap;
1340 abi_ulong result;
1341
1342 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1343 target_rlim_swap = TARGET_RLIM_INFINITY;
1344 else
1345 target_rlim_swap = rlim;
1346 result = tswapal(target_rlim_swap);
1347
1348 return result;
1349 }
1350
1351 static inline int target_to_host_resource(int code)
1352 {
1353 switch (code) {
1354 case TARGET_RLIMIT_AS:
1355 return RLIMIT_AS;
1356 case TARGET_RLIMIT_CORE:
1357 return RLIMIT_CORE;
1358 case TARGET_RLIMIT_CPU:
1359 return RLIMIT_CPU;
1360 case TARGET_RLIMIT_DATA:
1361 return RLIMIT_DATA;
1362 case TARGET_RLIMIT_FSIZE:
1363 return RLIMIT_FSIZE;
1364 case TARGET_RLIMIT_LOCKS:
1365 return RLIMIT_LOCKS;
1366 case TARGET_RLIMIT_MEMLOCK:
1367 return RLIMIT_MEMLOCK;
1368 case TARGET_RLIMIT_MSGQUEUE:
1369 return RLIMIT_MSGQUEUE;
1370 case TARGET_RLIMIT_NICE:
1371 return RLIMIT_NICE;
1372 case TARGET_RLIMIT_NOFILE:
1373 return RLIMIT_NOFILE;
1374 case TARGET_RLIMIT_NPROC:
1375 return RLIMIT_NPROC;
1376 case TARGET_RLIMIT_RSS:
1377 return RLIMIT_RSS;
1378 case TARGET_RLIMIT_RTPRIO:
1379 return RLIMIT_RTPRIO;
1380 case TARGET_RLIMIT_SIGPENDING:
1381 return RLIMIT_SIGPENDING;
1382 case TARGET_RLIMIT_STACK:
1383 return RLIMIT_STACK;
1384 default:
1385 return code;
1386 }
1387 }
1388
1389 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1390 abi_ulong target_tv_addr)
1391 {
1392 struct target_timeval *target_tv;
1393
1394 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1))
1395 return -TARGET_EFAULT;
1396
1397 __get_user(tv->tv_sec, &target_tv->tv_sec);
1398 __get_user(tv->tv_usec, &target_tv->tv_usec);
1399
1400 unlock_user_struct(target_tv, target_tv_addr, 0);
1401
1402 return 0;
1403 }
1404
1405 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1406 const struct timeval *tv)
1407 {
1408 struct target_timeval *target_tv;
1409
1410 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0))
1411 return -TARGET_EFAULT;
1412
1413 __put_user(tv->tv_sec, &target_tv->tv_sec);
1414 __put_user(tv->tv_usec, &target_tv->tv_usec);
1415
1416 unlock_user_struct(target_tv, target_tv_addr, 1);
1417
1418 return 0;
1419 }
1420
1421 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1422 abi_ulong target_tz_addr)
1423 {
1424 struct target_timezone *target_tz;
1425
1426 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1427 return -TARGET_EFAULT;
1428 }
1429
1430 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1431 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1432
1433 unlock_user_struct(target_tz, target_tz_addr, 0);
1434
1435 return 0;
1436 }
1437
1438 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1439 #include <mqueue.h>
1440
1441 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1442 abi_ulong target_mq_attr_addr)
1443 {
1444 struct target_mq_attr *target_mq_attr;
1445
1446 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1447 target_mq_attr_addr, 1))
1448 return -TARGET_EFAULT;
1449
1450 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1451 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1452 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1453 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1454
1455 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1456
1457 return 0;
1458 }
1459
1460 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1461 const struct mq_attr *attr)
1462 {
1463 struct target_mq_attr *target_mq_attr;
1464
1465 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1466 target_mq_attr_addr, 0))
1467 return -TARGET_EFAULT;
1468
1469 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1470 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1471 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1472 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1473
1474 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1475
1476 return 0;
1477 }
1478 #endif
1479
1480 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1481 /* do_select() must return target values and target errnos. */
1482 static abi_long do_select(int n,
1483 abi_ulong rfd_addr, abi_ulong wfd_addr,
1484 abi_ulong efd_addr, abi_ulong target_tv_addr)
1485 {
1486 fd_set rfds, wfds, efds;
1487 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1488 struct timeval tv;
1489 struct timespec ts, *ts_ptr;
1490 abi_long ret;
1491
1492 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1493 if (ret) {
1494 return ret;
1495 }
1496 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1497 if (ret) {
1498 return ret;
1499 }
1500 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1501 if (ret) {
1502 return ret;
1503 }
1504
1505 if (target_tv_addr) {
1506 if (copy_from_user_timeval(&tv, target_tv_addr))
1507 return -TARGET_EFAULT;
1508 ts.tv_sec = tv.tv_sec;
1509 ts.tv_nsec = tv.tv_usec * 1000;
1510 ts_ptr = &ts;
1511 } else {
1512 ts_ptr = NULL;
1513 }
1514
1515 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1516 ts_ptr, NULL));
1517
1518 if (!is_error(ret)) {
1519 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1520 return -TARGET_EFAULT;
1521 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1522 return -TARGET_EFAULT;
1523 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1524 return -TARGET_EFAULT;
1525
1526 if (target_tv_addr) {
1527 tv.tv_sec = ts.tv_sec;
1528 tv.tv_usec = ts.tv_nsec / 1000;
1529 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1530 return -TARGET_EFAULT;
1531 }
1532 }
1533 }
1534
1535 return ret;
1536 }
1537
1538 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1539 static abi_long do_old_select(abi_ulong arg1)
1540 {
1541 struct target_sel_arg_struct *sel;
1542 abi_ulong inp, outp, exp, tvp;
1543 long nsel;
1544
1545 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1546 return -TARGET_EFAULT;
1547 }
1548
1549 nsel = tswapal(sel->n);
1550 inp = tswapal(sel->inp);
1551 outp = tswapal(sel->outp);
1552 exp = tswapal(sel->exp);
1553 tvp = tswapal(sel->tvp);
1554
1555 unlock_user_struct(sel, arg1, 0);
1556
1557 return do_select(nsel, inp, outp, exp, tvp);
1558 }
1559 #endif
1560 #endif
1561
1562 static abi_long do_pipe2(int host_pipe[], int flags)
1563 {
1564 #ifdef CONFIG_PIPE2
1565 return pipe2(host_pipe, flags);
1566 #else
1567 return -ENOSYS;
1568 #endif
1569 }
1570
1571 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1572 int flags, int is_pipe2)
1573 {
1574 int host_pipe[2];
1575 abi_long ret;
1576 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1577
1578 if (is_error(ret))
1579 return get_errno(ret);
1580
1581 /* Several targets have special calling conventions for the original
1582 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1583 if (!is_pipe2) {
1584 #if defined(TARGET_ALPHA)
1585 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1586 return host_pipe[0];
1587 #elif defined(TARGET_MIPS)
1588 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1589 return host_pipe[0];
1590 #elif defined(TARGET_SH4)
1591 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1592 return host_pipe[0];
1593 #elif defined(TARGET_SPARC)
1594 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1595 return host_pipe[0];
1596 #endif
1597 }
1598
1599 if (put_user_s32(host_pipe[0], pipedes)
1600 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1601 return -TARGET_EFAULT;
1602 return get_errno(ret);
1603 }
1604
1605 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1606 abi_ulong target_addr,
1607 socklen_t len)
1608 {
1609 struct target_ip_mreqn *target_smreqn;
1610
1611 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1612 if (!target_smreqn)
1613 return -TARGET_EFAULT;
1614 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1615 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1616 if (len == sizeof(struct target_ip_mreqn))
1617 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1618 unlock_user(target_smreqn, target_addr, 0);
1619
1620 return 0;
1621 }
1622
1623 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1624 abi_ulong target_addr,
1625 socklen_t len)
1626 {
1627 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1628 sa_family_t sa_family;
1629 struct target_sockaddr *target_saddr;
1630
1631 if (fd_trans_target_to_host_addr(fd)) {
1632 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1633 }
1634
1635 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1636 if (!target_saddr)
1637 return -TARGET_EFAULT;
1638
1639 sa_family = tswap16(target_saddr->sa_family);
1640
1641 /* Oops. The caller might send a incomplete sun_path; sun_path
1642 * must be terminated by \0 (see the manual page), but
1643 * unfortunately it is quite common to specify sockaddr_un
1644 * length as "strlen(x->sun_path)" while it should be
1645 * "strlen(...) + 1". We'll fix that here if needed.
1646 * Linux kernel has a similar feature.
1647 */
1648
1649 if (sa_family == AF_UNIX) {
1650 if (len < unix_maxlen && len > 0) {
1651 char *cp = (char*)target_saddr;
1652
1653 if ( cp[len-1] && !cp[len] )
1654 len++;
1655 }
1656 if (len > unix_maxlen)
1657 len = unix_maxlen;
1658 }
1659
1660 memcpy(addr, target_saddr, len);
1661 addr->sa_family = sa_family;
1662 if (sa_family == AF_NETLINK) {
1663 struct sockaddr_nl *nladdr;
1664
1665 nladdr = (struct sockaddr_nl *)addr;
1666 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1667 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1668 } else if (sa_family == AF_PACKET) {
1669 struct target_sockaddr_ll *lladdr;
1670
1671 lladdr = (struct target_sockaddr_ll *)addr;
1672 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1673 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1674 }
1675 unlock_user(target_saddr, target_addr, 0);
1676
1677 return 0;
1678 }
1679
1680 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1681 struct sockaddr *addr,
1682 socklen_t len)
1683 {
1684 struct target_sockaddr *target_saddr;
1685
1686 if (len == 0) {
1687 return 0;
1688 }
1689 assert(addr);
1690
1691 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1692 if (!target_saddr)
1693 return -TARGET_EFAULT;
1694 memcpy(target_saddr, addr, len);
1695 if (len >= offsetof(struct target_sockaddr, sa_family) +
1696 sizeof(target_saddr->sa_family)) {
1697 target_saddr->sa_family = tswap16(addr->sa_family);
1698 }
1699 if (addr->sa_family == AF_NETLINK && len >= sizeof(struct sockaddr_nl)) {
1700 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr;
1701 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1702 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1703 } else if (addr->sa_family == AF_PACKET) {
1704 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1705 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1706 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1707 } else if (addr->sa_family == AF_INET6 &&
1708 len >= sizeof(struct target_sockaddr_in6)) {
1709 struct target_sockaddr_in6 *target_in6 =
1710 (struct target_sockaddr_in6 *)target_saddr;
1711 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1712 }
1713 unlock_user(target_saddr, target_addr, len);
1714
1715 return 0;
1716 }
1717
1718 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1719 struct target_msghdr *target_msgh)
1720 {
1721 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1722 abi_long msg_controllen;
1723 abi_ulong target_cmsg_addr;
1724 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1725 socklen_t space = 0;
1726
1727 msg_controllen = tswapal(target_msgh->msg_controllen);
1728 if (msg_controllen < sizeof (struct target_cmsghdr))
1729 goto the_end;
1730 target_cmsg_addr = tswapal(target_msgh->msg_control);
1731 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1732 target_cmsg_start = target_cmsg;
1733 if (!target_cmsg)
1734 return -TARGET_EFAULT;
1735
1736 while (cmsg && target_cmsg) {
1737 void *data = CMSG_DATA(cmsg);
1738 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1739
1740 int len = tswapal(target_cmsg->cmsg_len)
1741 - sizeof(struct target_cmsghdr);
1742
1743 space += CMSG_SPACE(len);
1744 if (space > msgh->msg_controllen) {
1745 space -= CMSG_SPACE(len);
1746 /* This is a QEMU bug, since we allocated the payload
1747 * area ourselves (unlike overflow in host-to-target
1748 * conversion, which is just the guest giving us a buffer
1749 * that's too small). It can't happen for the payload types
1750 * we currently support; if it becomes an issue in future
1751 * we would need to improve our allocation strategy to
1752 * something more intelligent than "twice the size of the
1753 * target buffer we're reading from".
1754 */
1755 gemu_log("Host cmsg overflow\n");
1756 break;
1757 }
1758
1759 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1760 cmsg->cmsg_level = SOL_SOCKET;
1761 } else {
1762 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1763 }
1764 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1765 cmsg->cmsg_len = CMSG_LEN(len);
1766
1767 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1768 int *fd = (int *)data;
1769 int *target_fd = (int *)target_data;
1770 int i, numfds = len / sizeof(int);
1771
1772 for (i = 0; i < numfds; i++) {
1773 __get_user(fd[i], target_fd + i);
1774 }
1775 } else if (cmsg->cmsg_level == SOL_SOCKET
1776 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1777 struct ucred *cred = (struct ucred *)data;
1778 struct target_ucred *target_cred =
1779 (struct target_ucred *)target_data;
1780
1781 __get_user(cred->pid, &target_cred->pid);
1782 __get_user(cred->uid, &target_cred->uid);
1783 __get_user(cred->gid, &target_cred->gid);
1784 } else {
1785 gemu_log("Unsupported ancillary data: %d/%d\n",
1786 cmsg->cmsg_level, cmsg->cmsg_type);
1787 memcpy(data, target_data, len);
1788 }
1789
1790 cmsg = CMSG_NXTHDR(msgh, cmsg);
1791 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1792 target_cmsg_start);
1793 }
1794 unlock_user(target_cmsg, target_cmsg_addr, 0);
1795 the_end:
1796 msgh->msg_controllen = space;
1797 return 0;
1798 }
1799
1800 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1801 struct msghdr *msgh)
1802 {
1803 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1804 abi_long msg_controllen;
1805 abi_ulong target_cmsg_addr;
1806 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1807 socklen_t space = 0;
1808
1809 msg_controllen = tswapal(target_msgh->msg_controllen);
1810 if (msg_controllen < sizeof (struct target_cmsghdr))
1811 goto the_end;
1812 target_cmsg_addr = tswapal(target_msgh->msg_control);
1813 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1814 target_cmsg_start = target_cmsg;
1815 if (!target_cmsg)
1816 return -TARGET_EFAULT;
1817
1818 while (cmsg && target_cmsg) {
1819 void *data = CMSG_DATA(cmsg);
1820 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1821
1822 int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1823 int tgt_len, tgt_space;
1824
1825 /* We never copy a half-header but may copy half-data;
1826 * this is Linux's behaviour in put_cmsg(). Note that
1827 * truncation here is a guest problem (which we report
1828 * to the guest via the CTRUNC bit), unlike truncation
1829 * in target_to_host_cmsg, which is a QEMU bug.
1830 */
1831 if (msg_controllen < sizeof(struct target_cmsghdr)) {
1832 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1833 break;
1834 }
1835
1836 if (cmsg->cmsg_level == SOL_SOCKET) {
1837 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1838 } else {
1839 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1840 }
1841 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1842
1843 /* Payload types which need a different size of payload on
1844 * the target must adjust tgt_len here.
1845 */
1846 tgt_len = len;
1847 switch (cmsg->cmsg_level) {
1848 case SOL_SOCKET:
1849 switch (cmsg->cmsg_type) {
1850 case SO_TIMESTAMP:
1851 tgt_len = sizeof(struct target_timeval);
1852 break;
1853 default:
1854 break;
1855 }
1856 break;
1857 default:
1858 break;
1859 }
1860
1861 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1862 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1863 tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1864 }
1865
1866 /* We must now copy-and-convert len bytes of payload
1867 * into tgt_len bytes of destination space. Bear in mind
1868 * that in both source and destination we may be dealing
1869 * with a truncated value!
1870 */
1871 switch (cmsg->cmsg_level) {
1872 case SOL_SOCKET:
1873 switch (cmsg->cmsg_type) {
1874 case SCM_RIGHTS:
1875 {
1876 int *fd = (int *)data;
1877 int *target_fd = (int *)target_data;
1878 int i, numfds = tgt_len / sizeof(int);
1879
1880 for (i = 0; i < numfds; i++) {
1881 __put_user(fd[i], target_fd + i);
1882 }
1883 break;
1884 }
1885 case SO_TIMESTAMP:
1886 {
1887 struct timeval *tv = (struct timeval *)data;
1888 struct target_timeval *target_tv =
1889 (struct target_timeval *)target_data;
1890
1891 if (len != sizeof(struct timeval) ||
1892 tgt_len != sizeof(struct target_timeval)) {
1893 goto unimplemented;
1894 }
1895
1896 /* copy struct timeval to target */
1897 __put_user(tv->tv_sec, &target_tv->tv_sec);
1898 __put_user(tv->tv_usec, &target_tv->tv_usec);
1899 break;
1900 }
1901 case SCM_CREDENTIALS:
1902 {
1903 struct ucred *cred = (struct ucred *)data;
1904 struct target_ucred *target_cred =
1905 (struct target_ucred *)target_data;
1906
1907 __put_user(cred->pid, &target_cred->pid);
1908 __put_user(cred->uid, &target_cred->uid);
1909 __put_user(cred->gid, &target_cred->gid);
1910 break;
1911 }
1912 default:
1913 goto unimplemented;
1914 }
1915 break;
1916
1917 case SOL_IP:
1918 switch (cmsg->cmsg_type) {
1919 case IP_TTL:
1920 {
1921 uint32_t *v = (uint32_t *)data;
1922 uint32_t *t_int = (uint32_t *)target_data;
1923
1924 if (len != sizeof(uint32_t) ||
1925 tgt_len != sizeof(uint32_t)) {
1926 goto unimplemented;
1927 }
1928 __put_user(*v, t_int);
1929 break;
1930 }
1931 case IP_RECVERR:
1932 {
1933 struct errhdr_t {
1934 struct sock_extended_err ee;
1935 struct sockaddr_in offender;
1936 };
1937 struct errhdr_t *errh = (struct errhdr_t *)data;
1938 struct errhdr_t *target_errh =
1939 (struct errhdr_t *)target_data;
1940
1941 if (len != sizeof(struct errhdr_t) ||
1942 tgt_len != sizeof(struct errhdr_t)) {
1943 goto unimplemented;
1944 }
1945 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1946 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1947 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1948 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1949 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1950 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1951 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1952 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1953 (void *) &errh->offender, sizeof(errh->offender));
1954 break;
1955 }
1956 default:
1957 goto unimplemented;
1958 }
1959 break;
1960
1961 case SOL_IPV6:
1962 switch (cmsg->cmsg_type) {
1963 case IPV6_HOPLIMIT:
1964 {
1965 uint32_t *v = (uint32_t *)data;
1966 uint32_t *t_int = (uint32_t *)target_data;
1967
1968 if (len != sizeof(uint32_t) ||
1969 tgt_len != sizeof(uint32_t)) {
1970 goto unimplemented;
1971 }
1972 __put_user(*v, t_int);
1973 break;
1974 }
1975 case IPV6_RECVERR:
1976 {
1977 struct errhdr6_t {
1978 struct sock_extended_err ee;
1979 struct sockaddr_in6 offender;
1980 };
1981 struct errhdr6_t *errh = (struct errhdr6_t *)data;
1982 struct errhdr6_t *target_errh =
1983 (struct errhdr6_t *)target_data;
1984
1985 if (len != sizeof(struct errhdr6_t) ||
1986 tgt_len != sizeof(struct errhdr6_t)) {
1987 goto unimplemented;
1988 }
1989 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1990 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1991 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1992 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1993 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1994 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1995 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1996 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1997 (void *) &errh->offender, sizeof(errh->offender));
1998 break;
1999 }
2000 default:
2001 goto unimplemented;
2002 }
2003 break;
2004
2005 default:
2006 unimplemented:
2007 gemu_log("Unsupported ancillary data: %d/%d\n",
2008 cmsg->cmsg_level, cmsg->cmsg_type);
2009 memcpy(target_data, data, MIN(len, tgt_len));
2010 if (tgt_len > len) {
2011 memset(target_data + len, 0, tgt_len - len);
2012 }
2013 }
2014
2015 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2016 tgt_space = TARGET_CMSG_SPACE(tgt_len);
2017 if (msg_controllen < tgt_space) {
2018 tgt_space = msg_controllen;
2019 }
2020 msg_controllen -= tgt_space;
2021 space += tgt_space;
2022 cmsg = CMSG_NXTHDR(msgh, cmsg);
2023 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2024 target_cmsg_start);
2025 }
2026 unlock_user(target_cmsg, target_cmsg_addr, space);
2027 the_end:
2028 target_msgh->msg_controllen = tswapal(space);
2029 return 0;
2030 }
2031
2032 static void tswap_nlmsghdr(struct nlmsghdr *nlh)
2033 {
2034 nlh->nlmsg_len = tswap32(nlh->nlmsg_len);
2035 nlh->nlmsg_type = tswap16(nlh->nlmsg_type);
2036 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags);
2037 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq);
2038 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid);
2039 }
2040
2041 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh,
2042 size_t len,
2043 abi_long (*host_to_target_nlmsg)
2044 (struct nlmsghdr *))
2045 {
2046 uint32_t nlmsg_len;
2047 abi_long ret;
2048
2049 while (len > sizeof(struct nlmsghdr)) {
2050
2051 nlmsg_len = nlh->nlmsg_len;
2052 if (nlmsg_len < sizeof(struct nlmsghdr) ||
2053 nlmsg_len > len) {
2054 break;
2055 }
2056
2057 switch (nlh->nlmsg_type) {
2058 case NLMSG_DONE:
2059 tswap_nlmsghdr(nlh);
2060 return 0;
2061 case NLMSG_NOOP:
2062 break;
2063 case NLMSG_ERROR:
2064 {
2065 struct nlmsgerr *e = NLMSG_DATA(nlh);
2066 e->error = tswap32(e->error);
2067 tswap_nlmsghdr(&e->msg);
2068 tswap_nlmsghdr(nlh);
2069 return 0;
2070 }
2071 default:
2072 ret = host_to_target_nlmsg(nlh);
2073 if (ret < 0) {
2074 tswap_nlmsghdr(nlh);
2075 return ret;
2076 }
2077 break;
2078 }
2079 tswap_nlmsghdr(nlh);
2080 len -= NLMSG_ALIGN(nlmsg_len);
2081 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len));
2082 }
2083 return 0;
2084 }
2085
2086 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh,
2087 size_t len,
2088 abi_long (*target_to_host_nlmsg)
2089 (struct nlmsghdr *))
2090 {
2091 int ret;
2092
2093 while (len > sizeof(struct nlmsghdr)) {
2094 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) ||
2095 tswap32(nlh->nlmsg_len) > len) {
2096 break;
2097 }
2098 tswap_nlmsghdr(nlh);
2099 switch (nlh->nlmsg_type) {
2100 case NLMSG_DONE:
2101 return 0;
2102 case NLMSG_NOOP:
2103 break;
2104 case NLMSG_ERROR:
2105 {
2106 struct nlmsgerr *e = NLMSG_DATA(nlh);
2107 e->error = tswap32(e->error);
2108 tswap_nlmsghdr(&e->msg);
2109 return 0;
2110 }
2111 default:
2112 ret = target_to_host_nlmsg(nlh);
2113 if (ret < 0) {
2114 return ret;
2115 }
2116 }
2117 len -= NLMSG_ALIGN(nlh->nlmsg_len);
2118 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len));
2119 }
2120 return 0;
2121 }
2122
2123 #ifdef CONFIG_RTNETLINK
2124 static abi_long host_to_target_for_each_nlattr(struct nlattr *nlattr,
2125 size_t len, void *context,
2126 abi_long (*host_to_target_nlattr)
2127 (struct nlattr *,
2128 void *context))
2129 {
2130 unsigned short nla_len;
2131 abi_long ret;
2132
2133 while (len > sizeof(struct nlattr)) {
2134 nla_len = nlattr->nla_len;
2135 if (nla_len < sizeof(struct nlattr) ||
2136 nla_len > len) {
2137 break;
2138 }
2139 ret = host_to_target_nlattr(nlattr, context);
2140 nlattr->nla_len = tswap16(nlattr->nla_len);
2141 nlattr->nla_type = tswap16(nlattr->nla_type);
2142 if (ret < 0) {
2143 return ret;
2144 }
2145 len -= NLA_ALIGN(nla_len);
2146 nlattr = (struct nlattr *)(((char *)nlattr) + NLA_ALIGN(nla_len));
2147 }
2148 return 0;
2149 }
2150
2151 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr,
2152 size_t len,
2153 abi_long (*host_to_target_rtattr)
2154 (struct rtattr *))
2155 {
2156 unsigned short rta_len;
2157 abi_long ret;
2158
2159 while (len > sizeof(struct rtattr)) {
2160 rta_len = rtattr->rta_len;
2161 if (rta_len < sizeof(struct rtattr) ||
2162 rta_len > len) {
2163 break;
2164 }
2165 ret = host_to_target_rtattr(rtattr);
2166 rtattr->rta_len = tswap16(rtattr->rta_len);
2167 rtattr->rta_type = tswap16(rtattr->rta_type);
2168 if (ret < 0) {
2169 return ret;
2170 }
2171 len -= RTA_ALIGN(rta_len);
2172 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len));
2173 }
2174 return 0;
2175 }
2176
2177 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN)
2178
2179 static abi_long host_to_target_data_bridge_nlattr(struct nlattr *nlattr,
2180 void *context)
2181 {
2182 uint16_t *u16;
2183 uint32_t *u32;
2184 uint64_t *u64;
2185
2186 switch (nlattr->nla_type) {
2187 /* no data */
2188 case QEMU_IFLA_BR_FDB_FLUSH:
2189 break;
2190 /* binary */
2191 case QEMU_IFLA_BR_GROUP_ADDR:
2192 break;
2193 /* uint8_t */
2194 case QEMU_IFLA_BR_VLAN_FILTERING:
2195 case QEMU_IFLA_BR_TOPOLOGY_CHANGE:
2196 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED:
2197 case QEMU_IFLA_BR_MCAST_ROUTER:
2198 case QEMU_IFLA_BR_MCAST_SNOOPING:
2199 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR:
2200 case QEMU_IFLA_BR_MCAST_QUERIER:
2201 case QEMU_IFLA_BR_NF_CALL_IPTABLES:
2202 case QEMU_IFLA_BR_NF_CALL_IP6TABLES:
2203 case QEMU_IFLA_BR_NF_CALL_ARPTABLES:
2204 case QEMU_IFLA_BR_VLAN_STATS_ENABLED:
2205 case QEMU_IFLA_BR_MCAST_STATS_ENABLED:
2206 case QEMU_IFLA_BR_MCAST_IGMP_VERSION:
2207 case QEMU_IFLA_BR_MCAST_MLD_VERSION:
2208 break;
2209 /* uint16_t */
2210 case QEMU_IFLA_BR_PRIORITY:
2211 case QEMU_IFLA_BR_VLAN_PROTOCOL:
2212 case QEMU_IFLA_BR_GROUP_FWD_MASK:
2213 case QEMU_IFLA_BR_ROOT_PORT:
2214 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID:
2215 u16 = NLA_DATA(nlattr);
2216 *u16 = tswap16(*u16);
2217 break;
2218 /* uint32_t */
2219 case QEMU_IFLA_BR_FORWARD_DELAY:
2220 case QEMU_IFLA_BR_HELLO_TIME:
2221 case QEMU_IFLA_BR_MAX_AGE:
2222 case QEMU_IFLA_BR_AGEING_TIME:
2223 case QEMU_IFLA_BR_STP_STATE:
2224 case QEMU_IFLA_BR_ROOT_PATH_COST:
2225 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY:
2226 case QEMU_IFLA_BR_MCAST_HASH_MAX:
2227 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT:
2228 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT:
2229 u32 = NLA_DATA(nlattr);
2230 *u32 = tswap32(*u32);
2231 break;
2232 /* uint64_t */
2233 case QEMU_IFLA_BR_HELLO_TIMER:
2234 case QEMU_IFLA_BR_TCN_TIMER:
2235 case QEMU_IFLA_BR_GC_TIMER:
2236 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER:
2237 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL:
2238 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL:
2239 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL:
2240 case QEMU_IFLA_BR_MCAST_QUERY_INTVL:
2241 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL:
2242 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL:
2243 u64 = NLA_DATA(nlattr);
2244 *u64 = tswap64(*u64);
2245 break;
2246 /* ifla_bridge_id: uin8_t[] */
2247 case QEMU_IFLA_BR_ROOT_ID:
2248 case QEMU_IFLA_BR_BRIDGE_ID:
2249 break;
2250 default:
2251 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr->nla_type);
2252 break;
2253 }
2254 return 0;
2255 }
2256
2257 static abi_long host_to_target_slave_data_bridge_nlattr(struct nlattr *nlattr,
2258 void *context)
2259 {
2260 uint16_t *u16;
2261 uint32_t *u32;
2262 uint64_t *u64;
2263
2264 switch (nlattr->nla_type) {
2265 /* uint8_t */
2266 case QEMU_IFLA_BRPORT_STATE:
2267 case QEMU_IFLA_BRPORT_MODE:
2268 case QEMU_IFLA_BRPORT_GUARD:
2269 case QEMU_IFLA_BRPORT_PROTECT:
2270 case QEMU_IFLA_BRPORT_FAST_LEAVE:
2271 case QEMU_IFLA_BRPORT_LEARNING:
2272 case QEMU_IFLA_BRPORT_UNICAST_FLOOD:
2273 case QEMU_IFLA_BRPORT_PROXYARP:
2274 case QEMU_IFLA_BRPORT_LEARNING_SYNC:
2275 case QEMU_IFLA_BRPORT_PROXYARP_WIFI:
2276 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK:
2277 case QEMU_IFLA_BRPORT_CONFIG_PENDING:
2278 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER:
2279 case QEMU_IFLA_BRPORT_MCAST_FLOOD:
2280 case QEMU_IFLA_BRPORT_MCAST_TO_UCAST:
2281 case QEMU_IFLA_BRPORT_VLAN_TUNNEL:
2282 case QEMU_IFLA_BRPORT_BCAST_FLOOD:
2283 case QEMU_IFLA_BRPORT_NEIGH_SUPPRESS:
2284 break;
2285 /* uint16_t */
2286 case QEMU_IFLA_BRPORT_PRIORITY:
2287 case QEMU_IFLA_BRPORT_DESIGNATED_PORT:
2288 case QEMU_IFLA_BRPORT_DESIGNATED_COST:
2289 case QEMU_IFLA_BRPORT_ID:
2290 case QEMU_IFLA_BRPORT_NO:
2291 case QEMU_IFLA_BRPORT_GROUP_FWD_MASK:
2292 u16 = NLA_DATA(nlattr);
2293 *u16 = tswap16(*u16);
2294 break;
2295 /* uin32_t */
2296 case QEMU_IFLA_BRPORT_COST:
2297 u32 = NLA_DATA(nlattr);
2298 *u32 = tswap32(*u32);
2299 break;
2300 /* uint64_t */
2301 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER:
2302 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER:
2303 case QEMU_IFLA_BRPORT_HOLD_TIMER:
2304 u64 = NLA_DATA(nlattr);
2305 *u64 = tswap64(*u64);
2306 break;
2307 /* ifla_bridge_id: uint8_t[] */
2308 case QEMU_IFLA_BRPORT_ROOT_ID:
2309 case QEMU_IFLA_BRPORT_BRIDGE_ID:
2310 break;
2311 default:
2312 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr->nla_type);
2313 break;
2314 }
2315 return 0;
2316 }
2317
2318 struct linkinfo_context {
2319 int len;
2320 char *name;
2321 int slave_len;
2322 char *slave_name;
2323 };
2324
2325 static abi_long host_to_target_data_linkinfo_nlattr(struct nlattr *nlattr,
2326 void *context)
2327 {
2328 struct linkinfo_context *li_context = context;
2329
2330 switch (nlattr->nla_type) {
2331 /* string */
2332 case QEMU_IFLA_INFO_KIND:
2333 li_context->name = NLA_DATA(nlattr);
2334 li_context->len = nlattr->nla_len - NLA_HDRLEN;
2335 break;
2336 case QEMU_IFLA_INFO_SLAVE_KIND:
2337 li_context->slave_name = NLA_DATA(nlattr);
2338 li_context->slave_len = nlattr->nla_len - NLA_HDRLEN;
2339 break;
2340 /* stats */
2341 case QEMU_IFLA_INFO_XSTATS:
2342 /* FIXME: only used by CAN */
2343 break;
2344 /* nested */
2345 case QEMU_IFLA_INFO_DATA:
2346 if (strncmp(li_context->name, "bridge",
2347 li_context->len) == 0) {
2348 return host_to_target_for_each_nlattr(NLA_DATA(nlattr),
2349 nlattr->nla_len,
2350 NULL,
2351 host_to_target_data_bridge_nlattr);
2352 } else {
2353 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context->name);
2354 }
2355 break;
2356 case QEMU_IFLA_INFO_SLAVE_DATA:
2357 if (strncmp(li_context->slave_name, "bridge",
2358 li_context->slave_len) == 0) {
2359 return host_to_target_for_each_nlattr(NLA_DATA(nlattr),
2360 nlattr->nla_len,
2361 NULL,
2362 host_to_target_slave_data_bridge_nlattr);
2363 } else {
2364 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n",
2365 li_context->slave_name);
2366 }
2367 break;
2368 default:
2369 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr->nla_type);
2370 break;
2371 }
2372
2373 return 0;
2374 }
2375
2376 static abi_long host_to_target_data_inet_nlattr(struct nlattr *nlattr,
2377 void *context)
2378 {
2379 uint32_t *u32;
2380 int i;
2381
2382 switch (nlattr->nla_type) {
2383 case QEMU_IFLA_INET_CONF:
2384 u32 = NLA_DATA(nlattr);
2385 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32);
2386 i++) {
2387 u32[i] = tswap32(u32[i]);
2388 }
2389 break;
2390 default:
2391 gemu_log("Unknown host AF_INET type: %d\n", nlattr->nla_type);
2392 }
2393 return 0;
2394 }
2395
2396 static abi_long host_to_target_data_inet6_nlattr(struct nlattr *nlattr,
2397 void *context)
2398 {
2399 uint32_t *u32;
2400 uint64_t *u64;
2401 struct ifla_cacheinfo *ci;
2402 int i;
2403
2404 switch (nlattr->nla_type) {
2405 /* binaries */
2406 case QEMU_IFLA_INET6_TOKEN:
2407 break;
2408 /* uint8_t */
2409 case QEMU_IFLA_INET6_ADDR_GEN_MODE:
2410 break;
2411 /* uint32_t */
2412 case QEMU_IFLA_INET6_FLAGS:
2413 u32 = NLA_DATA(nlattr);
2414 *u32 = tswap32(*u32);
2415 break;
2416 /* uint32_t[] */
2417 case QEMU_IFLA_INET6_CONF:
2418 u32 = NLA_DATA(nlattr);
2419 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32);
2420 i++) {
2421 u32[i] = tswap32(u32[i]);
2422 }
2423 break;
2424 /* ifla_cacheinfo */
2425 case QEMU_IFLA_INET6_CACHEINFO:
2426 ci = NLA_DATA(nlattr);
2427 ci->max_reasm_len = tswap32(ci->max_reasm_len);
2428 ci->tstamp = tswap32(ci->tstamp);
2429 ci->reachable_time = tswap32(ci->reachable_time);
2430 ci->retrans_time = tswap32(ci->retrans_time);
2431 break;
2432 /* uint64_t[] */
2433 case QEMU_IFLA_INET6_STATS:
2434 case QEMU_IFLA_INET6_ICMP6STATS:
2435 u64 = NLA_DATA(nlattr);
2436 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u64);
2437 i++) {
2438 u64[i] = tswap64(u64[i]);
2439 }
2440 break;
2441 default:
2442 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr->nla_type);
2443 }
2444 return 0;
2445 }
2446
2447 static abi_long host_to_target_data_spec_nlattr(struct nlattr *nlattr,
2448 void *context)
2449 {
2450 switch (nlattr->nla_type) {
2451 case AF_INET:
2452 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len,
2453 NULL,
2454 host_to_target_data_inet_nlattr);
2455 case AF_INET6:
2456 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len,
2457 NULL,
2458 host_to_target_data_inet6_nlattr);
2459 default:
2460 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr->nla_type);
2461 break;
2462 }
2463 return 0;
2464 }
2465
2466 static abi_long host_to_target_data_xdp_nlattr(struct nlattr *nlattr,
2467 void *context)
2468 {
2469 uint32_t *u32;
2470
2471 switch (nlattr->nla_type) {
2472 /* uint8_t */
2473 case QEMU_IFLA_XDP_ATTACHED:
2474 break;
2475 /* uint32_t */
2476 case QEMU_IFLA_XDP_PROG_ID:
2477 u32 = NLA_DATA(nlattr);
2478 *u32 = tswap32(*u32);
2479 break;
2480 default:
2481 gemu_log("Unknown host XDP type: %d\n", nlattr->nla_type);
2482 break;
2483 }
2484 return 0;
2485 }
2486
2487 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr)
2488 {
2489 uint32_t *u32;
2490 struct rtnl_link_stats *st;
2491 struct rtnl_link_stats64 *st64;
2492 struct rtnl_link_ifmap *map;
2493 struct linkinfo_context li_context;
2494
2495 switch (rtattr->rta_type) {
2496 /* binary stream */
2497 case QEMU_IFLA_ADDRESS:
2498 case QEMU_IFLA_BROADCAST:
2499 /* string */
2500 case QEMU_IFLA_IFNAME:
2501 case QEMU_IFLA_QDISC:
2502 break;
2503 /* uin8_t */
2504 case QEMU_IFLA_OPERSTATE:
2505 case QEMU_IFLA_LINKMODE:
2506 case QEMU_IFLA_CARRIER:
2507 case QEMU_IFLA_PROTO_DOWN:
2508 break;
2509 /* uint32_t */
2510 case QEMU_IFLA_MTU:
2511 case QEMU_IFLA_LINK:
2512 case QEMU_IFLA_WEIGHT:
2513 case QEMU_IFLA_TXQLEN:
2514 case QEMU_IFLA_CARRIER_CHANGES:
2515 case QEMU_IFLA_NUM_RX_QUEUES:
2516 case QEMU_IFLA_NUM_TX_QUEUES:
2517 case QEMU_IFLA_PROMISCUITY:
2518 case QEMU_IFLA_EXT_MASK:
2519 case QEMU_IFLA_LINK_NETNSID:
2520 case QEMU_IFLA_GROUP:
2521 case QEMU_IFLA_MASTER:
2522 case QEMU_IFLA_NUM_VF:
2523 case QEMU_IFLA_GSO_MAX_SEGS:
2524 case QEMU_IFLA_GSO_MAX_SIZE:
2525 case QEMU_IFLA_CARRIER_UP_COUNT:
2526 case QEMU_IFLA_CARRIER_DOWN_COUNT:
2527 u32 = RTA_DATA(rtattr);
2528 *u32 = tswap32(*u32);
2529 break;
2530 /* struct rtnl_link_stats */
2531 case QEMU_IFLA_STATS:
2532 st = RTA_DATA(rtattr);
2533 st->rx_packets = tswap32(st->rx_packets);
2534 st->tx_packets = tswap32(st->tx_packets);
2535 st->rx_bytes = tswap32(st->rx_bytes);
2536 st->tx_bytes = tswap32(st->tx_bytes);
2537 st->rx_errors = tswap32(st->rx_errors);
2538 st->tx_errors = tswap32(st->tx_errors);
2539 st->rx_dropped = tswap32(st->rx_dropped);
2540 st->tx_dropped = tswap32(st->tx_dropped);
2541 st->multicast = tswap32(st->multicast);
2542 st->collisions = tswap32(st->collisions);
2543
2544 /* detailed rx_errors: */
2545 st->rx_length_errors = tswap32(st->rx_length_errors);
2546 st->rx_over_errors = tswap32(st->rx_over_errors);
2547 st->rx_crc_errors = tswap32(st->rx_crc_errors);
2548 st->rx_frame_errors = tswap32(st->rx_frame_errors);
2549 st->rx_fifo_errors = tswap32(st->rx_fifo_errors);
2550 st->rx_missed_errors = tswap32(st->rx_missed_errors);
2551
2552 /* detailed tx_errors */
2553 st->tx_aborted_errors = tswap32(st->tx_aborted_errors);
2554 st->tx_carrier_errors = tswap32(st->tx_carrier_errors);
2555 st->tx_fifo_errors = tswap32(st->tx_fifo_errors);
2556 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors);
2557 st->tx_window_errors = tswap32(st->tx_window_errors);
2558
2559 /* for cslip etc */
2560 st->rx_compressed = tswap32(st->rx_compressed);
2561 st->tx_compressed = tswap32(st->tx_compressed);
2562 break;
2563 /* struct rtnl_link_stats64 */
2564 case QEMU_IFLA_STATS64:
2565 st64 = RTA_DATA(rtattr);
2566 st64->rx_packets = tswap64(st64->rx_packets);
2567 st64->tx_packets = tswap64(st64->tx_packets);
2568 st64->rx_bytes = tswap64(st64->rx_bytes);
2569 st64->tx_bytes = tswap64(st64->tx_bytes);
2570 st64->rx_errors = tswap64(st64->rx_errors);
2571 st64->tx_errors = tswap64(st64->tx_errors);
2572 st64->rx_dropped = tswap64(st64->rx_dropped);
2573 st64->tx_dropped = tswap64(st64->tx_dropped);
2574 st64->multicast = tswap64(st64->multicast);
2575 st64->collisions = tswap64(st64->collisions);
2576
2577 /* detailed rx_errors: */
2578 st64->rx_length_errors = tswap64(st64->rx_length_errors);
2579 st64->rx_over_errors = tswap64(st64->rx_over_errors);
2580 st64->rx_crc_errors = tswap64(st64->rx_crc_errors);
2581 st64->rx_frame_errors = tswap64(st64->rx_frame_errors);
2582 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors);
2583 st64->rx_missed_errors = tswap64(st64->rx_missed_errors);
2584
2585 /* detailed tx_errors */
2586 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors);
2587 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors);
2588 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors);
2589 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors);
2590 st64->tx_window_errors = tswap64(st64->tx_window_errors);
2591
2592 /* for cslip etc */
2593 st64->rx_compressed = tswap64(st64->rx_compressed);
2594 st64->tx_compressed = tswap64(st64->tx_compressed);
2595 break;
2596 /* struct rtnl_link_ifmap */
2597 case QEMU_IFLA_MAP:
2598 map = RTA_DATA(rtattr);
2599 map->mem_start = tswap64(map->mem_start);
2600 map->mem_end = tswap64(map->mem_end);
2601 map->base_addr = tswap64(map->base_addr);
2602 map->irq = tswap16(map->irq);
2603 break;
2604 /* nested */
2605 case QEMU_IFLA_LINKINFO:
2606 memset(&li_context, 0, sizeof(li_context));
2607 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
2608 &li_context,
2609 host_to_target_data_linkinfo_nlattr);
2610 case QEMU_IFLA_AF_SPEC:
2611 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
2612 NULL,
2613 host_to_target_data_spec_nlattr);
2614 case QEMU_IFLA_XDP:
2615 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
2616 NULL,
2617 host_to_target_data_xdp_nlattr);
2618 default:
2619 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr->rta_type);
2620 break;
2621 }
2622 return 0;
2623 }
2624
2625 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr)
2626 {
2627 uint32_t *u32;
2628 struct ifa_cacheinfo *ci;
2629
2630 switch (rtattr->rta_type) {
2631 /* binary: depends on family type */
2632 case IFA_ADDRESS:
2633 case IFA_LOCAL:
2634 break;
2635 /* string */
2636 case IFA_LABEL:
2637 break;
2638 /* u32 */
2639 case IFA_FLAGS:
2640 case IFA_BROADCAST:
2641 u32 = RTA_DATA(rtattr);
2642 *u32 = tswap32(*u32);
2643 break;
2644 /* struct ifa_cacheinfo */
2645 case IFA_CACHEINFO:
2646 ci = RTA_DATA(rtattr);
2647 ci->ifa_prefered = tswap32(ci->ifa_prefered);
2648 ci->ifa_valid = tswap32(ci->ifa_valid);
2649 ci->cstamp = tswap32(ci->cstamp);
2650 ci->tstamp = tswap32(ci->tstamp);
2651 break;
2652 default:
2653 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type);
2654 break;
2655 }
2656 return 0;
2657 }
2658
2659 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr)
2660 {
2661 uint32_t *u32;
2662 switch (rtattr->rta_type) {
2663 /* binary: depends on family type */
2664 case RTA_GATEWAY:
2665 case RTA_DST:
2666 case RTA_PREFSRC:
2667 break;
2668 /* u32 */
2669 case RTA_PRIORITY:
2670 case RTA_TABLE:
2671 case RTA_OIF:
2672 u32 = RTA_DATA(rtattr);
2673 *u32 = tswap32(*u32);
2674 break;
2675 default:
2676 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type);
2677 break;
2678 }
2679 return 0;
2680 }
2681
2682 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr,
2683 uint32_t rtattr_len)
2684 {
2685 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2686 host_to_target_data_link_rtattr);
2687 }
2688
2689 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr,
2690 uint32_t rtattr_len)
2691 {
2692 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2693 host_to_target_data_addr_rtattr);
2694 }
2695
2696 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr,
2697 uint32_t rtattr_len)
2698 {
2699 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2700 host_to_target_data_route_rtattr);
2701 }
2702
2703 static abi_long host_to_target_data_route(struct nlmsghdr *nlh)
2704 {
2705 uint32_t nlmsg_len;
2706 struct ifinfomsg *ifi;
2707 struct ifaddrmsg *ifa;
2708 struct rtmsg *rtm;
2709
2710 nlmsg_len = nlh->nlmsg_len;
2711 switch (nlh->nlmsg_type) {
2712 case RTM_NEWLINK:
2713 case RTM_DELLINK:
2714 case RTM_GETLINK:
2715 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
2716 ifi = NLMSG_DATA(nlh);
2717 ifi->ifi_type = tswap16(ifi->ifi_type);
2718 ifi->ifi_index = tswap32(ifi->ifi_index);
2719 ifi->ifi_flags = tswap32(ifi->ifi_flags);
2720 ifi->ifi_change = tswap32(ifi->ifi_change);
2721 host_to_target_link_rtattr(IFLA_RTA(ifi),
2722 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi)));
2723 }
2724 break;
2725 case RTM_NEWADDR:
2726 case RTM_DELADDR:
2727 case RTM_GETADDR:
2728 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
2729 ifa = NLMSG_DATA(nlh);
2730 ifa->ifa_index = tswap32(ifa->ifa_index);
2731 host_to_target_addr_rtattr(IFA_RTA(ifa),
2732 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa)));
2733 }
2734 break;
2735 case RTM_NEWROUTE:
2736 case RTM_DELROUTE:
2737 case RTM_GETROUTE:
2738 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
2739 rtm = NLMSG_DATA(nlh);
2740 rtm->rtm_flags = tswap32(rtm->rtm_flags);
2741 host_to_target_route_rtattr(RTM_RTA(rtm),
2742 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm)));
2743 }
2744 break;
2745 default:
2746 return -TARGET_EINVAL;
2747 }
2748 return 0;
2749 }
2750
2751 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh,
2752 size_t len)
2753 {
2754 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route);
2755 }
2756
2757 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr,
2758 size_t len,
2759 abi_long (*target_to_host_rtattr)
2760 (struct rtattr *))
2761 {
2762 abi_long ret;
2763
2764 while (len >= sizeof(struct rtattr)) {
2765 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) ||
2766 tswap16(rtattr->rta_len) > len) {
2767 break;
2768 }
2769 rtattr->rta_len = tswap16(rtattr->rta_len);
2770 rtattr->rta_type = tswap16(rtattr->rta_type);
2771 ret = target_to_host_rtattr(rtattr);
2772 if (ret < 0) {
2773 return ret;
2774 }
2775 len -= RTA_ALIGN(rtattr->rta_len);
2776 rtattr = (struct rtattr *)(((char *)rtattr) +
2777 RTA_ALIGN(rtattr->rta_len));
2778 }
2779 return 0;
2780 }
2781
2782 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr)
2783 {
2784 switch (rtattr->rta_type) {
2785 default:
2786 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr->rta_type);
2787 break;
2788 }
2789 return 0;
2790 }
2791
2792 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr)
2793 {
2794 switch (rtattr->rta_type) {
2795 /* binary: depends on family type */
2796 case IFA_LOCAL:
2797 case IFA_ADDRESS:
2798 break;
2799 default:
2800 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type);
2801 break;
2802 }
2803 return 0;
2804 }
2805
2806 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr)
2807 {
2808 uint32_t *u32;
2809 switch (rtattr->rta_type) {
2810 /* binary: depends on family type */
2811 case RTA_DST:
2812 case RTA_SRC:
2813 case RTA_GATEWAY:
2814 break;
2815 /* u32 */
2816 case RTA_PRIORITY:
2817 case RTA_OIF:
2818 u32 = RTA_DATA(rtattr);
2819 *u32 = tswap32(*u32);
2820 break;
2821 default:
2822 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type);
2823 break;
2824 }
2825 return 0;
2826 }
2827
2828 static void target_to_host_link_rtattr(struct rtattr *rtattr,
2829 uint32_t rtattr_len)
2830 {
2831 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2832 target_to_host_data_link_rtattr);
2833 }
2834
2835 static void target_to_host_addr_rtattr(struct rtattr *rtattr,
2836 uint32_t rtattr_len)
2837 {
2838 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2839 target_to_host_data_addr_rtattr);
2840 }
2841
2842 static void target_to_host_route_rtattr(struct rtattr *rtattr,
2843 uint32_t rtattr_len)
2844 {
2845 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2846 target_to_host_data_route_rtattr);
2847 }
2848
2849 static abi_long target_to_host_data_route(struct nlmsghdr *nlh)
2850 {
2851 struct ifinfomsg *ifi;
2852 struct ifaddrmsg *ifa;
2853 struct rtmsg *rtm;
2854
2855 switch (nlh->nlmsg_type) {
2856 case RTM_GETLINK:
2857 break;
2858 case RTM_NEWLINK:
2859 case RTM_DELLINK:
2860 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
2861 ifi = NLMSG_DATA(nlh);
2862 ifi->ifi_type = tswap16(ifi->ifi_type);
2863 ifi->ifi_index = tswap32(ifi->ifi_index);
2864 ifi->ifi_flags = tswap32(ifi->ifi_flags);
2865 ifi->ifi_change = tswap32(ifi->ifi_change);
2866 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len -
2867 NLMSG_LENGTH(sizeof(*ifi)));
2868 }
2869 break;
2870 case RTM_GETADDR:
2871 case RTM_NEWADDR:
2872 case RTM_DELADDR:
2873 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
2874 ifa = NLMSG_DATA(nlh);
2875 ifa->ifa_index = tswap32(ifa->ifa_index);
2876 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len -
2877 NLMSG_LENGTH(sizeof(*ifa)));
2878 }
2879 break;
2880 case RTM_GETROUTE:
2881 break;
2882 case RTM_NEWROUTE:
2883 case RTM_DELROUTE:
2884 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
2885 rtm = NLMSG_DATA(nlh);
2886 rtm->rtm_flags = tswap32(rtm->rtm_flags);
2887 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len -
2888 NLMSG_LENGTH(sizeof(*rtm)));
2889 }
2890 break;
2891 default:
2892 return -TARGET_EOPNOTSUPP;
2893 }
2894 return 0;
2895 }
2896
2897 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len)
2898 {
2899 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route);
2900 }
2901 #endif /* CONFIG_RTNETLINK */
2902
2903 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh)
2904 {
2905 switch (nlh->nlmsg_type) {
2906 default:
2907 gemu_log("Unknown host audit message type %d\n",
2908 nlh->nlmsg_type);
2909 return -TARGET_EINVAL;
2910 }
2911 return 0;
2912 }
2913
2914 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh,
2915 size_t len)
2916 {
2917 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit);
2918 }
2919
2920 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh)
2921 {
2922 switch (nlh->nlmsg_type) {
2923 case AUDIT_USER:
2924 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
2925 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
2926 break;
2927 default:
2928 gemu_log("Unknown target audit message type %d\n",
2929 nlh->nlmsg_type);
2930 return -TARGET_EINVAL;
2931 }
2932
2933 return 0;
2934 }
2935
2936 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len)
2937 {
2938 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit);
2939 }
2940
2941 /* do_setsockopt() Must return target values and target errnos. */
2942 static abi_long do_setsockopt(int sockfd, int level, int optname,
2943 abi_ulong optval_addr, socklen_t optlen)
2944 {
2945 abi_long ret;
2946 int val;
2947 struct ip_mreqn *ip_mreq;
2948 struct ip_mreq_source *ip_mreq_source;
2949
2950 switch(level) {
2951 case SOL_TCP:
2952 /* TCP options all take an 'int' value. */
2953 if (optlen < sizeof(uint32_t))
2954 return -TARGET_EINVAL;
2955
2956 if (get_user_u32(val, optval_addr))
2957 return -TARGET_EFAULT;
2958 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2959 break;
2960 case SOL_IP:
2961 switch(optname) {
2962 case IP_TOS:
2963 case IP_TTL:
2964 case IP_HDRINCL:
2965 case IP_ROUTER_ALERT:
2966 case IP_RECVOPTS:
2967 case IP_RETOPTS:
2968 case IP_PKTINFO:
2969 case IP_MTU_DISCOVER:
2970 case IP_RECVERR:
2971 case IP_RECVTTL:
2972 case IP_RECVTOS:
2973 #ifdef IP_FREEBIND
2974 case IP_FREEBIND:
2975 #endif
2976 case IP_MULTICAST_TTL:
2977 case IP_MULTICAST_LOOP:
2978 val = 0;
2979 if (optlen >= sizeof(uint32_t)) {
2980 if (get_user_u32(val, optval_addr))
2981 return -TARGET_EFAULT;
2982 } else if (optlen >= 1) {
2983 if (get_user_u8(val, optval_addr))
2984 return -TARGET_EFAULT;
2985 }
2986 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2987 break;
2988 case IP_ADD_MEMBERSHIP:
2989 case IP_DROP_MEMBERSHIP:
2990 if (optlen < sizeof (struct target_ip_mreq) ||
2991 optlen > sizeof (struct target_ip_mreqn))
2992 return -TARGET_EINVAL;
2993
2994 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2995 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2996 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2997 break;
2998
2999 case IP_BLOCK_SOURCE:
3000 case IP_UNBLOCK_SOURCE:
3001 case IP_ADD_SOURCE_MEMBERSHIP:
3002 case IP_DROP_SOURCE_MEMBERSHIP:
3003 if (optlen != sizeof (struct target_ip_mreq_source))
3004 return -TARGET_EINVAL;
3005
3006 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
3007 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
3008 unlock_user (ip_mreq_source, optval_addr, 0);
3009 break;
3010
3011 default:
3012 goto unimplemented;
3013 }
3014 break;
3015 case SOL_IPV6:
3016 switch (optname) {
3017 case IPV6_MTU_DISCOVER:
3018 case IPV6_MTU:
3019 case IPV6_V6ONLY:
3020 case IPV6_RECVPKTINFO:
3021 case IPV6_UNICAST_HOPS:
3022 case IPV6_MULTICAST_HOPS:
3023 case IPV6_MULTICAST_LOOP:
3024 case IPV6_RECVERR:
3025 case IPV6_RECVHOPLIMIT:
3026 case IPV6_2292HOPLIMIT:
3027 case IPV6_CHECKSUM:
3028 val = 0;
3029 if (optlen < sizeof(uint32_t)) {
3030 return -TARGET_EINVAL;
3031 }
3032 if (get_user_u32(val, optval_addr)) {
3033 return -TARGET_EFAULT;
3034 }
3035 ret = get_errno(setsockopt(sockfd, level, optname,
3036 &val, sizeof(val)));
3037 break;
3038 case IPV6_PKTINFO:
3039 {
3040 struct in6_pktinfo pki;
3041
3042 if (optlen < sizeof(pki)) {
3043 return -TARGET_EINVAL;
3044 }
3045
3046 if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
3047 return -TARGET_EFAULT;
3048 }
3049
3050 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
3051
3052 ret = get_errno(setsockopt(sockfd, level, optname,
3053 &pki, sizeof(pki)));
3054 break;
3055 }
3056 default:
3057 goto unimplemented;
3058 }
3059 break;
3060 case SOL_ICMPV6:
3061 switch (optname) {
3062 case ICMPV6_FILTER:
3063 {
3064 struct icmp6_filter icmp6f;
3065
3066 if (optlen > sizeof(icmp6f)) {
3067 optlen = sizeof(icmp6f);
3068 }
3069
3070 if (copy_from_user(&icmp6f, optval_addr, optlen)) {
3071 return -TARGET_EFAULT;
3072 }
3073
3074 for (val = 0; val < 8; val++) {
3075 icmp6f.data[val] = tswap32(icmp6f.data[val]);
3076 }
3077
3078 ret = get_errno(setsockopt(sockfd, level, optname,
3079 &icmp6f, optlen));
3080 break;
3081 }
3082 default:
3083 goto unimplemented;
3084 }
3085 break;
3086 case SOL_RAW:
3087 switch (optname) {
3088 case ICMP_FILTER:
3089 case IPV6_CHECKSUM:
3090 /* those take an u32 value */
3091 if (optlen < sizeof(uint32_t)) {
3092 return -TARGET_EINVAL;
3093 }
3094
3095 if (get_user_u32(val, optval_addr)) {
3096 return -TARGET_EFAULT;
3097 }
3098 ret = get_errno(setsockopt(sockfd, level, optname,
3099 &val, sizeof(val)));
3100 break;
3101
3102 default:
3103 goto unimplemented;
3104 }
3105 break;
3106 case TARGET_SOL_SOCKET:
3107 switch (optname) {
3108 case TARGET_SO_RCVTIMEO:
3109 {
3110 struct timeval tv;
3111
3112 optname = SO_RCVTIMEO;
3113
3114 set_timeout:
3115 if (optlen != sizeof(struct target_timeval)) {
3116 return -TARGET_EINVAL;
3117 }
3118
3119 if (copy_from_user_timeval(&tv, optval_addr)) {
3120 return -TARGET_EFAULT;
3121 }
3122
3123 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
3124 &tv, sizeof(tv)));
3125 return ret;
3126 }
3127 case TARGET_SO_SNDTIMEO:
3128 optname = SO_SNDTIMEO;
3129 goto set_timeout;
3130 case TARGET_SO_ATTACH_FILTER:
3131 {
3132 struct target_sock_fprog *tfprog;
3133 struct target_sock_filter *tfilter;
3134 struct sock_fprog fprog;
3135 struct sock_filter *filter;
3136 int i;
3137
3138 if (optlen != sizeof(*tfprog)) {
3139 return -TARGET_EINVAL;
3140 }
3141 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
3142 return -TARGET_EFAULT;
3143 }
3144 if (!lock_user_struct(VERIFY_READ, tfilter,
3145 tswapal(tfprog->filter), 0)) {
3146 unlock_user_struct(tfprog, optval_addr, 1);
3147 return -TARGET_EFAULT;
3148 }
3149
3150 fprog.len = tswap16(tfprog->len);
3151 filter = g_try_new(struct sock_filter, fprog.len);
3152 if (filter == NULL) {
3153 unlock_user_struct(tfilter, tfprog->filter, 1);
3154 unlock_user_struct(tfprog, optval_addr, 1);
3155 return -TARGET_ENOMEM;
3156 }
3157 for (i = 0; i < fprog.len; i++) {
3158 filter[i].code = tswap16(tfilter[i].code);
3159 filter[i].jt = tfilter[i].jt;
3160 filter[i].jf = tfilter[i].jf;
3161 filter[i].k = tswap32(tfilter[i].k);
3162 }
3163 fprog.filter = filter;
3164
3165 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
3166 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
3167 g_free(filter);
3168
3169 unlock_user_struct(tfilter, tfprog->filter, 1);
3170 unlock_user_struct(tfprog, optval_addr, 1);
3171 return ret;
3172 }
3173 case TARGET_SO_BINDTODEVICE:
3174 {
3175 char *dev_ifname, *addr_ifname;
3176
3177 if (optlen > IFNAMSIZ - 1) {
3178 optlen = IFNAMSIZ - 1;
3179 }
3180 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
3181 if (!dev_ifname) {
3182 return -TARGET_EFAULT;
3183 }
3184 optname = SO_BINDTODEVICE;
3185 addr_ifname = alloca(IFNAMSIZ);
3186 memcpy(addr_ifname, dev_ifname, optlen);
3187 addr_ifname[optlen] = 0;
3188 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
3189 addr_ifname, optlen));
3190 unlock_user (dev_ifname, optval_addr, 0);
3191 return ret;
3192 }
3193 /* Options with 'int' argument. */
3194 case TARGET_SO_DEBUG:
3195 optname = SO_DEBUG;
3196 break;
3197 case TARGET_SO_REUSEADDR:
3198 optname = SO_REUSEADDR;
3199 break;
3200 case TARGET_SO_TYPE:
3201 optname = SO_TYPE;
3202 break;
3203 case TARGET_SO_ERROR:
3204 optname = SO_ERROR;
3205 break;
3206 case TARGET_SO_DONTROUTE:
3207 optname = SO_DONTROUTE;
3208 break;
3209 case TARGET_SO_BROADCAST:
3210 optname = SO_BROADCAST;
3211 break;
3212 case TARGET_SO_SNDBUF:
3213 optname = SO_SNDBUF;
3214 break;
3215 case TARGET_SO_SNDBUFFORCE:
3216 optname = SO_SNDBUFFORCE;
3217 break;
3218 case TARGET_SO_RCVBUF:
3219 optname = SO_RCVBUF;
3220 break;
3221 case TARGET_SO_RCVBUFFORCE:
3222 optname = SO_RCVBUFFORCE;
3223 break;
3224 case TARGET_SO_KEEPALIVE:
3225 optname = SO_KEEPALIVE;
3226 break;
3227 case TARGET_SO_OOBINLINE:
3228 optname = SO_OOBINLINE;
3229 break;
3230 case TARGET_SO_NO_CHECK:
3231 optname = SO_NO_CHECK;
3232 break;
3233 case TARGET_SO_PRIORITY:
3234 optname = SO_PRIORITY;
3235 break;
3236 #ifdef SO_BSDCOMPAT
3237 case TARGET_SO_BSDCOMPAT:
3238 optname = SO_BSDCOMPAT;
3239 break;
3240 #endif
3241 case TARGET_SO_PASSCRED:
3242 optname = SO_PASSCRED;
3243 break;
3244 case TARGET_SO_PASSSEC:
3245 optname = SO_PASSSEC;
3246 break;
3247 case TARGET_SO_TIMESTAMP:
3248 optname = SO_TIMESTAMP;
3249 break;
3250 case TARGET_SO_RCVLOWAT:
3251 optname = SO_RCVLOWAT;
3252 break;
3253 default:
3254 goto unimplemented;
3255 }
3256 if (optlen < sizeof(uint32_t))
3257 return -TARGET_EINVAL;
3258
3259 if (get_user_u32(val, optval_addr))
3260 return -TARGET_EFAULT;
3261 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
3262 break;
3263 default:
3264 unimplemented:
3265 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname);
3266 ret = -TARGET_ENOPROTOOPT;
3267 }
3268 return ret;
3269 }
3270
3271 /* do_getsockopt() Must return target values and target errnos. */
3272 static abi_long do_getsockopt(int sockfd, int level, int optname,
3273 abi_ulong optval_addr, abi_ulong optlen)
3274 {
3275 abi_long ret;
3276 int len, val;
3277 socklen_t lv;
3278
3279 switch(level) {
3280 case TARGET_SOL_SOCKET:
3281 level = SOL_SOCKET;
3282 switch (optname) {
3283 /* These don't just return a single integer */
3284 case TARGET_SO_LINGER:
3285 case TARGET_SO_RCVTIMEO:
3286 case TARGET_SO_SNDTIMEO:
3287 case TARGET_SO_PEERNAME:
3288 goto unimplemented;
3289 case TARGET_SO_PEERCRED: {
3290 struct ucred cr;
3291 socklen_t crlen;
3292 struct target_ucred *tcr;
3293
3294 if (get_user_u32(len, optlen)) {
3295 return -TARGET_EFAULT;
3296 }
3297 if (len < 0) {
3298 return -TARGET_EINVAL;
3299 }
3300
3301 crlen = sizeof(cr);
3302 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
3303 &cr, &crlen));
3304 if (ret < 0) {
3305 return ret;
3306 }
3307 if (len > crlen) {
3308 len = crlen;
3309 }
3310 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
3311 return -TARGET_EFAULT;
3312 }
3313 __put_user(cr.pid, &tcr->pid);
3314 __put_user(cr.uid, &tcr->uid);
3315 __put_user(cr.gid, &tcr->gid);
3316 unlock_user_struct(tcr, optval_addr, 1);
3317 if (put_user_u32(len, optlen)) {
3318 return -TARGET_EFAULT;
3319 }
3320 break;
3321 }
3322 /* Options with 'int' argument. */
3323 case TARGET_SO_DEBUG:
3324 optname = SO_DEBUG;
3325 goto int_case;
3326 case TARGET_SO_REUSEADDR:
3327 optname = SO_REUSEADDR;
3328 goto int_case;
3329 case TARGET_SO_TYPE:
3330 optname = SO_TYPE;
3331 goto int_case;
3332 case TARGET_SO_ERROR:
3333 optname = SO_ERROR;
3334 goto int_case;
3335 case TARGET_SO_DONTROUTE:
3336 optname = SO_DONTROUTE;
3337 goto int_case;
3338 case TARGET_SO_BROADCAST:
3339 optname = SO_BROADCAST;
3340 goto int_case;
3341 case TARGET_SO_SNDBUF:
3342 optname = SO_SNDBUF;
3343 goto int_case;
3344 case TARGET_SO_RCVBUF:
3345 optname = SO_RCVBUF;
3346 goto int_case;
3347 case TARGET_SO_KEEPALIVE:
3348 optname = SO_KEEPALIVE;
3349 goto int_case;
3350 case TARGET_SO_OOBINLINE:
3351 optname = SO_OOBINLINE;
3352 goto int_case;
3353 case TARGET_SO_NO_CHECK:
3354 optname = SO_NO_CHECK;
3355 goto int_case;
3356 case TARGET_SO_PRIORITY:
3357 optname = SO_PRIORITY;
3358 goto int_case;
3359 #ifdef SO_BSDCOMPAT
3360 case TARGET_SO_BSDCOMPAT:
3361 optname = SO_BSDCOMPAT;
3362 goto int_case;
3363 #endif
3364 case TARGET_SO_PASSCRED:
3365 optname = SO_PASSCRED;
3366 goto int_case;
3367 case TARGET_SO_TIMESTAMP:
3368 optname = SO_TIMESTAMP;
3369 goto int_case;
3370 case TARGET_SO_RCVLOWAT:
3371 optname = SO_RCVLOWAT;
3372 goto int_case;
3373 case TARGET_SO_ACCEPTCONN:
3374 optname = SO_ACCEPTCONN;
3375 goto int_case;
3376 default:
3377 goto int_case;
3378 }
3379 break;
3380 case SOL_TCP:
3381 /* TCP options all take an 'int' value. */
3382 int_case:
3383 if (get_user_u32(len, optlen))
3384 return -TARGET_EFAULT;
3385 if (len < 0)
3386 return -TARGET_EINVAL;
3387 lv = sizeof(lv);
3388 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
3389 if (ret < 0)
3390 return ret;
3391 if (optname == SO_TYPE) {
3392 val = host_to_target_sock_type(val);
3393 }
3394 if (len > lv)
3395 len = lv;
3396 if (len == 4) {
3397 if (put_user_u32(val, optval_addr))
3398 return -TARGET_EFAULT;
3399 } else {
3400 if (put_user_u8(val, optval_addr))
3401 return -TARGET_EFAULT;
3402 }
3403 if (put_user_u32(len, optlen))
3404 return -TARGET_EFAULT;
3405 break;
3406 case SOL_IP:
3407 switch(optname) {
3408 case IP_TOS:
3409 case IP_TTL:
3410 case IP_HDRINCL:
3411 case IP_ROUTER_ALERT:
3412 case IP_RECVOPTS:
3413 case IP_RETOPTS:
3414 case IP_PKTINFO:
3415 case IP_MTU_DISCOVER:
3416 case IP_RECVERR:
3417 case IP_RECVTOS:
3418 #ifdef IP_FREEBIND
3419 case IP_FREEBIND:
3420 #endif
3421 case IP_MULTICAST_TTL:
3422 case IP_MULTICAST_LOOP:
3423 if (get_user_u32(len, optlen))
3424 return -TARGET_EFAULT;
3425 if (len < 0)
3426 return -TARGET_EINVAL;
3427 lv = sizeof(lv);
3428 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
3429 if (ret < 0)
3430 return ret;
3431 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
3432 len = 1;
3433 if (put_user_u32(len, optlen)
3434 || put_user_u8(val, optval_addr))
3435 return -TARGET_EFAULT;
3436 } else {
3437 if (len > sizeof(int))
3438 len = sizeof(int);
3439 if (put_user_u32(len, optlen)
3440 || put_user_u32(val, optval_addr))
3441 return -TARGET_EFAULT;
3442 }
3443 break;
3444 default:
3445 ret = -TARGET_ENOPROTOOPT;
3446 break;
3447 }
3448 break;
3449 default:
3450 unimplemented:
3451 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
3452 level, optname);
3453 ret = -TARGET_EOPNOTSUPP;
3454 break;
3455 }
3456 return ret;
3457 }
3458
3459 /* Convert target low/high pair representing file offset into the host
3460 * low/high pair. This function doesn't handle offsets bigger than 64 bits
3461 * as the kernel doesn't handle them either.
3462 */
3463 static void target_to_host_low_high(abi_ulong tlow,
3464 abi_ulong thigh,
3465 unsigned long *hlow,
3466 unsigned long *hhigh)
3467 {
3468 uint64_t off = tlow |
3469 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
3470 TARGET_LONG_BITS / 2;
3471
3472 *hlow = off;
3473 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
3474 }
3475
3476 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
3477 abi_ulong count, int copy)
3478 {
3479 struct target_iovec *target_vec;
3480 struct iovec *vec;
3481 abi_ulong total_len, max_len;
3482 int i;
3483 int err = 0;
3484 bool bad_address = false;
3485
3486 if (count == 0) {
3487 errno = 0;
3488 return NULL;
3489 }
3490 if (count > IOV_MAX) {
3491 errno = EINVAL;
3492 return NULL;
3493 }
3494
3495 vec = g_try_new0(struct iovec, count);
3496 if (vec == NULL) {
3497 errno = ENOMEM;
3498 return NULL;
3499 }
3500
3501 target_vec = lock_user(VERIFY_READ, target_addr,
3502 count * sizeof(struct target_iovec), 1);
3503 if (target_vec == NULL) {
3504 err = EFAULT;
3505 goto fail2;
3506 }
3507
3508 /* ??? If host page size > target page size, this will result in a
3509 value larger than what we can actually support. */
3510 max_len = 0x7fffffff & TARGET_PAGE_MASK;
3511 total_len = 0;
3512
3513 for (i = 0; i < count; i++) {
3514 abi_ulong base = tswapal(target_vec[i].iov_base);
3515 abi_long len = tswapal(target_vec[i].iov_len);
3516
3517 if (len < 0) {
3518 err = EINVAL;
3519 goto fail;
3520 } else if (len == 0) {
3521 /* Zero length pointer is ignored. */
3522 vec[i].iov_base = 0;
3523 } else {
3524 vec[i].iov_base = lock_user(type, base, len, copy);
3525 /* If the first buffer pointer is bad, this is a fault. But
3526 * subsequent bad buffers will result in a partial write; this
3527 * is realized by filling the vector with null pointers and
3528 * zero lengths. */
3529 if (!vec[i].iov_base) {
3530 if (i == 0) {
3531 err = EFAULT;
3532 goto fail;
3533 } else {
3534 bad_address = true;
3535 }
3536 }
3537 if (bad_address) {
3538 len = 0;
3539 }
3540 if (len > max_len - total_len) {
3541 len = max_len - total_len;
3542 }
3543 }
3544 vec[i].iov_len = len;
3545 total_len += len;
3546 }
3547
3548 unlock_user(target_vec, target_addr, 0);
3549 return vec;
3550
3551 fail:
3552 while (--i >= 0) {
3553 if (tswapal(target_vec[i].iov_len) > 0) {
3554 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3555 }
3556 }
3557 unlock_user(target_vec, target_addr, 0);
3558 fail2:
3559 g_free(vec);
3560 errno = err;
3561 return NULL;
3562 }
3563
3564 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3565 abi_ulong count, int copy)
3566 {
3567 struct target_iovec *target_vec;
3568 int i;
3569
3570 target_vec = lock_user(VERIFY_READ, target_addr,
3571 count * sizeof(struct target_iovec), 1);
3572 if (target_vec) {
3573 for (i = 0; i < count; i++) {
3574 abi_ulong base = tswapal(target_vec[i].iov_base);
3575 abi_long len = tswapal(target_vec[i].iov_len);
3576 if (len < 0) {
3577 break;
3578 }
3579 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3580 }
3581 unlock_user(target_vec, target_addr, 0);
3582 }
3583
3584 g_free(vec);
3585 }
3586
3587 static inline int target_to_host_sock_type(int *type)
3588 {
3589 int host_type = 0;
3590 int target_type = *type;
3591
3592 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3593 case TARGET_SOCK_DGRAM:
3594 host_type = SOCK_DGRAM;
3595 break;
3596 case TARGET_SOCK_STREAM:
3597 host_type = SOCK_STREAM;
3598 break;
3599 default:
3600 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3601 break;
3602 }
3603 if (target_type & TARGET_SOCK_CLOEXEC) {
3604 #if defined(SOCK_CLOEXEC)
3605 host_type |= SOCK_CLOEXEC;
3606 #else
3607 return -TARGET_EINVAL;
3608 #endif
3609 }
3610 if (target_type & TARGET_SOCK_NONBLOCK) {
3611 #if defined(SOCK_NONBLOCK)
3612 host_type |= SOCK_NONBLOCK;
3613 #elif !defined(O_NONBLOCK)
3614 return -TARGET_EINVAL;
3615 #endif
3616 }
3617 *type = host_type;
3618 return 0;
3619 }
3620
3621 /* Try to emulate socket type flags after socket creation. */
3622 static int sock_flags_fixup(int fd, int target_type)
3623 {
3624 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3625 if (target_type & TARGET_SOCK_NONBLOCK) {
3626 int flags = fcntl(fd, F_GETFL);
3627 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3628 close(fd);
3629 return -TARGET_EINVAL;
3630 }
3631 }
3632 #endif
3633 return fd;
3634 }
3635
3636 static abi_long packet_target_to_host_sockaddr(void *host_addr,
3637 abi_ulong target_addr,
3638 socklen_t len)
3639 {
3640 struct sockaddr *addr = host_addr;
3641 struct target_sockaddr *target_saddr;
3642
3643 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
3644 if (!target_saddr) {
3645 return -TARGET_EFAULT;
3646 }
3647
3648 memcpy(addr, target_saddr, len);
3649 addr->sa_family = tswap16(target_saddr->sa_family);
3650 /* spkt_protocol is big-endian */
3651
3652 unlock_user(target_saddr, target_addr, 0);
3653 return 0;
3654 }
3655
3656 static TargetFdTrans target_packet_trans = {
3657 .target_to_host_addr = packet_target_to_host_sockaddr,
3658 };
3659
3660 #ifdef CONFIG_RTNETLINK
3661 static abi_long netlink_route_target_to_host(void *buf, size_t len)
3662 {
3663 abi_long ret;
3664
3665 ret = target_to_host_nlmsg_route(buf, len);
3666 if (ret < 0) {
3667 return ret;
3668 }
3669
3670 return len;
3671 }
3672
3673 static abi_long netlink_route_host_to_target(void *buf, size_t len)
3674 {
3675 abi_long ret;
3676
3677 ret = host_to_target_nlmsg_route(buf, len);
3678 if (ret < 0) {
3679 return ret;
3680 }
3681
3682 return len;
3683 }
3684
3685 static TargetFdTrans target_netlink_route_trans = {
3686 .target_to_host_data = netlink_route_target_to_host,
3687 .host_to_target_data = netlink_route_host_to_target,
3688 };
3689 #endif /* CONFIG_RTNETLINK */
3690
3691 static abi_long netlink_audit_target_to_host(void *buf, size_t len)
3692 {
3693 abi_long ret;
3694
3695 ret = target_to_host_nlmsg_audit(buf, len);
3696 if (ret < 0) {
3697 return ret;
3698 }
3699
3700 return len;
3701 }
3702
3703 static abi_long netlink_audit_host_to_target(void *buf, size_t len)
3704 {
3705 abi_long ret;
3706
3707 ret = host_to_target_nlmsg_audit(buf, len);
3708 if (ret < 0) {
3709 return ret;
3710 }
3711
3712 return len;
3713 }
3714
3715 static TargetFdTrans target_netlink_audit_trans = {
3716 .target_to_host_data = netlink_audit_target_to_host,
3717 .host_to_target_data = netlink_audit_host_to_target,
3718 };
3719
3720 /* do_socket() Must return target values and target errnos. */
3721 static abi_long do_socket(int domain, int type, int protocol)
3722 {
3723 int target_type = type;
3724 int ret;
3725
3726 ret = target_to_host_sock_type(&type);
3727 if (ret) {
3728 return ret;
3729 }
3730
3731 if (domain == PF_NETLINK && !(
3732 #ifdef CONFIG_RTNETLINK
3733 protocol == NETLINK_ROUTE ||
3734 #endif
3735 protocol == NETLINK_KOBJECT_UEVENT ||
3736 protocol == NETLINK_AUDIT)) {
3737 return -EPFNOSUPPORT;
3738 }
3739
3740 if (domain == AF_PACKET ||
3741 (domain == AF_INET && type == SOCK_PACKET)) {
3742 protocol = tswap16(protocol);
3743 }
3744
3745 ret = get_errno(socket(domain, type, protocol));
3746 if (ret >= 0) {
3747 ret = sock_flags_fixup(ret, target_type);
3748 if (type == SOCK_PACKET) {
3749 /* Manage an obsolete case :
3750 * if socket type is SOCK_PACKET, bind by name
3751 */
3752 fd_trans_register(ret, &target_packet_trans);
3753 } else if (domain == PF_NETLINK) {
3754 switch (protocol) {
3755 #ifdef CONFIG_RTNETLINK
3756 case NETLINK_ROUTE:
3757 fd_trans_register(ret, &target_netlink_route_trans);
3758 break;
3759 #endif
3760 case NETLINK_KOBJECT_UEVENT:
3761 /* nothing to do: messages are strings */
3762 break;
3763 case NETLINK_AUDIT:
3764 fd_trans_register(ret, &target_netlink_audit_trans);
3765 break;
3766 default:
3767 g_assert_not_reached();
3768 }
3769 }
3770 }
3771 return ret;
3772 }
3773
3774 /* do_bind() Must return target values and target errnos. */
3775 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3776 socklen_t addrlen)
3777 {
3778 void *addr;
3779 abi_long ret;
3780
3781 if ((int)addrlen < 0) {
3782 return -TARGET_EINVAL;
3783 }
3784
3785 addr = alloca(addrlen+1);
3786
3787 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3788 if (ret)
3789 return ret;
3790
3791 return get_errno(bind(sockfd, addr, addrlen));
3792 }
3793
3794 /* do_connect() Must return target values and target errnos. */
3795 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3796 socklen_t addrlen)
3797 {
3798 void *addr;
3799 abi_long ret;
3800
3801 if ((int)addrlen < 0) {
3802 return -TARGET_EINVAL;
3803 }
3804
3805 addr = alloca(addrlen+1);
3806
3807 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3808 if (ret)
3809 return ret;
3810
3811 return get_errno(safe_connect(sockfd, addr, addrlen));
3812 }
3813
3814 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3815 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3816 int flags, int send)
3817 {
3818 abi_long ret, len;
3819 struct msghdr msg;
3820 abi_ulong count;
3821 struct iovec *vec;
3822 abi_ulong target_vec;
3823
3824 if (msgp->msg_name) {
3825 msg.msg_namelen = tswap32(msgp->msg_namelen);
3826 msg.msg_name = alloca(msg.msg_namelen+1);
3827 ret = target_to_host_sockaddr(fd, msg.msg_name,
3828 tswapal(msgp->msg_name),
3829 msg.msg_namelen);
3830 if (ret == -TARGET_EFAULT) {
3831 /* For connected sockets msg_name and msg_namelen must
3832 * be ignored, so returning EFAULT immediately is wrong.
3833 * Instead, pass a bad msg_name to the host kernel, and
3834 * let it decide whether to return EFAULT or not.
3835 */
3836 msg.msg_name = (void *)-1;
3837 } else if (ret) {
3838 goto out2;
3839 }
3840 } else {
3841 msg.msg_name = NULL;
3842 msg.msg_namelen = 0;
3843 }
3844 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3845 msg.msg_control = alloca(msg.msg_controllen);
3846 memset(msg.msg_control, 0, msg.msg_controllen);
3847
3848 msg.msg_flags = tswap32(msgp->msg_flags);
3849
3850 count = tswapal(msgp->msg_iovlen);
3851 target_vec = tswapal(msgp->msg_iov);
3852
3853 if (count > IOV_MAX) {
3854 /* sendrcvmsg returns a different errno for this condition than
3855 * readv/writev, so we must catch it here before lock_iovec() does.
3856 */
3857 ret = -TARGET_EMSGSIZE;
3858 goto out2;
3859 }
3860
3861 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3862 target_vec, count, send);
3863 if (vec == NULL) {
3864 ret = -host_to_target_errno(errno);
3865 goto out2;
3866 }
3867 msg.msg_iovlen = count;
3868 msg.msg_iov = vec;
3869
3870 if (send) {
3871 if (fd_trans_target_to_host_data(fd)) {
3872 void *host_msg;
3873
3874 host_msg = g_malloc(msg.msg_iov->iov_len);
3875 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3876 ret = fd_trans_target_to_host_data(fd)(host_msg,
3877 msg.msg_iov->iov_len);
3878 if (ret >= 0) {
3879 msg.msg_iov->iov_base = host_msg;
3880 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3881 }
3882 g_free(host_msg);
3883 } else {
3884 ret = target_to_host_cmsg(&msg, msgp);
3885 if (ret == 0) {
3886 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3887 }
3888 }
3889 } else {
3890 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3891 if (!is_error(ret)) {
3892 len = ret;
3893 if (fd_trans_host_to_target_data(fd)) {
3894 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3895 len);
3896 } else {
3897 ret = host_to_target_cmsg(msgp, &msg);
3898 }
3899 if (!is_error(ret)) {
3900 msgp->msg_namelen = tswap32(msg.msg_namelen);
3901 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3902 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3903 msg.msg_name, msg.msg_namelen);
3904 if (ret) {
3905 goto out;
3906 }
3907 }
3908
3909 ret = len;
3910 }
3911 }
3912 }
3913
3914 out:
3915 unlock_iovec(vec, target_vec, count, !send);
3916 out2:
3917 return ret;
3918 }
3919
3920 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3921 int flags, int send)
3922 {
3923 abi_long ret;
3924 struct target_msghdr *msgp;
3925
3926 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3927 msgp,
3928 target_msg,
3929 send ? 1 : 0)) {
3930 return -TARGET_EFAULT;
3931 }
3932 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3933 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3934 return ret;
3935 }
3936
3937 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3938 * so it might not have this *mmsg-specific flag either.
3939 */
3940 #ifndef MSG_WAITFORONE
3941 #define MSG_WAITFORONE 0x10000
3942 #endif
3943
3944 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3945 unsigned int vlen, unsigned int flags,
3946 int send)
3947 {
3948 struct target_mmsghdr *mmsgp;
3949 abi_long ret = 0;
3950 int i;
3951
3952 if (vlen > UIO_MAXIOV) {
3953 vlen = UIO_MAXIOV;
3954 }
3955
3956 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3957 if (!mmsgp) {
3958 return -TARGET_EFAULT;
3959 }
3960
3961 for (i = 0; i < vlen; i++) {
3962 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3963 if (is_error(ret)) {
3964 break;
3965 }
3966 mmsgp[i].msg_len = tswap32(ret);
3967 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3968 if (flags & MSG_WAITFORONE) {
3969 flags |= MSG_DONTWAIT;
3970 }
3971 }
3972
3973 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3974
3975 /* Return number of datagrams sent if we sent any at all;
3976 * otherwise return the error.
3977 */
3978 if (i) {
3979 return i;
3980 }
3981 return ret;
3982 }
3983
3984 /* do_accept4() Must return target values and target errnos. */
3985 static abi_long do_accept4(int fd, abi_ulong target_addr,
3986 abi_ulong target_addrlen_addr, int flags)
3987 {
3988 socklen_t addrlen;
3989 void *addr;
3990 abi_long ret;
3991 int host_flags;
3992
3993 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3994
3995 if (target_addr == 0) {
3996 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3997 }
3998
3999 /* linux returns EINVAL if addrlen pointer is invalid */
4000 if (get_user_u32(addrlen, target_addrlen_addr))
4001 return -TARGET_EINVAL;
4002
4003 if ((int)addrlen < 0) {
4004 return -TARGET_EINVAL;
4005 }
4006
4007 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
4008 return -TARGET_EINVAL;
4009
4010 addr = alloca(addrlen);
4011
4012 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags));
4013 if (!is_error(ret)) {
4014 host_to_target_sockaddr(target_addr, addr, addrlen);
4015 if (put_user_u32(addrlen, target_addrlen_addr))
4016 ret = -TARGET_EFAULT;
4017 }
4018 return ret;
4019 }
4020
4021 /* do_getpeername() Must return target values and target errnos. */
4022 static abi_long do_getpeername(int fd, abi_ulong target_addr,
4023 abi_ulong target_addrlen_addr)
4024 {
4025 socklen_t addrlen;
4026 void *addr;
4027 abi_long ret;
4028
4029 if (get_user_u32(addrlen, target_addrlen_addr))
4030 return -TARGET_EFAULT;
4031
4032 if ((int)addrlen < 0) {
4033 return -TARGET_EINVAL;
4034 }
4035
4036 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
4037 return -TARGET_EFAULT;
4038
4039 addr = alloca(addrlen);
4040
4041 ret = get_errno(getpeername(fd, addr, &addrlen));
4042 if (!is_error(ret)) {
4043 host_to_target_sockaddr(target_addr, addr, addrlen);
4044 if (put_user_u32(addrlen, target_addrlen_addr))
4045 ret = -TARGET_EFAULT;
4046 }
4047 return ret;
4048 }
4049
4050 /* do_getsockname() Must return target values and target errnos. */
4051 static abi_long do_getsockname(int fd, abi_ulong target_addr,
4052 abi_ulong target_addrlen_addr)
4053 {
4054 socklen_t addrlen;
4055 void *addr;
4056 abi_long ret;
4057
4058 if (get_user_u32(addrlen, target_addrlen_addr))
4059 return -TARGET_EFAULT;
4060
4061 if ((int)addrlen < 0) {
4062 return -TARGET_EINVAL;
4063 }
4064
4065 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
4066 return -TARGET_EFAULT;
4067
4068 addr = alloca(addrlen);
4069
4070 ret = get_errno(getsockname(fd, addr, &addrlen));
4071 if (!is_error(ret)) {
4072 host_to_target_sockaddr(target_addr, addr, addrlen);
4073 if (put_user_u32(addrlen, target_addrlen_addr))
4074 ret = -TARGET_EFAULT;
4075 }
4076 return ret;
4077 }
4078
4079 /* do_socketpair() Must return target values and target errnos. */
4080 static abi_long do_socketpair(int domain, int type, int protocol,
4081 abi_ulong target_tab_addr)
4082 {
4083 int tab[2];
4084 abi_long ret;
4085
4086 target_to_host_sock_type(&type);
4087
4088 ret = get_errno(socketpair(domain, type, protocol, tab));
4089 if (!is_error(ret)) {
4090 if (put_user_s32(tab[0], target_tab_addr)
4091 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
4092 ret = -TARGET_EFAULT;
4093 }
4094 return ret;
4095 }
4096
4097 /* do_sendto() Must return target values and target errnos. */
4098 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
4099 abi_ulong target_addr, socklen_t addrlen)
4100 {
4101 void *addr;
4102 void *host_msg;
4103 void *copy_msg = NULL;
4104 abi_long ret;
4105
4106 if ((int)addrlen < 0) {
4107 return -TARGET_EINVAL;
4108 }
4109
4110 host_msg = lock_user(VERIFY_READ, msg, len, 1);
4111 if (!host_msg)
4112 return -TARGET_EFAULT;
4113 if (fd_trans_target_to_host_data(fd)) {
4114 copy_msg = host_msg;
4115 host_msg = g_malloc(len);
4116 memcpy(host_msg, copy_msg, len);
4117 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
4118 if (ret < 0) {
4119 goto fail;
4120 }
4121 }
4122 if (target_addr) {
4123 addr = alloca(addrlen+1);
4124 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
4125 if (ret) {
4126 goto fail;
4127 }
4128 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
4129 } else {
4130 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
4131 }
4132 fail:
4133 if (copy_msg) {
4134 g_free(host_msg);
4135 host_msg = copy_msg;
4136 }
4137 unlock_user(host_msg, msg, 0);
4138 return ret;
4139 }
4140
4141 /* do_recvfrom() Must return target values and target errnos. */
4142 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
4143 abi_ulong target_addr,
4144 abi_ulong target_addrlen)
4145 {
4146 socklen_t addrlen;
4147 void *addr;
4148 void *host_msg;
4149 abi_long ret;
4150
4151 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
4152 if (!host_msg)
4153 return -TARGET_EFAULT;
4154 if (target_addr) {
4155 if (get_user_u32(addrlen, target_addrlen)) {
4156 ret = -TARGET_EFAULT;
4157 goto fail;
4158 }
4159 if ((int)addrlen < 0) {
4160 ret = -TARGET_EINVAL;
4161 goto fail;
4162 }
4163 addr = alloca(addrlen);
4164 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
4165 addr, &addrlen));
4166 } else {
4167 addr = NULL; /* To keep compiler quiet. */
4168 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
4169 }
4170 if (!is_error(ret)) {
4171 if (fd_trans_host_to_target_data(fd)) {
4172 ret = fd_trans_host_to_target_data(fd)(host_msg, ret);
4173 }
4174 if (target_addr) {
4175 host_to_target_sockaddr(target_addr, addr, addrlen);
4176 if (put_user_u32(addrlen, target_addrlen)) {
4177 ret = -TARGET_EFAULT;
4178 goto fail;
4179 }
4180 }
4181 unlock_user(host_msg, msg, len);
4182 } else {
4183 fail:
4184 unlock_user(host_msg, msg, 0);
4185 }
4186 return ret;
4187 }
4188
4189 #ifdef TARGET_NR_socketcall
4190 /* do_socketcall() must return target values and target errnos. */
4191 static abi_long do_socketcall(int num, abi_ulong vptr)
4192 {
4193 static const unsigned nargs[] = { /* number of arguments per operation */
4194 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
4195 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
4196 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
4197 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */
4198 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
4199 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
4200 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
4201 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */
4202 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */
4203 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */
4204 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */
4205 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */
4206 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */
4207 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
4208 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
4209 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */
4210 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */
4211 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */
4212 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */
4213 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */
4214 };
4215 abi_long a[6]; /* max 6 args */
4216 unsigned i;
4217
4218 /* check the range of the first argument num */
4219 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
4220 if (num < 1 || num > TARGET_SYS_SENDMMSG) {
4221 return -TARGET_EINVAL;
4222 }
4223 /* ensure we have space for args */
4224 if (nargs[num] > ARRAY_SIZE(a)) {
4225 return -TARGET_EINVAL;
4226 }
4227 /* collect the arguments in a[] according to nargs[] */
4228 for (i = 0; i < nargs[num]; ++i) {
4229 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
4230 return -TARGET_EFAULT;
4231 }
4232 }
4233 /* now when we have the args, invoke the appropriate underlying function */
4234 switch (num) {
4235 case TARGET_SYS_SOCKET: /* domain, type, protocol */
4236 return do_socket(a[0], a[1], a[2]);
4237 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
4238 return do_bind(a[0], a[1], a[2]);
4239 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
4240 return do_connect(a[0], a[1], a[2]);
4241 case TARGET_SYS_LISTEN: /* sockfd, backlog */
4242 return get_errno(listen(a[0], a[1]));
4243 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
4244 return do_accept4(a[0], a[1], a[2], 0);
4245 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
4246 return do_getsockname(a[0], a[1], a[2]);
4247 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
4248 return do_getpeername(a[0], a[1], a[2]);
4249 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
4250 return do_socketpair(a[0], a[1], a[2], a[3]);
4251 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
4252 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
4253 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
4254 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
4255 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
4256 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
4257 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
4258 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
4259 case TARGET_SYS_SHUTDOWN: /* sockfd, how */
4260 return get_errno(shutdown(a[0], a[1]));
4261 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
4262 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
4263 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
4264 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
4265 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
4266 return do_sendrecvmsg(a[0], a[1], a[2], 1);
4267 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
4268 return do_sendrecvmsg(a[0], a[1], a[2], 0);
4269 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
4270 return do_accept4(a[0], a[1], a[2], a[3]);
4271 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
4272 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
4273 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
4274 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
4275 default:
4276 gemu_log("Unsupported socketcall: %d\n", num);
4277 return -TARGET_EINVAL;
4278 }
4279 }
4280 #endif
4281
4282 #define N_SHM_REGIONS 32
4283
4284 static struct shm_region {
4285 abi_ulong start;
4286 abi_ulong size;
4287 bool in_use;
4288 } shm_regions[N_SHM_REGIONS];
4289
4290 #ifndef TARGET_SEMID64_DS
4291 /* asm-generic version of this struct */
4292 struct target_semid64_ds
4293 {
4294 struct target_ipc_perm sem_perm;
4295 abi_ulong sem_otime;
4296 #if TARGET_ABI_BITS == 32
4297 abi_ulong __unused1;
4298 #endif
4299 abi_ulong sem_ctime;
4300 #if TARGET_ABI_BITS == 32
4301 abi_ulong __unused2;
4302 #endif
4303 abi_ulong sem_nsems;
4304 abi_ulong __unused3;
4305 abi_ulong __unused4;
4306 };
4307 #endif
4308
4309 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
4310 abi_ulong target_addr)
4311 {
4312 struct target_ipc_perm *target_ip;
4313 struct target_semid64_ds *target_sd;
4314
4315 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4316 return -TARGET_EFAULT;
4317 target_ip = &(target_sd->sem_perm);
4318 host_ip->__key = tswap32(target_ip->__key);
4319 host_ip->uid = tswap32(target_ip->uid);
4320 host_ip->gid = tswap32(target_ip->gid);
4321 host_ip->cuid = tswap32(target_ip->cuid);
4322 host_ip->cgid = tswap32(target_ip->cgid);
4323 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4324 host_ip->mode = tswap32(target_ip->mode);
4325 #else
4326 host_ip->mode = tswap16(target_ip->mode);
4327 #endif
4328 #if defined(TARGET_PPC)
4329 host_ip->__seq = tswap32(target_ip->__seq);
4330 #else
4331 host_ip->__seq = tswap16(target_ip->__seq);
4332 #endif
4333 unlock_user_struct(target_sd, target_addr, 0);
4334 return 0;
4335 }
4336
4337 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
4338 struct ipc_perm *host_ip)
4339 {
4340 struct target_ipc_perm *target_ip;
4341 struct target_semid64_ds *target_sd;
4342
4343 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4344 return -TARGET_EFAULT;
4345 target_ip = &(target_sd->sem_perm);
4346 target_ip->__key = tswap32(host_ip->__key);
4347 target_ip->uid = tswap32(host_ip->uid);
4348 target_ip->gid = tswap32(host_ip->gid);
4349 target_ip->cuid = tswap32(host_ip->cuid);
4350 target_ip->cgid = tswap32(host_ip->cgid);
4351 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4352 target_ip->mode = tswap32(host_ip->mode);
4353 #else
4354 target_ip->mode = tswap16(host_ip->mode);
4355 #endif
4356 #if defined(TARGET_PPC)
4357 target_ip->__seq = tswap32(host_ip->__seq);
4358 #else
4359 target_ip->__seq = tswap16(host_ip->__seq);
4360 #endif
4361 unlock_user_struct(target_sd, target_addr, 1);
4362 return 0;
4363 }
4364
4365 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
4366 abi_ulong target_addr)
4367 {
4368 struct target_semid64_ds *target_sd;
4369
4370 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4371 return -TARGET_EFAULT;
4372 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
4373 return -TARGET_EFAULT;
4374 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
4375 host_sd->sem_otime = tswapal(target_sd->sem_otime);
4376 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
4377 unlock_user_struct(target_sd, target_addr, 0);
4378 return 0;
4379 }
4380
4381 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
4382 struct semid_ds *host_sd)
4383 {
4384 struct target_semid64_ds *target_sd;
4385
4386 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4387 return -TARGET_EFAULT;
4388 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
4389 return -TARGET_EFAULT;
4390 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
4391 target_sd->sem_otime = tswapal(host_sd->sem_otime);
4392 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
4393 unlock_user_struct(target_sd, target_addr, 1);
4394 return 0;
4395 }
4396
4397 struct target_seminfo {
4398 int semmap;
4399 int semmni;
4400 int semmns;
4401 int semmnu;
4402 int semmsl;
4403 int semopm;
4404 int semume;
4405 int semusz;
4406 int semvmx;
4407 int semaem;
4408 };
4409
4410 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
4411 struct seminfo *host_seminfo)
4412 {
4413 struct target_seminfo *target_seminfo;
4414 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
4415 return -TARGET_EFAULT;
4416 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
4417 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
4418 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
4419 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
4420 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
4421 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
4422 __put_user(host_seminfo->semume, &target_seminfo->semume);
4423 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
4424 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
4425 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
4426 unlock_user_struct(target_seminfo, target_addr, 1);
4427 return 0;
4428 }
4429
4430 union semun {
4431 int val;
4432 struct semid_ds *buf;
4433 unsigned short *array;
4434 struct seminfo *__buf;
4435 };
4436
4437 union target_semun {
4438 int val;
4439 abi_ulong buf;
4440 abi_ulong array;
4441 abi_ulong __buf;
4442 };
4443
4444 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
4445 abi_ulong target_addr)
4446 {
4447 int nsems;
4448 unsigned short *array;
4449 union semun semun;
4450 struct semid_ds semid_ds;
4451 int i, ret;
4452
4453 semun.buf = &semid_ds;
4454
4455 ret = semctl(semid, 0, IPC_STAT, semun);
4456 if (ret == -1)
4457 return get_errno(ret);
4458
4459 nsems = semid_ds.sem_nsems;
4460
4461 *host_array = g_try_new(unsigned short, nsems);
4462 if (!*host_array) {
4463 return -TARGET_ENOMEM;
4464 }
4465 array = lock_user(VERIFY_READ, target_addr,
4466 nsems*sizeof(unsigned short), 1);
4467 if (!array) {
4468 g_free(*host_array);
4469 return -TARGET_EFAULT;
4470 }
4471
4472 for(i=0; i<nsems; i++) {
4473 __get_user((*host_array)[i], &array[i]);
4474 }
4475 unlock_user(array, target_addr, 0);
4476
4477 return 0;
4478 }
4479
4480 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
4481 unsigned short **host_array)
4482 {
4483 int nsems;
4484 unsigned short *array;
4485 union semun semun;
4486 struct semid_ds semid_ds;
4487 int i, ret;
4488
4489 semun.buf = &semid_ds;
4490
4491 ret = semctl(semid, 0, IPC_STAT, semun);
4492 if (ret == -1)
4493 return get_errno(ret);
4494
4495 nsems = semid_ds.sem_nsems;
4496
4497 array = lock_user(VERIFY_WRITE, target_addr,
4498 nsems*sizeof(unsigned short), 0);
4499 if (!array)
4500 return -TARGET_EFAULT;
4501
4502 for(i=0; i<nsems; i++) {
4503 __put_user((*host_array)[i], &array[i]);
4504 }
4505 g_free(*host_array);
4506 unlock_user(array, target_addr, 1);
4507
4508 return 0;
4509 }
4510
4511 static inline abi_long do_semctl(int semid, int semnum, int cmd,
4512 abi_ulong target_arg)
4513 {
4514 union target_semun target_su = { .buf = target_arg };
4515 union semun arg;
4516 struct semid_ds dsarg;
4517 unsigned short *array = NULL;
4518 struct seminfo seminfo;
4519 abi_long ret = -TARGET_EINVAL;
4520 abi_long err;
4521 cmd &= 0xff;
4522
4523 switch( cmd ) {
4524 case GETVAL:
4525 case SETVAL:
4526 /* In 64 bit cross-endian situations, we will erroneously pick up
4527 * the wrong half of the union for the "val" element. To rectify
4528 * this, the entire 8-byte structure is byteswapped, followed by
4529 * a swap of the 4 byte val field. In other cases, the data is
4530 * already in proper host byte order. */
4531 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
4532 target_su.buf = tswapal(target_su.buf);
4533 arg.val = tswap32(target_su.val);
4534 } else {
4535 arg.val = target_su.val;
4536 }
4537 ret = get_errno(semctl(semid, semnum, cmd, arg));
4538 break;
4539 case GETALL:
4540 case SETALL:
4541 err = target_to_host_semarray(semid, &array, target_su.array);
4542 if (err)
4543 return err;
4544 arg.array = array;
4545 ret = get_errno(semctl(semid, semnum, cmd, arg));
4546 err = host_to_target_semarray(semid, target_su.array, &array);
4547 if (err)
4548 return err;
4549 break;
4550 case IPC_STAT:
4551 case IPC_SET:
4552 case SEM_STAT:
4553 err = target_to_host_semid_ds(&dsarg, target_su.buf);
4554 if (err)
4555 return err;
4556 arg.buf = &dsarg;
4557 ret = get_errno(semctl(semid, semnum, cmd, arg));
4558 err = host_to_target_semid_ds(target_su.buf, &dsarg);
4559 if (err)
4560 return err;
4561 break;
4562 case IPC_INFO:
4563 case SEM_INFO:
4564 arg.__buf = &seminfo;
4565 ret = get_errno(semctl(semid, semnum, cmd, arg));
4566 err = host_to_target_seminfo(target_su.__buf, &seminfo);
4567 if (err)
4568 return err;
4569 break;
4570 case IPC_RMID:
4571 case GETPID:
4572 case GETNCNT:
4573 case GETZCNT:
4574 ret = get_errno(semctl(semid, semnum, cmd, NULL));
4575 break;
4576 }
4577
4578 return ret;
4579 }
4580
4581 struct target_sembuf {
4582 unsigned short sem_num;
4583 short sem_op;
4584 short sem_flg;
4585 };
4586
4587 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4588 abi_ulong target_addr,
4589 unsigned nsops)
4590 {
4591 struct target_sembuf *target_sembuf;
4592 int i;
4593
4594 target_sembuf = lock_user(VERIFY_READ, target_addr,
4595 nsops*sizeof(struct target_sembuf), 1);
4596 if (!target_sembuf)
4597 return -TARGET_EFAULT;
4598
4599 for(i=0; i<nsops; i++) {
4600 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4601 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4602 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4603 }
4604
4605 unlock_user(target_sembuf, target_addr, 0);
4606
4607 return 0;
4608 }
4609
4610 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
4611 {
4612 struct sembuf sops[nsops];
4613
4614 if (target_to_host_sembuf(sops, ptr, nsops))
4615 return -TARGET_EFAULT;
4616
4617 return get_errno(safe_semtimedop(semid, sops, nsops, NULL));
4618 }
4619
4620 struct target_msqid_ds
4621 {
4622 struct target_ipc_perm msg_perm;
4623 abi_ulong msg_stime;
4624 #if TARGET_ABI_BITS == 32
4625 abi_ulong __unused1;
4626 #endif
4627 abi_ulong msg_rtime;
4628 #if TARGET_ABI_BITS == 32
4629 abi_ulong __unused2;
4630 #endif
4631 abi_ulong msg_ctime;
4632 #if TARGET_ABI_BITS == 32
4633 abi_ulong __unused3;
4634 #endif
4635 abi_ulong __msg_cbytes;
4636 abi_ulong msg_qnum;
4637 abi_ulong msg_qbytes;
4638 abi_ulong msg_lspid;
4639 abi_ulong msg_lrpid;
4640 abi_ulong __unused4;
4641 abi_ulong __unused5;
4642 };
4643
4644 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4645 abi_ulong target_addr)
4646 {
4647 struct target_msqid_ds *target_md;
4648
4649 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4650 return -TARGET_EFAULT;
4651 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4652 return -TARGET_EFAULT;
4653 host_md->msg_stime = tswapal(target_md->msg_stime);
4654 host_md->msg_rtime = tswapal(target_md->msg_rtime);
4655 host_md->msg_ctime = tswapal(target_md->msg_ctime);
4656 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4657 host_md->msg_qnum = tswapal(target_md->msg_qnum);
4658 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4659 host_md->msg_lspid = tswapal(target_md->msg_lspid);
4660 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4661 unlock_user_struct(target_md, target_addr, 0);
4662 return 0;
4663 }
4664
4665 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4666 struct msqid_ds *host_md)
4667 {
4668 struct target_msqid_ds *target_md;
4669
4670 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4671 return -TARGET_EFAULT;
4672 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4673 return -TARGET_EFAULT;
4674 target_md->msg_stime = tswapal(host_md->msg_stime);
4675 target_md->msg_rtime = tswapal(host_md->msg_rtime);
4676 target_md->msg_ctime = tswapal(host_md->msg_ctime);
4677 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4678 target_md->msg_qnum = tswapal(host_md->msg_qnum);
4679 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4680 target_md->msg_lspid = tswapal(host_md->msg_lspid);
4681 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4682 unlock_user_struct(target_md, target_addr, 1);
4683 return 0;
4684 }
4685
4686 struct target_msginfo {
4687 int msgpool;
4688 int msgmap;
4689 int msgmax;
4690 int msgmnb;
4691 int msgmni;
4692 int msgssz;
4693 int msgtql;
4694 unsigned short int msgseg;
4695 };
4696
4697 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4698 struct msginfo *host_msginfo)
4699 {
4700 struct target_msginfo *target_msginfo;
4701 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4702 return -TARGET_EFAULT;
4703 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4704 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4705 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4706 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4707 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4708 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4709 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4710 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4711 unlock_user_struct(target_msginfo, target_addr, 1);
4712 return 0;
4713 }
4714
4715 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4716 {
4717 struct msqid_ds dsarg;
4718 struct msginfo msginfo;
4719 abi_long ret = -TARGET_EINVAL;
4720
4721 cmd &= 0xff;
4722
4723 switch (cmd) {
4724 case IPC_STAT:
4725 case IPC_SET:
4726 case MSG_STAT:
4727 if (target_to_host_msqid_ds(&dsarg,ptr))
4728 return -TARGET_EFAULT;
4729 ret = get_errno(msgctl(msgid, cmd, &dsarg));
4730 if (host_to_target_msqid_ds(ptr,&dsarg))
4731 return -TARGET_EFAULT;
4732 break;
4733 case IPC_RMID:
4734 ret = get_errno(msgctl(msgid, cmd, NULL));
4735 break;
4736 case IPC_INFO:
4737 case MSG_INFO:
4738 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4739 if (host_to_target_msginfo(ptr, &msginfo))
4740 return -TARGET_EFAULT;
4741 break;
4742 }
4743
4744 return ret;
4745 }
4746
4747 struct target_msgbuf {
4748 abi_long mtype;
4749 char mtext[1];
4750 };
4751
4752 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4753 ssize_t msgsz, int msgflg)
4754 {
4755 struct target_msgbuf *target_mb;
4756 struct msgbuf *host_mb;
4757 abi_long ret = 0;
4758
4759 if (msgsz < 0) {
4760 return -TARGET_EINVAL;
4761 }
4762
4763 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4764 return -TARGET_EFAULT;
4765 host_mb = g_try_malloc(msgsz + sizeof(long));
4766 if (!host_mb) {
4767 unlock_user_struct(target_mb, msgp, 0);
4768 return -TARGET_ENOMEM;
4769 }
4770 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4771 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4772 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4773 g_free(host_mb);
4774 unlock_user_struct(target_mb, msgp, 0);
4775
4776 return ret;
4777 }
4778
4779 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4780 ssize_t msgsz, abi_long msgtyp,
4781 int msgflg)
4782 {
4783 struct target_msgbuf *target_mb;
4784 char *target_mtext;
4785 struct msgbuf *host_mb;
4786 abi_long ret = 0;
4787
4788 if (msgsz < 0) {
4789 return -TARGET_EINVAL;
4790 }
4791
4792 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4793 return -TARGET_EFAULT;
4794
4795 host_mb = g_try_malloc(msgsz + sizeof(long));
4796 if (!host_mb) {
4797 ret = -TARGET_ENOMEM;
4798 goto end;
4799 }
4800 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4801
4802 if (ret > 0) {
4803 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4804 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4805 if (!target_mtext) {
4806 ret = -TARGET_EFAULT;
4807 goto end;
4808 }
4809 memcpy(target_mb->mtext, host_mb->mtext, ret);
4810 unlock_user(target_mtext, target_mtext_addr, ret);
4811 }
4812
4813 target_mb->mtype = tswapal(host_mb->mtype);
4814
4815 end:
4816 if (target_mb)
4817 unlock_user_struct(target_mb, msgp, 1);
4818 g_free(host_mb);
4819 return ret;
4820 }
4821
4822 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4823 abi_ulong target_addr)
4824 {
4825 struct target_shmid_ds *target_sd;
4826
4827 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4828 return -TARGET_EFAULT;
4829 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4830 return -TARGET_EFAULT;
4831 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4832 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4833 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4834 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4835 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4836 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4837 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4838 unlock_user_struct(target_sd, target_addr, 0);
4839 return 0;
4840 }
4841
4842 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4843 struct shmid_ds *host_sd)
4844 {
4845 struct target_shmid_ds *target_sd;
4846
4847 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4848 return -TARGET_EFAULT;
4849 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4850 return -TARGET_EFAULT;
4851 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4852 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4853 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4854 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4855 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4856 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4857 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4858 unlock_user_struct(target_sd, target_addr, 1);
4859 return 0;
4860 }
4861
4862 struct target_shminfo {
4863 abi_ulong shmmax;
4864 abi_ulong shmmin;
4865 abi_ulong shmmni;
4866 abi_ulong shmseg;
4867 abi_ulong shmall;
4868 };
4869
4870 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4871 struct shminfo *host_shminfo)
4872 {
4873 struct target_shminfo *target_shminfo;
4874 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4875 return -TARGET_EFAULT;
4876 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4877 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4878 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4879 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4880 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4881 unlock_user_struct(target_shminfo, target_addr, 1);
4882 return 0;
4883 }
4884
4885 struct target_shm_info {
4886 int used_ids;
4887 abi_ulong shm_tot;
4888 abi_ulong shm_rss;
4889 abi_ulong shm_swp;
4890 abi_ulong swap_attempts;
4891 abi_ulong swap_successes;
4892 };
4893
4894 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4895 struct shm_info *host_shm_info)
4896 {
4897 struct target_shm_info *target_shm_info;
4898 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4899 return -TARGET_EFAULT;
4900 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4901 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4902 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4903 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4904 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4905 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4906 unlock_user_struct(target_shm_info, target_addr, 1);
4907 return 0;
4908 }
4909
4910 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4911 {
4912 struct shmid_ds dsarg;
4913 struct shminfo shminfo;
4914 struct shm_info shm_info;
4915 abi_long ret = -TARGET_EINVAL;
4916
4917 cmd &= 0xff;
4918
4919 switch(cmd) {
4920 case IPC_STAT:
4921 case IPC_SET:
4922 case SHM_STAT:
4923 if (target_to_host_shmid_ds(&dsarg, buf))
4924 return -TARGET_EFAULT;
4925 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4926 if (host_to_target_shmid_ds(buf, &dsarg))
4927 return -TARGET_EFAULT;
4928 break;
4929 case IPC_INFO:
4930 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4931 if (host_to_target_shminfo(buf, &shminfo))
4932 return -TARGET_EFAULT;
4933 break;
4934 case SHM_INFO:
4935 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4936 if (host_to_target_shm_info(buf, &shm_info))
4937 return -TARGET_EFAULT;
4938 break;
4939 case IPC_RMID:
4940 case SHM_LOCK:
4941 case SHM_UNLOCK:
4942 ret = get_errno(shmctl(shmid, cmd, NULL));
4943 break;
4944 }
4945
4946 return ret;
4947 }
4948
4949 #ifndef TARGET_FORCE_SHMLBA
4950 /* For most architectures, SHMLBA is the same as the page size;
4951 * some architectures have larger values, in which case they should
4952 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4953 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4954 * and defining its own value for SHMLBA.
4955 *
4956 * The kernel also permits SHMLBA to be set by the architecture to a
4957 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4958 * this means that addresses are rounded to the large size if
4959 * SHM_RND is set but addresses not aligned to that size are not rejected
4960 * as long as they are at least page-aligned. Since the only architecture
4961 * which uses this is ia64 this code doesn't provide for that oddity.
4962 */
4963 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4964 {
4965 return TARGET_PAGE_SIZE;
4966 }
4967 #endif
4968
4969 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4970 int shmid, abi_ulong shmaddr, int shmflg)
4971 {
4972 abi_long raddr;
4973 void *host_raddr;
4974 struct shmid_ds shm_info;
4975 int i,ret;
4976 abi_ulong shmlba;
4977
4978 /* find out the length of the shared memory segment */
4979 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4980 if (is_error(ret)) {
4981 /* can't get length, bail out */
4982 return ret;
4983 }
4984
4985 shmlba = target_shmlba(cpu_env);
4986
4987 if (shmaddr & (shmlba - 1)) {
4988 if (shmflg & SHM_RND) {
4989 shmaddr &= ~(shmlba - 1);
4990 } else {
4991 return -TARGET_EINVAL;
4992 }
4993 }
4994 if (!guest_range_valid(shmaddr, shm_info.shm_segsz)) {
4995 return -TARGET_EINVAL;
4996 }
4997
4998 mmap_lock();
4999
5000 if (shmaddr)
5001 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
5002 else {
5003 abi_ulong mmap_start;
5004
5005 mmap_start = mmap_find_vma(0, shm_info.shm_segsz);
5006
5007 if (mmap_start == -1) {
5008 errno = ENOMEM;
5009 host_raddr = (void *)-1;
5010 } else
5011 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
5012 }
5013
5014 if (host_raddr == (void *)-1) {
5015 mmap_unlock();
5016 return get_errno((long)host_raddr);
5017 }
5018 raddr=h2g((unsigned long)host_raddr);
5019
5020 page_set_flags(raddr, raddr + shm_info.shm_segsz,
5021 PAGE_VALID | PAGE_READ |
5022 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
5023
5024 for (i = 0; i < N_SHM_REGIONS; i++) {
5025 if (!shm_regions[i].in_use) {
5026 shm_regions[i].in_use = true;
5027 shm_regions[i].start = raddr;
5028 shm_regions[i].size = shm_info.shm_segsz;
5029 break;
5030 }
5031 }
5032
5033 mmap_unlock();
5034 return raddr;
5035
5036 }
5037
5038 static inline abi_long do_shmdt(abi_ulong shmaddr)
5039 {
5040 int i;
5041 abi_long rv;
5042
5043 mmap_lock();
5044
5045 for (i = 0; i < N_SHM_REGIONS; ++i) {
5046 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
5047 shm_regions[i].in_use = false;
5048 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
5049 break;
5050 }
5051 }
5052 rv = get_errno(shmdt(g2h(shmaddr)));
5053
5054 mmap_unlock();
5055
5056 return rv;
5057 }
5058
5059 #ifdef TARGET_NR_ipc
5060 /* ??? This only works with linear mappings. */
5061 /* do_ipc() must return target values and target errnos. */
5062 static abi_long do_ipc(CPUArchState *cpu_env,
5063 unsigned int call, abi_long first,
5064 abi_long second, abi_long third,
5065 abi_long ptr, abi_long fifth)
5066 {
5067 int version;
5068 abi_long ret = 0;
5069
5070 version = call >> 16;
5071 call &= 0xffff;
5072
5073 switch (call) {
5074 case IPCOP_semop:
5075 ret = do_semop(first, ptr, second);
5076 break;
5077
5078 case IPCOP_semget:
5079 ret = get_errno(semget(first, second, third));
5080 break;
5081
5082 case IPCOP_semctl: {
5083 /* The semun argument to semctl is passed by value, so dereference the
5084 * ptr argument. */
5085 abi_ulong atptr;
5086 get_user_ual(atptr, ptr);
5087 ret = do_semctl(first, second, third, atptr);
5088 break;
5089 }
5090
5091 case IPCOP_msgget:
5092 ret = get_errno(msgget(first, second));
5093 break;
5094
5095 case IPCOP_msgsnd:
5096 ret = do_msgsnd(first, ptr, second, third);
5097 break;
5098
5099 case IPCOP_msgctl:
5100 ret = do_msgctl(first, second, ptr);
5101 break;
5102
5103 case IPCOP_msgrcv:
5104 switch (version) {
5105 case 0:
5106 {
5107 struct target_ipc_kludge {
5108 abi_long msgp;
5109 abi_long msgtyp;
5110 } *tmp;
5111
5112 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
5113 ret = -TARGET_EFAULT;
5114 break;
5115 }
5116
5117 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
5118
5119 unlock_user_struct(tmp, ptr, 0);
5120 break;
5121 }
5122 default:
5123 ret = do_msgrcv(first, ptr, second, fifth, third);
5124 }
5125 break;
5126
5127 case IPCOP_shmat:
5128 switch (version) {
5129 default:
5130 {
5131 abi_ulong raddr;
5132 raddr = do_shmat(cpu_env, first, ptr, second);
5133 if (is_error(raddr))
5134 return get_errno(raddr);
5135 if (put_user_ual(raddr, third))
5136 return -TARGET_EFAULT;
5137 break;
5138 }
5139 case 1:
5140 ret = -TARGET_EINVAL;
5141 break;
5142 }
5143 break;
5144 case IPCOP_shmdt:
5145 ret = do_shmdt(ptr);
5146 break;
5147
5148 case IPCOP_shmget:
5149 /* IPC_* flag values are the same on all linux platforms */
5150 ret = get_errno(shmget(first, second, third));
5151 break;
5152
5153 /* IPC_* and SHM_* command values are the same on all linux platforms */
5154 case IPCOP_shmctl:
5155 ret = do_shmctl(first, second, ptr);
5156 break;
5157 default:
5158 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version);
5159 ret = -TARGET_ENOSYS;
5160 break;
5161 }
5162 return ret;
5163 }
5164 #endif
5165
5166 /* kernel structure types definitions */
5167
5168 #define STRUCT(name, ...) STRUCT_ ## name,
5169 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
5170 enum {
5171 #include "syscall_types.h"
5172 STRUCT_MAX
5173 };
5174 #undef STRUCT
5175 #undef STRUCT_SPECIAL
5176
5177 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
5178 #define STRUCT_SPECIAL(name)
5179 #include "syscall_types.h"
5180 #undef STRUCT
5181 #undef STRUCT_SPECIAL
5182
5183 typedef struct IOCTLEntry IOCTLEntry;
5184
5185 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
5186 int fd, int cmd, abi_long arg);
5187
5188 struct IOCTLEntry {
5189 int target_cmd;
5190 unsigned int host_cmd;
5191 const char *name;
5192 int access;
5193 do_ioctl_fn *do_ioctl;
5194 const argtype arg_type[5];
5195 };
5196
5197 #define IOC_R 0x0001
5198 #define IOC_W 0x0002
5199 #define IOC_RW (IOC_R | IOC_W)
5200
5201 #define MAX_STRUCT_SIZE 4096
5202
5203 #ifdef CONFIG_FIEMAP
5204 /* So fiemap access checks don't overflow on 32 bit systems.
5205 * This is very slightly smaller than the limit imposed by
5206 * the underlying kernel.
5207 */
5208 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
5209 / sizeof(struct fiemap_extent))
5210
5211 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
5212 int fd, int cmd, abi_long arg)
5213 {
5214 /* The parameter for this ioctl is a struct fiemap followed
5215 * by an array of struct fiemap_extent whose size is set
5216 * in fiemap->fm_extent_count. The array is filled in by the
5217 * ioctl.
5218 */
5219 int target_size_in, target_size_out;
5220 struct fiemap *fm;
5221 const argtype *arg_type = ie->arg_type;
5222 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
5223 void *argptr, *p;
5224 abi_long ret;
5225 int i, extent_size = thunk_type_size(extent_arg_type, 0);
5226 uint32_t outbufsz;
5227 int free_fm = 0;
5228
5229 assert(arg_type[0] == TYPE_PTR);
5230 assert(ie->access == IOC_RW);
5231 arg_type++;
5232 target_size_in = thunk_type_size(arg_type, 0);
5233 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
5234 if (!argptr) {
5235 return -TARGET_EFAULT;
5236 }
5237 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5238 unlock_user(argptr, arg, 0);
5239 fm = (struct fiemap *)buf_temp;
5240 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
5241 return -TARGET_EINVAL;
5242 }
5243
5244 outbufsz = sizeof (*fm) +
5245 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
5246
5247 if (outbufsz > MAX_STRUCT_SIZE) {
5248 /* We can't fit all the extents into the fixed size buffer.
5249 * Allocate one that is large enough and use it instead.
5250 */
5251 fm = g_try_malloc(outbufsz);
5252 if (!fm) {
5253 return -TARGET_ENOMEM;
5254 }
5255 memcpy(fm, buf_temp, sizeof(struct fiemap));
5256 free_fm = 1;
5257 }
5258 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
5259 if (!is_error(ret)) {
5260 target_size_out = target_size_in;
5261 /* An extent_count of 0 means we were only counting the extents
5262 * so there are no structs to copy
5263 */
5264 if (fm->fm_extent_count != 0) {
5265 target_size_out += fm->fm_mapped_extents * extent_size;
5266 }
5267 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
5268 if (!argptr) {
5269 ret = -TARGET_EFAULT;
5270 } else {
5271 /* Convert the struct fiemap */
5272 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
5273 if (fm->fm_extent_count != 0) {
5274 p = argptr + target_size_in;
5275 /* ...and then all the struct fiemap_extents */
5276 for (i = 0; i < fm->fm_mapped_extents; i++) {
5277 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
5278 THUNK_TARGET);
5279 p += extent_size;
5280 }
5281 }
5282 unlock_user(argptr, arg, target_size_out);
5283 }
5284 }
5285 if (free_fm) {
5286 g_free(fm);
5287 }
5288 return ret;
5289 }
5290 #endif
5291
5292 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
5293 int fd, int cmd, abi_long arg)
5294 {
5295 const argtype *arg_type = ie->arg_type;
5296 int target_size;
5297 void *argptr;
5298 int ret;
5299 struct ifconf *host_ifconf;
5300 uint32_t outbufsz;
5301 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
5302 int target_ifreq_size;
5303 int nb_ifreq;
5304 int free_buf = 0;
5305 int i;
5306 int target_ifc_len;
5307 abi_long target_ifc_buf;
5308 int host_ifc_len;
5309 char *host_ifc_buf;
5310
5311 assert(arg_type[0] == TYPE_PTR);
5312 assert(ie->access == IOC_RW);
5313
5314 arg_type++;
5315 target_size = thunk_type_size(arg_type, 0);
5316
5317 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5318 if (!argptr)
5319 return -TARGET_EFAULT;
5320 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5321 unlock_user(argptr, arg, 0);
5322
5323 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
5324 target_ifc_len = host_ifconf->ifc_len;
5325 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
5326
5327 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
5328 nb_ifreq = target_ifc_len / target_ifreq_size;
5329 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
5330
5331 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
5332 if (outbufsz > MAX_STRUCT_SIZE) {
5333 /* We can't fit all the extents into the fixed size buffer.
5334 * Allocate one that is large enough and use it instead.
5335 */
5336 host_ifconf = malloc(outbufsz);
5337 if (!host_ifconf) {
5338 return -TARGET_ENOMEM;
5339 }
5340 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
5341 free_buf = 1;
5342 }
5343 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf);
5344
5345 host_ifconf->ifc_len = host_ifc_len;
5346 host_ifconf->ifc_buf = host_ifc_buf;
5347
5348 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
5349 if (!is_error(ret)) {
5350 /* convert host ifc_len to target ifc_len */
5351
5352 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
5353 target_ifc_len = nb_ifreq * target_ifreq_size;
5354 host_ifconf->ifc_len = target_ifc_len;
5355
5356 /* restore target ifc_buf */
5357
5358 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
5359
5360 /* copy struct ifconf to target user */
5361
5362 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5363 if (!argptr)
5364 return -TARGET_EFAULT;
5365 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
5366 unlock_user(argptr, arg, target_size);
5367
5368 /* copy ifreq[] to target user */
5369
5370 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
5371 for (i = 0; i < nb_ifreq ; i++) {
5372 thunk_convert(argptr + i * target_ifreq_size,
5373 host_ifc_buf + i * sizeof(struct ifreq),
5374 ifreq_arg_type, THUNK_TARGET);
5375 }
5376 unlock_user(argptr, target_ifc_buf, target_ifc_len);
5377 }
5378
5379 if (free_buf) {
5380 free(host_ifconf);
5381 }
5382
5383 return ret;
5384 }
5385
5386 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5387 int cmd, abi_long arg)
5388 {
5389 void *argptr;
5390 struct dm_ioctl *host_dm;
5391 abi_long guest_data;
5392 uint32_t guest_data_size;
5393 int target_size;
5394 const argtype *arg_type = ie->arg_type;
5395 abi_long ret;
5396 void *big_buf = NULL;
5397 char *host_data;
5398
5399 arg_type++;
5400 target_size = thunk_type_size(arg_type, 0);
5401 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5402 if (!argptr) {
5403 ret = -TARGET_EFAULT;
5404 goto out;
5405 }
5406 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5407 unlock_user(argptr, arg, 0);
5408
5409 /* buf_temp is too small, so fetch things into a bigger buffer */
5410 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5411 memcpy(big_buf, buf_temp, target_size);
5412 buf_temp = big_buf;
5413 host_dm = big_buf;
5414
5415 guest_data = arg + host_dm->data_start;
5416 if ((guest_data - arg) < 0) {
5417 ret = -TARGET_EINVAL;
5418 goto out;
5419 }
5420 guest_data_size = host_dm->data_size - host_dm->data_start;
5421 host_data = (char*)host_dm + host_dm->data_start;
5422
5423 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5424 if (!argptr) {
5425 ret = -TARGET_EFAULT;
5426 goto out;
5427 }
5428
5429 switch (ie->host_cmd) {
5430 case DM_REMOVE_ALL:
5431 case DM_LIST_DEVICES:
5432 case DM_DEV_CREATE:
5433 case DM_DEV_REMOVE:
5434 case DM_DEV_SUSPEND:
5435 case DM_DEV_STATUS:
5436 case DM_DEV_WAIT:
5437 case DM_TABLE_STATUS:
5438 case DM_TABLE_CLEAR:
5439 case DM_TABLE_DEPS:
5440 case DM_LIST_VERSIONS:
5441 /* no input data */
5442 break;
5443 case DM_DEV_RENAME:
5444 case DM_DEV_SET_GEOMETRY:
5445 /* data contains only strings */
5446 memcpy(host_data, argptr, guest_data_size);
5447 break;
5448 case DM_TARGET_MSG:
5449 memcpy(host_data, argptr, guest_data_size);
5450 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5451 break;
5452 case DM_TABLE_LOAD:
5453 {
5454 void *gspec = argptr;
5455 void *cur_data = host_data;
5456 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5457 int spec_size = thunk_type_size(arg_type, 0);
5458 int i;
5459
5460 for (i = 0; i < host_dm->target_count; i++) {
5461 struct dm_target_spec *spec = cur_data;
5462 uint32_t next;
5463 int slen;
5464
5465 thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5466 slen = strlen((char*)gspec + spec_size) + 1;
5467 next = spec->next;
5468 spec->next = sizeof(*spec) + slen;
5469 strcpy((char*)&spec[1], gspec + spec_size);
5470 gspec += next;
5471 cur_data += spec->next;
5472 }
5473 break;
5474 }
5475 default:
5476 ret = -TARGET_EINVAL;
5477 unlock_user(argptr, guest_data, 0);
5478 goto out;
5479 }
5480 unlock_user(argptr, guest_data, 0);
5481
5482 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5483 if (!is_error(ret)) {
5484 guest_data = arg + host_dm->data_start;
5485 guest_data_size = host_dm->data_size - host_dm->data_start;
5486 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5487 switch (ie->host_cmd) {
5488 case DM_REMOVE_ALL:
5489 case DM_DEV_CREATE:
5490 case DM_DEV_REMOVE:
5491 case DM_DEV_RENAME:
5492 case DM_DEV_SUSPEND:
5493 case DM_DEV_STATUS:
5494 case DM_TABLE_LOAD:
5495 case DM_TABLE_CLEAR:
5496 case DM_TARGET_MSG:
5497 case DM_DEV_SET_GEOMETRY:
5498 /* no return data */
5499 break;
5500 case DM_LIST_DEVICES:
5501 {
5502 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5503 uint32_t remaining_data = guest_data_size;
5504 void *cur_data = argptr;
5505 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5506 int nl_size = 12; /* can't use thunk_size due to alignment */
5507
5508 while (1) {
5509 uint32_t next = nl->next;
5510 if (next) {
5511 nl->next = nl_size + (strlen(nl->name) + 1);
5512 }
5513 if (remaining_data < nl->next) {
5514 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5515 break;
5516 }
5517 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5518 strcpy(cur_data + nl_size, nl->name);
5519 cur_data += nl->next;
5520 remaining_data -= nl->next;
5521 if (!next) {
5522 break;
5523 }
5524 nl = (void*)nl + next;
5525 }
5526 break;
5527 }
5528 case DM_DEV_WAIT:
5529 case DM_TABLE_STATUS:
5530 {
5531 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5532 void *cur_data = argptr;
5533 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5534 int spec_size = thunk_type_size(arg_type, 0);
5535 int i;
5536
5537 for (i = 0; i < host_dm->target_count; i++) {
5538 uint32_t next = spec->next;
5539 int slen = strlen((char*)&spec[1]) + 1;
5540 spec->next = (cur_data - argptr) + spec_size + slen;
5541 if (guest_data_size < spec->next) {
5542 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5543 break;
5544 }
5545 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5546 strcpy(cur_data + spec_size, (char*)&spec[1]);
5547 cur_data = argptr + spec->next;
5548 spec = (void*)host_dm + host_dm->data_start + next;
5549 }
5550 break;
5551 }
5552 case DM_TABLE_DEPS:
5553 {
5554 void *hdata = (void*)host_dm + host_dm->data_start;
5555 int count = *(uint32_t*)hdata;
5556 uint64_t *hdev = hdata + 8;
5557 uint64_t *gdev = argptr + 8;
5558 int i;
5559
5560 *(uint32_t*)argptr = tswap32(count);
5561 for (i = 0; i < count; i++) {
5562 *gdev = tswap64(*hdev);
5563 gdev++;
5564 hdev++;
5565 }
5566 break;
5567 }
5568 case DM_LIST_VERSIONS:
5569 {
5570 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5571 uint32_t remaining_data = guest_data_size;
5572 void *cur_data = argptr;
5573 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5574 int vers_size = thunk_type_size(arg_type, 0);
5575
5576 while (1) {
5577 uint32_t next = vers->next;
5578 if (next) {
5579 vers->next = vers_size + (strlen(vers->name) + 1);
5580 }
5581 if (remaining_data < vers->next) {
5582 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5583 break;
5584 }
5585 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5586 strcpy(cur_data + vers_size, vers->name);
5587 cur_data += vers->next;
5588 remaining_data -= vers->next;
5589 if (!next) {
5590 break;
5591 }
5592 vers = (void*)vers + next;
5593 }
5594 break;
5595 }
5596 default:
5597 unlock_user(argptr, guest_data, 0);
5598 ret = -TARGET_EINVAL;
5599 goto out;
5600 }
5601 unlock_user(argptr, guest_data, guest_data_size);
5602
5603 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5604 if (!argptr) {
5605 ret = -TARGET_EFAULT;
5606 goto out;
5607 }
5608 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5609 unlock_user(argptr, arg, target_size);
5610 }
5611 out:
5612 g_free(big_buf);
5613 return ret;
5614 }
5615
5616 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5617 int cmd, abi_long arg)
5618 {
5619 void *argptr;
5620 int target_size;
5621 const argtype *arg_type = ie->arg_type;
5622 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5623 abi_long ret;
5624
5625 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5626 struct blkpg_partition host_part;
5627
5628 /* Read and convert blkpg */
5629 arg_type++;
5630 target_size = thunk_type_size(arg_type, 0);
5631 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5632 if (!argptr) {
5633 ret = -TARGET_EFAULT;
5634 goto out;
5635 }
5636 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5637 unlock_user(argptr, arg, 0);
5638
5639 switch (host_blkpg->op) {
5640 case BLKPG_ADD_PARTITION:
5641 case BLKPG_DEL_PARTITION:
5642 /* payload is struct blkpg_partition */
5643 break;
5644 default:
5645 /* Unknown opcode */
5646 ret = -TARGET_EINVAL;
5647 goto out;
5648 }
5649
5650 /* Read and convert blkpg->data */
5651 arg = (abi_long)(uintptr_t)host_blkpg->data;
5652 target_size = thunk_type_size(part_arg_type, 0);
5653 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5654 if (!argptr) {
5655 ret = -TARGET_EFAULT;
5656 goto out;
5657 }
5658 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5659 unlock_user(argptr, arg, 0);
5660
5661 /* Swizzle the data pointer to our local copy and call! */
5662 host_blkpg->data = &host_part;
5663 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5664
5665 out:
5666 return ret;
5667 }
5668
5669 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5670 int fd, int cmd, abi_long arg)
5671 {
5672 const argtype *arg_type = ie->arg_type;
5673 const StructEntry *se;
5674 const argtype *field_types;
5675 const int *dst_offsets, *src_offsets;
5676 int target_size;
5677 void *argptr;
5678 abi_ulong *target_rt_dev_ptr;
5679 unsigned long *host_rt_dev_ptr;
5680 abi_long ret;
5681 int i;
5682
5683 assert(ie->access == IOC_W);
5684 assert(*arg_type == TYPE_PTR);
5685 arg_type++;
5686 assert(*arg_type == TYPE_STRUCT);
5687 target_size = thunk_type_size(arg_type, 0);
5688 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5689 if (!argptr) {
5690 return -TARGET_EFAULT;
5691 }
5692 arg_type++;
5693 assert(*arg_type == (int)STRUCT_rtentry);
5694 se = struct_entries + *arg_type++;
5695 assert(se->convert[0] == NULL);
5696 /* convert struct here to be able to catch rt_dev string */
5697 field_types = se->field_types;
5698 dst_offsets = se->field_offsets[THUNK_HOST];
5699 src_offsets = se->field_offsets[THUNK_TARGET];
5700 for (i = 0; i < se->nb_fields; i++) {
5701 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5702 assert(*field_types == TYPE_PTRVOID);
5703 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5704 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5705 if (*target_rt_dev_ptr != 0) {
5706 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5707 tswapal(*target_rt_dev_ptr));
5708 if (!*host_rt_dev_ptr) {
5709 unlock_user(argptr, arg, 0);
5710 return -TARGET_EFAULT;
5711 }
5712 } else {
5713 *host_rt_dev_ptr = 0;
5714 }
5715 field_types++;
5716 continue;
5717 }
5718 field_types = thunk_convert(buf_temp + dst_offsets[i],
5719 argptr + src_offsets[i],
5720 field_types, THUNK_HOST);
5721 }
5722 unlock_user(argptr, arg, 0);
5723
5724 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5725 if (*host_rt_dev_ptr != 0) {
5726 unlock_user((void *)*host_rt_dev_ptr,
5727 *target_rt_dev_ptr, 0);
5728 }
5729 return ret;
5730 }
5731
5732 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5733 int fd, int cmd, abi_long arg)
5734 {
5735 int sig = target_to_host_signal(arg);
5736 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5737 }
5738
5739 #ifdef TIOCGPTPEER
5740 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5741 int fd, int cmd, abi_long arg)
5742 {
5743 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5744 return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5745 }
5746 #endif
5747
5748 static IOCTLEntry ioctl_entries[] = {
5749 #define IOCTL(cmd, access, ...) \
5750 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5751 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5752 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5753 #define IOCTL_IGNORE(cmd) \
5754 { TARGET_ ## cmd, 0, #cmd },
5755 #include "ioctls.h"
5756 { 0, 0, },
5757 };
5758
5759 /* ??? Implement proper locking for ioctls. */
5760 /* do_ioctl() Must return target values and target errnos. */
5761 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5762 {
5763 const IOCTLEntry *ie;
5764 const argtype *arg_type;
5765 abi_long ret;
5766 uint8_t buf_temp[MAX_STRUCT_SIZE];
5767 int target_size;
5768 void *argptr;
5769
5770 ie = ioctl_entries;
5771 for(;;) {
5772 if (ie->target_cmd == 0) {
5773 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5774 return -TARGET_ENOSYS;
5775 }
5776 if (ie->target_cmd == cmd)
5777 break;
5778 ie++;
5779 }
5780 arg_type = ie->arg_type;
5781 #if defined(DEBUG)
5782 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name);
5783 #endif
5784 if (ie->do_ioctl) {
5785 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5786 } else if (!ie->host_cmd) {
5787 /* Some architectures define BSD ioctls in their headers
5788 that are not implemented in Linux. */
5789 return -TARGET_ENOSYS;
5790 }
5791
5792 switch(arg_type[0]) {
5793 case TYPE_NULL:
5794 /* no argument */
5795 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5796 break;
5797 case TYPE_PTRVOID:
5798 case TYPE_INT:
5799 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5800 break;
5801 case TYPE_PTR:
5802 arg_type++;
5803 target_size = thunk_type_size(arg_type, 0);
5804 switch(ie->access) {
5805 case IOC_R:
5806 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5807 if (!is_error(ret)) {
5808 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5809 if (!argptr)
5810 return -TARGET_EFAULT;
5811 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5812 unlock_user(argptr, arg, target_size);
5813 }
5814 break;
5815 case IOC_W:
5816 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5817 if (!argptr)
5818 return -TARGET_EFAULT;
5819 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5820 unlock_user(argptr, arg, 0);
5821 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5822 break;
5823 default:
5824 case IOC_RW:
5825 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5826 if (!argptr)
5827 return -TARGET_EFAULT;
5828 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5829 unlock_user(argptr, arg, 0);
5830 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5831 if (!is_error(ret)) {
5832 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5833 if (!argptr)
5834 return -TARGET_EFAULT;
5835 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5836 unlock_user(argptr, arg, target_size);
5837 }
5838 break;
5839 }
5840 break;
5841 default:
5842 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5843 (long)cmd, arg_type[0]);
5844 ret = -TARGET_ENOSYS;
5845 break;
5846 }
5847 return ret;
5848 }
5849
5850 static const bitmask_transtbl iflag_tbl[] = {
5851 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5852 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5853 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5854 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5855 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5856 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5857 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5858 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5859 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5860 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5861 { TARGET_IXON, TARGET_IXON, IXON, IXON },
5862 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5863 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5864 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5865 { 0, 0, 0, 0 }
5866 };
5867
5868 static const bitmask_transtbl oflag_tbl[] = {
5869 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5870 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5871 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5872 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5873 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5874 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5875 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5876 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5877 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5878 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5879 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5880 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5881 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5882 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5883 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5884 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5885 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5886 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5887 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5888 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5889 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5890 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5891 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5892 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5893 { 0, 0, 0, 0 }
5894 };
5895
5896 static const bitmask_transtbl cflag_tbl[] = {
5897 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5898 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5899 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5900 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5901 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5902 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5903 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5904 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5905 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5906 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5907 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5908 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5909 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5910 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5911 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5912 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5913 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5914 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5915 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5916 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5917 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5918 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5919 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5920 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5921 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5922 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5923 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5924 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5925 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5926 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5927 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5928 { 0, 0, 0, 0 }
5929 };
5930
5931 static const bitmask_transtbl lflag_tbl[] = {
5932 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5933 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5934 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5935 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5936 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5937 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5938 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5939 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5940 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5941 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5942 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5943 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5944 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5945 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5946 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5947 { 0, 0, 0, 0 }
5948 };
5949
5950 static void target_to_host_termios (void *dst, const void *src)
5951 {
5952 struct host_termios *host = dst;
5953 const struct target_termios *target = src;
5954
5955 host->c_iflag =
5956 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5957 host->c_oflag =
5958 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5959 host->c_cflag =
5960 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5961 host->c_lflag =
5962 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5963 host->c_line = target->c_line;
5964
5965 memset(host->c_cc, 0, sizeof(host->c_cc));
5966 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5967 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5968 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5969 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5970 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5971 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5972 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5973 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5974 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5975 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5976 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5977 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5978 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5979 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5980 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5981 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5982 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5983 }
5984
5985 static void host_to_target_termios (void *dst, const void *src)
5986 {
5987 struct target_termios *target = dst;
5988 const struct host_termios *host = src;
5989
5990 target->c_iflag =
5991 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5992 target->c_oflag =
5993 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5994 target->c_cflag =
5995 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5996 target->c_lflag =
5997 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5998 target->c_line = host->c_line;
5999
6000 memset(target->c_cc, 0, sizeof(target->c_cc));
6001 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
6002 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
6003 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
6004 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
6005 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
6006 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
6007 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
6008 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
6009 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
6010 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
6011 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
6012 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
6013 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
6014 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
6015 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
6016 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
6017 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
6018 }
6019
6020 static const StructEntry struct_termios_def = {
6021 .convert = { host_to_target_termios, target_to_host_termios },
6022 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
6023 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
6024 };
6025
6026 static bitmask_transtbl mmap_flags_tbl[] = {
6027 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
6028 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
6029 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
6030 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
6031 MAP_ANONYMOUS, MAP_ANONYMOUS },
6032 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
6033 MAP_GROWSDOWN, MAP_GROWSDOWN },
6034 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
6035 MAP_DENYWRITE, MAP_DENYWRITE },
6036 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
6037 MAP_EXECUTABLE, MAP_EXECUTABLE },
6038 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
6039 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
6040 MAP_NORESERVE, MAP_NORESERVE },
6041 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
6042 /* MAP_STACK had been ignored by the kernel for quite some time.
6043 Recognize it for the target insofar as we do not want to pass
6044 it through to the host. */
6045 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
6046 { 0, 0, 0, 0 }
6047 };
6048
6049 #if defined(TARGET_I386)
6050
6051 /* NOTE: there is really one LDT for all the threads */
6052 static uint8_t *ldt_table;
6053
6054 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
6055 {
6056 int size;
6057 void *p;
6058
6059 if (!ldt_table)
6060 return 0;
6061 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
6062 if (size > bytecount)
6063 size = bytecount;
6064 p = lock_user(VERIFY_WRITE, ptr, size, 0);
6065 if (!p)
6066 return -TARGET_EFAULT;
6067 /* ??? Should this by byteswapped? */
6068 memcpy(p, ldt_table, size);
6069 unlock_user(p, ptr, size);
6070 return size;
6071 }
6072
6073 /* XXX: add locking support */
6074 static abi_long write_ldt(CPUX86State *env,
6075 abi_ulong ptr, unsigned long bytecount, int oldmode)
6076 {
6077 struct target_modify_ldt_ldt_s ldt_info;
6078 struct target_modify_ldt_ldt_s *target_ldt_info;
6079 int seg_32bit, contents, read_exec_only, limit_in_pages;
6080 int seg_not_present, useable, lm;
6081 uint32_t *lp, entry_1, entry_2;
6082
6083 if (bytecount != sizeof(ldt_info))
6084 return -TARGET_EINVAL;
6085 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6086 return -TARGET_EFAULT;
6087 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6088 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6089 ldt_info.limit = tswap32(target_ldt_info->limit);
6090 ldt_info.flags = tswap32(target_ldt_info->flags);
6091 unlock_user_struct(target_ldt_info, ptr, 0);
6092
6093 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6094 return -TARGET_EINVAL;
6095 seg_32bit = ldt_info.flags & 1;
6096 contents = (ldt_info.flags >> 1) & 3;
6097 read_exec_only = (ldt_info.flags >> 3) & 1;
6098 limit_in_pages = (ldt_info.flags >> 4) & 1;
6099 seg_not_present = (ldt_info.flags >> 5) & 1;
6100 useable = (ldt_info.flags >> 6) & 1;
6101 #ifdef TARGET_ABI32
6102 lm = 0;
6103 #else
6104 lm = (ldt_info.flags >> 7) & 1;
6105 #endif
6106 if (contents == 3) {
6107 if (oldmode)
6108 return -TARGET_EINVAL;
6109 if (seg_not_present == 0)
6110 return -TARGET_EINVAL;
6111 }
6112 /* allocate the LDT */
6113 if (!ldt_table) {
6114 env->ldt.base = target_mmap(0,
6115 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6116 PROT_READ|PROT_WRITE,
6117 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6118 if (env->ldt.base == -1)
6119 return -TARGET_ENOMEM;
6120 memset(g2h(env->ldt.base), 0,
6121 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6122 env->ldt.limit = 0xffff;
6123 ldt_table = g2h(env->ldt.base);
6124 }
6125
6126 /* NOTE: same code as Linux kernel */
6127 /* Allow LDTs to be cleared by the user. */
6128 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6129 if (oldmode ||
6130 (contents == 0 &&
6131 read_exec_only == 1 &&
6132 seg_32bit == 0 &&
6133 limit_in_pages == 0 &&
6134 seg_not_present == 1 &&
6135 useable == 0 )) {
6136 entry_1 = 0;
6137 entry_2 = 0;
6138 goto install;
6139 }
6140 }
6141
6142 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6143 (ldt_info.limit & 0x0ffff);
6144 entry_2 = (ldt_info.base_addr & 0xff000000) |
6145 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6146 (ldt_info.limit & 0xf0000) |
6147 ((read_exec_only ^ 1) << 9) |
6148 (contents << 10) |
6149 ((seg_not_present ^ 1) << 15) |
6150 (seg_32bit << 22) |
6151 (limit_in_pages << 23) |
6152 (lm << 21) |
6153 0x7000;
6154 if (!oldmode)
6155 entry_2 |= (useable << 20);
6156
6157 /* Install the new entry ... */
6158 install:
6159 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6160 lp[0] = tswap32(entry_1);
6161 lp[1] = tswap32(entry_2);
6162 return 0;
6163 }
6164
6165 /* specific and weird i386 syscalls */
6166 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6167 unsigned long bytecount)
6168 {
6169 abi_long ret;
6170
6171 switch (func) {
6172 case 0:
6173 ret = read_ldt(ptr, bytecount);
6174 break;
6175 case 1:
6176 ret = write_ldt(env, ptr, bytecount, 1);
6177 break;
6178 case 0x11:
6179 ret = write_ldt(env, ptr, bytecount, 0);
6180 break;
6181 default:
6182 ret = -TARGET_ENOSYS;
6183 break;
6184 }
6185 return ret;
6186 }
6187
6188 #if defined(TARGET_I386) && defined(TARGET_ABI32)
6189 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6190 {
6191 uint64_t *gdt_table = g2h(env->gdt.base);
6192 struct target_modify_ldt_ldt_s ldt_info;
6193 struct target_modify_ldt_ldt_s *target_ldt_info;
6194 int seg_32bit, contents, read_exec_only, limit_in_pages;
6195 int seg_not_present, useable, lm;
6196 uint32_t *lp, entry_1, entry_2;
6197 int i;
6198
6199 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6200 if (!target_ldt_info)
6201 return -TARGET_EFAULT;
6202 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6203 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6204 ldt_info.limit = tswap32(target_ldt_info->limit);
6205 ldt_info.flags = tswap32(target_ldt_info->flags);
6206 if (ldt_info.entry_number == -1) {
6207 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6208 if (gdt_table[i] == 0) {
6209 ldt_info.entry_number = i;
6210 target_ldt_info->entry_number = tswap32(i);
6211 break;
6212 }
6213 }
6214 }
6215 unlock_user_struct(target_ldt_info, ptr, 1);
6216
6217 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6218 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6219 return -TARGET_EINVAL;
6220 seg_32bit = ldt_info.flags & 1;
6221 contents = (ldt_info.flags >> 1) & 3;
6222 read_exec_only = (ldt_info.flags >> 3) & 1;
6223 limit_in_pages = (ldt_info.flags >> 4) & 1;
6224 seg_not_present = (ldt_info.flags >> 5) & 1;
6225 useable = (ldt_info.flags >> 6) & 1;
6226 #ifdef TARGET_ABI32
6227 lm = 0;
6228 #else
6229 lm = (ldt_info.flags >> 7) & 1;
6230 #endif
6231
6232 if (contents == 3) {
6233 if (seg_not_present == 0)
6234 return -TARGET_EINVAL;
6235 }
6236
6237 /* NOTE: same code as Linux kernel */
6238 /* Allow LDTs to be cleared by the user. */
6239 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6240 if ((contents == 0 &&
6241 read_exec_only == 1 &&
6242 seg_32bit == 0 &&
6243 limit_in_pages == 0 &&
6244 seg_not_present == 1 &&
6245 useable == 0 )) {
6246 entry_1 = 0;
6247 entry_2 = 0;
6248 goto install;
6249 }
6250 }
6251
6252 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6253 (ldt_info.limit & 0x0ffff);
6254 entry_2 = (ldt_info.base_addr & 0xff000000) |
6255 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6256 (ldt_info.limit & 0xf0000) |
6257 ((read_exec_only ^ 1) << 9) |
6258 (contents << 10) |
6259 ((seg_not_present ^ 1) << 15) |
6260 (seg_32bit << 22) |
6261 (limit_in_pages << 23) |
6262 (useable << 20) |
6263 (lm << 21) |
6264 0x7000;
6265
6266 /* Install the new entry ... */
6267 install:
6268 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6269 lp[0] = tswap32(entry_1);
6270 lp[1] = tswap32(entry_2);
6271 return 0;
6272 }
6273
6274 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6275 {
6276 struct target_modify_ldt_ldt_s *target_ldt_info;
6277 uint64_t *gdt_table = g2h(env->gdt.base);
6278 uint32_t base_addr, limit, flags;
6279 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6280 int seg_not_present, useable, lm;
6281 uint32_t *lp, entry_1, entry_2;
6282
6283 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6284 if (!target_ldt_info)
6285 return -TARGET_EFAULT;
6286 idx = tswap32(target_ldt_info->entry_number);
6287 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6288 idx > TARGET_GDT_ENTRY_TLS_MAX) {
6289 unlock_user_struct(target_ldt_info, ptr, 1);
6290 return -TARGET_EINVAL;
6291 }
6292 lp = (uint32_t *)(gdt_table + idx);
6293 entry_1 = tswap32(lp[0]);
6294 entry_2 = tswap32(lp[1]);
6295
6296 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6297 contents = (entry_2 >> 10) & 3;
6298 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6299 seg_32bit = (entry_2 >> 22) & 1;
6300 limit_in_pages = (entry_2 >> 23) & 1;
6301 useable = (entry_2 >> 20) & 1;
6302 #ifdef TARGET_ABI32
6303 lm = 0;
6304 #else
6305 lm = (entry_2 >> 21) & 1;
6306 #endif
6307 flags = (seg_32bit << 0) | (contents << 1) |
6308 (read_exec_only << 3) | (limit_in_pages << 4) |
6309 (seg_not_present << 5) | (useable << 6) | (lm << 7);
6310 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
6311 base_addr = (entry_1 >> 16) |
6312 (entry_2 & 0xff000000) |
6313 ((entry_2 & 0xff) << 16);
6314 target_ldt_info->base_addr = tswapal(base_addr);
6315 target_ldt_info->limit = tswap32(limit);
6316 target_ldt_info->flags = tswap32(flags);
6317 unlock_user_struct(target_ldt_info, ptr, 1);
6318 return 0;
6319 }
6320 #endif /* TARGET_I386 && TARGET_ABI32 */
6321
6322 #ifndef TARGET_ABI32
6323 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6324 {
6325 abi_long ret = 0;
6326 abi_ulong val;
6327 int idx;
6328
6329 switch(code) {
6330 case TARGET_ARCH_SET_GS:
6331 case TARGET_ARCH_SET_FS:
6332 if (code == TARGET_ARCH_SET_GS)
6333 idx = R_GS;
6334 else
6335 idx = R_FS;
6336 cpu_x86_load_seg(env, idx, 0);
6337 env->segs[idx].base = addr;
6338 break;
6339 case TARGET_ARCH_GET_GS:
6340 case TARGET_ARCH_GET_FS:
6341 if (code == TARGET_ARCH_GET_GS)
6342 idx = R_GS;
6343 else
6344 idx = R_FS;
6345 val = env->segs[idx].base;
6346 if (put_user(val, addr, abi_ulong))
6347 ret = -TARGET_EFAULT;
6348 break;
6349 default:
6350 ret = -TARGET_EINVAL;
6351 break;
6352 }
6353 return ret;
6354 }
6355 #endif
6356
6357 #endif /* defined(TARGET_I386) */
6358
6359 #define NEW_STACK_SIZE 0x40000
6360
6361
6362 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6363 typedef struct {
6364 CPUArchState *env;
6365 pthread_mutex_t mutex;
6366 pthread_cond_t cond;
6367 pthread_t thread;
6368 uint32_t tid;
6369 abi_ulong child_tidptr;
6370 abi_ulong parent_tidptr;
6371 sigset_t sigmask;
6372 } new_thread_info;
6373
6374 static void *clone_func(void *arg)
6375 {
6376 new_thread_info *info = arg;
6377 CPUArchState *env;
6378 CPUState *cpu;
6379 TaskState *ts;
6380
6381 rcu_register_thread();
6382 tcg_register_thread();
6383 env = info->env;
6384 cpu = ENV_GET_CPU(env);
6385 thread_cpu = cpu;
6386 ts = (TaskState *)cpu->opaque;
6387 info->tid = gettid();
6388 task_settid(ts);
6389 if (info->child_tidptr)
6390 put_user_u32(info->tid, info->child_tidptr);
6391 if (info->parent_tidptr)
6392 put_user_u32(info->tid, info->parent_tidptr);
6393 /* Enable signals. */
6394 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6395 /* Signal to the parent that we're ready. */
6396 pthread_mutex_lock(&info->mutex);
6397 pthread_cond_broadcast(&info->cond);
6398 pthread_mutex_unlock(&info->mutex);
6399 /* Wait until the parent has finished initializing the tls state. */
6400 pthread_mutex_lock(&clone_lock);
6401 pthread_mutex_unlock(&clone_lock);
6402 cpu_loop(env);
6403 /* never exits */
6404 return NULL;
6405 }
6406
6407 /* do_fork() Must return host values and target errnos (unlike most
6408 do_*() functions). */
6409 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6410 abi_ulong parent_tidptr, target_ulong newtls,
6411 abi_ulong child_tidptr)
6412 {
6413 CPUState *cpu = ENV_GET_CPU(env);
6414 int ret;
6415 TaskState *ts;
6416 CPUState *new_cpu;
6417 CPUArchState *new_env;
6418 sigset_t sigmask;
6419
6420 flags &= ~CLONE_IGNORED_FLAGS;
6421
6422 /* Emulate vfork() with fork() */
6423 if (flags & CLONE_VFORK)
6424 flags &= ~(CLONE_VFORK | CLONE_VM);
6425
6426 if (flags & CLONE_VM) {
6427 TaskState *parent_ts = (TaskState *)cpu->opaque;
6428 new_thread_info info;
6429 pthread_attr_t attr;
6430
6431 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6432 (flags & CLONE_INVALID_THREAD_FLAGS)) {
6433 return -TARGET_EINVAL;
6434 }
6435
6436 ts = g_new0(TaskState, 1);
6437 init_task_state(ts);
6438
6439 /* Grab a mutex so that thread setup appears atomic. */
6440 pthread_mutex_lock(&clone_lock);
6441
6442 /* we create a new CPU instance. */
6443 new_env = cpu_copy(env);
6444 /* Init regs that differ from the parent. */
6445 cpu_clone_regs(new_env, newsp);
6446 new_cpu = ENV_GET_CPU(new_env);
6447 new_cpu->opaque = ts;
6448 ts->bprm = parent_ts->bprm;
6449 ts->info = parent_ts->info;
6450 ts->signal_mask = parent_ts->signal_mask;
6451
6452 if (flags & CLONE_CHILD_CLEARTID) {
6453 ts->child_tidptr = child_tidptr;
6454 }
6455
6456 if (flags & CLONE_SETTLS) {
6457 cpu_set_tls (new_env, newtls);
6458 }
6459
6460 memset(&info, 0, sizeof(info));
6461 pthread_mutex_init(&info.mutex, NULL);
6462 pthread_mutex_lock(&info.mutex);
6463 pthread_cond_init(&info.cond, NULL);
6464 info.env = new_env;
6465 if (flags & CLONE_CHILD_SETTID) {
6466 info.child_tidptr = child_tidptr;
6467 }
6468 if (flags & CLONE_PARENT_SETTID) {
6469 info.parent_tidptr = parent_tidptr;
6470 }
6471
6472 ret = pthread_attr_init(&attr);
6473 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6474 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6475 /* It is not safe to deliver signals until the child has finished
6476 initializing, so temporarily block all signals. */
6477 sigfillset(&sigmask);
6478 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6479
6480 /* If this is our first additional thread, we need to ensure we
6481 * generate code for parallel execution and flush old translations.
6482 */
6483 if (!parallel_cpus) {
6484 parallel_cpus = true;
6485 tb_flush(cpu);
6486 }
6487
6488 ret = pthread_create(&info.thread, &attr, clone_func, &info);
6489 /* TODO: Free new CPU state if thread creation failed. */
6490
6491 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6492 pthread_attr_destroy(&attr);
6493 if (ret == 0) {
6494 /* Wait for the child to initialize. */
6495 pthread_cond_wait(&info.cond, &info.mutex);
6496 ret = info.tid;
6497 } else {
6498 ret = -1;
6499 }
6500 pthread_mutex_unlock(&info.mutex);
6501 pthread_cond_destroy(&info.cond);
6502 pthread_mutex_destroy(&info.mutex);
6503 pthread_mutex_unlock(&clone_lock);
6504 } else {
6505 /* if no CLONE_VM, we consider it is a fork */
6506 if (flags & CLONE_INVALID_FORK_FLAGS) {
6507 return -TARGET_EINVAL;
6508 }
6509
6510 /* We can't support custom termination signals */
6511 if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6512 return -TARGET_EINVAL;
6513 }
6514
6515 if (block_signals()) {
6516 return -TARGET_ERESTARTSYS;
6517 }
6518
6519 fork_start();
6520 ret = fork();
6521 if (ret == 0) {
6522 /* Child Process. */
6523 cpu_clone_regs(env, newsp);
6524 fork_end(1);
6525 /* There is a race condition here. The parent process could
6526 theoretically read the TID in the child process before the child
6527 tid is set. This would require using either ptrace
6528 (not implemented) or having *_tidptr to point at a shared memory
6529 mapping. We can't repeat the spinlock hack used above because
6530 the child process gets its own copy of the lock. */
6531 if (flags & CLONE_CHILD_SETTID)
6532 put_user_u32(gettid(), child_tidptr);
6533 if (flags & CLONE_PARENT_SETTID)
6534 put_user_u32(gettid(), parent_tidptr);
6535 ts = (TaskState *)cpu->opaque;
6536 if (flags & CLONE_SETTLS)
6537 cpu_set_tls (env, newtls);
6538 if (flags & CLONE_CHILD_CLEARTID)
6539 ts->child_tidptr = child_tidptr;
6540 } else {
6541 fork_end(0);
6542 }
6543 }
6544 return ret;
6545 }
6546
6547 /* warning : doesn't handle linux specific flags... */
6548 static int target_to_host_fcntl_cmd(int cmd)
6549 {
6550 int ret;
6551
6552 switch(cmd) {
6553 case TARGET_F_DUPFD:
6554 case TARGET_F_GETFD:
6555 case TARGET_F_SETFD:
6556 case TARGET_F_GETFL:
6557 case TARGET_F_SETFL:
6558 ret = cmd;
6559 break;
6560 case TARGET_F_GETLK:
6561 ret = F_GETLK64;
6562 break;
6563 case TARGET_F_SETLK:
6564 ret = F_SETLK64;
6565 break;
6566 case TARGET_F_SETLKW:
6567 ret = F_SETLKW64;
6568 break;
6569 case TARGET_F_GETOWN:
6570 ret = F_GETOWN;
6571 break;
6572 case TARGET_F_SETOWN:
6573 ret = F_SETOWN;
6574 break;
6575 case TARGET_F_GETSIG:
6576 ret = F_GETSIG;
6577 break;
6578 case TARGET_F_SETSIG:
6579 ret = F_SETSIG;
6580 break;
6581 #if TARGET_ABI_BITS == 32
6582 case TARGET_F_GETLK64:
6583 ret = F_GETLK64;
6584 break;
6585 case TARGET_F_SETLK64:
6586 ret = F_SETLK64;
6587 break;
6588 case TARGET_F_SETLKW64:
6589 ret = F_SETLKW64;
6590 break;
6591 #endif
6592 case TARGET_F_SETLEASE:
6593 ret = F_SETLEASE;
6594 break;
6595 case TARGET_F_GETLEASE:
6596 ret = F_GETLEASE;
6597 break;
6598 #ifdef F_DUPFD_CLOEXEC
6599 case TARGET_F_DUPFD_CLOEXEC:
6600 ret = F_DUPFD_CLOEXEC;
6601 break;
6602 #endif
6603 case TARGET_F_NOTIFY:
6604 ret = F_NOTIFY;
6605 break;
6606 #ifdef F_GETOWN_EX
6607 case TARGET_F_GETOWN_EX:
6608 ret = F_GETOWN_EX;
6609 break;
6610 #endif
6611 #ifdef F_SETOWN_EX
6612 case TARGET_F_SETOWN_EX:
6613 ret = F_SETOWN_EX;
6614 break;
6615 #endif
6616 #ifdef F_SETPIPE_SZ
6617 case TARGET_F_SETPIPE_SZ:
6618 ret = F_SETPIPE_SZ;
6619 break;
6620 case TARGET_F_GETPIPE_SZ:
6621 ret = F_GETPIPE_SZ;
6622 break;
6623 #endif
6624 default:
6625 ret = -TARGET_EINVAL;
6626 break;
6627 }
6628
6629 #if defined(__powerpc64__)
6630 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6631 * is not supported by kernel. The glibc fcntl call actually adjusts
6632 * them to 5, 6 and 7 before making the syscall(). Since we make the
6633 * syscall directly, adjust to what is supported by the kernel.
6634 */
6635 if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6636 ret -= F_GETLK64 - 5;
6637 }
6638 #endif
6639
6640 return ret;
6641 }
6642
6643 #define FLOCK_TRANSTBL \
6644 switch (type) { \
6645 TRANSTBL_CONVERT(F_RDLCK); \
6646 TRANSTBL_CONVERT(F_WRLCK); \
6647 TRANSTBL_CONVERT(F_UNLCK); \
6648 TRANSTBL_CONVERT(F_EXLCK); \
6649 TRANSTBL_CONVERT(F_SHLCK); \
6650 }
6651
6652 static int target_to_host_flock(int type)
6653 {
6654 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6655 FLOCK_TRANSTBL
6656 #undef TRANSTBL_CONVERT
6657 return -TARGET_EINVAL;
6658 }
6659
6660 static int host_to_target_flock(int type)
6661 {
6662 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6663 FLOCK_TRANSTBL
6664 #undef TRANSTBL_CONVERT
6665 /* if we don't know how to convert the value coming
6666 * from the host we copy to the target field as-is
6667 */
6668 return type;
6669 }
6670
6671 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6672 abi_ulong target_flock_addr)
6673 {
6674 struct target_flock *target_fl;
6675 int l_type;
6676
6677 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6678 return -TARGET_EFAULT;
6679 }
6680
6681 __get_user(l_type, &target_fl->l_type);
6682 l_type = target_to_host_flock(l_type);
6683 if (l_type < 0) {
6684 return l_type;
6685 }
6686 fl->l_type = l_type;
6687 __get_user(fl->l_whence, &target_fl->l_whence);
6688 __get_user(fl->l_start, &target_fl->l_start);
6689 __get_user(fl->l_len, &target_fl->l_len);
6690 __get_user(fl->l_pid, &target_fl->l_pid);
6691 unlock_user_struct(target_fl, target_flock_addr, 0);
6692 return 0;
6693 }
6694
6695 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6696 const struct flock64 *fl)
6697 {
6698 struct target_flock *target_fl;
6699 short l_type;
6700
6701 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6702 return -TARGET_EFAULT;
6703 }
6704
6705 l_type = host_to_target_flock(fl->l_type);
6706 __put_user(l_type, &target_fl->l_type);
6707 __put_user(fl->l_whence, &target_fl->l_whence);
6708 __put_user(fl->l_start, &target_fl->l_start);
6709 __put_user(fl->l_len, &target_fl->l_len);
6710 __put_user(fl->l_pid, &target_fl->l_pid);
6711 unlock_user_struct(target_fl, target_flock_addr, 1);
6712 return 0;
6713 }
6714
6715 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6716 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6717
6718 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6719 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6720 abi_ulong target_flock_addr)
6721 {
6722 struct target_oabi_flock64 *target_fl;
6723 int l_type;
6724
6725 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6726 return -TARGET_EFAULT;
6727 }
6728
6729 __get_user(l_type, &target_fl->l_type);
6730 l_type = target_to_host_flock(l_type);
6731 if (l_type < 0) {
6732 return l_type;
6733 }
6734 fl->l_type = l_type;
6735 __get_user(fl->l_whence, &target_fl->l_whence);
6736 __get_user(fl->l_start, &target_fl->l_start);
6737 __get_user(fl->l_len, &target_fl->l_len);
6738 __get_user(fl->l_pid, &target_fl->l_pid);
6739 unlock_user_struct(target_fl, target_flock_addr, 0);
6740 return 0;
6741 }
6742
6743 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6744 const struct flock64 *fl)
6745 {
6746 struct target_oabi_flock64 *target_fl;
6747 short l_type;
6748
6749 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6750 return -TARGET_EFAULT;
6751 }
6752
6753 l_type = host_to_target_flock(fl->l_type);
6754 __put_user(l_type, &target_fl->l_type);
6755 __put_user(fl->l_whence, &target_fl->l_whence);
6756 __put_user(fl->l_start, &target_fl->l_start);
6757 __put_user(fl->l_len, &target_fl->l_len);
6758 __put_user(fl->l_pid, &target_fl->l_pid);
6759 unlock_user_struct(target_fl, target_flock_addr, 1);
6760 return 0;
6761 }
6762 #endif
6763
6764 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6765 abi_ulong target_flock_addr)
6766 {
6767 struct target_flock64 *target_fl;
6768 int l_type;
6769
6770 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6771 return -TARGET_EFAULT;
6772 }
6773
6774 __get_user(l_type, &target_fl->l_type);
6775 l_type = target_to_host_flock(l_type);
6776 if (l_type < 0) {
6777 return l_type;
6778 }
6779 fl->l_type = l_type;
6780 __get_user(fl->l_whence, &target_fl->l_whence);
6781 __get_user(fl->l_start, &target_fl->l_start);
6782 __get_user(fl->l_len, &target_fl->l_len);
6783 __get_user(fl->l_pid, &target_fl->l_pid);
6784 unlock_user_struct(target_fl, target_flock_addr, 0);
6785 return 0;
6786 }
6787
6788 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6789 const struct flock64 *fl)
6790 {
6791 struct target_flock64 *target_fl;
6792 short l_type;
6793
6794 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6795 return -TARGET_EFAULT;
6796 }
6797
6798 l_type = host_to_target_flock(fl->l_type);
6799 __put_user(l_type, &target_fl->l_type);
6800 __put_user(fl->l_whence, &target_fl->l_whence);
6801 __put_user(fl->l_start, &target_fl->l_start);
6802 __put_user(fl->l_len, &target_fl->l_len);
6803 __put_user(fl->l_pid, &target_fl->l_pid);
6804 unlock_user_struct(target_fl, target_flock_addr, 1);
6805 return 0;
6806 }
6807
6808 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6809 {
6810 struct flock64 fl64;
6811 #ifdef F_GETOWN_EX
6812 struct f_owner_ex fox;
6813 struct target_f_owner_ex *target_fox;
6814 #endif
6815 abi_long ret;
6816 int host_cmd = target_to_host_fcntl_cmd(cmd);
6817
6818 if (host_cmd == -TARGET_EINVAL)
6819 return host_cmd;
6820
6821 switch(cmd) {
6822 case TARGET_F_GETLK:
6823 ret = copy_from_user_flock(&fl64, arg);
6824 if (ret) {
6825 return ret;
6826 }
6827 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6828 if (ret == 0) {
6829 ret = copy_to_user_flock(arg, &fl64);
6830 }
6831 break;
6832
6833 case TARGET_F_SETLK:
6834 case TARGET_F_SETLKW:
6835 ret = copy_from_user_flock(&fl64, arg);
6836 if (ret) {
6837 return ret;
6838 }
6839 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6840 break;
6841
6842 case TARGET_F_GETLK64:
6843 ret = copy_from_user_flock64(&fl64, arg);
6844 if (ret) {
6845 return ret;
6846 }
6847 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6848 if (ret == 0) {
6849 ret = copy_to_user_flock64(arg, &fl64);
6850 }
6851 break;
6852 case TARGET_F_SETLK64:
6853 case TARGET_F_SETLKW64:
6854 ret = copy_from_user_flock64(&fl64, arg);
6855 if (ret) {
6856 return ret;
6857 }
6858 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6859 break;
6860
6861 case TARGET_F_GETFL:
6862 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6863 if (ret >= 0) {
6864 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
6865 }
6866 break;
6867
6868 case TARGET_F_SETFL:
6869 ret = get_errno(safe_fcntl(fd, host_cmd,
6870 target_to_host_bitmask(arg,
6871 fcntl_flags_tbl)));
6872 break;
6873
6874 #ifdef F_GETOWN_EX
6875 case TARGET_F_GETOWN_EX:
6876 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6877 if (ret >= 0) {
6878 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
6879 return -TARGET_EFAULT;
6880 target_fox->type = tswap32(fox.type);
6881 target_fox->pid = tswap32(fox.pid);
6882 unlock_user_struct(target_fox, arg, 1);
6883 }
6884 break;
6885 #endif
6886
6887 #ifdef F_SETOWN_EX
6888 case TARGET_F_SETOWN_EX:
6889 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
6890 return -TARGET_EFAULT;
6891 fox.type = tswap32(target_fox->type);
6892 fox.pid = tswap32(target_fox->pid);
6893 unlock_user_struct(target_fox, arg, 0);
6894 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6895 break;
6896 #endif
6897
6898 case TARGET_F_SETOWN:
6899 case TARGET_F_GETOWN:
6900 case TARGET_F_SETSIG:
6901 case TARGET_F_GETSIG:
6902 case TARGET_F_SETLEASE:
6903 case TARGET_F_GETLEASE:
6904 case TARGET_F_SETPIPE_SZ:
6905 case TARGET_F_GETPIPE_SZ:
6906 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6907 break;
6908
6909 default:
6910 ret = get_errno(safe_fcntl(fd, cmd, arg));
6911 break;
6912 }
6913 return ret;
6914 }
6915
6916 #ifdef USE_UID16
6917
6918 static inline int high2lowuid(int uid)
6919 {
6920 if (uid > 65535)
6921 return 65534;
6922 else
6923 return uid;
6924 }
6925
6926 static inline int high2lowgid(int gid)
6927 {
6928 if (gid > 65535)
6929 return 65534;
6930 else
6931 return gid;
6932 }
6933
6934 static inline int low2highuid(int uid)
6935 {
6936 if ((int16_t)uid == -1)
6937 return -1;
6938 else
6939 return uid;
6940 }
6941
6942 static inline int low2highgid(int gid)
6943 {
6944 if ((int16_t)gid == -1)
6945 return -1;
6946 else
6947 return gid;
6948 }
6949 static inline int tswapid(int id)
6950 {
6951 return tswap16(id);
6952 }
6953
6954 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6955
6956 #else /* !USE_UID16 */
6957 static inline int high2lowuid(int uid)
6958 {
6959 return uid;
6960 }
6961 static inline int high2lowgid(int gid)
6962 {
6963 return gid;
6964 }
6965 static inline int low2highuid(int uid)
6966 {
6967 return uid;
6968 }
6969 static inline int low2highgid(int gid)
6970 {
6971 return gid;
6972 }
6973 static inline int tswapid(int id)
6974 {
6975 return tswap32(id);
6976 }
6977
6978 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6979
6980 #endif /* USE_UID16 */
6981
6982 /* We must do direct syscalls for setting UID/GID, because we want to
6983 * implement the Linux system call semantics of "change only for this thread",
6984 * not the libc/POSIX semantics of "change for all threads in process".
6985 * (See http://ewontfix.com/17/ for more details.)
6986 * We use the 32-bit version of the syscalls if present; if it is not
6987 * then either the host architecture supports 32-bit UIDs natively with
6988 * the standard syscall, or the 16-bit UID is the best we can do.
6989 */
6990 #ifdef __NR_setuid32
6991 #define __NR_sys_setuid __NR_setuid32
6992 #else
6993 #define __NR_sys_setuid __NR_setuid
6994 #endif
6995 #ifdef __NR_setgid32
6996 #define __NR_sys_setgid __NR_setgid32
6997 #else
6998 #define __NR_sys_setgid __NR_setgid
6999 #endif
7000 #ifdef __NR_setresuid32
7001 #define __NR_sys_setresuid __NR_setresuid32
7002 #else
7003 #define __NR_sys_setresuid __NR_setresuid
7004 #endif
7005 #ifdef __NR_setresgid32
7006 #define __NR_sys_setresgid __NR_setresgid32
7007 #else
7008 #define __NR_sys_setresgid __NR_setresgid
7009 #endif
7010
7011 _syscall1(int, sys_setuid, uid_t, uid)
7012 _syscall1(int, sys_setgid, gid_t, gid)
7013 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7014 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7015
7016 void syscall_init(void)
7017 {
7018 IOCTLEntry *ie;
7019 const argtype *arg_type;
7020 int size;
7021 int i;
7022
7023 thunk_init(STRUCT_MAX);
7024
7025 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7026 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7027 #include "syscall_types.h"
7028 #undef STRUCT
7029 #undef STRUCT_SPECIAL
7030
7031 /* Build target_to_host_errno_table[] table from
7032 * host_to_target_errno_table[]. */
7033 for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
7034 target_to_host_errno_table[host_to_target_errno_table[i]] = i;
7035 }
7036
7037 /* we patch the ioctl size if necessary. We rely on the fact that
7038 no ioctl has all the bits at '1' in the size field */
7039 ie = ioctl_entries;
7040 while (ie->target_cmd != 0) {
7041 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7042 TARGET_IOC_SIZEMASK) {
7043 arg_type = ie->arg_type;
7044 if (arg_type[0] != TYPE_PTR) {
7045 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7046 ie->target_cmd);
7047 exit(1);
7048 }
7049 arg_type++;
7050 size = thunk_type_size(arg_type, 0);
7051 ie->target_cmd = (ie->target_cmd &
7052 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7053 (size << TARGET_IOC_SIZESHIFT);
7054 }
7055
7056 /* automatic consistency check if same arch */
7057 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7058 (defined(__x86_64__) && defined(TARGET_X86_64))
7059 if (unlikely(ie->target_cmd != ie->host_cmd)) {
7060 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7061 ie->name, ie->target_cmd, ie->host_cmd);
7062 }
7063 #endif
7064 ie++;
7065 }
7066 }
7067
7068 #if TARGET_ABI_BITS == 32
7069 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
7070 {
7071 #ifdef TARGET_WORDS_BIGENDIAN
7072 return ((uint64_t)word0 << 32) | word1;
7073 #else
7074 return ((uint64_t)word1 << 32) | word0;
7075 #endif
7076 }
7077 #else /* TARGET_ABI_BITS == 32 */
7078 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
7079 {
7080 return word0;
7081 }
7082 #endif /* TARGET_ABI_BITS != 32 */
7083
7084 #ifdef TARGET_NR_truncate64
7085 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
7086 abi_long arg2,
7087 abi_long arg3,
7088 abi_long arg4)
7089 {
7090 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7091 arg2 = arg3;
7092 arg3 = arg4;
7093 }
7094 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7095 }
7096 #endif
7097
7098 #ifdef TARGET_NR_ftruncate64
7099 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
7100 abi_long arg2,
7101 abi_long arg3,
7102 abi_long arg4)
7103 {
7104 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7105 arg2 = arg3;
7106 arg3 = arg4;
7107 }
7108 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7109 }
7110 #endif
7111
7112 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
7113 abi_ulong target_addr)
7114 {
7115 struct target_timespec *target_ts;
7116
7117 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1))
7118 return -TARGET_EFAULT;
7119 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
7120 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
7121 unlock_user_struct(target_ts, target_addr, 0);
7122 return 0;
7123 }
7124
7125 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
7126 struct timespec *host_ts)
7127 {
7128 struct target_timespec *target_ts;
7129
7130 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0))
7131 return -TARGET_EFAULT;
7132 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
7133 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
7134 unlock_user_struct(target_ts, target_addr, 1);
7135 return 0;
7136 }
7137
7138 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
7139 abi_ulong target_addr)
7140 {
7141 struct target_itimerspec *target_itspec;
7142
7143 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
7144 return -TARGET_EFAULT;
7145 }
7146
7147 host_itspec->it_interval.tv_sec =
7148 tswapal(target_itspec->it_interval.tv_sec);
7149 host_itspec->it_interval.tv_nsec =
7150 tswapal(target_itspec->it_interval.tv_nsec);
7151 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
7152 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
7153
7154 unlock_user_struct(target_itspec, target_addr, 1);
7155 return 0;
7156 }
7157
7158 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7159 struct itimerspec *host_its)
7160 {
7161 struct target_itimerspec *target_itspec;
7162
7163 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
7164 return -TARGET_EFAULT;
7165 }
7166
7167 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
7168 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
7169
7170 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
7171 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
7172
7173 unlock_user_struct(target_itspec, target_addr, 0);
7174 return 0;
7175 }
7176
7177 static inline abi_long target_to_host_timex(struct timex *host_tx,
7178 abi_long target_addr)
7179 {
7180 struct target_timex *target_tx;
7181
7182 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7183 return -TARGET_EFAULT;
7184 }
7185
7186 __get_user(host_tx->modes, &target_tx->modes);
7187 __get_user(host_tx->offset, &target_tx->offset);
7188 __get_user(host_tx->freq, &target_tx->freq);
7189 __get_user(host_tx->maxerror, &target_tx->maxerror);
7190 __get_user(host_tx->esterror, &target_tx->esterror);
7191 __get_user(host_tx->status, &target_tx->status);
7192 __get_user(host_tx->constant, &target_tx->constant);
7193 __get_user(host_tx->precision, &target_tx->precision);
7194 __get_user(host_tx->tolerance, &target_tx->tolerance);
7195 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7196 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7197 __get_user(host_tx->tick, &target_tx->tick);
7198 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7199 __get_user(host_tx->jitter, &target_tx->jitter);
7200 __get_user(host_tx->shift, &target_tx->shift);
7201 __get_user(host_tx->stabil, &target_tx->stabil);
7202 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7203 __get_user(host_tx->calcnt, &target_tx->calcnt);
7204 __get_user(host_tx->errcnt, &target_tx->errcnt);
7205 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7206 __get_user(host_tx->tai, &target_tx->tai);
7207
7208 unlock_user_struct(target_tx, target_addr, 0);
7209 return 0;
7210 }
7211
7212 static inline abi_long host_to_target_timex(abi_long target_addr,
7213 struct timex *host_tx)
7214 {
7215 struct target_timex *target_tx;
7216
7217 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7218 return -TARGET_EFAULT;
7219 }
7220
7221 __put_user(host_tx->modes, &target_tx->modes);
7222 __put_user(host_tx->offset, &target_tx->offset);
7223 __put_user(host_tx->freq, &target_tx->freq);
7224 __put_user(host_tx->maxerror, &target_tx->maxerror);
7225 __put_user(host_tx->esterror, &target_tx->esterror);
7226 __put_user(host_tx->status, &target_tx->status);
7227 __put_user(host_tx->constant, &target_tx->constant);
7228 __put_user(host_tx->precision, &target_tx->precision);
7229 __put_user(host_tx->tolerance, &target_tx->tolerance);
7230 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7231 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7232 __put_user(host_tx->tick, &target_tx->tick);
7233 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7234 __put_user(host_tx->jitter, &target_tx->jitter);
7235 __put_user(host_tx->shift, &target_tx->shift);
7236 __put_user(host_tx->stabil, &target_tx->stabil);
7237 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7238 __put_user(host_tx->calcnt, &target_tx->calcnt);
7239 __put_user(host_tx->errcnt, &target_tx->errcnt);
7240 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7241 __put_user(host_tx->tai, &target_tx->tai);
7242
7243 unlock_user_struct(target_tx, target_addr, 1);
7244 return 0;
7245 }
7246
7247
7248 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7249 abi_ulong target_addr)
7250 {
7251 struct target_sigevent *target_sevp;
7252
7253 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7254 return -TARGET_EFAULT;
7255 }
7256
7257 /* This union is awkward on 64 bit systems because it has a 32 bit
7258 * integer and a pointer in it; we follow the conversion approach
7259 * used for handling sigval types in signal.c so the guest should get
7260 * the correct value back even if we did a 64 bit byteswap and it's
7261 * using the 32 bit integer.
7262 */
7263 host_sevp->sigev_value.sival_ptr =
7264 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7265 host_sevp->sigev_signo =
7266 target_to_host_signal(tswap32(target_sevp->sigev_signo));
7267 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7268 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
7269
7270 unlock_user_struct(target_sevp, target_addr, 1);
7271 return 0;
7272 }
7273
7274 #if defined(TARGET_NR_mlockall)
7275 static inline int target_to_host_mlockall_arg(int arg)
7276 {
7277 int result = 0;
7278
7279 if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
7280 result |= MCL_CURRENT;
7281 }
7282 if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
7283 result |= MCL_FUTURE;
7284 }
7285 return result;
7286 }
7287 #endif
7288
7289 static inline abi_long host_to_target_stat64(void *cpu_env,
7290 abi_ulong target_addr,
7291 struct stat *host_st)
7292 {
7293 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7294 if (((CPUARMState *)cpu_env)->eabi) {
7295 struct target_eabi_stat64 *target_st;
7296
7297 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7298 return -TARGET_EFAULT;
7299 memset(target_st, 0, sizeof(struct target_eabi_stat64));
7300 __put_user(host_st->st_dev, &target_st->st_dev);
7301 __put_user(host_st->st_ino, &target_st->st_ino);
7302 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7303 __put_user(host_st->st_ino, &target_st->__st_ino);
7304 #endif
7305 __put_user(host_st->st_mode, &target_st->st_mode);
7306 __put_user(host_st->st_nlink, &target_st->st_nlink);
7307 __put_user(host_st->st_uid, &target_st->st_uid);
7308 __put_user(host_st->st_gid, &target_st->st_gid);
7309 __put_user(host_st->st_rdev, &target_st->st_rdev);
7310 __put_user(host_st->st_size, &target_st->st_size);
7311 __put_user(host_st->st_blksize, &target_st->st_blksize);
7312 __put_user(host_st->st_blocks, &target_st->st_blocks);
7313 __put_user(host_st->st_atime, &target_st->target_st_atime);
7314 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7315 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7316 unlock_user_struct(target_st, target_addr, 1);
7317 } else
7318 #endif
7319 {
7320 #if defined(TARGET_HAS_STRUCT_STAT64)
7321 struct target_stat64 *target_st;
7322 #else
7323 struct target_stat *target_st;
7324 #endif
7325
7326 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7327 return -TARGET_EFAULT;
7328 memset(target_st, 0, sizeof(*target_st));
7329 __put_user(host_st->st_dev, &target_st->st_dev);
7330 __put_user(host_st->st_ino, &target_st->st_ino);
7331 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7332 __put_user(host_st->st_ino, &target_st->__st_ino);
7333 #endif
7334 __put_user(host_st->st_mode, &target_st->st_mode);
7335 __put_user(host_st->st_nlink, &target_st->st_nlink);
7336 __put_user(host_st->st_uid, &target_st->st_uid);
7337 __put_user(host_st->st_gid, &target_st->st_gid);
7338 __put_user(host_st->st_rdev, &target_st->st_rdev);
7339 /* XXX: better use of kernel struct */
7340 __put_user(host_st->st_size, &target_st->st_size);
7341 __put_user(host_st->st_blksize, &target_st->st_blksize);
7342 __put_user(host_st->st_blocks, &target_st->st_blocks);
7343 __put_user(host_st->st_atime, &target_st->target_st_atime);
7344 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7345 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7346 unlock_user_struct(target_st, target_addr, 1);
7347 }
7348
7349 return 0;
7350 }
7351
7352 /* ??? Using host futex calls even when target atomic operations
7353 are not really atomic probably breaks things. However implementing
7354 futexes locally would make futexes shared between multiple processes
7355 tricky. However they're probably useless because guest atomic
7356 operations won't work either. */
7357 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
7358 target_ulong uaddr2, int val3)
7359 {
7360 struct timespec ts, *pts;
7361 int base_op;
7362
7363 /* ??? We assume FUTEX_* constants are the same on both host
7364 and target. */
7365 #ifdef FUTEX_CMD_MASK
7366 base_op = op & FUTEX_CMD_MASK;
7367 #else
7368 base_op = op;
7369 #endif
7370 switch (base_op) {
7371 case FUTEX_WAIT:
7372 case FUTEX_WAIT_BITSET:
7373 if (timeout) {
7374 pts = &ts;
7375 target_to_host_timespec(pts, timeout);
7376 } else {
7377 pts = NULL;
7378 }
7379 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val),
7380 pts, NULL, val3));
7381 case FUTEX_WAKE:
7382 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
7383 case FUTEX_FD:
7384 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
7385 case FUTEX_REQUEUE:
7386 case FUTEX_CMP_REQUEUE:
7387 case FUTEX_WAKE_OP:
7388 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7389 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7390 But the prototype takes a `struct timespec *'; insert casts
7391 to satisfy the compiler. We do not need to tswap TIMEOUT
7392 since it's not compared to guest memory. */
7393 pts = (struct timespec *)(uintptr_t) timeout;
7394 return get_errno(safe_futex(g2h(uaddr), op, val, pts,
7395 g2h(uaddr2),
7396 (base_op == FUTEX_CMP_REQUEUE
7397 ? tswap32(val3)
7398 : val3)));
7399 default:
7400 return -TARGET_ENOSYS;
7401 }
7402 }
7403 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7404 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7405 abi_long handle, abi_long mount_id,
7406 abi_long flags)
7407 {
7408 struct file_handle *target_fh;
7409 struct file_handle *fh;
7410 int mid = 0;
7411 abi_long ret;
7412 char *name;
7413 unsigned int size, total_size;
7414
7415 if (get_user_s32(size, handle)) {
7416 return -TARGET_EFAULT;
7417 }
7418
7419 name = lock_user_string(pathname);
7420 if (!name) {
7421 return -TARGET_EFAULT;
7422 }
7423
7424 total_size = sizeof(struct file_handle) + size;
7425 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7426 if (!target_fh) {
7427 unlock_user(name, pathname, 0);
7428 return -TARGET_EFAULT;
7429 }
7430
7431 fh = g_malloc0(total_size);
7432 fh->handle_bytes = size;
7433
7434 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7435 unlock_user(name, pathname, 0);
7436
7437 /* man name_to_handle_at(2):
7438 * Other than the use of the handle_bytes field, the caller should treat
7439 * the file_handle structure as an opaque data type
7440 */
7441
7442 memcpy(target_fh, fh, total_size);
7443 target_fh->handle_bytes = tswap32(fh->handle_bytes);
7444 target_fh->handle_type = tswap32(fh->handle_type);
7445 g_free(fh);
7446 unlock_user(target_fh, handle, total_size);
7447
7448 if (put_user_s32(mid, mount_id)) {
7449 return -TARGET_EFAULT;
7450 }
7451
7452 return ret;
7453
7454 }
7455 #endif
7456
7457 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7458 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7459 abi_long flags)
7460 {
7461 struct file_handle *target_fh;
7462 struct file_handle *fh;
7463 unsigned int size, total_size;
7464 abi_long ret;
7465
7466 if (get_user_s32(size, handle)) {
7467 return -TARGET_EFAULT;
7468 }
7469
7470 total_size = sizeof(struct file_handle) + size;
7471 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7472 if (!target_fh) {
7473 return -TARGET_EFAULT;
7474 }
7475
7476 fh = g_memdup(target_fh, total_size);
7477 fh->handle_bytes = size;
7478 fh->handle_type = tswap32(target_fh->handle_type);
7479
7480 ret = get_errno(open_by_handle_at(mount_fd, fh,
7481 target_to_host_bitmask(flags, fcntl_flags_tbl)));
7482
7483 g_free(fh);
7484
7485 unlock_user(target_fh, handle, total_size);
7486
7487 return ret;
7488 }
7489 #endif
7490
7491 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7492
7493 /* signalfd siginfo conversion */
7494
7495 static void
7496 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo,
7497 const struct signalfd_siginfo *info)
7498 {
7499 int sig = host_to_target_signal(info->ssi_signo);
7500
7501 /* linux/signalfd.h defines a ssi_addr_lsb
7502 * not defined in sys/signalfd.h but used by some kernels
7503 */
7504
7505 #ifdef BUS_MCEERR_AO
7506 if (tinfo->ssi_signo == SIGBUS &&
7507 (tinfo->ssi_code == BUS_MCEERR_AR ||
7508 tinfo->ssi_code == BUS_MCEERR_AO)) {
7509 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1);
7510 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1);
7511 *tssi_addr_lsb = tswap16(*ssi_addr_lsb);
7512 }
7513 #endif
7514
7515 tinfo->ssi_signo = tswap32(sig);
7516 tinfo->ssi_errno = tswap32(tinfo->ssi_errno);
7517 tinfo->ssi_code = tswap32(info->ssi_code);
7518 tinfo->ssi_pid = tswap32(info->ssi_pid);
7519 tinfo->ssi_uid = tswap32(info->ssi_uid);
7520 tinfo->ssi_fd = tswap32(info->ssi_fd);
7521 tinfo->ssi_tid = tswap32(info->ssi_tid);
7522 tinfo->ssi_band = tswap32(info->ssi_band);
7523 tinfo->ssi_overrun = tswap32(info->ssi_overrun);
7524 tinfo->ssi_trapno = tswap32(info->ssi_trapno);
7525 tinfo->ssi_status = tswap32(info->ssi_status);
7526 tinfo->ssi_int = tswap32(info->ssi_int);
7527 tinfo->ssi_ptr = tswap64(info->ssi_ptr);
7528 tinfo->ssi_utime = tswap64(info->ssi_utime);
7529 tinfo->ssi_stime = tswap64(info->ssi_stime);
7530 tinfo->ssi_addr = tswap64(info->ssi_addr);
7531 }
7532
7533 static abi_long host_to_target_data_signalfd(void *buf, size_t len)
7534 {
7535 int i;
7536
7537 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) {
7538 host_to_target_signalfd_siginfo(buf + i, buf + i);
7539 }
7540
7541 return len;
7542 }
7543
7544 static TargetFdTrans target_signalfd_trans = {
7545 .host_to_target_data = host_to_target_data_signalfd,
7546 };
7547
7548 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7549 {
7550 int host_flags;
7551 target_sigset_t *target_mask;
7552 sigset_t host_mask;
7553 abi_long ret;
7554
7555 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) {
7556 return -TARGET_EINVAL;
7557 }
7558 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7559 return -TARGET_EFAULT;
7560 }
7561
7562 target_to_host_sigset(&host_mask, target_mask);
7563
7564 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7565
7566 ret = get_errno(signalfd(fd, &host_mask, host_flags));
7567 if (ret >= 0) {
7568 fd_trans_register(ret, &target_signalfd_trans);
7569 }
7570
7571 unlock_user_struct(target_mask, mask, 0);
7572
7573 return ret;
7574 }
7575 #endif
7576
7577 /* Map host to target signal numbers for the wait family of syscalls.
7578 Assume all other status bits are the same. */
7579 int host_to_target_waitstatus(int status)
7580 {
7581 if (WIFSIGNALED(status)) {
7582 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7583 }
7584 if (WIFSTOPPED(status)) {
7585 return (host_to_target_signal(WSTOPSIG(status)) << 8)
7586 | (status & 0xff);
7587 }
7588 return status;
7589 }
7590
7591 static int open_self_cmdline(void *cpu_env, int fd)
7592 {
7593 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7594 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7595 int i;
7596
7597 for (i = 0; i < bprm->argc; i++) {
7598 size_t len = strlen(bprm->argv[i]) + 1;
7599
7600 if (write(fd, bprm->argv[i], len) != len) {
7601 return -1;
7602 }
7603 }
7604
7605 return 0;
7606 }
7607
7608 static int open_self_maps(void *cpu_env, int fd)
7609 {
7610 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7611 TaskState *ts = cpu->opaque;
7612 FILE *fp;
7613 char *line = NULL;
7614 size_t len = 0;
7615 ssize_t read;
7616
7617 fp = fopen("/proc/self/maps", "r");
7618 if (fp == NULL) {
7619 return -1;
7620 }
7621
7622 while ((read = getline(&line, &len, fp)) != -1) {
7623 int fields, dev_maj, dev_min, inode;
7624 uint64_t min, max, offset;
7625 char flag_r, flag_w, flag_x, flag_p;
7626 char path[512] = "";
7627 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d"
7628 " %512s", &min, &max, &flag_r, &flag_w, &flag_x,
7629 &flag_p, &offset, &dev_maj, &dev_min, &inode, path);
7630
7631 if ((fields < 10) || (fields > 11)) {
7632 continue;
7633 }
7634 if (h2g_valid(min)) {
7635 int flags = page_get_flags(h2g(min));
7636 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX) + 1;
7637 if (page_check_range(h2g(min), max - min, flags) == -1) {
7638 continue;
7639 }
7640 if (h2g(min) == ts->info->stack_limit) {
7641 pstrcpy(path, sizeof(path), " [stack]");
7642 }
7643 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx
7644 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n",
7645 h2g(min), h2g(max - 1) + 1, flag_r, flag_w,
7646 flag_x, flag_p, offset, dev_maj, dev_min, inode,
7647 path[0] ? " " : "", path);
7648 }
7649 }
7650
7651 free(line);
7652 fclose(fp);
7653
7654 return 0;
7655 }
7656
7657 static int open_self_stat(void *cpu_env, int fd)
7658 {
7659 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7660 TaskState *ts = cpu->opaque;
7661 abi_ulong start_stack = ts->info->start_stack;
7662 int i;
7663
7664 for (i = 0; i < 44; i++) {
7665 char buf[128];
7666 int len;
7667 uint64_t val = 0;
7668
7669 if (i == 0) {
7670 /* pid */
7671 val = getpid();
7672 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
7673 } else if (i == 1) {
7674 /* app name */
7675 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]);
7676 } else if (i == 27) {
7677 /* stack bottom */
7678 val = start_stack;
7679 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
7680 } else {
7681 /* for the rest, there is MasterCard */
7682 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' ');
7683 }
7684
7685 len = strlen(buf);
7686 if (write(fd, buf, len) != len) {
7687 return -1;
7688 }
7689 }
7690
7691 return 0;
7692 }
7693
7694 static int open_self_auxv(void *cpu_env, int fd)
7695 {
7696 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7697 TaskState *ts = cpu->opaque;
7698 abi_ulong auxv = ts->info->saved_auxv;
7699 abi_ulong len = ts->info->auxv_len;
7700 char *ptr;
7701
7702 /*
7703 * Auxiliary vector is stored in target process stack.
7704 * read in whole auxv vector and copy it to file
7705 */
7706 ptr = lock_user(VERIFY_READ, auxv, len, 0);
7707 if (ptr != NULL) {
7708 while (len > 0) {
7709 ssize_t r;
7710 r = write(fd, ptr, len);
7711 if (r <= 0) {
7712 break;
7713 }
7714 len -= r;
7715 ptr += r;
7716 }
7717 lseek(fd, 0, SEEK_SET);
7718 unlock_user(ptr, auxv, len);
7719 }
7720
7721 return 0;
7722 }
7723
7724 static int is_proc_myself(const char *filename, const char *entry)
7725 {
7726 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
7727 filename += strlen("/proc/");
7728 if (!strncmp(filename, "self/", strlen("self/"))) {
7729 filename += strlen("self/");
7730 } else if (*filename >= '1' && *filename <= '9') {
7731 char myself[80];
7732 snprintf(myself, sizeof(myself), "%d/", getpid());
7733 if (!strncmp(filename, myself, strlen(myself))) {
7734 filename += strlen(myself);
7735 } else {
7736 return 0;
7737 }
7738 } else {
7739 return 0;
7740 }
7741 if (!strcmp(filename, entry)) {
7742 return 1;
7743 }
7744 }
7745 return 0;
7746 }
7747
7748 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7749 static int is_proc(const char *filename, const char *entry)
7750 {
7751 return strcmp(filename, entry) == 0;
7752 }
7753
7754 static int open_net_route(void *cpu_env, int fd)
7755 {
7756 FILE *fp;
7757 char *line = NULL;
7758 size_t len = 0;
7759 ssize_t read;
7760
7761 fp = fopen("/proc/net/route", "r");
7762 if (fp == NULL) {
7763 return -1;
7764 }
7765
7766 /* read header */
7767
7768 read = getline(&line, &len, fp);
7769 dprintf(fd, "%s", line);
7770
7771 /* read routes */
7772
7773 while ((read = getline(&line, &len, fp)) != -1) {
7774 char iface[16];
7775 uint32_t dest, gw, mask;
7776 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
7777 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7778 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
7779 &mask, &mtu, &window, &irtt);
7780 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7781 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
7782 metric, tswap32(mask), mtu, window, irtt);
7783 }
7784
7785 free(line);
7786 fclose(fp);
7787
7788 return 0;
7789 }
7790 #endif
7791
7792 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
7793 {
7794 struct fake_open {
7795 const char *filename;
7796 int (*fill)(void *cpu_env, int fd);
7797 int (*cmp)(const char *s1, const char *s2);
7798 };
7799 const struct fake_open *fake_open;
7800 static const struct fake_open fakes[] = {
7801 { "maps", open_self_maps, is_proc_myself },
7802 { "stat", open_self_stat, is_proc_myself },
7803 { "auxv", open_self_auxv, is_proc_myself },
7804 { "cmdline", open_self_cmdline, is_proc_myself },
7805 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7806 { "/proc/net/route", open_net_route, is_proc },
7807 #endif
7808 { NULL, NULL, NULL }
7809 };
7810
7811 if (is_proc_myself(pathname, "exe")) {
7812 int execfd = qemu_getauxval(AT_EXECFD);
7813 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
7814 }
7815
7816 for (fake_open = fakes; fake_open->filename; fake_open++) {
7817 if (fake_open->cmp(pathname, fake_open->filename)) {
7818 break;
7819 }
7820 }
7821
7822 if (fake_open->filename) {
7823 const char *tmpdir;
7824 char filename[PATH_MAX];
7825 int fd, r;
7826
7827 /* create temporary file to map stat to */
7828 tmpdir = getenv("TMPDIR");
7829 if (!tmpdir)
7830 tmpdir = "/tmp";
7831 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
7832 fd = mkstemp(filename);
7833 if (fd < 0) {
7834 return fd;
7835 }
7836 unlink(filename);
7837
7838 if ((r = fake_open->fill(cpu_env, fd))) {
7839 int e = errno;
7840 close(fd);
7841 errno = e;
7842 return r;
7843 }
7844 lseek(fd, 0, SEEK_SET);
7845
7846 return fd;
7847 }
7848
7849 return safe_openat(dirfd, path(pathname), flags, mode);
7850 }
7851
7852 #define TIMER_MAGIC 0x0caf0000
7853 #define TIMER_MAGIC_MASK 0xffff0000
7854
7855 /* Convert QEMU provided timer ID back to internal 16bit index format */
7856 static target_timer_t get_timer_id(abi_long arg)
7857 {
7858 target_timer_t timerid = arg;
7859
7860 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
7861 return -TARGET_EINVAL;
7862 }
7863
7864 timerid &= 0xffff;
7865
7866 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
7867 return -TARGET_EINVAL;
7868 }
7869
7870 return timerid;
7871 }
7872
7873 static abi_long swap_data_eventfd(void *buf, size_t len)
7874 {
7875 uint64_t *counter = buf;
7876 int i;
7877
7878 if (len < sizeof(uint64_t)) {
7879 return -EINVAL;
7880 }
7881
7882 for (i = 0; i < len; i += sizeof(uint64_t)) {
7883 *counter = tswap64(*counter);
7884 counter++;
7885 }
7886
7887 return len;
7888 }
7889
7890 static TargetFdTrans target_eventfd_trans = {
7891 .host_to_target_data = swap_data_eventfd,
7892 .target_to_host_data = swap_data_eventfd,
7893 };
7894
7895 #if (defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)) || \
7896 (defined(CONFIG_INOTIFY1) && defined(TARGET_NR_inotify_init1) && \
7897 defined(__NR_inotify_init1))
7898 static abi_long host_to_target_data_inotify(void *buf, size_t len)
7899 {
7900 struct inotify_event *ev;
7901 int i;
7902 uint32_t name_len;
7903
7904 for (i = 0; i < len; i += sizeof(struct inotify_event) + name_len) {
7905 ev = (struct inotify_event *)((char *)buf + i);
7906 name_len = ev->len;
7907
7908 ev->wd = tswap32(ev->wd);
7909 ev->mask = tswap32(ev->mask);
7910 ev->cookie = tswap32(ev->cookie);
7911 ev->len = tswap32(name_len);
7912 }
7913
7914 return len;
7915 }
7916
7917 static TargetFdTrans target_inotify_trans = {
7918 .host_to_target_data = host_to_target_data_inotify,
7919 };
7920 #endif
7921
7922 static int target_to_host_cpu_mask(unsigned long *host_mask,
7923 size_t host_size,
7924 abi_ulong target_addr,
7925 size_t target_size)
7926 {
7927 unsigned target_bits = sizeof(abi_ulong) * 8;
7928 unsigned host_bits = sizeof(*host_mask) * 8;
7929 abi_ulong *target_mask;
7930 unsigned i, j;
7931
7932 assert(host_size >= target_size);
7933
7934 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
7935 if (!target_mask) {
7936 return -TARGET_EFAULT;
7937 }
7938 memset(host_mask, 0, host_size);
7939
7940 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7941 unsigned bit = i * target_bits;
7942 abi_ulong val;
7943
7944 __get_user(val, &target_mask[i]);
7945 for (j = 0; j < target_bits; j++, bit++) {
7946 if (val & (1UL << j)) {
7947 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
7948 }
7949 }
7950 }
7951
7952 unlock_user(target_mask, target_addr, 0);
7953 return 0;
7954 }
7955
7956 static int host_to_target_cpu_mask(const unsigned long *host_mask,
7957 size_t host_size,
7958 abi_ulong target_addr,
7959 size_t target_size)
7960 {
7961 unsigned target_bits = sizeof(abi_ulong) * 8;
7962 unsigned host_bits = sizeof(*host_mask) * 8;
7963 abi_ulong *target_mask;
7964 unsigned i, j;
7965
7966 assert(host_size >= target_size);
7967
7968 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
7969 if (!target_mask) {
7970 return -TARGET_EFAULT;
7971 }
7972
7973 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
7974 unsigned bit = i * target_bits;
7975 abi_ulong val = 0;
7976
7977 for (j = 0; j < target_bits; j++, bit++) {
7978 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
7979 val |= 1UL << j;
7980 }
7981 }
7982 __put_user(val, &target_mask[i]);
7983 }
7984
7985 unlock_user(target_mask, target_addr, target_size);
7986 return 0;
7987 }
7988
7989 /* do_syscall() should always have a single exit point at the end so
7990 that actions, such as logging of syscall results, can be performed.
7991 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
7992 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
7993 abi_long arg2, abi_long arg3, abi_long arg4,
7994 abi_long arg5, abi_long arg6, abi_long arg7,
7995 abi_long arg8)
7996 {
7997 CPUState *cpu = ENV_GET_CPU(cpu_env);
7998 abi_long ret;
7999 struct stat st;
8000 struct statfs stfs;
8001 void *p;
8002
8003 #if defined(DEBUG_ERESTARTSYS)
8004 /* Debug-only code for exercising the syscall-restart code paths
8005 * in the per-architecture cpu main loops: restart every syscall
8006 * the guest makes once before letting it through.
8007 */
8008 {
8009 static int flag;
8010
8011 flag = !flag;
8012 if (flag) {
8013 return -TARGET_ERESTARTSYS;
8014 }
8015 }
8016 #endif
8017
8018 #ifdef DEBUG
8019 gemu_log("syscall %d", num);
8020 #endif
8021 trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
8022 if(do_strace)
8023 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
8024
8025 switch(num) {
8026 case TARGET_NR_exit:
8027 /* In old applications this may be used to implement _exit(2).
8028 However in threaded applictions it is used for thread termination,
8029 and _exit_group is used for application termination.
8030 Do thread termination if we have more then one thread. */
8031
8032 if (block_signals()) {
8033 ret = -TARGET_ERESTARTSYS;
8034 break;
8035 }
8036
8037 cpu_list_lock();
8038
8039 if (CPU_NEXT(first_cpu)) {
8040 TaskState *ts;
8041
8042 /* Remove the CPU from the list. */
8043 QTAILQ_REMOVE(&cpus, cpu, node);
8044
8045 cpu_list_unlock();
8046
8047 ts = cpu->opaque;
8048 if (ts->child_tidptr) {
8049 put_user_u32(0, ts->child_tidptr);
8050 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
8051 NULL, NULL, 0);
8052 }
8053 thread_cpu = NULL;
8054 object_unref(OBJECT(cpu));
8055 g_free(ts);
8056 rcu_unregister_thread();
8057 pthread_exit(NULL);
8058 }
8059
8060 cpu_list_unlock();
8061 preexit_cleanup(cpu_env, arg1);
8062 _exit(arg1);
8063 ret = 0; /* avoid warning */
8064 break;
8065 case TARGET_NR_read:
8066 if (arg3 == 0)
8067 ret = 0;
8068 else {
8069 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
8070 goto efault;
8071 ret = get_errno(safe_read(arg1, p, arg3));
8072 if (ret >= 0 &&
8073 fd_trans_host_to_target_data(arg1)) {
8074 ret = fd_trans_host_to_target_data(arg1)(p, ret);
8075 }
8076 unlock_user(p, arg2, ret);
8077 }
8078 break;
8079 case TARGET_NR_write:
8080 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
8081 goto efault;
8082 if (fd_trans_target_to_host_data(arg1)) {
8083 void *copy = g_malloc(arg3);
8084 memcpy(copy, p, arg3);
8085 ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
8086 if (ret >= 0) {
8087 ret = get_errno(safe_write(arg1, copy, ret));
8088 }
8089 g_free(copy);
8090 } else {
8091 ret = get_errno(safe_write(arg1, p, arg3));
8092 }
8093 unlock_user(p, arg2, 0);
8094 break;
8095 #ifdef TARGET_NR_open
8096 case TARGET_NR_open:
8097 if (!(p = lock_user_string(arg1)))
8098 goto efault;
8099 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
8100 target_to_host_bitmask(arg2, fcntl_flags_tbl),
8101 arg3));
8102 fd_trans_unregister(ret);
8103 unlock_user(p, arg1, 0);
8104 break;
8105 #endif
8106 case TARGET_NR_openat:
8107 if (!(p = lock_user_string(arg2)))
8108 goto efault;
8109 ret = get_errno(do_openat(cpu_env, arg1, p,
8110 target_to_host_bitmask(arg3, fcntl_flags_tbl),
8111 arg4));
8112 fd_trans_unregister(ret);
8113 unlock_user(p, arg2, 0);
8114 break;
8115 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8116 case TARGET_NR_name_to_handle_at:
8117 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
8118 break;
8119 #endif
8120 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8121 case TARGET_NR_open_by_handle_at:
8122 ret = do_open_by_handle_at(arg1, arg2, arg3);
8123 fd_trans_unregister(ret);
8124 break;
8125 #endif
8126 case TARGET_NR_close:
8127 fd_trans_unregister(arg1);
8128 ret = get_errno(close(arg1));
8129 break;
8130 case TARGET_NR_brk:
8131 ret = do_brk(arg1);
8132 break;
8133 #ifdef TARGET_NR_fork
8134 case TARGET_NR_fork:
8135 ret = get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
8136 break;
8137 #endif
8138 #ifdef TARGET_NR_waitpid
8139 case TARGET_NR_waitpid:
8140 {
8141 int status;
8142 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
8143 if (!is_error(ret) && arg2 && ret
8144 && put_user_s32(host_to_target_waitstatus(status), arg2))
8145 goto efault;
8146 }
8147 break;
8148 #endif
8149 #ifdef TARGET_NR_waitid
8150 case TARGET_NR_waitid:
8151 {
8152 siginfo_t info;
8153 info.si_pid = 0;
8154 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
8155 if (!is_error(ret) && arg3 && info.si_pid != 0) {
8156 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
8157 goto efault;
8158 host_to_target_siginfo(p, &info);
8159 unlock_user(p, arg3, sizeof(target_siginfo_t));
8160 }
8161 }
8162 break;
8163 #endif
8164 #ifdef TARGET_NR_creat /* not on alpha */
8165 case TARGET_NR_creat:
8166 if (!(p = lock_user_string(arg1)))
8167 goto efault;
8168 ret = get_errno(creat(p, arg2));
8169 fd_trans_unregister(ret);
8170 unlock_user(p, arg1, 0);
8171 break;
8172 #endif
8173 #ifdef TARGET_NR_link
8174 case TARGET_NR_link:
8175 {
8176 void * p2;
8177 p = lock_user_string(arg1);
8178 p2 = lock_user_string(arg2);
8179 if (!p || !p2)
8180 ret = -TARGET_EFAULT;
8181 else
8182 ret = get_errno(link(p, p2));
8183 unlock_user(p2, arg2, 0);
8184 unlock_user(p, arg1, 0);
8185 }
8186 break;
8187 #endif
8188 #if defined(TARGET_NR_linkat)
8189 case TARGET_NR_linkat:
8190 {
8191 void * p2 = NULL;
8192 if (!arg2 || !arg4)
8193 goto efault;
8194 p = lock_user_string(arg2);
8195 p2 = lock_user_string(arg4);
8196 if (!p || !p2)
8197 ret = -TARGET_EFAULT;
8198 else
8199 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
8200 unlock_user(p, arg2, 0);
8201 unlock_user(p2, arg4, 0);
8202 }
8203 break;
8204 #endif
8205 #ifdef TARGET_NR_unlink
8206 case TARGET_NR_unlink:
8207 if (!(p = lock_user_string(arg1)))
8208 goto efault;
8209 ret = get_errno(unlink(p));
8210 unlock_user(p, arg1, 0);
8211 break;
8212 #endif
8213 #if defined(TARGET_NR_unlinkat)
8214 case TARGET_NR_unlinkat:
8215 if (!(p = lock_user_string(arg2)))
8216 goto efault;
8217 ret = get_errno(unlinkat(arg1, p, arg3));
8218 unlock_user(p, arg2, 0);
8219 break;
8220 #endif
8221 case TARGET_NR_execve:
8222 {
8223 char **argp, **envp;
8224 int argc, envc;
8225 abi_ulong gp;
8226 abi_ulong guest_argp;
8227 abi_ulong guest_envp;
8228 abi_ulong addr;
8229 char **q;
8230 int total_size = 0;
8231
8232 argc = 0;
8233 guest_argp = arg2;
8234 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8235 if (get_user_ual(addr, gp))
8236 goto efault;
8237 if (!addr)
8238 break;
8239 argc++;
8240 }
8241 envc = 0;
8242 guest_envp = arg3;
8243 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8244 if (get_user_ual(addr, gp))
8245 goto efault;
8246 if (!addr)
8247 break;
8248 envc++;
8249 }
8250
8251 argp = g_new0(char *, argc + 1);
8252 envp = g_new0(char *, envc + 1);
8253
8254 for (gp = guest_argp, q = argp; gp;
8255 gp += sizeof(abi_ulong), q++) {
8256 if (get_user_ual(addr, gp))
8257 goto execve_efault;
8258 if (!addr)
8259 break;
8260 if (!(*q = lock_user_string(addr)))
8261 goto execve_efault;
8262 total_size += strlen(*q) + 1;
8263 }
8264 *q = NULL;
8265
8266 for (gp = guest_envp, q = envp; gp;
8267 gp += sizeof(abi_ulong), q++) {
8268 if (get_user_ual(addr, gp))
8269 goto execve_efault;
8270 if (!addr)
8271 break;
8272 if (!(*q = lock_user_string(addr)))
8273 goto execve_efault;
8274 total_size += strlen(*q) + 1;
8275 }
8276 *q = NULL;
8277
8278 if (!(p = lock_user_string(arg1)))
8279 goto execve_efault;
8280 /* Although execve() is not an interruptible syscall it is
8281 * a special case where we must use the safe_syscall wrapper:
8282 * if we allow a signal to happen before we make the host
8283 * syscall then we will 'lose' it, because at the point of
8284 * execve the process leaves QEMU's control. So we use the
8285 * safe syscall wrapper to ensure that we either take the
8286 * signal as a guest signal, or else it does not happen
8287 * before the execve completes and makes it the other
8288 * program's problem.
8289 */
8290 ret = get_errno(safe_execve(p, argp, envp));
8291 unlock_user(p, arg1, 0);
8292
8293 goto execve_end;
8294
8295 execve_efault:
8296 ret = -TARGET_EFAULT;
8297
8298 execve_end:
8299 for (gp = guest_argp, q = argp; *q;
8300 gp += sizeof(abi_ulong), q++) {
8301 if (get_user_ual(addr, gp)
8302 || !addr)
8303 break;
8304 unlock_user(*q, addr, 0);
8305 }
8306 for (gp = guest_envp, q = envp; *q;
8307 gp += sizeof(abi_ulong), q++) {
8308 if (get_user_ual(addr, gp)
8309 || !addr)
8310 break;
8311 unlock_user(*q, addr, 0);
8312 }
8313
8314 g_free(argp);
8315 g_free(envp);
8316 }
8317 break;
8318 case TARGET_NR_chdir:
8319 if (!(p = lock_user_string(arg1)))
8320 goto efault;
8321 ret = get_errno(chdir(p));
8322 unlock_user(p, arg1, 0);
8323 break;
8324 #ifdef TARGET_NR_time
8325 case TARGET_NR_time:
8326 {
8327 time_t host_time;
8328 ret = get_errno(time(&host_time));
8329 if (!is_error(ret)
8330 && arg1
8331 && put_user_sal(host_time, arg1))
8332 goto efault;
8333 }
8334 break;
8335 #endif
8336 #ifdef TARGET_NR_mknod
8337 case TARGET_NR_mknod:
8338 if (!(p = lock_user_string(arg1)))
8339 goto efault;
8340 ret = get_errno(mknod(p, arg2, arg3));
8341 unlock_user(p, arg1, 0);
8342 break;
8343 #endif
8344 #if defined(TARGET_NR_mknodat)
8345 case TARGET_NR_mknodat:
8346 if (!(p = lock_user_string(arg2)))
8347 goto efault;
8348 ret = get_errno(mknodat(arg1, p, arg3, arg4));
8349 unlock_user(p, arg2, 0);
8350 break;
8351 #endif
8352 #ifdef TARGET_NR_chmod
8353 case TARGET_NR_chmod:
8354 if (!(p = lock_user_string(arg1)))
8355 goto efault;
8356 ret = get_errno(chmod(p, arg2));
8357 unlock_user(p, arg1, 0);
8358 break;
8359 #endif
8360 #ifdef TARGET_NR_break
8361 case TARGET_NR_break:
8362 goto unimplemented;
8363 #endif
8364 #ifdef TARGET_NR_oldstat
8365 case TARGET_NR_oldstat:
8366 goto unimplemented;
8367 #endif
8368 case TARGET_NR_lseek:
8369 ret = get_errno(lseek(arg1, arg2, arg3));
8370 break;
8371 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8372 /* Alpha specific */
8373 case TARGET_NR_getxpid:
8374 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
8375 ret = get_errno(getpid());
8376 break;
8377 #endif
8378 #ifdef TARGET_NR_getpid
8379 case TARGET_NR_getpid:
8380 ret = get_errno(getpid());
8381 break;
8382 #endif
8383 case TARGET_NR_mount:
8384 {
8385 /* need to look at the data field */
8386 void *p2, *p3;
8387
8388 if (arg1) {
8389 p = lock_user_string(arg1);
8390 if (!p) {
8391 goto efault;
8392 }
8393 } else {
8394 p = NULL;
8395 }
8396
8397 p2 = lock_user_string(arg2);
8398 if (!p2) {
8399 if (arg1) {
8400 unlock_user(p, arg1, 0);
8401 }
8402 goto efault;
8403 }
8404
8405 if (arg3) {
8406 p3 = lock_user_string(arg3);
8407 if (!p3) {
8408 if (arg1) {
8409 unlock_user(p, arg1, 0);
8410 }
8411 unlock_user(p2, arg2, 0);
8412 goto efault;
8413 }
8414 } else {
8415 p3 = NULL;
8416 }
8417
8418 /* FIXME - arg5 should be locked, but it isn't clear how to
8419 * do that since it's not guaranteed to be a NULL-terminated
8420 * string.
8421 */
8422 if (!arg5) {
8423 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8424 } else {
8425 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
8426 }
8427 ret = get_errno(ret);
8428
8429 if (arg1) {
8430 unlock_user(p, arg1, 0);
8431 }
8432 unlock_user(p2, arg2, 0);
8433 if (arg3) {
8434 unlock_user(p3, arg3, 0);
8435 }
8436 }
8437 break;
8438 #ifdef TARGET_NR_umount
8439 case TARGET_NR_umount:
8440 if (!(p = lock_user_string(arg1)))
8441 goto efault;
8442 ret = get_errno(umount(p));
8443 unlock_user(p, arg1, 0);
8444 break;
8445 #endif
8446 #ifdef TARGET_NR_stime /* not on alpha */
8447 case TARGET_NR_stime:
8448 {
8449 time_t host_time;
8450 if (get_user_sal(host_time, arg1))
8451 goto efault;
8452 ret = get_errno(stime(&host_time));
8453 }
8454 break;
8455 #endif
8456 case TARGET_NR_ptrace:
8457 goto unimplemented;
8458 #ifdef TARGET_NR_alarm /* not on alpha */
8459 case TARGET_NR_alarm:
8460 ret = alarm(arg1);
8461 break;
8462 #endif
8463 #ifdef TARGET_NR_oldfstat
8464 case TARGET_NR_oldfstat:
8465 goto unimplemented;
8466 #endif
8467 #ifdef TARGET_NR_pause /* not on alpha */
8468 case TARGET_NR_pause:
8469 if (!block_signals()) {
8470 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
8471 }
8472 ret = -TARGET_EINTR;
8473 break;
8474 #endif
8475 #ifdef TARGET_NR_utime
8476 case TARGET_NR_utime:
8477 {
8478 struct utimbuf tbuf, *host_tbuf;
8479 struct target_utimbuf *target_tbuf;
8480 if (arg2) {
8481 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
8482 goto efault;
8483 tbuf.actime = tswapal(target_tbuf->actime);
8484 tbuf.modtime = tswapal(target_tbuf->modtime);
8485 unlock_user_struct(target_tbuf, arg2, 0);
8486 host_tbuf = &tbuf;
8487 } else {
8488 host_tbuf = NULL;
8489 }
8490 if (!(p = lock_user_string(arg1)))
8491 goto efault;
8492 ret = get_errno(utime(p, host_tbuf));
8493 unlock_user(p, arg1, 0);
8494 }
8495 break;
8496 #endif
8497 #ifdef TARGET_NR_utimes
8498 case TARGET_NR_utimes:
8499 {
8500 struct timeval *tvp, tv[2];
8501 if (arg2) {
8502 if (copy_from_user_timeval(&tv[0], arg2)
8503 || copy_from_user_timeval(&tv[1],
8504 arg2 + sizeof(struct target_timeval)))
8505 goto efault;
8506 tvp = tv;
8507 } else {
8508 tvp = NULL;
8509 }
8510 if (!(p = lock_user_string(arg1)))
8511 goto efault;
8512 ret = get_errno(utimes(p, tvp));
8513 unlock_user(p, arg1, 0);
8514 }
8515 break;
8516 #endif
8517 #if defined(TARGET_NR_futimesat)
8518 case TARGET_NR_futimesat:
8519 {
8520 struct timeval *tvp, tv[2];
8521 if (arg3) {
8522 if (copy_from_user_timeval(&tv[0], arg3)
8523 || copy_from_user_timeval(&tv[1],
8524 arg3 + sizeof(struct target_timeval)))
8525 goto efault;
8526 tvp = tv;
8527 } else {
8528 tvp = NULL;
8529 }
8530 if (!(p = lock_user_string(arg2)))
8531 goto efault;
8532 ret = get_errno(futimesat(arg1, path(p), tvp));
8533 unlock_user(p, arg2, 0);
8534 }
8535 break;
8536 #endif
8537 #ifdef TARGET_NR_stty
8538 case TARGET_NR_stty:
8539 goto unimplemented;
8540 #endif
8541 #ifdef TARGET_NR_gtty
8542 case TARGET_NR_gtty:
8543 goto unimplemented;
8544 #endif
8545 #ifdef TARGET_NR_access
8546 case TARGET_NR_access:
8547 if (!(p = lock_user_string(arg1)))
8548 goto efault;
8549 ret = get_errno(access(path(p), arg2));
8550 unlock_user(p, arg1, 0);
8551 break;
8552 #endif
8553 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8554 case TARGET_NR_faccessat:
8555 if (!(p = lock_user_string(arg2)))
8556 goto efault;
8557 ret = get_errno(faccessat(arg1, p, arg3, 0));
8558 unlock_user(p, arg2, 0);
8559 break;
8560 #endif
8561 #ifdef TARGET_NR_nice /* not on alpha */
8562 case TARGET_NR_nice:
8563 ret = get_errno(nice(arg1));
8564 break;
8565 #endif
8566 #ifdef TARGET_NR_ftime
8567 case TARGET_NR_ftime:
8568 goto unimplemented;
8569 #endif
8570 case TARGET_NR_sync:
8571 sync();
8572 ret = 0;
8573 break;
8574 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8575 case TARGET_NR_syncfs:
8576 ret = get_errno(syncfs(arg1));
8577 break;
8578 #endif
8579 case TARGET_NR_kill:
8580 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
8581 break;
8582 #ifdef TARGET_NR_rename
8583 case TARGET_NR_rename:
8584 {
8585 void *p2;
8586 p = lock_user_string(arg1);
8587 p2 = lock_user_string(arg2);
8588 if (!p || !p2)
8589 ret = -TARGET_EFAULT;
8590 else
8591 ret = get_errno(rename(p, p2));
8592 unlock_user(p2, arg2, 0);
8593 unlock_user(p, arg1, 0);
8594 }
8595 break;
8596 #endif
8597 #if defined(TARGET_NR_renameat)
8598 case TARGET_NR_renameat:
8599 {
8600 void *p2;
8601 p = lock_user_string(arg2);
8602 p2 = lock_user_string(arg4);
8603 if (!p || !p2)
8604 ret = -TARGET_EFAULT;
8605 else
8606 ret = get_errno(renameat(arg1, p, arg3, p2));
8607 unlock_user(p2, arg4, 0);
8608 unlock_user(p, arg2, 0);
8609 }
8610 break;
8611 #endif
8612 #if defined(TARGET_NR_renameat2)
8613 case TARGET_NR_renameat2:
8614 {
8615 void *p2;
8616 p = lock_user_string(arg2);
8617 p2 = lock_user_string(arg4);
8618 if (!p || !p2) {
8619 ret = -TARGET_EFAULT;
8620 } else {
8621 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
8622 }
8623 unlock_user(p2, arg4, 0);
8624 unlock_user(p, arg2, 0);
8625 }
8626 break;
8627 #endif
8628 #ifdef TARGET_NR_mkdir
8629 case TARGET_NR_mkdir:
8630 if (!(p = lock_user_string(arg1)))
8631 goto efault;
8632 ret = get_errno(mkdir(p, arg2));
8633 unlock_user(p, arg1, 0);
8634 break;
8635 #endif
8636 #if defined(TARGET_NR_mkdirat)
8637 case TARGET_NR_mkdirat:
8638 if (!(p = lock_user_string(arg2)))
8639 goto efault;
8640 ret = get_errno(mkdirat(arg1, p, arg3));
8641 unlock_user(p, arg2, 0);
8642 break;
8643 #endif
8644 #ifdef TARGET_NR_rmdir
8645 case TARGET_NR_rmdir:
8646 if (!(p = lock_user_string(arg1)))
8647 goto efault;
8648 ret = get_errno(rmdir(p));
8649 unlock_user(p, arg1, 0);
8650 break;
8651 #endif
8652 case TARGET_NR_dup:
8653 ret = get_errno(dup(arg1));
8654 if (ret >= 0) {
8655 fd_trans_dup(arg1, ret);
8656 }
8657 break;
8658 #ifdef TARGET_NR_pipe
8659 case TARGET_NR_pipe:
8660 ret = do_pipe(cpu_env, arg1, 0, 0);
8661 break;
8662 #endif
8663 #ifdef TARGET_NR_pipe2
8664 case TARGET_NR_pipe2:
8665 ret = do_pipe(cpu_env, arg1,
8666 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
8667 break;
8668 #endif
8669 case TARGET_NR_times:
8670 {
8671 struct target_tms *tmsp;
8672 struct tms tms;
8673 ret = get_errno(times(&tms));
8674 if (arg1) {
8675 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
8676 if (!tmsp)
8677 goto efault;
8678 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
8679 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
8680 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
8681 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
8682 }
8683 if (!is_error(ret))
8684 ret = host_to_target_clock_t(ret);
8685 }
8686 break;
8687 #ifdef TARGET_NR_prof
8688 case TARGET_NR_prof:
8689 goto unimplemented;
8690 #endif
8691 #ifdef TARGET_NR_signal
8692 case TARGET_NR_signal:
8693 goto unimplemented;
8694 #endif
8695 case TARGET_NR_acct:
8696 if (arg1 == 0) {
8697 ret = get_errno(acct(NULL));
8698 } else {
8699 if (!(p = lock_user_string(arg1)))
8700 goto efault;
8701 ret = get_errno(acct(path(p)));
8702 unlock_user(p, arg1, 0);
8703 }
8704 break;
8705 #ifdef TARGET_NR_umount2
8706 case TARGET_NR_umount2:
8707 if (!(p = lock_user_string(arg1)))
8708 goto efault;
8709 ret = get_errno(umount2(p, arg2));
8710 unlock_user(p, arg1, 0);
8711 break;
8712 #endif
8713 #ifdef TARGET_NR_lock
8714 case TARGET_NR_lock:
8715 goto unimplemented;
8716 #endif
8717 case TARGET_NR_ioctl:
8718 ret = do_ioctl(arg1, arg2, arg3);
8719 break;
8720 #ifdef TARGET_NR_fcntl
8721 case TARGET_NR_fcntl:
8722 ret = do_fcntl(arg1, arg2, arg3);
8723 break;
8724 #endif
8725 #ifdef TARGET_NR_mpx
8726 case TARGET_NR_mpx:
8727 goto unimplemented;
8728 #endif
8729 case TARGET_NR_setpgid:
8730 ret = get_errno(setpgid(arg1, arg2));
8731 break;
8732 #ifdef TARGET_NR_ulimit
8733 case TARGET_NR_ulimit:
8734 goto unimplemented;
8735 #endif
8736 #ifdef TARGET_NR_oldolduname
8737 case TARGET_NR_oldolduname:
8738 goto unimplemented;
8739 #endif
8740 case TARGET_NR_umask:
8741 ret = get_errno(umask(arg1));
8742 break;
8743 case TARGET_NR_chroot:
8744 if (!(p = lock_user_string(arg1)))
8745 goto efault;
8746 ret = get_errno(chroot(p));
8747 unlock_user(p, arg1, 0);
8748 break;
8749 #ifdef TARGET_NR_ustat
8750 case TARGET_NR_ustat:
8751 goto unimplemented;
8752 #endif
8753 #ifdef TARGET_NR_dup2
8754 case TARGET_NR_dup2:
8755 ret = get_errno(dup2(arg1, arg2));
8756 if (ret >= 0) {
8757 fd_trans_dup(arg1, arg2);
8758 }
8759 break;
8760 #endif
8761 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8762 case TARGET_NR_dup3:
8763 {
8764 int host_flags;
8765
8766 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
8767 return -EINVAL;
8768 }
8769 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
8770 ret = get_errno(dup3(arg1, arg2, host_flags));
8771 if (ret >= 0) {
8772 fd_trans_dup(arg1, arg2);
8773 }
8774 break;
8775 }
8776 #endif
8777 #ifdef TARGET_NR_getppid /* not on alpha */
8778 case TARGET_NR_getppid:
8779 ret = get_errno(getppid());
8780 break;
8781 #endif
8782 #ifdef TARGET_NR_getpgrp
8783 case TARGET_NR_getpgrp:
8784 ret = get_errno(getpgrp());
8785 break;
8786 #endif
8787 case TARGET_NR_setsid:
8788 ret = get_errno(setsid());
8789 break;
8790 #ifdef TARGET_NR_sigaction
8791 case TARGET_NR_sigaction:
8792 {
8793 #if defined(TARGET_ALPHA)
8794 struct target_sigaction act, oact, *pact = 0;
8795 struct target_old_sigaction *old_act;
8796 if (arg2) {
8797 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8798 goto efault;
8799 act._sa_handler = old_act->_sa_handler;
8800 target_siginitset(&act.sa_mask, old_act->sa_mask);
8801 act.sa_flags = old_act->sa_flags;
8802 act.sa_restorer = 0;
8803 unlock_user_struct(old_act, arg2, 0);
8804 pact = &act;
8805 }
8806 ret = get_errno(do_sigaction(arg1, pact, &oact));
8807 if (!is_error(ret) && arg3) {
8808 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8809 goto efault;
8810 old_act->_sa_handler = oact._sa_handler;
8811 old_act->sa_mask = oact.sa_mask.sig[0];
8812 old_act->sa_flags = oact.sa_flags;
8813 unlock_user_struct(old_act, arg3, 1);
8814 }
8815 #elif defined(TARGET_MIPS)
8816 struct target_sigaction act, oact, *pact, *old_act;
8817
8818 if (arg2) {
8819 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8820 goto efault;
8821 act._sa_handler = old_act->_sa_handler;
8822 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
8823 act.sa_flags = old_act->sa_flags;
8824 unlock_user_struct(old_act, arg2, 0);
8825 pact = &act;
8826 } else {
8827 pact = NULL;
8828 }
8829
8830 ret = get_errno(do_sigaction(arg1, pact, &oact));
8831
8832 if (!is_error(ret) && arg3) {
8833 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8834 goto efault;
8835 old_act->_sa_handler = oact._sa_handler;
8836 old_act->sa_flags = oact.sa_flags;
8837 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
8838 old_act->sa_mask.sig[1] = 0;
8839 old_act->sa_mask.sig[2] = 0;
8840 old_act->sa_mask.sig[3] = 0;
8841 unlock_user_struct(old_act, arg3, 1);
8842 }
8843 #else
8844 struct target_old_sigaction *old_act;
8845 struct target_sigaction act, oact, *pact;
8846 if (arg2) {
8847 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8848 goto efault;
8849 act._sa_handler = old_act->_sa_handler;
8850 target_siginitset(&act.sa_mask, old_act->sa_mask);
8851 act.sa_flags = old_act->sa_flags;
8852 act.sa_restorer = old_act->sa_restorer;
8853 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8854 act.ka_restorer = 0;
8855 #endif
8856 unlock_user_struct(old_act, arg2, 0);
8857 pact = &act;
8858 } else {
8859 pact = NULL;
8860 }
8861 ret = get_errno(do_sigaction(arg1, pact, &oact));
8862 if (!is_error(ret) && arg3) {
8863 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8864 goto efault;
8865 old_act->_sa_handler = oact._sa_handler;
8866 old_act->sa_mask = oact.sa_mask.sig[0];
8867 old_act->sa_flags = oact.sa_flags;
8868 old_act->sa_restorer = oact.sa_restorer;
8869 unlock_user_struct(old_act, arg3, 1);
8870 }
8871 #endif
8872 }
8873 break;
8874 #endif
8875 case TARGET_NR_rt_sigaction:
8876 {
8877 #if defined(TARGET_ALPHA)
8878 /* For Alpha and SPARC this is a 5 argument syscall, with
8879 * a 'restorer' parameter which must be copied into the
8880 * sa_restorer field of the sigaction struct.
8881 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
8882 * and arg5 is the sigsetsize.
8883 * Alpha also has a separate rt_sigaction struct that it uses
8884 * here; SPARC uses the usual sigaction struct.
8885 */
8886 struct target_rt_sigaction *rt_act;
8887 struct target_sigaction act, oact, *pact = 0;
8888
8889 if (arg4 != sizeof(target_sigset_t)) {
8890 ret = -TARGET_EINVAL;
8891 break;
8892 }
8893 if (arg2) {
8894 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
8895 goto efault;
8896 act._sa_handler = rt_act->_sa_handler;
8897 act.sa_mask = rt_act->sa_mask;
8898 act.sa_flags = rt_act->sa_flags;
8899 act.sa_restorer = arg5;
8900 unlock_user_struct(rt_act, arg2, 0);
8901 pact = &act;
8902 }
8903 ret = get_errno(do_sigaction(arg1, pact, &oact));
8904 if (!is_error(ret) && arg3) {
8905 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
8906 goto efault;
8907 rt_act->_sa_handler = oact._sa_handler;
8908 rt_act->sa_mask = oact.sa_mask;
8909 rt_act->sa_flags = oact.sa_flags;
8910 unlock_user_struct(rt_act, arg3, 1);
8911 }
8912 #else
8913 #ifdef TARGET_SPARC
8914 target_ulong restorer = arg4;
8915 target_ulong sigsetsize = arg5;
8916 #else
8917 target_ulong sigsetsize = arg4;
8918 #endif
8919 struct target_sigaction *act;
8920 struct target_sigaction *oact;
8921
8922 if (sigsetsize != sizeof(target_sigset_t)) {
8923 ret = -TARGET_EINVAL;
8924 break;
8925 }
8926 if (arg2) {
8927 if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) {
8928 goto efault;
8929 }
8930 #ifdef TARGET_ARCH_HAS_KA_RESTORER
8931 act->ka_restorer = restorer;
8932 #endif
8933 } else {
8934 act = NULL;
8935 }
8936 if (arg3) {
8937 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
8938 ret = -TARGET_EFAULT;
8939 goto rt_sigaction_fail;
8940 }
8941 } else
8942 oact = NULL;
8943 ret = get_errno(do_sigaction(arg1, act, oact));
8944 rt_sigaction_fail:
8945 if (act)
8946 unlock_user_struct(act, arg2, 0);
8947 if (oact)
8948 unlock_user_struct(oact, arg3, 1);
8949 #endif
8950 }
8951 break;
8952 #ifdef TARGET_NR_sgetmask /* not on alpha */
8953 case TARGET_NR_sgetmask:
8954 {
8955 sigset_t cur_set;
8956 abi_ulong target_set;
8957 ret = do_sigprocmask(0, NULL, &cur_set);
8958 if (!ret) {
8959 host_to_target_old_sigset(&target_set, &cur_set);
8960 ret = target_set;
8961 }
8962 }
8963 break;
8964 #endif
8965 #ifdef TARGET_NR_ssetmask /* not on alpha */
8966 case TARGET_NR_ssetmask:
8967 {
8968 sigset_t set, oset;
8969 abi_ulong target_set = arg1;
8970 target_to_host_old_sigset(&set, &target_set);
8971 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
8972 if (!ret) {
8973 host_to_target_old_sigset(&target_set, &oset);
8974 ret = target_set;
8975 }
8976 }
8977 break;
8978 #endif
8979 #ifdef TARGET_NR_sigprocmask
8980 case TARGET_NR_sigprocmask:
8981 {
8982 #if defined(TARGET_ALPHA)
8983 sigset_t set, oldset;
8984 abi_ulong mask;
8985 int how;
8986
8987 switch (arg1) {
8988 case TARGET_SIG_BLOCK:
8989 how = SIG_BLOCK;
8990 break;
8991 case TARGET_SIG_UNBLOCK:
8992 how = SIG_UNBLOCK;
8993 break;
8994 case TARGET_SIG_SETMASK:
8995 how = SIG_SETMASK;
8996 break;
8997 default:
8998 ret = -TARGET_EINVAL;
8999 goto fail;
9000 }
9001 mask = arg2;
9002 target_to_host_old_sigset(&set, &mask);
9003
9004 ret = do_sigprocmask(how, &set, &oldset);
9005 if (!is_error(ret)) {
9006 host_to_target_old_sigset(&mask, &oldset);
9007 ret = mask;
9008 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
9009 }
9010 #else
9011 sigset_t set, oldset, *set_ptr;
9012 int how;
9013
9014 if (arg2) {
9015 switch (arg1) {
9016 case TARGET_SIG_BLOCK:
9017 how = SIG_BLOCK;
9018 break;
9019 case TARGET_SIG_UNBLOCK:
9020 how = SIG_UNBLOCK;
9021 break;
9022 case TARGET_SIG_SETMASK:
9023 how = SIG_SETMASK;
9024 break;
9025 default:
9026 ret = -TARGET_EINVAL;
9027 goto fail;
9028 }
9029 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9030 goto efault;
9031 target_to_host_old_sigset(&set, p);
9032 unlock_user(p, arg2, 0);
9033 set_ptr = &set;
9034 } else {
9035 how = 0;
9036 set_ptr = NULL;
9037 }
9038 ret = do_sigprocmask(how, set_ptr, &oldset);
9039 if (!is_error(ret) && arg3) {
9040 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9041 goto efault;
9042 host_to_target_old_sigset(p, &oldset);
9043 unlock_user(p, arg3, sizeof(target_sigset_t));
9044 }
9045 #endif
9046 }
9047 break;
9048 #endif
9049 case TARGET_NR_rt_sigprocmask:
9050 {
9051 int how = arg1;
9052 sigset_t set, oldset, *set_ptr;
9053
9054 if (arg4 != sizeof(target_sigset_t)) {
9055 ret = -TARGET_EINVAL;
9056 break;
9057 }
9058
9059 if (arg2) {
9060 switch(how) {
9061 case TARGET_SIG_BLOCK:
9062 how = SIG_BLOCK;
9063 break;
9064 case TARGET_SIG_UNBLOCK:
9065 how = SIG_UNBLOCK;
9066 break;
9067 case TARGET_SIG_SETMASK:
9068 how = SIG_SETMASK;
9069 break;
9070 default:
9071 ret = -TARGET_EINVAL;
9072 goto fail;
9073 }
9074 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9075 goto efault;
9076 target_to_host_sigset(&set, p);
9077 unlock_user(p, arg2, 0);
9078 set_ptr = &set;
9079 } else {
9080 how = 0;
9081 set_ptr = NULL;
9082 }
9083 ret = do_sigprocmask(how, set_ptr, &oldset);
9084 if (!is_error(ret) && arg3) {
9085 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9086 goto efault;
9087 host_to_target_sigset(p, &oldset);
9088 unlock_user(p, arg3, sizeof(target_sigset_t));
9089 }
9090 }
9091 break;
9092 #ifdef TARGET_NR_sigpending
9093 case TARGET_NR_sigpending:
9094 {
9095 sigset_t set;
9096 ret = get_errno(sigpending(&set));
9097 if (!is_error(ret)) {
9098 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9099 goto efault;
9100 host_to_target_old_sigset(p, &set);
9101 unlock_user(p, arg1, sizeof(target_sigset_t));
9102 }
9103 }
9104 break;
9105 #endif
9106 case TARGET_NR_rt_sigpending:
9107 {
9108 sigset_t set;
9109
9110 /* Yes, this check is >, not != like most. We follow the kernel's
9111 * logic and it does it like this because it implements
9112 * NR_sigpending through the same code path, and in that case
9113 * the old_sigset_t is smaller in size.
9114 */
9115 if (arg2 > sizeof(target_sigset_t)) {
9116 ret = -TARGET_EINVAL;
9117 break;
9118 }
9119
9120 ret = get_errno(sigpending(&set));
9121 if (!is_error(ret)) {
9122 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9123 goto efault;
9124 host_to_target_sigset(p, &set);
9125 unlock_user(p, arg1, sizeof(target_sigset_t));
9126 }
9127 }
9128 break;
9129 #ifdef TARGET_NR_sigsuspend
9130 case TARGET_NR_sigsuspend:
9131 {
9132 TaskState *ts = cpu->opaque;
9133 #if defined(TARGET_ALPHA)
9134 abi_ulong mask = arg1;
9135 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
9136 #else
9137 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9138 goto efault;
9139 target_to_host_old_sigset(&ts->sigsuspend_mask, p);
9140 unlock_user(p, arg1, 0);
9141 #endif
9142 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9143 SIGSET_T_SIZE));
9144 if (ret != -TARGET_ERESTARTSYS) {
9145 ts->in_sigsuspend = 1;
9146 }
9147 }
9148 break;
9149 #endif
9150 case TARGET_NR_rt_sigsuspend:
9151 {
9152 TaskState *ts = cpu->opaque;
9153
9154 if (arg2 != sizeof(target_sigset_t)) {
9155 ret = -TARGET_EINVAL;
9156 break;
9157 }
9158 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9159 goto efault;
9160 target_to_host_sigset(&ts->sigsuspend_mask, p);
9161 unlock_user(p, arg1, 0);
9162 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9163 SIGSET_T_SIZE));
9164 if (ret != -TARGET_ERESTARTSYS) {
9165 ts->in_sigsuspend = 1;
9166 }
9167 }
9168 break;
9169 case TARGET_NR_rt_sigtimedwait:
9170 {
9171 sigset_t set;
9172 struct timespec uts, *puts;
9173 siginfo_t uinfo;
9174
9175 if (arg4 != sizeof(target_sigset_t)) {
9176 ret = -TARGET_EINVAL;
9177 break;
9178 }
9179
9180 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9181 goto efault;
9182 target_to_host_sigset(&set, p);
9183 unlock_user(p, arg1, 0);
9184 if (arg3) {
9185 puts = &uts;
9186 target_to_host_timespec(puts, arg3);
9187 } else {
9188 puts = NULL;
9189 }
9190 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9191 SIGSET_T_SIZE));
9192 if (!is_error(ret)) {
9193 if (arg2) {
9194 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
9195 0);
9196 if (!p) {
9197 goto efault;
9198 }
9199 host_to_target_siginfo(p, &uinfo);
9200 unlock_user(p, arg2, sizeof(target_siginfo_t));
9201 }
9202 ret = host_to_target_signal(ret);
9203 }
9204 }
9205 break;
9206 case TARGET_NR_rt_sigqueueinfo:
9207 {
9208 siginfo_t uinfo;
9209
9210 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9211 if (!p) {
9212 goto efault;
9213 }
9214 target_to_host_siginfo(&uinfo, p);
9215 unlock_user(p, arg3, 0);
9216 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
9217 }
9218 break;
9219 case TARGET_NR_rt_tgsigqueueinfo:
9220 {
9221 siginfo_t uinfo;
9222
9223 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
9224 if (!p) {
9225 goto efault;
9226 }
9227 target_to_host_siginfo(&uinfo, p);
9228 unlock_user(p, arg4, 0);
9229 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
9230 }
9231 break;
9232 #ifdef TARGET_NR_sigreturn
9233 case TARGET_NR_sigreturn:
9234 if (block_signals()) {
9235 ret = -TARGET_ERESTARTSYS;
9236 } else {
9237 ret = do_sigreturn(cpu_env);
9238 }
9239 break;
9240 #endif
9241 case TARGET_NR_rt_sigreturn:
9242 if (block_signals()) {
9243 ret = -TARGET_ERESTARTSYS;
9244 } else {
9245 ret = do_rt_sigreturn(cpu_env);
9246 }
9247 break;
9248 case TARGET_NR_sethostname:
9249 if (!(p = lock_user_string(arg1)))
9250 goto efault;
9251 ret = get_errno(sethostname(p, arg2));
9252 unlock_user(p, arg1, 0);
9253 break;
9254 case TARGET_NR_setrlimit:
9255 {
9256 int resource = target_to_host_resource(arg1);
9257 struct target_rlimit *target_rlim;
9258 struct rlimit rlim;
9259 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
9260 goto efault;
9261 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
9262 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
9263 unlock_user_struct(target_rlim, arg2, 0);
9264 ret = get_errno(setrlimit(resource, &rlim));
9265 }
9266 break;
9267 case TARGET_NR_getrlimit:
9268 {
9269 int resource = target_to_host_resource(arg1);
9270 struct target_rlimit *target_rlim;
9271 struct rlimit rlim;
9272
9273 ret = get_errno(getrlimit(resource, &rlim));
9274 if (!is_error(ret)) {
9275 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9276 goto efault;
9277 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9278 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9279 unlock_user_struct(target_rlim, arg2, 1);
9280 }
9281 }
9282 break;
9283 case TARGET_NR_getrusage:
9284 {
9285 struct rusage rusage;
9286 ret = get_errno(getrusage(arg1, &rusage));
9287 if (!is_error(ret)) {
9288 ret = host_to_target_rusage(arg2, &rusage);
9289 }
9290 }
9291 break;
9292 case TARGET_NR_gettimeofday:
9293 {
9294 struct timeval tv;
9295 ret = get_errno(gettimeofday(&tv, NULL));
9296 if (!is_error(ret)) {
9297 if (copy_to_user_timeval(arg1, &tv))
9298 goto efault;
9299 }
9300 }
9301 break;
9302 case TARGET_NR_settimeofday:
9303 {
9304 struct timeval tv, *ptv = NULL;
9305 struct timezone tz, *ptz = NULL;
9306
9307 if (arg1) {
9308 if (copy_from_user_timeval(&tv, arg1)) {
9309 goto efault;
9310 }
9311 ptv = &tv;
9312 }
9313
9314 if (arg2) {
9315 if (copy_from_user_timezone(&tz, arg2)) {
9316 goto efault;
9317 }
9318 ptz = &tz;
9319 }
9320
9321 ret = get_errno(settimeofday(ptv, ptz));
9322 }
9323 break;
9324 #if defined(TARGET_NR_select)
9325 case TARGET_NR_select:
9326 #if defined(TARGET_WANT_NI_OLD_SELECT)
9327 /* some architectures used to have old_select here
9328 * but now ENOSYS it.
9329 */
9330 ret = -TARGET_ENOSYS;
9331 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9332 ret = do_old_select(arg1);
9333 #else
9334 ret = do_select(arg1, arg2, arg3, arg4, arg5);
9335 #endif
9336 break;
9337 #endif
9338 #ifdef TARGET_NR_pselect6
9339 case TARGET_NR_pselect6:
9340 {
9341 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
9342 fd_set rfds, wfds, efds;
9343 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
9344 struct timespec ts, *ts_ptr;
9345
9346 /*
9347 * The 6th arg is actually two args smashed together,
9348 * so we cannot use the C library.
9349 */
9350 sigset_t set;
9351 struct {
9352 sigset_t *set;
9353 size_t size;
9354 } sig, *sig_ptr;
9355
9356 abi_ulong arg_sigset, arg_sigsize, *arg7;
9357 target_sigset_t *target_sigset;
9358
9359 n = arg1;
9360 rfd_addr = arg2;
9361 wfd_addr = arg3;
9362 efd_addr = arg4;
9363 ts_addr = arg5;
9364
9365 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
9366 if (ret) {
9367 goto fail;
9368 }
9369 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
9370 if (ret) {
9371 goto fail;
9372 }
9373 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
9374 if (ret) {
9375 goto fail;
9376 }
9377
9378 /*
9379 * This takes a timespec, and not a timeval, so we cannot
9380 * use the do_select() helper ...
9381 */
9382 if (ts_addr) {
9383 if (target_to_host_timespec(&ts, ts_addr)) {
9384 goto efault;
9385 }
9386 ts_ptr = &ts;
9387 } else {
9388 ts_ptr = NULL;
9389 }
9390
9391 /* Extract the two packed args for the sigset */
9392 if (arg6) {
9393 sig_ptr = &sig;
9394 sig.size = SIGSET_T_SIZE;
9395
9396 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
9397 if (!arg7) {
9398 goto efault;
9399 }
9400 arg_sigset = tswapal(arg7[0]);
9401 arg_sigsize = tswapal(arg7[1]);
9402 unlock_user(arg7, arg6, 0);
9403
9404 if (arg_sigset) {
9405 sig.set = &set;
9406 if (arg_sigsize != sizeof(*target_sigset)) {
9407 /* Like the kernel, we enforce correct size sigsets */
9408 ret = -TARGET_EINVAL;
9409 goto fail;
9410 }
9411 target_sigset = lock_user(VERIFY_READ, arg_sigset,
9412 sizeof(*target_sigset), 1);
9413 if (!target_sigset) {
9414 goto efault;
9415 }
9416 target_to_host_sigset(&set, target_sigset);
9417 unlock_user(target_sigset, arg_sigset, 0);
9418 } else {
9419 sig.set = NULL;
9420 }
9421 } else {
9422 sig_ptr = NULL;
9423 }
9424
9425 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
9426 ts_ptr, sig_ptr));
9427
9428 if (!is_error(ret)) {
9429 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
9430 goto efault;
9431 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
9432 goto efault;
9433 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
9434 goto efault;
9435
9436 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
9437 goto efault;
9438 }
9439 }
9440 break;
9441 #endif
9442 #ifdef TARGET_NR_symlink
9443 case TARGET_NR_symlink:
9444 {
9445 void *p2;
9446 p = lock_user_string(arg1);
9447 p2 = lock_user_string(arg2);
9448 if (!p || !p2)
9449 ret = -TARGET_EFAULT;
9450 else
9451 ret = get_errno(symlink(p, p2));
9452 unlock_user(p2, arg2, 0);
9453 unlock_user(p, arg1, 0);
9454 }
9455 break;
9456 #endif
9457 #if defined(TARGET_NR_symlinkat)
9458 case TARGET_NR_symlinkat:
9459 {
9460 void *p2;
9461 p = lock_user_string(arg1);
9462 p2 = lock_user_string(arg3);
9463 if (!p || !p2)
9464 ret = -TARGET_EFAULT;
9465 else
9466 ret = get_errno(symlinkat(p, arg2, p2));
9467 unlock_user(p2, arg3, 0);
9468 unlock_user(p, arg1, 0);
9469 }
9470 break;
9471 #endif
9472 #ifdef TARGET_NR_oldlstat
9473 case TARGET_NR_oldlstat:
9474 goto unimplemented;
9475 #endif
9476 #ifdef TARGET_NR_readlink
9477 case TARGET_NR_readlink:
9478 {
9479 void *p2;
9480 p = lock_user_string(arg1);
9481 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9482 if (!p || !p2) {
9483 ret = -TARGET_EFAULT;
9484 } else if (!arg3) {
9485 /* Short circuit this for the magic exe check. */
9486 ret = -TARGET_EINVAL;
9487 } else if (is_proc_myself((const char *)p, "exe")) {
9488 char real[PATH_MAX], *temp;
9489 temp = realpath(exec_path, real);
9490 /* Return value is # of bytes that we wrote to the buffer. */
9491 if (temp == NULL) {
9492 ret = get_errno(-1);
9493 } else {
9494 /* Don't worry about sign mismatch as earlier mapping
9495 * logic would have thrown a bad address error. */
9496 ret = MIN(strlen(real), arg3);
9497 /* We cannot NUL terminate the string. */
9498 memcpy(p2, real, ret);
9499 }
9500 } else {
9501 ret = get_errno(readlink(path(p), p2, arg3));
9502 }
9503 unlock_user(p2, arg2, ret);
9504 unlock_user(p, arg1, 0);
9505 }
9506 break;
9507 #endif
9508 #if defined(TARGET_NR_readlinkat)
9509 case TARGET_NR_readlinkat:
9510 {
9511 void *p2;
9512 p = lock_user_string(arg2);
9513 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9514 if (!p || !p2) {
9515 ret = -TARGET_EFAULT;
9516 } else if (is_proc_myself((const char *)p, "exe")) {
9517 char real[PATH_MAX], *temp;
9518 temp = realpath(exec_path, real);
9519 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9520 snprintf((char *)p2, arg4, "%s", real);
9521 } else {
9522 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9523 }
9524 unlock_user(p2, arg3, ret);
9525 unlock_user(p, arg2, 0);
9526 }
9527 break;
9528 #endif
9529 #ifdef TARGET_NR_uselib
9530 case TARGET_NR_uselib:
9531 goto unimplemented;
9532 #endif
9533 #ifdef TARGET_NR_swapon
9534 case TARGET_NR_swapon:
9535 if (!(p = lock_user_string(arg1)))
9536 goto efault;
9537 ret = get_errno(swapon(p, arg2));
9538 unlock_user(p, arg1, 0);
9539 break;
9540 #endif
9541 case TARGET_NR_reboot:
9542 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9543 /* arg4 must be ignored in all other cases */
9544 p = lock_user_string(arg4);
9545 if (!p) {
9546 goto efault;
9547 }
9548 ret = get_errno(reboot(arg1, arg2, arg3, p));
9549 unlock_user(p, arg4, 0);
9550 } else {
9551 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9552 }
9553 break;
9554 #ifdef TARGET_NR_readdir
9555 case TARGET_NR_readdir:
9556 goto unimplemented;
9557 #endif
9558 #ifdef TARGET_NR_mmap
9559 case TARGET_NR_mmap:
9560 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9561 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9562 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9563 || defined(TARGET_S390X)
9564 {
9565 abi_ulong *v;
9566 abi_ulong v1, v2, v3, v4, v5, v6;
9567 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9568 goto efault;
9569 v1 = tswapal(v[0]);
9570 v2 = tswapal(v[1]);
9571 v3 = tswapal(v[2]);
9572 v4 = tswapal(v[3]);
9573 v5 = tswapal(v[4]);
9574 v6 = tswapal(v[5]);
9575 unlock_user(v, arg1, 0);
9576 ret = get_errno(target_mmap(v1, v2, v3,
9577 target_to_host_bitmask(v4, mmap_flags_tbl),
9578 v5, v6));
9579 }
9580 #else
9581 ret = get_errno(target_mmap(arg1, arg2, arg3,
9582 target_to_host_bitmask(arg4, mmap_flags_tbl),
9583 arg5,
9584 arg6));
9585 #endif
9586 break;
9587 #endif
9588 #ifdef TARGET_NR_mmap2
9589 case TARGET_NR_mmap2:
9590 #ifndef MMAP_SHIFT
9591 #define MMAP_SHIFT 12
9592 #endif
9593 ret = get_errno(target_mmap(arg1, arg2, arg3,
9594 target_to_host_bitmask(arg4, mmap_flags_tbl),
9595 arg5,
9596 arg6 << MMAP_SHIFT));
9597 break;
9598 #endif
9599 case TARGET_NR_munmap:
9600 ret = get_errno(target_munmap(arg1, arg2));
9601 break;
9602 case TARGET_NR_mprotect:
9603 {
9604 TaskState *ts = cpu->opaque;
9605 /* Special hack to detect libc making the stack executable. */
9606 if ((arg3 & PROT_GROWSDOWN)
9607 && arg1 >= ts->info->stack_limit
9608 && arg1 <= ts->info->start_stack) {
9609 arg3 &= ~PROT_GROWSDOWN;
9610 arg2 = arg2 + arg1 - ts->info->stack_limit;
9611 arg1 = ts->info->stack_limit;
9612 }
9613 }
9614 ret = get_errno(target_mprotect(arg1, arg2, arg3));
9615 break;
9616 #ifdef TARGET_NR_mremap
9617 case TARGET_NR_mremap:
9618 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
9619 break;
9620 #endif
9621 /* ??? msync/mlock/munlock are broken for softmmu. */
9622 #ifdef TARGET_NR_msync
9623 case TARGET_NR_msync:
9624 ret = get_errno(msync(g2h(arg1), arg2, arg3));
9625 break;
9626 #endif
9627 #ifdef TARGET_NR_mlock
9628 case TARGET_NR_mlock:
9629 ret = get_errno(mlock(g2h(arg1), arg2));
9630 break;
9631 #endif
9632 #ifdef TARGET_NR_munlock
9633 case TARGET_NR_munlock:
9634 ret = get_errno(munlock(g2h(arg1), arg2));
9635 break;
9636 #endif
9637 #ifdef TARGET_NR_mlockall
9638 case TARGET_NR_mlockall:
9639 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
9640 break;
9641 #endif
9642 #ifdef TARGET_NR_munlockall
9643 case TARGET_NR_munlockall:
9644 ret = get_errno(munlockall());
9645 break;
9646 #endif
9647 case TARGET_NR_truncate:
9648 if (!(p = lock_user_string(arg1)))
9649 goto efault;
9650 ret = get_errno(truncate(p, arg2));
9651 unlock_user(p, arg1, 0);
9652 break;
9653 case TARGET_NR_ftruncate:
9654 ret = get_errno(ftruncate(arg1, arg2));
9655 break;
9656 case TARGET_NR_fchmod:
9657 ret = get_errno(fchmod(arg1, arg2));
9658 break;
9659 #if defined(TARGET_NR_fchmodat)
9660 case TARGET_NR_fchmodat:
9661 if (!(p = lock_user_string(arg2)))
9662 goto efault;
9663 ret = get_errno(fchmodat(arg1, p, arg3, 0));
9664 unlock_user(p, arg2, 0);
9665 break;
9666 #endif
9667 case TARGET_NR_getpriority:
9668 /* Note that negative values are valid for getpriority, so we must
9669 differentiate based on errno settings. */
9670 errno = 0;
9671 ret = getpriority(arg1, arg2);
9672 if (ret == -1 && errno != 0) {
9673 ret = -host_to_target_errno(errno);
9674 break;
9675 }
9676 #ifdef TARGET_ALPHA
9677 /* Return value is the unbiased priority. Signal no error. */
9678 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
9679 #else
9680 /* Return value is a biased priority to avoid negative numbers. */
9681 ret = 20 - ret;
9682 #endif
9683 break;
9684 case TARGET_NR_setpriority:
9685 ret = get_errno(setpriority(arg1, arg2, arg3));
9686 break;
9687 #ifdef TARGET_NR_profil
9688 case TARGET_NR_profil:
9689 goto unimplemented;
9690 #endif
9691 case TARGET_NR_statfs:
9692 if (!(p = lock_user_string(arg1)))
9693 goto efault;
9694 ret = get_errno(statfs(path(p), &stfs));
9695 unlock_user(p, arg1, 0);
9696 convert_statfs:
9697 if (!is_error(ret)) {
9698 struct target_statfs *target_stfs;
9699
9700 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
9701 goto efault;
9702 __put_user(stfs.f_type, &target_stfs->f_type);
9703 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9704 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9705 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9706 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9707 __put_user(stfs.f_files, &target_stfs->f_files);
9708 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9709 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9710 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9711 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9712 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9713 #ifdef _STATFS_F_FLAGS
9714 __put_user(stfs.f_flags, &target_stfs->f_flags);
9715 #else
9716 __put_user(0, &target_stfs->f_flags);
9717 #endif
9718 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9719 unlock_user_struct(target_stfs, arg2, 1);
9720 }
9721 break;
9722 case TARGET_NR_fstatfs:
9723 ret = get_errno(fstatfs(arg1, &stfs));
9724 goto convert_statfs;
9725 #ifdef TARGET_NR_statfs64
9726 case TARGET_NR_statfs64:
9727 if (!(p = lock_user_string(arg1)))
9728 goto efault;
9729 ret = get_errno(statfs(path(p), &stfs));
9730 unlock_user(p, arg1, 0);
9731 convert_statfs64:
9732 if (!is_error(ret)) {
9733 struct target_statfs64 *target_stfs;
9734
9735 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
9736 goto efault;
9737 __put_user(stfs.f_type, &target_stfs->f_type);
9738 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9739 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9740 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9741 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9742 __put_user(stfs.f_files, &target_stfs->f_files);
9743 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9744 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9745 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9746 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9747 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9748 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9749 unlock_user_struct(target_stfs, arg3, 1);
9750 }
9751 break;
9752 case TARGET_NR_fstatfs64:
9753 ret = get_errno(fstatfs(arg1, &stfs));
9754 goto convert_statfs64;
9755 #endif
9756 #ifdef TARGET_NR_ioperm
9757 case TARGET_NR_ioperm:
9758 goto unimplemented;
9759 #endif
9760 #ifdef TARGET_NR_socketcall
9761 case TARGET_NR_socketcall:
9762 ret = do_socketcall(arg1, arg2);
9763 break;
9764 #endif
9765 #ifdef TARGET_NR_accept
9766 case TARGET_NR_accept:
9767 ret = do_accept4(arg1, arg2, arg3, 0);
9768 break;
9769 #endif
9770 #ifdef TARGET_NR_accept4
9771 case TARGET_NR_accept4:
9772 ret = do_accept4(arg1, arg2, arg3, arg4);
9773 break;
9774 #endif
9775 #ifdef TARGET_NR_bind
9776 case TARGET_NR_bind:
9777 ret = do_bind(arg1, arg2, arg3);
9778 break;
9779 #endif
9780 #ifdef TARGET_NR_connect
9781 case TARGET_NR_connect:
9782 ret = do_connect(arg1, arg2, arg3);
9783 break;
9784 #endif
9785 #ifdef TARGET_NR_getpeername
9786 case TARGET_NR_getpeername:
9787 ret = do_getpeername(arg1, arg2, arg3);
9788 break;
9789 #endif
9790 #ifdef TARGET_NR_getsockname
9791 case TARGET_NR_getsockname:
9792 ret = do_getsockname(arg1, arg2, arg3);
9793 break;
9794 #endif
9795 #ifdef TARGET_NR_getsockopt
9796 case TARGET_NR_getsockopt:
9797 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5);
9798 break;
9799 #endif
9800 #ifdef TARGET_NR_listen
9801 case TARGET_NR_listen:
9802 ret = get_errno(listen(arg1, arg2));
9803 break;
9804 #endif
9805 #ifdef TARGET_NR_recv
9806 case TARGET_NR_recv:
9807 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
9808 break;
9809 #endif
9810 #ifdef TARGET_NR_recvfrom
9811 case TARGET_NR_recvfrom:
9812 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
9813 break;
9814 #endif
9815 #ifdef TARGET_NR_recvmsg
9816 case TARGET_NR_recvmsg:
9817 ret = do_sendrecvmsg(arg1, arg2, arg3, 0);
9818 break;
9819 #endif
9820 #ifdef TARGET_NR_send
9821 case TARGET_NR_send:
9822 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0);
9823 break;
9824 #endif
9825 #ifdef TARGET_NR_sendmsg
9826 case TARGET_NR_sendmsg:
9827 ret = do_sendrecvmsg(arg1, arg2, arg3, 1);
9828 break;
9829 #endif
9830 #ifdef TARGET_NR_sendmmsg
9831 case TARGET_NR_sendmmsg:
9832 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
9833 break;
9834 case TARGET_NR_recvmmsg:
9835 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
9836 break;
9837 #endif
9838 #ifdef TARGET_NR_sendto
9839 case TARGET_NR_sendto:
9840 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
9841 break;
9842 #endif
9843 #ifdef TARGET_NR_shutdown
9844 case TARGET_NR_shutdown:
9845 ret = get_errno(shutdown(arg1, arg2));
9846 break;
9847 #endif
9848 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9849 case TARGET_NR_getrandom:
9850 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9851 if (!p) {
9852 goto efault;
9853 }
9854 ret = get_errno(getrandom(p, arg2, arg3));
9855 unlock_user(p, arg1, ret);
9856 break;
9857 #endif
9858 #ifdef TARGET_NR_socket
9859 case TARGET_NR_socket:
9860 ret = do_socket(arg1, arg2, arg3);
9861 break;
9862 #endif
9863 #ifdef TARGET_NR_socketpair
9864 case TARGET_NR_socketpair:
9865 ret = do_socketpair(arg1, arg2, arg3, arg4);
9866 break;
9867 #endif
9868 #ifdef TARGET_NR_setsockopt
9869 case TARGET_NR_setsockopt:
9870 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
9871 break;
9872 #endif
9873 #if defined(TARGET_NR_syslog)
9874 case TARGET_NR_syslog:
9875 {
9876 int len = arg2;
9877
9878 switch (arg1) {
9879 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */
9880 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */
9881 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
9882 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */
9883 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */
9884 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
9885 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */
9886 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */
9887 {
9888 ret = get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
9889 }
9890 break;
9891 case TARGET_SYSLOG_ACTION_READ: /* Read from log */
9892 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */
9893 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */
9894 {
9895 ret = -TARGET_EINVAL;
9896 if (len < 0) {
9897 goto fail;
9898 }
9899 ret = 0;
9900 if (len == 0) {
9901 break;
9902 }
9903 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9904 if (!p) {
9905 ret = -TARGET_EFAULT;
9906 goto fail;
9907 }
9908 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
9909 unlock_user(p, arg2, arg3);
9910 }
9911 break;
9912 default:
9913 ret = -EINVAL;
9914 break;
9915 }
9916 }
9917 break;
9918 #endif
9919 case TARGET_NR_setitimer:
9920 {
9921 struct itimerval value, ovalue, *pvalue;
9922
9923 if (arg2) {
9924 pvalue = &value;
9925 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
9926 || copy_from_user_timeval(&pvalue->it_value,
9927 arg2 + sizeof(struct target_timeval)))
9928 goto efault;
9929 } else {
9930 pvalue = NULL;
9931 }
9932 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
9933 if (!is_error(ret) && arg3) {
9934 if (copy_to_user_timeval(arg3,
9935 &ovalue.it_interval)
9936 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
9937 &ovalue.it_value))
9938 goto efault;
9939 }
9940 }
9941 break;
9942 case TARGET_NR_getitimer:
9943 {
9944 struct itimerval value;
9945
9946 ret = get_errno(getitimer(arg1, &value));
9947 if (!is_error(ret) && arg2) {
9948 if (copy_to_user_timeval(arg2,
9949 &value.it_interval)
9950 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
9951 &value.it_value))
9952 goto efault;
9953 }
9954 }
9955 break;
9956 #ifdef TARGET_NR_stat
9957 case TARGET_NR_stat:
9958 if (!(p = lock_user_string(arg1)))
9959 goto efault;
9960 ret = get_errno(stat(path(p), &st));
9961 unlock_user(p, arg1, 0);
9962 goto do_stat;
9963 #endif
9964 #ifdef TARGET_NR_lstat
9965 case TARGET_NR_lstat:
9966 if (!(p = lock_user_string(arg1)))
9967 goto efault;
9968 ret = get_errno(lstat(path(p), &st));
9969 unlock_user(p, arg1, 0);
9970 goto do_stat;
9971 #endif
9972 case TARGET_NR_fstat:
9973 {
9974 ret = get_errno(fstat(arg1, &st));
9975 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9976 do_stat:
9977 #endif
9978 if (!is_error(ret)) {
9979 struct target_stat *target_st;
9980
9981 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
9982 goto efault;
9983 memset(target_st, 0, sizeof(*target_st));
9984 __put_user(st.st_dev, &target_st->st_dev);
9985 __put_user(st.st_ino, &target_st->st_ino);
9986 __put_user(st.st_mode, &target_st->st_mode);
9987 __put_user(st.st_uid, &target_st->st_uid);
9988 __put_user(st.st_gid, &target_st->st_gid);
9989 __put_user(st.st_nlink, &target_st->st_nlink);
9990 __put_user(st.st_rdev, &target_st->st_rdev);
9991 __put_user(st.st_size, &target_st->st_size);
9992 __put_user(st.st_blksize, &target_st->st_blksize);
9993 __put_user(st.st_blocks, &target_st->st_blocks);
9994 __put_user(st.st_atime, &target_st->target_st_atime);
9995 __put_user(st.st_mtime, &target_st->target_st_mtime);
9996 __put_user(st.st_ctime, &target_st->target_st_ctime);
9997 unlock_user_struct(target_st, arg2, 1);
9998 }
9999 }
10000 break;
10001 #ifdef TARGET_NR_olduname
10002 case TARGET_NR_olduname:
10003 goto unimplemented;
10004 #endif
10005 #ifdef TARGET_NR_iopl
10006 case TARGET_NR_iopl:
10007 goto unimplemented;
10008 #endif
10009 case TARGET_NR_vhangup:
10010 ret = get_errno(vhangup());
10011 break;
10012 #ifdef TARGET_NR_idle
10013 case TARGET_NR_idle:
10014 goto unimplemented;
10015 #endif
10016 #ifdef TARGET_NR_syscall
10017 case TARGET_NR_syscall:
10018 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10019 arg6, arg7, arg8, 0);
10020 break;
10021 #endif
10022 case TARGET_NR_wait4:
10023 {
10024 int status;
10025 abi_long status_ptr = arg2;
10026 struct rusage rusage, *rusage_ptr;
10027 abi_ulong target_rusage = arg4;
10028 abi_long rusage_err;
10029 if (target_rusage)
10030 rusage_ptr = &rusage;
10031 else
10032 rusage_ptr = NULL;
10033 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10034 if (!is_error(ret)) {
10035 if (status_ptr && ret) {
10036 status = host_to_target_waitstatus(status);
10037 if (put_user_s32(status, status_ptr))
10038 goto efault;
10039 }
10040 if (target_rusage) {
10041 rusage_err = host_to_target_rusage(target_rusage, &rusage);
10042 if (rusage_err) {
10043 ret = rusage_err;
10044 }
10045 }
10046 }
10047 }
10048 break;
10049 #ifdef TARGET_NR_swapoff
10050 case TARGET_NR_swapoff:
10051 if (!(p = lock_user_string(arg1)))
10052 goto efault;
10053 ret = get_errno(swapoff(p));
10054 unlock_user(p, arg1, 0);
10055 break;
10056 #endif
10057 case TARGET_NR_sysinfo:
10058 {
10059 struct target_sysinfo *target_value;
10060 struct sysinfo value;
10061 ret = get_errno(sysinfo(&value));
10062 if (!is_error(ret) && arg1)
10063 {
10064 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10065 goto efault;
10066 __put_user(value.uptime, &target_value->uptime);
10067 __put_user(value.loads[0], &target_value->loads[0]);
10068 __put_user(value.loads[1], &target_value->loads[1]);
10069 __put_user(value.loads[2], &target_value->loads[2]);
10070 __put_user(value.totalram, &target_value->totalram);
10071 __put_user(value.freeram, &target_value->freeram);
10072 __put_user(value.sharedram, &target_value->sharedram);
10073 __put_user(value.bufferram, &target_value->bufferram);
10074 __put_user(value.totalswap, &target_value->totalswap);
10075 __put_user(value.freeswap, &target_value->freeswap);
10076 __put_user(value.procs, &target_value->procs);
10077 __put_user(value.totalhigh, &target_value->totalhigh);
10078 __put_user(value.freehigh, &target_value->freehigh);
10079 __put_user(value.mem_unit, &target_value->mem_unit);
10080 unlock_user_struct(target_value, arg1, 1);
10081 }
10082 }
10083 break;
10084 #ifdef TARGET_NR_ipc
10085 case TARGET_NR_ipc:
10086 ret = do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10087 break;
10088 #endif
10089 #ifdef TARGET_NR_semget
10090 case TARGET_NR_semget:
10091 ret = get_errno(semget(arg1, arg2, arg3));
10092 break;
10093 #endif
10094 #ifdef TARGET_NR_semop
10095 case TARGET_NR_semop:
10096 ret = do_semop(arg1, arg2, arg3);
10097 break;
10098 #endif
10099 #ifdef TARGET_NR_semctl
10100 case TARGET_NR_semctl:
10101 ret = do_semctl(arg1, arg2, arg3, arg4);
10102 break;
10103 #endif
10104 #ifdef TARGET_NR_msgctl
10105 case TARGET_NR_msgctl:
10106 ret = do_msgctl(arg1, arg2, arg3);
10107 break;
10108 #endif
10109 #ifdef TARGET_NR_msgget
10110 case TARGET_NR_msgget:
10111 ret = get_errno(msgget(arg1, arg2));
10112 break;
10113 #endif
10114 #ifdef TARGET_NR_msgrcv
10115 case TARGET_NR_msgrcv:
10116 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10117 break;
10118 #endif
10119 #ifdef TARGET_NR_msgsnd
10120 case TARGET_NR_msgsnd:
10121 ret = do_msgsnd(arg1, arg2, arg3, arg4);
10122 break;
10123 #endif
10124 #ifdef TARGET_NR_shmget
10125 case TARGET_NR_shmget:
10126 ret = get_errno(shmget(arg1, arg2, arg3));
10127 break;
10128 #endif
10129 #ifdef TARGET_NR_shmctl
10130 case TARGET_NR_shmctl:
10131 ret = do_shmctl(arg1, arg2, arg3);
10132 break;
10133 #endif
10134 #ifdef TARGET_NR_shmat
10135 case TARGET_NR_shmat:
10136 ret = do_shmat(cpu_env, arg1, arg2, arg3);
10137 break;
10138 #endif
10139 #ifdef TARGET_NR_shmdt
10140 case TARGET_NR_shmdt:
10141 ret = do_shmdt(arg1);
10142 break;
10143 #endif
10144 case TARGET_NR_fsync:
10145 ret = get_errno(fsync(arg1));
10146 break;
10147 case TARGET_NR_clone:
10148 /* Linux manages to have three different orderings for its
10149 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10150 * match the kernel's CONFIG_CLONE_* settings.
10151 * Microblaze is further special in that it uses a sixth
10152 * implicit argument to clone for the TLS pointer.
10153 */
10154 #if defined(TARGET_MICROBLAZE)
10155 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10156 #elif defined(TARGET_CLONE_BACKWARDS)
10157 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10158 #elif defined(TARGET_CLONE_BACKWARDS2)
10159 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10160 #else
10161 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10162 #endif
10163 break;
10164 #ifdef __NR_exit_group
10165 /* new thread calls */
10166 case TARGET_NR_exit_group:
10167 preexit_cleanup(cpu_env, arg1);
10168 ret = get_errno(exit_group(arg1));
10169 break;
10170 #endif
10171 case TARGET_NR_setdomainname:
10172 if (!(p = lock_user_string(arg1)))
10173 goto efault;
10174 ret = get_errno(setdomainname(p, arg2));
10175 unlock_user(p, arg1, 0);
10176 break;
10177 case TARGET_NR_uname:
10178 /* no need to transcode because we use the linux syscall */
10179 {
10180 struct new_utsname * buf;
10181
10182 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10183 goto efault;
10184 ret = get_errno(sys_uname(buf));
10185 if (!is_error(ret)) {
10186 /* Overwrite the native machine name with whatever is being
10187 emulated. */
10188 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10189 sizeof(buf->machine));
10190 /* Allow the user to override the reported release. */
10191 if (qemu_uname_release && *qemu_uname_release) {
10192 g_strlcpy(buf->release, qemu_uname_release,
10193 sizeof(buf->release));
10194 }
10195 }
10196 unlock_user_struct(buf, arg1, 1);
10197 }
10198 break;
10199 #ifdef TARGET_I386
10200 case TARGET_NR_modify_ldt:
10201 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3);
10202 break;
10203 #if !defined(TARGET_X86_64)
10204 case TARGET_NR_vm86old:
10205 goto unimplemented;
10206 case TARGET_NR_vm86:
10207 ret = do_vm86(cpu_env, arg1, arg2);
10208 break;
10209 #endif
10210 #endif
10211 case TARGET_NR_adjtimex:
10212 {
10213 struct timex host_buf;
10214
10215 if (target_to_host_timex(&host_buf, arg1) != 0) {
10216 goto efault;
10217 }
10218 ret = get_errno(adjtimex(&host_buf));
10219 if (!is_error(ret)) {
10220 if (host_to_target_timex(arg1, &host_buf) != 0) {
10221 goto efault;
10222 }
10223 }
10224 }
10225 break;
10226 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10227 case TARGET_NR_clock_adjtime:
10228 {
10229 struct timex htx, *phtx = &htx;
10230
10231 if (target_to_host_timex(phtx, arg2) != 0) {
10232 goto efault;
10233 }
10234 ret = get_errno(clock_adjtime(arg1, phtx));
10235 if (!is_error(ret) && phtx) {
10236 if (host_to_target_timex(arg2, phtx) != 0) {
10237 goto efault;
10238 }
10239 }
10240 }
10241 break;
10242 #endif
10243 #ifdef TARGET_NR_create_module
10244 case TARGET_NR_create_module:
10245 #endif
10246 case TARGET_NR_init_module:
10247 case TARGET_NR_delete_module:
10248 #ifdef TARGET_NR_get_kernel_syms
10249 case TARGET_NR_get_kernel_syms:
10250 #endif
10251 goto unimplemented;
10252 case TARGET_NR_quotactl:
10253 goto unimplemented;
10254 case TARGET_NR_getpgid:
10255 ret = get_errno(getpgid(arg1));
10256 break;
10257 case TARGET_NR_fchdir:
10258 ret = get_errno(fchdir(arg1));
10259 break;
10260 #ifdef TARGET_NR_bdflush /* not on x86_64 */
10261 case TARGET_NR_bdflush:
10262 goto unimplemented;
10263 #endif
10264 #ifdef TARGET_NR_sysfs
10265 case TARGET_NR_sysfs:
10266 goto unimplemented;
10267 #endif
10268 case TARGET_NR_personality:
10269 ret = get_errno(personality(arg1));
10270 break;
10271 #ifdef TARGET_NR_afs_syscall
10272 case TARGET_NR_afs_syscall:
10273 goto unimplemented;
10274 #endif
10275 #ifdef TARGET_NR__llseek /* Not on alpha */
10276 case TARGET_NR__llseek:
10277 {
10278 int64_t res;
10279 #if !defined(__NR_llseek)
10280 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
10281 if (res == -1) {
10282 ret = get_errno(res);
10283 } else {
10284 ret = 0;
10285 }
10286 #else
10287 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
10288 #endif
10289 if ((ret == 0) && put_user_s64(res, arg4)) {
10290 goto efault;
10291 }
10292 }
10293 break;
10294 #endif
10295 #ifdef TARGET_NR_getdents
10296 case TARGET_NR_getdents:
10297 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
10298 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
10299 {
10300 struct target_dirent *target_dirp;
10301 struct linux_dirent *dirp;
10302 abi_long count = arg3;
10303
10304 dirp = g_try_malloc(count);
10305 if (!dirp) {
10306 ret = -TARGET_ENOMEM;
10307 goto fail;
10308 }
10309
10310 ret = get_errno(sys_getdents(arg1, dirp, count));
10311 if (!is_error(ret)) {
10312 struct linux_dirent *de;
10313 struct target_dirent *tde;
10314 int len = ret;
10315 int reclen, treclen;
10316 int count1, tnamelen;
10317
10318 count1 = 0;
10319 de = dirp;
10320 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10321 goto efault;
10322 tde = target_dirp;
10323 while (len > 0) {
10324 reclen = de->d_reclen;
10325 tnamelen = reclen - offsetof(struct linux_dirent, d_name);
10326 assert(tnamelen >= 0);
10327 treclen = tnamelen + offsetof(struct target_dirent, d_name);
10328 assert(count1 + treclen <= count);
10329 tde->d_reclen = tswap16(treclen);
10330 tde->d_ino = tswapal(de->d_ino);
10331 tde->d_off = tswapal(de->d_off);
10332 memcpy(tde->d_name, de->d_name, tnamelen);
10333 de = (struct linux_dirent *)((char *)de + reclen);
10334 len -= reclen;
10335 tde = (struct target_dirent *)((char *)tde + treclen);
10336 count1 += treclen;
10337 }
10338 ret = count1;
10339 unlock_user(target_dirp, arg2, ret);
10340 }
10341 g_free(dirp);
10342 }
10343 #else
10344 {
10345 struct linux_dirent *dirp;
10346 abi_long count = arg3;
10347
10348 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10349 goto efault;
10350 ret = get_errno(sys_getdents(arg1, dirp, count));
10351 if (!is_error(ret)) {
10352 struct linux_dirent *de;
10353 int len = ret;
10354 int reclen;
10355 de = dirp;
10356 while (len > 0) {
10357 reclen = de->d_reclen;
10358 if (reclen > len)
10359 break;
10360 de->d_reclen = tswap16(reclen);
10361 tswapls(&de->d_ino);
10362 tswapls(&de->d_off);
10363 de = (struct linux_dirent *)((char *)de + reclen);
10364 len -= reclen;
10365 }
10366 }
10367 unlock_user(dirp, arg2, ret);
10368 }
10369 #endif
10370 #else
10371 /* Implement getdents in terms of getdents64 */
10372 {
10373 struct linux_dirent64 *dirp;
10374 abi_long count = arg3;
10375
10376 dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
10377 if (!dirp) {
10378 goto efault;
10379 }
10380 ret = get_errno(sys_getdents64(arg1, dirp, count));
10381 if (!is_error(ret)) {
10382 /* Convert the dirent64 structs to target dirent. We do this
10383 * in-place, since we can guarantee that a target_dirent is no
10384 * larger than a dirent64; however this means we have to be
10385 * careful to read everything before writing in the new format.
10386 */
10387 struct linux_dirent64 *de;
10388 struct target_dirent *tde;
10389 int len = ret;
10390 int tlen = 0;
10391
10392 de = dirp;
10393 tde = (struct target_dirent *)dirp;
10394 while (len > 0) {
10395 int namelen, treclen;
10396 int reclen = de->d_reclen;
10397 uint64_t ino = de->d_ino;
10398 int64_t off = de->d_off;
10399 uint8_t type = de->d_type;
10400
10401 namelen = strlen(de->d_name);
10402 treclen = offsetof(struct target_dirent, d_name)
10403 + namelen + 2;
10404 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
10405
10406 memmove(tde->d_name, de->d_name, namelen + 1);
10407 tde->d_ino = tswapal(ino);
10408 tde->d_off = tswapal(off);
10409 tde->d_reclen = tswap16(treclen);
10410 /* The target_dirent type is in what was formerly a padding
10411 * byte at the end of the structure:
10412 */
10413 *(((char *)tde) + treclen - 1) = type;
10414
10415 de = (struct linux_dirent64 *)((char *)de + reclen);
10416 tde = (struct target_dirent *)((char *)tde + treclen);
10417 len -= reclen;
10418 tlen += treclen;
10419 }
10420 ret = tlen;
10421 }
10422 unlock_user(dirp, arg2, ret);
10423 }
10424 #endif
10425 break;
10426 #endif /* TARGET_NR_getdents */
10427 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10428 case TARGET_NR_getdents64:
10429 {
10430 struct linux_dirent64 *dirp;
10431 abi_long count = arg3;
10432 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10433 goto efault;
10434 ret = get_errno(sys_getdents64(arg1, dirp, count));
10435 if (!is_error(ret)) {
10436 struct linux_dirent64 *de;
10437 int len = ret;
10438 int reclen;
10439 de = dirp;
10440 while (len > 0) {
10441 reclen = de->d_reclen;
10442 if (reclen > len)
10443 break;
10444 de->d_reclen = tswap16(reclen);
10445 tswap64s((uint64_t *)&de->d_ino);
10446 tswap64s((uint64_t *)&de->d_off);
10447 de = (struct linux_dirent64 *)((char *)de + reclen);
10448 len -= reclen;
10449 }
10450 }
10451 unlock_user(dirp, arg2, ret);
10452 }
10453 break;
10454 #endif /* TARGET_NR_getdents64 */
10455 #if defined(TARGET_NR__newselect)
10456 case TARGET_NR__newselect:
10457 ret = do_select(arg1, arg2, arg3, arg4, arg5);
10458 break;
10459 #endif
10460 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
10461 # ifdef TARGET_NR_poll
10462 case TARGET_NR_poll:
10463 # endif
10464 # ifdef TARGET_NR_ppoll
10465 case TARGET_NR_ppoll:
10466 # endif
10467 {
10468 struct target_pollfd *target_pfd;
10469 unsigned int nfds = arg2;
10470 struct pollfd *pfd;
10471 unsigned int i;
10472
10473 pfd = NULL;
10474 target_pfd = NULL;
10475 if (nfds) {
10476 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
10477 ret = -TARGET_EINVAL;
10478 break;
10479 }
10480
10481 target_pfd = lock_user(VERIFY_WRITE, arg1,
10482 sizeof(struct target_pollfd) * nfds, 1);
10483 if (!target_pfd) {
10484 goto efault;
10485 }
10486
10487 pfd = alloca(sizeof(struct pollfd) * nfds);
10488 for (i = 0; i < nfds; i++) {
10489 pfd[i].fd = tswap32(target_pfd[i].fd);
10490 pfd[i].events = tswap16(target_pfd[i].events);
10491 }
10492 }
10493
10494 switch (num) {
10495 # ifdef TARGET_NR_ppoll
10496 case TARGET_NR_ppoll:
10497 {
10498 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
10499 target_sigset_t *target_set;
10500 sigset_t _set, *set = &_set;
10501
10502 if (arg3) {
10503 if (target_to_host_timespec(timeout_ts, arg3)) {
10504 unlock_user(target_pfd, arg1, 0);
10505 goto efault;
10506 }
10507 } else {
10508 timeout_ts = NULL;
10509 }
10510
10511 if (arg4) {
10512 if (arg5 != sizeof(target_sigset_t)) {
10513 unlock_user(target_pfd, arg1, 0);
10514 ret = -TARGET_EINVAL;
10515 break;
10516 }
10517
10518 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
10519 if (!target_set) {
10520 unlock_user(target_pfd, arg1, 0);
10521 goto efault;
10522 }
10523 target_to_host_sigset(set, target_set);
10524 } else {
10525 set = NULL;
10526 }
10527
10528 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
10529 set, SIGSET_T_SIZE));
10530
10531 if (!is_error(ret) && arg3) {
10532 host_to_target_timespec(arg3, timeout_ts);
10533 }
10534 if (arg4) {
10535 unlock_user(target_set, arg4, 0);
10536 }
10537 break;
10538 }
10539 # endif
10540 # ifdef TARGET_NR_poll
10541 case TARGET_NR_poll:
10542 {
10543 struct timespec ts, *pts;
10544
10545 if (arg3 >= 0) {
10546 /* Convert ms to secs, ns */
10547 ts.tv_sec = arg3 / 1000;
10548 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
10549 pts = &ts;
10550 } else {
10551 /* -ve poll() timeout means "infinite" */
10552 pts = NULL;
10553 }
10554 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
10555 break;
10556 }
10557 # endif
10558 default:
10559 g_assert_not_reached();
10560 }
10561
10562 if (!is_error(ret)) {
10563 for(i = 0; i < nfds; i++) {
10564 target_pfd[i].revents = tswap16(pfd[i].revents);
10565 }
10566 }
10567 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
10568 }
10569 break;
10570 #endif
10571 case TARGET_NR_flock:
10572 /* NOTE: the flock constant seems to be the same for every
10573 Linux platform */
10574 ret = get_errno(safe_flock(arg1, arg2));
10575 break;
10576 case TARGET_NR_readv:
10577 {
10578 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10579 if (vec != NULL) {
10580 ret = get_errno(safe_readv(arg1, vec, arg3));
10581 unlock_iovec(vec, arg2, arg3, 1);
10582 } else {
10583 ret = -host_to_target_errno(errno);
10584 }
10585 }
10586 break;
10587 case TARGET_NR_writev:
10588 {
10589 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10590 if (vec != NULL) {
10591 ret = get_errno(safe_writev(arg1, vec, arg3));
10592 unlock_iovec(vec, arg2, arg3, 0);
10593 } else {
10594 ret = -host_to_target_errno(errno);
10595 }
10596 }
10597 break;
10598 #if defined(TARGET_NR_preadv)
10599 case TARGET_NR_preadv:
10600 {
10601 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10602 if (vec != NULL) {
10603 unsigned long low, high;
10604
10605 target_to_host_low_high(arg4, arg5, &low, &high);
10606 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10607 unlock_iovec(vec, arg2, arg3, 1);
10608 } else {
10609 ret = -host_to_target_errno(errno);
10610 }
10611 }
10612 break;
10613 #endif
10614 #if defined(TARGET_NR_pwritev)
10615 case TARGET_NR_pwritev:
10616 {
10617 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10618 if (vec != NULL) {
10619 unsigned long low, high;
10620
10621 target_to_host_low_high(arg4, arg5, &low, &high);
10622 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10623 unlock_iovec(vec, arg2, arg3, 0);
10624 } else {
10625 ret = -host_to_target_errno(errno);
10626 }
10627 }
10628 break;
10629 #endif
10630 case TARGET_NR_getsid:
10631 ret = get_errno(getsid(arg1));
10632 break;
10633 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10634 case TARGET_NR_fdatasync:
10635 ret = get_errno(fdatasync(arg1));
10636 break;
10637 #endif
10638 #ifdef TARGET_NR__sysctl
10639 case TARGET_NR__sysctl:
10640 /* We don't implement this, but ENOTDIR is always a safe
10641 return value. */
10642 ret = -TARGET_ENOTDIR;
10643 break;
10644 #endif
10645 case TARGET_NR_sched_getaffinity:
10646 {
10647 unsigned int mask_size;
10648 unsigned long *mask;
10649
10650 /*
10651 * sched_getaffinity needs multiples of ulong, so need to take
10652 * care of mismatches between target ulong and host ulong sizes.
10653 */
10654 if (arg2 & (sizeof(abi_ulong) - 1)) {
10655 ret = -TARGET_EINVAL;
10656 break;
10657 }
10658 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10659
10660 mask = alloca(mask_size);
10661 memset(mask, 0, mask_size);
10662 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10663
10664 if (!is_error(ret)) {
10665 if (ret > arg2) {
10666 /* More data returned than the caller's buffer will fit.
10667 * This only happens if sizeof(abi_long) < sizeof(long)
10668 * and the caller passed us a buffer holding an odd number
10669 * of abi_longs. If the host kernel is actually using the
10670 * extra 4 bytes then fail EINVAL; otherwise we can just
10671 * ignore them and only copy the interesting part.
10672 */
10673 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10674 if (numcpus > arg2 * 8) {
10675 ret = -TARGET_EINVAL;
10676 break;
10677 }
10678 ret = arg2;
10679 }
10680
10681 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10682 goto efault;
10683 }
10684 }
10685 }
10686 break;
10687 case TARGET_NR_sched_setaffinity:
10688 {
10689 unsigned int mask_size;
10690 unsigned long *mask;
10691
10692 /*
10693 * sched_setaffinity needs multiples of ulong, so need to take
10694 * care of mismatches between target ulong and host ulong sizes.
10695 */
10696 if (arg2 & (sizeof(abi_ulong) - 1)) {
10697 ret = -TARGET_EINVAL;
10698 break;
10699 }
10700 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10701 mask = alloca(mask_size);
10702
10703 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10704 if (ret) {
10705 break;
10706 }
10707
10708 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10709 }
10710 break;
10711 case TARGET_NR_getcpu:
10712 {
10713 unsigned cpu, node;
10714 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10715 arg2 ? &node : NULL,
10716 NULL));
10717 if (is_error(ret)) {
10718 goto fail;
10719 }
10720 if (arg1 && put_user_u32(cpu, arg1)) {
10721 goto efault;
10722 }
10723 if (arg2 && put_user_u32(node, arg2)) {
10724 goto efault;
10725 }
10726 }
10727 break;
10728 case TARGET_NR_sched_setparam:
10729 {
10730 struct sched_param *target_schp;
10731 struct sched_param schp;
10732
10733 if (arg2 == 0) {
10734 return -TARGET_EINVAL;
10735 }
10736 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
10737 goto efault;
10738 schp.sched_priority = tswap32(target_schp->sched_priority);
10739 unlock_user_struct(target_schp, arg2, 0);
10740 ret = get_errno(sched_setparam(arg1, &schp));
10741 }
10742 break;
10743 case TARGET_NR_sched_getparam:
10744 {
10745 struct sched_param *target_schp;
10746 struct sched_param schp;
10747
10748 if (arg2 == 0) {
10749 return -TARGET_EINVAL;
10750 }
10751 ret = get_errno(sched_getparam(arg1, &schp));
10752 if (!is_error(ret)) {
10753 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
10754 goto efault;
10755 target_schp->sched_priority = tswap32(schp.sched_priority);
10756 unlock_user_struct(target_schp, arg2, 1);
10757 }
10758 }
10759 break;
10760 case TARGET_NR_sched_setscheduler:
10761 {
10762 struct sched_param *target_schp;
10763 struct sched_param schp;
10764 if (arg3 == 0) {
10765 return -TARGET_EINVAL;
10766 }
10767 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
10768 goto efault;
10769 schp.sched_priority = tswap32(target_schp->sched_priority);
10770 unlock_user_struct(target_schp, arg3, 0);
10771 ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
10772 }
10773 break;
10774 case TARGET_NR_sched_getscheduler:
10775 ret = get_errno(sched_getscheduler(arg1));
10776 break;
10777 case TARGET_NR_sched_yield:
10778 ret = get_errno(sched_yield());
10779 break;
10780 case TARGET_NR_sched_get_priority_max:
10781 ret = get_errno(sched_get_priority_max(arg1));
10782 break;
10783 case TARGET_NR_sched_get_priority_min:
10784 ret = get_errno(sched_get_priority_min(arg1));
10785 break;
10786 case TARGET_NR_sched_rr_get_interval:
10787 {
10788 struct timespec ts;
10789 ret = get_errno(sched_rr_get_interval(arg1, &ts));
10790 if (!is_error(ret)) {
10791 ret = host_to_target_timespec(arg2, &ts);
10792 }
10793 }
10794 break;
10795 case TARGET_NR_nanosleep:
10796 {
10797 struct timespec req, rem;
10798 target_to_host_timespec(&req, arg1);
10799 ret = get_errno(safe_nanosleep(&req, &rem));
10800 if (is_error(ret) && arg2) {
10801 host_to_target_timespec(arg2, &rem);
10802 }
10803 }
10804 break;
10805 #ifdef TARGET_NR_query_module
10806 case TARGET_NR_query_module:
10807 goto unimplemented;
10808 #endif
10809 #ifdef TARGET_NR_nfsservctl
10810 case TARGET_NR_nfsservctl:
10811 goto unimplemented;
10812 #endif
10813 case TARGET_NR_prctl:
10814 switch (arg1) {
10815 case PR_GET_PDEATHSIG:
10816 {
10817 int deathsig;
10818 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
10819 if (!is_error(ret) && arg2
10820 && put_user_ual(deathsig, arg2)) {
10821 goto efault;
10822 }
10823 break;
10824 }
10825 #ifdef PR_GET_NAME
10826 case PR_GET_NAME:
10827 {
10828 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
10829 if (!name) {
10830 goto efault;
10831 }
10832 ret = get_errno(prctl(arg1, (unsigned long)name,
10833 arg3, arg4, arg5));
10834 unlock_user(name, arg2, 16);
10835 break;
10836 }
10837 case PR_SET_NAME:
10838 {
10839 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
10840 if (!name) {
10841 goto efault;
10842 }
10843 ret = get_errno(prctl(arg1, (unsigned long)name,
10844 arg3, arg4, arg5));
10845 unlock_user(name, arg2, 0);
10846 break;
10847 }
10848 #endif
10849 #ifdef TARGET_AARCH64
10850 case TARGET_PR_SVE_SET_VL:
10851 /*
10852 * We cannot support either PR_SVE_SET_VL_ONEXEC or
10853 * PR_SVE_VL_INHERIT. Note the kernel definition
10854 * of sve_vl_valid allows for VQ=512, i.e. VL=8192,
10855 * even though the current architectural maximum is VQ=16.
10856 */
10857 ret = -TARGET_EINVAL;
10858 if (arm_feature(cpu_env, ARM_FEATURE_SVE)
10859 && arg2 >= 0 && arg2 <= 512 * 16 && !(arg2 & 15)) {
10860 CPUARMState *env = cpu_env;
10861 ARMCPU *cpu = arm_env_get_cpu(env);
10862 uint32_t vq, old_vq;
10863
10864 old_vq = (env->vfp.zcr_el[1] & 0xf) + 1;
10865 vq = MAX(arg2 / 16, 1);
10866 vq = MIN(vq, cpu->sve_max_vq);
10867
10868 if (vq < old_vq) {
10869 aarch64_sve_narrow_vq(env, vq);
10870 }
10871 env->vfp.zcr_el[1] = vq - 1;
10872 ret = vq * 16;
10873 }
10874 break;
10875 case TARGET_PR_SVE_GET_VL:
10876 ret = -TARGET_EINVAL;
10877 if (arm_feature(cpu_env, ARM_FEATURE_SVE)) {
10878 CPUARMState *env = cpu_env;
10879 ret = ((env->vfp.zcr_el[1] & 0xf) + 1) * 16;
10880 }
10881 break;
10882 #endif /* AARCH64 */
10883 case PR_GET_SECCOMP:
10884 case PR_SET_SECCOMP:
10885 /* Disable seccomp to prevent the target disabling syscalls we
10886 * need. */
10887 ret = -TARGET_EINVAL;
10888 break;
10889 default:
10890 /* Most prctl options have no pointer arguments */
10891 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
10892 break;
10893 }
10894 break;
10895 #ifdef TARGET_NR_arch_prctl
10896 case TARGET_NR_arch_prctl:
10897 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
10898 ret = do_arch_prctl(cpu_env, arg1, arg2);
10899 break;
10900 #else
10901 goto unimplemented;
10902 #endif
10903 #endif
10904 #ifdef TARGET_NR_pread64
10905 case TARGET_NR_pread64:
10906 if (regpairs_aligned(cpu_env, num)) {
10907 arg4 = arg5;
10908 arg5 = arg6;
10909 }
10910 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
10911 goto efault;
10912 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
10913 unlock_user(p, arg2, ret);
10914 break;
10915 case TARGET_NR_pwrite64:
10916 if (regpairs_aligned(cpu_env, num)) {
10917 arg4 = arg5;
10918 arg5 = arg6;
10919 }
10920 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
10921 goto efault;
10922 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
10923 unlock_user(p, arg2, 0);
10924 break;
10925 #endif
10926 case TARGET_NR_getcwd:
10927 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
10928 goto efault;
10929 ret = get_errno(sys_getcwd1(p, arg2));
10930 unlock_user(p, arg1, ret);
10931 break;
10932 case TARGET_NR_capget:
10933 case TARGET_NR_capset:
10934 {
10935 struct target_user_cap_header *target_header;
10936 struct target_user_cap_data *target_data = NULL;
10937 struct __user_cap_header_struct header;
10938 struct __user_cap_data_struct data[2];
10939 struct __user_cap_data_struct *dataptr = NULL;
10940 int i, target_datalen;
10941 int data_items = 1;
10942
10943 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
10944 goto efault;
10945 }
10946 header.version = tswap32(target_header->version);
10947 header.pid = tswap32(target_header->pid);
10948
10949 if (header.version != _LINUX_CAPABILITY_VERSION) {
10950 /* Version 2 and up takes pointer to two user_data structs */
10951 data_items = 2;
10952 }
10953
10954 target_datalen = sizeof(*target_data) * data_items;
10955
10956 if (arg2) {
10957 if (num == TARGET_NR_capget) {
10958 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
10959 } else {
10960 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
10961 }
10962 if (!target_data) {
10963 unlock_user_struct(target_header, arg1, 0);
10964 goto efault;
10965 }
10966
10967 if (num == TARGET_NR_capset) {
10968 for (i = 0; i < data_items; i++) {
10969 data[i].effective = tswap32(target_data[i].effective);
10970 data[i].permitted = tswap32(target_data[i].permitted);
10971 data[i].inheritable = tswap32(target_data[i].inheritable);
10972 }
10973 }
10974
10975 dataptr = data;
10976 }
10977
10978 if (num == TARGET_NR_capget) {
10979 ret = get_errno(capget(&header, dataptr));
10980 } else {
10981 ret = get_errno(capset(&header, dataptr));
10982 }
10983
10984 /* The kernel always updates version for both capget and capset */
10985 target_header->version = tswap32(header.version);
10986 unlock_user_struct(target_header, arg1, 1);
10987
10988 if (arg2) {
10989 if (num == TARGET_NR_capget) {
10990 for (i = 0; i < data_items; i++) {
10991 target_data[i].effective = tswap32(data[i].effective);
10992 target_data[i].permitted = tswap32(data[i].permitted);
10993 target_data[i].inheritable = tswap32(data[i].inheritable);
10994 }
10995 unlock_user(target_data, arg2, target_datalen);
10996 } else {
10997 unlock_user(target_data, arg2, 0);
10998 }
10999 }
11000 break;
11001 }
11002 case TARGET_NR_sigaltstack:
11003 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env));
11004 break;
11005
11006 #ifdef CONFIG_SENDFILE
11007 case TARGET_NR_sendfile:
11008 {
11009 off_t *offp = NULL;
11010 off_t off;
11011 if (arg3) {
11012 ret = get_user_sal(off, arg3);
11013 if (is_error(ret)) {
11014 break;
11015 }
11016 offp = &off;
11017 }
11018 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11019 if (!is_error(ret) && arg3) {
11020 abi_long ret2 = put_user_sal(off, arg3);
11021 if (is_error(ret2)) {
11022 ret = ret2;
11023 }
11024 }
11025 break;
11026 }
11027 #ifdef TARGET_NR_sendfile64
11028 case TARGET_NR_sendfile64:
11029 {
11030 off_t *offp = NULL;
11031 off_t off;
11032 if (arg3) {
11033 ret = get_user_s64(off, arg3);
11034 if (is_error(ret)) {
11035 break;
11036 }
11037 offp = &off;
11038 }
11039 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11040 if (!is_error(ret) && arg3) {
11041 abi_long ret2 = put_user_s64(off, arg3);
11042 if (is_error(ret2)) {
11043 ret = ret2;
11044 }
11045 }
11046 break;
11047 }
11048 #endif
11049 #else
11050 case TARGET_NR_sendfile:
11051 #ifdef TARGET_NR_sendfile64
11052 case TARGET_NR_sendfile64:
11053 #endif
11054 goto unimplemented;
11055 #endif
11056
11057 #ifdef TARGET_NR_getpmsg
11058 case TARGET_NR_getpmsg:
11059 goto unimplemented;
11060 #endif
11061 #ifdef TARGET_NR_putpmsg
11062 case TARGET_NR_putpmsg:
11063 goto unimplemented;
11064 #endif
11065 #ifdef TARGET_NR_vfork
11066 case TARGET_NR_vfork:
11067 ret = get_errno(do_fork(cpu_env,
11068 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11069 0, 0, 0, 0));
11070 break;
11071 #endif
11072 #ifdef TARGET_NR_ugetrlimit
11073 case TARGET_NR_ugetrlimit:
11074 {
11075 struct rlimit rlim;
11076 int resource = target_to_host_resource(arg1);
11077 ret = get_errno(getrlimit(resource, &rlim));
11078 if (!is_error(ret)) {
11079 struct target_rlimit *target_rlim;
11080 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11081 goto efault;
11082 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11083 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11084 unlock_user_struct(target_rlim, arg2, 1);
11085 }
11086 break;
11087 }
11088 #endif
11089 #ifdef TARGET_NR_truncate64
11090 case TARGET_NR_truncate64:
11091 if (!(p = lock_user_string(arg1)))
11092 goto efault;
11093 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11094 unlock_user(p, arg1, 0);
11095 break;
11096 #endif
11097 #ifdef TARGET_NR_ftruncate64
11098 case TARGET_NR_ftruncate64:
11099 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11100 break;
11101 #endif
11102 #ifdef TARGET_NR_stat64
11103 case TARGET_NR_stat64:
11104 if (!(p = lock_user_string(arg1)))
11105 goto efault;
11106 ret = get_errno(stat(path(p), &st));
11107 unlock_user(p, arg1, 0);
11108 if (!is_error(ret))
11109 ret = host_to_target_stat64(cpu_env, arg2, &st);
11110 break;
11111 #endif
11112 #ifdef TARGET_NR_lstat64
11113 case TARGET_NR_lstat64:
11114 if (!(p = lock_user_string(arg1)))
11115 goto efault;
11116 ret = get_errno(lstat(path(p), &st));
11117 unlock_user(p, arg1, 0);
11118 if (!is_error(ret))
11119 ret = host_to_target_stat64(cpu_env, arg2, &st);
11120 break;
11121 #endif
11122 #ifdef TARGET_NR_fstat64
11123 case TARGET_NR_fstat64:
11124 ret = get_errno(fstat(arg1, &st));
11125 if (!is_error(ret))
11126 ret = host_to_target_stat64(cpu_env, arg2, &st);
11127 break;
11128 #endif
11129 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11130 #ifdef TARGET_NR_fstatat64
11131 case TARGET_NR_fstatat64:
11132 #endif
11133 #ifdef TARGET_NR_newfstatat
11134 case TARGET_NR_newfstatat:
11135 #endif
11136 if (!(p = lock_user_string(arg2)))
11137 goto efault;
11138 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11139 if (!is_error(ret))
11140 ret = host_to_target_stat64(cpu_env, arg3, &st);
11141 break;
11142 #endif
11143 #ifdef TARGET_NR_lchown
11144 case TARGET_NR_lchown:
11145 if (!(p = lock_user_string(arg1)))
11146 goto efault;
11147 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11148 unlock_user(p, arg1, 0);
11149 break;
11150 #endif
11151 #ifdef TARGET_NR_getuid
11152 case TARGET_NR_getuid:
11153 ret = get_errno(high2lowuid(getuid()));
11154 break;
11155 #endif
11156 #ifdef TARGET_NR_getgid
11157 case TARGET_NR_getgid:
11158 ret = get_errno(high2lowgid(getgid()));
11159 break;
11160 #endif
11161 #ifdef TARGET_NR_geteuid
11162 case TARGET_NR_geteuid:
11163 ret = get_errno(high2lowuid(geteuid()));
11164 break;
11165 #endif
11166 #ifdef TARGET_NR_getegid
11167 case TARGET_NR_getegid:
11168 ret = get_errno(high2lowgid(getegid()));
11169 break;
11170 #endif
11171 case TARGET_NR_setreuid:
11172 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11173 break;
11174 case TARGET_NR_setregid:
11175 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11176 break;
11177 case TARGET_NR_getgroups:
11178 {
11179 int gidsetsize = arg1;
11180 target_id *target_grouplist;
11181 gid_t *grouplist;
11182 int i;
11183
11184 grouplist = alloca(gidsetsize * sizeof(gid_t));
11185 ret = get_errno(getgroups(gidsetsize, grouplist));
11186 if (gidsetsize == 0)
11187 break;
11188 if (!is_error(ret)) {
11189 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
11190 if (!target_grouplist)
11191 goto efault;
11192 for(i = 0;i < ret; i++)
11193 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11194 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
11195 }
11196 }
11197 break;
11198 case TARGET_NR_setgroups:
11199 {
11200 int gidsetsize = arg1;
11201 target_id *target_grouplist;
11202 gid_t *grouplist = NULL;
11203 int i;
11204 if (gidsetsize) {
11205 grouplist = alloca(gidsetsize * sizeof(gid_t));
11206 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
11207 if (!target_grouplist) {
11208 ret = -TARGET_EFAULT;
11209 goto fail;
11210 }
11211 for (i = 0; i < gidsetsize; i++) {
11212 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11213 }
11214 unlock_user(target_grouplist, arg2, 0);
11215 }
11216 ret = get_errno(setgroups(gidsetsize, grouplist));
11217 }
11218 break;
11219 case TARGET_NR_fchown:
11220 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11221 break;
11222 #if defined(TARGET_NR_fchownat)
11223 case TARGET_NR_fchownat:
11224 if (!(p = lock_user_string(arg2)))
11225 goto efault;
11226 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11227 low2highgid(arg4), arg5));
11228 unlock_user(p, arg2, 0);
11229 break;
11230 #endif
11231 #ifdef TARGET_NR_setresuid
11232 case TARGET_NR_setresuid:
11233 ret = get_errno(sys_setresuid(low2highuid(arg1),
11234 low2highuid(arg2),
11235 low2highuid(arg3)));
11236 break;
11237 #endif
11238 #ifdef TARGET_NR_getresuid
11239 case TARGET_NR_getresuid:
11240 {
11241 uid_t ruid, euid, suid;
11242 ret = get_errno(getresuid(&ruid, &euid, &suid));
11243 if (!is_error(ret)) {
11244 if (put_user_id(high2lowuid(ruid), arg1)
11245 || put_user_id(high2lowuid(euid), arg2)
11246 || put_user_id(high2lowuid(suid), arg3))
11247 goto efault;
11248 }
11249 }
11250 break;
11251 #endif
11252 #ifdef TARGET_NR_getresgid
11253 case TARGET_NR_setresgid:
11254 ret = get_errno(sys_setresgid(low2highgid(arg1),
11255 low2highgid(arg2),
11256 low2highgid(arg3)));
11257 break;
11258 #endif
11259 #ifdef TARGET_NR_getresgid
11260 case TARGET_NR_getresgid:
11261 {
11262 gid_t rgid, egid, sgid;
11263 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11264 if (!is_error(ret)) {
11265 if (put_user_id(high2lowgid(rgid), arg1)
11266 || put_user_id(high2lowgid(egid), arg2)
11267 || put_user_id(high2lowgid(sgid), arg3))
11268 goto efault;
11269 }
11270 }
11271 break;
11272 #endif
11273 #ifdef TARGET_NR_chown
11274 case TARGET_NR_chown:
11275 if (!(p = lock_user_string(arg1)))
11276 goto efault;
11277 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11278 unlock_user(p, arg1, 0);
11279 break;
11280 #endif
11281 case TARGET_NR_setuid:
11282 ret = get_errno(sys_setuid(low2highuid(arg1)));
11283 break;
11284 case TARGET_NR_setgid:
11285 ret = get_errno(sys_setgid(low2highgid(arg1)));
11286 break;
11287 case TARGET_NR_setfsuid:
11288 ret = get_errno(setfsuid(arg1));
11289 break;
11290 case TARGET_NR_setfsgid:
11291 ret = get_errno(setfsgid(arg1));
11292 break;
11293
11294 #ifdef TARGET_NR_lchown32
11295 case TARGET_NR_lchown32:
11296 if (!(p = lock_user_string(arg1)))
11297 goto efault;
11298 ret = get_errno(lchown(p, arg2, arg3));
11299 unlock_user(p, arg1, 0);
11300 break;
11301 #endif
11302 #ifdef TARGET_NR_getuid32
11303 case TARGET_NR_getuid32:
11304 ret = get_errno(getuid());
11305 break;
11306 #endif
11307
11308 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11309 /* Alpha specific */
11310 case TARGET_NR_getxuid:
11311 {
11312 uid_t euid;
11313 euid=geteuid();
11314 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
11315 }
11316 ret = get_errno(getuid());
11317 break;
11318 #endif
11319 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11320 /* Alpha specific */
11321 case TARGET_NR_getxgid:
11322 {
11323 uid_t egid;
11324 egid=getegid();
11325 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
11326 }
11327 ret = get_errno(getgid());
11328 break;
11329 #endif
11330 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11331 /* Alpha specific */
11332 case TARGET_NR_osf_getsysinfo:
11333 ret = -TARGET_EOPNOTSUPP;
11334 switch (arg1) {
11335 case TARGET_GSI_IEEE_FP_CONTROL:
11336 {
11337 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env);
11338
11339 /* Copied from linux ieee_fpcr_to_swcr. */
11340 swcr = (fpcr >> 35) & SWCR_STATUS_MASK;
11341 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
11342 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
11343 | SWCR_TRAP_ENABLE_DZE
11344 | SWCR_TRAP_ENABLE_OVF);
11345 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF
11346 | SWCR_TRAP_ENABLE_INE);
11347 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
11348 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
11349
11350 if (put_user_u64 (swcr, arg2))
11351 goto efault;
11352 ret = 0;
11353 }
11354 break;
11355
11356 /* case GSI_IEEE_STATE_AT_SIGNAL:
11357 -- Not implemented in linux kernel.
11358 case GSI_UACPROC:
11359 -- Retrieves current unaligned access state; not much used.
11360 case GSI_PROC_TYPE:
11361 -- Retrieves implver information; surely not used.
11362 case GSI_GET_HWRPB:
11363 -- Grabs a copy of the HWRPB; surely not used.
11364 */
11365 }
11366 break;
11367 #endif
11368 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11369 /* Alpha specific */
11370 case TARGET_NR_osf_setsysinfo:
11371 ret = -TARGET_EOPNOTSUPP;
11372 switch (arg1) {
11373 case TARGET_SSI_IEEE_FP_CONTROL:
11374 {
11375 uint64_t swcr, fpcr, orig_fpcr;
11376
11377 if (get_user_u64 (swcr, arg2)) {
11378 goto efault;
11379 }
11380 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
11381 fpcr = orig_fpcr & FPCR_DYN_MASK;
11382
11383 /* Copied from linux ieee_swcr_to_fpcr. */
11384 fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
11385 fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
11386 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
11387 | SWCR_TRAP_ENABLE_DZE
11388 | SWCR_TRAP_ENABLE_OVF)) << 48;
11389 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
11390 | SWCR_TRAP_ENABLE_INE)) << 57;
11391 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
11392 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
11393
11394 cpu_alpha_store_fpcr(cpu_env, fpcr);
11395 ret = 0;
11396 }
11397 break;
11398
11399 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11400 {
11401 uint64_t exc, fpcr, orig_fpcr;
11402 int si_code;
11403
11404 if (get_user_u64(exc, arg2)) {
11405 goto efault;
11406 }
11407
11408 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
11409
11410 /* We only add to the exception status here. */
11411 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35);
11412
11413 cpu_alpha_store_fpcr(cpu_env, fpcr);
11414 ret = 0;
11415
11416 /* Old exceptions are not signaled. */
11417 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK);
11418
11419 /* If any exceptions set by this call,
11420 and are unmasked, send a signal. */
11421 si_code = 0;
11422 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) {
11423 si_code = TARGET_FPE_FLTRES;
11424 }
11425 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) {
11426 si_code = TARGET_FPE_FLTUND;
11427 }
11428 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) {
11429 si_code = TARGET_FPE_FLTOVF;
11430 }
11431 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) {
11432 si_code = TARGET_FPE_FLTDIV;
11433 }
11434 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) {
11435 si_code = TARGET_FPE_FLTINV;
11436 }
11437 if (si_code != 0) {
11438 target_siginfo_t info;
11439 info.si_signo = SIGFPE;
11440 info.si_errno = 0;
11441 info.si_code = si_code;
11442 info._sifields._sigfault._addr
11443 = ((CPUArchState *)cpu_env)->pc;
11444 queue_signal((CPUArchState *)cpu_env, info.si_signo,
11445 QEMU_SI_FAULT, &info);
11446 }
11447 }
11448 break;
11449
11450 /* case SSI_NVPAIRS:
11451 -- Used with SSIN_UACPROC to enable unaligned accesses.
11452 case SSI_IEEE_STATE_AT_SIGNAL:
11453 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11454 -- Not implemented in linux kernel
11455 */
11456 }
11457 break;
11458 #endif
11459 #ifdef TARGET_NR_osf_sigprocmask
11460 /* Alpha specific. */
11461 case TARGET_NR_osf_sigprocmask:
11462 {
11463 abi_ulong mask;
11464 int how;
11465 sigset_t set, oldset;
11466
11467 switch(arg1) {
11468 case TARGET_SIG_BLOCK:
11469 how = SIG_BLOCK;
11470 break;
11471 case TARGET_SIG_UNBLOCK:
11472 how = SIG_UNBLOCK;
11473 break;
11474 case TARGET_SIG_SETMASK:
11475 how = SIG_SETMASK;
11476 break;
11477 default:
11478 ret = -TARGET_EINVAL;
11479 goto fail;
11480 }
11481 mask = arg2;
11482 target_to_host_old_sigset(&set, &mask);
11483 ret = do_sigprocmask(how, &set, &oldset);
11484 if (!ret) {
11485 host_to_target_old_sigset(&mask, &oldset);
11486 ret = mask;
11487 }
11488 }
11489 break;
11490 #endif
11491
11492 #ifdef TARGET_NR_getgid32
11493 case TARGET_NR_getgid32:
11494 ret = get_errno(getgid());
11495 break;
11496 #endif
11497 #ifdef TARGET_NR_geteuid32
11498 case TARGET_NR_geteuid32:
11499 ret = get_errno(geteuid());
11500 break;
11501 #endif
11502 #ifdef TARGET_NR_getegid32
11503 case TARGET_NR_getegid32:
11504 ret = get_errno(getegid());
11505 break;
11506 #endif
11507 #ifdef TARGET_NR_setreuid32
11508 case TARGET_NR_setreuid32:
11509 ret = get_errno(setreuid(arg1, arg2));
11510 break;
11511 #endif
11512 #ifdef TARGET_NR_setregid32
11513 case TARGET_NR_setregid32:
11514 ret = get_errno(setregid(arg1, arg2));
11515 break;
11516 #endif
11517 #ifdef TARGET_NR_getgroups32
11518 case TARGET_NR_getgroups32:
11519 {
11520 int gidsetsize = arg1;
11521 uint32_t *target_grouplist;
11522 gid_t *grouplist;
11523 int i;
11524
11525 grouplist = alloca(gidsetsize * sizeof(gid_t));
11526 ret = get_errno(getgroups(gidsetsize, grouplist));
11527 if (gidsetsize == 0)
11528 break;
11529 if (!is_error(ret)) {
11530 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11531 if (!target_grouplist) {
11532 ret = -TARGET_EFAULT;
11533 goto fail;
11534 }
11535 for(i = 0;i < ret; i++)
11536 target_grouplist[i] = tswap32(grouplist[i]);
11537 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11538 }
11539 }
11540 break;
11541 #endif
11542 #ifdef TARGET_NR_setgroups32
11543 case TARGET_NR_setgroups32:
11544 {
11545 int gidsetsize = arg1;
11546 uint32_t *target_grouplist;
11547 gid_t *grouplist;
11548 int i;
11549
11550 grouplist = alloca(gidsetsize * sizeof(gid_t));
11551 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11552 if (!target_grouplist) {
11553 ret = -TARGET_EFAULT;
11554 goto fail;
11555 }
11556 for(i = 0;i < gidsetsize; i++)
11557 grouplist[i] = tswap32(target_grouplist[i]);
11558 unlock_user(target_grouplist, arg2, 0);
11559 ret = get_errno(setgroups(gidsetsize, grouplist));
11560 }
11561 break;
11562 #endif
11563 #ifdef TARGET_NR_fchown32
11564 case TARGET_NR_fchown32:
11565 ret = get_errno(fchown(arg1, arg2, arg3));
11566 break;
11567 #endif
11568 #ifdef TARGET_NR_setresuid32
11569 case TARGET_NR_setresuid32:
11570 ret = get_errno(sys_setresuid(arg1, arg2, arg3));
11571 break;
11572 #endif
11573 #ifdef TARGET_NR_getresuid32
11574 case TARGET_NR_getresuid32:
11575 {
11576 uid_t ruid, euid, suid;
11577 ret = get_errno(getresuid(&ruid, &euid, &suid));
11578 if (!is_error(ret)) {
11579 if (put_user_u32(ruid, arg1)
11580 || put_user_u32(euid, arg2)
11581 || put_user_u32(suid, arg3))
11582 goto efault;
11583 }
11584 }
11585 break;
11586 #endif
11587 #ifdef TARGET_NR_setresgid32
11588 case TARGET_NR_setresgid32:
11589 ret = get_errno(sys_setresgid(arg1, arg2, arg3));
11590 break;
11591 #endif
11592 #ifdef TARGET_NR_getresgid32
11593 case TARGET_NR_getresgid32:
11594 {
11595 gid_t rgid, egid, sgid;
11596 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11597 if (!is_error(ret)) {
11598 if (put_user_u32(rgid, arg1)
11599 || put_user_u32(egid, arg2)
11600 || put_user_u32(sgid, arg3))
11601 goto efault;
11602 }
11603 }
11604 break;
11605 #endif
11606 #ifdef TARGET_NR_chown32
11607 case TARGET_NR_chown32:
11608 if (!(p = lock_user_string(arg1)))
11609 goto efault;
11610 ret = get_errno(chown(p, arg2, arg3));
11611 unlock_user(p, arg1, 0);
11612 break;
11613 #endif
11614 #ifdef TARGET_NR_setuid32
11615 case TARGET_NR_setuid32:
11616 ret = get_errno(sys_setuid(arg1));
11617 break;
11618 #endif
11619 #ifdef TARGET_NR_setgid32
11620 case TARGET_NR_setgid32:
11621 ret = get_errno(sys_setgid(arg1));
11622 break;
11623 #endif
11624 #ifdef TARGET_NR_setfsuid32
11625 case TARGET_NR_setfsuid32:
11626 ret = get_errno(setfsuid(arg1));
11627 break;
11628 #endif
11629 #ifdef TARGET_NR_setfsgid32
11630 case TARGET_NR_setfsgid32:
11631 ret = get_errno(setfsgid(arg1));
11632 break;
11633 #endif
11634
11635 case TARGET_NR_pivot_root:
11636 goto unimplemented;
11637 #ifdef TARGET_NR_mincore
11638 case TARGET_NR_mincore:
11639 {
11640 void *a;
11641 ret = -TARGET_ENOMEM;
11642 a = lock_user(VERIFY_READ, arg1, arg2, 0);
11643 if (!a) {
11644 goto fail;
11645 }
11646 ret = -TARGET_EFAULT;
11647 p = lock_user_string(arg3);
11648 if (!p) {
11649 goto mincore_fail;
11650 }
11651 ret = get_errno(mincore(a, arg2, p));
11652 unlock_user(p, arg3, ret);
11653 mincore_fail:
11654 unlock_user(a, arg1, 0);
11655 }
11656 break;
11657 #endif
11658 #ifdef TARGET_NR_arm_fadvise64_64
11659 case TARGET_NR_arm_fadvise64_64:
11660 /* arm_fadvise64_64 looks like fadvise64_64 but
11661 * with different argument order: fd, advice, offset, len
11662 * rather than the usual fd, offset, len, advice.
11663 * Note that offset and len are both 64-bit so appear as
11664 * pairs of 32-bit registers.
11665 */
11666 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11667 target_offset64(arg5, arg6), arg2);
11668 ret = -host_to_target_errno(ret);
11669 break;
11670 #endif
11671
11672 #if TARGET_ABI_BITS == 32
11673
11674 #ifdef TARGET_NR_fadvise64_64
11675 case TARGET_NR_fadvise64_64:
11676 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11677 /* 6 args: fd, advice, offset (high, low), len (high, low) */
11678 ret = arg2;
11679 arg2 = arg3;
11680 arg3 = arg4;
11681 arg4 = arg5;
11682 arg5 = arg6;
11683 arg6 = ret;
11684 #else
11685 /* 6 args: fd, offset (high, low), len (high, low), advice */
11686 if (regpairs_aligned(cpu_env, num)) {
11687 /* offset is in (3,4), len in (5,6) and advice in 7 */
11688 arg2 = arg3;
11689 arg3 = arg4;
11690 arg4 = arg5;
11691 arg5 = arg6;
11692 arg6 = arg7;
11693 }
11694 #endif
11695 ret = -host_to_target_errno(posix_fadvise(arg1,
11696 target_offset64(arg2, arg3),
11697 target_offset64(arg4, arg5),
11698 arg6));
11699 break;
11700 #endif
11701
11702 #ifdef TARGET_NR_fadvise64
11703 case TARGET_NR_fadvise64:
11704 /* 5 args: fd, offset (high, low), len, advice */
11705 if (regpairs_aligned(cpu_env, num)) {
11706 /* offset is in (3,4), len in 5 and advice in 6 */
11707 arg2 = arg3;
11708 arg3 = arg4;
11709 arg4 = arg5;
11710 arg5 = arg6;
11711 }
11712 ret = -host_to_target_errno(posix_fadvise(arg1,
11713 target_offset64(arg2, arg3),
11714 arg4, arg5));
11715 break;
11716 #endif
11717
11718 #else /* not a 32-bit ABI */
11719 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11720 #ifdef TARGET_NR_fadvise64_64
11721 case TARGET_NR_fadvise64_64:
11722 #endif
11723 #ifdef TARGET_NR_fadvise64
11724 case TARGET_NR_fadvise64:
11725 #endif
11726 #ifdef TARGET_S390X
11727 switch (arg4) {
11728 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11729 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11730 case 6: arg4 = POSIX_FADV_DONTNEED; break;
11731 case 7: arg4 = POSIX_FADV_NOREUSE; break;
11732 default: break;
11733 }
11734 #endif
11735 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11736 break;
11737 #endif
11738 #endif /* end of 64-bit ABI fadvise handling */
11739
11740 #ifdef TARGET_NR_madvise
11741 case TARGET_NR_madvise:
11742 /* A straight passthrough may not be safe because qemu sometimes
11743 turns private file-backed mappings into anonymous mappings.
11744 This will break MADV_DONTNEED.
11745 This is a hint, so ignoring and returning success is ok. */
11746 ret = get_errno(0);
11747 break;
11748 #endif
11749 #if TARGET_ABI_BITS == 32
11750 case TARGET_NR_fcntl64:
11751 {
11752 int cmd;
11753 struct flock64 fl;
11754 from_flock64_fn *copyfrom = copy_from_user_flock64;
11755 to_flock64_fn *copyto = copy_to_user_flock64;
11756
11757 #ifdef TARGET_ARM
11758 if (!((CPUARMState *)cpu_env)->eabi) {
11759 copyfrom = copy_from_user_oabi_flock64;
11760 copyto = copy_to_user_oabi_flock64;
11761 }
11762 #endif
11763
11764 cmd = target_to_host_fcntl_cmd(arg2);
11765 if (cmd == -TARGET_EINVAL) {
11766 ret = cmd;
11767 break;
11768 }
11769
11770 switch(arg2) {
11771 case TARGET_F_GETLK64:
11772 ret = copyfrom(&fl, arg3);
11773 if (ret) {
11774 break;
11775 }
11776 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11777 if (ret == 0) {
11778 ret = copyto(arg3, &fl);
11779 }
11780 break;
11781
11782 case TARGET_F_SETLK64:
11783 case TARGET_F_SETLKW64:
11784 ret = copyfrom(&fl, arg3);
11785 if (ret) {
11786 break;
11787 }
11788 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11789 break;
11790 default:
11791 ret = do_fcntl(arg1, arg2, arg3);
11792 break;
11793 }
11794 break;
11795 }
11796 #endif
11797 #ifdef TARGET_NR_cacheflush
11798 case TARGET_NR_cacheflush:
11799 /* self-modifying code is handled automatically, so nothing needed */
11800 ret = 0;
11801 break;
11802 #endif
11803 #ifdef TARGET_NR_security
11804 case TARGET_NR_security:
11805 goto unimplemented;
11806 #endif
11807 #ifdef TARGET_NR_getpagesize
11808 case TARGET_NR_getpagesize:
11809 ret = TARGET_PAGE_SIZE;
11810 break;
11811 #endif
11812 case TARGET_NR_gettid:
11813 ret = get_errno(gettid());
11814 break;
11815 #ifdef TARGET_NR_readahead
11816 case TARGET_NR_readahead:
11817 #if TARGET_ABI_BITS == 32
11818 if (regpairs_aligned(cpu_env, num)) {
11819 arg2 = arg3;
11820 arg3 = arg4;
11821 arg4 = arg5;
11822 }
11823 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11824 #else
11825 ret = get_errno(readahead(arg1, arg2, arg3));
11826 #endif
11827 break;
11828 #endif
11829 #ifdef CONFIG_ATTR
11830 #ifdef TARGET_NR_setxattr
11831 case TARGET_NR_listxattr:
11832 case TARGET_NR_llistxattr:
11833 {
11834 void *p, *b = 0;
11835 if (arg2) {
11836 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11837 if (!b) {
11838 ret = -TARGET_EFAULT;
11839 break;
11840 }
11841 }
11842 p = lock_user_string(arg1);
11843 if (p) {
11844 if (num == TARGET_NR_listxattr) {
11845 ret = get_errno(listxattr(p, b, arg3));
11846 } else {
11847 ret = get_errno(llistxattr(p, b, arg3));
11848 }
11849 } else {
11850 ret = -TARGET_EFAULT;
11851 }
11852 unlock_user(p, arg1, 0);
11853 unlock_user(b, arg2, arg3);
11854 break;
11855 }
11856 case TARGET_NR_flistxattr:
11857 {
11858 void *b = 0;
11859 if (arg2) {
11860 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11861 if (!b) {
11862 ret = -TARGET_EFAULT;
11863 break;
11864 }
11865 }
11866 ret = get_errno(flistxattr(arg1, b, arg3));
11867 unlock_user(b, arg2, arg3);
11868 break;
11869 }
11870 case TARGET_NR_setxattr:
11871 case TARGET_NR_lsetxattr:
11872 {
11873 void *p, *n, *v = 0;
11874 if (arg3) {
11875 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11876 if (!v) {
11877 ret = -TARGET_EFAULT;
11878 break;
11879 }
11880 }
11881 p = lock_user_string(arg1);
11882 n = lock_user_string(arg2);
11883 if (p && n) {
11884 if (num == TARGET_NR_setxattr) {
11885 ret = get_errno(setxattr(p, n, v, arg4, arg5));
11886 } else {
11887 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11888 }
11889 } else {
11890 ret = -TARGET_EFAULT;
11891 }
11892 unlock_user(p, arg1, 0);
11893 unlock_user(n, arg2, 0);
11894 unlock_user(v, arg3, 0);
11895 }
11896 break;
11897 case TARGET_NR_fsetxattr:
11898 {
11899 void *n, *v = 0;
11900 if (arg3) {
11901 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11902 if (!v) {
11903 ret = -TARGET_EFAULT;
11904 break;
11905 }
11906 }
11907 n = lock_user_string(arg2);
11908 if (n) {
11909 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
11910 } else {
11911 ret = -TARGET_EFAULT;
11912 }
11913 unlock_user(n, arg2, 0);
11914 unlock_user(v, arg3, 0);
11915 }
11916 break;
11917 case TARGET_NR_getxattr:
11918 case TARGET_NR_lgetxattr:
11919 {
11920 void *p, *n, *v = 0;
11921 if (arg3) {
11922 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11923 if (!v) {
11924 ret = -TARGET_EFAULT;
11925 break;
11926 }
11927 }
11928 p = lock_user_string(arg1);
11929 n = lock_user_string(arg2);
11930 if (p && n) {
11931 if (num == TARGET_NR_getxattr) {
11932 ret = get_errno(getxattr(p, n, v, arg4));
11933 } else {
11934 ret = get_errno(lgetxattr(p, n, v, arg4));
11935 }
11936 } else {
11937 ret = -TARGET_EFAULT;
11938 }
11939 unlock_user(p, arg1, 0);
11940 unlock_user(n, arg2, 0);
11941 unlock_user(v, arg3, arg4);
11942 }
11943 break;
11944 case TARGET_NR_fgetxattr:
11945 {
11946 void *n, *v = 0;
11947 if (arg3) {
11948 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11949 if (!v) {
11950 ret = -TARGET_EFAULT;
11951 break;
11952 }
11953 }
11954 n = lock_user_string(arg2);
11955 if (n) {
11956 ret = get_errno(fgetxattr(arg1, n, v, arg4));
11957 } else {
11958 ret = -TARGET_EFAULT;
11959 }
11960 unlock_user(n, arg2, 0);
11961 unlock_user(v, arg3, arg4);
11962 }
11963 break;
11964 case TARGET_NR_removexattr:
11965 case TARGET_NR_lremovexattr:
11966 {
11967 void *p, *n;
11968 p = lock_user_string(arg1);
11969 n = lock_user_string(arg2);
11970 if (p && n) {
11971 if (num == TARGET_NR_removexattr) {
11972 ret = get_errno(removexattr(p, n));
11973 } else {
11974 ret = get_errno(lremovexattr(p, n));
11975 }
11976 } else {
11977 ret = -TARGET_EFAULT;
11978 }
11979 unlock_user(p, arg1, 0);
11980 unlock_user(n, arg2, 0);
11981 }
11982 break;
11983 case TARGET_NR_fremovexattr:
11984 {
11985 void *n;
11986 n = lock_user_string(arg2);
11987 if (n) {
11988 ret = get_errno(fremovexattr(arg1, n));
11989 } else {
11990 ret = -TARGET_EFAULT;
11991 }
11992 unlock_user(n, arg2, 0);
11993 }
11994 break;
11995 #endif
11996 #endif /* CONFIG_ATTR */
11997 #ifdef TARGET_NR_set_thread_area
11998 case TARGET_NR_set_thread_area:
11999 #if defined(TARGET_MIPS)
12000 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
12001 ret = 0;
12002 break;
12003 #elif defined(TARGET_CRIS)
12004 if (arg1 & 0xff)
12005 ret = -TARGET_EINVAL;
12006 else {
12007 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
12008 ret = 0;
12009 }
12010 break;
12011 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12012 ret = do_set_thread_area(cpu_env, arg1);
12013 break;
12014 #elif defined(TARGET_M68K)
12015 {
12016 TaskState *ts = cpu->opaque;
12017 ts->tp_value = arg1;
12018 ret = 0;
12019 break;
12020 }
12021 #else
12022 goto unimplemented_nowarn;
12023 #endif
12024 #endif
12025 #ifdef TARGET_NR_get_thread_area
12026 case TARGET_NR_get_thread_area:
12027 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12028 ret = do_get_thread_area(cpu_env, arg1);
12029 break;
12030 #elif defined(TARGET_M68K)
12031 {
12032 TaskState *ts = cpu->opaque;
12033 ret = ts->tp_value;
12034 break;
12035 }
12036 #else
12037 goto unimplemented_nowarn;
12038 #endif
12039 #endif
12040 #ifdef TARGET_NR_getdomainname
12041 case TARGET_NR_getdomainname:
12042 goto unimplemented_nowarn;
12043 #endif
12044
12045 #ifdef TARGET_NR_clock_settime
12046 case TARGET_NR_clock_settime:
12047 {
12048 struct timespec ts;
12049
12050 ret = target_to_host_timespec(&ts, arg2);
12051 if (!is_error(ret)) {
12052 ret = get_errno(clock_settime(arg1, &ts));
12053 }
12054 break;
12055 }
12056 #endif
12057 #ifdef TARGET_NR_clock_gettime
12058 case TARGET_NR_clock_gettime:
12059 {
12060 struct timespec ts;
12061 ret = get_errno(clock_gettime(arg1, &ts));
12062 if (!is_error(ret)) {
12063 ret = host_to_target_timespec(arg2, &ts);
12064 }
12065 break;
12066 }
12067 #endif
12068 #ifdef TARGET_NR_clock_getres
12069 case TARGET_NR_clock_getres:
12070 {
12071 struct timespec ts;
12072 ret = get_errno(clock_getres(arg1, &ts));
12073 if (!is_error(ret)) {
12074 host_to_target_timespec(arg2, &ts);
12075 }
12076 break;
12077 }
12078 #endif
12079 #ifdef TARGET_NR_clock_nanosleep
12080 case TARGET_NR_clock_nanosleep:
12081 {
12082 struct timespec ts;
12083 target_to_host_timespec(&ts, arg3);
12084 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12085 &ts, arg4 ? &ts : NULL));
12086 if (arg4)
12087 host_to_target_timespec(arg4, &ts);
12088
12089 #if defined(TARGET_PPC)
12090 /* clock_nanosleep is odd in that it returns positive errno values.
12091 * On PPC, CR0 bit 3 should be set in such a situation. */
12092 if (ret && ret != -TARGET_ERESTARTSYS) {
12093 ((CPUPPCState *)cpu_env)->crf[0] |= 1;
12094 }
12095 #endif
12096 break;
12097 }
12098 #endif
12099
12100 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
12101 case TARGET_NR_set_tid_address:
12102 ret = get_errno(set_tid_address((int *)g2h(arg1)));
12103 break;
12104 #endif
12105
12106 case TARGET_NR_tkill:
12107 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12108 break;
12109
12110 case TARGET_NR_tgkill:
12111 ret = get_errno(safe_tgkill((int)arg1, (int)arg2,
12112 target_to_host_signal(arg3)));
12113 break;
12114
12115 #ifdef TARGET_NR_set_robust_list
12116 case TARGET_NR_set_robust_list:
12117 case TARGET_NR_get_robust_list:
12118 /* The ABI for supporting robust futexes has userspace pass
12119 * the kernel a pointer to a linked list which is updated by
12120 * userspace after the syscall; the list is walked by the kernel
12121 * when the thread exits. Since the linked list in QEMU guest
12122 * memory isn't a valid linked list for the host and we have
12123 * no way to reliably intercept the thread-death event, we can't
12124 * support these. Silently return ENOSYS so that guest userspace
12125 * falls back to a non-robust futex implementation (which should
12126 * be OK except in the corner case of the guest crashing while
12127 * holding a mutex that is shared with another process via
12128 * shared memory).
12129 */
12130 goto unimplemented_nowarn;
12131 #endif
12132
12133 #if defined(TARGET_NR_utimensat)
12134 case TARGET_NR_utimensat:
12135 {
12136 struct timespec *tsp, ts[2];
12137 if (!arg3) {
12138 tsp = NULL;
12139 } else {
12140 target_to_host_timespec(ts, arg3);
12141 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
12142 tsp = ts;
12143 }
12144 if (!arg2)
12145 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12146 else {
12147 if (!(p = lock_user_string(arg2))) {
12148 ret = -TARGET_EFAULT;
12149 goto fail;
12150 }
12151 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12152 unlock_user(p, arg2, 0);
12153 }
12154 }
12155 break;
12156 #endif
12157 case TARGET_NR_futex:
12158 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
12159 break;
12160 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
12161 case TARGET_NR_inotify_init:
12162 ret = get_errno(sys_inotify_init());
12163 if (ret >= 0) {
12164 fd_trans_register(ret, &target_inotify_trans);
12165 }
12166 break;
12167 #endif
12168 #ifdef CONFIG_INOTIFY1
12169 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
12170 case TARGET_NR_inotify_init1:
12171 ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
12172 fcntl_flags_tbl)));
12173 if (ret >= 0) {
12174 fd_trans_register(ret, &target_inotify_trans);
12175 }
12176 break;
12177 #endif
12178 #endif
12179 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
12180 case TARGET_NR_inotify_add_watch:
12181 p = lock_user_string(arg2);
12182 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
12183 unlock_user(p, arg2, 0);
12184 break;
12185 #endif
12186 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
12187 case TARGET_NR_inotify_rm_watch:
12188 ret = get_errno(sys_inotify_rm_watch(arg1, arg2));
12189 break;
12190 #endif
12191
12192 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12193 case TARGET_NR_mq_open:
12194 {
12195 struct mq_attr posix_mq_attr;
12196 struct mq_attr *pposix_mq_attr;
12197 int host_flags;
12198
12199 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12200 pposix_mq_attr = NULL;
12201 if (arg4) {
12202 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12203 goto efault;
12204 }
12205 pposix_mq_attr = &posix_mq_attr;
12206 }
12207 p = lock_user_string(arg1 - 1);
12208 if (!p) {
12209 goto efault;
12210 }
12211 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12212 unlock_user (p, arg1, 0);
12213 }
12214 break;
12215
12216 case TARGET_NR_mq_unlink:
12217 p = lock_user_string(arg1 - 1);
12218 if (!p) {
12219 ret = -TARGET_EFAULT;
12220 break;
12221 }
12222 ret = get_errno(mq_unlink(p));
12223 unlock_user (p, arg1, 0);
12224 break;
12225
12226 case TARGET_NR_mq_timedsend:
12227 {
12228 struct timespec ts;
12229
12230 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12231 if (arg5 != 0) {
12232 target_to_host_timespec(&ts, arg5);
12233 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12234 host_to_target_timespec(arg5, &ts);
12235 } else {
12236 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12237 }
12238 unlock_user (p, arg2, arg3);
12239 }
12240 break;
12241
12242 case TARGET_NR_mq_timedreceive:
12243 {
12244 struct timespec ts;
12245 unsigned int prio;
12246
12247 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12248 if (arg5 != 0) {
12249 target_to_host_timespec(&ts, arg5);
12250 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12251 &prio, &ts));
12252 host_to_target_timespec(arg5, &ts);
12253 } else {
12254 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12255 &prio, NULL));
12256 }
12257 unlock_user (p, arg2, arg3);
12258 if (arg4 != 0)
12259 put_user_u32(prio, arg4);
12260 }
12261 break;
12262
12263 /* Not implemented for now... */
12264 /* case TARGET_NR_mq_notify: */
12265 /* break; */
12266
12267 case TARGET_NR_mq_getsetattr:
12268 {
12269 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12270 ret = 0;
12271 if (arg2 != 0) {
12272 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12273 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12274 &posix_mq_attr_out));
12275 } else if (arg3 != 0) {
12276 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12277 }
12278 if (ret == 0 && arg3 != 0) {
12279 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12280 }
12281 }
12282 break;
12283 #endif
12284
12285 #ifdef CONFIG_SPLICE
12286 #ifdef TARGET_NR_tee
12287 case TARGET_NR_tee:
12288 {
12289 ret = get_errno(tee(arg1,arg2,arg3,arg4));
12290 }
12291 break;
12292 #endif
12293 #ifdef TARGET_NR_splice
12294 case TARGET_NR_splice:
12295 {
12296 loff_t loff_in, loff_out;
12297 loff_t *ploff_in = NULL, *ploff_out = NULL;
12298 if (arg2) {
12299 if (get_user_u64(loff_in, arg2)) {
12300 goto efault;
12301 }
12302 ploff_in = &loff_in;
12303 }
12304 if (arg4) {
12305 if (get_user_u64(loff_out, arg4)) {
12306 goto efault;
12307 }
12308 ploff_out = &loff_out;
12309 }
12310 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12311 if (arg2) {
12312 if (put_user_u64(loff_in, arg2)) {
12313 goto efault;
12314 }
12315 }
12316 if (arg4) {
12317 if (put_user_u64(loff_out, arg4)) {
12318 goto efault;
12319 }
12320 }
12321 }
12322 break;
12323 #endif
12324 #ifdef TARGET_NR_vmsplice
12325 case TARGET_NR_vmsplice:
12326 {
12327 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12328 if (vec != NULL) {
12329 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12330 unlock_iovec(vec, arg2, arg3, 0);
12331 } else {
12332 ret = -host_to_target_errno(errno);
12333 }
12334 }
12335 break;
12336 #endif
12337 #endif /* CONFIG_SPLICE */
12338 #ifdef CONFIG_EVENTFD
12339 #if defined(TARGET_NR_eventfd)
12340 case TARGET_NR_eventfd:
12341 ret = get_errno(eventfd(arg1, 0));
12342 if (ret >= 0) {
12343 fd_trans_register(ret, &target_eventfd_trans);
12344 }
12345 break;
12346 #endif
12347 #if defined(TARGET_NR_eventfd2)
12348 case TARGET_NR_eventfd2:
12349 {
12350 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
12351 if (arg2 & TARGET_O_NONBLOCK) {
12352 host_flags |= O_NONBLOCK;
12353 }
12354 if (arg2 & TARGET_O_CLOEXEC) {
12355 host_flags |= O_CLOEXEC;
12356 }
12357 ret = get_errno(eventfd(arg1, host_flags));
12358 if (ret >= 0) {
12359 fd_trans_register(ret, &target_eventfd_trans);
12360 }
12361 break;
12362 }
12363 #endif
12364 #endif /* CONFIG_EVENTFD */
12365 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12366 case TARGET_NR_fallocate:
12367 #if TARGET_ABI_BITS == 32
12368 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
12369 target_offset64(arg5, arg6)));
12370 #else
12371 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
12372 #endif
12373 break;
12374 #endif
12375 #if defined(CONFIG_SYNC_FILE_RANGE)
12376 #if defined(TARGET_NR_sync_file_range)
12377 case TARGET_NR_sync_file_range:
12378 #if TARGET_ABI_BITS == 32
12379 #if defined(TARGET_MIPS)
12380 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12381 target_offset64(arg5, arg6), arg7));
12382 #else
12383 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
12384 target_offset64(arg4, arg5), arg6));
12385 #endif /* !TARGET_MIPS */
12386 #else
12387 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12388 #endif
12389 break;
12390 #endif
12391 #if defined(TARGET_NR_sync_file_range2)
12392 case TARGET_NR_sync_file_range2:
12393 /* This is like sync_file_range but the arguments are reordered */
12394 #if TARGET_ABI_BITS == 32
12395 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12396 target_offset64(arg5, arg6), arg2));
12397 #else
12398 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12399 #endif
12400 break;
12401 #endif
12402 #endif
12403 #if defined(TARGET_NR_signalfd4)
12404 case TARGET_NR_signalfd4:
12405 ret = do_signalfd4(arg1, arg2, arg4);
12406 break;
12407 #endif
12408 #if defined(TARGET_NR_signalfd)
12409 case TARGET_NR_signalfd:
12410 ret = do_signalfd4(arg1, arg2, 0);
12411 break;
12412 #endif
12413 #if defined(CONFIG_EPOLL)
12414 #if defined(TARGET_NR_epoll_create)
12415 case TARGET_NR_epoll_create:
12416 ret = get_errno(epoll_create(arg1));
12417 break;
12418 #endif
12419 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12420 case TARGET_NR_epoll_create1:
12421 ret = get_errno(epoll_create1(arg1));
12422 break;
12423 #endif
12424 #if defined(TARGET_NR_epoll_ctl)
12425 case TARGET_NR_epoll_ctl:
12426 {
12427 struct epoll_event ep;
12428 struct epoll_event *epp = 0;
12429 if (arg4) {
12430 struct target_epoll_event *target_ep;
12431 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12432 goto efault;
12433 }
12434 ep.events = tswap32(target_ep->events);
12435 /* The epoll_data_t union is just opaque data to the kernel,
12436 * so we transfer all 64 bits across and need not worry what
12437 * actual data type it is.
12438 */
12439 ep.data.u64 = tswap64(target_ep->data.u64);
12440 unlock_user_struct(target_ep, arg4, 0);
12441 epp = &ep;
12442 }
12443 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12444 break;
12445 }
12446 #endif
12447
12448 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12449 #if defined(TARGET_NR_epoll_wait)
12450 case TARGET_NR_epoll_wait:
12451 #endif
12452 #if defined(TARGET_NR_epoll_pwait)
12453 case TARGET_NR_epoll_pwait:
12454 #endif
12455 {
12456 struct target_epoll_event *target_ep;
12457 struct epoll_event *ep;
12458 int epfd = arg1;
12459 int maxevents = arg3;
12460 int timeout = arg4;
12461
12462 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12463 ret = -TARGET_EINVAL;
12464 break;
12465 }
12466
12467 target_ep = lock_user(VERIFY_WRITE, arg2,
12468 maxevents * sizeof(struct target_epoll_event), 1);
12469 if (!target_ep) {
12470 goto efault;
12471 }
12472
12473 ep = g_try_new(struct epoll_event, maxevents);
12474 if (!ep) {
12475 unlock_user(target_ep, arg2, 0);
12476 ret = -TARGET_ENOMEM;
12477 break;
12478 }
12479
12480 switch (num) {
12481 #if defined(TARGET_NR_epoll_pwait)
12482 case TARGET_NR_epoll_pwait:
12483 {
12484 target_sigset_t *target_set;
12485 sigset_t _set, *set = &_set;
12486
12487 if (arg5) {
12488 if (arg6 != sizeof(target_sigset_t)) {
12489 ret = -TARGET_EINVAL;
12490 break;
12491 }
12492
12493 target_set = lock_user(VERIFY_READ, arg5,
12494 sizeof(target_sigset_t), 1);
12495 if (!target_set) {
12496 ret = -TARGET_EFAULT;
12497 break;
12498 }
12499 target_to_host_sigset(set, target_set);
12500 unlock_user(target_set, arg5, 0);
12501 } else {
12502 set = NULL;
12503 }
12504
12505 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12506 set, SIGSET_T_SIZE));
12507 break;
12508 }
12509 #endif
12510 #if defined(TARGET_NR_epoll_wait)
12511 case TARGET_NR_epoll_wait:
12512 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12513 NULL, 0));
12514 break;
12515 #endif
12516 default:
12517 ret = -TARGET_ENOSYS;
12518 }
12519 if (!is_error(ret)) {
12520 int i;
12521 for (i = 0; i < ret; i++) {
12522 target_ep[i].events = tswap32(ep[i].events);
12523 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12524 }
12525 unlock_user(target_ep, arg2,
12526 ret * sizeof(struct target_epoll_event));
12527 } else {
12528 unlock_user(target_ep, arg2, 0);
12529 }
12530 g_free(ep);
12531 break;
12532 }
12533 #endif
12534 #endif
12535 #ifdef TARGET_NR_prlimit64
12536 case TARGET_NR_prlimit64:
12537 {
12538 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12539 struct target_rlimit64 *target_rnew, *target_rold;
12540 struct host_rlimit64 rnew, rold, *rnewp = 0;
12541 int resource = target_to_host_resource(arg2);
12542 if (arg3) {
12543 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12544 goto efault;
12545 }
12546 rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12547 rnew.rlim_max = tswap64(target_rnew->rlim_max);
12548 unlock_user_struct(target_rnew, arg3, 0);
12549 rnewp = &rnew;
12550 }
12551
12552 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12553 if (!is_error(ret) && arg4) {
12554 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12555 goto efault;
12556 }
12557 target_rold->rlim_cur = tswap64(rold.rlim_cur);
12558 target_rold->rlim_max = tswap64(rold.rlim_max);
12559 unlock_user_struct(target_rold, arg4, 1);
12560 }
12561 break;
12562 }
12563 #endif
12564 #ifdef TARGET_NR_gethostname
12565 case TARGET_NR_gethostname:
12566 {
12567 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12568 if (name) {
12569 ret = get_errno(gethostname(name, arg2));
12570 unlock_user(name, arg1, arg2);
12571 } else {
12572 ret = -TARGET_EFAULT;
12573 }
12574 break;
12575 }
12576 #endif
12577 #ifdef TARGET_NR_atomic_cmpxchg_32
12578 case TARGET_NR_atomic_cmpxchg_32:
12579 {
12580 /* should use start_exclusive from main.c */
12581 abi_ulong mem_value;
12582 if (get_user_u32(mem_value, arg6)) {
12583 target_siginfo_t info;
12584 info.si_signo = SIGSEGV;
12585 info.si_errno = 0;
12586 info.si_code = TARGET_SEGV_MAPERR;
12587 info._sifields._sigfault._addr = arg6;
12588 queue_signal((CPUArchState *)cpu_env, info.si_signo,
12589 QEMU_SI_FAULT, &info);
12590 ret = 0xdeadbeef;
12591
12592 }
12593 if (mem_value == arg2)
12594 put_user_u32(arg1, arg6);
12595 ret = mem_value;
12596 break;
12597 }
12598 #endif
12599 #ifdef TARGET_NR_atomic_barrier
12600 case TARGET_NR_atomic_barrier:
12601 {
12602 /* Like the kernel implementation and the qemu arm barrier, no-op this? */
12603 ret = 0;
12604 break;
12605 }
12606 #endif
12607
12608 #ifdef TARGET_NR_timer_create
12609 case TARGET_NR_timer_create:
12610 {
12611 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12612
12613 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12614
12615 int clkid = arg1;
12616 int timer_index = next_free_host_timer();
12617
12618 if (timer_index < 0) {
12619 ret = -TARGET_EAGAIN;
12620 } else {
12621 timer_t *phtimer = g_posix_timers + timer_index;
12622
12623 if (arg2) {
12624 phost_sevp = &host_sevp;
12625 ret = target_to_host_sigevent(phost_sevp, arg2);
12626 if (ret != 0) {
12627 break;
12628 }
12629 }
12630
12631 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12632 if (ret) {
12633 phtimer = NULL;
12634 } else {
12635 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12636 goto efault;
12637 }
12638 }
12639 }
12640 break;
12641 }
12642 #endif
12643
12644 #ifdef TARGET_NR_timer_settime
12645 case TARGET_NR_timer_settime:
12646 {
12647 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12648 * struct itimerspec * old_value */
12649 target_timer_t timerid = get_timer_id(arg1);
12650
12651 if (timerid < 0) {
12652 ret = timerid;
12653 } else if (arg3 == 0) {
12654 ret = -TARGET_EINVAL;
12655 } else {
12656 timer_t htimer = g_posix_timers[timerid];
12657 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12658
12659 if (target_to_host_itimerspec(&hspec_new, arg3)) {
12660 goto efault;
12661 }
12662 ret = get_errno(
12663 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12664 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12665 goto efault;
12666 }
12667 }
12668 break;
12669 }
12670 #endif
12671
12672 #ifdef TARGET_NR_timer_gettime
12673 case TARGET_NR_timer_gettime:
12674 {
12675 /* args: timer_t timerid, struct itimerspec *curr_value */
12676 target_timer_t timerid = get_timer_id(arg1);
12677
12678 if (timerid < 0) {
12679 ret = timerid;
12680 } else if (!arg2) {
12681 ret = -TARGET_EFAULT;
12682 } else {
12683 timer_t htimer = g_posix_timers[timerid];
12684 struct itimerspec hspec;
12685 ret = get_errno(timer_gettime(htimer, &hspec));
12686
12687 if (host_to_target_itimerspec(arg2, &hspec)) {
12688 ret = -TARGET_EFAULT;
12689 }
12690 }
12691 break;
12692 }
12693 #endif
12694
12695 #ifdef TARGET_NR_timer_getoverrun
12696 case TARGET_NR_timer_getoverrun:
12697 {
12698 /* args: timer_t timerid */
12699 target_timer_t timerid = get_timer_id(arg1);
12700
12701 if (timerid < 0) {
12702 ret = timerid;
12703 } else {
12704 timer_t htimer = g_posix_timers[timerid];
12705 ret = get_errno(timer_getoverrun(htimer));
12706 }
12707 fd_trans_unregister(ret);
12708 break;
12709 }
12710 #endif
12711
12712 #ifdef TARGET_NR_timer_delete
12713 case TARGET_NR_timer_delete:
12714 {
12715 /* args: timer_t timerid */
12716 target_timer_t timerid = get_timer_id(arg1);
12717
12718 if (timerid < 0) {
12719 ret = timerid;
12720 } else {
12721 timer_t htimer = g_posix_timers[timerid];
12722 ret = get_errno(timer_delete(htimer));
12723 g_posix_timers[timerid] = 0;
12724 }
12725 break;
12726 }
12727 #endif
12728
12729 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12730 case TARGET_NR_timerfd_create:
12731 ret = get_errno(timerfd_create(arg1,
12732 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
12733 break;
12734 #endif
12735
12736 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12737 case TARGET_NR_timerfd_gettime:
12738 {
12739 struct itimerspec its_curr;
12740
12741 ret = get_errno(timerfd_gettime(arg1, &its_curr));
12742
12743 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
12744 goto efault;
12745 }
12746 }
12747 break;
12748 #endif
12749
12750 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12751 case TARGET_NR_timerfd_settime:
12752 {
12753 struct itimerspec its_new, its_old, *p_new;
12754
12755 if (arg3) {
12756 if (target_to_host_itimerspec(&its_new, arg3)) {
12757 goto efault;
12758 }
12759 p_new = &its_new;
12760 } else {
12761 p_new = NULL;
12762 }
12763
12764 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
12765
12766 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
12767 goto efault;
12768 }
12769 }
12770 break;
12771 #endif
12772
12773 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
12774 case TARGET_NR_ioprio_get:
12775 ret = get_errno(ioprio_get(arg1, arg2));
12776 break;
12777 #endif
12778
12779 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
12780 case TARGET_NR_ioprio_set:
12781 ret = get_errno(ioprio_set(arg1, arg2, arg3));
12782 break;
12783 #endif
12784
12785 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
12786 case TARGET_NR_setns:
12787 ret = get_errno(setns(arg1, arg2));
12788 break;
12789 #endif
12790 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
12791 case TARGET_NR_unshare:
12792 ret = get_errno(unshare(arg1));
12793 break;
12794 #endif
12795 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
12796 case TARGET_NR_kcmp:
12797 ret = get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
12798 break;
12799 #endif
12800 #ifdef TARGET_NR_swapcontext
12801 case TARGET_NR_swapcontext:
12802 /* PowerPC specific. */
12803 ret = do_swapcontext(cpu_env, arg1, arg2, arg3);
12804 break;
12805 #endif
12806
12807 default:
12808 unimplemented:
12809 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
12810 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
12811 unimplemented_nowarn:
12812 #endif
12813 ret = -TARGET_ENOSYS;
12814 break;
12815 }
12816 fail:
12817 #ifdef DEBUG
12818 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret);
12819 #endif
12820 if(do_strace)
12821 print_syscall_ret(num, ret);
12822 trace_guest_user_syscall_ret(cpu, num, ret);
12823 return ret;
12824 efault:
12825 ret = -TARGET_EFAULT;
12826 goto fail;
12827 }