]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/syscall.c
9353268cc18f323498c116c9b885e86413fadd97
[mirror_qemu.git] / linux-user / syscall.c
1 /*
2 * Linux syscalls
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "target_mman.h"
27 #include <elf.h>
28 #include <endian.h>
29 #include <grp.h>
30 #include <sys/ipc.h>
31 #include <sys/msg.h>
32 #include <sys/wait.h>
33 #include <sys/mount.h>
34 #include <sys/file.h>
35 #include <sys/fsuid.h>
36 #include <sys/personality.h>
37 #include <sys/prctl.h>
38 #include <sys/resource.h>
39 #include <sys/swap.h>
40 #include <linux/capability.h>
41 #include <sched.h>
42 #include <sys/timex.h>
43 #include <sys/socket.h>
44 #include <linux/sockios.h>
45 #include <sys/un.h>
46 #include <sys/uio.h>
47 #include <poll.h>
48 #include <sys/times.h>
49 #include <sys/shm.h>
50 #include <sys/sem.h>
51 #include <sys/statfs.h>
52 #include <utime.h>
53 #include <sys/sysinfo.h>
54 #include <sys/signalfd.h>
55 //#include <sys/user.h>
56 #include <netinet/in.h>
57 #include <netinet/ip.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <linux/wireless.h>
61 #include <linux/icmp.h>
62 #include <linux/icmpv6.h>
63 #include <linux/if_tun.h>
64 #include <linux/in6.h>
65 #include <linux/errqueue.h>
66 #include <linux/random.h>
67 #ifdef CONFIG_TIMERFD
68 #include <sys/timerfd.h>
69 #endif
70 #ifdef CONFIG_EVENTFD
71 #include <sys/eventfd.h>
72 #endif
73 #ifdef CONFIG_EPOLL
74 #include <sys/epoll.h>
75 #endif
76 #ifdef CONFIG_ATTR
77 #include "qemu/xattr.h"
78 #endif
79 #ifdef CONFIG_SENDFILE
80 #include <sys/sendfile.h>
81 #endif
82 #ifdef HAVE_SYS_KCOV_H
83 #include <sys/kcov.h>
84 #endif
85
86 #define termios host_termios
87 #define winsize host_winsize
88 #define termio host_termio
89 #define sgttyb host_sgttyb /* same as target */
90 #define tchars host_tchars /* same as target */
91 #define ltchars host_ltchars /* same as target */
92
93 #include <linux/termios.h>
94 #include <linux/unistd.h>
95 #include <linux/cdrom.h>
96 #include <linux/hdreg.h>
97 #include <linux/soundcard.h>
98 #include <linux/kd.h>
99 #include <linux/mtio.h>
100 #include <linux/fs.h>
101 #include <linux/fd.h>
102 #if defined(CONFIG_FIEMAP)
103 #include <linux/fiemap.h>
104 #endif
105 #include <linux/fb.h>
106 #if defined(CONFIG_USBFS)
107 #include <linux/usbdevice_fs.h>
108 #include <linux/usb/ch9.h>
109 #endif
110 #include <linux/vt.h>
111 #include <linux/dm-ioctl.h>
112 #include <linux/reboot.h>
113 #include <linux/route.h>
114 #include <linux/filter.h>
115 #include <linux/blkpg.h>
116 #include <netpacket/packet.h>
117 #include <linux/netlink.h>
118 #include <linux/if_alg.h>
119 #include <linux/rtc.h>
120 #include <sound/asound.h>
121 #ifdef HAVE_BTRFS_H
122 #include <linux/btrfs.h>
123 #endif
124 #ifdef HAVE_DRM_H
125 #include <libdrm/drm.h>
126 #include <libdrm/i915_drm.h>
127 #endif
128 #include "linux_loop.h"
129 #include "uname.h"
130
131 #include "qemu.h"
132 #include "user-internals.h"
133 #include "strace.h"
134 #include "signal-common.h"
135 #include "loader.h"
136 #include "user-mmap.h"
137 #include "user/safe-syscall.h"
138 #include "qemu/guest-random.h"
139 #include "qemu/selfmap.h"
140 #include "user/syscall-trace.h"
141 #include "special-errno.h"
142 #include "qapi/error.h"
143 #include "fd-trans.h"
144 #include "tcg/tcg.h"
145 #include "cpu_loop-common.h"
146
147 #ifndef CLONE_IO
148 #define CLONE_IO 0x80000000 /* Clone io context */
149 #endif
150
151 /* We can't directly call the host clone syscall, because this will
152 * badly confuse libc (breaking mutexes, for example). So we must
153 * divide clone flags into:
154 * * flag combinations that look like pthread_create()
155 * * flag combinations that look like fork()
156 * * flags we can implement within QEMU itself
157 * * flags we can't support and will return an error for
158 */
159 /* For thread creation, all these flags must be present; for
160 * fork, none must be present.
161 */
162 #define CLONE_THREAD_FLAGS \
163 (CLONE_VM | CLONE_FS | CLONE_FILES | \
164 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
165
166 /* These flags are ignored:
167 * CLONE_DETACHED is now ignored by the kernel;
168 * CLONE_IO is just an optimisation hint to the I/O scheduler
169 */
170 #define CLONE_IGNORED_FLAGS \
171 (CLONE_DETACHED | CLONE_IO)
172
173 #ifndef CLONE_PIDFD
174 # define CLONE_PIDFD 0x00001000
175 #endif
176
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS \
179 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
181
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS \
184 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
185 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
186
187 #define CLONE_INVALID_FORK_FLAGS \
188 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
189
190 #define CLONE_INVALID_THREAD_FLAGS \
191 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
192 CLONE_IGNORED_FLAGS))
193
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195 * have almost all been allocated. We cannot support any of
196 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198 * The checks against the invalid thread masks above will catch these.
199 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
200 */
201
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203 * once. This exercises the codepaths for restart.
204 */
205 //#define DEBUG_ERESTARTSYS
206
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
212
213 #undef _syscall0
214 #undef _syscall1
215 #undef _syscall2
216 #undef _syscall3
217 #undef _syscall4
218 #undef _syscall5
219 #undef _syscall6
220
221 #define _syscall0(type,name) \
222 static type name (void) \
223 { \
224 return syscall(__NR_##name); \
225 }
226
227 #define _syscall1(type,name,type1,arg1) \
228 static type name (type1 arg1) \
229 { \
230 return syscall(__NR_##name, arg1); \
231 }
232
233 #define _syscall2(type,name,type1,arg1,type2,arg2) \
234 static type name (type1 arg1,type2 arg2) \
235 { \
236 return syscall(__NR_##name, arg1, arg2); \
237 }
238
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
240 static type name (type1 arg1,type2 arg2,type3 arg3) \
241 { \
242 return syscall(__NR_##name, arg1, arg2, arg3); \
243 }
244
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
247 { \
248 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
249 }
250
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
252 type5,arg5) \
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
254 { \
255 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
256 }
257
258
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
260 type5,arg5,type6,arg6) \
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
262 type6 arg6) \
263 { \
264 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
265 }
266
267
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
278 #endif
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
281 #endif
282 #define __NR_sys_statx __NR_statx
283
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
286 #endif
287
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
291 #endif
292
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
296 #endif
297
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid)
300
301 /* For the 64-bit guest on 32-bit host case we must emulate
302 * getdents using getdents64, because otherwise the host
303 * might hand us back more dirent records than we can fit
304 * into the guest buffer after structure format conversion.
305 * Otherwise we emulate getdents with getdents if the host has it.
306 */
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
309 #endif
310
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
313 #endif
314 #if (defined(TARGET_NR_getdents) && \
315 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
318 #endif
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek, unsigned int, fd, unsigned long, hi, unsigned long, lo,
321 loff_t *, res, unsigned int, wh);
322 #endif
323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
325 siginfo_t *, uinfo)
326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group,int,error_code)
329 #endif
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC (1U << 2)
335 #endif
336 #endif
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
339 const struct timespec *,timeout,int *,uaddr2,int,val3)
340 #endif
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
343 const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
347 #endif
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
350 unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
354 #endif
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
357 unsigned long *, user_mask_ptr);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
360 unsigned long *, user_mask_ptr);
361 /* sched_attr is not defined in glibc */
362 struct sched_attr {
363 uint32_t size;
364 uint32_t sched_policy;
365 uint64_t sched_flags;
366 int32_t sched_nice;
367 uint32_t sched_priority;
368 uint64_t sched_runtime;
369 uint64_t sched_deadline;
370 uint64_t sched_period;
371 uint32_t sched_util_min;
372 uint32_t sched_util_max;
373 };
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
376 unsigned int, size, unsigned int, flags);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
379 unsigned int, flags);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
384 const struct sched_param *, param);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam, pid_t, pid,
387 struct sched_param *, param);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam, pid_t, pid,
390 const struct sched_param *, param);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
394 void *, arg);
395 _syscall2(int, capget, struct __user_cap_header_struct *, header,
396 struct __user_cap_data_struct *, data);
397 _syscall2(int, capset, struct __user_cap_header_struct *, header,
398 struct __user_cap_data_struct *, data);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get, int, which, int, who)
401 #endif
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
404 #endif
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
407 #endif
408
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
411 unsigned long, idx1, unsigned long, idx2)
412 #endif
413
414 /*
415 * It is assumed that struct statx is architecture independent.
416 */
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
419 unsigned int, mask, struct target_statx *, statxbuf)
420 #endif
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier, int, cmd, int, flags)
423 #endif
424
425 static const bitmask_transtbl fcntl_flags_tbl[] = {
426 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
427 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
428 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
429 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
430 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
431 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
432 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
433 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
434 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
435 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
436 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
437 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
438 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
439 #if defined(O_DIRECT)
440 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
441 #endif
442 #if defined(O_NOATIME)
443 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
444 #endif
445 #if defined(O_CLOEXEC)
446 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
447 #endif
448 #if defined(O_PATH)
449 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
450 #endif
451 #if defined(O_TMPFILE)
452 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
453 #endif
454 /* Don't terminate the list prematurely on 64-bit host+guest. */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
457 #endif
458 };
459
460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
461
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
466 const struct timespec *,tsp,int,flags)
467 #else
468 static int sys_utimensat(int dirfd, const char *pathname,
469 const struct timespec times[2], int flags)
470 {
471 errno = ENOSYS;
472 return -1;
473 }
474 #endif
475 #endif /* TARGET_NR_utimensat */
476
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
481 const char *, new, unsigned int, flags)
482 #else
483 static int sys_renameat2(int oldfd, const char *old,
484 int newfd, const char *new, int flags)
485 {
486 if (flags == 0) {
487 return renameat(oldfd, old, newfd, new);
488 }
489 errno = ENOSYS;
490 return -1;
491 }
492 #endif
493 #endif /* TARGET_NR_renameat2 */
494
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
497 #else
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY */
504
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
508 #endif
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64 {
512 uint64_t rlim_cur;
513 uint64_t rlim_max;
514 };
515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
516 const struct host_rlimit64 *, new_limit,
517 struct host_rlimit64 *, old_limit)
518 #endif
519
520
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers[GUEST_TIMER_MAX];
525 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
526
527 static inline int next_free_host_timer(void)
528 {
529 int k;
530 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
531 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
532 return k;
533 }
534 }
535 return -1;
536 }
537
538 static inline void free_host_timer_slot(int id)
539 {
540 qatomic_store_release(g_posix_timer_allocated + id, 0);
541 }
542 #endif
543
544 static inline int host_to_target_errno(int host_errno)
545 {
546 switch (host_errno) {
547 #define E(X) case X: return TARGET_##X;
548 #include "errnos.c.inc"
549 #undef E
550 default:
551 return host_errno;
552 }
553 }
554
555 static inline int target_to_host_errno(int target_errno)
556 {
557 switch (target_errno) {
558 #define E(X) case TARGET_##X: return X;
559 #include "errnos.c.inc"
560 #undef E
561 default:
562 return target_errno;
563 }
564 }
565
566 abi_long get_errno(abi_long ret)
567 {
568 if (ret == -1)
569 return -host_to_target_errno(errno);
570 else
571 return ret;
572 }
573
574 const char *target_strerror(int err)
575 {
576 if (err == QEMU_ERESTARTSYS) {
577 return "To be restarted";
578 }
579 if (err == QEMU_ESIGRETURN) {
580 return "Successful exit from sigreturn";
581 }
582
583 return strerror(target_to_host_errno(err));
584 }
585
586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
587 {
588 int i;
589 uint8_t b;
590 if (usize <= ksize) {
591 return 1;
592 }
593 for (i = ksize; i < usize; i++) {
594 if (get_user_u8(b, addr + i)) {
595 return -TARGET_EFAULT;
596 }
597 if (b != 0) {
598 return 0;
599 }
600 }
601 return 1;
602 }
603
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
606 { \
607 return safe_syscall(__NR_##name); \
608 }
609
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
612 { \
613 return safe_syscall(__NR_##name, arg1); \
614 }
615
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
618 { \
619 return safe_syscall(__NR_##name, arg1, arg2); \
620 }
621
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
624 { \
625 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
626 }
627
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
629 type4, arg4) \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
631 { \
632 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
633 }
634
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636 type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
638 type5 arg5) \
639 { \
640 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
641 }
642
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644 type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646 type5 arg5, type6 arg6) \
647 { \
648 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
649 }
650
651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
654 int, flags, mode_t, mode)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
657 struct rusage *, rusage)
658 #endif
659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
660 int, options, struct rusage *, rusage)
661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
662 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
663 char **, argv, char **, envp, int, flags)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
667 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
668 #endif
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
671 struct timespec *, tsp, const sigset_t *, sigmask,
672 size_t, sigsetsize)
673 #endif
674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
675 int, maxevents, int, timeout, const sigset_t *, sigmask,
676 size_t, sigsetsize)
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
679 const struct timespec *,timeout,int *,uaddr2,int,val3)
680 #endif
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
683 const struct timespec *,timeout,int *,uaddr2,int,val3)
684 #endif
685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
686 safe_syscall2(int, kill, pid_t, pid, int, sig)
687 safe_syscall2(int, tkill, int, tid, int, sig)
688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
692 unsigned long, pos_l, unsigned long, pos_h)
693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
694 unsigned long, pos_l, unsigned long, pos_h)
695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
696 socklen_t, addrlen)
697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
698 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
700 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
703 safe_syscall2(int, flock, int, fd, int, operation)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
706 const struct timespec *, uts, size_t, sigsetsize)
707 #endif
708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
709 int, flags)
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep, const struct timespec *, req,
712 struct timespec *, rem)
713 #endif
714 #if defined(TARGET_NR_clock_nanosleep) || \
715 defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
717 const struct timespec *, req, struct timespec *, rem)
718 #endif
719 #ifdef __NR_ipc
720 #ifdef __s390x__
721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
722 void *, ptr)
723 #else
724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
725 void *, ptr, long, fifth)
726 #endif
727 #endif
728 #ifdef __NR_msgsnd
729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
730 int, flags)
731 #endif
732 #ifdef __NR_msgrcv
733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
734 long, msgtype, int, flags)
735 #endif
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
738 unsigned, nsops, const struct timespec *, timeout)
739 #endif
740 #if defined(TARGET_NR_mq_timedsend) || \
741 defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
743 size_t, len, unsigned, prio, const struct timespec *, timeout)
744 #endif
745 #if defined(TARGET_NR_mq_timedreceive) || \
746 defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
748 size_t, len, unsigned *, prio, const struct timespec *, timeout)
749 #endif
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
752 int, outfd, loff_t *, poutoff, size_t, length,
753 unsigned int, flags)
754 #endif
755
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757 * "third argument might be integer or pointer or not present" behaviour of
758 * the libc function.
759 */
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763 * use the flock64 struct rather than unsuffixed flock
764 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
765 */
766 #ifdef __NR_fcntl64
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
768 #else
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
770 #endif
771
772 static inline int host_to_target_sock_type(int host_type)
773 {
774 int target_type;
775
776 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
777 case SOCK_DGRAM:
778 target_type = TARGET_SOCK_DGRAM;
779 break;
780 case SOCK_STREAM:
781 target_type = TARGET_SOCK_STREAM;
782 break;
783 default:
784 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
785 break;
786 }
787
788 #if defined(SOCK_CLOEXEC)
789 if (host_type & SOCK_CLOEXEC) {
790 target_type |= TARGET_SOCK_CLOEXEC;
791 }
792 #endif
793
794 #if defined(SOCK_NONBLOCK)
795 if (host_type & SOCK_NONBLOCK) {
796 target_type |= TARGET_SOCK_NONBLOCK;
797 }
798 #endif
799
800 return target_type;
801 }
802
803 static abi_ulong target_brk, initial_target_brk;
804
805 void target_set_brk(abi_ulong new_brk)
806 {
807 target_brk = TARGET_PAGE_ALIGN(new_brk);
808 initial_target_brk = target_brk;
809 }
810
811 /* do_brk() must return target values and target errnos. */
812 abi_long do_brk(abi_ulong brk_val)
813 {
814 abi_long mapped_addr;
815 abi_ulong new_brk;
816 abi_ulong old_brk;
817
818 /* brk pointers are always untagged */
819
820 /* do not allow to shrink below initial brk value */
821 if (brk_val < initial_target_brk) {
822 return target_brk;
823 }
824
825 new_brk = TARGET_PAGE_ALIGN(brk_val);
826 old_brk = TARGET_PAGE_ALIGN(target_brk);
827
828 /* new and old target_brk might be on the same page */
829 if (new_brk == old_brk) {
830 target_brk = brk_val;
831 return target_brk;
832 }
833
834 /* Release heap if necesary */
835 if (new_brk < old_brk) {
836 target_munmap(new_brk, old_brk - new_brk);
837
838 target_brk = brk_val;
839 return target_brk;
840 }
841
842 mapped_addr = target_mmap(old_brk, new_brk - old_brk,
843 PROT_READ | PROT_WRITE,
844 MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
845 -1, 0);
846
847 if (mapped_addr == old_brk) {
848 target_brk = brk_val;
849 return target_brk;
850 }
851
852 #if defined(TARGET_ALPHA)
853 /* We (partially) emulate OSF/1 on Alpha, which requires we
854 return a proper errno, not an unchanged brk value. */
855 return -TARGET_ENOMEM;
856 #endif
857 /* For everything else, return the previous break. */
858 return target_brk;
859 }
860
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long copy_from_user_fdset(fd_set *fds,
864 abi_ulong target_fds_addr,
865 int n)
866 {
867 int i, nw, j, k;
868 abi_ulong b, *target_fds;
869
870 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
871 if (!(target_fds = lock_user(VERIFY_READ,
872 target_fds_addr,
873 sizeof(abi_ulong) * nw,
874 1)))
875 return -TARGET_EFAULT;
876
877 FD_ZERO(fds);
878 k = 0;
879 for (i = 0; i < nw; i++) {
880 /* grab the abi_ulong */
881 __get_user(b, &target_fds[i]);
882 for (j = 0; j < TARGET_ABI_BITS; j++) {
883 /* check the bit inside the abi_ulong */
884 if ((b >> j) & 1)
885 FD_SET(k, fds);
886 k++;
887 }
888 }
889
890 unlock_user(target_fds, target_fds_addr, 0);
891
892 return 0;
893 }
894
895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
896 abi_ulong target_fds_addr,
897 int n)
898 {
899 if (target_fds_addr) {
900 if (copy_from_user_fdset(fds, target_fds_addr, n))
901 return -TARGET_EFAULT;
902 *fds_ptr = fds;
903 } else {
904 *fds_ptr = NULL;
905 }
906 return 0;
907 }
908
909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
910 const fd_set *fds,
911 int n)
912 {
913 int i, nw, j, k;
914 abi_long v;
915 abi_ulong *target_fds;
916
917 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
918 if (!(target_fds = lock_user(VERIFY_WRITE,
919 target_fds_addr,
920 sizeof(abi_ulong) * nw,
921 0)))
922 return -TARGET_EFAULT;
923
924 k = 0;
925 for (i = 0; i < nw; i++) {
926 v = 0;
927 for (j = 0; j < TARGET_ABI_BITS; j++) {
928 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
929 k++;
930 }
931 __put_user(v, &target_fds[i]);
932 }
933
934 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
935
936 return 0;
937 }
938 #endif
939
940 #if defined(__alpha__)
941 #define HOST_HZ 1024
942 #else
943 #define HOST_HZ 100
944 #endif
945
946 static inline abi_long host_to_target_clock_t(long ticks)
947 {
948 #if HOST_HZ == TARGET_HZ
949 return ticks;
950 #else
951 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
952 #endif
953 }
954
955 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
956 const struct rusage *rusage)
957 {
958 struct target_rusage *target_rusage;
959
960 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
961 return -TARGET_EFAULT;
962 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
963 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
964 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
965 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
966 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
967 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
968 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
969 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
970 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
971 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
972 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
973 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
974 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
975 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
976 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
977 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
978 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
979 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
980 unlock_user_struct(target_rusage, target_addr, 1);
981
982 return 0;
983 }
984
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
987 {
988 abi_ulong target_rlim_swap;
989 rlim_t result;
990
991 target_rlim_swap = tswapal(target_rlim);
992 if (target_rlim_swap == TARGET_RLIM_INFINITY)
993 return RLIM_INFINITY;
994
995 result = target_rlim_swap;
996 if (target_rlim_swap != (rlim_t)result)
997 return RLIM_INFINITY;
998
999 return result;
1000 }
1001 #endif
1002
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1005 {
1006 abi_ulong target_rlim_swap;
1007 abi_ulong result;
1008
1009 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1010 target_rlim_swap = TARGET_RLIM_INFINITY;
1011 else
1012 target_rlim_swap = rlim;
1013 result = tswapal(target_rlim_swap);
1014
1015 return result;
1016 }
1017 #endif
1018
1019 static inline int target_to_host_resource(int code)
1020 {
1021 switch (code) {
1022 case TARGET_RLIMIT_AS:
1023 return RLIMIT_AS;
1024 case TARGET_RLIMIT_CORE:
1025 return RLIMIT_CORE;
1026 case TARGET_RLIMIT_CPU:
1027 return RLIMIT_CPU;
1028 case TARGET_RLIMIT_DATA:
1029 return RLIMIT_DATA;
1030 case TARGET_RLIMIT_FSIZE:
1031 return RLIMIT_FSIZE;
1032 case TARGET_RLIMIT_LOCKS:
1033 return RLIMIT_LOCKS;
1034 case TARGET_RLIMIT_MEMLOCK:
1035 return RLIMIT_MEMLOCK;
1036 case TARGET_RLIMIT_MSGQUEUE:
1037 return RLIMIT_MSGQUEUE;
1038 case TARGET_RLIMIT_NICE:
1039 return RLIMIT_NICE;
1040 case TARGET_RLIMIT_NOFILE:
1041 return RLIMIT_NOFILE;
1042 case TARGET_RLIMIT_NPROC:
1043 return RLIMIT_NPROC;
1044 case TARGET_RLIMIT_RSS:
1045 return RLIMIT_RSS;
1046 case TARGET_RLIMIT_RTPRIO:
1047 return RLIMIT_RTPRIO;
1048 #ifdef RLIMIT_RTTIME
1049 case TARGET_RLIMIT_RTTIME:
1050 return RLIMIT_RTTIME;
1051 #endif
1052 case TARGET_RLIMIT_SIGPENDING:
1053 return RLIMIT_SIGPENDING;
1054 case TARGET_RLIMIT_STACK:
1055 return RLIMIT_STACK;
1056 default:
1057 return code;
1058 }
1059 }
1060
1061 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1062 abi_ulong target_tv_addr)
1063 {
1064 struct target_timeval *target_tv;
1065
1066 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1067 return -TARGET_EFAULT;
1068 }
1069
1070 __get_user(tv->tv_sec, &target_tv->tv_sec);
1071 __get_user(tv->tv_usec, &target_tv->tv_usec);
1072
1073 unlock_user_struct(target_tv, target_tv_addr, 0);
1074
1075 return 0;
1076 }
1077
1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1079 const struct timeval *tv)
1080 {
1081 struct target_timeval *target_tv;
1082
1083 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1084 return -TARGET_EFAULT;
1085 }
1086
1087 __put_user(tv->tv_sec, &target_tv->tv_sec);
1088 __put_user(tv->tv_usec, &target_tv->tv_usec);
1089
1090 unlock_user_struct(target_tv, target_tv_addr, 1);
1091
1092 return 0;
1093 }
1094
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1097 abi_ulong target_tv_addr)
1098 {
1099 struct target__kernel_sock_timeval *target_tv;
1100
1101 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1102 return -TARGET_EFAULT;
1103 }
1104
1105 __get_user(tv->tv_sec, &target_tv->tv_sec);
1106 __get_user(tv->tv_usec, &target_tv->tv_usec);
1107
1108 unlock_user_struct(target_tv, target_tv_addr, 0);
1109
1110 return 0;
1111 }
1112 #endif
1113
1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1115 const struct timeval *tv)
1116 {
1117 struct target__kernel_sock_timeval *target_tv;
1118
1119 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1120 return -TARGET_EFAULT;
1121 }
1122
1123 __put_user(tv->tv_sec, &target_tv->tv_sec);
1124 __put_user(tv->tv_usec, &target_tv->tv_usec);
1125
1126 unlock_user_struct(target_tv, target_tv_addr, 1);
1127
1128 return 0;
1129 }
1130
1131 #if defined(TARGET_NR_futex) || \
1132 defined(TARGET_NR_rt_sigtimedwait) || \
1133 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138 defined(TARGET_NR_timer_settime) || \
1139 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1141 abi_ulong target_addr)
1142 {
1143 struct target_timespec *target_ts;
1144
1145 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1146 return -TARGET_EFAULT;
1147 }
1148 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1149 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1150 unlock_user_struct(target_ts, target_addr, 0);
1151 return 0;
1152 }
1153 #endif
1154
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156 defined(TARGET_NR_timer_settime64) || \
1157 defined(TARGET_NR_mq_timedsend_time64) || \
1158 defined(TARGET_NR_mq_timedreceive_time64) || \
1159 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160 defined(TARGET_NR_clock_nanosleep_time64) || \
1161 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162 defined(TARGET_NR_utimensat) || \
1163 defined(TARGET_NR_utimensat_time64) || \
1164 defined(TARGET_NR_semtimedop_time64) || \
1165 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1167 abi_ulong target_addr)
1168 {
1169 struct target__kernel_timespec *target_ts;
1170
1171 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1172 return -TARGET_EFAULT;
1173 }
1174 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1175 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1176 /* in 32bit mode, this drops the padding */
1177 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1178 unlock_user_struct(target_ts, target_addr, 0);
1179 return 0;
1180 }
1181 #endif
1182
1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1184 struct timespec *host_ts)
1185 {
1186 struct target_timespec *target_ts;
1187
1188 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1189 return -TARGET_EFAULT;
1190 }
1191 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1192 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1193 unlock_user_struct(target_ts, target_addr, 1);
1194 return 0;
1195 }
1196
1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1198 struct timespec *host_ts)
1199 {
1200 struct target__kernel_timespec *target_ts;
1201
1202 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1203 return -TARGET_EFAULT;
1204 }
1205 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1206 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1207 unlock_user_struct(target_ts, target_addr, 1);
1208 return 0;
1209 }
1210
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1213 struct timezone *tz)
1214 {
1215 struct target_timezone *target_tz;
1216
1217 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1218 return -TARGET_EFAULT;
1219 }
1220
1221 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1222 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1223
1224 unlock_user_struct(target_tz, target_tz_addr, 1);
1225
1226 return 0;
1227 }
1228 #endif
1229
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1232 abi_ulong target_tz_addr)
1233 {
1234 struct target_timezone *target_tz;
1235
1236 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1237 return -TARGET_EFAULT;
1238 }
1239
1240 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1241 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1242
1243 unlock_user_struct(target_tz, target_tz_addr, 0);
1244
1245 return 0;
1246 }
1247 #endif
1248
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1250 #include <mqueue.h>
1251
1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1253 abi_ulong target_mq_attr_addr)
1254 {
1255 struct target_mq_attr *target_mq_attr;
1256
1257 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1258 target_mq_attr_addr, 1))
1259 return -TARGET_EFAULT;
1260
1261 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1262 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1263 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1264 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1265
1266 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1267
1268 return 0;
1269 }
1270
1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1272 const struct mq_attr *attr)
1273 {
1274 struct target_mq_attr *target_mq_attr;
1275
1276 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1277 target_mq_attr_addr, 0))
1278 return -TARGET_EFAULT;
1279
1280 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1281 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1282 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1283 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1284
1285 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1286
1287 return 0;
1288 }
1289 #endif
1290
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long do_select(int n,
1294 abi_ulong rfd_addr, abi_ulong wfd_addr,
1295 abi_ulong efd_addr, abi_ulong target_tv_addr)
1296 {
1297 fd_set rfds, wfds, efds;
1298 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1299 struct timeval tv;
1300 struct timespec ts, *ts_ptr;
1301 abi_long ret;
1302
1303 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1304 if (ret) {
1305 return ret;
1306 }
1307 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1308 if (ret) {
1309 return ret;
1310 }
1311 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1312 if (ret) {
1313 return ret;
1314 }
1315
1316 if (target_tv_addr) {
1317 if (copy_from_user_timeval(&tv, target_tv_addr))
1318 return -TARGET_EFAULT;
1319 ts.tv_sec = tv.tv_sec;
1320 ts.tv_nsec = tv.tv_usec * 1000;
1321 ts_ptr = &ts;
1322 } else {
1323 ts_ptr = NULL;
1324 }
1325
1326 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1327 ts_ptr, NULL));
1328
1329 if (!is_error(ret)) {
1330 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1331 return -TARGET_EFAULT;
1332 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1333 return -TARGET_EFAULT;
1334 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1335 return -TARGET_EFAULT;
1336
1337 if (target_tv_addr) {
1338 tv.tv_sec = ts.tv_sec;
1339 tv.tv_usec = ts.tv_nsec / 1000;
1340 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1341 return -TARGET_EFAULT;
1342 }
1343 }
1344 }
1345
1346 return ret;
1347 }
1348
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long do_old_select(abi_ulong arg1)
1351 {
1352 struct target_sel_arg_struct *sel;
1353 abi_ulong inp, outp, exp, tvp;
1354 long nsel;
1355
1356 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1357 return -TARGET_EFAULT;
1358 }
1359
1360 nsel = tswapal(sel->n);
1361 inp = tswapal(sel->inp);
1362 outp = tswapal(sel->outp);
1363 exp = tswapal(sel->exp);
1364 tvp = tswapal(sel->tvp);
1365
1366 unlock_user_struct(sel, arg1, 0);
1367
1368 return do_select(nsel, inp, outp, exp, tvp);
1369 }
1370 #endif
1371 #endif
1372
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1375 abi_long arg4, abi_long arg5, abi_long arg6,
1376 bool time64)
1377 {
1378 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1379 fd_set rfds, wfds, efds;
1380 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1381 struct timespec ts, *ts_ptr;
1382 abi_long ret;
1383
1384 /*
1385 * The 6th arg is actually two args smashed together,
1386 * so we cannot use the C library.
1387 */
1388 struct {
1389 sigset_t *set;
1390 size_t size;
1391 } sig, *sig_ptr;
1392
1393 abi_ulong arg_sigset, arg_sigsize, *arg7;
1394
1395 n = arg1;
1396 rfd_addr = arg2;
1397 wfd_addr = arg3;
1398 efd_addr = arg4;
1399 ts_addr = arg5;
1400
1401 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1402 if (ret) {
1403 return ret;
1404 }
1405 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1406 if (ret) {
1407 return ret;
1408 }
1409 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1410 if (ret) {
1411 return ret;
1412 }
1413
1414 /*
1415 * This takes a timespec, and not a timeval, so we cannot
1416 * use the do_select() helper ...
1417 */
1418 if (ts_addr) {
1419 if (time64) {
1420 if (target_to_host_timespec64(&ts, ts_addr)) {
1421 return -TARGET_EFAULT;
1422 }
1423 } else {
1424 if (target_to_host_timespec(&ts, ts_addr)) {
1425 return -TARGET_EFAULT;
1426 }
1427 }
1428 ts_ptr = &ts;
1429 } else {
1430 ts_ptr = NULL;
1431 }
1432
1433 /* Extract the two packed args for the sigset */
1434 sig_ptr = NULL;
1435 if (arg6) {
1436 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1437 if (!arg7) {
1438 return -TARGET_EFAULT;
1439 }
1440 arg_sigset = tswapal(arg7[0]);
1441 arg_sigsize = tswapal(arg7[1]);
1442 unlock_user(arg7, arg6, 0);
1443
1444 if (arg_sigset) {
1445 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1446 if (ret != 0) {
1447 return ret;
1448 }
1449 sig_ptr = &sig;
1450 sig.size = SIGSET_T_SIZE;
1451 }
1452 }
1453
1454 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1455 ts_ptr, sig_ptr));
1456
1457 if (sig_ptr) {
1458 finish_sigsuspend_mask(ret);
1459 }
1460
1461 if (!is_error(ret)) {
1462 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1463 return -TARGET_EFAULT;
1464 }
1465 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1466 return -TARGET_EFAULT;
1467 }
1468 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1469 return -TARGET_EFAULT;
1470 }
1471 if (time64) {
1472 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1473 return -TARGET_EFAULT;
1474 }
1475 } else {
1476 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1477 return -TARGET_EFAULT;
1478 }
1479 }
1480 }
1481 return ret;
1482 }
1483 #endif
1484
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486 defined(TARGET_NR_ppoll_time64)
1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1488 abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1489 {
1490 struct target_pollfd *target_pfd;
1491 unsigned int nfds = arg2;
1492 struct pollfd *pfd;
1493 unsigned int i;
1494 abi_long ret;
1495
1496 pfd = NULL;
1497 target_pfd = NULL;
1498 if (nfds) {
1499 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1500 return -TARGET_EINVAL;
1501 }
1502 target_pfd = lock_user(VERIFY_WRITE, arg1,
1503 sizeof(struct target_pollfd) * nfds, 1);
1504 if (!target_pfd) {
1505 return -TARGET_EFAULT;
1506 }
1507
1508 pfd = alloca(sizeof(struct pollfd) * nfds);
1509 for (i = 0; i < nfds; i++) {
1510 pfd[i].fd = tswap32(target_pfd[i].fd);
1511 pfd[i].events = tswap16(target_pfd[i].events);
1512 }
1513 }
1514 if (ppoll) {
1515 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1516 sigset_t *set = NULL;
1517
1518 if (arg3) {
1519 if (time64) {
1520 if (target_to_host_timespec64(timeout_ts, arg3)) {
1521 unlock_user(target_pfd, arg1, 0);
1522 return -TARGET_EFAULT;
1523 }
1524 } else {
1525 if (target_to_host_timespec(timeout_ts, arg3)) {
1526 unlock_user(target_pfd, arg1, 0);
1527 return -TARGET_EFAULT;
1528 }
1529 }
1530 } else {
1531 timeout_ts = NULL;
1532 }
1533
1534 if (arg4) {
1535 ret = process_sigsuspend_mask(&set, arg4, arg5);
1536 if (ret != 0) {
1537 unlock_user(target_pfd, arg1, 0);
1538 return ret;
1539 }
1540 }
1541
1542 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1543 set, SIGSET_T_SIZE));
1544
1545 if (set) {
1546 finish_sigsuspend_mask(ret);
1547 }
1548 if (!is_error(ret) && arg3) {
1549 if (time64) {
1550 if (host_to_target_timespec64(arg3, timeout_ts)) {
1551 return -TARGET_EFAULT;
1552 }
1553 } else {
1554 if (host_to_target_timespec(arg3, timeout_ts)) {
1555 return -TARGET_EFAULT;
1556 }
1557 }
1558 }
1559 } else {
1560 struct timespec ts, *pts;
1561
1562 if (arg3 >= 0) {
1563 /* Convert ms to secs, ns */
1564 ts.tv_sec = arg3 / 1000;
1565 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1566 pts = &ts;
1567 } else {
1568 /* -ve poll() timeout means "infinite" */
1569 pts = NULL;
1570 }
1571 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1572 }
1573
1574 if (!is_error(ret)) {
1575 for (i = 0; i < nfds; i++) {
1576 target_pfd[i].revents = tswap16(pfd[i].revents);
1577 }
1578 }
1579 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1580 return ret;
1581 }
1582 #endif
1583
1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1585 int flags, int is_pipe2)
1586 {
1587 int host_pipe[2];
1588 abi_long ret;
1589 ret = pipe2(host_pipe, flags);
1590
1591 if (is_error(ret))
1592 return get_errno(ret);
1593
1594 /* Several targets have special calling conventions for the original
1595 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1596 if (!is_pipe2) {
1597 #if defined(TARGET_ALPHA)
1598 cpu_env->ir[IR_A4] = host_pipe[1];
1599 return host_pipe[0];
1600 #elif defined(TARGET_MIPS)
1601 cpu_env->active_tc.gpr[3] = host_pipe[1];
1602 return host_pipe[0];
1603 #elif defined(TARGET_SH4)
1604 cpu_env->gregs[1] = host_pipe[1];
1605 return host_pipe[0];
1606 #elif defined(TARGET_SPARC)
1607 cpu_env->regwptr[1] = host_pipe[1];
1608 return host_pipe[0];
1609 #endif
1610 }
1611
1612 if (put_user_s32(host_pipe[0], pipedes)
1613 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1614 return -TARGET_EFAULT;
1615 return get_errno(ret);
1616 }
1617
1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1619 abi_ulong target_addr,
1620 socklen_t len)
1621 {
1622 struct target_ip_mreqn *target_smreqn;
1623
1624 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1625 if (!target_smreqn)
1626 return -TARGET_EFAULT;
1627 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1628 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1629 if (len == sizeof(struct target_ip_mreqn))
1630 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1631 unlock_user(target_smreqn, target_addr, 0);
1632
1633 return 0;
1634 }
1635
1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1637 abi_ulong target_addr,
1638 socklen_t len)
1639 {
1640 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1641 sa_family_t sa_family;
1642 struct target_sockaddr *target_saddr;
1643
1644 if (fd_trans_target_to_host_addr(fd)) {
1645 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1646 }
1647
1648 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1649 if (!target_saddr)
1650 return -TARGET_EFAULT;
1651
1652 sa_family = tswap16(target_saddr->sa_family);
1653
1654 /* Oops. The caller might send a incomplete sun_path; sun_path
1655 * must be terminated by \0 (see the manual page), but
1656 * unfortunately it is quite common to specify sockaddr_un
1657 * length as "strlen(x->sun_path)" while it should be
1658 * "strlen(...) + 1". We'll fix that here if needed.
1659 * Linux kernel has a similar feature.
1660 */
1661
1662 if (sa_family == AF_UNIX) {
1663 if (len < unix_maxlen && len > 0) {
1664 char *cp = (char*)target_saddr;
1665
1666 if ( cp[len-1] && !cp[len] )
1667 len++;
1668 }
1669 if (len > unix_maxlen)
1670 len = unix_maxlen;
1671 }
1672
1673 memcpy(addr, target_saddr, len);
1674 addr->sa_family = sa_family;
1675 if (sa_family == AF_NETLINK) {
1676 struct sockaddr_nl *nladdr;
1677
1678 nladdr = (struct sockaddr_nl *)addr;
1679 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1680 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1681 } else if (sa_family == AF_PACKET) {
1682 struct target_sockaddr_ll *lladdr;
1683
1684 lladdr = (struct target_sockaddr_ll *)addr;
1685 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1686 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1687 } else if (sa_family == AF_INET6) {
1688 struct sockaddr_in6 *in6addr;
1689
1690 in6addr = (struct sockaddr_in6 *)addr;
1691 in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1692 }
1693 unlock_user(target_saddr, target_addr, 0);
1694
1695 return 0;
1696 }
1697
1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1699 struct sockaddr *addr,
1700 socklen_t len)
1701 {
1702 struct target_sockaddr *target_saddr;
1703
1704 if (len == 0) {
1705 return 0;
1706 }
1707 assert(addr);
1708
1709 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1710 if (!target_saddr)
1711 return -TARGET_EFAULT;
1712 memcpy(target_saddr, addr, len);
1713 if (len >= offsetof(struct target_sockaddr, sa_family) +
1714 sizeof(target_saddr->sa_family)) {
1715 target_saddr->sa_family = tswap16(addr->sa_family);
1716 }
1717 if (addr->sa_family == AF_NETLINK &&
1718 len >= sizeof(struct target_sockaddr_nl)) {
1719 struct target_sockaddr_nl *target_nl =
1720 (struct target_sockaddr_nl *)target_saddr;
1721 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1722 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1723 } else if (addr->sa_family == AF_PACKET) {
1724 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1725 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1726 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1727 } else if (addr->sa_family == AF_INET6 &&
1728 len >= sizeof(struct target_sockaddr_in6)) {
1729 struct target_sockaddr_in6 *target_in6 =
1730 (struct target_sockaddr_in6 *)target_saddr;
1731 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1732 }
1733 unlock_user(target_saddr, target_addr, len);
1734
1735 return 0;
1736 }
1737
1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1739 struct target_msghdr *target_msgh)
1740 {
1741 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1742 abi_long msg_controllen;
1743 abi_ulong target_cmsg_addr;
1744 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1745 socklen_t space = 0;
1746
1747 msg_controllen = tswapal(target_msgh->msg_controllen);
1748 if (msg_controllen < sizeof (struct target_cmsghdr))
1749 goto the_end;
1750 target_cmsg_addr = tswapal(target_msgh->msg_control);
1751 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1752 target_cmsg_start = target_cmsg;
1753 if (!target_cmsg)
1754 return -TARGET_EFAULT;
1755
1756 while (cmsg && target_cmsg) {
1757 void *data = CMSG_DATA(cmsg);
1758 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1759
1760 int len = tswapal(target_cmsg->cmsg_len)
1761 - sizeof(struct target_cmsghdr);
1762
1763 space += CMSG_SPACE(len);
1764 if (space > msgh->msg_controllen) {
1765 space -= CMSG_SPACE(len);
1766 /* This is a QEMU bug, since we allocated the payload
1767 * area ourselves (unlike overflow in host-to-target
1768 * conversion, which is just the guest giving us a buffer
1769 * that's too small). It can't happen for the payload types
1770 * we currently support; if it becomes an issue in future
1771 * we would need to improve our allocation strategy to
1772 * something more intelligent than "twice the size of the
1773 * target buffer we're reading from".
1774 */
1775 qemu_log_mask(LOG_UNIMP,
1776 ("Unsupported ancillary data %d/%d: "
1777 "unhandled msg size\n"),
1778 tswap32(target_cmsg->cmsg_level),
1779 tswap32(target_cmsg->cmsg_type));
1780 break;
1781 }
1782
1783 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1784 cmsg->cmsg_level = SOL_SOCKET;
1785 } else {
1786 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1787 }
1788 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1789 cmsg->cmsg_len = CMSG_LEN(len);
1790
1791 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1792 int *fd = (int *)data;
1793 int *target_fd = (int *)target_data;
1794 int i, numfds = len / sizeof(int);
1795
1796 for (i = 0; i < numfds; i++) {
1797 __get_user(fd[i], target_fd + i);
1798 }
1799 } else if (cmsg->cmsg_level == SOL_SOCKET
1800 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1801 struct ucred *cred = (struct ucred *)data;
1802 struct target_ucred *target_cred =
1803 (struct target_ucred *)target_data;
1804
1805 __get_user(cred->pid, &target_cred->pid);
1806 __get_user(cred->uid, &target_cred->uid);
1807 __get_user(cred->gid, &target_cred->gid);
1808 } else if (cmsg->cmsg_level == SOL_ALG) {
1809 uint32_t *dst = (uint32_t *)data;
1810
1811 memcpy(dst, target_data, len);
1812 /* fix endianess of first 32-bit word */
1813 if (len >= sizeof(uint32_t)) {
1814 *dst = tswap32(*dst);
1815 }
1816 } else {
1817 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1818 cmsg->cmsg_level, cmsg->cmsg_type);
1819 memcpy(data, target_data, len);
1820 }
1821
1822 cmsg = CMSG_NXTHDR(msgh, cmsg);
1823 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1824 target_cmsg_start);
1825 }
1826 unlock_user(target_cmsg, target_cmsg_addr, 0);
1827 the_end:
1828 msgh->msg_controllen = space;
1829 return 0;
1830 }
1831
1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1833 struct msghdr *msgh)
1834 {
1835 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1836 abi_long msg_controllen;
1837 abi_ulong target_cmsg_addr;
1838 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1839 socklen_t space = 0;
1840
1841 msg_controllen = tswapal(target_msgh->msg_controllen);
1842 if (msg_controllen < sizeof (struct target_cmsghdr))
1843 goto the_end;
1844 target_cmsg_addr = tswapal(target_msgh->msg_control);
1845 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1846 target_cmsg_start = target_cmsg;
1847 if (!target_cmsg)
1848 return -TARGET_EFAULT;
1849
1850 while (cmsg && target_cmsg) {
1851 void *data = CMSG_DATA(cmsg);
1852 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1853
1854 int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1855 int tgt_len, tgt_space;
1856
1857 /* We never copy a half-header but may copy half-data;
1858 * this is Linux's behaviour in put_cmsg(). Note that
1859 * truncation here is a guest problem (which we report
1860 * to the guest via the CTRUNC bit), unlike truncation
1861 * in target_to_host_cmsg, which is a QEMU bug.
1862 */
1863 if (msg_controllen < sizeof(struct target_cmsghdr)) {
1864 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1865 break;
1866 }
1867
1868 if (cmsg->cmsg_level == SOL_SOCKET) {
1869 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1870 } else {
1871 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1872 }
1873 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1874
1875 /* Payload types which need a different size of payload on
1876 * the target must adjust tgt_len here.
1877 */
1878 tgt_len = len;
1879 switch (cmsg->cmsg_level) {
1880 case SOL_SOCKET:
1881 switch (cmsg->cmsg_type) {
1882 case SO_TIMESTAMP:
1883 tgt_len = sizeof(struct target_timeval);
1884 break;
1885 default:
1886 break;
1887 }
1888 break;
1889 default:
1890 break;
1891 }
1892
1893 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1894 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1895 tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1896 }
1897
1898 /* We must now copy-and-convert len bytes of payload
1899 * into tgt_len bytes of destination space. Bear in mind
1900 * that in both source and destination we may be dealing
1901 * with a truncated value!
1902 */
1903 switch (cmsg->cmsg_level) {
1904 case SOL_SOCKET:
1905 switch (cmsg->cmsg_type) {
1906 case SCM_RIGHTS:
1907 {
1908 int *fd = (int *)data;
1909 int *target_fd = (int *)target_data;
1910 int i, numfds = tgt_len / sizeof(int);
1911
1912 for (i = 0; i < numfds; i++) {
1913 __put_user(fd[i], target_fd + i);
1914 }
1915 break;
1916 }
1917 case SO_TIMESTAMP:
1918 {
1919 struct timeval *tv = (struct timeval *)data;
1920 struct target_timeval *target_tv =
1921 (struct target_timeval *)target_data;
1922
1923 if (len != sizeof(struct timeval) ||
1924 tgt_len != sizeof(struct target_timeval)) {
1925 goto unimplemented;
1926 }
1927
1928 /* copy struct timeval to target */
1929 __put_user(tv->tv_sec, &target_tv->tv_sec);
1930 __put_user(tv->tv_usec, &target_tv->tv_usec);
1931 break;
1932 }
1933 case SCM_CREDENTIALS:
1934 {
1935 struct ucred *cred = (struct ucred *)data;
1936 struct target_ucred *target_cred =
1937 (struct target_ucred *)target_data;
1938
1939 __put_user(cred->pid, &target_cred->pid);
1940 __put_user(cred->uid, &target_cred->uid);
1941 __put_user(cred->gid, &target_cred->gid);
1942 break;
1943 }
1944 default:
1945 goto unimplemented;
1946 }
1947 break;
1948
1949 case SOL_IP:
1950 switch (cmsg->cmsg_type) {
1951 case IP_TTL:
1952 {
1953 uint32_t *v = (uint32_t *)data;
1954 uint32_t *t_int = (uint32_t *)target_data;
1955
1956 if (len != sizeof(uint32_t) ||
1957 tgt_len != sizeof(uint32_t)) {
1958 goto unimplemented;
1959 }
1960 __put_user(*v, t_int);
1961 break;
1962 }
1963 case IP_RECVERR:
1964 {
1965 struct errhdr_t {
1966 struct sock_extended_err ee;
1967 struct sockaddr_in offender;
1968 };
1969 struct errhdr_t *errh = (struct errhdr_t *)data;
1970 struct errhdr_t *target_errh =
1971 (struct errhdr_t *)target_data;
1972
1973 if (len != sizeof(struct errhdr_t) ||
1974 tgt_len != sizeof(struct errhdr_t)) {
1975 goto unimplemented;
1976 }
1977 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1978 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1979 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1980 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1981 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1982 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1983 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1984 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1985 (void *) &errh->offender, sizeof(errh->offender));
1986 break;
1987 }
1988 default:
1989 goto unimplemented;
1990 }
1991 break;
1992
1993 case SOL_IPV6:
1994 switch (cmsg->cmsg_type) {
1995 case IPV6_HOPLIMIT:
1996 {
1997 uint32_t *v = (uint32_t *)data;
1998 uint32_t *t_int = (uint32_t *)target_data;
1999
2000 if (len != sizeof(uint32_t) ||
2001 tgt_len != sizeof(uint32_t)) {
2002 goto unimplemented;
2003 }
2004 __put_user(*v, t_int);
2005 break;
2006 }
2007 case IPV6_RECVERR:
2008 {
2009 struct errhdr6_t {
2010 struct sock_extended_err ee;
2011 struct sockaddr_in6 offender;
2012 };
2013 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2014 struct errhdr6_t *target_errh =
2015 (struct errhdr6_t *)target_data;
2016
2017 if (len != sizeof(struct errhdr6_t) ||
2018 tgt_len != sizeof(struct errhdr6_t)) {
2019 goto unimplemented;
2020 }
2021 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2022 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2023 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
2024 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2025 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2026 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2027 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2028 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2029 (void *) &errh->offender, sizeof(errh->offender));
2030 break;
2031 }
2032 default:
2033 goto unimplemented;
2034 }
2035 break;
2036
2037 default:
2038 unimplemented:
2039 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2040 cmsg->cmsg_level, cmsg->cmsg_type);
2041 memcpy(target_data, data, MIN(len, tgt_len));
2042 if (tgt_len > len) {
2043 memset(target_data + len, 0, tgt_len - len);
2044 }
2045 }
2046
2047 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2048 tgt_space = TARGET_CMSG_SPACE(tgt_len);
2049 if (msg_controllen < tgt_space) {
2050 tgt_space = msg_controllen;
2051 }
2052 msg_controllen -= tgt_space;
2053 space += tgt_space;
2054 cmsg = CMSG_NXTHDR(msgh, cmsg);
2055 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2056 target_cmsg_start);
2057 }
2058 unlock_user(target_cmsg, target_cmsg_addr, space);
2059 the_end:
2060 target_msgh->msg_controllen = tswapal(space);
2061 return 0;
2062 }
2063
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long do_setsockopt(int sockfd, int level, int optname,
2066 abi_ulong optval_addr, socklen_t optlen)
2067 {
2068 abi_long ret;
2069 int val;
2070 struct ip_mreqn *ip_mreq;
2071 struct ip_mreq_source *ip_mreq_source;
2072
2073 switch(level) {
2074 case SOL_TCP:
2075 case SOL_UDP:
2076 /* TCP and UDP options all take an 'int' value. */
2077 if (optlen < sizeof(uint32_t))
2078 return -TARGET_EINVAL;
2079
2080 if (get_user_u32(val, optval_addr))
2081 return -TARGET_EFAULT;
2082 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2083 break;
2084 case SOL_IP:
2085 switch(optname) {
2086 case IP_TOS:
2087 case IP_TTL:
2088 case IP_HDRINCL:
2089 case IP_ROUTER_ALERT:
2090 case IP_RECVOPTS:
2091 case IP_RETOPTS:
2092 case IP_PKTINFO:
2093 case IP_MTU_DISCOVER:
2094 case IP_RECVERR:
2095 case IP_RECVTTL:
2096 case IP_RECVTOS:
2097 #ifdef IP_FREEBIND
2098 case IP_FREEBIND:
2099 #endif
2100 case IP_MULTICAST_TTL:
2101 case IP_MULTICAST_LOOP:
2102 val = 0;
2103 if (optlen >= sizeof(uint32_t)) {
2104 if (get_user_u32(val, optval_addr))
2105 return -TARGET_EFAULT;
2106 } else if (optlen >= 1) {
2107 if (get_user_u8(val, optval_addr))
2108 return -TARGET_EFAULT;
2109 }
2110 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2111 break;
2112 case IP_ADD_MEMBERSHIP:
2113 case IP_DROP_MEMBERSHIP:
2114 if (optlen < sizeof (struct target_ip_mreq) ||
2115 optlen > sizeof (struct target_ip_mreqn))
2116 return -TARGET_EINVAL;
2117
2118 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2119 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2120 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2121 break;
2122
2123 case IP_BLOCK_SOURCE:
2124 case IP_UNBLOCK_SOURCE:
2125 case IP_ADD_SOURCE_MEMBERSHIP:
2126 case IP_DROP_SOURCE_MEMBERSHIP:
2127 if (optlen != sizeof (struct target_ip_mreq_source))
2128 return -TARGET_EINVAL;
2129
2130 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2131 if (!ip_mreq_source) {
2132 return -TARGET_EFAULT;
2133 }
2134 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2135 unlock_user (ip_mreq_source, optval_addr, 0);
2136 break;
2137
2138 default:
2139 goto unimplemented;
2140 }
2141 break;
2142 case SOL_IPV6:
2143 switch (optname) {
2144 case IPV6_MTU_DISCOVER:
2145 case IPV6_MTU:
2146 case IPV6_V6ONLY:
2147 case IPV6_RECVPKTINFO:
2148 case IPV6_UNICAST_HOPS:
2149 case IPV6_MULTICAST_HOPS:
2150 case IPV6_MULTICAST_LOOP:
2151 case IPV6_RECVERR:
2152 case IPV6_RECVHOPLIMIT:
2153 case IPV6_2292HOPLIMIT:
2154 case IPV6_CHECKSUM:
2155 case IPV6_ADDRFORM:
2156 case IPV6_2292PKTINFO:
2157 case IPV6_RECVTCLASS:
2158 case IPV6_RECVRTHDR:
2159 case IPV6_2292RTHDR:
2160 case IPV6_RECVHOPOPTS:
2161 case IPV6_2292HOPOPTS:
2162 case IPV6_RECVDSTOPTS:
2163 case IPV6_2292DSTOPTS:
2164 case IPV6_TCLASS:
2165 case IPV6_ADDR_PREFERENCES:
2166 #ifdef IPV6_RECVPATHMTU
2167 case IPV6_RECVPATHMTU:
2168 #endif
2169 #ifdef IPV6_TRANSPARENT
2170 case IPV6_TRANSPARENT:
2171 #endif
2172 #ifdef IPV6_FREEBIND
2173 case IPV6_FREEBIND:
2174 #endif
2175 #ifdef IPV6_RECVORIGDSTADDR
2176 case IPV6_RECVORIGDSTADDR:
2177 #endif
2178 val = 0;
2179 if (optlen < sizeof(uint32_t)) {
2180 return -TARGET_EINVAL;
2181 }
2182 if (get_user_u32(val, optval_addr)) {
2183 return -TARGET_EFAULT;
2184 }
2185 ret = get_errno(setsockopt(sockfd, level, optname,
2186 &val, sizeof(val)));
2187 break;
2188 case IPV6_PKTINFO:
2189 {
2190 struct in6_pktinfo pki;
2191
2192 if (optlen < sizeof(pki)) {
2193 return -TARGET_EINVAL;
2194 }
2195
2196 if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2197 return -TARGET_EFAULT;
2198 }
2199
2200 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2201
2202 ret = get_errno(setsockopt(sockfd, level, optname,
2203 &pki, sizeof(pki)));
2204 break;
2205 }
2206 case IPV6_ADD_MEMBERSHIP:
2207 case IPV6_DROP_MEMBERSHIP:
2208 {
2209 struct ipv6_mreq ipv6mreq;
2210
2211 if (optlen < sizeof(ipv6mreq)) {
2212 return -TARGET_EINVAL;
2213 }
2214
2215 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2216 return -TARGET_EFAULT;
2217 }
2218
2219 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2220
2221 ret = get_errno(setsockopt(sockfd, level, optname,
2222 &ipv6mreq, sizeof(ipv6mreq)));
2223 break;
2224 }
2225 default:
2226 goto unimplemented;
2227 }
2228 break;
2229 case SOL_ICMPV6:
2230 switch (optname) {
2231 case ICMPV6_FILTER:
2232 {
2233 struct icmp6_filter icmp6f;
2234
2235 if (optlen > sizeof(icmp6f)) {
2236 optlen = sizeof(icmp6f);
2237 }
2238
2239 if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2240 return -TARGET_EFAULT;
2241 }
2242
2243 for (val = 0; val < 8; val++) {
2244 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2245 }
2246
2247 ret = get_errno(setsockopt(sockfd, level, optname,
2248 &icmp6f, optlen));
2249 break;
2250 }
2251 default:
2252 goto unimplemented;
2253 }
2254 break;
2255 case SOL_RAW:
2256 switch (optname) {
2257 case ICMP_FILTER:
2258 case IPV6_CHECKSUM:
2259 /* those take an u32 value */
2260 if (optlen < sizeof(uint32_t)) {
2261 return -TARGET_EINVAL;
2262 }
2263
2264 if (get_user_u32(val, optval_addr)) {
2265 return -TARGET_EFAULT;
2266 }
2267 ret = get_errno(setsockopt(sockfd, level, optname,
2268 &val, sizeof(val)));
2269 break;
2270
2271 default:
2272 goto unimplemented;
2273 }
2274 break;
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2276 case SOL_ALG:
2277 switch (optname) {
2278 case ALG_SET_KEY:
2279 {
2280 char *alg_key = g_malloc(optlen);
2281
2282 if (!alg_key) {
2283 return -TARGET_ENOMEM;
2284 }
2285 if (copy_from_user(alg_key, optval_addr, optlen)) {
2286 g_free(alg_key);
2287 return -TARGET_EFAULT;
2288 }
2289 ret = get_errno(setsockopt(sockfd, level, optname,
2290 alg_key, optlen));
2291 g_free(alg_key);
2292 break;
2293 }
2294 case ALG_SET_AEAD_AUTHSIZE:
2295 {
2296 ret = get_errno(setsockopt(sockfd, level, optname,
2297 NULL, optlen));
2298 break;
2299 }
2300 default:
2301 goto unimplemented;
2302 }
2303 break;
2304 #endif
2305 case TARGET_SOL_SOCKET:
2306 switch (optname) {
2307 case TARGET_SO_RCVTIMEO:
2308 {
2309 struct timeval tv;
2310
2311 optname = SO_RCVTIMEO;
2312
2313 set_timeout:
2314 if (optlen != sizeof(struct target_timeval)) {
2315 return -TARGET_EINVAL;
2316 }
2317
2318 if (copy_from_user_timeval(&tv, optval_addr)) {
2319 return -TARGET_EFAULT;
2320 }
2321
2322 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2323 &tv, sizeof(tv)));
2324 return ret;
2325 }
2326 case TARGET_SO_SNDTIMEO:
2327 optname = SO_SNDTIMEO;
2328 goto set_timeout;
2329 case TARGET_SO_ATTACH_FILTER:
2330 {
2331 struct target_sock_fprog *tfprog;
2332 struct target_sock_filter *tfilter;
2333 struct sock_fprog fprog;
2334 struct sock_filter *filter;
2335 int i;
2336
2337 if (optlen != sizeof(*tfprog)) {
2338 return -TARGET_EINVAL;
2339 }
2340 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2341 return -TARGET_EFAULT;
2342 }
2343 if (!lock_user_struct(VERIFY_READ, tfilter,
2344 tswapal(tfprog->filter), 0)) {
2345 unlock_user_struct(tfprog, optval_addr, 1);
2346 return -TARGET_EFAULT;
2347 }
2348
2349 fprog.len = tswap16(tfprog->len);
2350 filter = g_try_new(struct sock_filter, fprog.len);
2351 if (filter == NULL) {
2352 unlock_user_struct(tfilter, tfprog->filter, 1);
2353 unlock_user_struct(tfprog, optval_addr, 1);
2354 return -TARGET_ENOMEM;
2355 }
2356 for (i = 0; i < fprog.len; i++) {
2357 filter[i].code = tswap16(tfilter[i].code);
2358 filter[i].jt = tfilter[i].jt;
2359 filter[i].jf = tfilter[i].jf;
2360 filter[i].k = tswap32(tfilter[i].k);
2361 }
2362 fprog.filter = filter;
2363
2364 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2365 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2366 g_free(filter);
2367
2368 unlock_user_struct(tfilter, tfprog->filter, 1);
2369 unlock_user_struct(tfprog, optval_addr, 1);
2370 return ret;
2371 }
2372 case TARGET_SO_BINDTODEVICE:
2373 {
2374 char *dev_ifname, *addr_ifname;
2375
2376 if (optlen > IFNAMSIZ - 1) {
2377 optlen = IFNAMSIZ - 1;
2378 }
2379 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2380 if (!dev_ifname) {
2381 return -TARGET_EFAULT;
2382 }
2383 optname = SO_BINDTODEVICE;
2384 addr_ifname = alloca(IFNAMSIZ);
2385 memcpy(addr_ifname, dev_ifname, optlen);
2386 addr_ifname[optlen] = 0;
2387 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2388 addr_ifname, optlen));
2389 unlock_user (dev_ifname, optval_addr, 0);
2390 return ret;
2391 }
2392 case TARGET_SO_LINGER:
2393 {
2394 struct linger lg;
2395 struct target_linger *tlg;
2396
2397 if (optlen != sizeof(struct target_linger)) {
2398 return -TARGET_EINVAL;
2399 }
2400 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2401 return -TARGET_EFAULT;
2402 }
2403 __get_user(lg.l_onoff, &tlg->l_onoff);
2404 __get_user(lg.l_linger, &tlg->l_linger);
2405 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2406 &lg, sizeof(lg)));
2407 unlock_user_struct(tlg, optval_addr, 0);
2408 return ret;
2409 }
2410 /* Options with 'int' argument. */
2411 case TARGET_SO_DEBUG:
2412 optname = SO_DEBUG;
2413 break;
2414 case TARGET_SO_REUSEADDR:
2415 optname = SO_REUSEADDR;
2416 break;
2417 #ifdef SO_REUSEPORT
2418 case TARGET_SO_REUSEPORT:
2419 optname = SO_REUSEPORT;
2420 break;
2421 #endif
2422 case TARGET_SO_TYPE:
2423 optname = SO_TYPE;
2424 break;
2425 case TARGET_SO_ERROR:
2426 optname = SO_ERROR;
2427 break;
2428 case TARGET_SO_DONTROUTE:
2429 optname = SO_DONTROUTE;
2430 break;
2431 case TARGET_SO_BROADCAST:
2432 optname = SO_BROADCAST;
2433 break;
2434 case TARGET_SO_SNDBUF:
2435 optname = SO_SNDBUF;
2436 break;
2437 case TARGET_SO_SNDBUFFORCE:
2438 optname = SO_SNDBUFFORCE;
2439 break;
2440 case TARGET_SO_RCVBUF:
2441 optname = SO_RCVBUF;
2442 break;
2443 case TARGET_SO_RCVBUFFORCE:
2444 optname = SO_RCVBUFFORCE;
2445 break;
2446 case TARGET_SO_KEEPALIVE:
2447 optname = SO_KEEPALIVE;
2448 break;
2449 case TARGET_SO_OOBINLINE:
2450 optname = SO_OOBINLINE;
2451 break;
2452 case TARGET_SO_NO_CHECK:
2453 optname = SO_NO_CHECK;
2454 break;
2455 case TARGET_SO_PRIORITY:
2456 optname = SO_PRIORITY;
2457 break;
2458 #ifdef SO_BSDCOMPAT
2459 case TARGET_SO_BSDCOMPAT:
2460 optname = SO_BSDCOMPAT;
2461 break;
2462 #endif
2463 case TARGET_SO_PASSCRED:
2464 optname = SO_PASSCRED;
2465 break;
2466 case TARGET_SO_PASSSEC:
2467 optname = SO_PASSSEC;
2468 break;
2469 case TARGET_SO_TIMESTAMP:
2470 optname = SO_TIMESTAMP;
2471 break;
2472 case TARGET_SO_RCVLOWAT:
2473 optname = SO_RCVLOWAT;
2474 break;
2475 default:
2476 goto unimplemented;
2477 }
2478 if (optlen < sizeof(uint32_t))
2479 return -TARGET_EINVAL;
2480
2481 if (get_user_u32(val, optval_addr))
2482 return -TARGET_EFAULT;
2483 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2484 break;
2485 #ifdef SOL_NETLINK
2486 case SOL_NETLINK:
2487 switch (optname) {
2488 case NETLINK_PKTINFO:
2489 case NETLINK_ADD_MEMBERSHIP:
2490 case NETLINK_DROP_MEMBERSHIP:
2491 case NETLINK_BROADCAST_ERROR:
2492 case NETLINK_NO_ENOBUFS:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494 case NETLINK_LISTEN_ALL_NSID:
2495 case NETLINK_CAP_ACK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498 case NETLINK_EXT_ACK:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501 case NETLINK_GET_STRICT_CHK:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2503 break;
2504 default:
2505 goto unimplemented;
2506 }
2507 val = 0;
2508 if (optlen < sizeof(uint32_t)) {
2509 return -TARGET_EINVAL;
2510 }
2511 if (get_user_u32(val, optval_addr)) {
2512 return -TARGET_EFAULT;
2513 }
2514 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2515 sizeof(val)));
2516 break;
2517 #endif /* SOL_NETLINK */
2518 default:
2519 unimplemented:
2520 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2521 level, optname);
2522 ret = -TARGET_ENOPROTOOPT;
2523 }
2524 return ret;
2525 }
2526
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long do_getsockopt(int sockfd, int level, int optname,
2529 abi_ulong optval_addr, abi_ulong optlen)
2530 {
2531 abi_long ret;
2532 int len, val;
2533 socklen_t lv;
2534
2535 switch(level) {
2536 case TARGET_SOL_SOCKET:
2537 level = SOL_SOCKET;
2538 switch (optname) {
2539 /* These don't just return a single integer */
2540 case TARGET_SO_PEERNAME:
2541 goto unimplemented;
2542 case TARGET_SO_RCVTIMEO: {
2543 struct timeval tv;
2544 socklen_t tvlen;
2545
2546 optname = SO_RCVTIMEO;
2547
2548 get_timeout:
2549 if (get_user_u32(len, optlen)) {
2550 return -TARGET_EFAULT;
2551 }
2552 if (len < 0) {
2553 return -TARGET_EINVAL;
2554 }
2555
2556 tvlen = sizeof(tv);
2557 ret = get_errno(getsockopt(sockfd, level, optname,
2558 &tv, &tvlen));
2559 if (ret < 0) {
2560 return ret;
2561 }
2562 if (len > sizeof(struct target_timeval)) {
2563 len = sizeof(struct target_timeval);
2564 }
2565 if (copy_to_user_timeval(optval_addr, &tv)) {
2566 return -TARGET_EFAULT;
2567 }
2568 if (put_user_u32(len, optlen)) {
2569 return -TARGET_EFAULT;
2570 }
2571 break;
2572 }
2573 case TARGET_SO_SNDTIMEO:
2574 optname = SO_SNDTIMEO;
2575 goto get_timeout;
2576 case TARGET_SO_PEERCRED: {
2577 struct ucred cr;
2578 socklen_t crlen;
2579 struct target_ucred *tcr;
2580
2581 if (get_user_u32(len, optlen)) {
2582 return -TARGET_EFAULT;
2583 }
2584 if (len < 0) {
2585 return -TARGET_EINVAL;
2586 }
2587
2588 crlen = sizeof(cr);
2589 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2590 &cr, &crlen));
2591 if (ret < 0) {
2592 return ret;
2593 }
2594 if (len > crlen) {
2595 len = crlen;
2596 }
2597 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2598 return -TARGET_EFAULT;
2599 }
2600 __put_user(cr.pid, &tcr->pid);
2601 __put_user(cr.uid, &tcr->uid);
2602 __put_user(cr.gid, &tcr->gid);
2603 unlock_user_struct(tcr, optval_addr, 1);
2604 if (put_user_u32(len, optlen)) {
2605 return -TARGET_EFAULT;
2606 }
2607 break;
2608 }
2609 case TARGET_SO_PEERSEC: {
2610 char *name;
2611
2612 if (get_user_u32(len, optlen)) {
2613 return -TARGET_EFAULT;
2614 }
2615 if (len < 0) {
2616 return -TARGET_EINVAL;
2617 }
2618 name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2619 if (!name) {
2620 return -TARGET_EFAULT;
2621 }
2622 lv = len;
2623 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2624 name, &lv));
2625 if (put_user_u32(lv, optlen)) {
2626 ret = -TARGET_EFAULT;
2627 }
2628 unlock_user(name, optval_addr, lv);
2629 break;
2630 }
2631 case TARGET_SO_LINGER:
2632 {
2633 struct linger lg;
2634 socklen_t lglen;
2635 struct target_linger *tlg;
2636
2637 if (get_user_u32(len, optlen)) {
2638 return -TARGET_EFAULT;
2639 }
2640 if (len < 0) {
2641 return -TARGET_EINVAL;
2642 }
2643
2644 lglen = sizeof(lg);
2645 ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2646 &lg, &lglen));
2647 if (ret < 0) {
2648 return ret;
2649 }
2650 if (len > lglen) {
2651 len = lglen;
2652 }
2653 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2654 return -TARGET_EFAULT;
2655 }
2656 __put_user(lg.l_onoff, &tlg->l_onoff);
2657 __put_user(lg.l_linger, &tlg->l_linger);
2658 unlock_user_struct(tlg, optval_addr, 1);
2659 if (put_user_u32(len, optlen)) {
2660 return -TARGET_EFAULT;
2661 }
2662 break;
2663 }
2664 /* Options with 'int' argument. */
2665 case TARGET_SO_DEBUG:
2666 optname = SO_DEBUG;
2667 goto int_case;
2668 case TARGET_SO_REUSEADDR:
2669 optname = SO_REUSEADDR;
2670 goto int_case;
2671 #ifdef SO_REUSEPORT
2672 case TARGET_SO_REUSEPORT:
2673 optname = SO_REUSEPORT;
2674 goto int_case;
2675 #endif
2676 case TARGET_SO_TYPE:
2677 optname = SO_TYPE;
2678 goto int_case;
2679 case TARGET_SO_ERROR:
2680 optname = SO_ERROR;
2681 goto int_case;
2682 case TARGET_SO_DONTROUTE:
2683 optname = SO_DONTROUTE;
2684 goto int_case;
2685 case TARGET_SO_BROADCAST:
2686 optname = SO_BROADCAST;
2687 goto int_case;
2688 case TARGET_SO_SNDBUF:
2689 optname = SO_SNDBUF;
2690 goto int_case;
2691 case TARGET_SO_RCVBUF:
2692 optname = SO_RCVBUF;
2693 goto int_case;
2694 case TARGET_SO_KEEPALIVE:
2695 optname = SO_KEEPALIVE;
2696 goto int_case;
2697 case TARGET_SO_OOBINLINE:
2698 optname = SO_OOBINLINE;
2699 goto int_case;
2700 case TARGET_SO_NO_CHECK:
2701 optname = SO_NO_CHECK;
2702 goto int_case;
2703 case TARGET_SO_PRIORITY:
2704 optname = SO_PRIORITY;
2705 goto int_case;
2706 #ifdef SO_BSDCOMPAT
2707 case TARGET_SO_BSDCOMPAT:
2708 optname = SO_BSDCOMPAT;
2709 goto int_case;
2710 #endif
2711 case TARGET_SO_PASSCRED:
2712 optname = SO_PASSCRED;
2713 goto int_case;
2714 case TARGET_SO_TIMESTAMP:
2715 optname = SO_TIMESTAMP;
2716 goto int_case;
2717 case TARGET_SO_RCVLOWAT:
2718 optname = SO_RCVLOWAT;
2719 goto int_case;
2720 case TARGET_SO_ACCEPTCONN:
2721 optname = SO_ACCEPTCONN;
2722 goto int_case;
2723 case TARGET_SO_PROTOCOL:
2724 optname = SO_PROTOCOL;
2725 goto int_case;
2726 case TARGET_SO_DOMAIN:
2727 optname = SO_DOMAIN;
2728 goto int_case;
2729 default:
2730 goto int_case;
2731 }
2732 break;
2733 case SOL_TCP:
2734 case SOL_UDP:
2735 /* TCP and UDP options all take an 'int' value. */
2736 int_case:
2737 if (get_user_u32(len, optlen))
2738 return -TARGET_EFAULT;
2739 if (len < 0)
2740 return -TARGET_EINVAL;
2741 lv = sizeof(lv);
2742 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2743 if (ret < 0)
2744 return ret;
2745 switch (optname) {
2746 case SO_TYPE:
2747 val = host_to_target_sock_type(val);
2748 break;
2749 case SO_ERROR:
2750 val = host_to_target_errno(val);
2751 break;
2752 }
2753 if (len > lv)
2754 len = lv;
2755 if (len == 4) {
2756 if (put_user_u32(val, optval_addr))
2757 return -TARGET_EFAULT;
2758 } else {
2759 if (put_user_u8(val, optval_addr))
2760 return -TARGET_EFAULT;
2761 }
2762 if (put_user_u32(len, optlen))
2763 return -TARGET_EFAULT;
2764 break;
2765 case SOL_IP:
2766 switch(optname) {
2767 case IP_TOS:
2768 case IP_TTL:
2769 case IP_HDRINCL:
2770 case IP_ROUTER_ALERT:
2771 case IP_RECVOPTS:
2772 case IP_RETOPTS:
2773 case IP_PKTINFO:
2774 case IP_MTU_DISCOVER:
2775 case IP_RECVERR:
2776 case IP_RECVTOS:
2777 #ifdef IP_FREEBIND
2778 case IP_FREEBIND:
2779 #endif
2780 case IP_MULTICAST_TTL:
2781 case IP_MULTICAST_LOOP:
2782 if (get_user_u32(len, optlen))
2783 return -TARGET_EFAULT;
2784 if (len < 0)
2785 return -TARGET_EINVAL;
2786 lv = sizeof(lv);
2787 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2788 if (ret < 0)
2789 return ret;
2790 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2791 len = 1;
2792 if (put_user_u32(len, optlen)
2793 || put_user_u8(val, optval_addr))
2794 return -TARGET_EFAULT;
2795 } else {
2796 if (len > sizeof(int))
2797 len = sizeof(int);
2798 if (put_user_u32(len, optlen)
2799 || put_user_u32(val, optval_addr))
2800 return -TARGET_EFAULT;
2801 }
2802 break;
2803 default:
2804 ret = -TARGET_ENOPROTOOPT;
2805 break;
2806 }
2807 break;
2808 case SOL_IPV6:
2809 switch (optname) {
2810 case IPV6_MTU_DISCOVER:
2811 case IPV6_MTU:
2812 case IPV6_V6ONLY:
2813 case IPV6_RECVPKTINFO:
2814 case IPV6_UNICAST_HOPS:
2815 case IPV6_MULTICAST_HOPS:
2816 case IPV6_MULTICAST_LOOP:
2817 case IPV6_RECVERR:
2818 case IPV6_RECVHOPLIMIT:
2819 case IPV6_2292HOPLIMIT:
2820 case IPV6_CHECKSUM:
2821 case IPV6_ADDRFORM:
2822 case IPV6_2292PKTINFO:
2823 case IPV6_RECVTCLASS:
2824 case IPV6_RECVRTHDR:
2825 case IPV6_2292RTHDR:
2826 case IPV6_RECVHOPOPTS:
2827 case IPV6_2292HOPOPTS:
2828 case IPV6_RECVDSTOPTS:
2829 case IPV6_2292DSTOPTS:
2830 case IPV6_TCLASS:
2831 case IPV6_ADDR_PREFERENCES:
2832 #ifdef IPV6_RECVPATHMTU
2833 case IPV6_RECVPATHMTU:
2834 #endif
2835 #ifdef IPV6_TRANSPARENT
2836 case IPV6_TRANSPARENT:
2837 #endif
2838 #ifdef IPV6_FREEBIND
2839 case IPV6_FREEBIND:
2840 #endif
2841 #ifdef IPV6_RECVORIGDSTADDR
2842 case IPV6_RECVORIGDSTADDR:
2843 #endif
2844 if (get_user_u32(len, optlen))
2845 return -TARGET_EFAULT;
2846 if (len < 0)
2847 return -TARGET_EINVAL;
2848 lv = sizeof(lv);
2849 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2850 if (ret < 0)
2851 return ret;
2852 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2853 len = 1;
2854 if (put_user_u32(len, optlen)
2855 || put_user_u8(val, optval_addr))
2856 return -TARGET_EFAULT;
2857 } else {
2858 if (len > sizeof(int))
2859 len = sizeof(int);
2860 if (put_user_u32(len, optlen)
2861 || put_user_u32(val, optval_addr))
2862 return -TARGET_EFAULT;
2863 }
2864 break;
2865 default:
2866 ret = -TARGET_ENOPROTOOPT;
2867 break;
2868 }
2869 break;
2870 #ifdef SOL_NETLINK
2871 case SOL_NETLINK:
2872 switch (optname) {
2873 case NETLINK_PKTINFO:
2874 case NETLINK_BROADCAST_ERROR:
2875 case NETLINK_NO_ENOBUFS:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877 case NETLINK_LISTEN_ALL_NSID:
2878 case NETLINK_CAP_ACK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881 case NETLINK_EXT_ACK:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884 case NETLINK_GET_STRICT_CHK:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886 if (get_user_u32(len, optlen)) {
2887 return -TARGET_EFAULT;
2888 }
2889 if (len != sizeof(val)) {
2890 return -TARGET_EINVAL;
2891 }
2892 lv = len;
2893 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2894 if (ret < 0) {
2895 return ret;
2896 }
2897 if (put_user_u32(lv, optlen)
2898 || put_user_u32(val, optval_addr)) {
2899 return -TARGET_EFAULT;
2900 }
2901 break;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903 case NETLINK_LIST_MEMBERSHIPS:
2904 {
2905 uint32_t *results;
2906 int i;
2907 if (get_user_u32(len, optlen)) {
2908 return -TARGET_EFAULT;
2909 }
2910 if (len < 0) {
2911 return -TARGET_EINVAL;
2912 }
2913 results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2914 if (!results && len > 0) {
2915 return -TARGET_EFAULT;
2916 }
2917 lv = len;
2918 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2919 if (ret < 0) {
2920 unlock_user(results, optval_addr, 0);
2921 return ret;
2922 }
2923 /* swap host endianess to target endianess. */
2924 for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2925 results[i] = tswap32(results[i]);
2926 }
2927 if (put_user_u32(lv, optlen)) {
2928 return -TARGET_EFAULT;
2929 }
2930 unlock_user(results, optval_addr, 0);
2931 break;
2932 }
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2934 default:
2935 goto unimplemented;
2936 }
2937 break;
2938 #endif /* SOL_NETLINK */
2939 default:
2940 unimplemented:
2941 qemu_log_mask(LOG_UNIMP,
2942 "getsockopt level=%d optname=%d not yet supported\n",
2943 level, optname);
2944 ret = -TARGET_EOPNOTSUPP;
2945 break;
2946 }
2947 return ret;
2948 }
2949
2950 /* Convert target low/high pair representing file offset into the host
2951 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952 * as the kernel doesn't handle them either.
2953 */
2954 static void target_to_host_low_high(abi_ulong tlow,
2955 abi_ulong thigh,
2956 unsigned long *hlow,
2957 unsigned long *hhigh)
2958 {
2959 uint64_t off = tlow |
2960 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2961 TARGET_LONG_BITS / 2;
2962
2963 *hlow = off;
2964 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2965 }
2966
2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2968 abi_ulong count, int copy)
2969 {
2970 struct target_iovec *target_vec;
2971 struct iovec *vec;
2972 abi_ulong total_len, max_len;
2973 int i;
2974 int err = 0;
2975 bool bad_address = false;
2976
2977 if (count == 0) {
2978 errno = 0;
2979 return NULL;
2980 }
2981 if (count > IOV_MAX) {
2982 errno = EINVAL;
2983 return NULL;
2984 }
2985
2986 vec = g_try_new0(struct iovec, count);
2987 if (vec == NULL) {
2988 errno = ENOMEM;
2989 return NULL;
2990 }
2991
2992 target_vec = lock_user(VERIFY_READ, target_addr,
2993 count * sizeof(struct target_iovec), 1);
2994 if (target_vec == NULL) {
2995 err = EFAULT;
2996 goto fail2;
2997 }
2998
2999 /* ??? If host page size > target page size, this will result in a
3000 value larger than what we can actually support. */
3001 max_len = 0x7fffffff & TARGET_PAGE_MASK;
3002 total_len = 0;
3003
3004 for (i = 0; i < count; i++) {
3005 abi_ulong base = tswapal(target_vec[i].iov_base);
3006 abi_long len = tswapal(target_vec[i].iov_len);
3007
3008 if (len < 0) {
3009 err = EINVAL;
3010 goto fail;
3011 } else if (len == 0) {
3012 /* Zero length pointer is ignored. */
3013 vec[i].iov_base = 0;
3014 } else {
3015 vec[i].iov_base = lock_user(type, base, len, copy);
3016 /* If the first buffer pointer is bad, this is a fault. But
3017 * subsequent bad buffers will result in a partial write; this
3018 * is realized by filling the vector with null pointers and
3019 * zero lengths. */
3020 if (!vec[i].iov_base) {
3021 if (i == 0) {
3022 err = EFAULT;
3023 goto fail;
3024 } else {
3025 bad_address = true;
3026 }
3027 }
3028 if (bad_address) {
3029 len = 0;
3030 }
3031 if (len > max_len - total_len) {
3032 len = max_len - total_len;
3033 }
3034 }
3035 vec[i].iov_len = len;
3036 total_len += len;
3037 }
3038
3039 unlock_user(target_vec, target_addr, 0);
3040 return vec;
3041
3042 fail:
3043 while (--i >= 0) {
3044 if (tswapal(target_vec[i].iov_len) > 0) {
3045 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3046 }
3047 }
3048 unlock_user(target_vec, target_addr, 0);
3049 fail2:
3050 g_free(vec);
3051 errno = err;
3052 return NULL;
3053 }
3054
3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3056 abi_ulong count, int copy)
3057 {
3058 struct target_iovec *target_vec;
3059 int i;
3060
3061 target_vec = lock_user(VERIFY_READ, target_addr,
3062 count * sizeof(struct target_iovec), 1);
3063 if (target_vec) {
3064 for (i = 0; i < count; i++) {
3065 abi_ulong base = tswapal(target_vec[i].iov_base);
3066 abi_long len = tswapal(target_vec[i].iov_len);
3067 if (len < 0) {
3068 break;
3069 }
3070 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3071 }
3072 unlock_user(target_vec, target_addr, 0);
3073 }
3074
3075 g_free(vec);
3076 }
3077
3078 static inline int target_to_host_sock_type(int *type)
3079 {
3080 int host_type = 0;
3081 int target_type = *type;
3082
3083 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3084 case TARGET_SOCK_DGRAM:
3085 host_type = SOCK_DGRAM;
3086 break;
3087 case TARGET_SOCK_STREAM:
3088 host_type = SOCK_STREAM;
3089 break;
3090 default:
3091 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3092 break;
3093 }
3094 if (target_type & TARGET_SOCK_CLOEXEC) {
3095 #if defined(SOCK_CLOEXEC)
3096 host_type |= SOCK_CLOEXEC;
3097 #else
3098 return -TARGET_EINVAL;
3099 #endif
3100 }
3101 if (target_type & TARGET_SOCK_NONBLOCK) {
3102 #if defined(SOCK_NONBLOCK)
3103 host_type |= SOCK_NONBLOCK;
3104 #elif !defined(O_NONBLOCK)
3105 return -TARGET_EINVAL;
3106 #endif
3107 }
3108 *type = host_type;
3109 return 0;
3110 }
3111
3112 /* Try to emulate socket type flags after socket creation. */
3113 static int sock_flags_fixup(int fd, int target_type)
3114 {
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116 if (target_type & TARGET_SOCK_NONBLOCK) {
3117 int flags = fcntl(fd, F_GETFL);
3118 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3119 close(fd);
3120 return -TARGET_EINVAL;
3121 }
3122 }
3123 #endif
3124 return fd;
3125 }
3126
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long do_socket(int domain, int type, int protocol)
3129 {
3130 int target_type = type;
3131 int ret;
3132
3133 ret = target_to_host_sock_type(&type);
3134 if (ret) {
3135 return ret;
3136 }
3137
3138 if (domain == PF_NETLINK && !(
3139 #ifdef CONFIG_RTNETLINK
3140 protocol == NETLINK_ROUTE ||
3141 #endif
3142 protocol == NETLINK_KOBJECT_UEVENT ||
3143 protocol == NETLINK_AUDIT)) {
3144 return -TARGET_EPROTONOSUPPORT;
3145 }
3146
3147 if (domain == AF_PACKET ||
3148 (domain == AF_INET && type == SOCK_PACKET)) {
3149 protocol = tswap16(protocol);
3150 }
3151
3152 ret = get_errno(socket(domain, type, protocol));
3153 if (ret >= 0) {
3154 ret = sock_flags_fixup(ret, target_type);
3155 if (type == SOCK_PACKET) {
3156 /* Manage an obsolete case :
3157 * if socket type is SOCK_PACKET, bind by name
3158 */
3159 fd_trans_register(ret, &target_packet_trans);
3160 } else if (domain == PF_NETLINK) {
3161 switch (protocol) {
3162 #ifdef CONFIG_RTNETLINK
3163 case NETLINK_ROUTE:
3164 fd_trans_register(ret, &target_netlink_route_trans);
3165 break;
3166 #endif
3167 case NETLINK_KOBJECT_UEVENT:
3168 /* nothing to do: messages are strings */
3169 break;
3170 case NETLINK_AUDIT:
3171 fd_trans_register(ret, &target_netlink_audit_trans);
3172 break;
3173 default:
3174 g_assert_not_reached();
3175 }
3176 }
3177 }
3178 return ret;
3179 }
3180
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3183 socklen_t addrlen)
3184 {
3185 void *addr;
3186 abi_long ret;
3187
3188 if ((int)addrlen < 0) {
3189 return -TARGET_EINVAL;
3190 }
3191
3192 addr = alloca(addrlen+1);
3193
3194 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3195 if (ret)
3196 return ret;
3197
3198 return get_errno(bind(sockfd, addr, addrlen));
3199 }
3200
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3203 socklen_t addrlen)
3204 {
3205 void *addr;
3206 abi_long ret;
3207
3208 if ((int)addrlen < 0) {
3209 return -TARGET_EINVAL;
3210 }
3211
3212 addr = alloca(addrlen+1);
3213
3214 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3215 if (ret)
3216 return ret;
3217
3218 return get_errno(safe_connect(sockfd, addr, addrlen));
3219 }
3220
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3223 int flags, int send)
3224 {
3225 abi_long ret, len;
3226 struct msghdr msg;
3227 abi_ulong count;
3228 struct iovec *vec;
3229 abi_ulong target_vec;
3230
3231 if (msgp->msg_name) {
3232 msg.msg_namelen = tswap32(msgp->msg_namelen);
3233 msg.msg_name = alloca(msg.msg_namelen+1);
3234 ret = target_to_host_sockaddr(fd, msg.msg_name,
3235 tswapal(msgp->msg_name),
3236 msg.msg_namelen);
3237 if (ret == -TARGET_EFAULT) {
3238 /* For connected sockets msg_name and msg_namelen must
3239 * be ignored, so returning EFAULT immediately is wrong.
3240 * Instead, pass a bad msg_name to the host kernel, and
3241 * let it decide whether to return EFAULT or not.
3242 */
3243 msg.msg_name = (void *)-1;
3244 } else if (ret) {
3245 goto out2;
3246 }
3247 } else {
3248 msg.msg_name = NULL;
3249 msg.msg_namelen = 0;
3250 }
3251 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3252 msg.msg_control = alloca(msg.msg_controllen);
3253 memset(msg.msg_control, 0, msg.msg_controllen);
3254
3255 msg.msg_flags = tswap32(msgp->msg_flags);
3256
3257 count = tswapal(msgp->msg_iovlen);
3258 target_vec = tswapal(msgp->msg_iov);
3259
3260 if (count > IOV_MAX) {
3261 /* sendrcvmsg returns a different errno for this condition than
3262 * readv/writev, so we must catch it here before lock_iovec() does.
3263 */
3264 ret = -TARGET_EMSGSIZE;
3265 goto out2;
3266 }
3267
3268 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3269 target_vec, count, send);
3270 if (vec == NULL) {
3271 ret = -host_to_target_errno(errno);
3272 /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3273 if (!send || ret) {
3274 goto out2;
3275 }
3276 }
3277 msg.msg_iovlen = count;
3278 msg.msg_iov = vec;
3279
3280 if (send) {
3281 if (fd_trans_target_to_host_data(fd)) {
3282 void *host_msg;
3283
3284 host_msg = g_malloc(msg.msg_iov->iov_len);
3285 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3286 ret = fd_trans_target_to_host_data(fd)(host_msg,
3287 msg.msg_iov->iov_len);
3288 if (ret >= 0) {
3289 msg.msg_iov->iov_base = host_msg;
3290 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291 }
3292 g_free(host_msg);
3293 } else {
3294 ret = target_to_host_cmsg(&msg, msgp);
3295 if (ret == 0) {
3296 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3297 }
3298 }
3299 } else {
3300 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3301 if (!is_error(ret)) {
3302 len = ret;
3303 if (fd_trans_host_to_target_data(fd)) {
3304 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3305 MIN(msg.msg_iov->iov_len, len));
3306 }
3307 if (!is_error(ret)) {
3308 ret = host_to_target_cmsg(msgp, &msg);
3309 }
3310 if (!is_error(ret)) {
3311 msgp->msg_namelen = tswap32(msg.msg_namelen);
3312 msgp->msg_flags = tswap32(msg.msg_flags);
3313 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3314 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3315 msg.msg_name, msg.msg_namelen);
3316 if (ret) {
3317 goto out;
3318 }
3319 }
3320
3321 ret = len;
3322 }
3323 }
3324 }
3325
3326 out:
3327 if (vec) {
3328 unlock_iovec(vec, target_vec, count, !send);
3329 }
3330 out2:
3331 return ret;
3332 }
3333
3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3335 int flags, int send)
3336 {
3337 abi_long ret;
3338 struct target_msghdr *msgp;
3339
3340 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3341 msgp,
3342 target_msg,
3343 send ? 1 : 0)) {
3344 return -TARGET_EFAULT;
3345 }
3346 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3347 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3348 return ret;
3349 }
3350
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352 * so it might not have this *mmsg-specific flag either.
3353 */
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3356 #endif
3357
3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3359 unsigned int vlen, unsigned int flags,
3360 int send)
3361 {
3362 struct target_mmsghdr *mmsgp;
3363 abi_long ret = 0;
3364 int i;
3365
3366 if (vlen > UIO_MAXIOV) {
3367 vlen = UIO_MAXIOV;
3368 }
3369
3370 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3371 if (!mmsgp) {
3372 return -TARGET_EFAULT;
3373 }
3374
3375 for (i = 0; i < vlen; i++) {
3376 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3377 if (is_error(ret)) {
3378 break;
3379 }
3380 mmsgp[i].msg_len = tswap32(ret);
3381 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382 if (flags & MSG_WAITFORONE) {
3383 flags |= MSG_DONTWAIT;
3384 }
3385 }
3386
3387 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3388
3389 /* Return number of datagrams sent if we sent any at all;
3390 * otherwise return the error.
3391 */
3392 if (i) {
3393 return i;
3394 }
3395 return ret;
3396 }
3397
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long do_accept4(int fd, abi_ulong target_addr,
3400 abi_ulong target_addrlen_addr, int flags)
3401 {
3402 socklen_t addrlen, ret_addrlen;
3403 void *addr;
3404 abi_long ret;
3405 int host_flags;
3406
3407 if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3408 return -TARGET_EINVAL;
3409 }
3410
3411 host_flags = 0;
3412 if (flags & TARGET_SOCK_NONBLOCK) {
3413 host_flags |= SOCK_NONBLOCK;
3414 }
3415 if (flags & TARGET_SOCK_CLOEXEC) {
3416 host_flags |= SOCK_CLOEXEC;
3417 }
3418
3419 if (target_addr == 0) {
3420 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3421 }
3422
3423 /* linux returns EFAULT if addrlen pointer is invalid */
3424 if (get_user_u32(addrlen, target_addrlen_addr))
3425 return -TARGET_EFAULT;
3426
3427 if ((int)addrlen < 0) {
3428 return -TARGET_EINVAL;
3429 }
3430
3431 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3432 return -TARGET_EFAULT;
3433 }
3434
3435 addr = alloca(addrlen);
3436
3437 ret_addrlen = addrlen;
3438 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3439 if (!is_error(ret)) {
3440 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3441 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3442 ret = -TARGET_EFAULT;
3443 }
3444 }
3445 return ret;
3446 }
3447
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3450 abi_ulong target_addrlen_addr)
3451 {
3452 socklen_t addrlen, ret_addrlen;
3453 void *addr;
3454 abi_long ret;
3455
3456 if (get_user_u32(addrlen, target_addrlen_addr))
3457 return -TARGET_EFAULT;
3458
3459 if ((int)addrlen < 0) {
3460 return -TARGET_EINVAL;
3461 }
3462
3463 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3464 return -TARGET_EFAULT;
3465 }
3466
3467 addr = alloca(addrlen);
3468
3469 ret_addrlen = addrlen;
3470 ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3471 if (!is_error(ret)) {
3472 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3473 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3474 ret = -TARGET_EFAULT;
3475 }
3476 }
3477 return ret;
3478 }
3479
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3482 abi_ulong target_addrlen_addr)
3483 {
3484 socklen_t addrlen, ret_addrlen;
3485 void *addr;
3486 abi_long ret;
3487
3488 if (get_user_u32(addrlen, target_addrlen_addr))
3489 return -TARGET_EFAULT;
3490
3491 if ((int)addrlen < 0) {
3492 return -TARGET_EINVAL;
3493 }
3494
3495 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3496 return -TARGET_EFAULT;
3497 }
3498
3499 addr = alloca(addrlen);
3500
3501 ret_addrlen = addrlen;
3502 ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3503 if (!is_error(ret)) {
3504 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3505 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3506 ret = -TARGET_EFAULT;
3507 }
3508 }
3509 return ret;
3510 }
3511
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long do_socketpair(int domain, int type, int protocol,
3514 abi_ulong target_tab_addr)
3515 {
3516 int tab[2];
3517 abi_long ret;
3518
3519 target_to_host_sock_type(&type);
3520
3521 ret = get_errno(socketpair(domain, type, protocol, tab));
3522 if (!is_error(ret)) {
3523 if (put_user_s32(tab[0], target_tab_addr)
3524 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3525 ret = -TARGET_EFAULT;
3526 }
3527 return ret;
3528 }
3529
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3532 abi_ulong target_addr, socklen_t addrlen)
3533 {
3534 void *addr;
3535 void *host_msg;
3536 void *copy_msg = NULL;
3537 abi_long ret;
3538
3539 if ((int)addrlen < 0) {
3540 return -TARGET_EINVAL;
3541 }
3542
3543 host_msg = lock_user(VERIFY_READ, msg, len, 1);
3544 if (!host_msg)
3545 return -TARGET_EFAULT;
3546 if (fd_trans_target_to_host_data(fd)) {
3547 copy_msg = host_msg;
3548 host_msg = g_malloc(len);
3549 memcpy(host_msg, copy_msg, len);
3550 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3551 if (ret < 0) {
3552 goto fail;
3553 }
3554 }
3555 if (target_addr) {
3556 addr = alloca(addrlen+1);
3557 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3558 if (ret) {
3559 goto fail;
3560 }
3561 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3562 } else {
3563 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3564 }
3565 fail:
3566 if (copy_msg) {
3567 g_free(host_msg);
3568 host_msg = copy_msg;
3569 }
3570 unlock_user(host_msg, msg, 0);
3571 return ret;
3572 }
3573
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3576 abi_ulong target_addr,
3577 abi_ulong target_addrlen)
3578 {
3579 socklen_t addrlen, ret_addrlen;
3580 void *addr;
3581 void *host_msg;
3582 abi_long ret;
3583
3584 if (!msg) {
3585 host_msg = NULL;
3586 } else {
3587 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3588 if (!host_msg) {
3589 return -TARGET_EFAULT;
3590 }
3591 }
3592 if (target_addr) {
3593 if (get_user_u32(addrlen, target_addrlen)) {
3594 ret = -TARGET_EFAULT;
3595 goto fail;
3596 }
3597 if ((int)addrlen < 0) {
3598 ret = -TARGET_EINVAL;
3599 goto fail;
3600 }
3601 addr = alloca(addrlen);
3602 ret_addrlen = addrlen;
3603 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3604 addr, &ret_addrlen));
3605 } else {
3606 addr = NULL; /* To keep compiler quiet. */
3607 addrlen = 0; /* To keep compiler quiet. */
3608 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3609 }
3610 if (!is_error(ret)) {
3611 if (fd_trans_host_to_target_data(fd)) {
3612 abi_long trans;
3613 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3614 if (is_error(trans)) {
3615 ret = trans;
3616 goto fail;
3617 }
3618 }
3619 if (target_addr) {
3620 host_to_target_sockaddr(target_addr, addr,
3621 MIN(addrlen, ret_addrlen));
3622 if (put_user_u32(ret_addrlen, target_addrlen)) {
3623 ret = -TARGET_EFAULT;
3624 goto fail;
3625 }
3626 }
3627 unlock_user(host_msg, msg, len);
3628 } else {
3629 fail:
3630 unlock_user(host_msg, msg, 0);
3631 }
3632 return ret;
3633 }
3634
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long do_socketcall(int num, abi_ulong vptr)
3638 {
3639 static const unsigned nargs[] = { /* number of arguments per operation */
3640 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
3641 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
3642 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
3643 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */
3644 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
3645 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3646 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3647 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */
3648 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */
3649 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */
3650 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */
3651 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */
3652 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */
3653 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3654 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3655 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */
3656 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */
3657 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */
3658 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */
3659 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */
3660 };
3661 abi_long a[6]; /* max 6 args */
3662 unsigned i;
3663
3664 /* check the range of the first argument num */
3665 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666 if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3667 return -TARGET_EINVAL;
3668 }
3669 /* ensure we have space for args */
3670 if (nargs[num] > ARRAY_SIZE(a)) {
3671 return -TARGET_EINVAL;
3672 }
3673 /* collect the arguments in a[] according to nargs[] */
3674 for (i = 0; i < nargs[num]; ++i) {
3675 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3676 return -TARGET_EFAULT;
3677 }
3678 }
3679 /* now when we have the args, invoke the appropriate underlying function */
3680 switch (num) {
3681 case TARGET_SYS_SOCKET: /* domain, type, protocol */
3682 return do_socket(a[0], a[1], a[2]);
3683 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3684 return do_bind(a[0], a[1], a[2]);
3685 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3686 return do_connect(a[0], a[1], a[2]);
3687 case TARGET_SYS_LISTEN: /* sockfd, backlog */
3688 return get_errno(listen(a[0], a[1]));
3689 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3690 return do_accept4(a[0], a[1], a[2], 0);
3691 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3692 return do_getsockname(a[0], a[1], a[2]);
3693 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3694 return do_getpeername(a[0], a[1], a[2]);
3695 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3696 return do_socketpair(a[0], a[1], a[2], a[3]);
3697 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3698 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3699 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3700 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3701 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3702 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3703 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3704 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3705 case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3706 return get_errno(shutdown(a[0], a[1]));
3707 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3708 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3709 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3710 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3711 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3712 return do_sendrecvmsg(a[0], a[1], a[2], 1);
3713 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3714 return do_sendrecvmsg(a[0], a[1], a[2], 0);
3715 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3716 return do_accept4(a[0], a[1], a[2], a[3]);
3717 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3718 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3719 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3720 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3721 default:
3722 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3723 return -TARGET_EINVAL;
3724 }
3725 }
3726 #endif
3727
3728 #define N_SHM_REGIONS 32
3729
3730 static struct shm_region {
3731 abi_ulong start;
3732 abi_ulong size;
3733 bool in_use;
3734 } shm_regions[N_SHM_REGIONS];
3735
3736 #ifndef TARGET_SEMID64_DS
3737 /* asm-generic version of this struct */
3738 struct target_semid64_ds
3739 {
3740 struct target_ipc_perm sem_perm;
3741 abi_ulong sem_otime;
3742 #if TARGET_ABI_BITS == 32
3743 abi_ulong __unused1;
3744 #endif
3745 abi_ulong sem_ctime;
3746 #if TARGET_ABI_BITS == 32
3747 abi_ulong __unused2;
3748 #endif
3749 abi_ulong sem_nsems;
3750 abi_ulong __unused3;
3751 abi_ulong __unused4;
3752 };
3753 #endif
3754
3755 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3756 abi_ulong target_addr)
3757 {
3758 struct target_ipc_perm *target_ip;
3759 struct target_semid64_ds *target_sd;
3760
3761 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3762 return -TARGET_EFAULT;
3763 target_ip = &(target_sd->sem_perm);
3764 host_ip->__key = tswap32(target_ip->__key);
3765 host_ip->uid = tswap32(target_ip->uid);
3766 host_ip->gid = tswap32(target_ip->gid);
3767 host_ip->cuid = tswap32(target_ip->cuid);
3768 host_ip->cgid = tswap32(target_ip->cgid);
3769 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3770 host_ip->mode = tswap32(target_ip->mode);
3771 #else
3772 host_ip->mode = tswap16(target_ip->mode);
3773 #endif
3774 #if defined(TARGET_PPC)
3775 host_ip->__seq = tswap32(target_ip->__seq);
3776 #else
3777 host_ip->__seq = tswap16(target_ip->__seq);
3778 #endif
3779 unlock_user_struct(target_sd, target_addr, 0);
3780 return 0;
3781 }
3782
3783 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3784 struct ipc_perm *host_ip)
3785 {
3786 struct target_ipc_perm *target_ip;
3787 struct target_semid64_ds *target_sd;
3788
3789 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3790 return -TARGET_EFAULT;
3791 target_ip = &(target_sd->sem_perm);
3792 target_ip->__key = tswap32(host_ip->__key);
3793 target_ip->uid = tswap32(host_ip->uid);
3794 target_ip->gid = tswap32(host_ip->gid);
3795 target_ip->cuid = tswap32(host_ip->cuid);
3796 target_ip->cgid = tswap32(host_ip->cgid);
3797 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3798 target_ip->mode = tswap32(host_ip->mode);
3799 #else
3800 target_ip->mode = tswap16(host_ip->mode);
3801 #endif
3802 #if defined(TARGET_PPC)
3803 target_ip->__seq = tswap32(host_ip->__seq);
3804 #else
3805 target_ip->__seq = tswap16(host_ip->__seq);
3806 #endif
3807 unlock_user_struct(target_sd, target_addr, 1);
3808 return 0;
3809 }
3810
3811 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3812 abi_ulong target_addr)
3813 {
3814 struct target_semid64_ds *target_sd;
3815
3816 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3817 return -TARGET_EFAULT;
3818 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3819 return -TARGET_EFAULT;
3820 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3821 host_sd->sem_otime = tswapal(target_sd->sem_otime);
3822 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3823 unlock_user_struct(target_sd, target_addr, 0);
3824 return 0;
3825 }
3826
3827 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3828 struct semid_ds *host_sd)
3829 {
3830 struct target_semid64_ds *target_sd;
3831
3832 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3833 return -TARGET_EFAULT;
3834 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3835 return -TARGET_EFAULT;
3836 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3837 target_sd->sem_otime = tswapal(host_sd->sem_otime);
3838 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3839 unlock_user_struct(target_sd, target_addr, 1);
3840 return 0;
3841 }
3842
3843 struct target_seminfo {
3844 int semmap;
3845 int semmni;
3846 int semmns;
3847 int semmnu;
3848 int semmsl;
3849 int semopm;
3850 int semume;
3851 int semusz;
3852 int semvmx;
3853 int semaem;
3854 };
3855
3856 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3857 struct seminfo *host_seminfo)
3858 {
3859 struct target_seminfo *target_seminfo;
3860 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3861 return -TARGET_EFAULT;
3862 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3863 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3864 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3865 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3866 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3867 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3868 __put_user(host_seminfo->semume, &target_seminfo->semume);
3869 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3870 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3871 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3872 unlock_user_struct(target_seminfo, target_addr, 1);
3873 return 0;
3874 }
3875
3876 union semun {
3877 int val;
3878 struct semid_ds *buf;
3879 unsigned short *array;
3880 struct seminfo *__buf;
3881 };
3882
3883 union target_semun {
3884 int val;
3885 abi_ulong buf;
3886 abi_ulong array;
3887 abi_ulong __buf;
3888 };
3889
3890 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3891 abi_ulong target_addr)
3892 {
3893 int nsems;
3894 unsigned short *array;
3895 union semun semun;
3896 struct semid_ds semid_ds;
3897 int i, ret;
3898
3899 semun.buf = &semid_ds;
3900
3901 ret = semctl(semid, 0, IPC_STAT, semun);
3902 if (ret == -1)
3903 return get_errno(ret);
3904
3905 nsems = semid_ds.sem_nsems;
3906
3907 *host_array = g_try_new(unsigned short, nsems);
3908 if (!*host_array) {
3909 return -TARGET_ENOMEM;
3910 }
3911 array = lock_user(VERIFY_READ, target_addr,
3912 nsems*sizeof(unsigned short), 1);
3913 if (!array) {
3914 g_free(*host_array);
3915 return -TARGET_EFAULT;
3916 }
3917
3918 for(i=0; i<nsems; i++) {
3919 __get_user((*host_array)[i], &array[i]);
3920 }
3921 unlock_user(array, target_addr, 0);
3922
3923 return 0;
3924 }
3925
3926 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3927 unsigned short **host_array)
3928 {
3929 int nsems;
3930 unsigned short *array;
3931 union semun semun;
3932 struct semid_ds semid_ds;
3933 int i, ret;
3934
3935 semun.buf = &semid_ds;
3936
3937 ret = semctl(semid, 0, IPC_STAT, semun);
3938 if (ret == -1)
3939 return get_errno(ret);
3940
3941 nsems = semid_ds.sem_nsems;
3942
3943 array = lock_user(VERIFY_WRITE, target_addr,
3944 nsems*sizeof(unsigned short), 0);
3945 if (!array)
3946 return -TARGET_EFAULT;
3947
3948 for(i=0; i<nsems; i++) {
3949 __put_user((*host_array)[i], &array[i]);
3950 }
3951 g_free(*host_array);
3952 unlock_user(array, target_addr, 1);
3953
3954 return 0;
3955 }
3956
3957 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3958 abi_ulong target_arg)
3959 {
3960 union target_semun target_su = { .buf = target_arg };
3961 union semun arg;
3962 struct semid_ds dsarg;
3963 unsigned short *array = NULL;
3964 struct seminfo seminfo;
3965 abi_long ret = -TARGET_EINVAL;
3966 abi_long err;
3967 cmd &= 0xff;
3968
3969 switch( cmd ) {
3970 case GETVAL:
3971 case SETVAL:
3972 /* In 64 bit cross-endian situations, we will erroneously pick up
3973 * the wrong half of the union for the "val" element. To rectify
3974 * this, the entire 8-byte structure is byteswapped, followed by
3975 * a swap of the 4 byte val field. In other cases, the data is
3976 * already in proper host byte order. */
3977 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3978 target_su.buf = tswapal(target_su.buf);
3979 arg.val = tswap32(target_su.val);
3980 } else {
3981 arg.val = target_su.val;
3982 }
3983 ret = get_errno(semctl(semid, semnum, cmd, arg));
3984 break;
3985 case GETALL:
3986 case SETALL:
3987 err = target_to_host_semarray(semid, &array, target_su.array);
3988 if (err)
3989 return err;
3990 arg.array = array;
3991 ret = get_errno(semctl(semid, semnum, cmd, arg));
3992 err = host_to_target_semarray(semid, target_su.array, &array);
3993 if (err)
3994 return err;
3995 break;
3996 case IPC_STAT:
3997 case IPC_SET:
3998 case SEM_STAT:
3999 err = target_to_host_semid_ds(&dsarg, target_su.buf);
4000 if (err)
4001 return err;
4002 arg.buf = &dsarg;
4003 ret = get_errno(semctl(semid, semnum, cmd, arg));
4004 err = host_to_target_semid_ds(target_su.buf, &dsarg);
4005 if (err)
4006 return err;
4007 break;
4008 case IPC_INFO:
4009 case SEM_INFO:
4010 arg.__buf = &seminfo;
4011 ret = get_errno(semctl(semid, semnum, cmd, arg));
4012 err = host_to_target_seminfo(target_su.__buf, &seminfo);
4013 if (err)
4014 return err;
4015 break;
4016 case IPC_RMID:
4017 case GETPID:
4018 case GETNCNT:
4019 case GETZCNT:
4020 ret = get_errno(semctl(semid, semnum, cmd, NULL));
4021 break;
4022 }
4023
4024 return ret;
4025 }
4026
4027 struct target_sembuf {
4028 unsigned short sem_num;
4029 short sem_op;
4030 short sem_flg;
4031 };
4032
4033 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4034 abi_ulong target_addr,
4035 unsigned nsops)
4036 {
4037 struct target_sembuf *target_sembuf;
4038 int i;
4039
4040 target_sembuf = lock_user(VERIFY_READ, target_addr,
4041 nsops*sizeof(struct target_sembuf), 1);
4042 if (!target_sembuf)
4043 return -TARGET_EFAULT;
4044
4045 for(i=0; i<nsops; i++) {
4046 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4047 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4048 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4049 }
4050
4051 unlock_user(target_sembuf, target_addr, 0);
4052
4053 return 0;
4054 }
4055
4056 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4057 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4058
4059 /*
4060 * This macro is required to handle the s390 variants, which passes the
4061 * arguments in a different order than default.
4062 */
4063 #ifdef __s390x__
4064 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4065 (__nsops), (__timeout), (__sops)
4066 #else
4067 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4068 (__nsops), 0, (__sops), (__timeout)
4069 #endif
4070
4071 static inline abi_long do_semtimedop(int semid,
4072 abi_long ptr,
4073 unsigned nsops,
4074 abi_long timeout, bool time64)
4075 {
4076 struct sembuf *sops;
4077 struct timespec ts, *pts = NULL;
4078 abi_long ret;
4079
4080 if (timeout) {
4081 pts = &ts;
4082 if (time64) {
4083 if (target_to_host_timespec64(pts, timeout)) {
4084 return -TARGET_EFAULT;
4085 }
4086 } else {
4087 if (target_to_host_timespec(pts, timeout)) {
4088 return -TARGET_EFAULT;
4089 }
4090 }
4091 }
4092
4093 if (nsops > TARGET_SEMOPM) {
4094 return -TARGET_E2BIG;
4095 }
4096
4097 sops = g_new(struct sembuf, nsops);
4098
4099 if (target_to_host_sembuf(sops, ptr, nsops)) {
4100 g_free(sops);
4101 return -TARGET_EFAULT;
4102 }
4103
4104 ret = -TARGET_ENOSYS;
4105 #ifdef __NR_semtimedop
4106 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4107 #endif
4108 #ifdef __NR_ipc
4109 if (ret == -TARGET_ENOSYS) {
4110 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4111 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4112 }
4113 #endif
4114 g_free(sops);
4115 return ret;
4116 }
4117 #endif
4118
4119 struct target_msqid_ds
4120 {
4121 struct target_ipc_perm msg_perm;
4122 abi_ulong msg_stime;
4123 #if TARGET_ABI_BITS == 32
4124 abi_ulong __unused1;
4125 #endif
4126 abi_ulong msg_rtime;
4127 #if TARGET_ABI_BITS == 32
4128 abi_ulong __unused2;
4129 #endif
4130 abi_ulong msg_ctime;
4131 #if TARGET_ABI_BITS == 32
4132 abi_ulong __unused3;
4133 #endif
4134 abi_ulong __msg_cbytes;
4135 abi_ulong msg_qnum;
4136 abi_ulong msg_qbytes;
4137 abi_ulong msg_lspid;
4138 abi_ulong msg_lrpid;
4139 abi_ulong __unused4;
4140 abi_ulong __unused5;
4141 };
4142
4143 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4144 abi_ulong target_addr)
4145 {
4146 struct target_msqid_ds *target_md;
4147
4148 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4149 return -TARGET_EFAULT;
4150 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4151 return -TARGET_EFAULT;
4152 host_md->msg_stime = tswapal(target_md->msg_stime);
4153 host_md->msg_rtime = tswapal(target_md->msg_rtime);
4154 host_md->msg_ctime = tswapal(target_md->msg_ctime);
4155 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4156 host_md->msg_qnum = tswapal(target_md->msg_qnum);
4157 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4158 host_md->msg_lspid = tswapal(target_md->msg_lspid);
4159 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4160 unlock_user_struct(target_md, target_addr, 0);
4161 return 0;
4162 }
4163
4164 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4165 struct msqid_ds *host_md)
4166 {
4167 struct target_msqid_ds *target_md;
4168
4169 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4170 return -TARGET_EFAULT;
4171 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4172 return -TARGET_EFAULT;
4173 target_md->msg_stime = tswapal(host_md->msg_stime);
4174 target_md->msg_rtime = tswapal(host_md->msg_rtime);
4175 target_md->msg_ctime = tswapal(host_md->msg_ctime);
4176 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4177 target_md->msg_qnum = tswapal(host_md->msg_qnum);
4178 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4179 target_md->msg_lspid = tswapal(host_md->msg_lspid);
4180 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4181 unlock_user_struct(target_md, target_addr, 1);
4182 return 0;
4183 }
4184
4185 struct target_msginfo {
4186 int msgpool;
4187 int msgmap;
4188 int msgmax;
4189 int msgmnb;
4190 int msgmni;
4191 int msgssz;
4192 int msgtql;
4193 unsigned short int msgseg;
4194 };
4195
4196 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4197 struct msginfo *host_msginfo)
4198 {
4199 struct target_msginfo *target_msginfo;
4200 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4201 return -TARGET_EFAULT;
4202 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4203 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4204 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4205 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4206 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4207 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4208 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4209 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4210 unlock_user_struct(target_msginfo, target_addr, 1);
4211 return 0;
4212 }
4213
4214 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4215 {
4216 struct msqid_ds dsarg;
4217 struct msginfo msginfo;
4218 abi_long ret = -TARGET_EINVAL;
4219
4220 cmd &= 0xff;
4221
4222 switch (cmd) {
4223 case IPC_STAT:
4224 case IPC_SET:
4225 case MSG_STAT:
4226 if (target_to_host_msqid_ds(&dsarg,ptr))
4227 return -TARGET_EFAULT;
4228 ret = get_errno(msgctl(msgid, cmd, &dsarg));
4229 if (host_to_target_msqid_ds(ptr,&dsarg))
4230 return -TARGET_EFAULT;
4231 break;
4232 case IPC_RMID:
4233 ret = get_errno(msgctl(msgid, cmd, NULL));
4234 break;
4235 case IPC_INFO:
4236 case MSG_INFO:
4237 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4238 if (host_to_target_msginfo(ptr, &msginfo))
4239 return -TARGET_EFAULT;
4240 break;
4241 }
4242
4243 return ret;
4244 }
4245
4246 struct target_msgbuf {
4247 abi_long mtype;
4248 char mtext[1];
4249 };
4250
4251 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4252 ssize_t msgsz, int msgflg)
4253 {
4254 struct target_msgbuf *target_mb;
4255 struct msgbuf *host_mb;
4256 abi_long ret = 0;
4257
4258 if (msgsz < 0) {
4259 return -TARGET_EINVAL;
4260 }
4261
4262 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4263 return -TARGET_EFAULT;
4264 host_mb = g_try_malloc(msgsz + sizeof(long));
4265 if (!host_mb) {
4266 unlock_user_struct(target_mb, msgp, 0);
4267 return -TARGET_ENOMEM;
4268 }
4269 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4270 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4271 ret = -TARGET_ENOSYS;
4272 #ifdef __NR_msgsnd
4273 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4274 #endif
4275 #ifdef __NR_ipc
4276 if (ret == -TARGET_ENOSYS) {
4277 #ifdef __s390x__
4278 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4279 host_mb));
4280 #else
4281 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4282 host_mb, 0));
4283 #endif
4284 }
4285 #endif
4286 g_free(host_mb);
4287 unlock_user_struct(target_mb, msgp, 0);
4288
4289 return ret;
4290 }
4291
4292 #ifdef __NR_ipc
4293 #if defined(__sparc__)
4294 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */
4295 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4296 #elif defined(__s390x__)
4297 /* The s390 sys_ipc variant has only five parameters. */
4298 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4299 ((long int[]){(long int)__msgp, __msgtyp})
4300 #else
4301 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4302 ((long int[]){(long int)__msgp, __msgtyp}), 0
4303 #endif
4304 #endif
4305
4306 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4307 ssize_t msgsz, abi_long msgtyp,
4308 int msgflg)
4309 {
4310 struct target_msgbuf *target_mb;
4311 char *target_mtext;
4312 struct msgbuf *host_mb;
4313 abi_long ret = 0;
4314
4315 if (msgsz < 0) {
4316 return -TARGET_EINVAL;
4317 }
4318
4319 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4320 return -TARGET_EFAULT;
4321
4322 host_mb = g_try_malloc(msgsz + sizeof(long));
4323 if (!host_mb) {
4324 ret = -TARGET_ENOMEM;
4325 goto end;
4326 }
4327 ret = -TARGET_ENOSYS;
4328 #ifdef __NR_msgrcv
4329 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4330 #endif
4331 #ifdef __NR_ipc
4332 if (ret == -TARGET_ENOSYS) {
4333 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4334 msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4335 }
4336 #endif
4337
4338 if (ret > 0) {
4339 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4340 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4341 if (!target_mtext) {
4342 ret = -TARGET_EFAULT;
4343 goto end;
4344 }
4345 memcpy(target_mb->mtext, host_mb->mtext, ret);
4346 unlock_user(target_mtext, target_mtext_addr, ret);
4347 }
4348
4349 target_mb->mtype = tswapal(host_mb->mtype);
4350
4351 end:
4352 if (target_mb)
4353 unlock_user_struct(target_mb, msgp, 1);
4354 g_free(host_mb);
4355 return ret;
4356 }
4357
4358 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4359 abi_ulong target_addr)
4360 {
4361 struct target_shmid_ds *target_sd;
4362
4363 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4364 return -TARGET_EFAULT;
4365 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4366 return -TARGET_EFAULT;
4367 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4368 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4369 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4370 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4371 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4372 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4373 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4374 unlock_user_struct(target_sd, target_addr, 0);
4375 return 0;
4376 }
4377
4378 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4379 struct shmid_ds *host_sd)
4380 {
4381 struct target_shmid_ds *target_sd;
4382
4383 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4384 return -TARGET_EFAULT;
4385 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4386 return -TARGET_EFAULT;
4387 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4388 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4389 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4390 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4391 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4392 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4393 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4394 unlock_user_struct(target_sd, target_addr, 1);
4395 return 0;
4396 }
4397
4398 struct target_shminfo {
4399 abi_ulong shmmax;
4400 abi_ulong shmmin;
4401 abi_ulong shmmni;
4402 abi_ulong shmseg;
4403 abi_ulong shmall;
4404 };
4405
4406 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4407 struct shminfo *host_shminfo)
4408 {
4409 struct target_shminfo *target_shminfo;
4410 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4411 return -TARGET_EFAULT;
4412 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4413 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4414 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4415 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4416 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4417 unlock_user_struct(target_shminfo, target_addr, 1);
4418 return 0;
4419 }
4420
4421 struct target_shm_info {
4422 int used_ids;
4423 abi_ulong shm_tot;
4424 abi_ulong shm_rss;
4425 abi_ulong shm_swp;
4426 abi_ulong swap_attempts;
4427 abi_ulong swap_successes;
4428 };
4429
4430 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4431 struct shm_info *host_shm_info)
4432 {
4433 struct target_shm_info *target_shm_info;
4434 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4435 return -TARGET_EFAULT;
4436 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4437 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4438 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4439 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4440 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4441 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4442 unlock_user_struct(target_shm_info, target_addr, 1);
4443 return 0;
4444 }
4445
4446 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4447 {
4448 struct shmid_ds dsarg;
4449 struct shminfo shminfo;
4450 struct shm_info shm_info;
4451 abi_long ret = -TARGET_EINVAL;
4452
4453 cmd &= 0xff;
4454
4455 switch(cmd) {
4456 case IPC_STAT:
4457 case IPC_SET:
4458 case SHM_STAT:
4459 if (target_to_host_shmid_ds(&dsarg, buf))
4460 return -TARGET_EFAULT;
4461 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4462 if (host_to_target_shmid_ds(buf, &dsarg))
4463 return -TARGET_EFAULT;
4464 break;
4465 case IPC_INFO:
4466 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4467 if (host_to_target_shminfo(buf, &shminfo))
4468 return -TARGET_EFAULT;
4469 break;
4470 case SHM_INFO:
4471 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4472 if (host_to_target_shm_info(buf, &shm_info))
4473 return -TARGET_EFAULT;
4474 break;
4475 case IPC_RMID:
4476 case SHM_LOCK:
4477 case SHM_UNLOCK:
4478 ret = get_errno(shmctl(shmid, cmd, NULL));
4479 break;
4480 }
4481
4482 return ret;
4483 }
4484
4485 #ifndef TARGET_FORCE_SHMLBA
4486 /* For most architectures, SHMLBA is the same as the page size;
4487 * some architectures have larger values, in which case they should
4488 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4489 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4490 * and defining its own value for SHMLBA.
4491 *
4492 * The kernel also permits SHMLBA to be set by the architecture to a
4493 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4494 * this means that addresses are rounded to the large size if
4495 * SHM_RND is set but addresses not aligned to that size are not rejected
4496 * as long as they are at least page-aligned. Since the only architecture
4497 * which uses this is ia64 this code doesn't provide for that oddity.
4498 */
4499 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4500 {
4501 return TARGET_PAGE_SIZE;
4502 }
4503 #endif
4504
4505 static abi_ulong do_shmat(CPUArchState *cpu_env, int shmid,
4506 abi_ulong shmaddr, int shmflg)
4507 {
4508 CPUState *cpu = env_cpu(cpu_env);
4509 abi_ulong raddr;
4510 void *host_raddr;
4511 struct shmid_ds shm_info;
4512 int i, ret;
4513 abi_ulong shmlba;
4514
4515 /* shmat pointers are always untagged */
4516
4517 /* find out the length of the shared memory segment */
4518 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4519 if (is_error(ret)) {
4520 /* can't get length, bail out */
4521 return ret;
4522 }
4523
4524 shmlba = target_shmlba(cpu_env);
4525
4526 if (shmaddr & (shmlba - 1)) {
4527 if (shmflg & SHM_RND) {
4528 shmaddr &= ~(shmlba - 1);
4529 } else {
4530 return -TARGET_EINVAL;
4531 }
4532 }
4533 if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
4534 return -TARGET_EINVAL;
4535 }
4536
4537 mmap_lock();
4538
4539 /*
4540 * We're mapping shared memory, so ensure we generate code for parallel
4541 * execution and flush old translations. This will work up to the level
4542 * supported by the host -- anything that requires EXCP_ATOMIC will not
4543 * be atomic with respect to an external process.
4544 */
4545 if (!(cpu->tcg_cflags & CF_PARALLEL)) {
4546 cpu->tcg_cflags |= CF_PARALLEL;
4547 tb_flush(cpu);
4548 }
4549
4550 if (shmaddr)
4551 host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
4552 else {
4553 abi_ulong mmap_start;
4554
4555 /* In order to use the host shmat, we need to honor host SHMLBA. */
4556 mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4557
4558 if (mmap_start == -1) {
4559 errno = ENOMEM;
4560 host_raddr = (void *)-1;
4561 } else
4562 host_raddr = shmat(shmid, g2h_untagged(mmap_start),
4563 shmflg | SHM_REMAP);
4564 }
4565
4566 if (host_raddr == (void *)-1) {
4567 mmap_unlock();
4568 return get_errno((intptr_t)host_raddr);
4569 }
4570 raddr = h2g((uintptr_t)host_raddr);
4571
4572 page_set_flags(raddr, raddr + shm_info.shm_segsz - 1,
4573 PAGE_VALID | PAGE_RESET | PAGE_READ |
4574 (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
4575
4576 for (i = 0; i < N_SHM_REGIONS; i++) {
4577 if (!shm_regions[i].in_use) {
4578 shm_regions[i].in_use = true;
4579 shm_regions[i].start = raddr;
4580 shm_regions[i].size = shm_info.shm_segsz;
4581 break;
4582 }
4583 }
4584
4585 mmap_unlock();
4586 return raddr;
4587 }
4588
4589 static inline abi_long do_shmdt(abi_ulong shmaddr)
4590 {
4591 int i;
4592 abi_long rv;
4593
4594 /* shmdt pointers are always untagged */
4595
4596 mmap_lock();
4597
4598 for (i = 0; i < N_SHM_REGIONS; ++i) {
4599 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4600 shm_regions[i].in_use = false;
4601 page_set_flags(shmaddr, shmaddr + shm_regions[i].size - 1, 0);
4602 break;
4603 }
4604 }
4605 rv = get_errno(shmdt(g2h_untagged(shmaddr)));
4606
4607 mmap_unlock();
4608
4609 return rv;
4610 }
4611
4612 #ifdef TARGET_NR_ipc
4613 /* ??? This only works with linear mappings. */
4614 /* do_ipc() must return target values and target errnos. */
4615 static abi_long do_ipc(CPUArchState *cpu_env,
4616 unsigned int call, abi_long first,
4617 abi_long second, abi_long third,
4618 abi_long ptr, abi_long fifth)
4619 {
4620 int version;
4621 abi_long ret = 0;
4622
4623 version = call >> 16;
4624 call &= 0xffff;
4625
4626 switch (call) {
4627 case IPCOP_semop:
4628 ret = do_semtimedop(first, ptr, second, 0, false);
4629 break;
4630 case IPCOP_semtimedop:
4631 /*
4632 * The s390 sys_ipc variant has only five parameters instead of six
4633 * (as for default variant) and the only difference is the handling of
4634 * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4635 * to a struct timespec where the generic variant uses fifth parameter.
4636 */
4637 #if defined(TARGET_S390X)
4638 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4639 #else
4640 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4641 #endif
4642 break;
4643
4644 case IPCOP_semget:
4645 ret = get_errno(semget(first, second, third));
4646 break;
4647
4648 case IPCOP_semctl: {
4649 /* The semun argument to semctl is passed by value, so dereference the
4650 * ptr argument. */
4651 abi_ulong atptr;
4652 get_user_ual(atptr, ptr);
4653 ret = do_semctl(first, second, third, atptr);
4654 break;
4655 }
4656
4657 case IPCOP_msgget:
4658 ret = get_errno(msgget(first, second));
4659 break;
4660
4661 case IPCOP_msgsnd:
4662 ret = do_msgsnd(first, ptr, second, third);
4663 break;
4664
4665 case IPCOP_msgctl:
4666 ret = do_msgctl(first, second, ptr);
4667 break;
4668
4669 case IPCOP_msgrcv:
4670 switch (version) {
4671 case 0:
4672 {
4673 struct target_ipc_kludge {
4674 abi_long msgp;
4675 abi_long msgtyp;
4676 } *tmp;
4677
4678 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4679 ret = -TARGET_EFAULT;
4680 break;
4681 }
4682
4683 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4684
4685 unlock_user_struct(tmp, ptr, 0);
4686 break;
4687 }
4688 default:
4689 ret = do_msgrcv(first, ptr, second, fifth, third);
4690 }
4691 break;
4692
4693 case IPCOP_shmat:
4694 switch (version) {
4695 default:
4696 {
4697 abi_ulong raddr;
4698 raddr = do_shmat(cpu_env, first, ptr, second);
4699 if (is_error(raddr))
4700 return get_errno(raddr);
4701 if (put_user_ual(raddr, third))
4702 return -TARGET_EFAULT;
4703 break;
4704 }
4705 case 1:
4706 ret = -TARGET_EINVAL;
4707 break;
4708 }
4709 break;
4710 case IPCOP_shmdt:
4711 ret = do_shmdt(ptr);
4712 break;
4713
4714 case IPCOP_shmget:
4715 /* IPC_* flag values are the same on all linux platforms */
4716 ret = get_errno(shmget(first, second, third));
4717 break;
4718
4719 /* IPC_* and SHM_* command values are the same on all linux platforms */
4720 case IPCOP_shmctl:
4721 ret = do_shmctl(first, second, ptr);
4722 break;
4723 default:
4724 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4725 call, version);
4726 ret = -TARGET_ENOSYS;
4727 break;
4728 }
4729 return ret;
4730 }
4731 #endif
4732
4733 /* kernel structure types definitions */
4734
4735 #define STRUCT(name, ...) STRUCT_ ## name,
4736 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4737 enum {
4738 #include "syscall_types.h"
4739 STRUCT_MAX
4740 };
4741 #undef STRUCT
4742 #undef STRUCT_SPECIAL
4743
4744 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4745 #define STRUCT_SPECIAL(name)
4746 #include "syscall_types.h"
4747 #undef STRUCT
4748 #undef STRUCT_SPECIAL
4749
4750 #define MAX_STRUCT_SIZE 4096
4751
4752 #ifdef CONFIG_FIEMAP
4753 /* So fiemap access checks don't overflow on 32 bit systems.
4754 * This is very slightly smaller than the limit imposed by
4755 * the underlying kernel.
4756 */
4757 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4758 / sizeof(struct fiemap_extent))
4759
4760 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4761 int fd, int cmd, abi_long arg)
4762 {
4763 /* The parameter for this ioctl is a struct fiemap followed
4764 * by an array of struct fiemap_extent whose size is set
4765 * in fiemap->fm_extent_count. The array is filled in by the
4766 * ioctl.
4767 */
4768 int target_size_in, target_size_out;
4769 struct fiemap *fm;
4770 const argtype *arg_type = ie->arg_type;
4771 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4772 void *argptr, *p;
4773 abi_long ret;
4774 int i, extent_size = thunk_type_size(extent_arg_type, 0);
4775 uint32_t outbufsz;
4776 int free_fm = 0;
4777
4778 assert(arg_type[0] == TYPE_PTR);
4779 assert(ie->access == IOC_RW);
4780 arg_type++;
4781 target_size_in = thunk_type_size(arg_type, 0);
4782 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4783 if (!argptr) {
4784 return -TARGET_EFAULT;
4785 }
4786 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4787 unlock_user(argptr, arg, 0);
4788 fm = (struct fiemap *)buf_temp;
4789 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4790 return -TARGET_EINVAL;
4791 }
4792
4793 outbufsz = sizeof (*fm) +
4794 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4795
4796 if (outbufsz > MAX_STRUCT_SIZE) {
4797 /* We can't fit all the extents into the fixed size buffer.
4798 * Allocate one that is large enough and use it instead.
4799 */
4800 fm = g_try_malloc(outbufsz);
4801 if (!fm) {
4802 return -TARGET_ENOMEM;
4803 }
4804 memcpy(fm, buf_temp, sizeof(struct fiemap));
4805 free_fm = 1;
4806 }
4807 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4808 if (!is_error(ret)) {
4809 target_size_out = target_size_in;
4810 /* An extent_count of 0 means we were only counting the extents
4811 * so there are no structs to copy
4812 */
4813 if (fm->fm_extent_count != 0) {
4814 target_size_out += fm->fm_mapped_extents * extent_size;
4815 }
4816 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4817 if (!argptr) {
4818 ret = -TARGET_EFAULT;
4819 } else {
4820 /* Convert the struct fiemap */
4821 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4822 if (fm->fm_extent_count != 0) {
4823 p = argptr + target_size_in;
4824 /* ...and then all the struct fiemap_extents */
4825 for (i = 0; i < fm->fm_mapped_extents; i++) {
4826 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4827 THUNK_TARGET);
4828 p += extent_size;
4829 }
4830 }
4831 unlock_user(argptr, arg, target_size_out);
4832 }
4833 }
4834 if (free_fm) {
4835 g_free(fm);
4836 }
4837 return ret;
4838 }
4839 #endif
4840
4841 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4842 int fd, int cmd, abi_long arg)
4843 {
4844 const argtype *arg_type = ie->arg_type;
4845 int target_size;
4846 void *argptr;
4847 int ret;
4848 struct ifconf *host_ifconf;
4849 uint32_t outbufsz;
4850 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4851 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4852 int target_ifreq_size;
4853 int nb_ifreq;
4854 int free_buf = 0;
4855 int i;
4856 int target_ifc_len;
4857 abi_long target_ifc_buf;
4858 int host_ifc_len;
4859 char *host_ifc_buf;
4860
4861 assert(arg_type[0] == TYPE_PTR);
4862 assert(ie->access == IOC_RW);
4863
4864 arg_type++;
4865 target_size = thunk_type_size(arg_type, 0);
4866
4867 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4868 if (!argptr)
4869 return -TARGET_EFAULT;
4870 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4871 unlock_user(argptr, arg, 0);
4872
4873 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4874 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4875 target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4876
4877 if (target_ifc_buf != 0) {
4878 target_ifc_len = host_ifconf->ifc_len;
4879 nb_ifreq = target_ifc_len / target_ifreq_size;
4880 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4881
4882 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4883 if (outbufsz > MAX_STRUCT_SIZE) {
4884 /*
4885 * We can't fit all the extents into the fixed size buffer.
4886 * Allocate one that is large enough and use it instead.
4887 */
4888 host_ifconf = g_try_malloc(outbufsz);
4889 if (!host_ifconf) {
4890 return -TARGET_ENOMEM;
4891 }
4892 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4893 free_buf = 1;
4894 }
4895 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4896
4897 host_ifconf->ifc_len = host_ifc_len;
4898 } else {
4899 host_ifc_buf = NULL;
4900 }
4901 host_ifconf->ifc_buf = host_ifc_buf;
4902
4903 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4904 if (!is_error(ret)) {
4905 /* convert host ifc_len to target ifc_len */
4906
4907 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4908 target_ifc_len = nb_ifreq * target_ifreq_size;
4909 host_ifconf->ifc_len = target_ifc_len;
4910
4911 /* restore target ifc_buf */
4912
4913 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4914
4915 /* copy struct ifconf to target user */
4916
4917 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4918 if (!argptr)
4919 return -TARGET_EFAULT;
4920 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4921 unlock_user(argptr, arg, target_size);
4922
4923 if (target_ifc_buf != 0) {
4924 /* copy ifreq[] to target user */
4925 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4926 for (i = 0; i < nb_ifreq ; i++) {
4927 thunk_convert(argptr + i * target_ifreq_size,
4928 host_ifc_buf + i * sizeof(struct ifreq),
4929 ifreq_arg_type, THUNK_TARGET);
4930 }
4931 unlock_user(argptr, target_ifc_buf, target_ifc_len);
4932 }
4933 }
4934
4935 if (free_buf) {
4936 g_free(host_ifconf);
4937 }
4938
4939 return ret;
4940 }
4941
4942 #if defined(CONFIG_USBFS)
4943 #if HOST_LONG_BITS > 64
4944 #error USBDEVFS thunks do not support >64 bit hosts yet.
4945 #endif
4946 struct live_urb {
4947 uint64_t target_urb_adr;
4948 uint64_t target_buf_adr;
4949 char *target_buf_ptr;
4950 struct usbdevfs_urb host_urb;
4951 };
4952
4953 static GHashTable *usbdevfs_urb_hashtable(void)
4954 {
4955 static GHashTable *urb_hashtable;
4956
4957 if (!urb_hashtable) {
4958 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4959 }
4960 return urb_hashtable;
4961 }
4962
4963 static void urb_hashtable_insert(struct live_urb *urb)
4964 {
4965 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4966 g_hash_table_insert(urb_hashtable, urb, urb);
4967 }
4968
4969 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4970 {
4971 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4972 return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4973 }
4974
4975 static void urb_hashtable_remove(struct live_urb *urb)
4976 {
4977 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4978 g_hash_table_remove(urb_hashtable, urb);
4979 }
4980
4981 static abi_long
4982 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4983 int fd, int cmd, abi_long arg)
4984 {
4985 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4986 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4987 struct live_urb *lurb;
4988 void *argptr;
4989 uint64_t hurb;
4990 int target_size;
4991 uintptr_t target_urb_adr;
4992 abi_long ret;
4993
4994 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4995
4996 memset(buf_temp, 0, sizeof(uint64_t));
4997 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4998 if (is_error(ret)) {
4999 return ret;
5000 }
5001
5002 memcpy(&hurb, buf_temp, sizeof(uint64_t));
5003 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
5004 if (!lurb->target_urb_adr) {
5005 return -TARGET_EFAULT;
5006 }
5007 urb_hashtable_remove(lurb);
5008 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
5009 lurb->host_urb.buffer_length);
5010 lurb->target_buf_ptr = NULL;
5011
5012 /* restore the guest buffer pointer */
5013 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
5014
5015 /* update the guest urb struct */
5016 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
5017 if (!argptr) {
5018 g_free(lurb);
5019 return -TARGET_EFAULT;
5020 }
5021 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
5022 unlock_user(argptr, lurb->target_urb_adr, target_size);
5023
5024 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
5025 /* write back the urb handle */
5026 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5027 if (!argptr) {
5028 g_free(lurb);
5029 return -TARGET_EFAULT;
5030 }
5031
5032 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5033 target_urb_adr = lurb->target_urb_adr;
5034 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
5035 unlock_user(argptr, arg, target_size);
5036
5037 g_free(lurb);
5038 return ret;
5039 }
5040
5041 static abi_long
5042 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
5043 uint8_t *buf_temp __attribute__((unused)),
5044 int fd, int cmd, abi_long arg)
5045 {
5046 struct live_urb *lurb;
5047
5048 /* map target address back to host URB with metadata. */
5049 lurb = urb_hashtable_lookup(arg);
5050 if (!lurb) {
5051 return -TARGET_EFAULT;
5052 }
5053 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5054 }
5055
5056 static abi_long
5057 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
5058 int fd, int cmd, abi_long arg)
5059 {
5060 const argtype *arg_type = ie->arg_type;
5061 int target_size;
5062 abi_long ret;
5063 void *argptr;
5064 int rw_dir;
5065 struct live_urb *lurb;
5066
5067 /*
5068 * each submitted URB needs to map to a unique ID for the
5069 * kernel, and that unique ID needs to be a pointer to
5070 * host memory. hence, we need to malloc for each URB.
5071 * isochronous transfers have a variable length struct.
5072 */
5073 arg_type++;
5074 target_size = thunk_type_size(arg_type, THUNK_TARGET);
5075
5076 /* construct host copy of urb and metadata */
5077 lurb = g_try_new0(struct live_urb, 1);
5078 if (!lurb) {
5079 return -TARGET_ENOMEM;
5080 }
5081
5082 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5083 if (!argptr) {
5084 g_free(lurb);
5085 return -TARGET_EFAULT;
5086 }
5087 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
5088 unlock_user(argptr, arg, 0);
5089
5090 lurb->target_urb_adr = arg;
5091 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
5092
5093 /* buffer space used depends on endpoint type so lock the entire buffer */
5094 /* control type urbs should check the buffer contents for true direction */
5095 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
5096 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
5097 lurb->host_urb.buffer_length, 1);
5098 if (lurb->target_buf_ptr == NULL) {
5099 g_free(lurb);
5100 return -TARGET_EFAULT;
5101 }
5102
5103 /* update buffer pointer in host copy */
5104 lurb->host_urb.buffer = lurb->target_buf_ptr;
5105
5106 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5107 if (is_error(ret)) {
5108 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
5109 g_free(lurb);
5110 } else {
5111 urb_hashtable_insert(lurb);
5112 }
5113
5114 return ret;
5115 }
5116 #endif /* CONFIG_USBFS */
5117
5118 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5119 int cmd, abi_long arg)
5120 {
5121 void *argptr;
5122 struct dm_ioctl *host_dm;
5123 abi_long guest_data;
5124 uint32_t guest_data_size;
5125 int target_size;
5126 const argtype *arg_type = ie->arg_type;
5127 abi_long ret;
5128 void *big_buf = NULL;
5129 char *host_data;
5130
5131 arg_type++;
5132 target_size = thunk_type_size(arg_type, 0);
5133 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5134 if (!argptr) {
5135 ret = -TARGET_EFAULT;
5136 goto out;
5137 }
5138 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5139 unlock_user(argptr, arg, 0);
5140
5141 /* buf_temp is too small, so fetch things into a bigger buffer */
5142 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5143 memcpy(big_buf, buf_temp, target_size);
5144 buf_temp = big_buf;
5145 host_dm = big_buf;
5146
5147 guest_data = arg + host_dm->data_start;
5148 if ((guest_data - arg) < 0) {
5149 ret = -TARGET_EINVAL;
5150 goto out;
5151 }
5152 guest_data_size = host_dm->data_size - host_dm->data_start;
5153 host_data = (char*)host_dm + host_dm->data_start;
5154
5155 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5156 if (!argptr) {
5157 ret = -TARGET_EFAULT;
5158 goto out;
5159 }
5160
5161 switch (ie->host_cmd) {
5162 case DM_REMOVE_ALL:
5163 case DM_LIST_DEVICES:
5164 case DM_DEV_CREATE:
5165 case DM_DEV_REMOVE:
5166 case DM_DEV_SUSPEND:
5167 case DM_DEV_STATUS:
5168 case DM_DEV_WAIT:
5169 case DM_TABLE_STATUS:
5170 case DM_TABLE_CLEAR:
5171 case DM_TABLE_DEPS:
5172 case DM_LIST_VERSIONS:
5173 /* no input data */
5174 break;
5175 case DM_DEV_RENAME:
5176 case DM_DEV_SET_GEOMETRY:
5177 /* data contains only strings */
5178 memcpy(host_data, argptr, guest_data_size);
5179 break;
5180 case DM_TARGET_MSG:
5181 memcpy(host_data, argptr, guest_data_size);
5182 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5183 break;
5184 case DM_TABLE_LOAD:
5185 {
5186 void *gspec = argptr;
5187 void *cur_data = host_data;
5188 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5189 int spec_size = thunk_type_size(arg_type, 0);
5190 int i;
5191
5192 for (i = 0; i < host_dm->target_count; i++) {
5193 struct dm_target_spec *spec = cur_data;
5194 uint32_t next;
5195 int slen;
5196
5197 thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5198 slen = strlen((char*)gspec + spec_size) + 1;
5199 next = spec->next;
5200 spec->next = sizeof(*spec) + slen;
5201 strcpy((char*)&spec[1], gspec + spec_size);
5202 gspec += next;
5203 cur_data += spec->next;
5204 }
5205 break;
5206 }
5207 default:
5208 ret = -TARGET_EINVAL;
5209 unlock_user(argptr, guest_data, 0);
5210 goto out;
5211 }
5212 unlock_user(argptr, guest_data, 0);
5213
5214 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5215 if (!is_error(ret)) {
5216 guest_data = arg + host_dm->data_start;
5217 guest_data_size = host_dm->data_size - host_dm->data_start;
5218 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5219 switch (ie->host_cmd) {
5220 case DM_REMOVE_ALL:
5221 case DM_DEV_CREATE:
5222 case DM_DEV_REMOVE:
5223 case DM_DEV_RENAME:
5224 case DM_DEV_SUSPEND:
5225 case DM_DEV_STATUS:
5226 case DM_TABLE_LOAD:
5227 case DM_TABLE_CLEAR:
5228 case DM_TARGET_MSG:
5229 case DM_DEV_SET_GEOMETRY:
5230 /* no return data */
5231 break;
5232 case DM_LIST_DEVICES:
5233 {
5234 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5235 uint32_t remaining_data = guest_data_size;
5236 void *cur_data = argptr;
5237 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5238 int nl_size = 12; /* can't use thunk_size due to alignment */
5239
5240 while (1) {
5241 uint32_t next = nl->next;
5242 if (next) {
5243 nl->next = nl_size + (strlen(nl->name) + 1);
5244 }
5245 if (remaining_data < nl->next) {
5246 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5247 break;
5248 }
5249 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5250 strcpy(cur_data + nl_size, nl->name);
5251 cur_data += nl->next;
5252 remaining_data -= nl->next;
5253 if (!next) {
5254 break;
5255 }
5256 nl = (void*)nl + next;
5257 }
5258 break;
5259 }
5260 case DM_DEV_WAIT:
5261 case DM_TABLE_STATUS:
5262 {
5263 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5264 void *cur_data = argptr;
5265 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5266 int spec_size = thunk_type_size(arg_type, 0);
5267 int i;
5268
5269 for (i = 0; i < host_dm->target_count; i++) {
5270 uint32_t next = spec->next;
5271 int slen = strlen((char*)&spec[1]) + 1;
5272 spec->next = (cur_data - argptr) + spec_size + slen;
5273 if (guest_data_size < spec->next) {
5274 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5275 break;
5276 }
5277 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5278 strcpy(cur_data + spec_size, (char*)&spec[1]);
5279 cur_data = argptr + spec->next;
5280 spec = (void*)host_dm + host_dm->data_start + next;
5281 }
5282 break;
5283 }
5284 case DM_TABLE_DEPS:
5285 {
5286 void *hdata = (void*)host_dm + host_dm->data_start;
5287 int count = *(uint32_t*)hdata;
5288 uint64_t *hdev = hdata + 8;
5289 uint64_t *gdev = argptr + 8;
5290 int i;
5291
5292 *(uint32_t*)argptr = tswap32(count);
5293 for (i = 0; i < count; i++) {
5294 *gdev = tswap64(*hdev);
5295 gdev++;
5296 hdev++;
5297 }
5298 break;
5299 }
5300 case DM_LIST_VERSIONS:
5301 {
5302 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5303 uint32_t remaining_data = guest_data_size;
5304 void *cur_data = argptr;
5305 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5306 int vers_size = thunk_type_size(arg_type, 0);
5307
5308 while (1) {
5309 uint32_t next = vers->next;
5310 if (next) {
5311 vers->next = vers_size + (strlen(vers->name) + 1);
5312 }
5313 if (remaining_data < vers->next) {
5314 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5315 break;
5316 }
5317 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5318 strcpy(cur_data + vers_size, vers->name);
5319 cur_data += vers->next;
5320 remaining_data -= vers->next;
5321 if (!next) {
5322 break;
5323 }
5324 vers = (void*)vers + next;
5325 }
5326 break;
5327 }
5328 default:
5329 unlock_user(argptr, guest_data, 0);
5330 ret = -TARGET_EINVAL;
5331 goto out;
5332 }
5333 unlock_user(argptr, guest_data, guest_data_size);
5334
5335 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5336 if (!argptr) {
5337 ret = -TARGET_EFAULT;
5338 goto out;
5339 }
5340 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5341 unlock_user(argptr, arg, target_size);
5342 }
5343 out:
5344 g_free(big_buf);
5345 return ret;
5346 }
5347
5348 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5349 int cmd, abi_long arg)
5350 {
5351 void *argptr;
5352 int target_size;
5353 const argtype *arg_type = ie->arg_type;
5354 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5355 abi_long ret;
5356
5357 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5358 struct blkpg_partition host_part;
5359
5360 /* Read and convert blkpg */
5361 arg_type++;
5362 target_size = thunk_type_size(arg_type, 0);
5363 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5364 if (!argptr) {
5365 ret = -TARGET_EFAULT;
5366 goto out;
5367 }
5368 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5369 unlock_user(argptr, arg, 0);
5370
5371 switch (host_blkpg->op) {
5372 case BLKPG_ADD_PARTITION:
5373 case BLKPG_DEL_PARTITION:
5374 /* payload is struct blkpg_partition */
5375 break;
5376 default:
5377 /* Unknown opcode */
5378 ret = -TARGET_EINVAL;
5379 goto out;
5380 }
5381
5382 /* Read and convert blkpg->data */
5383 arg = (abi_long)(uintptr_t)host_blkpg->data;
5384 target_size = thunk_type_size(part_arg_type, 0);
5385 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5386 if (!argptr) {
5387 ret = -TARGET_EFAULT;
5388 goto out;
5389 }
5390 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5391 unlock_user(argptr, arg, 0);
5392
5393 /* Swizzle the data pointer to our local copy and call! */
5394 host_blkpg->data = &host_part;
5395 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5396
5397 out:
5398 return ret;
5399 }
5400
5401 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5402 int fd, int cmd, abi_long arg)
5403 {
5404 const argtype *arg_type = ie->arg_type;
5405 const StructEntry *se;
5406 const argtype *field_types;
5407 const int *dst_offsets, *src_offsets;
5408 int target_size;
5409 void *argptr;
5410 abi_ulong *target_rt_dev_ptr = NULL;
5411 unsigned long *host_rt_dev_ptr = NULL;
5412 abi_long ret;
5413 int i;
5414
5415 assert(ie->access == IOC_W);
5416 assert(*arg_type == TYPE_PTR);
5417 arg_type++;
5418 assert(*arg_type == TYPE_STRUCT);
5419 target_size = thunk_type_size(arg_type, 0);
5420 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5421 if (!argptr) {
5422 return -TARGET_EFAULT;
5423 }
5424 arg_type++;
5425 assert(*arg_type == (int)STRUCT_rtentry);
5426 se = struct_entries + *arg_type++;
5427 assert(se->convert[0] == NULL);
5428 /* convert struct here to be able to catch rt_dev string */
5429 field_types = se->field_types;
5430 dst_offsets = se->field_offsets[THUNK_HOST];
5431 src_offsets = se->field_offsets[THUNK_TARGET];
5432 for (i = 0; i < se->nb_fields; i++) {
5433 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5434 assert(*field_types == TYPE_PTRVOID);
5435 target_rt_dev_ptr = argptr + src_offsets[i];
5436 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5437 if (*target_rt_dev_ptr != 0) {
5438 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5439 tswapal(*target_rt_dev_ptr));
5440 if (!*host_rt_dev_ptr) {
5441 unlock_user(argptr, arg, 0);
5442 return -TARGET_EFAULT;
5443 }
5444 } else {
5445 *host_rt_dev_ptr = 0;
5446 }
5447 field_types++;
5448 continue;
5449 }
5450 field_types = thunk_convert(buf_temp + dst_offsets[i],
5451 argptr + src_offsets[i],
5452 field_types, THUNK_HOST);
5453 }
5454 unlock_user(argptr, arg, 0);
5455
5456 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5457
5458 assert(host_rt_dev_ptr != NULL);
5459 assert(target_rt_dev_ptr != NULL);
5460 if (*host_rt_dev_ptr != 0) {
5461 unlock_user((void *)*host_rt_dev_ptr,
5462 *target_rt_dev_ptr, 0);
5463 }
5464 return ret;
5465 }
5466
5467 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5468 int fd, int cmd, abi_long arg)
5469 {
5470 int sig = target_to_host_signal(arg);
5471 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5472 }
5473
5474 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5475 int fd, int cmd, abi_long arg)
5476 {
5477 struct timeval tv;
5478 abi_long ret;
5479
5480 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5481 if (is_error(ret)) {
5482 return ret;
5483 }
5484
5485 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5486 if (copy_to_user_timeval(arg, &tv)) {
5487 return -TARGET_EFAULT;
5488 }
5489 } else {
5490 if (copy_to_user_timeval64(arg, &tv)) {
5491 return -TARGET_EFAULT;
5492 }
5493 }
5494
5495 return ret;
5496 }
5497
5498 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5499 int fd, int cmd, abi_long arg)
5500 {
5501 struct timespec ts;
5502 abi_long ret;
5503
5504 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5505 if (is_error(ret)) {
5506 return ret;
5507 }
5508
5509 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5510 if (host_to_target_timespec(arg, &ts)) {
5511 return -TARGET_EFAULT;
5512 }
5513 } else{
5514 if (host_to_target_timespec64(arg, &ts)) {
5515 return -TARGET_EFAULT;
5516 }
5517 }
5518
5519 return ret;
5520 }
5521
5522 #ifdef TIOCGPTPEER
5523 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5524 int fd, int cmd, abi_long arg)
5525 {
5526 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5527 return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5528 }
5529 #endif
5530
5531 #ifdef HAVE_DRM_H
5532
5533 static void unlock_drm_version(struct drm_version *host_ver,
5534 struct target_drm_version *target_ver,
5535 bool copy)
5536 {
5537 unlock_user(host_ver->name, target_ver->name,
5538 copy ? host_ver->name_len : 0);
5539 unlock_user(host_ver->date, target_ver->date,
5540 copy ? host_ver->date_len : 0);
5541 unlock_user(host_ver->desc, target_ver->desc,
5542 copy ? host_ver->desc_len : 0);
5543 }
5544
5545 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5546 struct target_drm_version *target_ver)
5547 {
5548 memset(host_ver, 0, sizeof(*host_ver));
5549
5550 __get_user(host_ver->name_len, &target_ver->name_len);
5551 if (host_ver->name_len) {
5552 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5553 target_ver->name_len, 0);
5554 if (!host_ver->name) {
5555 return -EFAULT;
5556 }
5557 }
5558
5559 __get_user(host_ver->date_len, &target_ver->date_len);
5560 if (host_ver->date_len) {
5561 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5562 target_ver->date_len, 0);
5563 if (!host_ver->date) {
5564 goto err;
5565 }
5566 }
5567
5568 __get_user(host_ver->desc_len, &target_ver->desc_len);
5569 if (host_ver->desc_len) {
5570 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5571 target_ver->desc_len, 0);
5572 if (!host_ver->desc) {
5573 goto err;
5574 }
5575 }
5576
5577 return 0;
5578 err:
5579 unlock_drm_version(host_ver, target_ver, false);
5580 return -EFAULT;
5581 }
5582
5583 static inline void host_to_target_drmversion(
5584 struct target_drm_version *target_ver,
5585 struct drm_version *host_ver)
5586 {
5587 __put_user(host_ver->version_major, &target_ver->version_major);
5588 __put_user(host_ver->version_minor, &target_ver->version_minor);
5589 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5590 __put_user(host_ver->name_len, &target_ver->name_len);
5591 __put_user(host_ver->date_len, &target_ver->date_len);
5592 __put_user(host_ver->desc_len, &target_ver->desc_len);
5593 unlock_drm_version(host_ver, target_ver, true);
5594 }
5595
5596 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5597 int fd, int cmd, abi_long arg)
5598 {
5599 struct drm_version *ver;
5600 struct target_drm_version *target_ver;
5601 abi_long ret;
5602
5603 switch (ie->host_cmd) {
5604 case DRM_IOCTL_VERSION:
5605 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5606 return -TARGET_EFAULT;
5607 }
5608 ver = (struct drm_version *)buf_temp;
5609 ret = target_to_host_drmversion(ver, target_ver);
5610 if (!is_error(ret)) {
5611 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5612 if (is_error(ret)) {
5613 unlock_drm_version(ver, target_ver, false);
5614 } else {
5615 host_to_target_drmversion(target_ver, ver);
5616 }
5617 }
5618 unlock_user_struct(target_ver, arg, 0);
5619 return ret;
5620 }
5621 return -TARGET_ENOSYS;
5622 }
5623
5624 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5625 struct drm_i915_getparam *gparam,
5626 int fd, abi_long arg)
5627 {
5628 abi_long ret;
5629 int value;
5630 struct target_drm_i915_getparam *target_gparam;
5631
5632 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5633 return -TARGET_EFAULT;
5634 }
5635
5636 __get_user(gparam->param, &target_gparam->param);
5637 gparam->value = &value;
5638 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5639 put_user_s32(value, target_gparam->value);
5640
5641 unlock_user_struct(target_gparam, arg, 0);
5642 return ret;
5643 }
5644
5645 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5646 int fd, int cmd, abi_long arg)
5647 {
5648 switch (ie->host_cmd) {
5649 case DRM_IOCTL_I915_GETPARAM:
5650 return do_ioctl_drm_i915_getparam(ie,
5651 (struct drm_i915_getparam *)buf_temp,
5652 fd, arg);
5653 default:
5654 return -TARGET_ENOSYS;
5655 }
5656 }
5657
5658 #endif
5659
5660 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5661 int fd, int cmd, abi_long arg)
5662 {
5663 struct tun_filter *filter = (struct tun_filter *)buf_temp;
5664 struct tun_filter *target_filter;
5665 char *target_addr;
5666
5667 assert(ie->access == IOC_W);
5668
5669 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5670 if (!target_filter) {
5671 return -TARGET_EFAULT;
5672 }
5673 filter->flags = tswap16(target_filter->flags);
5674 filter->count = tswap16(target_filter->count);
5675 unlock_user(target_filter, arg, 0);
5676
5677 if (filter->count) {
5678 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5679 MAX_STRUCT_SIZE) {
5680 return -TARGET_EFAULT;
5681 }
5682
5683 target_addr = lock_user(VERIFY_READ,
5684 arg + offsetof(struct tun_filter, addr),
5685 filter->count * ETH_ALEN, 1);
5686 if (!target_addr) {
5687 return -TARGET_EFAULT;
5688 }
5689 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5690 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5691 }
5692
5693 return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5694 }
5695
5696 IOCTLEntry ioctl_entries[] = {
5697 #define IOCTL(cmd, access, ...) \
5698 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5699 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5700 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5701 #define IOCTL_IGNORE(cmd) \
5702 { TARGET_ ## cmd, 0, #cmd },
5703 #include "ioctls.h"
5704 { 0, 0, },
5705 };
5706
5707 /* ??? Implement proper locking for ioctls. */
5708 /* do_ioctl() Must return target values and target errnos. */
5709 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5710 {
5711 const IOCTLEntry *ie;
5712 const argtype *arg_type;
5713 abi_long ret;
5714 uint8_t buf_temp[MAX_STRUCT_SIZE];
5715 int target_size;
5716 void *argptr;
5717
5718 ie = ioctl_entries;
5719 for(;;) {
5720 if (ie->target_cmd == 0) {
5721 qemu_log_mask(
5722 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5723 return -TARGET_ENOTTY;
5724 }
5725 if (ie->target_cmd == cmd)
5726 break;
5727 ie++;
5728 }
5729 arg_type = ie->arg_type;
5730 if (ie->do_ioctl) {
5731 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5732 } else if (!ie->host_cmd) {
5733 /* Some architectures define BSD ioctls in their headers
5734 that are not implemented in Linux. */
5735 return -TARGET_ENOTTY;
5736 }
5737
5738 switch(arg_type[0]) {
5739 case TYPE_NULL:
5740 /* no argument */
5741 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5742 break;
5743 case TYPE_PTRVOID:
5744 case TYPE_INT:
5745 case TYPE_LONG:
5746 case TYPE_ULONG:
5747 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5748 break;
5749 case TYPE_PTR:
5750 arg_type++;
5751 target_size = thunk_type_size(arg_type, 0);
5752 switch(ie->access) {
5753 case IOC_R:
5754 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5755 if (!is_error(ret)) {
5756 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5757 if (!argptr)
5758 return -TARGET_EFAULT;
5759 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5760 unlock_user(argptr, arg, target_size);
5761 }
5762 break;
5763 case IOC_W:
5764 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5765 if (!argptr)
5766 return -TARGET_EFAULT;
5767 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5768 unlock_user(argptr, arg, 0);
5769 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5770 break;
5771 default:
5772 case IOC_RW:
5773 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5774 if (!argptr)
5775 return -TARGET_EFAULT;
5776 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5777 unlock_user(argptr, arg, 0);
5778 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5779 if (!is_error(ret)) {
5780 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5781 if (!argptr)
5782 return -TARGET_EFAULT;
5783 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5784 unlock_user(argptr, arg, target_size);
5785 }
5786 break;
5787 }
5788 break;
5789 default:
5790 qemu_log_mask(LOG_UNIMP,
5791 "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5792 (long)cmd, arg_type[0]);
5793 ret = -TARGET_ENOTTY;
5794 break;
5795 }
5796 return ret;
5797 }
5798
5799 static const bitmask_transtbl iflag_tbl[] = {
5800 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5801 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5802 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5803 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5804 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5805 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5806 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5807 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5808 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5809 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5810 { TARGET_IXON, TARGET_IXON, IXON, IXON },
5811 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5812 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5813 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5814 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5815 };
5816
5817 static const bitmask_transtbl oflag_tbl[] = {
5818 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5819 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5820 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5821 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5822 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5823 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5824 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5825 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5826 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5827 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5828 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5829 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5830 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5831 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5832 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5833 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5834 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5835 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5836 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5837 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5838 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5839 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5840 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5841 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5842 };
5843
5844 static const bitmask_transtbl cflag_tbl[] = {
5845 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5846 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5847 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5848 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5849 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5850 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5851 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5852 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5853 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5854 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5855 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5856 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5857 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5858 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5859 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5860 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5861 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5862 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5863 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5864 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5865 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5866 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5867 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5868 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5869 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5870 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5871 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5872 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5873 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5874 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5875 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5876 };
5877
5878 static const bitmask_transtbl lflag_tbl[] = {
5879 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5880 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5881 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5882 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5883 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5884 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5885 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5886 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5887 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5888 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5889 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5890 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5891 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5892 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5893 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5894 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5895 };
5896
5897 static void target_to_host_termios (void *dst, const void *src)
5898 {
5899 struct host_termios *host = dst;
5900 const struct target_termios *target = src;
5901
5902 host->c_iflag =
5903 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5904 host->c_oflag =
5905 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5906 host->c_cflag =
5907 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5908 host->c_lflag =
5909 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5910 host->c_line = target->c_line;
5911
5912 memset(host->c_cc, 0, sizeof(host->c_cc));
5913 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5914 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5915 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5916 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5917 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5918 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5919 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5920 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5921 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5922 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5923 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5924 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5925 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5926 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5927 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5928 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5929 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5930 }
5931
5932 static void host_to_target_termios (void *dst, const void *src)
5933 {
5934 struct target_termios *target = dst;
5935 const struct host_termios *host = src;
5936
5937 target->c_iflag =
5938 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5939 target->c_oflag =
5940 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5941 target->c_cflag =
5942 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5943 target->c_lflag =
5944 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5945 target->c_line = host->c_line;
5946
5947 memset(target->c_cc, 0, sizeof(target->c_cc));
5948 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5949 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5950 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5951 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5952 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5953 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5954 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5955 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5956 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5957 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5958 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5959 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5960 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5961 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5962 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5963 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5964 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5965 }
5966
5967 static const StructEntry struct_termios_def = {
5968 .convert = { host_to_target_termios, target_to_host_termios },
5969 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5970 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5971 .print = print_termios,
5972 };
5973
5974 /* If the host does not provide these bits, they may be safely discarded. */
5975 #ifndef MAP_SYNC
5976 #define MAP_SYNC 0
5977 #endif
5978 #ifndef MAP_UNINITIALIZED
5979 #define MAP_UNINITIALIZED 0
5980 #endif
5981
5982 static const bitmask_transtbl mmap_flags_tbl[] = {
5983 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5984 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5985 MAP_ANONYMOUS, MAP_ANONYMOUS },
5986 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5987 MAP_GROWSDOWN, MAP_GROWSDOWN },
5988 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5989 MAP_DENYWRITE, MAP_DENYWRITE },
5990 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5991 MAP_EXECUTABLE, MAP_EXECUTABLE },
5992 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5993 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5994 MAP_NORESERVE, MAP_NORESERVE },
5995 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5996 /* MAP_STACK had been ignored by the kernel for quite some time.
5997 Recognize it for the target insofar as we do not want to pass
5998 it through to the host. */
5999 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
6000 { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
6001 { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
6002 { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
6003 MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
6004 { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
6005 MAP_UNINITIALIZED, MAP_UNINITIALIZED },
6006 };
6007
6008 /*
6009 * Arrange for legacy / undefined architecture specific flags to be
6010 * ignored by mmap handling code.
6011 */
6012 #ifndef TARGET_MAP_32BIT
6013 #define TARGET_MAP_32BIT 0
6014 #endif
6015 #ifndef TARGET_MAP_HUGE_2MB
6016 #define TARGET_MAP_HUGE_2MB 0
6017 #endif
6018 #ifndef TARGET_MAP_HUGE_1GB
6019 #define TARGET_MAP_HUGE_1GB 0
6020 #endif
6021
6022 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
6023 int target_flags, int fd, off_t offset)
6024 {
6025 /*
6026 * The historical set of flags that all mmap types implicitly support.
6027 */
6028 enum {
6029 TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
6030 | TARGET_MAP_PRIVATE
6031 | TARGET_MAP_FIXED
6032 | TARGET_MAP_ANONYMOUS
6033 | TARGET_MAP_DENYWRITE
6034 | TARGET_MAP_EXECUTABLE
6035 | TARGET_MAP_UNINITIALIZED
6036 | TARGET_MAP_GROWSDOWN
6037 | TARGET_MAP_LOCKED
6038 | TARGET_MAP_NORESERVE
6039 | TARGET_MAP_POPULATE
6040 | TARGET_MAP_NONBLOCK
6041 | TARGET_MAP_STACK
6042 | TARGET_MAP_HUGETLB
6043 | TARGET_MAP_32BIT
6044 | TARGET_MAP_HUGE_2MB
6045 | TARGET_MAP_HUGE_1GB
6046 };
6047 int host_flags;
6048
6049 switch (target_flags & TARGET_MAP_TYPE) {
6050 case TARGET_MAP_PRIVATE:
6051 host_flags = MAP_PRIVATE;
6052 break;
6053 case TARGET_MAP_SHARED:
6054 host_flags = MAP_SHARED;
6055 break;
6056 case TARGET_MAP_SHARED_VALIDATE:
6057 /*
6058 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
6059 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
6060 */
6061 if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
6062 return -TARGET_EOPNOTSUPP;
6063 }
6064 host_flags = MAP_SHARED_VALIDATE;
6065 if (target_flags & TARGET_MAP_SYNC) {
6066 host_flags |= MAP_SYNC;
6067 }
6068 break;
6069 default:
6070 return -TARGET_EINVAL;
6071 }
6072 host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
6073
6074 return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
6075 }
6076
6077 /*
6078 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
6079 * TARGET_I386 is defined if TARGET_X86_64 is defined
6080 */
6081 #if defined(TARGET_I386)
6082
6083 /* NOTE: there is really one LDT for all the threads */
6084 static uint8_t *ldt_table;
6085
6086 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
6087 {
6088 int size;
6089 void *p;
6090
6091 if (!ldt_table)
6092 return 0;
6093 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
6094 if (size > bytecount)
6095 size = bytecount;
6096 p = lock_user(VERIFY_WRITE, ptr, size, 0);
6097 if (!p)
6098 return -TARGET_EFAULT;
6099 /* ??? Should this by byteswapped? */
6100 memcpy(p, ldt_table, size);
6101 unlock_user(p, ptr, size);
6102 return size;
6103 }
6104
6105 /* XXX: add locking support */
6106 static abi_long write_ldt(CPUX86State *env,
6107 abi_ulong ptr, unsigned long bytecount, int oldmode)
6108 {
6109 struct target_modify_ldt_ldt_s ldt_info;
6110 struct target_modify_ldt_ldt_s *target_ldt_info;
6111 int seg_32bit, contents, read_exec_only, limit_in_pages;
6112 int seg_not_present, useable, lm;
6113 uint32_t *lp, entry_1, entry_2;
6114
6115 if (bytecount != sizeof(ldt_info))
6116 return -TARGET_EINVAL;
6117 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6118 return -TARGET_EFAULT;
6119 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6120 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6121 ldt_info.limit = tswap32(target_ldt_info->limit);
6122 ldt_info.flags = tswap32(target_ldt_info->flags);
6123 unlock_user_struct(target_ldt_info, ptr, 0);
6124
6125 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6126 return -TARGET_EINVAL;
6127 seg_32bit = ldt_info.flags & 1;
6128 contents = (ldt_info.flags >> 1) & 3;
6129 read_exec_only = (ldt_info.flags >> 3) & 1;
6130 limit_in_pages = (ldt_info.flags >> 4) & 1;
6131 seg_not_present = (ldt_info.flags >> 5) & 1;
6132 useable = (ldt_info.flags >> 6) & 1;
6133 #ifdef TARGET_ABI32
6134 lm = 0;
6135 #else
6136 lm = (ldt_info.flags >> 7) & 1;
6137 #endif
6138 if (contents == 3) {
6139 if (oldmode)
6140 return -TARGET_EINVAL;
6141 if (seg_not_present == 0)
6142 return -TARGET_EINVAL;
6143 }
6144 /* allocate the LDT */
6145 if (!ldt_table) {
6146 env->ldt.base = target_mmap(0,
6147 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6148 PROT_READ|PROT_WRITE,
6149 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6150 if (env->ldt.base == -1)
6151 return -TARGET_ENOMEM;
6152 memset(g2h_untagged(env->ldt.base), 0,
6153 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6154 env->ldt.limit = 0xffff;
6155 ldt_table = g2h_untagged(env->ldt.base);
6156 }
6157
6158 /* NOTE: same code as Linux kernel */
6159 /* Allow LDTs to be cleared by the user. */
6160 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6161 if (oldmode ||
6162 (contents == 0 &&
6163 read_exec_only == 1 &&
6164 seg_32bit == 0 &&
6165 limit_in_pages == 0 &&
6166 seg_not_present == 1 &&
6167 useable == 0 )) {
6168 entry_1 = 0;
6169 entry_2 = 0;
6170 goto install;
6171 }
6172 }
6173
6174 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6175 (ldt_info.limit & 0x0ffff);
6176 entry_2 = (ldt_info.base_addr & 0xff000000) |
6177 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6178 (ldt_info.limit & 0xf0000) |
6179 ((read_exec_only ^ 1) << 9) |
6180 (contents << 10) |
6181 ((seg_not_present ^ 1) << 15) |
6182 (seg_32bit << 22) |
6183 (limit_in_pages << 23) |
6184 (lm << 21) |
6185 0x7000;
6186 if (!oldmode)
6187 entry_2 |= (useable << 20);
6188
6189 /* Install the new entry ... */
6190 install:
6191 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6192 lp[0] = tswap32(entry_1);
6193 lp[1] = tswap32(entry_2);
6194 return 0;
6195 }
6196
6197 /* specific and weird i386 syscalls */
6198 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6199 unsigned long bytecount)
6200 {
6201 abi_long ret;
6202
6203 switch (func) {
6204 case 0:
6205 ret = read_ldt(ptr, bytecount);
6206 break;
6207 case 1:
6208 ret = write_ldt(env, ptr, bytecount, 1);
6209 break;
6210 case 0x11:
6211 ret = write_ldt(env, ptr, bytecount, 0);
6212 break;
6213 default:
6214 ret = -TARGET_ENOSYS;
6215 break;
6216 }
6217 return ret;
6218 }
6219
6220 #if defined(TARGET_ABI32)
6221 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6222 {
6223 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6224 struct target_modify_ldt_ldt_s ldt_info;
6225 struct target_modify_ldt_ldt_s *target_ldt_info;
6226 int seg_32bit, contents, read_exec_only, limit_in_pages;
6227 int seg_not_present, useable, lm;
6228 uint32_t *lp, entry_1, entry_2;
6229 int i;
6230
6231 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6232 if (!target_ldt_info)
6233 return -TARGET_EFAULT;
6234 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6235 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6236 ldt_info.limit = tswap32(target_ldt_info->limit);
6237 ldt_info.flags = tswap32(target_ldt_info->flags);
6238 if (ldt_info.entry_number == -1) {
6239 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6240 if (gdt_table[i] == 0) {
6241 ldt_info.entry_number = i;
6242 target_ldt_info->entry_number = tswap32(i);
6243 break;
6244 }
6245 }
6246 }
6247 unlock_user_struct(target_ldt_info, ptr, 1);
6248
6249 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6250 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6251 return -TARGET_EINVAL;
6252 seg_32bit = ldt_info.flags & 1;
6253 contents = (ldt_info.flags >> 1) & 3;
6254 read_exec_only = (ldt_info.flags >> 3) & 1;
6255 limit_in_pages = (ldt_info.flags >> 4) & 1;
6256 seg_not_present = (ldt_info.flags >> 5) & 1;
6257 useable = (ldt_info.flags >> 6) & 1;
6258 #ifdef TARGET_ABI32
6259 lm = 0;
6260 #else
6261 lm = (ldt_info.flags >> 7) & 1;
6262 #endif
6263
6264 if (contents == 3) {
6265 if (seg_not_present == 0)
6266 return -TARGET_EINVAL;
6267 }
6268
6269 /* NOTE: same code as Linux kernel */
6270 /* Allow LDTs to be cleared by the user. */
6271 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6272 if ((contents == 0 &&
6273 read_exec_only == 1 &&
6274 seg_32bit == 0 &&
6275 limit_in_pages == 0 &&
6276 seg_not_present == 1 &&
6277 useable == 0 )) {
6278 entry_1 = 0;
6279 entry_2 = 0;
6280 goto install;
6281 }
6282 }
6283
6284 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6285 (ldt_info.limit & 0x0ffff);
6286 entry_2 = (ldt_info.base_addr & 0xff000000) |
6287 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6288 (ldt_info.limit & 0xf0000) |
6289 ((read_exec_only ^ 1) << 9) |
6290 (contents << 10) |
6291 ((seg_not_present ^ 1) << 15) |
6292 (seg_32bit << 22) |
6293 (limit_in_pages << 23) |
6294 (useable << 20) |
6295 (lm << 21) |
6296 0x7000;
6297
6298 /* Install the new entry ... */
6299 install:
6300 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6301 lp[0] = tswap32(entry_1);
6302 lp[1] = tswap32(entry_2);
6303 return 0;
6304 }
6305
6306 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6307 {
6308 struct target_modify_ldt_ldt_s *target_ldt_info;
6309 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6310 uint32_t base_addr, limit, flags;
6311 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6312 int seg_not_present, useable, lm;
6313 uint32_t *lp, entry_1, entry_2;
6314
6315 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6316 if (!target_ldt_info)
6317 return -TARGET_EFAULT;
6318 idx = tswap32(target_ldt_info->entry_number);
6319 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6320 idx > TARGET_GDT_ENTRY_TLS_MAX) {
6321 unlock_user_struct(target_ldt_info, ptr, 1);
6322 return -TARGET_EINVAL;
6323 }
6324 lp = (uint32_t *)(gdt_table + idx);
6325 entry_1 = tswap32(lp[0]);
6326 entry_2 = tswap32(lp[1]);
6327
6328 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6329 contents = (entry_2 >> 10) & 3;
6330 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6331 seg_32bit = (entry_2 >> 22) & 1;
6332 limit_in_pages = (entry_2 >> 23) & 1;
6333 useable = (entry_2 >> 20) & 1;
6334 #ifdef TARGET_ABI32
6335 lm = 0;
6336 #else
6337 lm = (entry_2 >> 21) & 1;
6338 #endif
6339 flags = (seg_32bit << 0) | (contents << 1) |
6340 (read_exec_only << 3) | (limit_in_pages << 4) |
6341 (seg_not_present << 5) | (useable << 6) | (lm << 7);
6342 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
6343 base_addr = (entry_1 >> 16) |
6344 (entry_2 & 0xff000000) |
6345 ((entry_2 & 0xff) << 16);
6346 target_ldt_info->base_addr = tswapal(base_addr);
6347 target_ldt_info->limit = tswap32(limit);
6348 target_ldt_info->flags = tswap32(flags);
6349 unlock_user_struct(target_ldt_info, ptr, 1);
6350 return 0;
6351 }
6352
6353 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6354 {
6355 return -TARGET_ENOSYS;
6356 }
6357 #else
6358 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6359 {
6360 abi_long ret = 0;
6361 abi_ulong val;
6362 int idx;
6363
6364 switch(code) {
6365 case TARGET_ARCH_SET_GS:
6366 case TARGET_ARCH_SET_FS:
6367 if (code == TARGET_ARCH_SET_GS)
6368 idx = R_GS;
6369 else
6370 idx = R_FS;
6371 cpu_x86_load_seg(env, idx, 0);
6372 env->segs[idx].base = addr;
6373 break;
6374 case TARGET_ARCH_GET_GS:
6375 case TARGET_ARCH_GET_FS:
6376 if (code == TARGET_ARCH_GET_GS)
6377 idx = R_GS;
6378 else
6379 idx = R_FS;
6380 val = env->segs[idx].base;
6381 if (put_user(val, addr, abi_ulong))
6382 ret = -TARGET_EFAULT;
6383 break;
6384 default:
6385 ret = -TARGET_EINVAL;
6386 break;
6387 }
6388 return ret;
6389 }
6390 #endif /* defined(TARGET_ABI32 */
6391 #endif /* defined(TARGET_I386) */
6392
6393 /*
6394 * These constants are generic. Supply any that are missing from the host.
6395 */
6396 #ifndef PR_SET_NAME
6397 # define PR_SET_NAME 15
6398 # define PR_GET_NAME 16
6399 #endif
6400 #ifndef PR_SET_FP_MODE
6401 # define PR_SET_FP_MODE 45
6402 # define PR_GET_FP_MODE 46
6403 # define PR_FP_MODE_FR (1 << 0)
6404 # define PR_FP_MODE_FRE (1 << 1)
6405 #endif
6406 #ifndef PR_SVE_SET_VL
6407 # define PR_SVE_SET_VL 50
6408 # define PR_SVE_GET_VL 51
6409 # define PR_SVE_VL_LEN_MASK 0xffff
6410 # define PR_SVE_VL_INHERIT (1 << 17)
6411 #endif
6412 #ifndef PR_PAC_RESET_KEYS
6413 # define PR_PAC_RESET_KEYS 54
6414 # define PR_PAC_APIAKEY (1 << 0)
6415 # define PR_PAC_APIBKEY (1 << 1)
6416 # define PR_PAC_APDAKEY (1 << 2)
6417 # define PR_PAC_APDBKEY (1 << 3)
6418 # define PR_PAC_APGAKEY (1 << 4)
6419 #endif
6420 #ifndef PR_SET_TAGGED_ADDR_CTRL
6421 # define PR_SET_TAGGED_ADDR_CTRL 55
6422 # define PR_GET_TAGGED_ADDR_CTRL 56
6423 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
6424 #endif
6425 #ifndef PR_MTE_TCF_SHIFT
6426 # define PR_MTE_TCF_SHIFT 1
6427 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT)
6428 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT)
6429 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT)
6430 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT)
6431 # define PR_MTE_TAG_SHIFT 3
6432 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT)
6433 #endif
6434 #ifndef PR_SET_IO_FLUSHER
6435 # define PR_SET_IO_FLUSHER 57
6436 # define PR_GET_IO_FLUSHER 58
6437 #endif
6438 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6439 # define PR_SET_SYSCALL_USER_DISPATCH 59
6440 #endif
6441 #ifndef PR_SME_SET_VL
6442 # define PR_SME_SET_VL 63
6443 # define PR_SME_GET_VL 64
6444 # define PR_SME_VL_LEN_MASK 0xffff
6445 # define PR_SME_VL_INHERIT (1 << 17)
6446 #endif
6447
6448 #include "target_prctl.h"
6449
6450 static abi_long do_prctl_inval0(CPUArchState *env)
6451 {
6452 return -TARGET_EINVAL;
6453 }
6454
6455 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6456 {
6457 return -TARGET_EINVAL;
6458 }
6459
6460 #ifndef do_prctl_get_fp_mode
6461 #define do_prctl_get_fp_mode do_prctl_inval0
6462 #endif
6463 #ifndef do_prctl_set_fp_mode
6464 #define do_prctl_set_fp_mode do_prctl_inval1
6465 #endif
6466 #ifndef do_prctl_sve_get_vl
6467 #define do_prctl_sve_get_vl do_prctl_inval0
6468 #endif
6469 #ifndef do_prctl_sve_set_vl
6470 #define do_prctl_sve_set_vl do_prctl_inval1
6471 #endif
6472 #ifndef do_prctl_reset_keys
6473 #define do_prctl_reset_keys do_prctl_inval1
6474 #endif
6475 #ifndef do_prctl_set_tagged_addr_ctrl
6476 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6477 #endif
6478 #ifndef do_prctl_get_tagged_addr_ctrl
6479 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6480 #endif
6481 #ifndef do_prctl_get_unalign
6482 #define do_prctl_get_unalign do_prctl_inval1
6483 #endif
6484 #ifndef do_prctl_set_unalign
6485 #define do_prctl_set_unalign do_prctl_inval1
6486 #endif
6487 #ifndef do_prctl_sme_get_vl
6488 #define do_prctl_sme_get_vl do_prctl_inval0
6489 #endif
6490 #ifndef do_prctl_sme_set_vl
6491 #define do_prctl_sme_set_vl do_prctl_inval1
6492 #endif
6493
6494 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6495 abi_long arg3, abi_long arg4, abi_long arg5)
6496 {
6497 abi_long ret;
6498
6499 switch (option) {
6500 case PR_GET_PDEATHSIG:
6501 {
6502 int deathsig;
6503 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6504 arg3, arg4, arg5));
6505 if (!is_error(ret) &&
6506 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6507 return -TARGET_EFAULT;
6508 }
6509 return ret;
6510 }
6511 case PR_SET_PDEATHSIG:
6512 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6513 arg3, arg4, arg5));
6514 case PR_GET_NAME:
6515 {
6516 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6517 if (!name) {
6518 return -TARGET_EFAULT;
6519 }
6520 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6521 arg3, arg4, arg5));
6522 unlock_user(name, arg2, 16);
6523 return ret;
6524 }
6525 case PR_SET_NAME:
6526 {
6527 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6528 if (!name) {
6529 return -TARGET_EFAULT;
6530 }
6531 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6532 arg3, arg4, arg5));
6533 unlock_user(name, arg2, 0);
6534 return ret;
6535 }
6536 case PR_GET_FP_MODE:
6537 return do_prctl_get_fp_mode(env);
6538 case PR_SET_FP_MODE:
6539 return do_prctl_set_fp_mode(env, arg2);
6540 case PR_SVE_GET_VL:
6541 return do_prctl_sve_get_vl(env);
6542 case PR_SVE_SET_VL:
6543 return do_prctl_sve_set_vl(env, arg2);
6544 case PR_SME_GET_VL:
6545 return do_prctl_sme_get_vl(env);
6546 case PR_SME_SET_VL:
6547 return do_prctl_sme_set_vl(env, arg2);
6548 case PR_PAC_RESET_KEYS:
6549 if (arg3 || arg4 || arg5) {
6550 return -TARGET_EINVAL;
6551 }
6552 return do_prctl_reset_keys(env, arg2);
6553 case PR_SET_TAGGED_ADDR_CTRL:
6554 if (arg3 || arg4 || arg5) {
6555 return -TARGET_EINVAL;
6556 }
6557 return do_prctl_set_tagged_addr_ctrl(env, arg2);
6558 case PR_GET_TAGGED_ADDR_CTRL:
6559 if (arg2 || arg3 || arg4 || arg5) {
6560 return -TARGET_EINVAL;
6561 }
6562 return do_prctl_get_tagged_addr_ctrl(env);
6563
6564 case PR_GET_UNALIGN:
6565 return do_prctl_get_unalign(env, arg2);
6566 case PR_SET_UNALIGN:
6567 return do_prctl_set_unalign(env, arg2);
6568
6569 case PR_CAP_AMBIENT:
6570 case PR_CAPBSET_READ:
6571 case PR_CAPBSET_DROP:
6572 case PR_GET_DUMPABLE:
6573 case PR_SET_DUMPABLE:
6574 case PR_GET_KEEPCAPS:
6575 case PR_SET_KEEPCAPS:
6576 case PR_GET_SECUREBITS:
6577 case PR_SET_SECUREBITS:
6578 case PR_GET_TIMING:
6579 case PR_SET_TIMING:
6580 case PR_GET_TIMERSLACK:
6581 case PR_SET_TIMERSLACK:
6582 case PR_MCE_KILL:
6583 case PR_MCE_KILL_GET:
6584 case PR_GET_NO_NEW_PRIVS:
6585 case PR_SET_NO_NEW_PRIVS:
6586 case PR_GET_IO_FLUSHER:
6587 case PR_SET_IO_FLUSHER:
6588 /* Some prctl options have no pointer arguments and we can pass on. */
6589 return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6590
6591 case PR_GET_CHILD_SUBREAPER:
6592 case PR_SET_CHILD_SUBREAPER:
6593 case PR_GET_SPECULATION_CTRL:
6594 case PR_SET_SPECULATION_CTRL:
6595 case PR_GET_TID_ADDRESS:
6596 /* TODO */
6597 return -TARGET_EINVAL;
6598
6599 case PR_GET_FPEXC:
6600 case PR_SET_FPEXC:
6601 /* Was used for SPE on PowerPC. */
6602 return -TARGET_EINVAL;
6603
6604 case PR_GET_ENDIAN:
6605 case PR_SET_ENDIAN:
6606 case PR_GET_FPEMU:
6607 case PR_SET_FPEMU:
6608 case PR_SET_MM:
6609 case PR_GET_SECCOMP:
6610 case PR_SET_SECCOMP:
6611 case PR_SET_SYSCALL_USER_DISPATCH:
6612 case PR_GET_THP_DISABLE:
6613 case PR_SET_THP_DISABLE:
6614 case PR_GET_TSC:
6615 case PR_SET_TSC:
6616 /* Disable to prevent the target disabling stuff we need. */
6617 return -TARGET_EINVAL;
6618
6619 default:
6620 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6621 option);
6622 return -TARGET_EINVAL;
6623 }
6624 }
6625
6626 #define NEW_STACK_SIZE 0x40000
6627
6628
6629 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6630 typedef struct {
6631 CPUArchState *env;
6632 pthread_mutex_t mutex;
6633 pthread_cond_t cond;
6634 pthread_t thread;
6635 uint32_t tid;
6636 abi_ulong child_tidptr;
6637 abi_ulong parent_tidptr;
6638 sigset_t sigmask;
6639 } new_thread_info;
6640
6641 static void *clone_func(void *arg)
6642 {
6643 new_thread_info *info = arg;
6644 CPUArchState *env;
6645 CPUState *cpu;
6646 TaskState *ts;
6647
6648 rcu_register_thread();
6649 tcg_register_thread();
6650 env = info->env;
6651 cpu = env_cpu(env);
6652 thread_cpu = cpu;
6653 ts = (TaskState *)cpu->opaque;
6654 info->tid = sys_gettid();
6655 task_settid(ts);
6656 if (info->child_tidptr)
6657 put_user_u32(info->tid, info->child_tidptr);
6658 if (info->parent_tidptr)
6659 put_user_u32(info->tid, info->parent_tidptr);
6660 qemu_guest_random_seed_thread_part2(cpu->random_seed);
6661 /* Enable signals. */
6662 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6663 /* Signal to the parent that we're ready. */
6664 pthread_mutex_lock(&info->mutex);
6665 pthread_cond_broadcast(&info->cond);
6666 pthread_mutex_unlock(&info->mutex);
6667 /* Wait until the parent has finished initializing the tls state. */
6668 pthread_mutex_lock(&clone_lock);
6669 pthread_mutex_unlock(&clone_lock);
6670 cpu_loop(env);
6671 /* never exits */
6672 return NULL;
6673 }
6674
6675 /* do_fork() Must return host values and target errnos (unlike most
6676 do_*() functions). */
6677 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6678 abi_ulong parent_tidptr, target_ulong newtls,
6679 abi_ulong child_tidptr)
6680 {
6681 CPUState *cpu = env_cpu(env);
6682 int ret;
6683 TaskState *ts;
6684 CPUState *new_cpu;
6685 CPUArchState *new_env;
6686 sigset_t sigmask;
6687
6688 flags &= ~CLONE_IGNORED_FLAGS;
6689
6690 /* Emulate vfork() with fork() */
6691 if (flags & CLONE_VFORK)
6692 flags &= ~(CLONE_VFORK | CLONE_VM);
6693
6694 if (flags & CLONE_VM) {
6695 TaskState *parent_ts = (TaskState *)cpu->opaque;
6696 new_thread_info info;
6697 pthread_attr_t attr;
6698
6699 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6700 (flags & CLONE_INVALID_THREAD_FLAGS)) {
6701 return -TARGET_EINVAL;
6702 }
6703
6704 ts = g_new0(TaskState, 1);
6705 init_task_state(ts);
6706
6707 /* Grab a mutex so that thread setup appears atomic. */
6708 pthread_mutex_lock(&clone_lock);
6709
6710 /*
6711 * If this is our first additional thread, we need to ensure we
6712 * generate code for parallel execution and flush old translations.
6713 * Do this now so that the copy gets CF_PARALLEL too.
6714 */
6715 if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6716 cpu->tcg_cflags |= CF_PARALLEL;
6717 tb_flush(cpu);
6718 }
6719
6720 /* we create a new CPU instance. */
6721 new_env = cpu_copy(env);
6722 /* Init regs that differ from the parent. */
6723 cpu_clone_regs_child(new_env, newsp, flags);
6724 cpu_clone_regs_parent(env, flags);
6725 new_cpu = env_cpu(new_env);
6726 new_cpu->opaque = ts;
6727 ts->bprm = parent_ts->bprm;
6728 ts->info = parent_ts->info;
6729 ts->signal_mask = parent_ts->signal_mask;
6730
6731 if (flags & CLONE_CHILD_CLEARTID) {
6732 ts->child_tidptr = child_tidptr;
6733 }
6734
6735 if (flags & CLONE_SETTLS) {
6736 cpu_set_tls (new_env, newtls);
6737 }
6738
6739 memset(&info, 0, sizeof(info));
6740 pthread_mutex_init(&info.mutex, NULL);
6741 pthread_mutex_lock(&info.mutex);
6742 pthread_cond_init(&info.cond, NULL);
6743 info.env = new_env;
6744 if (flags & CLONE_CHILD_SETTID) {
6745 info.child_tidptr = child_tidptr;
6746 }
6747 if (flags & CLONE_PARENT_SETTID) {
6748 info.parent_tidptr = parent_tidptr;
6749 }
6750
6751 ret = pthread_attr_init(&attr);
6752 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6753 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6754 /* It is not safe to deliver signals until the child has finished
6755 initializing, so temporarily block all signals. */
6756 sigfillset(&sigmask);
6757 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6758 cpu->random_seed = qemu_guest_random_seed_thread_part1();
6759
6760 ret = pthread_create(&info.thread, &attr, clone_func, &info);
6761 /* TODO: Free new CPU state if thread creation failed. */
6762
6763 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6764 pthread_attr_destroy(&attr);
6765 if (ret == 0) {
6766 /* Wait for the child to initialize. */
6767 pthread_cond_wait(&info.cond, &info.mutex);
6768 ret = info.tid;
6769 } else {
6770 ret = -1;
6771 }
6772 pthread_mutex_unlock(&info.mutex);
6773 pthread_cond_destroy(&info.cond);
6774 pthread_mutex_destroy(&info.mutex);
6775 pthread_mutex_unlock(&clone_lock);
6776 } else {
6777 /* if no CLONE_VM, we consider it is a fork */
6778 if (flags & CLONE_INVALID_FORK_FLAGS) {
6779 return -TARGET_EINVAL;
6780 }
6781
6782 /* We can't support custom termination signals */
6783 if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6784 return -TARGET_EINVAL;
6785 }
6786
6787 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6788 if (flags & CLONE_PIDFD) {
6789 return -TARGET_EINVAL;
6790 }
6791 #endif
6792
6793 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6794 if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6795 return -TARGET_EINVAL;
6796 }
6797
6798 if (block_signals()) {
6799 return -QEMU_ERESTARTSYS;
6800 }
6801
6802 fork_start();
6803 ret = fork();
6804 if (ret == 0) {
6805 /* Child Process. */
6806 cpu_clone_regs_child(env, newsp, flags);
6807 fork_end(1);
6808 /* There is a race condition here. The parent process could
6809 theoretically read the TID in the child process before the child
6810 tid is set. This would require using either ptrace
6811 (not implemented) or having *_tidptr to point at a shared memory
6812 mapping. We can't repeat the spinlock hack used above because
6813 the child process gets its own copy of the lock. */
6814 if (flags & CLONE_CHILD_SETTID)
6815 put_user_u32(sys_gettid(), child_tidptr);
6816 if (flags & CLONE_PARENT_SETTID)
6817 put_user_u32(sys_gettid(), parent_tidptr);
6818 ts = (TaskState *)cpu->opaque;
6819 if (flags & CLONE_SETTLS)
6820 cpu_set_tls (env, newtls);
6821 if (flags & CLONE_CHILD_CLEARTID)
6822 ts->child_tidptr = child_tidptr;
6823 } else {
6824 cpu_clone_regs_parent(env, flags);
6825 if (flags & CLONE_PIDFD) {
6826 int pid_fd = 0;
6827 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6828 int pid_child = ret;
6829 pid_fd = pidfd_open(pid_child, 0);
6830 if (pid_fd >= 0) {
6831 fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6832 | FD_CLOEXEC);
6833 } else {
6834 pid_fd = 0;
6835 }
6836 #endif
6837 put_user_u32(pid_fd, parent_tidptr);
6838 }
6839 fork_end(0);
6840 }
6841 g_assert(!cpu_in_exclusive_context(cpu));
6842 }
6843 return ret;
6844 }
6845
6846 /* warning : doesn't handle linux specific flags... */
6847 static int target_to_host_fcntl_cmd(int cmd)
6848 {
6849 int ret;
6850
6851 switch(cmd) {
6852 case TARGET_F_DUPFD:
6853 case TARGET_F_GETFD:
6854 case TARGET_F_SETFD:
6855 case TARGET_F_GETFL:
6856 case TARGET_F_SETFL:
6857 case TARGET_F_OFD_GETLK:
6858 case TARGET_F_OFD_SETLK:
6859 case TARGET_F_OFD_SETLKW:
6860 ret = cmd;
6861 break;
6862 case TARGET_F_GETLK:
6863 ret = F_GETLK64;
6864 break;
6865 case TARGET_F_SETLK:
6866 ret = F_SETLK64;
6867 break;
6868 case TARGET_F_SETLKW:
6869 ret = F_SETLKW64;
6870 break;
6871 case TARGET_F_GETOWN:
6872 ret = F_GETOWN;
6873 break;
6874 case TARGET_F_SETOWN:
6875 ret = F_SETOWN;
6876 break;
6877 case TARGET_F_GETSIG:
6878 ret = F_GETSIG;
6879 break;
6880 case TARGET_F_SETSIG:
6881 ret = F_SETSIG;
6882 break;
6883 #if TARGET_ABI_BITS == 32
6884 case TARGET_F_GETLK64:
6885 ret = F_GETLK64;
6886 break;
6887 case TARGET_F_SETLK64:
6888 ret = F_SETLK64;
6889 break;
6890 case TARGET_F_SETLKW64:
6891 ret = F_SETLKW64;
6892 break;
6893 #endif
6894 case TARGET_F_SETLEASE:
6895 ret = F_SETLEASE;
6896 break;
6897 case TARGET_F_GETLEASE:
6898 ret = F_GETLEASE;
6899 break;
6900 #ifdef F_DUPFD_CLOEXEC
6901 case TARGET_F_DUPFD_CLOEXEC:
6902 ret = F_DUPFD_CLOEXEC;
6903 break;
6904 #endif
6905 case TARGET_F_NOTIFY:
6906 ret = F_NOTIFY;
6907 break;
6908 #ifdef F_GETOWN_EX
6909 case TARGET_F_GETOWN_EX:
6910 ret = F_GETOWN_EX;
6911 break;
6912 #endif
6913 #ifdef F_SETOWN_EX
6914 case TARGET_F_SETOWN_EX:
6915 ret = F_SETOWN_EX;
6916 break;
6917 #endif
6918 #ifdef F_SETPIPE_SZ
6919 case TARGET_F_SETPIPE_SZ:
6920 ret = F_SETPIPE_SZ;
6921 break;
6922 case TARGET_F_GETPIPE_SZ:
6923 ret = F_GETPIPE_SZ;
6924 break;
6925 #endif
6926 #ifdef F_ADD_SEALS
6927 case TARGET_F_ADD_SEALS:
6928 ret = F_ADD_SEALS;
6929 break;
6930 case TARGET_F_GET_SEALS:
6931 ret = F_GET_SEALS;
6932 break;
6933 #endif
6934 default:
6935 ret = -TARGET_EINVAL;
6936 break;
6937 }
6938
6939 #if defined(__powerpc64__)
6940 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6941 * is not supported by kernel. The glibc fcntl call actually adjusts
6942 * them to 5, 6 and 7 before making the syscall(). Since we make the
6943 * syscall directly, adjust to what is supported by the kernel.
6944 */
6945 if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6946 ret -= F_GETLK64 - 5;
6947 }
6948 #endif
6949
6950 return ret;
6951 }
6952
6953 #define FLOCK_TRANSTBL \
6954 switch (type) { \
6955 TRANSTBL_CONVERT(F_RDLCK); \
6956 TRANSTBL_CONVERT(F_WRLCK); \
6957 TRANSTBL_CONVERT(F_UNLCK); \
6958 }
6959
6960 static int target_to_host_flock(int type)
6961 {
6962 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6963 FLOCK_TRANSTBL
6964 #undef TRANSTBL_CONVERT
6965 return -TARGET_EINVAL;
6966 }
6967
6968 static int host_to_target_flock(int type)
6969 {
6970 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6971 FLOCK_TRANSTBL
6972 #undef TRANSTBL_CONVERT
6973 /* if we don't know how to convert the value coming
6974 * from the host we copy to the target field as-is
6975 */
6976 return type;
6977 }
6978
6979 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6980 abi_ulong target_flock_addr)
6981 {
6982 struct target_flock *target_fl;
6983 int l_type;
6984
6985 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6986 return -TARGET_EFAULT;
6987 }
6988
6989 __get_user(l_type, &target_fl->l_type);
6990 l_type = target_to_host_flock(l_type);
6991 if (l_type < 0) {
6992 return l_type;
6993 }
6994 fl->l_type = l_type;
6995 __get_user(fl->l_whence, &target_fl->l_whence);
6996 __get_user(fl->l_start, &target_fl->l_start);
6997 __get_user(fl->l_len, &target_fl->l_len);
6998 __get_user(fl->l_pid, &target_fl->l_pid);
6999 unlock_user_struct(target_fl, target_flock_addr, 0);
7000 return 0;
7001 }
7002
7003 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
7004 const struct flock64 *fl)
7005 {
7006 struct target_flock *target_fl;
7007 short l_type;
7008
7009 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7010 return -TARGET_EFAULT;
7011 }
7012
7013 l_type = host_to_target_flock(fl->l_type);
7014 __put_user(l_type, &target_fl->l_type);
7015 __put_user(fl->l_whence, &target_fl->l_whence);
7016 __put_user(fl->l_start, &target_fl->l_start);
7017 __put_user(fl->l_len, &target_fl->l_len);
7018 __put_user(fl->l_pid, &target_fl->l_pid);
7019 unlock_user_struct(target_fl, target_flock_addr, 1);
7020 return 0;
7021 }
7022
7023 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
7024 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
7025
7026 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
7027 struct target_oabi_flock64 {
7028 abi_short l_type;
7029 abi_short l_whence;
7030 abi_llong l_start;
7031 abi_llong l_len;
7032 abi_int l_pid;
7033 } QEMU_PACKED;
7034
7035 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
7036 abi_ulong target_flock_addr)
7037 {
7038 struct target_oabi_flock64 *target_fl;
7039 int l_type;
7040
7041 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
7042 return -TARGET_EFAULT;
7043 }
7044
7045 __get_user(l_type, &target_fl->l_type);
7046 l_type = target_to_host_flock(l_type);
7047 if (l_type < 0) {
7048 return l_type;
7049 }
7050 fl->l_type = l_type;
7051 __get_user(fl->l_whence, &target_fl->l_whence);
7052 __get_user(fl->l_start, &target_fl->l_start);
7053 __get_user(fl->l_len, &target_fl->l_len);
7054 __get_user(fl->l_pid, &target_fl->l_pid);
7055 unlock_user_struct(target_fl, target_flock_addr, 0);
7056 return 0;
7057 }
7058
7059 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
7060 const struct flock64 *fl)
7061 {
7062 struct target_oabi_flock64 *target_fl;
7063 short l_type;
7064
7065 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7066 return -TARGET_EFAULT;
7067 }
7068
7069 l_type = host_to_target_flock(fl->l_type);
7070 __put_user(l_type, &target_fl->l_type);
7071 __put_user(fl->l_whence, &target_fl->l_whence);
7072 __put_user(fl->l_start, &target_fl->l_start);
7073 __put_user(fl->l_len, &target_fl->l_len);
7074 __put_user(fl->l_pid, &target_fl->l_pid);
7075 unlock_user_struct(target_fl, target_flock_addr, 1);
7076 return 0;
7077 }
7078 #endif
7079
7080 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
7081 abi_ulong target_flock_addr)
7082 {
7083 struct target_flock64 *target_fl;
7084 int l_type;
7085
7086 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
7087 return -TARGET_EFAULT;
7088 }
7089
7090 __get_user(l_type, &target_fl->l_type);
7091 l_type = target_to_host_flock(l_type);
7092 if (l_type < 0) {
7093 return l_type;
7094 }
7095 fl->l_type = l_type;
7096 __get_user(fl->l_whence, &target_fl->l_whence);
7097 __get_user(fl->l_start, &target_fl->l_start);
7098 __get_user(fl->l_len, &target_fl->l_len);
7099 __get_user(fl->l_pid, &target_fl->l_pid);
7100 unlock_user_struct(target_fl, target_flock_addr, 0);
7101 return 0;
7102 }
7103
7104 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
7105 const struct flock64 *fl)
7106 {
7107 struct target_flock64 *target_fl;
7108 short l_type;
7109
7110 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
7111 return -TARGET_EFAULT;
7112 }
7113
7114 l_type = host_to_target_flock(fl->l_type);
7115 __put_user(l_type, &target_fl->l_type);
7116 __put_user(fl->l_whence, &target_fl->l_whence);
7117 __put_user(fl->l_start, &target_fl->l_start);
7118 __put_user(fl->l_len, &target_fl->l_len);
7119 __put_user(fl->l_pid, &target_fl->l_pid);
7120 unlock_user_struct(target_fl, target_flock_addr, 1);
7121 return 0;
7122 }
7123
7124 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
7125 {
7126 struct flock64 fl64;
7127 #ifdef F_GETOWN_EX
7128 struct f_owner_ex fox;
7129 struct target_f_owner_ex *target_fox;
7130 #endif
7131 abi_long ret;
7132 int host_cmd = target_to_host_fcntl_cmd(cmd);
7133
7134 if (host_cmd == -TARGET_EINVAL)
7135 return host_cmd;
7136
7137 switch(cmd) {
7138 case TARGET_F_GETLK:
7139 ret = copy_from_user_flock(&fl64, arg);
7140 if (ret) {
7141 return ret;
7142 }
7143 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7144 if (ret == 0) {
7145 ret = copy_to_user_flock(arg, &fl64);
7146 }
7147 break;
7148
7149 case TARGET_F_SETLK:
7150 case TARGET_F_SETLKW:
7151 ret = copy_from_user_flock(&fl64, arg);
7152 if (ret) {
7153 return ret;
7154 }
7155 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7156 break;
7157
7158 case TARGET_F_GETLK64:
7159 case TARGET_F_OFD_GETLK:
7160 ret = copy_from_user_flock64(&fl64, arg);
7161 if (ret) {
7162 return ret;
7163 }
7164 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7165 if (ret == 0) {
7166 ret = copy_to_user_flock64(arg, &fl64);
7167 }
7168 break;
7169 case TARGET_F_SETLK64:
7170 case TARGET_F_SETLKW64:
7171 case TARGET_F_OFD_SETLK:
7172 case TARGET_F_OFD_SETLKW:
7173 ret = copy_from_user_flock64(&fl64, arg);
7174 if (ret) {
7175 return ret;
7176 }
7177 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7178 break;
7179
7180 case TARGET_F_GETFL:
7181 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7182 if (ret >= 0) {
7183 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7184 /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7185 if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7186 ret |= TARGET_O_LARGEFILE;
7187 }
7188 }
7189 break;
7190
7191 case TARGET_F_SETFL:
7192 ret = get_errno(safe_fcntl(fd, host_cmd,
7193 target_to_host_bitmask(arg,
7194 fcntl_flags_tbl)));
7195 break;
7196
7197 #ifdef F_GETOWN_EX
7198 case TARGET_F_GETOWN_EX:
7199 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7200 if (ret >= 0) {
7201 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7202 return -TARGET_EFAULT;
7203 target_fox->type = tswap32(fox.type);
7204 target_fox->pid = tswap32(fox.pid);
7205 unlock_user_struct(target_fox, arg, 1);
7206 }
7207 break;
7208 #endif
7209
7210 #ifdef F_SETOWN_EX
7211 case TARGET_F_SETOWN_EX:
7212 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7213 return -TARGET_EFAULT;
7214 fox.type = tswap32(target_fox->type);
7215 fox.pid = tswap32(target_fox->pid);
7216 unlock_user_struct(target_fox, arg, 0);
7217 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7218 break;
7219 #endif
7220
7221 case TARGET_F_SETSIG:
7222 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7223 break;
7224
7225 case TARGET_F_GETSIG:
7226 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7227 break;
7228
7229 case TARGET_F_SETOWN:
7230 case TARGET_F_GETOWN:
7231 case TARGET_F_SETLEASE:
7232 case TARGET_F_GETLEASE:
7233 case TARGET_F_SETPIPE_SZ:
7234 case TARGET_F_GETPIPE_SZ:
7235 case TARGET_F_ADD_SEALS:
7236 case TARGET_F_GET_SEALS:
7237 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7238 break;
7239
7240 default:
7241 ret = get_errno(safe_fcntl(fd, cmd, arg));
7242 break;
7243 }
7244 return ret;
7245 }
7246
7247 #ifdef USE_UID16
7248
7249 static inline int high2lowuid(int uid)
7250 {
7251 if (uid > 65535)
7252 return 65534;
7253 else
7254 return uid;
7255 }
7256
7257 static inline int high2lowgid(int gid)
7258 {
7259 if (gid > 65535)
7260 return 65534;
7261 else
7262 return gid;
7263 }
7264
7265 static inline int low2highuid(int uid)
7266 {
7267 if ((int16_t)uid == -1)
7268 return -1;
7269 else
7270 return uid;
7271 }
7272
7273 static inline int low2highgid(int gid)
7274 {
7275 if ((int16_t)gid == -1)
7276 return -1;
7277 else
7278 return gid;
7279 }
7280 static inline int tswapid(int id)
7281 {
7282 return tswap16(id);
7283 }
7284
7285 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7286
7287 #else /* !USE_UID16 */
7288 static inline int high2lowuid(int uid)
7289 {
7290 return uid;
7291 }
7292 static inline int high2lowgid(int gid)
7293 {
7294 return gid;
7295 }
7296 static inline int low2highuid(int uid)
7297 {
7298 return uid;
7299 }
7300 static inline int low2highgid(int gid)
7301 {
7302 return gid;
7303 }
7304 static inline int tswapid(int id)
7305 {
7306 return tswap32(id);
7307 }
7308
7309 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7310
7311 #endif /* USE_UID16 */
7312
7313 /* We must do direct syscalls for setting UID/GID, because we want to
7314 * implement the Linux system call semantics of "change only for this thread",
7315 * not the libc/POSIX semantics of "change for all threads in process".
7316 * (See http://ewontfix.com/17/ for more details.)
7317 * We use the 32-bit version of the syscalls if present; if it is not
7318 * then either the host architecture supports 32-bit UIDs natively with
7319 * the standard syscall, or the 16-bit UID is the best we can do.
7320 */
7321 #ifdef __NR_setuid32
7322 #define __NR_sys_setuid __NR_setuid32
7323 #else
7324 #define __NR_sys_setuid __NR_setuid
7325 #endif
7326 #ifdef __NR_setgid32
7327 #define __NR_sys_setgid __NR_setgid32
7328 #else
7329 #define __NR_sys_setgid __NR_setgid
7330 #endif
7331 #ifdef __NR_setresuid32
7332 #define __NR_sys_setresuid __NR_setresuid32
7333 #else
7334 #define __NR_sys_setresuid __NR_setresuid
7335 #endif
7336 #ifdef __NR_setresgid32
7337 #define __NR_sys_setresgid __NR_setresgid32
7338 #else
7339 #define __NR_sys_setresgid __NR_setresgid
7340 #endif
7341
7342 _syscall1(int, sys_setuid, uid_t, uid)
7343 _syscall1(int, sys_setgid, gid_t, gid)
7344 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7345 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7346
7347 void syscall_init(void)
7348 {
7349 IOCTLEntry *ie;
7350 const argtype *arg_type;
7351 int size;
7352
7353 thunk_init(STRUCT_MAX);
7354
7355 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7356 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7357 #include "syscall_types.h"
7358 #undef STRUCT
7359 #undef STRUCT_SPECIAL
7360
7361 /* we patch the ioctl size if necessary. We rely on the fact that
7362 no ioctl has all the bits at '1' in the size field */
7363 ie = ioctl_entries;
7364 while (ie->target_cmd != 0) {
7365 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7366 TARGET_IOC_SIZEMASK) {
7367 arg_type = ie->arg_type;
7368 if (arg_type[0] != TYPE_PTR) {
7369 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7370 ie->target_cmd);
7371 exit(1);
7372 }
7373 arg_type++;
7374 size = thunk_type_size(arg_type, 0);
7375 ie->target_cmd = (ie->target_cmd &
7376 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7377 (size << TARGET_IOC_SIZESHIFT);
7378 }
7379
7380 /* automatic consistency check if same arch */
7381 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7382 (defined(__x86_64__) && defined(TARGET_X86_64))
7383 if (unlikely(ie->target_cmd != ie->host_cmd)) {
7384 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7385 ie->name, ie->target_cmd, ie->host_cmd);
7386 }
7387 #endif
7388 ie++;
7389 }
7390 }
7391
7392 #ifdef TARGET_NR_truncate64
7393 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7394 abi_long arg2,
7395 abi_long arg3,
7396 abi_long arg4)
7397 {
7398 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7399 arg2 = arg3;
7400 arg3 = arg4;
7401 }
7402 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7403 }
7404 #endif
7405
7406 #ifdef TARGET_NR_ftruncate64
7407 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7408 abi_long arg2,
7409 abi_long arg3,
7410 abi_long arg4)
7411 {
7412 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7413 arg2 = arg3;
7414 arg3 = arg4;
7415 }
7416 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7417 }
7418 #endif
7419
7420 #if defined(TARGET_NR_timer_settime) || \
7421 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7422 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7423 abi_ulong target_addr)
7424 {
7425 if (target_to_host_timespec(&host_its->it_interval, target_addr +
7426 offsetof(struct target_itimerspec,
7427 it_interval)) ||
7428 target_to_host_timespec(&host_its->it_value, target_addr +
7429 offsetof(struct target_itimerspec,
7430 it_value))) {
7431 return -TARGET_EFAULT;
7432 }
7433
7434 return 0;
7435 }
7436 #endif
7437
7438 #if defined(TARGET_NR_timer_settime64) || \
7439 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7440 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7441 abi_ulong target_addr)
7442 {
7443 if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7444 offsetof(struct target__kernel_itimerspec,
7445 it_interval)) ||
7446 target_to_host_timespec64(&host_its->it_value, target_addr +
7447 offsetof(struct target__kernel_itimerspec,
7448 it_value))) {
7449 return -TARGET_EFAULT;
7450 }
7451
7452 return 0;
7453 }
7454 #endif
7455
7456 #if ((defined(TARGET_NR_timerfd_gettime) || \
7457 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7458 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7459 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7460 struct itimerspec *host_its)
7461 {
7462 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7463 it_interval),
7464 &host_its->it_interval) ||
7465 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7466 it_value),
7467 &host_its->it_value)) {
7468 return -TARGET_EFAULT;
7469 }
7470 return 0;
7471 }
7472 #endif
7473
7474 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7475 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7476 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7477 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7478 struct itimerspec *host_its)
7479 {
7480 if (host_to_target_timespec64(target_addr +
7481 offsetof(struct target__kernel_itimerspec,
7482 it_interval),
7483 &host_its->it_interval) ||
7484 host_to_target_timespec64(target_addr +
7485 offsetof(struct target__kernel_itimerspec,
7486 it_value),
7487 &host_its->it_value)) {
7488 return -TARGET_EFAULT;
7489 }
7490 return 0;
7491 }
7492 #endif
7493
7494 #if defined(TARGET_NR_adjtimex) || \
7495 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7496 static inline abi_long target_to_host_timex(struct timex *host_tx,
7497 abi_long target_addr)
7498 {
7499 struct target_timex *target_tx;
7500
7501 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7502 return -TARGET_EFAULT;
7503 }
7504
7505 __get_user(host_tx->modes, &target_tx->modes);
7506 __get_user(host_tx->offset, &target_tx->offset);
7507 __get_user(host_tx->freq, &target_tx->freq);
7508 __get_user(host_tx->maxerror, &target_tx->maxerror);
7509 __get_user(host_tx->esterror, &target_tx->esterror);
7510 __get_user(host_tx->status, &target_tx->status);
7511 __get_user(host_tx->constant, &target_tx->constant);
7512 __get_user(host_tx->precision, &target_tx->precision);
7513 __get_user(host_tx->tolerance, &target_tx->tolerance);
7514 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7515 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7516 __get_user(host_tx->tick, &target_tx->tick);
7517 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7518 __get_user(host_tx->jitter, &target_tx->jitter);
7519 __get_user(host_tx->shift, &target_tx->shift);
7520 __get_user(host_tx->stabil, &target_tx->stabil);
7521 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7522 __get_user(host_tx->calcnt, &target_tx->calcnt);
7523 __get_user(host_tx->errcnt, &target_tx->errcnt);
7524 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7525 __get_user(host_tx->tai, &target_tx->tai);
7526
7527 unlock_user_struct(target_tx, target_addr, 0);
7528 return 0;
7529 }
7530
7531 static inline abi_long host_to_target_timex(abi_long target_addr,
7532 struct timex *host_tx)
7533 {
7534 struct target_timex *target_tx;
7535
7536 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7537 return -TARGET_EFAULT;
7538 }
7539
7540 __put_user(host_tx->modes, &target_tx->modes);
7541 __put_user(host_tx->offset, &target_tx->offset);
7542 __put_user(host_tx->freq, &target_tx->freq);
7543 __put_user(host_tx->maxerror, &target_tx->maxerror);
7544 __put_user(host_tx->esterror, &target_tx->esterror);
7545 __put_user(host_tx->status, &target_tx->status);
7546 __put_user(host_tx->constant, &target_tx->constant);
7547 __put_user(host_tx->precision, &target_tx->precision);
7548 __put_user(host_tx->tolerance, &target_tx->tolerance);
7549 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7550 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7551 __put_user(host_tx->tick, &target_tx->tick);
7552 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7553 __put_user(host_tx->jitter, &target_tx->jitter);
7554 __put_user(host_tx->shift, &target_tx->shift);
7555 __put_user(host_tx->stabil, &target_tx->stabil);
7556 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7557 __put_user(host_tx->calcnt, &target_tx->calcnt);
7558 __put_user(host_tx->errcnt, &target_tx->errcnt);
7559 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7560 __put_user(host_tx->tai, &target_tx->tai);
7561
7562 unlock_user_struct(target_tx, target_addr, 1);
7563 return 0;
7564 }
7565 #endif
7566
7567
7568 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7569 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7570 abi_long target_addr)
7571 {
7572 struct target__kernel_timex *target_tx;
7573
7574 if (copy_from_user_timeval64(&host_tx->time, target_addr +
7575 offsetof(struct target__kernel_timex,
7576 time))) {
7577 return -TARGET_EFAULT;
7578 }
7579
7580 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7581 return -TARGET_EFAULT;
7582 }
7583
7584 __get_user(host_tx->modes, &target_tx->modes);
7585 __get_user(host_tx->offset, &target_tx->offset);
7586 __get_user(host_tx->freq, &target_tx->freq);
7587 __get_user(host_tx->maxerror, &target_tx->maxerror);
7588 __get_user(host_tx->esterror, &target_tx->esterror);
7589 __get_user(host_tx->status, &target_tx->status);
7590 __get_user(host_tx->constant, &target_tx->constant);
7591 __get_user(host_tx->precision, &target_tx->precision);
7592 __get_user(host_tx->tolerance, &target_tx->tolerance);
7593 __get_user(host_tx->tick, &target_tx->tick);
7594 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7595 __get_user(host_tx->jitter, &target_tx->jitter);
7596 __get_user(host_tx->shift, &target_tx->shift);
7597 __get_user(host_tx->stabil, &target_tx->stabil);
7598 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7599 __get_user(host_tx->calcnt, &target_tx->calcnt);
7600 __get_user(host_tx->errcnt, &target_tx->errcnt);
7601 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7602 __get_user(host_tx->tai, &target_tx->tai);
7603
7604 unlock_user_struct(target_tx, target_addr, 0);
7605 return 0;
7606 }
7607
7608 static inline abi_long host_to_target_timex64(abi_long target_addr,
7609 struct timex *host_tx)
7610 {
7611 struct target__kernel_timex *target_tx;
7612
7613 if (copy_to_user_timeval64(target_addr +
7614 offsetof(struct target__kernel_timex, time),
7615 &host_tx->time)) {
7616 return -TARGET_EFAULT;
7617 }
7618
7619 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7620 return -TARGET_EFAULT;
7621 }
7622
7623 __put_user(host_tx->modes, &target_tx->modes);
7624 __put_user(host_tx->offset, &target_tx->offset);
7625 __put_user(host_tx->freq, &target_tx->freq);
7626 __put_user(host_tx->maxerror, &target_tx->maxerror);
7627 __put_user(host_tx->esterror, &target_tx->esterror);
7628 __put_user(host_tx->status, &target_tx->status);
7629 __put_user(host_tx->constant, &target_tx->constant);
7630 __put_user(host_tx->precision, &target_tx->precision);
7631 __put_user(host_tx->tolerance, &target_tx->tolerance);
7632 __put_user(host_tx->tick, &target_tx->tick);
7633 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7634 __put_user(host_tx->jitter, &target_tx->jitter);
7635 __put_user(host_tx->shift, &target_tx->shift);
7636 __put_user(host_tx->stabil, &target_tx->stabil);
7637 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7638 __put_user(host_tx->calcnt, &target_tx->calcnt);
7639 __put_user(host_tx->errcnt, &target_tx->errcnt);
7640 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7641 __put_user(host_tx->tai, &target_tx->tai);
7642
7643 unlock_user_struct(target_tx, target_addr, 1);
7644 return 0;
7645 }
7646 #endif
7647
7648 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7649 #define sigev_notify_thread_id _sigev_un._tid
7650 #endif
7651
7652 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7653 abi_ulong target_addr)
7654 {
7655 struct target_sigevent *target_sevp;
7656
7657 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7658 return -TARGET_EFAULT;
7659 }
7660
7661 /* This union is awkward on 64 bit systems because it has a 32 bit
7662 * integer and a pointer in it; we follow the conversion approach
7663 * used for handling sigval types in signal.c so the guest should get
7664 * the correct value back even if we did a 64 bit byteswap and it's
7665 * using the 32 bit integer.
7666 */
7667 host_sevp->sigev_value.sival_ptr =
7668 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7669 host_sevp->sigev_signo =
7670 target_to_host_signal(tswap32(target_sevp->sigev_signo));
7671 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7672 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7673
7674 unlock_user_struct(target_sevp, target_addr, 1);
7675 return 0;
7676 }
7677
7678 #if defined(TARGET_NR_mlockall)
7679 static inline int target_to_host_mlockall_arg(int arg)
7680 {
7681 int result = 0;
7682
7683 if (arg & TARGET_MCL_CURRENT) {
7684 result |= MCL_CURRENT;
7685 }
7686 if (arg & TARGET_MCL_FUTURE) {
7687 result |= MCL_FUTURE;
7688 }
7689 #ifdef MCL_ONFAULT
7690 if (arg & TARGET_MCL_ONFAULT) {
7691 result |= MCL_ONFAULT;
7692 }
7693 #endif
7694
7695 return result;
7696 }
7697 #endif
7698
7699 static inline int target_to_host_msync_arg(abi_long arg)
7700 {
7701 return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7702 ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7703 ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7704 (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7705 }
7706
7707 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
7708 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
7709 defined(TARGET_NR_newfstatat))
7710 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7711 abi_ulong target_addr,
7712 struct stat *host_st)
7713 {
7714 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7715 if (cpu_env->eabi) {
7716 struct target_eabi_stat64 *target_st;
7717
7718 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7719 return -TARGET_EFAULT;
7720 memset(target_st, 0, sizeof(struct target_eabi_stat64));
7721 __put_user(host_st->st_dev, &target_st->st_dev);
7722 __put_user(host_st->st_ino, &target_st->st_ino);
7723 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7724 __put_user(host_st->st_ino, &target_st->__st_ino);
7725 #endif
7726 __put_user(host_st->st_mode, &target_st->st_mode);
7727 __put_user(host_st->st_nlink, &target_st->st_nlink);
7728 __put_user(host_st->st_uid, &target_st->st_uid);
7729 __put_user(host_st->st_gid, &target_st->st_gid);
7730 __put_user(host_st->st_rdev, &target_st->st_rdev);
7731 __put_user(host_st->st_size, &target_st->st_size);
7732 __put_user(host_st->st_blksize, &target_st->st_blksize);
7733 __put_user(host_st->st_blocks, &target_st->st_blocks);
7734 __put_user(host_st->st_atime, &target_st->target_st_atime);
7735 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7736 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7737 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7738 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7739 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7740 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7741 #endif
7742 unlock_user_struct(target_st, target_addr, 1);
7743 } else
7744 #endif
7745 {
7746 #if defined(TARGET_HAS_STRUCT_STAT64)
7747 struct target_stat64 *target_st;
7748 #else
7749 struct target_stat *target_st;
7750 #endif
7751
7752 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7753 return -TARGET_EFAULT;
7754 memset(target_st, 0, sizeof(*target_st));
7755 __put_user(host_st->st_dev, &target_st->st_dev);
7756 __put_user(host_st->st_ino, &target_st->st_ino);
7757 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7758 __put_user(host_st->st_ino, &target_st->__st_ino);
7759 #endif
7760 __put_user(host_st->st_mode, &target_st->st_mode);
7761 __put_user(host_st->st_nlink, &target_st->st_nlink);
7762 __put_user(host_st->st_uid, &target_st->st_uid);
7763 __put_user(host_st->st_gid, &target_st->st_gid);
7764 __put_user(host_st->st_rdev, &target_st->st_rdev);
7765 /* XXX: better use of kernel struct */
7766 __put_user(host_st->st_size, &target_st->st_size);
7767 __put_user(host_st->st_blksize, &target_st->st_blksize);
7768 __put_user(host_st->st_blocks, &target_st->st_blocks);
7769 __put_user(host_st->st_atime, &target_st->target_st_atime);
7770 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7771 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7772 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7773 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7774 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7775 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7776 #endif
7777 unlock_user_struct(target_st, target_addr, 1);
7778 }
7779
7780 return 0;
7781 }
7782 #endif
7783
7784 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7785 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7786 abi_ulong target_addr)
7787 {
7788 struct target_statx *target_stx;
7789
7790 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) {
7791 return -TARGET_EFAULT;
7792 }
7793 memset(target_stx, 0, sizeof(*target_stx));
7794
7795 __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7796 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7797 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7798 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7799 __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7800 __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7801 __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7802 __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7803 __put_user(host_stx->stx_size, &target_stx->stx_size);
7804 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7805 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7806 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7807 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7808 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7809 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7810 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7811 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7812 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7813 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7814 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7815 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7816 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7817 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7818
7819 unlock_user_struct(target_stx, target_addr, 1);
7820
7821 return 0;
7822 }
7823 #endif
7824
7825 static int do_sys_futex(int *uaddr, int op, int val,
7826 const struct timespec *timeout, int *uaddr2,
7827 int val3)
7828 {
7829 #if HOST_LONG_BITS == 64
7830 #if defined(__NR_futex)
7831 /* always a 64-bit time_t, it doesn't define _time64 version */
7832 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7833
7834 #endif
7835 #else /* HOST_LONG_BITS == 64 */
7836 #if defined(__NR_futex_time64)
7837 if (sizeof(timeout->tv_sec) == 8) {
7838 /* _time64 function on 32bit arch */
7839 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7840 }
7841 #endif
7842 #if defined(__NR_futex)
7843 /* old function on 32bit arch */
7844 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7845 #endif
7846 #endif /* HOST_LONG_BITS == 64 */
7847 g_assert_not_reached();
7848 }
7849
7850 static int do_safe_futex(int *uaddr, int op, int val,
7851 const struct timespec *timeout, int *uaddr2,
7852 int val3)
7853 {
7854 #if HOST_LONG_BITS == 64
7855 #if defined(__NR_futex)
7856 /* always a 64-bit time_t, it doesn't define _time64 version */
7857 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7858 #endif
7859 #else /* HOST_LONG_BITS == 64 */
7860 #if defined(__NR_futex_time64)
7861 if (sizeof(timeout->tv_sec) == 8) {
7862 /* _time64 function on 32bit arch */
7863 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7864 val3));
7865 }
7866 #endif
7867 #if defined(__NR_futex)
7868 /* old function on 32bit arch */
7869 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7870 #endif
7871 #endif /* HOST_LONG_BITS == 64 */
7872 return -TARGET_ENOSYS;
7873 }
7874
7875 /* ??? Using host futex calls even when target atomic operations
7876 are not really atomic probably breaks things. However implementing
7877 futexes locally would make futexes shared between multiple processes
7878 tricky. However they're probably useless because guest atomic
7879 operations won't work either. */
7880 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7881 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7882 int op, int val, target_ulong timeout,
7883 target_ulong uaddr2, int val3)
7884 {
7885 struct timespec ts, *pts = NULL;
7886 void *haddr2 = NULL;
7887 int base_op;
7888
7889 /* We assume FUTEX_* constants are the same on both host and target. */
7890 #ifdef FUTEX_CMD_MASK
7891 base_op = op & FUTEX_CMD_MASK;
7892 #else
7893 base_op = op;
7894 #endif
7895 switch (base_op) {
7896 case FUTEX_WAIT:
7897 case FUTEX_WAIT_BITSET:
7898 val = tswap32(val);
7899 break;
7900 case FUTEX_WAIT_REQUEUE_PI:
7901 val = tswap32(val);
7902 haddr2 = g2h(cpu, uaddr2);
7903 break;
7904 case FUTEX_LOCK_PI:
7905 case FUTEX_LOCK_PI2:
7906 break;
7907 case FUTEX_WAKE:
7908 case FUTEX_WAKE_BITSET:
7909 case FUTEX_TRYLOCK_PI:
7910 case FUTEX_UNLOCK_PI:
7911 timeout = 0;
7912 break;
7913 case FUTEX_FD:
7914 val = target_to_host_signal(val);
7915 timeout = 0;
7916 break;
7917 case FUTEX_CMP_REQUEUE:
7918 case FUTEX_CMP_REQUEUE_PI:
7919 val3 = tswap32(val3);
7920 /* fall through */
7921 case FUTEX_REQUEUE:
7922 case FUTEX_WAKE_OP:
7923 /*
7924 * For these, the 4th argument is not TIMEOUT, but VAL2.
7925 * But the prototype of do_safe_futex takes a pointer, so
7926 * insert casts to satisfy the compiler. We do not need
7927 * to tswap VAL2 since it's not compared to guest memory.
7928 */
7929 pts = (struct timespec *)(uintptr_t)timeout;
7930 timeout = 0;
7931 haddr2 = g2h(cpu, uaddr2);
7932 break;
7933 default:
7934 return -TARGET_ENOSYS;
7935 }
7936 if (timeout) {
7937 pts = &ts;
7938 if (time64
7939 ? target_to_host_timespec64(pts, timeout)
7940 : target_to_host_timespec(pts, timeout)) {
7941 return -TARGET_EFAULT;
7942 }
7943 }
7944 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7945 }
7946 #endif
7947
7948 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7949 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7950 abi_long handle, abi_long mount_id,
7951 abi_long flags)
7952 {
7953 struct file_handle *target_fh;
7954 struct file_handle *fh;
7955 int mid = 0;
7956 abi_long ret;
7957 char *name;
7958 unsigned int size, total_size;
7959
7960 if (get_user_s32(size, handle)) {
7961 return -TARGET_EFAULT;
7962 }
7963
7964 name = lock_user_string(pathname);
7965 if (!name) {
7966 return -TARGET_EFAULT;
7967 }
7968
7969 total_size = sizeof(struct file_handle) + size;
7970 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7971 if (!target_fh) {
7972 unlock_user(name, pathname, 0);
7973 return -TARGET_EFAULT;
7974 }
7975
7976 fh = g_malloc0(total_size);
7977 fh->handle_bytes = size;
7978
7979 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7980 unlock_user(name, pathname, 0);
7981
7982 /* man name_to_handle_at(2):
7983 * Other than the use of the handle_bytes field, the caller should treat
7984 * the file_handle structure as an opaque data type
7985 */
7986
7987 memcpy(target_fh, fh, total_size);
7988 target_fh->handle_bytes = tswap32(fh->handle_bytes);
7989 target_fh->handle_type = tswap32(fh->handle_type);
7990 g_free(fh);
7991 unlock_user(target_fh, handle, total_size);
7992
7993 if (put_user_s32(mid, mount_id)) {
7994 return -TARGET_EFAULT;
7995 }
7996
7997 return ret;
7998
7999 }
8000 #endif
8001
8002 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8003 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
8004 abi_long flags)
8005 {
8006 struct file_handle *target_fh;
8007 struct file_handle *fh;
8008 unsigned int size, total_size;
8009 abi_long ret;
8010
8011 if (get_user_s32(size, handle)) {
8012 return -TARGET_EFAULT;
8013 }
8014
8015 total_size = sizeof(struct file_handle) + size;
8016 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
8017 if (!target_fh) {
8018 return -TARGET_EFAULT;
8019 }
8020
8021 fh = g_memdup(target_fh, total_size);
8022 fh->handle_bytes = size;
8023 fh->handle_type = tswap32(target_fh->handle_type);
8024
8025 ret = get_errno(open_by_handle_at(mount_fd, fh,
8026 target_to_host_bitmask(flags, fcntl_flags_tbl)));
8027
8028 g_free(fh);
8029
8030 unlock_user(target_fh, handle, total_size);
8031
8032 return ret;
8033 }
8034 #endif
8035
8036 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
8037
8038 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
8039 {
8040 int host_flags;
8041 target_sigset_t *target_mask;
8042 sigset_t host_mask;
8043 abi_long ret;
8044
8045 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
8046 return -TARGET_EINVAL;
8047 }
8048 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
8049 return -TARGET_EFAULT;
8050 }
8051
8052 target_to_host_sigset(&host_mask, target_mask);
8053
8054 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
8055
8056 ret = get_errno(signalfd(fd, &host_mask, host_flags));
8057 if (ret >= 0) {
8058 fd_trans_register(ret, &target_signalfd_trans);
8059 }
8060
8061 unlock_user_struct(target_mask, mask, 0);
8062
8063 return ret;
8064 }
8065 #endif
8066
8067 /* Map host to target signal numbers for the wait family of syscalls.
8068 Assume all other status bits are the same. */
8069 int host_to_target_waitstatus(int status)
8070 {
8071 if (WIFSIGNALED(status)) {
8072 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
8073 }
8074 if (WIFSTOPPED(status)) {
8075 return (host_to_target_signal(WSTOPSIG(status)) << 8)
8076 | (status & 0xff);
8077 }
8078 return status;
8079 }
8080
8081 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
8082 {
8083 CPUState *cpu = env_cpu(cpu_env);
8084 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
8085 int i;
8086
8087 for (i = 0; i < bprm->argc; i++) {
8088 size_t len = strlen(bprm->argv[i]) + 1;
8089
8090 if (write(fd, bprm->argv[i], len) != len) {
8091 return -1;
8092 }
8093 }
8094
8095 return 0;
8096 }
8097
8098 static void show_smaps(int fd, unsigned long size)
8099 {
8100 unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8101 unsigned long size_kb = size >> 10;
8102
8103 dprintf(fd, "Size: %lu kB\n"
8104 "KernelPageSize: %lu kB\n"
8105 "MMUPageSize: %lu kB\n"
8106 "Rss: 0 kB\n"
8107 "Pss: 0 kB\n"
8108 "Pss_Dirty: 0 kB\n"
8109 "Shared_Clean: 0 kB\n"
8110 "Shared_Dirty: 0 kB\n"
8111 "Private_Clean: 0 kB\n"
8112 "Private_Dirty: 0 kB\n"
8113 "Referenced: 0 kB\n"
8114 "Anonymous: 0 kB\n"
8115 "LazyFree: 0 kB\n"
8116 "AnonHugePages: 0 kB\n"
8117 "ShmemPmdMapped: 0 kB\n"
8118 "FilePmdMapped: 0 kB\n"
8119 "Shared_Hugetlb: 0 kB\n"
8120 "Private_Hugetlb: 0 kB\n"
8121 "Swap: 0 kB\n"
8122 "SwapPss: 0 kB\n"
8123 "Locked: 0 kB\n"
8124 "THPeligible: 0\n", size_kb, page_size_kb, page_size_kb);
8125 }
8126
8127 static int open_self_maps_1(CPUArchState *cpu_env, int fd, bool smaps)
8128 {
8129 CPUState *cpu = env_cpu(cpu_env);
8130 TaskState *ts = cpu->opaque;
8131 IntervalTreeRoot *map_info = read_self_maps();
8132 IntervalTreeNode *s;
8133 int count;
8134
8135 for (s = interval_tree_iter_first(map_info, 0, -1); s;
8136 s = interval_tree_iter_next(s, 0, -1)) {
8137 MapInfo *e = container_of(s, MapInfo, itree);
8138
8139 if (h2g_valid(e->itree.start)) {
8140 unsigned long min = e->itree.start;
8141 unsigned long max = e->itree.last + 1;
8142 int flags = page_get_flags(h2g(min));
8143 const char *path;
8144
8145 max = h2g_valid(max - 1) ?
8146 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1;
8147
8148 if (!page_check_range(h2g(min), max - min, flags)) {
8149 continue;
8150 }
8151
8152 #ifdef TARGET_HPPA
8153 if (h2g(max) == ts->info->stack_limit) {
8154 #else
8155 if (h2g(min) == ts->info->stack_limit) {
8156 #endif
8157 path = "[stack]";
8158 } else {
8159 path = e->path;
8160 }
8161
8162 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8163 " %c%c%c%c %08" PRIx64 " %s %"PRId64,
8164 h2g(min), h2g(max - 1) + 1,
8165 (flags & PAGE_READ) ? 'r' : '-',
8166 (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8167 (flags & PAGE_EXEC) ? 'x' : '-',
8168 e->is_priv ? 'p' : 's',
8169 (uint64_t) e->offset, e->dev, e->inode);
8170 if (path) {
8171 dprintf(fd, "%*s%s\n", 73 - count, "", path);
8172 } else {
8173 dprintf(fd, "\n");
8174 }
8175 if (smaps) {
8176 show_smaps(fd, max - min);
8177 dprintf(fd, "VmFlags:%s%s%s%s%s%s%s%s\n",
8178 (flags & PAGE_READ) ? " rd" : "",
8179 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8180 (flags & PAGE_EXEC) ? " ex" : "",
8181 e->is_priv ? "" : " sh",
8182 (flags & PAGE_READ) ? " mr" : "",
8183 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8184 (flags & PAGE_EXEC) ? " me" : "",
8185 e->is_priv ? "" : " ms");
8186 }
8187 }
8188 }
8189
8190 free_self_maps(map_info);
8191
8192 #ifdef TARGET_VSYSCALL_PAGE
8193 /*
8194 * We only support execution from the vsyscall page.
8195 * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
8196 */
8197 count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
8198 " --xp 00000000 00:00 0",
8199 TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
8200 dprintf(fd, "%*s%s\n", 73 - count, "", "[vsyscall]");
8201 if (smaps) {
8202 show_smaps(fd, TARGET_PAGE_SIZE);
8203 dprintf(fd, "VmFlags: ex\n");
8204 }
8205 #endif
8206
8207 return 0;
8208 }
8209
8210 static int open_self_maps(CPUArchState *cpu_env, int fd)
8211 {
8212 return open_self_maps_1(cpu_env, fd, false);
8213 }
8214
8215 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8216 {
8217 return open_self_maps_1(cpu_env, fd, true);
8218 }
8219
8220 static int open_self_stat(CPUArchState *cpu_env, int fd)
8221 {
8222 CPUState *cpu = env_cpu(cpu_env);
8223 TaskState *ts = cpu->opaque;
8224 g_autoptr(GString) buf = g_string_new(NULL);
8225 int i;
8226
8227 for (i = 0; i < 44; i++) {
8228 if (i == 0) {
8229 /* pid */
8230 g_string_printf(buf, FMT_pid " ", getpid());
8231 } else if (i == 1) {
8232 /* app name */
8233 gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8234 bin = bin ? bin + 1 : ts->bprm->argv[0];
8235 g_string_printf(buf, "(%.15s) ", bin);
8236 } else if (i == 2) {
8237 /* task state */
8238 g_string_assign(buf, "R "); /* we are running right now */
8239 } else if (i == 3) {
8240 /* ppid */
8241 g_string_printf(buf, FMT_pid " ", getppid());
8242 } else if (i == 21) {
8243 /* starttime */
8244 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8245 } else if (i == 27) {
8246 /* stack bottom */
8247 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8248 } else {
8249 /* for the rest, there is MasterCard */
8250 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8251 }
8252
8253 if (write(fd, buf->str, buf->len) != buf->len) {
8254 return -1;
8255 }
8256 }
8257
8258 return 0;
8259 }
8260
8261 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8262 {
8263 CPUState *cpu = env_cpu(cpu_env);
8264 TaskState *ts = cpu->opaque;
8265 abi_ulong auxv = ts->info->saved_auxv;
8266 abi_ulong len = ts->info->auxv_len;
8267 char *ptr;
8268
8269 /*
8270 * Auxiliary vector is stored in target process stack.
8271 * read in whole auxv vector and copy it to file
8272 */
8273 ptr = lock_user(VERIFY_READ, auxv, len, 0);
8274 if (ptr != NULL) {
8275 while (len > 0) {
8276 ssize_t r;
8277 r = write(fd, ptr, len);
8278 if (r <= 0) {
8279 break;
8280 }
8281 len -= r;
8282 ptr += r;
8283 }
8284 lseek(fd, 0, SEEK_SET);
8285 unlock_user(ptr, auxv, len);
8286 }
8287
8288 return 0;
8289 }
8290
8291 static int is_proc_myself(const char *filename, const char *entry)
8292 {
8293 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8294 filename += strlen("/proc/");
8295 if (!strncmp(filename, "self/", strlen("self/"))) {
8296 filename += strlen("self/");
8297 } else if (*filename >= '1' && *filename <= '9') {
8298 char myself[80];
8299 snprintf(myself, sizeof(myself), "%d/", getpid());
8300 if (!strncmp(filename, myself, strlen(myself))) {
8301 filename += strlen(myself);
8302 } else {
8303 return 0;
8304 }
8305 } else {
8306 return 0;
8307 }
8308 if (!strcmp(filename, entry)) {
8309 return 1;
8310 }
8311 }
8312 return 0;
8313 }
8314
8315 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8316 const char *fmt, int code)
8317 {
8318 if (logfile) {
8319 CPUState *cs = env_cpu(env);
8320
8321 fprintf(logfile, fmt, code);
8322 fprintf(logfile, "Failing executable: %s\n", exec_path);
8323 cpu_dump_state(cs, logfile, 0);
8324 open_self_maps(env, fileno(logfile));
8325 }
8326 }
8327
8328 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8329 {
8330 /* dump to console */
8331 excp_dump_file(stderr, env, fmt, code);
8332
8333 /* dump to log file */
8334 if (qemu_log_separate()) {
8335 FILE *logfile = qemu_log_trylock();
8336
8337 excp_dump_file(logfile, env, fmt, code);
8338 qemu_log_unlock(logfile);
8339 }
8340 }
8341
8342 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8343 defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA) || \
8344 defined(TARGET_RISCV) || defined(TARGET_S390X)
8345 static int is_proc(const char *filename, const char *entry)
8346 {
8347 return strcmp(filename, entry) == 0;
8348 }
8349 #endif
8350
8351 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8352 static int open_net_route(CPUArchState *cpu_env, int fd)
8353 {
8354 FILE *fp;
8355 char *line = NULL;
8356 size_t len = 0;
8357 ssize_t read;
8358
8359 fp = fopen("/proc/net/route", "r");
8360 if (fp == NULL) {
8361 return -1;
8362 }
8363
8364 /* read header */
8365
8366 read = getline(&line, &len, fp);
8367 dprintf(fd, "%s", line);
8368
8369 /* read routes */
8370
8371 while ((read = getline(&line, &len, fp)) != -1) {
8372 char iface[16];
8373 uint32_t dest, gw, mask;
8374 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8375 int fields;
8376
8377 fields = sscanf(line,
8378 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8379 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8380 &mask, &mtu, &window, &irtt);
8381 if (fields != 11) {
8382 continue;
8383 }
8384 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8385 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8386 metric, tswap32(mask), mtu, window, irtt);
8387 }
8388
8389 free(line);
8390 fclose(fp);
8391
8392 return 0;
8393 }
8394 #endif
8395
8396 #if defined(TARGET_SPARC)
8397 static int open_cpuinfo(CPUArchState *cpu_env, int fd)
8398 {
8399 dprintf(fd, "type\t\t: sun4u\n");
8400 return 0;
8401 }
8402 #endif
8403
8404 #if defined(TARGET_HPPA)
8405 static int open_cpuinfo(CPUArchState *cpu_env, int fd)
8406 {
8407 int i, num_cpus;
8408
8409 num_cpus = sysconf(_SC_NPROCESSORS_ONLN);
8410 for (i = 0; i < num_cpus; i++) {
8411 dprintf(fd, "processor\t: %d\n", i);
8412 dprintf(fd, "cpu family\t: PA-RISC 1.1e\n");
8413 dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n");
8414 dprintf(fd, "capabilities\t: os32\n");
8415 dprintf(fd, "model\t\t: 9000/778/B160L - "
8416 "Merlin L2 160 QEMU (9000/778/B160L)\n\n");
8417 }
8418 return 0;
8419 }
8420 #endif
8421
8422 #if defined(TARGET_RISCV)
8423 static int open_cpuinfo(CPUArchState *cpu_env, int fd)
8424 {
8425 int i;
8426 int num_cpus = sysconf(_SC_NPROCESSORS_ONLN);
8427 RISCVCPU *cpu = env_archcpu(cpu_env);
8428 const RISCVCPUConfig *cfg = riscv_cpu_cfg((CPURISCVState *) cpu_env);
8429 char *isa_string = riscv_isa_string(cpu);
8430 const char *mmu;
8431
8432 if (cfg->mmu) {
8433 mmu = (cpu_env->xl == MXL_RV32) ? "sv32" : "sv48";
8434 } else {
8435 mmu = "none";
8436 }
8437
8438 for (i = 0; i < num_cpus; i++) {
8439 dprintf(fd, "processor\t: %d\n", i);
8440 dprintf(fd, "hart\t\t: %d\n", i);
8441 dprintf(fd, "isa\t\t: %s\n", isa_string);
8442 dprintf(fd, "mmu\t\t: %s\n", mmu);
8443 dprintf(fd, "uarch\t\t: qemu\n\n");
8444 }
8445
8446 g_free(isa_string);
8447 return 0;
8448 }
8449 #endif
8450
8451 #if defined(TARGET_S390X)
8452 /*
8453 * Emulate what a Linux kernel running in qemu-system-s390x -M accel=tcg would
8454 * show in /proc/cpuinfo.
8455 *
8456 * Skip the following in order to match the missing support in op_ecag():
8457 * - show_cacheinfo().
8458 * - show_cpu_topology().
8459 * - show_cpu_mhz().
8460 *
8461 * Use fixed values for certain fields:
8462 * - bogomips per cpu - from a qemu-system-s390x run.
8463 * - max thread id = 0, since SMT / SIGP_SET_MULTI_THREADING is not supported.
8464 *
8465 * Keep the code structure close to arch/s390/kernel/processor.c.
8466 */
8467
8468 static void show_facilities(int fd)
8469 {
8470 size_t sizeof_stfl_bytes = 2048;
8471 g_autofree uint8_t *stfl_bytes = g_new0(uint8_t, sizeof_stfl_bytes);
8472 unsigned int bit;
8473
8474 dprintf(fd, "facilities :");
8475 s390_get_feat_block(S390_FEAT_TYPE_STFL, stfl_bytes);
8476 for (bit = 0; bit < sizeof_stfl_bytes * 8; bit++) {
8477 if (test_be_bit(bit, stfl_bytes)) {
8478 dprintf(fd, " %d", bit);
8479 }
8480 }
8481 dprintf(fd, "\n");
8482 }
8483
8484 static int cpu_ident(unsigned long n)
8485 {
8486 return deposit32(0, CPU_ID_BITS - CPU_PHYS_ADDR_BITS, CPU_PHYS_ADDR_BITS,
8487 n);
8488 }
8489
8490 static void show_cpu_summary(CPUArchState *cpu_env, int fd)
8491 {
8492 S390CPUModel *model = env_archcpu(cpu_env)->model;
8493 int num_cpus = sysconf(_SC_NPROCESSORS_ONLN);
8494 uint32_t elf_hwcap = get_elf_hwcap();
8495 const char *hwcap_str;
8496 int i;
8497
8498 dprintf(fd, "vendor_id : IBM/S390\n"
8499 "# processors : %i\n"
8500 "bogomips per cpu: 13370.00\n",
8501 num_cpus);
8502 dprintf(fd, "max thread id : 0\n");
8503 dprintf(fd, "features\t: ");
8504 for (i = 0; i < sizeof(elf_hwcap) * 8; i++) {
8505 if (!(elf_hwcap & (1 << i))) {
8506 continue;
8507 }
8508 hwcap_str = elf_hwcap_str(i);
8509 if (hwcap_str) {
8510 dprintf(fd, "%s ", hwcap_str);
8511 }
8512 }
8513 dprintf(fd, "\n");
8514 show_facilities(fd);
8515 for (i = 0; i < num_cpus; i++) {
8516 dprintf(fd, "processor %d: "
8517 "version = %02X, "
8518 "identification = %06X, "
8519 "machine = %04X\n",
8520 i, model->cpu_ver, cpu_ident(i), model->def->type);
8521 }
8522 }
8523
8524 static void show_cpu_ids(CPUArchState *cpu_env, int fd, unsigned long n)
8525 {
8526 S390CPUModel *model = env_archcpu(cpu_env)->model;
8527
8528 dprintf(fd, "version : %02X\n", model->cpu_ver);
8529 dprintf(fd, "identification : %06X\n", cpu_ident(n));
8530 dprintf(fd, "machine : %04X\n", model->def->type);
8531 }
8532
8533 static void show_cpuinfo(CPUArchState *cpu_env, int fd, unsigned long n)
8534 {
8535 dprintf(fd, "\ncpu number : %ld\n", n);
8536 show_cpu_ids(cpu_env, fd, n);
8537 }
8538
8539 static int open_cpuinfo(CPUArchState *cpu_env, int fd)
8540 {
8541 int num_cpus = sysconf(_SC_NPROCESSORS_ONLN);
8542 int i;
8543
8544 show_cpu_summary(cpu_env, fd);
8545 for (i = 0; i < num_cpus; i++) {
8546 show_cpuinfo(cpu_env, fd, i);
8547 }
8548 return 0;
8549 }
8550 #endif
8551
8552 #if defined(TARGET_M68K)
8553 static int open_hardware(CPUArchState *cpu_env, int fd)
8554 {
8555 dprintf(fd, "Model:\t\tqemu-m68k\n");
8556 return 0;
8557 }
8558 #endif
8559
8560
8561 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8562 int flags, mode_t mode, bool safe)
8563 {
8564 g_autofree char *proc_name = NULL;
8565 const char *pathname;
8566 struct fake_open {
8567 const char *filename;
8568 int (*fill)(CPUArchState *cpu_env, int fd);
8569 int (*cmp)(const char *s1, const char *s2);
8570 };
8571 const struct fake_open *fake_open;
8572 static const struct fake_open fakes[] = {
8573 { "maps", open_self_maps, is_proc_myself },
8574 { "smaps", open_self_smaps, is_proc_myself },
8575 { "stat", open_self_stat, is_proc_myself },
8576 { "auxv", open_self_auxv, is_proc_myself },
8577 { "cmdline", open_self_cmdline, is_proc_myself },
8578 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8579 { "/proc/net/route", open_net_route, is_proc },
8580 #endif
8581 #if defined(TARGET_SPARC) || defined(TARGET_HPPA) || \
8582 defined(TARGET_RISCV) || defined(TARGET_S390X)
8583 { "/proc/cpuinfo", open_cpuinfo, is_proc },
8584 #endif
8585 #if defined(TARGET_M68K)
8586 { "/proc/hardware", open_hardware, is_proc },
8587 #endif
8588 { NULL, NULL, NULL }
8589 };
8590
8591 /* if this is a file from /proc/ filesystem, expand full name */
8592 proc_name = realpath(fname, NULL);
8593 if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8594 pathname = proc_name;
8595 } else {
8596 pathname = fname;
8597 }
8598
8599 if (is_proc_myself(pathname, "exe")) {
8600 if (safe) {
8601 return safe_openat(dirfd, exec_path, flags, mode);
8602 } else {
8603 return openat(dirfd, exec_path, flags, mode);
8604 }
8605 }
8606
8607 for (fake_open = fakes; fake_open->filename; fake_open++) {
8608 if (fake_open->cmp(pathname, fake_open->filename)) {
8609 break;
8610 }
8611 }
8612
8613 if (fake_open->filename) {
8614 const char *tmpdir;
8615 char filename[PATH_MAX];
8616 int fd, r;
8617
8618 fd = memfd_create("qemu-open", 0);
8619 if (fd < 0) {
8620 if (errno != ENOSYS) {
8621 return fd;
8622 }
8623 /* create temporary file to map stat to */
8624 tmpdir = getenv("TMPDIR");
8625 if (!tmpdir)
8626 tmpdir = "/tmp";
8627 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8628 fd = mkstemp(filename);
8629 if (fd < 0) {
8630 return fd;
8631 }
8632 unlink(filename);
8633 }
8634
8635 if ((r = fake_open->fill(cpu_env, fd))) {
8636 int e = errno;
8637 close(fd);
8638 errno = e;
8639 return r;
8640 }
8641 lseek(fd, 0, SEEK_SET);
8642
8643 return fd;
8644 }
8645
8646 if (safe) {
8647 return safe_openat(dirfd, path(pathname), flags, mode);
8648 } else {
8649 return openat(dirfd, path(pathname), flags, mode);
8650 }
8651 }
8652
8653 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8654 {
8655 ssize_t ret;
8656
8657 if (!pathname || !buf) {
8658 errno = EFAULT;
8659 return -1;
8660 }
8661
8662 if (!bufsiz) {
8663 /* Short circuit this for the magic exe check. */
8664 errno = EINVAL;
8665 return -1;
8666 }
8667
8668 if (is_proc_myself((const char *)pathname, "exe")) {
8669 /*
8670 * Don't worry about sign mismatch as earlier mapping
8671 * logic would have thrown a bad address error.
8672 */
8673 ret = MIN(strlen(exec_path), bufsiz);
8674 /* We cannot NUL terminate the string. */
8675 memcpy(buf, exec_path, ret);
8676 } else {
8677 ret = readlink(path(pathname), buf, bufsiz);
8678 }
8679
8680 return ret;
8681 }
8682
8683 static int do_execv(CPUArchState *cpu_env, int dirfd,
8684 abi_long pathname, abi_long guest_argp,
8685 abi_long guest_envp, int flags, bool is_execveat)
8686 {
8687 int ret;
8688 char **argp, **envp;
8689 int argc, envc;
8690 abi_ulong gp;
8691 abi_ulong addr;
8692 char **q;
8693 void *p;
8694
8695 argc = 0;
8696
8697 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8698 if (get_user_ual(addr, gp)) {
8699 return -TARGET_EFAULT;
8700 }
8701 if (!addr) {
8702 break;
8703 }
8704 argc++;
8705 }
8706 envc = 0;
8707 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8708 if (get_user_ual(addr, gp)) {
8709 return -TARGET_EFAULT;
8710 }
8711 if (!addr) {
8712 break;
8713 }
8714 envc++;
8715 }
8716
8717 argp = g_new0(char *, argc + 1);
8718 envp = g_new0(char *, envc + 1);
8719
8720 for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8721 if (get_user_ual(addr, gp)) {
8722 goto execve_efault;
8723 }
8724 if (!addr) {
8725 break;
8726 }
8727 *q = lock_user_string(addr);
8728 if (!*q) {
8729 goto execve_efault;
8730 }
8731 }
8732 *q = NULL;
8733
8734 for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8735 if (get_user_ual(addr, gp)) {
8736 goto execve_efault;
8737 }
8738 if (!addr) {
8739 break;
8740 }
8741 *q = lock_user_string(addr);
8742 if (!*q) {
8743 goto execve_efault;
8744 }
8745 }
8746 *q = NULL;
8747
8748 /*
8749 * Although execve() is not an interruptible syscall it is
8750 * a special case where we must use the safe_syscall wrapper:
8751 * if we allow a signal to happen before we make the host
8752 * syscall then we will 'lose' it, because at the point of
8753 * execve the process leaves QEMU's control. So we use the
8754 * safe syscall wrapper to ensure that we either take the
8755 * signal as a guest signal, or else it does not happen
8756 * before the execve completes and makes it the other
8757 * program's problem.
8758 */
8759 p = lock_user_string(pathname);
8760 if (!p) {
8761 goto execve_efault;
8762 }
8763
8764 const char *exe = p;
8765 if (is_proc_myself(p, "exe")) {
8766 exe = exec_path;
8767 }
8768 ret = is_execveat
8769 ? safe_execveat(dirfd, exe, argp, envp, flags)
8770 : safe_execve(exe, argp, envp);
8771 ret = get_errno(ret);
8772
8773 unlock_user(p, pathname, 0);
8774
8775 goto execve_end;
8776
8777 execve_efault:
8778 ret = -TARGET_EFAULT;
8779
8780 execve_end:
8781 for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8782 if (get_user_ual(addr, gp) || !addr) {
8783 break;
8784 }
8785 unlock_user(*q, addr, 0);
8786 }
8787 for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8788 if (get_user_ual(addr, gp) || !addr) {
8789 break;
8790 }
8791 unlock_user(*q, addr, 0);
8792 }
8793
8794 g_free(argp);
8795 g_free(envp);
8796 return ret;
8797 }
8798
8799 #define TIMER_MAGIC 0x0caf0000
8800 #define TIMER_MAGIC_MASK 0xffff0000
8801
8802 /* Convert QEMU provided timer ID back to internal 16bit index format */
8803 static target_timer_t get_timer_id(abi_long arg)
8804 {
8805 target_timer_t timerid = arg;
8806
8807 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8808 return -TARGET_EINVAL;
8809 }
8810
8811 timerid &= 0xffff;
8812
8813 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8814 return -TARGET_EINVAL;
8815 }
8816
8817 return timerid;
8818 }
8819
8820 static int target_to_host_cpu_mask(unsigned long *host_mask,
8821 size_t host_size,
8822 abi_ulong target_addr,
8823 size_t target_size)
8824 {
8825 unsigned target_bits = sizeof(abi_ulong) * 8;
8826 unsigned host_bits = sizeof(*host_mask) * 8;
8827 abi_ulong *target_mask;
8828 unsigned i, j;
8829
8830 assert(host_size >= target_size);
8831
8832 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8833 if (!target_mask) {
8834 return -TARGET_EFAULT;
8835 }
8836 memset(host_mask, 0, host_size);
8837
8838 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8839 unsigned bit = i * target_bits;
8840 abi_ulong val;
8841
8842 __get_user(val, &target_mask[i]);
8843 for (j = 0; j < target_bits; j++, bit++) {
8844 if (val & (1UL << j)) {
8845 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8846 }
8847 }
8848 }
8849
8850 unlock_user(target_mask, target_addr, 0);
8851 return 0;
8852 }
8853
8854 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8855 size_t host_size,
8856 abi_ulong target_addr,
8857 size_t target_size)
8858 {
8859 unsigned target_bits = sizeof(abi_ulong) * 8;
8860 unsigned host_bits = sizeof(*host_mask) * 8;
8861 abi_ulong *target_mask;
8862 unsigned i, j;
8863
8864 assert(host_size >= target_size);
8865
8866 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8867 if (!target_mask) {
8868 return -TARGET_EFAULT;
8869 }
8870
8871 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8872 unsigned bit = i * target_bits;
8873 abi_ulong val = 0;
8874
8875 for (j = 0; j < target_bits; j++, bit++) {
8876 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8877 val |= 1UL << j;
8878 }
8879 }
8880 __put_user(val, &target_mask[i]);
8881 }
8882
8883 unlock_user(target_mask, target_addr, target_size);
8884 return 0;
8885 }
8886
8887 #ifdef TARGET_NR_getdents
8888 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8889 {
8890 g_autofree void *hdirp = NULL;
8891 void *tdirp;
8892 int hlen, hoff, toff;
8893 int hreclen, treclen;
8894 off64_t prev_diroff = 0;
8895
8896 hdirp = g_try_malloc(count);
8897 if (!hdirp) {
8898 return -TARGET_ENOMEM;
8899 }
8900
8901 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8902 hlen = sys_getdents(dirfd, hdirp, count);
8903 #else
8904 hlen = sys_getdents64(dirfd, hdirp, count);
8905 #endif
8906
8907 hlen = get_errno(hlen);
8908 if (is_error(hlen)) {
8909 return hlen;
8910 }
8911
8912 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8913 if (!tdirp) {
8914 return -TARGET_EFAULT;
8915 }
8916
8917 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8918 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8919 struct linux_dirent *hde = hdirp + hoff;
8920 #else
8921 struct linux_dirent64 *hde = hdirp + hoff;
8922 #endif
8923 struct target_dirent *tde = tdirp + toff;
8924 int namelen;
8925 uint8_t type;
8926
8927 namelen = strlen(hde->d_name);
8928 hreclen = hde->d_reclen;
8929 treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8930 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8931
8932 if (toff + treclen > count) {
8933 /*
8934 * If the host struct is smaller than the target struct, or
8935 * requires less alignment and thus packs into less space,
8936 * then the host can return more entries than we can pass
8937 * on to the guest.
8938 */
8939 if (toff == 0) {
8940 toff = -TARGET_EINVAL; /* result buffer is too small */
8941 break;
8942 }
8943 /*
8944 * Return what we have, resetting the file pointer to the
8945 * location of the first record not returned.
8946 */
8947 lseek64(dirfd, prev_diroff, SEEK_SET);
8948 break;
8949 }
8950
8951 prev_diroff = hde->d_off;
8952 tde->d_ino = tswapal(hde->d_ino);
8953 tde->d_off = tswapal(hde->d_off);
8954 tde->d_reclen = tswap16(treclen);
8955 memcpy(tde->d_name, hde->d_name, namelen + 1);
8956
8957 /*
8958 * The getdents type is in what was formerly a padding byte at the
8959 * end of the structure.
8960 */
8961 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8962 type = *((uint8_t *)hde + hreclen - 1);
8963 #else
8964 type = hde->d_type;
8965 #endif
8966 *((uint8_t *)tde + treclen - 1) = type;
8967 }
8968
8969 unlock_user(tdirp, arg2, toff);
8970 return toff;
8971 }
8972 #endif /* TARGET_NR_getdents */
8973
8974 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8975 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8976 {
8977 g_autofree void *hdirp = NULL;
8978 void *tdirp;
8979 int hlen, hoff, toff;
8980 int hreclen, treclen;
8981 off64_t prev_diroff = 0;
8982
8983 hdirp = g_try_malloc(count);
8984 if (!hdirp) {
8985 return -TARGET_ENOMEM;
8986 }
8987
8988 hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8989 if (is_error(hlen)) {
8990 return hlen;
8991 }
8992
8993 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8994 if (!tdirp) {
8995 return -TARGET_EFAULT;
8996 }
8997
8998 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8999 struct linux_dirent64 *hde = hdirp + hoff;
9000 struct target_dirent64 *tde = tdirp + toff;
9001 int namelen;
9002
9003 namelen = strlen(hde->d_name) + 1;
9004 hreclen = hde->d_reclen;
9005 treclen = offsetof(struct target_dirent64, d_name) + namelen;
9006 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
9007
9008 if (toff + treclen > count) {
9009 /*
9010 * If the host struct is smaller than the target struct, or
9011 * requires less alignment and thus packs into less space,
9012 * then the host can return more entries than we can pass
9013 * on to the guest.
9014 */
9015 if (toff == 0) {
9016 toff = -TARGET_EINVAL; /* result buffer is too small */
9017 break;
9018 }
9019 /*
9020 * Return what we have, resetting the file pointer to the
9021 * location of the first record not returned.
9022 */
9023 lseek64(dirfd, prev_diroff, SEEK_SET);
9024 break;
9025 }
9026
9027 prev_diroff = hde->d_off;
9028 tde->d_ino = tswap64(hde->d_ino);
9029 tde->d_off = tswap64(hde->d_off);
9030 tde->d_reclen = tswap16(treclen);
9031 tde->d_type = hde->d_type;
9032 memcpy(tde->d_name, hde->d_name, namelen);
9033 }
9034
9035 unlock_user(tdirp, arg2, toff);
9036 return toff;
9037 }
9038 #endif /* TARGET_NR_getdents64 */
9039
9040 #if defined(TARGET_NR_riscv_hwprobe)
9041
9042 #define RISCV_HWPROBE_KEY_MVENDORID 0
9043 #define RISCV_HWPROBE_KEY_MARCHID 1
9044 #define RISCV_HWPROBE_KEY_MIMPID 2
9045
9046 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
9047 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
9048
9049 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4
9050 #define RISCV_HWPROBE_IMA_FD (1 << 0)
9051 #define RISCV_HWPROBE_IMA_C (1 << 1)
9052
9053 #define RISCV_HWPROBE_KEY_CPUPERF_0 5
9054 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0)
9055 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0)
9056 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0)
9057 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0)
9058 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
9059 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0)
9060
9061 struct riscv_hwprobe {
9062 abi_llong key;
9063 abi_ullong value;
9064 };
9065
9066 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
9067 struct riscv_hwprobe *pair,
9068 size_t pair_count)
9069 {
9070 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
9071
9072 for (; pair_count > 0; pair_count--, pair++) {
9073 abi_llong key;
9074 abi_ullong value;
9075 __put_user(0, &pair->value);
9076 __get_user(key, &pair->key);
9077 switch (key) {
9078 case RISCV_HWPROBE_KEY_MVENDORID:
9079 __put_user(cfg->mvendorid, &pair->value);
9080 break;
9081 case RISCV_HWPROBE_KEY_MARCHID:
9082 __put_user(cfg->marchid, &pair->value);
9083 break;
9084 case RISCV_HWPROBE_KEY_MIMPID:
9085 __put_user(cfg->mimpid, &pair->value);
9086 break;
9087 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
9088 value = riscv_has_ext(env, RVI) &&
9089 riscv_has_ext(env, RVM) &&
9090 riscv_has_ext(env, RVA) ?
9091 RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
9092 __put_user(value, &pair->value);
9093 break;
9094 case RISCV_HWPROBE_KEY_IMA_EXT_0:
9095 value = riscv_has_ext(env, RVF) &&
9096 riscv_has_ext(env, RVD) ?
9097 RISCV_HWPROBE_IMA_FD : 0;
9098 value |= riscv_has_ext(env, RVC) ?
9099 RISCV_HWPROBE_IMA_C : pair->value;
9100 __put_user(value, &pair->value);
9101 break;
9102 case RISCV_HWPROBE_KEY_CPUPERF_0:
9103 __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
9104 break;
9105 default:
9106 __put_user(-1, &pair->key);
9107 break;
9108 }
9109 }
9110 }
9111
9112 static int cpu_set_valid(abi_long arg3, abi_long arg4)
9113 {
9114 int ret, i, tmp;
9115 size_t host_mask_size, target_mask_size;
9116 unsigned long *host_mask;
9117
9118 /*
9119 * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
9120 * arg3 contains the cpu count.
9121 */
9122 tmp = (8 * sizeof(abi_ulong));
9123 target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
9124 host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
9125 ~(sizeof(*host_mask) - 1);
9126
9127 host_mask = alloca(host_mask_size);
9128
9129 ret = target_to_host_cpu_mask(host_mask, host_mask_size,
9130 arg4, target_mask_size);
9131 if (ret != 0) {
9132 return ret;
9133 }
9134
9135 for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
9136 if (host_mask[i] != 0) {
9137 return 0;
9138 }
9139 }
9140 return -TARGET_EINVAL;
9141 }
9142
9143 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
9144 abi_long arg2, abi_long arg3,
9145 abi_long arg4, abi_long arg5)
9146 {
9147 int ret;
9148 struct riscv_hwprobe *host_pairs;
9149
9150 /* flags must be 0 */
9151 if (arg5 != 0) {
9152 return -TARGET_EINVAL;
9153 }
9154
9155 /* check cpu_set */
9156 if (arg3 != 0) {
9157 ret = cpu_set_valid(arg3, arg4);
9158 if (ret != 0) {
9159 return ret;
9160 }
9161 } else if (arg4 != 0) {
9162 return -TARGET_EINVAL;
9163 }
9164
9165 /* no pairs */
9166 if (arg2 == 0) {
9167 return 0;
9168 }
9169
9170 host_pairs = lock_user(VERIFY_WRITE, arg1,
9171 sizeof(*host_pairs) * (size_t)arg2, 0);
9172 if (host_pairs == NULL) {
9173 return -TARGET_EFAULT;
9174 }
9175 risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
9176 unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
9177 return 0;
9178 }
9179 #endif /* TARGET_NR_riscv_hwprobe */
9180
9181 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
9182 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
9183 #endif
9184
9185 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9186 #define __NR_sys_open_tree __NR_open_tree
9187 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
9188 unsigned int, __flags)
9189 #endif
9190
9191 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9192 #define __NR_sys_move_mount __NR_move_mount
9193 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
9194 int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
9195 #endif
9196
9197 /* This is an internal helper for do_syscall so that it is easier
9198 * to have a single return point, so that actions, such as logging
9199 * of syscall results, can be performed.
9200 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
9201 */
9202 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
9203 abi_long arg2, abi_long arg3, abi_long arg4,
9204 abi_long arg5, abi_long arg6, abi_long arg7,
9205 abi_long arg8)
9206 {
9207 CPUState *cpu = env_cpu(cpu_env);
9208 abi_long ret;
9209 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
9210 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
9211 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
9212 || defined(TARGET_NR_statx)
9213 struct stat st;
9214 #endif
9215 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
9216 || defined(TARGET_NR_fstatfs)
9217 struct statfs stfs;
9218 #endif
9219 void *p;
9220
9221 switch(num) {
9222 case TARGET_NR_exit:
9223 /* In old applications this may be used to implement _exit(2).
9224 However in threaded applications it is used for thread termination,
9225 and _exit_group is used for application termination.
9226 Do thread termination if we have more then one thread. */
9227
9228 if (block_signals()) {
9229 return -QEMU_ERESTARTSYS;
9230 }
9231
9232 pthread_mutex_lock(&clone_lock);
9233
9234 if (CPU_NEXT(first_cpu)) {
9235 TaskState *ts = cpu->opaque;
9236
9237 if (ts->child_tidptr) {
9238 put_user_u32(0, ts->child_tidptr);
9239 do_sys_futex(g2h(cpu, ts->child_tidptr),
9240 FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9241 }
9242
9243 object_unparent(OBJECT(cpu));
9244 object_unref(OBJECT(cpu));
9245 /*
9246 * At this point the CPU should be unrealized and removed
9247 * from cpu lists. We can clean-up the rest of the thread
9248 * data without the lock held.
9249 */
9250
9251 pthread_mutex_unlock(&clone_lock);
9252
9253 thread_cpu = NULL;
9254 g_free(ts);
9255 rcu_unregister_thread();
9256 pthread_exit(NULL);
9257 }
9258
9259 pthread_mutex_unlock(&clone_lock);
9260 preexit_cleanup(cpu_env, arg1);
9261 _exit(arg1);
9262 return 0; /* avoid warning */
9263 case TARGET_NR_read:
9264 if (arg2 == 0 && arg3 == 0) {
9265 return get_errno(safe_read(arg1, 0, 0));
9266 } else {
9267 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9268 return -TARGET_EFAULT;
9269 ret = get_errno(safe_read(arg1, p, arg3));
9270 if (ret >= 0 &&
9271 fd_trans_host_to_target_data(arg1)) {
9272 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9273 }
9274 unlock_user(p, arg2, ret);
9275 }
9276 return ret;
9277 case TARGET_NR_write:
9278 if (arg2 == 0 && arg3 == 0) {
9279 return get_errno(safe_write(arg1, 0, 0));
9280 }
9281 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9282 return -TARGET_EFAULT;
9283 if (fd_trans_target_to_host_data(arg1)) {
9284 void *copy = g_malloc(arg3);
9285 memcpy(copy, p, arg3);
9286 ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9287 if (ret >= 0) {
9288 ret = get_errno(safe_write(arg1, copy, ret));
9289 }
9290 g_free(copy);
9291 } else {
9292 ret = get_errno(safe_write(arg1, p, arg3));
9293 }
9294 unlock_user(p, arg2, 0);
9295 return ret;
9296
9297 #ifdef TARGET_NR_open
9298 case TARGET_NR_open:
9299 if (!(p = lock_user_string(arg1)))
9300 return -TARGET_EFAULT;
9301 ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9302 target_to_host_bitmask(arg2, fcntl_flags_tbl),
9303 arg3, true));
9304 fd_trans_unregister(ret);
9305 unlock_user(p, arg1, 0);
9306 return ret;
9307 #endif
9308 case TARGET_NR_openat:
9309 if (!(p = lock_user_string(arg2)))
9310 return -TARGET_EFAULT;
9311 ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9312 target_to_host_bitmask(arg3, fcntl_flags_tbl),
9313 arg4, true));
9314 fd_trans_unregister(ret);
9315 unlock_user(p, arg2, 0);
9316 return ret;
9317 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9318 case TARGET_NR_name_to_handle_at:
9319 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9320 return ret;
9321 #endif
9322 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9323 case TARGET_NR_open_by_handle_at:
9324 ret = do_open_by_handle_at(arg1, arg2, arg3);
9325 fd_trans_unregister(ret);
9326 return ret;
9327 #endif
9328 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9329 case TARGET_NR_pidfd_open:
9330 return get_errno(pidfd_open(arg1, arg2));
9331 #endif
9332 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9333 case TARGET_NR_pidfd_send_signal:
9334 {
9335 siginfo_t uinfo, *puinfo;
9336
9337 if (arg3) {
9338 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9339 if (!p) {
9340 return -TARGET_EFAULT;
9341 }
9342 target_to_host_siginfo(&uinfo, p);
9343 unlock_user(p, arg3, 0);
9344 puinfo = &uinfo;
9345 } else {
9346 puinfo = NULL;
9347 }
9348 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9349 puinfo, arg4));
9350 }
9351 return ret;
9352 #endif
9353 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9354 case TARGET_NR_pidfd_getfd:
9355 return get_errno(pidfd_getfd(arg1, arg2, arg3));
9356 #endif
9357 case TARGET_NR_close:
9358 fd_trans_unregister(arg1);
9359 return get_errno(close(arg1));
9360 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9361 case TARGET_NR_close_range:
9362 ret = get_errno(sys_close_range(arg1, arg2, arg3));
9363 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9364 abi_long fd, maxfd;
9365 maxfd = MIN(arg2, target_fd_max);
9366 for (fd = arg1; fd < maxfd; fd++) {
9367 fd_trans_unregister(fd);
9368 }
9369 }
9370 return ret;
9371 #endif
9372
9373 case TARGET_NR_brk:
9374 return do_brk(arg1);
9375 #ifdef TARGET_NR_fork
9376 case TARGET_NR_fork:
9377 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9378 #endif
9379 #ifdef TARGET_NR_waitpid
9380 case TARGET_NR_waitpid:
9381 {
9382 int status;
9383 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9384 if (!is_error(ret) && arg2 && ret
9385 && put_user_s32(host_to_target_waitstatus(status), arg2))
9386 return -TARGET_EFAULT;
9387 }
9388 return ret;
9389 #endif
9390 #ifdef TARGET_NR_waitid
9391 case TARGET_NR_waitid:
9392 {
9393 siginfo_t info;
9394 info.si_pid = 0;
9395 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
9396 if (!is_error(ret) && arg3 && info.si_pid != 0) {
9397 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
9398 return -TARGET_EFAULT;
9399 host_to_target_siginfo(p, &info);
9400 unlock_user(p, arg3, sizeof(target_siginfo_t));
9401 }
9402 }
9403 return ret;
9404 #endif
9405 #ifdef TARGET_NR_creat /* not on alpha */
9406 case TARGET_NR_creat:
9407 if (!(p = lock_user_string(arg1)))
9408 return -TARGET_EFAULT;
9409 ret = get_errno(creat(p, arg2));
9410 fd_trans_unregister(ret);
9411 unlock_user(p, arg1, 0);
9412 return ret;
9413 #endif
9414 #ifdef TARGET_NR_link
9415 case TARGET_NR_link:
9416 {
9417 void * p2;
9418 p = lock_user_string(arg1);
9419 p2 = lock_user_string(arg2);
9420 if (!p || !p2)
9421 ret = -TARGET_EFAULT;
9422 else
9423 ret = get_errno(link(p, p2));
9424 unlock_user(p2, arg2, 0);
9425 unlock_user(p, arg1, 0);
9426 }
9427 return ret;
9428 #endif
9429 #if defined(TARGET_NR_linkat)
9430 case TARGET_NR_linkat:
9431 {
9432 void * p2 = NULL;
9433 if (!arg2 || !arg4)
9434 return -TARGET_EFAULT;
9435 p = lock_user_string(arg2);
9436 p2 = lock_user_string(arg4);
9437 if (!p || !p2)
9438 ret = -TARGET_EFAULT;
9439 else
9440 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9441 unlock_user(p, arg2, 0);
9442 unlock_user(p2, arg4, 0);
9443 }
9444 return ret;
9445 #endif
9446 #ifdef TARGET_NR_unlink
9447 case TARGET_NR_unlink:
9448 if (!(p = lock_user_string(arg1)))
9449 return -TARGET_EFAULT;
9450 ret = get_errno(unlink(p));
9451 unlock_user(p, arg1, 0);
9452 return ret;
9453 #endif
9454 #if defined(TARGET_NR_unlinkat)
9455 case TARGET_NR_unlinkat:
9456 if (!(p = lock_user_string(arg2)))
9457 return -TARGET_EFAULT;
9458 ret = get_errno(unlinkat(arg1, p, arg3));
9459 unlock_user(p, arg2, 0);
9460 return ret;
9461 #endif
9462 case TARGET_NR_execveat:
9463 return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9464 case TARGET_NR_execve:
9465 return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9466 case TARGET_NR_chdir:
9467 if (!(p = lock_user_string(arg1)))
9468 return -TARGET_EFAULT;
9469 ret = get_errno(chdir(p));
9470 unlock_user(p, arg1, 0);
9471 return ret;
9472 #ifdef TARGET_NR_time
9473 case TARGET_NR_time:
9474 {
9475 time_t host_time;
9476 ret = get_errno(time(&host_time));
9477 if (!is_error(ret)
9478 && arg1
9479 && put_user_sal(host_time, arg1))
9480 return -TARGET_EFAULT;
9481 }
9482 return ret;
9483 #endif
9484 #ifdef TARGET_NR_mknod
9485 case TARGET_NR_mknod:
9486 if (!(p = lock_user_string(arg1)))
9487 return -TARGET_EFAULT;
9488 ret = get_errno(mknod(p, arg2, arg3));
9489 unlock_user(p, arg1, 0);
9490 return ret;
9491 #endif
9492 #if defined(TARGET_NR_mknodat)
9493 case TARGET_NR_mknodat:
9494 if (!(p = lock_user_string(arg2)))
9495 return -TARGET_EFAULT;
9496 ret = get_errno(mknodat(arg1, p, arg3, arg4));
9497 unlock_user(p, arg2, 0);
9498 return ret;
9499 #endif
9500 #ifdef TARGET_NR_chmod
9501 case TARGET_NR_chmod:
9502 if (!(p = lock_user_string(arg1)))
9503 return -TARGET_EFAULT;
9504 ret = get_errno(chmod(p, arg2));
9505 unlock_user(p, arg1, 0);
9506 return ret;
9507 #endif
9508 #ifdef TARGET_NR_lseek
9509 case TARGET_NR_lseek:
9510 return get_errno(lseek(arg1, arg2, arg3));
9511 #endif
9512 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9513 /* Alpha specific */
9514 case TARGET_NR_getxpid:
9515 cpu_env->ir[IR_A4] = getppid();
9516 return get_errno(getpid());
9517 #endif
9518 #ifdef TARGET_NR_getpid
9519 case TARGET_NR_getpid:
9520 return get_errno(getpid());
9521 #endif
9522 case TARGET_NR_mount:
9523 {
9524 /* need to look at the data field */
9525 void *p2, *p3;
9526
9527 if (arg1) {
9528 p = lock_user_string(arg1);
9529 if (!p) {
9530 return -TARGET_EFAULT;
9531 }
9532 } else {
9533 p = NULL;
9534 }
9535
9536 p2 = lock_user_string(arg2);
9537 if (!p2) {
9538 if (arg1) {
9539 unlock_user(p, arg1, 0);
9540 }
9541 return -TARGET_EFAULT;
9542 }
9543
9544 if (arg3) {
9545 p3 = lock_user_string(arg3);
9546 if (!p3) {
9547 if (arg1) {
9548 unlock_user(p, arg1, 0);
9549 }
9550 unlock_user(p2, arg2, 0);
9551 return -TARGET_EFAULT;
9552 }
9553 } else {
9554 p3 = NULL;
9555 }
9556
9557 /* FIXME - arg5 should be locked, but it isn't clear how to
9558 * do that since it's not guaranteed to be a NULL-terminated
9559 * string.
9560 */
9561 if (!arg5) {
9562 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9563 } else {
9564 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9565 }
9566 ret = get_errno(ret);
9567
9568 if (arg1) {
9569 unlock_user(p, arg1, 0);
9570 }
9571 unlock_user(p2, arg2, 0);
9572 if (arg3) {
9573 unlock_user(p3, arg3, 0);
9574 }
9575 }
9576 return ret;
9577 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9578 #if defined(TARGET_NR_umount)
9579 case TARGET_NR_umount:
9580 #endif
9581 #if defined(TARGET_NR_oldumount)
9582 case TARGET_NR_oldumount:
9583 #endif
9584 if (!(p = lock_user_string(arg1)))
9585 return -TARGET_EFAULT;
9586 ret = get_errno(umount(p));
9587 unlock_user(p, arg1, 0);
9588 return ret;
9589 #endif
9590 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9591 case TARGET_NR_move_mount:
9592 {
9593 void *p2, *p4;
9594
9595 if (!arg2 || !arg4) {
9596 return -TARGET_EFAULT;
9597 }
9598
9599 p2 = lock_user_string(arg2);
9600 if (!p2) {
9601 return -TARGET_EFAULT;
9602 }
9603
9604 p4 = lock_user_string(arg4);
9605 if (!p4) {
9606 unlock_user(p2, arg2, 0);
9607 return -TARGET_EFAULT;
9608 }
9609 ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9610
9611 unlock_user(p2, arg2, 0);
9612 unlock_user(p4, arg4, 0);
9613
9614 return ret;
9615 }
9616 #endif
9617 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9618 case TARGET_NR_open_tree:
9619 {
9620 void *p2;
9621 int host_flags;
9622
9623 if (!arg2) {
9624 return -TARGET_EFAULT;
9625 }
9626
9627 p2 = lock_user_string(arg2);
9628 if (!p2) {
9629 return -TARGET_EFAULT;
9630 }
9631
9632 host_flags = arg3 & ~TARGET_O_CLOEXEC;
9633 if (arg3 & TARGET_O_CLOEXEC) {
9634 host_flags |= O_CLOEXEC;
9635 }
9636
9637 ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9638
9639 unlock_user(p2, arg2, 0);
9640
9641 return ret;
9642 }
9643 #endif
9644 #ifdef TARGET_NR_stime /* not on alpha */
9645 case TARGET_NR_stime:
9646 {
9647 struct timespec ts;
9648 ts.tv_nsec = 0;
9649 if (get_user_sal(ts.tv_sec, arg1)) {
9650 return -TARGET_EFAULT;
9651 }
9652 return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9653 }
9654 #endif
9655 #ifdef TARGET_NR_alarm /* not on alpha */
9656 case TARGET_NR_alarm:
9657 return alarm(arg1);
9658 #endif
9659 #ifdef TARGET_NR_pause /* not on alpha */
9660 case TARGET_NR_pause:
9661 if (!block_signals()) {
9662 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9663 }
9664 return -TARGET_EINTR;
9665 #endif
9666 #ifdef TARGET_NR_utime
9667 case TARGET_NR_utime:
9668 {
9669 struct utimbuf tbuf, *host_tbuf;
9670 struct target_utimbuf *target_tbuf;
9671 if (arg2) {
9672 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9673 return -TARGET_EFAULT;
9674 tbuf.actime = tswapal(target_tbuf->actime);
9675 tbuf.modtime = tswapal(target_tbuf->modtime);
9676 unlock_user_struct(target_tbuf, arg2, 0);
9677 host_tbuf = &tbuf;
9678 } else {
9679 host_tbuf = NULL;
9680 }
9681 if (!(p = lock_user_string(arg1)))
9682 return -TARGET_EFAULT;
9683 ret = get_errno(utime(p, host_tbuf));
9684 unlock_user(p, arg1, 0);
9685 }
9686 return ret;
9687 #endif
9688 #ifdef TARGET_NR_utimes
9689 case TARGET_NR_utimes:
9690 {
9691 struct timeval *tvp, tv[2];
9692 if (arg2) {
9693 if (copy_from_user_timeval(&tv[0], arg2)
9694 || copy_from_user_timeval(&tv[1],
9695 arg2 + sizeof(struct target_timeval)))
9696 return -TARGET_EFAULT;
9697 tvp = tv;
9698 } else {
9699 tvp = NULL;
9700 }
9701 if (!(p = lock_user_string(arg1)))
9702 return -TARGET_EFAULT;
9703 ret = get_errno(utimes(p, tvp));
9704 unlock_user(p, arg1, 0);
9705 }
9706 return ret;
9707 #endif
9708 #if defined(TARGET_NR_futimesat)
9709 case TARGET_NR_futimesat:
9710 {
9711 struct timeval *tvp, tv[2];
9712 if (arg3) {
9713 if (copy_from_user_timeval(&tv[0], arg3)
9714 || copy_from_user_timeval(&tv[1],
9715 arg3 + sizeof(struct target_timeval)))
9716 return -TARGET_EFAULT;
9717 tvp = tv;
9718 } else {
9719 tvp = NULL;
9720 }
9721 if (!(p = lock_user_string(arg2))) {
9722 return -TARGET_EFAULT;
9723 }
9724 ret = get_errno(futimesat(arg1, path(p), tvp));
9725 unlock_user(p, arg2, 0);
9726 }
9727 return ret;
9728 #endif
9729 #ifdef TARGET_NR_access
9730 case TARGET_NR_access:
9731 if (!(p = lock_user_string(arg1))) {
9732 return -TARGET_EFAULT;
9733 }
9734 ret = get_errno(access(path(p), arg2));
9735 unlock_user(p, arg1, 0);
9736 return ret;
9737 #endif
9738 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9739 case TARGET_NR_faccessat:
9740 if (!(p = lock_user_string(arg2))) {
9741 return -TARGET_EFAULT;
9742 }
9743 ret = get_errno(faccessat(arg1, p, arg3, 0));
9744 unlock_user(p, arg2, 0);
9745 return ret;
9746 #endif
9747 #if defined(TARGET_NR_faccessat2)
9748 case TARGET_NR_faccessat2:
9749 if (!(p = lock_user_string(arg2))) {
9750 return -TARGET_EFAULT;
9751 }
9752 ret = get_errno(faccessat(arg1, p, arg3, arg4));
9753 unlock_user(p, arg2, 0);
9754 return ret;
9755 #endif
9756 #ifdef TARGET_NR_nice /* not on alpha */
9757 case TARGET_NR_nice:
9758 return get_errno(nice(arg1));
9759 #endif
9760 case TARGET_NR_sync:
9761 sync();
9762 return 0;
9763 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9764 case TARGET_NR_syncfs:
9765 return get_errno(syncfs(arg1));
9766 #endif
9767 case TARGET_NR_kill:
9768 return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9769 #ifdef TARGET_NR_rename
9770 case TARGET_NR_rename:
9771 {
9772 void *p2;
9773 p = lock_user_string(arg1);
9774 p2 = lock_user_string(arg2);
9775 if (!p || !p2)
9776 ret = -TARGET_EFAULT;
9777 else
9778 ret = get_errno(rename(p, p2));
9779 unlock_user(p2, arg2, 0);
9780 unlock_user(p, arg1, 0);
9781 }
9782 return ret;
9783 #endif
9784 #if defined(TARGET_NR_renameat)
9785 case TARGET_NR_renameat:
9786 {
9787 void *p2;
9788 p = lock_user_string(arg2);
9789 p2 = lock_user_string(arg4);
9790 if (!p || !p2)
9791 ret = -TARGET_EFAULT;
9792 else
9793 ret = get_errno(renameat(arg1, p, arg3, p2));
9794 unlock_user(p2, arg4, 0);
9795 unlock_user(p, arg2, 0);
9796 }
9797 return ret;
9798 #endif
9799 #if defined(TARGET_NR_renameat2)
9800 case TARGET_NR_renameat2:
9801 {
9802 void *p2;
9803 p = lock_user_string(arg2);
9804 p2 = lock_user_string(arg4);
9805 if (!p || !p2) {
9806 ret = -TARGET_EFAULT;
9807 } else {
9808 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9809 }
9810 unlock_user(p2, arg4, 0);
9811 unlock_user(p, arg2, 0);
9812 }
9813 return ret;
9814 #endif
9815 #ifdef TARGET_NR_mkdir
9816 case TARGET_NR_mkdir:
9817 if (!(p = lock_user_string(arg1)))
9818 return -TARGET_EFAULT;
9819 ret = get_errno(mkdir(p, arg2));
9820 unlock_user(p, arg1, 0);
9821 return ret;
9822 #endif
9823 #if defined(TARGET_NR_mkdirat)
9824 case TARGET_NR_mkdirat:
9825 if (!(p = lock_user_string(arg2)))
9826 return -TARGET_EFAULT;
9827 ret = get_errno(mkdirat(arg1, p, arg3));
9828 unlock_user(p, arg2, 0);
9829 return ret;
9830 #endif
9831 #ifdef TARGET_NR_rmdir
9832 case TARGET_NR_rmdir:
9833 if (!(p = lock_user_string(arg1)))
9834 return -TARGET_EFAULT;
9835 ret = get_errno(rmdir(p));
9836 unlock_user(p, arg1, 0);
9837 return ret;
9838 #endif
9839 case TARGET_NR_dup:
9840 ret = get_errno(dup(arg1));
9841 if (ret >= 0) {
9842 fd_trans_dup(arg1, ret);
9843 }
9844 return ret;
9845 #ifdef TARGET_NR_pipe
9846 case TARGET_NR_pipe:
9847 return do_pipe(cpu_env, arg1, 0, 0);
9848 #endif
9849 #ifdef TARGET_NR_pipe2
9850 case TARGET_NR_pipe2:
9851 return do_pipe(cpu_env, arg1,
9852 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9853 #endif
9854 case TARGET_NR_times:
9855 {
9856 struct target_tms *tmsp;
9857 struct tms tms;
9858 ret = get_errno(times(&tms));
9859 if (arg1) {
9860 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9861 if (!tmsp)
9862 return -TARGET_EFAULT;
9863 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9864 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9865 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9866 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9867 }
9868 if (!is_error(ret))
9869 ret = host_to_target_clock_t(ret);
9870 }
9871 return ret;
9872 case TARGET_NR_acct:
9873 if (arg1 == 0) {
9874 ret = get_errno(acct(NULL));
9875 } else {
9876 if (!(p = lock_user_string(arg1))) {
9877 return -TARGET_EFAULT;
9878 }
9879 ret = get_errno(acct(path(p)));
9880 unlock_user(p, arg1, 0);
9881 }
9882 return ret;
9883 #ifdef TARGET_NR_umount2
9884 case TARGET_NR_umount2:
9885 if (!(p = lock_user_string(arg1)))
9886 return -TARGET_EFAULT;
9887 ret = get_errno(umount2(p, arg2));
9888 unlock_user(p, arg1, 0);
9889 return ret;
9890 #endif
9891 case TARGET_NR_ioctl:
9892 return do_ioctl(arg1, arg2, arg3);
9893 #ifdef TARGET_NR_fcntl
9894 case TARGET_NR_fcntl:
9895 return do_fcntl(arg1, arg2, arg3);
9896 #endif
9897 case TARGET_NR_setpgid:
9898 return get_errno(setpgid(arg1, arg2));
9899 case TARGET_NR_umask:
9900 return get_errno(umask(arg1));
9901 case TARGET_NR_chroot:
9902 if (!(p = lock_user_string(arg1)))
9903 return -TARGET_EFAULT;
9904 ret = get_errno(chroot(p));
9905 unlock_user(p, arg1, 0);
9906 return ret;
9907 #ifdef TARGET_NR_dup2
9908 case TARGET_NR_dup2:
9909 ret = get_errno(dup2(arg1, arg2));
9910 if (ret >= 0) {
9911 fd_trans_dup(arg1, arg2);
9912 }
9913 return ret;
9914 #endif
9915 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9916 case TARGET_NR_dup3:
9917 {
9918 int host_flags;
9919
9920 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9921 return -EINVAL;
9922 }
9923 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9924 ret = get_errno(dup3(arg1, arg2, host_flags));
9925 if (ret >= 0) {
9926 fd_trans_dup(arg1, arg2);
9927 }
9928 return ret;
9929 }
9930 #endif
9931 #ifdef TARGET_NR_getppid /* not on alpha */
9932 case TARGET_NR_getppid:
9933 return get_errno(getppid());
9934 #endif
9935 #ifdef TARGET_NR_getpgrp
9936 case TARGET_NR_getpgrp:
9937 return get_errno(getpgrp());
9938 #endif
9939 case TARGET_NR_setsid:
9940 return get_errno(setsid());
9941 #ifdef TARGET_NR_sigaction
9942 case TARGET_NR_sigaction:
9943 {
9944 #if defined(TARGET_MIPS)
9945 struct target_sigaction act, oact, *pact, *old_act;
9946
9947 if (arg2) {
9948 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9949 return -TARGET_EFAULT;
9950 act._sa_handler = old_act->_sa_handler;
9951 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9952 act.sa_flags = old_act->sa_flags;
9953 unlock_user_struct(old_act, arg2, 0);
9954 pact = &act;
9955 } else {
9956 pact = NULL;
9957 }
9958
9959 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9960
9961 if (!is_error(ret) && arg3) {
9962 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9963 return -TARGET_EFAULT;
9964 old_act->_sa_handler = oact._sa_handler;
9965 old_act->sa_flags = oact.sa_flags;
9966 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9967 old_act->sa_mask.sig[1] = 0;
9968 old_act->sa_mask.sig[2] = 0;
9969 old_act->sa_mask.sig[3] = 0;
9970 unlock_user_struct(old_act, arg3, 1);
9971 }
9972 #else
9973 struct target_old_sigaction *old_act;
9974 struct target_sigaction act, oact, *pact;
9975 if (arg2) {
9976 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9977 return -TARGET_EFAULT;
9978 act._sa_handler = old_act->_sa_handler;
9979 target_siginitset(&act.sa_mask, old_act->sa_mask);
9980 act.sa_flags = old_act->sa_flags;
9981 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9982 act.sa_restorer = old_act->sa_restorer;
9983 #endif
9984 unlock_user_struct(old_act, arg2, 0);
9985 pact = &act;
9986 } else {
9987 pact = NULL;
9988 }
9989 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9990 if (!is_error(ret) && arg3) {
9991 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9992 return -TARGET_EFAULT;
9993 old_act->_sa_handler = oact._sa_handler;
9994 old_act->sa_mask = oact.sa_mask.sig[0];
9995 old_act->sa_flags = oact.sa_flags;
9996 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9997 old_act->sa_restorer = oact.sa_restorer;
9998 #endif
9999 unlock_user_struct(old_act, arg3, 1);
10000 }
10001 #endif
10002 }
10003 return ret;
10004 #endif
10005 case TARGET_NR_rt_sigaction:
10006 {
10007 /*
10008 * For Alpha and SPARC this is a 5 argument syscall, with
10009 * a 'restorer' parameter which must be copied into the
10010 * sa_restorer field of the sigaction struct.
10011 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
10012 * and arg5 is the sigsetsize.
10013 */
10014 #if defined(TARGET_ALPHA)
10015 target_ulong sigsetsize = arg4;
10016 target_ulong restorer = arg5;
10017 #elif defined(TARGET_SPARC)
10018 target_ulong restorer = arg4;
10019 target_ulong sigsetsize = arg5;
10020 #else
10021 target_ulong sigsetsize = arg4;
10022 target_ulong restorer = 0;
10023 #endif
10024 struct target_sigaction *act = NULL;
10025 struct target_sigaction *oact = NULL;
10026
10027 if (sigsetsize != sizeof(target_sigset_t)) {
10028 return -TARGET_EINVAL;
10029 }
10030 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
10031 return -TARGET_EFAULT;
10032 }
10033 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
10034 ret = -TARGET_EFAULT;
10035 } else {
10036 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
10037 if (oact) {
10038 unlock_user_struct(oact, arg3, 1);
10039 }
10040 }
10041 if (act) {
10042 unlock_user_struct(act, arg2, 0);
10043 }
10044 }
10045 return ret;
10046 #ifdef TARGET_NR_sgetmask /* not on alpha */
10047 case TARGET_NR_sgetmask:
10048 {
10049 sigset_t cur_set;
10050 abi_ulong target_set;
10051 ret = do_sigprocmask(0, NULL, &cur_set);
10052 if (!ret) {
10053 host_to_target_old_sigset(&target_set, &cur_set);
10054 ret = target_set;
10055 }
10056 }
10057 return ret;
10058 #endif
10059 #ifdef TARGET_NR_ssetmask /* not on alpha */
10060 case TARGET_NR_ssetmask:
10061 {
10062 sigset_t set, oset;
10063 abi_ulong target_set = arg1;
10064 target_to_host_old_sigset(&set, &target_set);
10065 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
10066 if (!ret) {
10067 host_to_target_old_sigset(&target_set, &oset);
10068 ret = target_set;
10069 }
10070 }
10071 return ret;
10072 #endif
10073 #ifdef TARGET_NR_sigprocmask
10074 case TARGET_NR_sigprocmask:
10075 {
10076 #if defined(TARGET_ALPHA)
10077 sigset_t set, oldset;
10078 abi_ulong mask;
10079 int how;
10080
10081 switch (arg1) {
10082 case TARGET_SIG_BLOCK:
10083 how = SIG_BLOCK;
10084 break;
10085 case TARGET_SIG_UNBLOCK:
10086 how = SIG_UNBLOCK;
10087 break;
10088 case TARGET_SIG_SETMASK:
10089 how = SIG_SETMASK;
10090 break;
10091 default:
10092 return -TARGET_EINVAL;
10093 }
10094 mask = arg2;
10095 target_to_host_old_sigset(&set, &mask);
10096
10097 ret = do_sigprocmask(how, &set, &oldset);
10098 if (!is_error(ret)) {
10099 host_to_target_old_sigset(&mask, &oldset);
10100 ret = mask;
10101 cpu_env->ir[IR_V0] = 0; /* force no error */
10102 }
10103 #else
10104 sigset_t set, oldset, *set_ptr;
10105 int how;
10106
10107 if (arg2) {
10108 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10109 if (!p) {
10110 return -TARGET_EFAULT;
10111 }
10112 target_to_host_old_sigset(&set, p);
10113 unlock_user(p, arg2, 0);
10114 set_ptr = &set;
10115 switch (arg1) {
10116 case TARGET_SIG_BLOCK:
10117 how = SIG_BLOCK;
10118 break;
10119 case TARGET_SIG_UNBLOCK:
10120 how = SIG_UNBLOCK;
10121 break;
10122 case TARGET_SIG_SETMASK:
10123 how = SIG_SETMASK;
10124 break;
10125 default:
10126 return -TARGET_EINVAL;
10127 }
10128 } else {
10129 how = 0;
10130 set_ptr = NULL;
10131 }
10132 ret = do_sigprocmask(how, set_ptr, &oldset);
10133 if (!is_error(ret) && arg3) {
10134 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10135 return -TARGET_EFAULT;
10136 host_to_target_old_sigset(p, &oldset);
10137 unlock_user(p, arg3, sizeof(target_sigset_t));
10138 }
10139 #endif
10140 }
10141 return ret;
10142 #endif
10143 case TARGET_NR_rt_sigprocmask:
10144 {
10145 int how = arg1;
10146 sigset_t set, oldset, *set_ptr;
10147
10148 if (arg4 != sizeof(target_sigset_t)) {
10149 return -TARGET_EINVAL;
10150 }
10151
10152 if (arg2) {
10153 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
10154 if (!p) {
10155 return -TARGET_EFAULT;
10156 }
10157 target_to_host_sigset(&set, p);
10158 unlock_user(p, arg2, 0);
10159 set_ptr = &set;
10160 switch(how) {
10161 case TARGET_SIG_BLOCK:
10162 how = SIG_BLOCK;
10163 break;
10164 case TARGET_SIG_UNBLOCK:
10165 how = SIG_UNBLOCK;
10166 break;
10167 case TARGET_SIG_SETMASK:
10168 how = SIG_SETMASK;
10169 break;
10170 default:
10171 return -TARGET_EINVAL;
10172 }
10173 } else {
10174 how = 0;
10175 set_ptr = NULL;
10176 }
10177 ret = do_sigprocmask(how, set_ptr, &oldset);
10178 if (!is_error(ret) && arg3) {
10179 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
10180 return -TARGET_EFAULT;
10181 host_to_target_sigset(p, &oldset);
10182 unlock_user(p, arg3, sizeof(target_sigset_t));
10183 }
10184 }
10185 return ret;
10186 #ifdef TARGET_NR_sigpending
10187 case TARGET_NR_sigpending:
10188 {
10189 sigset_t set;
10190 ret = get_errno(sigpending(&set));
10191 if (!is_error(ret)) {
10192 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10193 return -TARGET_EFAULT;
10194 host_to_target_old_sigset(p, &set);
10195 unlock_user(p, arg1, sizeof(target_sigset_t));
10196 }
10197 }
10198 return ret;
10199 #endif
10200 case TARGET_NR_rt_sigpending:
10201 {
10202 sigset_t set;
10203
10204 /* Yes, this check is >, not != like most. We follow the kernel's
10205 * logic and it does it like this because it implements
10206 * NR_sigpending through the same code path, and in that case
10207 * the old_sigset_t is smaller in size.
10208 */
10209 if (arg2 > sizeof(target_sigset_t)) {
10210 return -TARGET_EINVAL;
10211 }
10212
10213 ret = get_errno(sigpending(&set));
10214 if (!is_error(ret)) {
10215 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
10216 return -TARGET_EFAULT;
10217 host_to_target_sigset(p, &set);
10218 unlock_user(p, arg1, sizeof(target_sigset_t));
10219 }
10220 }
10221 return ret;
10222 #ifdef TARGET_NR_sigsuspend
10223 case TARGET_NR_sigsuspend:
10224 {
10225 sigset_t *set;
10226
10227 #if defined(TARGET_ALPHA)
10228 TaskState *ts = cpu->opaque;
10229 /* target_to_host_old_sigset will bswap back */
10230 abi_ulong mask = tswapal(arg1);
10231 set = &ts->sigsuspend_mask;
10232 target_to_host_old_sigset(set, &mask);
10233 #else
10234 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
10235 if (ret != 0) {
10236 return ret;
10237 }
10238 #endif
10239 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10240 finish_sigsuspend_mask(ret);
10241 }
10242 return ret;
10243 #endif
10244 case TARGET_NR_rt_sigsuspend:
10245 {
10246 sigset_t *set;
10247
10248 ret = process_sigsuspend_mask(&set, arg1, arg2);
10249 if (ret != 0) {
10250 return ret;
10251 }
10252 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10253 finish_sigsuspend_mask(ret);
10254 }
10255 return ret;
10256 #ifdef TARGET_NR_rt_sigtimedwait
10257 case TARGET_NR_rt_sigtimedwait:
10258 {
10259 sigset_t set;
10260 struct timespec uts, *puts;
10261 siginfo_t uinfo;
10262
10263 if (arg4 != sizeof(target_sigset_t)) {
10264 return -TARGET_EINVAL;
10265 }
10266
10267 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10268 return -TARGET_EFAULT;
10269 target_to_host_sigset(&set, p);
10270 unlock_user(p, arg1, 0);
10271 if (arg3) {
10272 puts = &uts;
10273 if (target_to_host_timespec(puts, arg3)) {
10274 return -TARGET_EFAULT;
10275 }
10276 } else {
10277 puts = NULL;
10278 }
10279 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10280 SIGSET_T_SIZE));
10281 if (!is_error(ret)) {
10282 if (arg2) {
10283 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10284 0);
10285 if (!p) {
10286 return -TARGET_EFAULT;
10287 }
10288 host_to_target_siginfo(p, &uinfo);
10289 unlock_user(p, arg2, sizeof(target_siginfo_t));
10290 }
10291 ret = host_to_target_signal(ret);
10292 }
10293 }
10294 return ret;
10295 #endif
10296 #ifdef TARGET_NR_rt_sigtimedwait_time64
10297 case TARGET_NR_rt_sigtimedwait_time64:
10298 {
10299 sigset_t set;
10300 struct timespec uts, *puts;
10301 siginfo_t uinfo;
10302
10303 if (arg4 != sizeof(target_sigset_t)) {
10304 return -TARGET_EINVAL;
10305 }
10306
10307 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10308 if (!p) {
10309 return -TARGET_EFAULT;
10310 }
10311 target_to_host_sigset(&set, p);
10312 unlock_user(p, arg1, 0);
10313 if (arg3) {
10314 puts = &uts;
10315 if (target_to_host_timespec64(puts, arg3)) {
10316 return -TARGET_EFAULT;
10317 }
10318 } else {
10319 puts = NULL;
10320 }
10321 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10322 SIGSET_T_SIZE));
10323 if (!is_error(ret)) {
10324 if (arg2) {
10325 p = lock_user(VERIFY_WRITE, arg2,
10326 sizeof(target_siginfo_t), 0);
10327 if (!p) {
10328 return -TARGET_EFAULT;
10329 }
10330 host_to_target_siginfo(p, &uinfo);
10331 unlock_user(p, arg2, sizeof(target_siginfo_t));
10332 }
10333 ret = host_to_target_signal(ret);
10334 }
10335 }
10336 return ret;
10337 #endif
10338 case TARGET_NR_rt_sigqueueinfo:
10339 {
10340 siginfo_t uinfo;
10341
10342 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10343 if (!p) {
10344 return -TARGET_EFAULT;
10345 }
10346 target_to_host_siginfo(&uinfo, p);
10347 unlock_user(p, arg3, 0);
10348 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10349 }
10350 return ret;
10351 case TARGET_NR_rt_tgsigqueueinfo:
10352 {
10353 siginfo_t uinfo;
10354
10355 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10356 if (!p) {
10357 return -TARGET_EFAULT;
10358 }
10359 target_to_host_siginfo(&uinfo, p);
10360 unlock_user(p, arg4, 0);
10361 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10362 }
10363 return ret;
10364 #ifdef TARGET_NR_sigreturn
10365 case TARGET_NR_sigreturn:
10366 if (block_signals()) {
10367 return -QEMU_ERESTARTSYS;
10368 }
10369 return do_sigreturn(cpu_env);
10370 #endif
10371 case TARGET_NR_rt_sigreturn:
10372 if (block_signals()) {
10373 return -QEMU_ERESTARTSYS;
10374 }
10375 return do_rt_sigreturn(cpu_env);
10376 case TARGET_NR_sethostname:
10377 if (!(p = lock_user_string(arg1)))
10378 return -TARGET_EFAULT;
10379 ret = get_errno(sethostname(p, arg2));
10380 unlock_user(p, arg1, 0);
10381 return ret;
10382 #ifdef TARGET_NR_setrlimit
10383 case TARGET_NR_setrlimit:
10384 {
10385 int resource = target_to_host_resource(arg1);
10386 struct target_rlimit *target_rlim;
10387 struct rlimit rlim;
10388 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10389 return -TARGET_EFAULT;
10390 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10391 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10392 unlock_user_struct(target_rlim, arg2, 0);
10393 /*
10394 * If we just passed through resource limit settings for memory then
10395 * they would also apply to QEMU's own allocations, and QEMU will
10396 * crash or hang or die if its allocations fail. Ideally we would
10397 * track the guest allocations in QEMU and apply the limits ourselves.
10398 * For now, just tell the guest the call succeeded but don't actually
10399 * limit anything.
10400 */
10401 if (resource != RLIMIT_AS &&
10402 resource != RLIMIT_DATA &&
10403 resource != RLIMIT_STACK) {
10404 return get_errno(setrlimit(resource, &rlim));
10405 } else {
10406 return 0;
10407 }
10408 }
10409 #endif
10410 #ifdef TARGET_NR_getrlimit
10411 case TARGET_NR_getrlimit:
10412 {
10413 int resource = target_to_host_resource(arg1);
10414 struct target_rlimit *target_rlim;
10415 struct rlimit rlim;
10416
10417 ret = get_errno(getrlimit(resource, &rlim));
10418 if (!is_error(ret)) {
10419 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10420 return -TARGET_EFAULT;
10421 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10422 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10423 unlock_user_struct(target_rlim, arg2, 1);
10424 }
10425 }
10426 return ret;
10427 #endif
10428 case TARGET_NR_getrusage:
10429 {
10430 struct rusage rusage;
10431 ret = get_errno(getrusage(arg1, &rusage));
10432 if (!is_error(ret)) {
10433 ret = host_to_target_rusage(arg2, &rusage);
10434 }
10435 }
10436 return ret;
10437 #if defined(TARGET_NR_gettimeofday)
10438 case TARGET_NR_gettimeofday:
10439 {
10440 struct timeval tv;
10441 struct timezone tz;
10442
10443 ret = get_errno(gettimeofday(&tv, &tz));
10444 if (!is_error(ret)) {
10445 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10446 return -TARGET_EFAULT;
10447 }
10448 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10449 return -TARGET_EFAULT;
10450 }
10451 }
10452 }
10453 return ret;
10454 #endif
10455 #if defined(TARGET_NR_settimeofday)
10456 case TARGET_NR_settimeofday:
10457 {
10458 struct timeval tv, *ptv = NULL;
10459 struct timezone tz, *ptz = NULL;
10460
10461 if (arg1) {
10462 if (copy_from_user_timeval(&tv, arg1)) {
10463 return -TARGET_EFAULT;
10464 }
10465 ptv = &tv;
10466 }
10467
10468 if (arg2) {
10469 if (copy_from_user_timezone(&tz, arg2)) {
10470 return -TARGET_EFAULT;
10471 }
10472 ptz = &tz;
10473 }
10474
10475 return get_errno(settimeofday(ptv, ptz));
10476 }
10477 #endif
10478 #if defined(TARGET_NR_select)
10479 case TARGET_NR_select:
10480 #if defined(TARGET_WANT_NI_OLD_SELECT)
10481 /* some architectures used to have old_select here
10482 * but now ENOSYS it.
10483 */
10484 ret = -TARGET_ENOSYS;
10485 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10486 ret = do_old_select(arg1);
10487 #else
10488 ret = do_select(arg1, arg2, arg3, arg4, arg5);
10489 #endif
10490 return ret;
10491 #endif
10492 #ifdef TARGET_NR_pselect6
10493 case TARGET_NR_pselect6:
10494 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10495 #endif
10496 #ifdef TARGET_NR_pselect6_time64
10497 case TARGET_NR_pselect6_time64:
10498 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10499 #endif
10500 #ifdef TARGET_NR_symlink
10501 case TARGET_NR_symlink:
10502 {
10503 void *p2;
10504 p = lock_user_string(arg1);
10505 p2 = lock_user_string(arg2);
10506 if (!p || !p2)
10507 ret = -TARGET_EFAULT;
10508 else
10509 ret = get_errno(symlink(p, p2));
10510 unlock_user(p2, arg2, 0);
10511 unlock_user(p, arg1, 0);
10512 }
10513 return ret;
10514 #endif
10515 #if defined(TARGET_NR_symlinkat)
10516 case TARGET_NR_symlinkat:
10517 {
10518 void *p2;
10519 p = lock_user_string(arg1);
10520 p2 = lock_user_string(arg3);
10521 if (!p || !p2)
10522 ret = -TARGET_EFAULT;
10523 else
10524 ret = get_errno(symlinkat(p, arg2, p2));
10525 unlock_user(p2, arg3, 0);
10526 unlock_user(p, arg1, 0);
10527 }
10528 return ret;
10529 #endif
10530 #ifdef TARGET_NR_readlink
10531 case TARGET_NR_readlink:
10532 {
10533 void *p2;
10534 p = lock_user_string(arg1);
10535 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10536 ret = get_errno(do_guest_readlink(p, p2, arg3));
10537 unlock_user(p2, arg2, ret);
10538 unlock_user(p, arg1, 0);
10539 }
10540 return ret;
10541 #endif
10542 #if defined(TARGET_NR_readlinkat)
10543 case TARGET_NR_readlinkat:
10544 {
10545 void *p2;
10546 p = lock_user_string(arg2);
10547 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10548 if (!p || !p2) {
10549 ret = -TARGET_EFAULT;
10550 } else if (!arg4) {
10551 /* Short circuit this for the magic exe check. */
10552 ret = -TARGET_EINVAL;
10553 } else if (is_proc_myself((const char *)p, "exe")) {
10554 /*
10555 * Don't worry about sign mismatch as earlier mapping
10556 * logic would have thrown a bad address error.
10557 */
10558 ret = MIN(strlen(exec_path), arg4);
10559 /* We cannot NUL terminate the string. */
10560 memcpy(p2, exec_path, ret);
10561 } else {
10562 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10563 }
10564 unlock_user(p2, arg3, ret);
10565 unlock_user(p, arg2, 0);
10566 }
10567 return ret;
10568 #endif
10569 #ifdef TARGET_NR_swapon
10570 case TARGET_NR_swapon:
10571 if (!(p = lock_user_string(arg1)))
10572 return -TARGET_EFAULT;
10573 ret = get_errno(swapon(p, arg2));
10574 unlock_user(p, arg1, 0);
10575 return ret;
10576 #endif
10577 case TARGET_NR_reboot:
10578 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10579 /* arg4 must be ignored in all other cases */
10580 p = lock_user_string(arg4);
10581 if (!p) {
10582 return -TARGET_EFAULT;
10583 }
10584 ret = get_errno(reboot(arg1, arg2, arg3, p));
10585 unlock_user(p, arg4, 0);
10586 } else {
10587 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10588 }
10589 return ret;
10590 #ifdef TARGET_NR_mmap
10591 case TARGET_NR_mmap:
10592 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10593 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10594 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10595 || defined(TARGET_S390X)
10596 {
10597 abi_ulong *v;
10598 abi_ulong v1, v2, v3, v4, v5, v6;
10599 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10600 return -TARGET_EFAULT;
10601 v1 = tswapal(v[0]);
10602 v2 = tswapal(v[1]);
10603 v3 = tswapal(v[2]);
10604 v4 = tswapal(v[3]);
10605 v5 = tswapal(v[4]);
10606 v6 = tswapal(v[5]);
10607 unlock_user(v, arg1, 0);
10608 return do_mmap(v1, v2, v3, v4, v5, v6);
10609 }
10610 #else
10611 /* mmap pointers are always untagged */
10612 return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10613 #endif
10614 #endif
10615 #ifdef TARGET_NR_mmap2
10616 case TARGET_NR_mmap2:
10617 #ifndef MMAP_SHIFT
10618 #define MMAP_SHIFT 12
10619 #endif
10620 return do_mmap(arg1, arg2, arg3, arg4, arg5,
10621 (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10622 #endif
10623 case TARGET_NR_munmap:
10624 arg1 = cpu_untagged_addr(cpu, arg1);
10625 return get_errno(target_munmap(arg1, arg2));
10626 case TARGET_NR_mprotect:
10627 arg1 = cpu_untagged_addr(cpu, arg1);
10628 {
10629 TaskState *ts = cpu->opaque;
10630 /* Special hack to detect libc making the stack executable. */
10631 if ((arg3 & PROT_GROWSDOWN)
10632 && arg1 >= ts->info->stack_limit
10633 && arg1 <= ts->info->start_stack) {
10634 arg3 &= ~PROT_GROWSDOWN;
10635 arg2 = arg2 + arg1 - ts->info->stack_limit;
10636 arg1 = ts->info->stack_limit;
10637 }
10638 }
10639 return get_errno(target_mprotect(arg1, arg2, arg3));
10640 #ifdef TARGET_NR_mremap
10641 case TARGET_NR_mremap:
10642 arg1 = cpu_untagged_addr(cpu, arg1);
10643 /* mremap new_addr (arg5) is always untagged */
10644 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10645 #endif
10646 /* ??? msync/mlock/munlock are broken for softmmu. */
10647 #ifdef TARGET_NR_msync
10648 case TARGET_NR_msync:
10649 return get_errno(msync(g2h(cpu, arg1), arg2,
10650 target_to_host_msync_arg(arg3)));
10651 #endif
10652 #ifdef TARGET_NR_mlock
10653 case TARGET_NR_mlock:
10654 return get_errno(mlock(g2h(cpu, arg1), arg2));
10655 #endif
10656 #ifdef TARGET_NR_munlock
10657 case TARGET_NR_munlock:
10658 return get_errno(munlock(g2h(cpu, arg1), arg2));
10659 #endif
10660 #ifdef TARGET_NR_mlockall
10661 case TARGET_NR_mlockall:
10662 return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10663 #endif
10664 #ifdef TARGET_NR_munlockall
10665 case TARGET_NR_munlockall:
10666 return get_errno(munlockall());
10667 #endif
10668 #ifdef TARGET_NR_truncate
10669 case TARGET_NR_truncate:
10670 if (!(p = lock_user_string(arg1)))
10671 return -TARGET_EFAULT;
10672 ret = get_errno(truncate(p, arg2));
10673 unlock_user(p, arg1, 0);
10674 return ret;
10675 #endif
10676 #ifdef TARGET_NR_ftruncate
10677 case TARGET_NR_ftruncate:
10678 return get_errno(ftruncate(arg1, arg2));
10679 #endif
10680 case TARGET_NR_fchmod:
10681 return get_errno(fchmod(arg1, arg2));
10682 #if defined(TARGET_NR_fchmodat)
10683 case TARGET_NR_fchmodat:
10684 if (!(p = lock_user_string(arg2)))
10685 return -TARGET_EFAULT;
10686 ret = get_errno(fchmodat(arg1, p, arg3, 0));
10687 unlock_user(p, arg2, 0);
10688 return ret;
10689 #endif
10690 case TARGET_NR_getpriority:
10691 /* Note that negative values are valid for getpriority, so we must
10692 differentiate based on errno settings. */
10693 errno = 0;
10694 ret = getpriority(arg1, arg2);
10695 if (ret == -1 && errno != 0) {
10696 return -host_to_target_errno(errno);
10697 }
10698 #ifdef TARGET_ALPHA
10699 /* Return value is the unbiased priority. Signal no error. */
10700 cpu_env->ir[IR_V0] = 0;
10701 #else
10702 /* Return value is a biased priority to avoid negative numbers. */
10703 ret = 20 - ret;
10704 #endif
10705 return ret;
10706 case TARGET_NR_setpriority:
10707 return get_errno(setpriority(arg1, arg2, arg3));
10708 #ifdef TARGET_NR_statfs
10709 case TARGET_NR_statfs:
10710 if (!(p = lock_user_string(arg1))) {
10711 return -TARGET_EFAULT;
10712 }
10713 ret = get_errno(statfs(path(p), &stfs));
10714 unlock_user(p, arg1, 0);
10715 convert_statfs:
10716 if (!is_error(ret)) {
10717 struct target_statfs *target_stfs;
10718
10719 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10720 return -TARGET_EFAULT;
10721 __put_user(stfs.f_type, &target_stfs->f_type);
10722 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10723 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10724 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10725 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10726 __put_user(stfs.f_files, &target_stfs->f_files);
10727 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10728 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10729 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10730 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10731 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10732 #ifdef _STATFS_F_FLAGS
10733 __put_user(stfs.f_flags, &target_stfs->f_flags);
10734 #else
10735 __put_user(0, &target_stfs->f_flags);
10736 #endif
10737 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10738 unlock_user_struct(target_stfs, arg2, 1);
10739 }
10740 return ret;
10741 #endif
10742 #ifdef TARGET_NR_fstatfs
10743 case TARGET_NR_fstatfs:
10744 ret = get_errno(fstatfs(arg1, &stfs));
10745 goto convert_statfs;
10746 #endif
10747 #ifdef TARGET_NR_statfs64
10748 case TARGET_NR_statfs64:
10749 if (!(p = lock_user_string(arg1))) {
10750 return -TARGET_EFAULT;
10751 }
10752 ret = get_errno(statfs(path(p), &stfs));
10753 unlock_user(p, arg1, 0);
10754 convert_statfs64:
10755 if (!is_error(ret)) {
10756 struct target_statfs64 *target_stfs;
10757
10758 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10759 return -TARGET_EFAULT;
10760 __put_user(stfs.f_type, &target_stfs->f_type);
10761 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10762 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10763 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10764 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10765 __put_user(stfs.f_files, &target_stfs->f_files);
10766 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10767 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10768 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10769 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10770 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10771 #ifdef _STATFS_F_FLAGS
10772 __put_user(stfs.f_flags, &target_stfs->f_flags);
10773 #else
10774 __put_user(0, &target_stfs->f_flags);
10775 #endif
10776 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10777 unlock_user_struct(target_stfs, arg3, 1);
10778 }
10779 return ret;
10780 case TARGET_NR_fstatfs64:
10781 ret = get_errno(fstatfs(arg1, &stfs));
10782 goto convert_statfs64;
10783 #endif
10784 #ifdef TARGET_NR_socketcall
10785 case TARGET_NR_socketcall:
10786 return do_socketcall(arg1, arg2);
10787 #endif
10788 #ifdef TARGET_NR_accept
10789 case TARGET_NR_accept:
10790 return do_accept4(arg1, arg2, arg3, 0);
10791 #endif
10792 #ifdef TARGET_NR_accept4
10793 case TARGET_NR_accept4:
10794 return do_accept4(arg1, arg2, arg3, arg4);
10795 #endif
10796 #ifdef TARGET_NR_bind
10797 case TARGET_NR_bind:
10798 return do_bind(arg1, arg2, arg3);
10799 #endif
10800 #ifdef TARGET_NR_connect
10801 case TARGET_NR_connect:
10802 return do_connect(arg1, arg2, arg3);
10803 #endif
10804 #ifdef TARGET_NR_getpeername
10805 case TARGET_NR_getpeername:
10806 return do_getpeername(arg1, arg2, arg3);
10807 #endif
10808 #ifdef TARGET_NR_getsockname
10809 case TARGET_NR_getsockname:
10810 return do_getsockname(arg1, arg2, arg3);
10811 #endif
10812 #ifdef TARGET_NR_getsockopt
10813 case TARGET_NR_getsockopt:
10814 return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10815 #endif
10816 #ifdef TARGET_NR_listen
10817 case TARGET_NR_listen:
10818 return get_errno(listen(arg1, arg2));
10819 #endif
10820 #ifdef TARGET_NR_recv
10821 case TARGET_NR_recv:
10822 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10823 #endif
10824 #ifdef TARGET_NR_recvfrom
10825 case TARGET_NR_recvfrom:
10826 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10827 #endif
10828 #ifdef TARGET_NR_recvmsg
10829 case TARGET_NR_recvmsg:
10830 return do_sendrecvmsg(arg1, arg2, arg3, 0);
10831 #endif
10832 #ifdef TARGET_NR_send
10833 case TARGET_NR_send:
10834 return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10835 #endif
10836 #ifdef TARGET_NR_sendmsg
10837 case TARGET_NR_sendmsg:
10838 return do_sendrecvmsg(arg1, arg2, arg3, 1);
10839 #endif
10840 #ifdef TARGET_NR_sendmmsg
10841 case TARGET_NR_sendmmsg:
10842 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10843 #endif
10844 #ifdef TARGET_NR_recvmmsg
10845 case TARGET_NR_recvmmsg:
10846 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10847 #endif
10848 #ifdef TARGET_NR_sendto
10849 case TARGET_NR_sendto:
10850 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10851 #endif
10852 #ifdef TARGET_NR_shutdown
10853 case TARGET_NR_shutdown:
10854 return get_errno(shutdown(arg1, arg2));
10855 #endif
10856 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10857 case TARGET_NR_getrandom:
10858 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10859 if (!p) {
10860 return -TARGET_EFAULT;
10861 }
10862 ret = get_errno(getrandom(p, arg2, arg3));
10863 unlock_user(p, arg1, ret);
10864 return ret;
10865 #endif
10866 #ifdef TARGET_NR_socket
10867 case TARGET_NR_socket:
10868 return do_socket(arg1, arg2, arg3);
10869 #endif
10870 #ifdef TARGET_NR_socketpair
10871 case TARGET_NR_socketpair:
10872 return do_socketpair(arg1, arg2, arg3, arg4);
10873 #endif
10874 #ifdef TARGET_NR_setsockopt
10875 case TARGET_NR_setsockopt:
10876 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10877 #endif
10878 #if defined(TARGET_NR_syslog)
10879 case TARGET_NR_syslog:
10880 {
10881 int len = arg2;
10882
10883 switch (arg1) {
10884 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */
10885 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */
10886 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
10887 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */
10888 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */
10889 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10890 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */
10891 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */
10892 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10893 case TARGET_SYSLOG_ACTION_READ: /* Read from log */
10894 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */
10895 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */
10896 {
10897 if (len < 0) {
10898 return -TARGET_EINVAL;
10899 }
10900 if (len == 0) {
10901 return 0;
10902 }
10903 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10904 if (!p) {
10905 return -TARGET_EFAULT;
10906 }
10907 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10908 unlock_user(p, arg2, arg3);
10909 }
10910 return ret;
10911 default:
10912 return -TARGET_EINVAL;
10913 }
10914 }
10915 break;
10916 #endif
10917 case TARGET_NR_setitimer:
10918 {
10919 struct itimerval value, ovalue, *pvalue;
10920
10921 if (arg2) {
10922 pvalue = &value;
10923 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10924 || copy_from_user_timeval(&pvalue->it_value,
10925 arg2 + sizeof(struct target_timeval)))
10926 return -TARGET_EFAULT;
10927 } else {
10928 pvalue = NULL;
10929 }
10930 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10931 if (!is_error(ret) && arg3) {
10932 if (copy_to_user_timeval(arg3,
10933 &ovalue.it_interval)
10934 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10935 &ovalue.it_value))
10936 return -TARGET_EFAULT;
10937 }
10938 }
10939 return ret;
10940 case TARGET_NR_getitimer:
10941 {
10942 struct itimerval value;
10943
10944 ret = get_errno(getitimer(arg1, &value));
10945 if (!is_error(ret) && arg2) {
10946 if (copy_to_user_timeval(arg2,
10947 &value.it_interval)
10948 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10949 &value.it_value))
10950 return -TARGET_EFAULT;
10951 }
10952 }
10953 return ret;
10954 #ifdef TARGET_NR_stat
10955 case TARGET_NR_stat:
10956 if (!(p = lock_user_string(arg1))) {
10957 return -TARGET_EFAULT;
10958 }
10959 ret = get_errno(stat(path(p), &st));
10960 unlock_user(p, arg1, 0);
10961 goto do_stat;
10962 #endif
10963 #ifdef TARGET_NR_lstat
10964 case TARGET_NR_lstat:
10965 if (!(p = lock_user_string(arg1))) {
10966 return -TARGET_EFAULT;
10967 }
10968 ret = get_errno(lstat(path(p), &st));
10969 unlock_user(p, arg1, 0);
10970 goto do_stat;
10971 #endif
10972 #ifdef TARGET_NR_fstat
10973 case TARGET_NR_fstat:
10974 {
10975 ret = get_errno(fstat(arg1, &st));
10976 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10977 do_stat:
10978 #endif
10979 if (!is_error(ret)) {
10980 struct target_stat *target_st;
10981
10982 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10983 return -TARGET_EFAULT;
10984 memset(target_st, 0, sizeof(*target_st));
10985 __put_user(st.st_dev, &target_st->st_dev);
10986 __put_user(st.st_ino, &target_st->st_ino);
10987 __put_user(st.st_mode, &target_st->st_mode);
10988 __put_user(st.st_uid, &target_st->st_uid);
10989 __put_user(st.st_gid, &target_st->st_gid);
10990 __put_user(st.st_nlink, &target_st->st_nlink);
10991 __put_user(st.st_rdev, &target_st->st_rdev);
10992 __put_user(st.st_size, &target_st->st_size);
10993 __put_user(st.st_blksize, &target_st->st_blksize);
10994 __put_user(st.st_blocks, &target_st->st_blocks);
10995 __put_user(st.st_atime, &target_st->target_st_atime);
10996 __put_user(st.st_mtime, &target_st->target_st_mtime);
10997 __put_user(st.st_ctime, &target_st->target_st_ctime);
10998 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10999 __put_user(st.st_atim.tv_nsec,
11000 &target_st->target_st_atime_nsec);
11001 __put_user(st.st_mtim.tv_nsec,
11002 &target_st->target_st_mtime_nsec);
11003 __put_user(st.st_ctim.tv_nsec,
11004 &target_st->target_st_ctime_nsec);
11005 #endif
11006 unlock_user_struct(target_st, arg2, 1);
11007 }
11008 }
11009 return ret;
11010 #endif
11011 case TARGET_NR_vhangup:
11012 return get_errno(vhangup());
11013 #ifdef TARGET_NR_syscall
11014 case TARGET_NR_syscall:
11015 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
11016 arg6, arg7, arg8, 0);
11017 #endif
11018 #if defined(TARGET_NR_wait4)
11019 case TARGET_NR_wait4:
11020 {
11021 int status;
11022 abi_long status_ptr = arg2;
11023 struct rusage rusage, *rusage_ptr;
11024 abi_ulong target_rusage = arg4;
11025 abi_long rusage_err;
11026 if (target_rusage)
11027 rusage_ptr = &rusage;
11028 else
11029 rusage_ptr = NULL;
11030 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
11031 if (!is_error(ret)) {
11032 if (status_ptr && ret) {
11033 status = host_to_target_waitstatus(status);
11034 if (put_user_s32(status, status_ptr))
11035 return -TARGET_EFAULT;
11036 }
11037 if (target_rusage) {
11038 rusage_err = host_to_target_rusage(target_rusage, &rusage);
11039 if (rusage_err) {
11040 ret = rusage_err;
11041 }
11042 }
11043 }
11044 }
11045 return ret;
11046 #endif
11047 #ifdef TARGET_NR_swapoff
11048 case TARGET_NR_swapoff:
11049 if (!(p = lock_user_string(arg1)))
11050 return -TARGET_EFAULT;
11051 ret = get_errno(swapoff(p));
11052 unlock_user(p, arg1, 0);
11053 return ret;
11054 #endif
11055 case TARGET_NR_sysinfo:
11056 {
11057 struct target_sysinfo *target_value;
11058 struct sysinfo value;
11059 ret = get_errno(sysinfo(&value));
11060 if (!is_error(ret) && arg1)
11061 {
11062 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
11063 return -TARGET_EFAULT;
11064 __put_user(value.uptime, &target_value->uptime);
11065 __put_user(value.loads[0], &target_value->loads[0]);
11066 __put_user(value.loads[1], &target_value->loads[1]);
11067 __put_user(value.loads[2], &target_value->loads[2]);
11068 __put_user(value.totalram, &target_value->totalram);
11069 __put_user(value.freeram, &target_value->freeram);
11070 __put_user(value.sharedram, &target_value->sharedram);
11071 __put_user(value.bufferram, &target_value->bufferram);
11072 __put_user(value.totalswap, &target_value->totalswap);
11073 __put_user(value.freeswap, &target_value->freeswap);
11074 __put_user(value.procs, &target_value->procs);
11075 __put_user(value.totalhigh, &target_value->totalhigh);
11076 __put_user(value.freehigh, &target_value->freehigh);
11077 __put_user(value.mem_unit, &target_value->mem_unit);
11078 unlock_user_struct(target_value, arg1, 1);
11079 }
11080 }
11081 return ret;
11082 #ifdef TARGET_NR_ipc
11083 case TARGET_NR_ipc:
11084 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
11085 #endif
11086 #ifdef TARGET_NR_semget
11087 case TARGET_NR_semget:
11088 return get_errno(semget(arg1, arg2, arg3));
11089 #endif
11090 #ifdef TARGET_NR_semop
11091 case TARGET_NR_semop:
11092 return do_semtimedop(arg1, arg2, arg3, 0, false);
11093 #endif
11094 #ifdef TARGET_NR_semtimedop
11095 case TARGET_NR_semtimedop:
11096 return do_semtimedop(arg1, arg2, arg3, arg4, false);
11097 #endif
11098 #ifdef TARGET_NR_semtimedop_time64
11099 case TARGET_NR_semtimedop_time64:
11100 return do_semtimedop(arg1, arg2, arg3, arg4, true);
11101 #endif
11102 #ifdef TARGET_NR_semctl
11103 case TARGET_NR_semctl:
11104 return do_semctl(arg1, arg2, arg3, arg4);
11105 #endif
11106 #ifdef TARGET_NR_msgctl
11107 case TARGET_NR_msgctl:
11108 return do_msgctl(arg1, arg2, arg3);
11109 #endif
11110 #ifdef TARGET_NR_msgget
11111 case TARGET_NR_msgget:
11112 return get_errno(msgget(arg1, arg2));
11113 #endif
11114 #ifdef TARGET_NR_msgrcv
11115 case TARGET_NR_msgrcv:
11116 return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
11117 #endif
11118 #ifdef TARGET_NR_msgsnd
11119 case TARGET_NR_msgsnd:
11120 return do_msgsnd(arg1, arg2, arg3, arg4);
11121 #endif
11122 #ifdef TARGET_NR_shmget
11123 case TARGET_NR_shmget:
11124 return get_errno(shmget(arg1, arg2, arg3));
11125 #endif
11126 #ifdef TARGET_NR_shmctl
11127 case TARGET_NR_shmctl:
11128 return do_shmctl(arg1, arg2, arg3);
11129 #endif
11130 #ifdef TARGET_NR_shmat
11131 case TARGET_NR_shmat:
11132 return do_shmat(cpu_env, arg1, arg2, arg3);
11133 #endif
11134 #ifdef TARGET_NR_shmdt
11135 case TARGET_NR_shmdt:
11136 return do_shmdt(arg1);
11137 #endif
11138 case TARGET_NR_fsync:
11139 return get_errno(fsync(arg1));
11140 case TARGET_NR_clone:
11141 /* Linux manages to have three different orderings for its
11142 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
11143 * match the kernel's CONFIG_CLONE_* settings.
11144 * Microblaze is further special in that it uses a sixth
11145 * implicit argument to clone for the TLS pointer.
11146 */
11147 #if defined(TARGET_MICROBLAZE)
11148 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
11149 #elif defined(TARGET_CLONE_BACKWARDS)
11150 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
11151 #elif defined(TARGET_CLONE_BACKWARDS2)
11152 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
11153 #else
11154 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
11155 #endif
11156 return ret;
11157 #ifdef __NR_exit_group
11158 /* new thread calls */
11159 case TARGET_NR_exit_group:
11160 preexit_cleanup(cpu_env, arg1);
11161 return get_errno(exit_group(arg1));
11162 #endif
11163 case TARGET_NR_setdomainname:
11164 if (!(p = lock_user_string(arg1)))
11165 return -TARGET_EFAULT;
11166 ret = get_errno(setdomainname(p, arg2));
11167 unlock_user(p, arg1, 0);
11168 return ret;
11169 case TARGET_NR_uname:
11170 /* no need to transcode because we use the linux syscall */
11171 {
11172 struct new_utsname * buf;
11173
11174 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
11175 return -TARGET_EFAULT;
11176 ret = get_errno(sys_uname(buf));
11177 if (!is_error(ret)) {
11178 /* Overwrite the native machine name with whatever is being
11179 emulated. */
11180 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
11181 sizeof(buf->machine));
11182 /* Allow the user to override the reported release. */
11183 if (qemu_uname_release && *qemu_uname_release) {
11184 g_strlcpy(buf->release, qemu_uname_release,
11185 sizeof(buf->release));
11186 }
11187 }
11188 unlock_user_struct(buf, arg1, 1);
11189 }
11190 return ret;
11191 #ifdef TARGET_I386
11192 case TARGET_NR_modify_ldt:
11193 return do_modify_ldt(cpu_env, arg1, arg2, arg3);
11194 #if !defined(TARGET_X86_64)
11195 case TARGET_NR_vm86:
11196 return do_vm86(cpu_env, arg1, arg2);
11197 #endif
11198 #endif
11199 #if defined(TARGET_NR_adjtimex)
11200 case TARGET_NR_adjtimex:
11201 {
11202 struct timex host_buf;
11203
11204 if (target_to_host_timex(&host_buf, arg1) != 0) {
11205 return -TARGET_EFAULT;
11206 }
11207 ret = get_errno(adjtimex(&host_buf));
11208 if (!is_error(ret)) {
11209 if (host_to_target_timex(arg1, &host_buf) != 0) {
11210 return -TARGET_EFAULT;
11211 }
11212 }
11213 }
11214 return ret;
11215 #endif
11216 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
11217 case TARGET_NR_clock_adjtime:
11218 {
11219 struct timex htx;
11220
11221 if (target_to_host_timex(&htx, arg2) != 0) {
11222 return -TARGET_EFAULT;
11223 }
11224 ret = get_errno(clock_adjtime(arg1, &htx));
11225 if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
11226 return -TARGET_EFAULT;
11227 }
11228 }
11229 return ret;
11230 #endif
11231 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
11232 case TARGET_NR_clock_adjtime64:
11233 {
11234 struct timex htx;
11235
11236 if (target_to_host_timex64(&htx, arg2) != 0) {
11237 return -TARGET_EFAULT;
11238 }
11239 ret = get_errno(clock_adjtime(arg1, &htx));
11240 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11241 return -TARGET_EFAULT;
11242 }
11243 }
11244 return ret;
11245 #endif
11246 case TARGET_NR_getpgid:
11247 return get_errno(getpgid(arg1));
11248 case TARGET_NR_fchdir:
11249 return get_errno(fchdir(arg1));
11250 case TARGET_NR_personality:
11251 return get_errno(personality(arg1));
11252 #ifdef TARGET_NR__llseek /* Not on alpha */
11253 case TARGET_NR__llseek:
11254 {
11255 int64_t res;
11256 #if !defined(__NR_llseek)
11257 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11258 if (res == -1) {
11259 ret = get_errno(res);
11260 } else {
11261 ret = 0;
11262 }
11263 #else
11264 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11265 #endif
11266 if ((ret == 0) && put_user_s64(res, arg4)) {
11267 return -TARGET_EFAULT;
11268 }
11269 }
11270 return ret;
11271 #endif
11272 #ifdef TARGET_NR_getdents
11273 case TARGET_NR_getdents:
11274 return do_getdents(arg1, arg2, arg3);
11275 #endif /* TARGET_NR_getdents */
11276 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11277 case TARGET_NR_getdents64:
11278 return do_getdents64(arg1, arg2, arg3);
11279 #endif /* TARGET_NR_getdents64 */
11280 #if defined(TARGET_NR__newselect)
11281 case TARGET_NR__newselect:
11282 return do_select(arg1, arg2, arg3, arg4, arg5);
11283 #endif
11284 #ifdef TARGET_NR_poll
11285 case TARGET_NR_poll:
11286 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11287 #endif
11288 #ifdef TARGET_NR_ppoll
11289 case TARGET_NR_ppoll:
11290 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11291 #endif
11292 #ifdef TARGET_NR_ppoll_time64
11293 case TARGET_NR_ppoll_time64:
11294 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11295 #endif
11296 case TARGET_NR_flock:
11297 /* NOTE: the flock constant seems to be the same for every
11298 Linux platform */
11299 return get_errno(safe_flock(arg1, arg2));
11300 case TARGET_NR_readv:
11301 {
11302 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11303 if (vec != NULL) {
11304 ret = get_errno(safe_readv(arg1, vec, arg3));
11305 unlock_iovec(vec, arg2, arg3, 1);
11306 } else {
11307 ret = -host_to_target_errno(errno);
11308 }
11309 }
11310 return ret;
11311 case TARGET_NR_writev:
11312 {
11313 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11314 if (vec != NULL) {
11315 ret = get_errno(safe_writev(arg1, vec, arg3));
11316 unlock_iovec(vec, arg2, arg3, 0);
11317 } else {
11318 ret = -host_to_target_errno(errno);
11319 }
11320 }
11321 return ret;
11322 #if defined(TARGET_NR_preadv)
11323 case TARGET_NR_preadv:
11324 {
11325 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11326 if (vec != NULL) {
11327 unsigned long low, high;
11328
11329 target_to_host_low_high(arg4, arg5, &low, &high);
11330 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11331 unlock_iovec(vec, arg2, arg3, 1);
11332 } else {
11333 ret = -host_to_target_errno(errno);
11334 }
11335 }
11336 return ret;
11337 #endif
11338 #if defined(TARGET_NR_pwritev)
11339 case TARGET_NR_pwritev:
11340 {
11341 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11342 if (vec != NULL) {
11343 unsigned long low, high;
11344
11345 target_to_host_low_high(arg4, arg5, &low, &high);
11346 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11347 unlock_iovec(vec, arg2, arg3, 0);
11348 } else {
11349 ret = -host_to_target_errno(errno);
11350 }
11351 }
11352 return ret;
11353 #endif
11354 case TARGET_NR_getsid:
11355 return get_errno(getsid(arg1));
11356 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11357 case TARGET_NR_fdatasync:
11358 return get_errno(fdatasync(arg1));
11359 #endif
11360 case TARGET_NR_sched_getaffinity:
11361 {
11362 unsigned int mask_size;
11363 unsigned long *mask;
11364
11365 /*
11366 * sched_getaffinity needs multiples of ulong, so need to take
11367 * care of mismatches between target ulong and host ulong sizes.
11368 */
11369 if (arg2 & (sizeof(abi_ulong) - 1)) {
11370 return -TARGET_EINVAL;
11371 }
11372 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11373
11374 mask = alloca(mask_size);
11375 memset(mask, 0, mask_size);
11376 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11377
11378 if (!is_error(ret)) {
11379 if (ret > arg2) {
11380 /* More data returned than the caller's buffer will fit.
11381 * This only happens if sizeof(abi_long) < sizeof(long)
11382 * and the caller passed us a buffer holding an odd number
11383 * of abi_longs. If the host kernel is actually using the
11384 * extra 4 bytes then fail EINVAL; otherwise we can just
11385 * ignore them and only copy the interesting part.
11386 */
11387 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11388 if (numcpus > arg2 * 8) {
11389 return -TARGET_EINVAL;
11390 }
11391 ret = arg2;
11392 }
11393
11394 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11395 return -TARGET_EFAULT;
11396 }
11397 }
11398 }
11399 return ret;
11400 case TARGET_NR_sched_setaffinity:
11401 {
11402 unsigned int mask_size;
11403 unsigned long *mask;
11404
11405 /*
11406 * sched_setaffinity needs multiples of ulong, so need to take
11407 * care of mismatches between target ulong and host ulong sizes.
11408 */
11409 if (arg2 & (sizeof(abi_ulong) - 1)) {
11410 return -TARGET_EINVAL;
11411 }
11412 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11413 mask = alloca(mask_size);
11414
11415 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11416 if (ret) {
11417 return ret;
11418 }
11419
11420 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11421 }
11422 case TARGET_NR_getcpu:
11423 {
11424 unsigned cpu, node;
11425 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
11426 arg2 ? &node : NULL,
11427 NULL));
11428 if (is_error(ret)) {
11429 return ret;
11430 }
11431 if (arg1 && put_user_u32(cpu, arg1)) {
11432 return -TARGET_EFAULT;
11433 }
11434 if (arg2 && put_user_u32(node, arg2)) {
11435 return -TARGET_EFAULT;
11436 }
11437 }
11438 return ret;
11439 case TARGET_NR_sched_setparam:
11440 {
11441 struct target_sched_param *target_schp;
11442 struct sched_param schp;
11443
11444 if (arg2 == 0) {
11445 return -TARGET_EINVAL;
11446 }
11447 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11448 return -TARGET_EFAULT;
11449 }
11450 schp.sched_priority = tswap32(target_schp->sched_priority);
11451 unlock_user_struct(target_schp, arg2, 0);
11452 return get_errno(sys_sched_setparam(arg1, &schp));
11453 }
11454 case TARGET_NR_sched_getparam:
11455 {
11456 struct target_sched_param *target_schp;
11457 struct sched_param schp;
11458
11459 if (arg2 == 0) {
11460 return -TARGET_EINVAL;
11461 }
11462 ret = get_errno(sys_sched_getparam(arg1, &schp));
11463 if (!is_error(ret)) {
11464 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11465 return -TARGET_EFAULT;
11466 }
11467 target_schp->sched_priority = tswap32(schp.sched_priority);
11468 unlock_user_struct(target_schp, arg2, 1);
11469 }
11470 }
11471 return ret;
11472 case TARGET_NR_sched_setscheduler:
11473 {
11474 struct target_sched_param *target_schp;
11475 struct sched_param schp;
11476 if (arg3 == 0) {
11477 return -TARGET_EINVAL;
11478 }
11479 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11480 return -TARGET_EFAULT;
11481 }
11482 schp.sched_priority = tswap32(target_schp->sched_priority);
11483 unlock_user_struct(target_schp, arg3, 0);
11484 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11485 }
11486 case TARGET_NR_sched_getscheduler:
11487 return get_errno(sys_sched_getscheduler(arg1));
11488 case TARGET_NR_sched_getattr:
11489 {
11490 struct target_sched_attr *target_scha;
11491 struct sched_attr scha;
11492 if (arg2 == 0) {
11493 return -TARGET_EINVAL;
11494 }
11495 if (arg3 > sizeof(scha)) {
11496 arg3 = sizeof(scha);
11497 }
11498 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11499 if (!is_error(ret)) {
11500 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11501 if (!target_scha) {
11502 return -TARGET_EFAULT;
11503 }
11504 target_scha->size = tswap32(scha.size);
11505 target_scha->sched_policy = tswap32(scha.sched_policy);
11506 target_scha->sched_flags = tswap64(scha.sched_flags);
11507 target_scha->sched_nice = tswap32(scha.sched_nice);
11508 target_scha->sched_priority = tswap32(scha.sched_priority);
11509 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11510 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11511 target_scha->sched_period = tswap64(scha.sched_period);
11512 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11513 target_scha->sched_util_min = tswap32(scha.sched_util_min);
11514 target_scha->sched_util_max = tswap32(scha.sched_util_max);
11515 }
11516 unlock_user(target_scha, arg2, arg3);
11517 }
11518 return ret;
11519 }
11520 case TARGET_NR_sched_setattr:
11521 {
11522 struct target_sched_attr *target_scha;
11523 struct sched_attr scha;
11524 uint32_t size;
11525 int zeroed;
11526 if (arg2 == 0) {
11527 return -TARGET_EINVAL;
11528 }
11529 if (get_user_u32(size, arg2)) {
11530 return -TARGET_EFAULT;
11531 }
11532 if (!size) {
11533 size = offsetof(struct target_sched_attr, sched_util_min);
11534 }
11535 if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11536 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11537 return -TARGET_EFAULT;
11538 }
11539 return -TARGET_E2BIG;
11540 }
11541
11542 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11543 if (zeroed < 0) {
11544 return zeroed;
11545 } else if (zeroed == 0) {
11546 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11547 return -TARGET_EFAULT;
11548 }
11549 return -TARGET_E2BIG;
11550 }
11551 if (size > sizeof(struct target_sched_attr)) {
11552 size = sizeof(struct target_sched_attr);
11553 }
11554
11555 target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11556 if (!target_scha) {
11557 return -TARGET_EFAULT;
11558 }
11559 scha.size = size;
11560 scha.sched_policy = tswap32(target_scha->sched_policy);
11561 scha.sched_flags = tswap64(target_scha->sched_flags);
11562 scha.sched_nice = tswap32(target_scha->sched_nice);
11563 scha.sched_priority = tswap32(target_scha->sched_priority);
11564 scha.sched_runtime = tswap64(target_scha->sched_runtime);
11565 scha.sched_deadline = tswap64(target_scha->sched_deadline);
11566 scha.sched_period = tswap64(target_scha->sched_period);
11567 if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11568 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11569 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11570 }
11571 unlock_user(target_scha, arg2, 0);
11572 return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11573 }
11574 case TARGET_NR_sched_yield:
11575 return get_errno(sched_yield());
11576 case TARGET_NR_sched_get_priority_max:
11577 return get_errno(sched_get_priority_max(arg1));
11578 case TARGET_NR_sched_get_priority_min:
11579 return get_errno(sched_get_priority_min(arg1));
11580 #ifdef TARGET_NR_sched_rr_get_interval
11581 case TARGET_NR_sched_rr_get_interval:
11582 {
11583 struct timespec ts;
11584 ret = get_errno(sched_rr_get_interval(arg1, &ts));
11585 if (!is_error(ret)) {
11586 ret = host_to_target_timespec(arg2, &ts);
11587 }
11588 }
11589 return ret;
11590 #endif
11591 #ifdef TARGET_NR_sched_rr_get_interval_time64
11592 case TARGET_NR_sched_rr_get_interval_time64:
11593 {
11594 struct timespec ts;
11595 ret = get_errno(sched_rr_get_interval(arg1, &ts));
11596 if (!is_error(ret)) {
11597 ret = host_to_target_timespec64(arg2, &ts);
11598 }
11599 }
11600 return ret;
11601 #endif
11602 #if defined(TARGET_NR_nanosleep)
11603 case TARGET_NR_nanosleep:
11604 {
11605 struct timespec req, rem;
11606 target_to_host_timespec(&req, arg1);
11607 ret = get_errno(safe_nanosleep(&req, &rem));
11608 if (is_error(ret) && arg2) {
11609 host_to_target_timespec(arg2, &rem);
11610 }
11611 }
11612 return ret;
11613 #endif
11614 case TARGET_NR_prctl:
11615 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11616 break;
11617 #ifdef TARGET_NR_arch_prctl
11618 case TARGET_NR_arch_prctl:
11619 return do_arch_prctl(cpu_env, arg1, arg2);
11620 #endif
11621 #ifdef TARGET_NR_pread64
11622 case TARGET_NR_pread64:
11623 if (regpairs_aligned(cpu_env, num)) {
11624 arg4 = arg5;
11625 arg5 = arg6;
11626 }
11627 if (arg2 == 0 && arg3 == 0) {
11628 /* Special-case NULL buffer and zero length, which should succeed */
11629 p = 0;
11630 } else {
11631 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11632 if (!p) {
11633 return -TARGET_EFAULT;
11634 }
11635 }
11636 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11637 unlock_user(p, arg2, ret);
11638 return ret;
11639 case TARGET_NR_pwrite64:
11640 if (regpairs_aligned(cpu_env, num)) {
11641 arg4 = arg5;
11642 arg5 = arg6;
11643 }
11644 if (arg2 == 0 && arg3 == 0) {
11645 /* Special-case NULL buffer and zero length, which should succeed */
11646 p = 0;
11647 } else {
11648 p = lock_user(VERIFY_READ, arg2, arg3, 1);
11649 if (!p) {
11650 return -TARGET_EFAULT;
11651 }
11652 }
11653 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11654 unlock_user(p, arg2, 0);
11655 return ret;
11656 #endif
11657 case TARGET_NR_getcwd:
11658 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11659 return -TARGET_EFAULT;
11660 ret = get_errno(sys_getcwd1(p, arg2));
11661 unlock_user(p, arg1, ret);
11662 return ret;
11663 case TARGET_NR_capget:
11664 case TARGET_NR_capset:
11665 {
11666 struct target_user_cap_header *target_header;
11667 struct target_user_cap_data *target_data = NULL;
11668 struct __user_cap_header_struct header;
11669 struct __user_cap_data_struct data[2];
11670 struct __user_cap_data_struct *dataptr = NULL;
11671 int i, target_datalen;
11672 int data_items = 1;
11673
11674 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11675 return -TARGET_EFAULT;
11676 }
11677 header.version = tswap32(target_header->version);
11678 header.pid = tswap32(target_header->pid);
11679
11680 if (header.version != _LINUX_CAPABILITY_VERSION) {
11681 /* Version 2 and up takes pointer to two user_data structs */
11682 data_items = 2;
11683 }
11684
11685 target_datalen = sizeof(*target_data) * data_items;
11686
11687 if (arg2) {
11688 if (num == TARGET_NR_capget) {
11689 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11690 } else {
11691 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11692 }
11693 if (!target_data) {
11694 unlock_user_struct(target_header, arg1, 0);
11695 return -TARGET_EFAULT;
11696 }
11697
11698 if (num == TARGET_NR_capset) {
11699 for (i = 0; i < data_items; i++) {
11700 data[i].effective = tswap32(target_data[i].effective);
11701 data[i].permitted = tswap32(target_data[i].permitted);
11702 data[i].inheritable = tswap32(target_data[i].inheritable);
11703 }
11704 }
11705
11706 dataptr = data;
11707 }
11708
11709 if (num == TARGET_NR_capget) {
11710 ret = get_errno(capget(&header, dataptr));
11711 } else {
11712 ret = get_errno(capset(&header, dataptr));
11713 }
11714
11715 /* The kernel always updates version for both capget and capset */
11716 target_header->version = tswap32(header.version);
11717 unlock_user_struct(target_header, arg1, 1);
11718
11719 if (arg2) {
11720 if (num == TARGET_NR_capget) {
11721 for (i = 0; i < data_items; i++) {
11722 target_data[i].effective = tswap32(data[i].effective);
11723 target_data[i].permitted = tswap32(data[i].permitted);
11724 target_data[i].inheritable = tswap32(data[i].inheritable);
11725 }
11726 unlock_user(target_data, arg2, target_datalen);
11727 } else {
11728 unlock_user(target_data, arg2, 0);
11729 }
11730 }
11731 return ret;
11732 }
11733 case TARGET_NR_sigaltstack:
11734 return do_sigaltstack(arg1, arg2, cpu_env);
11735
11736 #ifdef CONFIG_SENDFILE
11737 #ifdef TARGET_NR_sendfile
11738 case TARGET_NR_sendfile:
11739 {
11740 off_t *offp = NULL;
11741 off_t off;
11742 if (arg3) {
11743 ret = get_user_sal(off, arg3);
11744 if (is_error(ret)) {
11745 return ret;
11746 }
11747 offp = &off;
11748 }
11749 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11750 if (!is_error(ret) && arg3) {
11751 abi_long ret2 = put_user_sal(off, arg3);
11752 if (is_error(ret2)) {
11753 ret = ret2;
11754 }
11755 }
11756 return ret;
11757 }
11758 #endif
11759 #ifdef TARGET_NR_sendfile64
11760 case TARGET_NR_sendfile64:
11761 {
11762 off_t *offp = NULL;
11763 off_t off;
11764 if (arg3) {
11765 ret = get_user_s64(off, arg3);
11766 if (is_error(ret)) {
11767 return ret;
11768 }
11769 offp = &off;
11770 }
11771 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11772 if (!is_error(ret) && arg3) {
11773 abi_long ret2 = put_user_s64(off, arg3);
11774 if (is_error(ret2)) {
11775 ret = ret2;
11776 }
11777 }
11778 return ret;
11779 }
11780 #endif
11781 #endif
11782 #ifdef TARGET_NR_vfork
11783 case TARGET_NR_vfork:
11784 return get_errno(do_fork(cpu_env,
11785 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11786 0, 0, 0, 0));
11787 #endif
11788 #ifdef TARGET_NR_ugetrlimit
11789 case TARGET_NR_ugetrlimit:
11790 {
11791 struct rlimit rlim;
11792 int resource = target_to_host_resource(arg1);
11793 ret = get_errno(getrlimit(resource, &rlim));
11794 if (!is_error(ret)) {
11795 struct target_rlimit *target_rlim;
11796 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11797 return -TARGET_EFAULT;
11798 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11799 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11800 unlock_user_struct(target_rlim, arg2, 1);
11801 }
11802 return ret;
11803 }
11804 #endif
11805 #ifdef TARGET_NR_truncate64
11806 case TARGET_NR_truncate64:
11807 if (!(p = lock_user_string(arg1)))
11808 return -TARGET_EFAULT;
11809 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11810 unlock_user(p, arg1, 0);
11811 return ret;
11812 #endif
11813 #ifdef TARGET_NR_ftruncate64
11814 case TARGET_NR_ftruncate64:
11815 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11816 #endif
11817 #ifdef TARGET_NR_stat64
11818 case TARGET_NR_stat64:
11819 if (!(p = lock_user_string(arg1))) {
11820 return -TARGET_EFAULT;
11821 }
11822 ret = get_errno(stat(path(p), &st));
11823 unlock_user(p, arg1, 0);
11824 if (!is_error(ret))
11825 ret = host_to_target_stat64(cpu_env, arg2, &st);
11826 return ret;
11827 #endif
11828 #ifdef TARGET_NR_lstat64
11829 case TARGET_NR_lstat64:
11830 if (!(p = lock_user_string(arg1))) {
11831 return -TARGET_EFAULT;
11832 }
11833 ret = get_errno(lstat(path(p), &st));
11834 unlock_user(p, arg1, 0);
11835 if (!is_error(ret))
11836 ret = host_to_target_stat64(cpu_env, arg2, &st);
11837 return ret;
11838 #endif
11839 #ifdef TARGET_NR_fstat64
11840 case TARGET_NR_fstat64:
11841 ret = get_errno(fstat(arg1, &st));
11842 if (!is_error(ret))
11843 ret = host_to_target_stat64(cpu_env, arg2, &st);
11844 return ret;
11845 #endif
11846 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11847 #ifdef TARGET_NR_fstatat64
11848 case TARGET_NR_fstatat64:
11849 #endif
11850 #ifdef TARGET_NR_newfstatat
11851 case TARGET_NR_newfstatat:
11852 #endif
11853 if (!(p = lock_user_string(arg2))) {
11854 return -TARGET_EFAULT;
11855 }
11856 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11857 unlock_user(p, arg2, 0);
11858 if (!is_error(ret))
11859 ret = host_to_target_stat64(cpu_env, arg3, &st);
11860 return ret;
11861 #endif
11862 #if defined(TARGET_NR_statx)
11863 case TARGET_NR_statx:
11864 {
11865 struct target_statx *target_stx;
11866 int dirfd = arg1;
11867 int flags = arg3;
11868
11869 p = lock_user_string(arg2);
11870 if (p == NULL) {
11871 return -TARGET_EFAULT;
11872 }
11873 #if defined(__NR_statx)
11874 {
11875 /*
11876 * It is assumed that struct statx is architecture independent.
11877 */
11878 struct target_statx host_stx;
11879 int mask = arg4;
11880
11881 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11882 if (!is_error(ret)) {
11883 if (host_to_target_statx(&host_stx, arg5) != 0) {
11884 unlock_user(p, arg2, 0);
11885 return -TARGET_EFAULT;
11886 }
11887 }
11888
11889 if (ret != -TARGET_ENOSYS) {
11890 unlock_user(p, arg2, 0);
11891 return ret;
11892 }
11893 }
11894 #endif
11895 ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11896 unlock_user(p, arg2, 0);
11897
11898 if (!is_error(ret)) {
11899 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11900 return -TARGET_EFAULT;
11901 }
11902 memset(target_stx, 0, sizeof(*target_stx));
11903 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11904 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11905 __put_user(st.st_ino, &target_stx->stx_ino);
11906 __put_user(st.st_mode, &target_stx->stx_mode);
11907 __put_user(st.st_uid, &target_stx->stx_uid);
11908 __put_user(st.st_gid, &target_stx->stx_gid);
11909 __put_user(st.st_nlink, &target_stx->stx_nlink);
11910 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11911 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11912 __put_user(st.st_size, &target_stx->stx_size);
11913 __put_user(st.st_blksize, &target_stx->stx_blksize);
11914 __put_user(st.st_blocks, &target_stx->stx_blocks);
11915 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11916 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11917 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11918 unlock_user_struct(target_stx, arg5, 1);
11919 }
11920 }
11921 return ret;
11922 #endif
11923 #ifdef TARGET_NR_lchown
11924 case TARGET_NR_lchown:
11925 if (!(p = lock_user_string(arg1)))
11926 return -TARGET_EFAULT;
11927 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11928 unlock_user(p, arg1, 0);
11929 return ret;
11930 #endif
11931 #ifdef TARGET_NR_getuid
11932 case TARGET_NR_getuid:
11933 return get_errno(high2lowuid(getuid()));
11934 #endif
11935 #ifdef TARGET_NR_getgid
11936 case TARGET_NR_getgid:
11937 return get_errno(high2lowgid(getgid()));
11938 #endif
11939 #ifdef TARGET_NR_geteuid
11940 case TARGET_NR_geteuid:
11941 return get_errno(high2lowuid(geteuid()));
11942 #endif
11943 #ifdef TARGET_NR_getegid
11944 case TARGET_NR_getegid:
11945 return get_errno(high2lowgid(getegid()));
11946 #endif
11947 case TARGET_NR_setreuid:
11948 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11949 case TARGET_NR_setregid:
11950 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11951 case TARGET_NR_getgroups:
11952 { /* the same code as for TARGET_NR_getgroups32 */
11953 int gidsetsize = arg1;
11954 target_id *target_grouplist;
11955 g_autofree gid_t *grouplist = NULL;
11956 int i;
11957
11958 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11959 return -TARGET_EINVAL;
11960 }
11961 if (gidsetsize > 0) {
11962 grouplist = g_try_new(gid_t, gidsetsize);
11963 if (!grouplist) {
11964 return -TARGET_ENOMEM;
11965 }
11966 }
11967 ret = get_errno(getgroups(gidsetsize, grouplist));
11968 if (!is_error(ret) && gidsetsize > 0) {
11969 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11970 gidsetsize * sizeof(target_id), 0);
11971 if (!target_grouplist) {
11972 return -TARGET_EFAULT;
11973 }
11974 for (i = 0; i < ret; i++) {
11975 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11976 }
11977 unlock_user(target_grouplist, arg2,
11978 gidsetsize * sizeof(target_id));
11979 }
11980 return ret;
11981 }
11982 case TARGET_NR_setgroups:
11983 { /* the same code as for TARGET_NR_setgroups32 */
11984 int gidsetsize = arg1;
11985 target_id *target_grouplist;
11986 g_autofree gid_t *grouplist = NULL;
11987 int i;
11988
11989 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11990 return -TARGET_EINVAL;
11991 }
11992 if (gidsetsize > 0) {
11993 grouplist = g_try_new(gid_t, gidsetsize);
11994 if (!grouplist) {
11995 return -TARGET_ENOMEM;
11996 }
11997 target_grouplist = lock_user(VERIFY_READ, arg2,
11998 gidsetsize * sizeof(target_id), 1);
11999 if (!target_grouplist) {
12000 return -TARGET_EFAULT;
12001 }
12002 for (i = 0; i < gidsetsize; i++) {
12003 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
12004 }
12005 unlock_user(target_grouplist, arg2,
12006 gidsetsize * sizeof(target_id));
12007 }
12008 return get_errno(setgroups(gidsetsize, grouplist));
12009 }
12010 case TARGET_NR_fchown:
12011 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
12012 #if defined(TARGET_NR_fchownat)
12013 case TARGET_NR_fchownat:
12014 if (!(p = lock_user_string(arg2)))
12015 return -TARGET_EFAULT;
12016 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
12017 low2highgid(arg4), arg5));
12018 unlock_user(p, arg2, 0);
12019 return ret;
12020 #endif
12021 #ifdef TARGET_NR_setresuid
12022 case TARGET_NR_setresuid:
12023 return get_errno(sys_setresuid(low2highuid(arg1),
12024 low2highuid(arg2),
12025 low2highuid(arg3)));
12026 #endif
12027 #ifdef TARGET_NR_getresuid
12028 case TARGET_NR_getresuid:
12029 {
12030 uid_t ruid, euid, suid;
12031 ret = get_errno(getresuid(&ruid, &euid, &suid));
12032 if (!is_error(ret)) {
12033 if (put_user_id(high2lowuid(ruid), arg1)
12034 || put_user_id(high2lowuid(euid), arg2)
12035 || put_user_id(high2lowuid(suid), arg3))
12036 return -TARGET_EFAULT;
12037 }
12038 }
12039 return ret;
12040 #endif
12041 #ifdef TARGET_NR_getresgid
12042 case TARGET_NR_setresgid:
12043 return get_errno(sys_setresgid(low2highgid(arg1),
12044 low2highgid(arg2),
12045 low2highgid(arg3)));
12046 #endif
12047 #ifdef TARGET_NR_getresgid
12048 case TARGET_NR_getresgid:
12049 {
12050 gid_t rgid, egid, sgid;
12051 ret = get_errno(getresgid(&rgid, &egid, &sgid));
12052 if (!is_error(ret)) {
12053 if (put_user_id(high2lowgid(rgid), arg1)
12054 || put_user_id(high2lowgid(egid), arg2)
12055 || put_user_id(high2lowgid(sgid), arg3))
12056 return -TARGET_EFAULT;
12057 }
12058 }
12059 return ret;
12060 #endif
12061 #ifdef TARGET_NR_chown
12062 case TARGET_NR_chown:
12063 if (!(p = lock_user_string(arg1)))
12064 return -TARGET_EFAULT;
12065 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
12066 unlock_user(p, arg1, 0);
12067 return ret;
12068 #endif
12069 case TARGET_NR_setuid:
12070 return get_errno(sys_setuid(low2highuid(arg1)));
12071 case TARGET_NR_setgid:
12072 return get_errno(sys_setgid(low2highgid(arg1)));
12073 case TARGET_NR_setfsuid:
12074 return get_errno(setfsuid(arg1));
12075 case TARGET_NR_setfsgid:
12076 return get_errno(setfsgid(arg1));
12077
12078 #ifdef TARGET_NR_lchown32
12079 case TARGET_NR_lchown32:
12080 if (!(p = lock_user_string(arg1)))
12081 return -TARGET_EFAULT;
12082 ret = get_errno(lchown(p, arg2, arg3));
12083 unlock_user(p, arg1, 0);
12084 return ret;
12085 #endif
12086 #ifdef TARGET_NR_getuid32
12087 case TARGET_NR_getuid32:
12088 return get_errno(getuid());
12089 #endif
12090
12091 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
12092 /* Alpha specific */
12093 case TARGET_NR_getxuid:
12094 {
12095 uid_t euid;
12096 euid=geteuid();
12097 cpu_env->ir[IR_A4]=euid;
12098 }
12099 return get_errno(getuid());
12100 #endif
12101 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
12102 /* Alpha specific */
12103 case TARGET_NR_getxgid:
12104 {
12105 uid_t egid;
12106 egid=getegid();
12107 cpu_env->ir[IR_A4]=egid;
12108 }
12109 return get_errno(getgid());
12110 #endif
12111 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
12112 /* Alpha specific */
12113 case TARGET_NR_osf_getsysinfo:
12114 ret = -TARGET_EOPNOTSUPP;
12115 switch (arg1) {
12116 case TARGET_GSI_IEEE_FP_CONTROL:
12117 {
12118 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
12119 uint64_t swcr = cpu_env->swcr;
12120
12121 swcr &= ~SWCR_STATUS_MASK;
12122 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
12123
12124 if (put_user_u64 (swcr, arg2))
12125 return -TARGET_EFAULT;
12126 ret = 0;
12127 }
12128 break;
12129
12130 /* case GSI_IEEE_STATE_AT_SIGNAL:
12131 -- Not implemented in linux kernel.
12132 case GSI_UACPROC:
12133 -- Retrieves current unaligned access state; not much used.
12134 case GSI_PROC_TYPE:
12135 -- Retrieves implver information; surely not used.
12136 case GSI_GET_HWRPB:
12137 -- Grabs a copy of the HWRPB; surely not used.
12138 */
12139 }
12140 return ret;
12141 #endif
12142 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
12143 /* Alpha specific */
12144 case TARGET_NR_osf_setsysinfo:
12145 ret = -TARGET_EOPNOTSUPP;
12146 switch (arg1) {
12147 case TARGET_SSI_IEEE_FP_CONTROL:
12148 {
12149 uint64_t swcr, fpcr;
12150
12151 if (get_user_u64 (swcr, arg2)) {
12152 return -TARGET_EFAULT;
12153 }
12154
12155 /*
12156 * The kernel calls swcr_update_status to update the
12157 * status bits from the fpcr at every point that it
12158 * could be queried. Therefore, we store the status
12159 * bits only in FPCR.
12160 */
12161 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
12162
12163 fpcr = cpu_alpha_load_fpcr(cpu_env);
12164 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
12165 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
12166 cpu_alpha_store_fpcr(cpu_env, fpcr);
12167 ret = 0;
12168 }
12169 break;
12170
12171 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
12172 {
12173 uint64_t exc, fpcr, fex;
12174
12175 if (get_user_u64(exc, arg2)) {
12176 return -TARGET_EFAULT;
12177 }
12178 exc &= SWCR_STATUS_MASK;
12179 fpcr = cpu_alpha_load_fpcr(cpu_env);
12180
12181 /* Old exceptions are not signaled. */
12182 fex = alpha_ieee_fpcr_to_swcr(fpcr);
12183 fex = exc & ~fex;
12184 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
12185 fex &= (cpu_env)->swcr;
12186
12187 /* Update the hardware fpcr. */
12188 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
12189 cpu_alpha_store_fpcr(cpu_env, fpcr);
12190
12191 if (fex) {
12192 int si_code = TARGET_FPE_FLTUNK;
12193 target_siginfo_t info;
12194
12195 if (fex & SWCR_TRAP_ENABLE_DNO) {
12196 si_code = TARGET_FPE_FLTUND;
12197 }
12198 if (fex & SWCR_TRAP_ENABLE_INE) {
12199 si_code = TARGET_FPE_FLTRES;
12200 }
12201 if (fex & SWCR_TRAP_ENABLE_UNF) {
12202 si_code = TARGET_FPE_FLTUND;
12203 }
12204 if (fex & SWCR_TRAP_ENABLE_OVF) {
12205 si_code = TARGET_FPE_FLTOVF;
12206 }
12207 if (fex & SWCR_TRAP_ENABLE_DZE) {
12208 si_code = TARGET_FPE_FLTDIV;
12209 }
12210 if (fex & SWCR_TRAP_ENABLE_INV) {
12211 si_code = TARGET_FPE_FLTINV;
12212 }
12213
12214 info.si_signo = SIGFPE;
12215 info.si_errno = 0;
12216 info.si_code = si_code;
12217 info._sifields._sigfault._addr = (cpu_env)->pc;
12218 queue_signal(cpu_env, info.si_signo,
12219 QEMU_SI_FAULT, &info);
12220 }
12221 ret = 0;
12222 }
12223 break;
12224
12225 /* case SSI_NVPAIRS:
12226 -- Used with SSIN_UACPROC to enable unaligned accesses.
12227 case SSI_IEEE_STATE_AT_SIGNAL:
12228 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
12229 -- Not implemented in linux kernel
12230 */
12231 }
12232 return ret;
12233 #endif
12234 #ifdef TARGET_NR_osf_sigprocmask
12235 /* Alpha specific. */
12236 case TARGET_NR_osf_sigprocmask:
12237 {
12238 abi_ulong mask;
12239 int how;
12240 sigset_t set, oldset;
12241
12242 switch(arg1) {
12243 case TARGET_SIG_BLOCK:
12244 how = SIG_BLOCK;
12245 break;
12246 case TARGET_SIG_UNBLOCK:
12247 how = SIG_UNBLOCK;
12248 break;
12249 case TARGET_SIG_SETMASK:
12250 how = SIG_SETMASK;
12251 break;
12252 default:
12253 return -TARGET_EINVAL;
12254 }
12255 mask = arg2;
12256 target_to_host_old_sigset(&set, &mask);
12257 ret = do_sigprocmask(how, &set, &oldset);
12258 if (!ret) {
12259 host_to_target_old_sigset(&mask, &oldset);
12260 ret = mask;
12261 }
12262 }
12263 return ret;
12264 #endif
12265
12266 #ifdef TARGET_NR_getgid32
12267 case TARGET_NR_getgid32:
12268 return get_errno(getgid());
12269 #endif
12270 #ifdef TARGET_NR_geteuid32
12271 case TARGET_NR_geteuid32:
12272 return get_errno(geteuid());
12273 #endif
12274 #ifdef TARGET_NR_getegid32
12275 case TARGET_NR_getegid32:
12276 return get_errno(getegid());
12277 #endif
12278 #ifdef TARGET_NR_setreuid32
12279 case TARGET_NR_setreuid32:
12280 return get_errno(setreuid(arg1, arg2));
12281 #endif
12282 #ifdef TARGET_NR_setregid32
12283 case TARGET_NR_setregid32:
12284 return get_errno(setregid(arg1, arg2));
12285 #endif
12286 #ifdef TARGET_NR_getgroups32
12287 case TARGET_NR_getgroups32:
12288 { /* the same code as for TARGET_NR_getgroups */
12289 int gidsetsize = arg1;
12290 uint32_t *target_grouplist;
12291 g_autofree gid_t *grouplist = NULL;
12292 int i;
12293
12294 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12295 return -TARGET_EINVAL;
12296 }
12297 if (gidsetsize > 0) {
12298 grouplist = g_try_new(gid_t, gidsetsize);
12299 if (!grouplist) {
12300 return -TARGET_ENOMEM;
12301 }
12302 }
12303 ret = get_errno(getgroups(gidsetsize, grouplist));
12304 if (!is_error(ret) && gidsetsize > 0) {
12305 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12306 gidsetsize * 4, 0);
12307 if (!target_grouplist) {
12308 return -TARGET_EFAULT;
12309 }
12310 for (i = 0; i < ret; i++) {
12311 target_grouplist[i] = tswap32(grouplist[i]);
12312 }
12313 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12314 }
12315 return ret;
12316 }
12317 #endif
12318 #ifdef TARGET_NR_setgroups32
12319 case TARGET_NR_setgroups32:
12320 { /* the same code as for TARGET_NR_setgroups */
12321 int gidsetsize = arg1;
12322 uint32_t *target_grouplist;
12323 g_autofree gid_t *grouplist = NULL;
12324 int i;
12325
12326 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12327 return -TARGET_EINVAL;
12328 }
12329 if (gidsetsize > 0) {
12330 grouplist = g_try_new(gid_t, gidsetsize);
12331 if (!grouplist) {
12332 return -TARGET_ENOMEM;
12333 }
12334 target_grouplist = lock_user(VERIFY_READ, arg2,
12335 gidsetsize * 4, 1);
12336 if (!target_grouplist) {
12337 return -TARGET_EFAULT;
12338 }
12339 for (i = 0; i < gidsetsize; i++) {
12340 grouplist[i] = tswap32(target_grouplist[i]);
12341 }
12342 unlock_user(target_grouplist, arg2, 0);
12343 }
12344 return get_errno(setgroups(gidsetsize, grouplist));
12345 }
12346 #endif
12347 #ifdef TARGET_NR_fchown32
12348 case TARGET_NR_fchown32:
12349 return get_errno(fchown(arg1, arg2, arg3));
12350 #endif
12351 #ifdef TARGET_NR_setresuid32
12352 case TARGET_NR_setresuid32:
12353 return get_errno(sys_setresuid(arg1, arg2, arg3));
12354 #endif
12355 #ifdef TARGET_NR_getresuid32
12356 case TARGET_NR_getresuid32:
12357 {
12358 uid_t ruid, euid, suid;
12359 ret = get_errno(getresuid(&ruid, &euid, &suid));
12360 if (!is_error(ret)) {
12361 if (put_user_u32(ruid, arg1)
12362 || put_user_u32(euid, arg2)
12363 || put_user_u32(suid, arg3))
12364 return -TARGET_EFAULT;
12365 }
12366 }
12367 return ret;
12368 #endif
12369 #ifdef TARGET_NR_setresgid32
12370 case TARGET_NR_setresgid32:
12371 return get_errno(sys_setresgid(arg1, arg2, arg3));
12372 #endif
12373 #ifdef TARGET_NR_getresgid32
12374 case TARGET_NR_getresgid32:
12375 {
12376 gid_t rgid, egid, sgid;
12377 ret = get_errno(getresgid(&rgid, &egid, &sgid));
12378 if (!is_error(ret)) {
12379 if (put_user_u32(rgid, arg1)
12380 || put_user_u32(egid, arg2)
12381 || put_user_u32(sgid, arg3))
12382 return -TARGET_EFAULT;
12383 }
12384 }
12385 return ret;
12386 #endif
12387 #ifdef TARGET_NR_chown32
12388 case TARGET_NR_chown32:
12389 if (!(p = lock_user_string(arg1)))
12390 return -TARGET_EFAULT;
12391 ret = get_errno(chown(p, arg2, arg3));
12392 unlock_user(p, arg1, 0);
12393 return ret;
12394 #endif
12395 #ifdef TARGET_NR_setuid32
12396 case TARGET_NR_setuid32:
12397 return get_errno(sys_setuid(arg1));
12398 #endif
12399 #ifdef TARGET_NR_setgid32
12400 case TARGET_NR_setgid32:
12401 return get_errno(sys_setgid(arg1));
12402 #endif
12403 #ifdef TARGET_NR_setfsuid32
12404 case TARGET_NR_setfsuid32:
12405 return get_errno(setfsuid(arg1));
12406 #endif
12407 #ifdef TARGET_NR_setfsgid32
12408 case TARGET_NR_setfsgid32:
12409 return get_errno(setfsgid(arg1));
12410 #endif
12411 #ifdef TARGET_NR_mincore
12412 case TARGET_NR_mincore:
12413 {
12414 void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12415 if (!a) {
12416 return -TARGET_ENOMEM;
12417 }
12418 p = lock_user_string(arg3);
12419 if (!p) {
12420 ret = -TARGET_EFAULT;
12421 } else {
12422 ret = get_errno(mincore(a, arg2, p));
12423 unlock_user(p, arg3, ret);
12424 }
12425 unlock_user(a, arg1, 0);
12426 }
12427 return ret;
12428 #endif
12429 #ifdef TARGET_NR_arm_fadvise64_64
12430 case TARGET_NR_arm_fadvise64_64:
12431 /* arm_fadvise64_64 looks like fadvise64_64 but
12432 * with different argument order: fd, advice, offset, len
12433 * rather than the usual fd, offset, len, advice.
12434 * Note that offset and len are both 64-bit so appear as
12435 * pairs of 32-bit registers.
12436 */
12437 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12438 target_offset64(arg5, arg6), arg2);
12439 return -host_to_target_errno(ret);
12440 #endif
12441
12442 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12443
12444 #ifdef TARGET_NR_fadvise64_64
12445 case TARGET_NR_fadvise64_64:
12446 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12447 /* 6 args: fd, advice, offset (high, low), len (high, low) */
12448 ret = arg2;
12449 arg2 = arg3;
12450 arg3 = arg4;
12451 arg4 = arg5;
12452 arg5 = arg6;
12453 arg6 = ret;
12454 #else
12455 /* 6 args: fd, offset (high, low), len (high, low), advice */
12456 if (regpairs_aligned(cpu_env, num)) {
12457 /* offset is in (3,4), len in (5,6) and advice in 7 */
12458 arg2 = arg3;
12459 arg3 = arg4;
12460 arg4 = arg5;
12461 arg5 = arg6;
12462 arg6 = arg7;
12463 }
12464 #endif
12465 ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12466 target_offset64(arg4, arg5), arg6);
12467 return -host_to_target_errno(ret);
12468 #endif
12469
12470 #ifdef TARGET_NR_fadvise64
12471 case TARGET_NR_fadvise64:
12472 /* 5 args: fd, offset (high, low), len, advice */
12473 if (regpairs_aligned(cpu_env, num)) {
12474 /* offset is in (3,4), len in 5 and advice in 6 */
12475 arg2 = arg3;
12476 arg3 = arg4;
12477 arg4 = arg5;
12478 arg5 = arg6;
12479 }
12480 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12481 return -host_to_target_errno(ret);
12482 #endif
12483
12484 #else /* not a 32-bit ABI */
12485 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12486 #ifdef TARGET_NR_fadvise64_64
12487 case TARGET_NR_fadvise64_64:
12488 #endif
12489 #ifdef TARGET_NR_fadvise64
12490 case TARGET_NR_fadvise64:
12491 #endif
12492 #ifdef TARGET_S390X
12493 switch (arg4) {
12494 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12495 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12496 case 6: arg4 = POSIX_FADV_DONTNEED; break;
12497 case 7: arg4 = POSIX_FADV_NOREUSE; break;
12498 default: break;
12499 }
12500 #endif
12501 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12502 #endif
12503 #endif /* end of 64-bit ABI fadvise handling */
12504
12505 #ifdef TARGET_NR_madvise
12506 case TARGET_NR_madvise:
12507 return target_madvise(arg1, arg2, arg3);
12508 #endif
12509 #ifdef TARGET_NR_fcntl64
12510 case TARGET_NR_fcntl64:
12511 {
12512 int cmd;
12513 struct flock64 fl;
12514 from_flock64_fn *copyfrom = copy_from_user_flock64;
12515 to_flock64_fn *copyto = copy_to_user_flock64;
12516
12517 #ifdef TARGET_ARM
12518 if (!cpu_env->eabi) {
12519 copyfrom = copy_from_user_oabi_flock64;
12520 copyto = copy_to_user_oabi_flock64;
12521 }
12522 #endif
12523
12524 cmd = target_to_host_fcntl_cmd(arg2);
12525 if (cmd == -TARGET_EINVAL) {
12526 return cmd;
12527 }
12528
12529 switch(arg2) {
12530 case TARGET_F_GETLK64:
12531 ret = copyfrom(&fl, arg3);
12532 if (ret) {
12533 break;
12534 }
12535 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12536 if (ret == 0) {
12537 ret = copyto(arg3, &fl);
12538 }
12539 break;
12540
12541 case TARGET_F_SETLK64:
12542 case TARGET_F_SETLKW64:
12543 ret = copyfrom(&fl, arg3);
12544 if (ret) {
12545 break;
12546 }
12547 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12548 break;
12549 default:
12550 ret = do_fcntl(arg1, arg2, arg3);
12551 break;
12552 }
12553 return ret;
12554 }
12555 #endif
12556 #ifdef TARGET_NR_cacheflush
12557 case TARGET_NR_cacheflush:
12558 /* self-modifying code is handled automatically, so nothing needed */
12559 return 0;
12560 #endif
12561 #ifdef TARGET_NR_getpagesize
12562 case TARGET_NR_getpagesize:
12563 return TARGET_PAGE_SIZE;
12564 #endif
12565 case TARGET_NR_gettid:
12566 return get_errno(sys_gettid());
12567 #ifdef TARGET_NR_readahead
12568 case TARGET_NR_readahead:
12569 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12570 if (regpairs_aligned(cpu_env, num)) {
12571 arg2 = arg3;
12572 arg3 = arg4;
12573 arg4 = arg5;
12574 }
12575 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12576 #else
12577 ret = get_errno(readahead(arg1, arg2, arg3));
12578 #endif
12579 return ret;
12580 #endif
12581 #ifdef CONFIG_ATTR
12582 #ifdef TARGET_NR_setxattr
12583 case TARGET_NR_listxattr:
12584 case TARGET_NR_llistxattr:
12585 {
12586 void *p, *b = 0;
12587 if (arg2) {
12588 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12589 if (!b) {
12590 return -TARGET_EFAULT;
12591 }
12592 }
12593 p = lock_user_string(arg1);
12594 if (p) {
12595 if (num == TARGET_NR_listxattr) {
12596 ret = get_errno(listxattr(p, b, arg3));
12597 } else {
12598 ret = get_errno(llistxattr(p, b, arg3));
12599 }
12600 } else {
12601 ret = -TARGET_EFAULT;
12602 }
12603 unlock_user(p, arg1, 0);
12604 unlock_user(b, arg2, arg3);
12605 return ret;
12606 }
12607 case TARGET_NR_flistxattr:
12608 {
12609 void *b = 0;
12610 if (arg2) {
12611 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12612 if (!b) {
12613 return -TARGET_EFAULT;
12614 }
12615 }
12616 ret = get_errno(flistxattr(arg1, b, arg3));
12617 unlock_user(b, arg2, arg3);
12618 return ret;
12619 }
12620 case TARGET_NR_setxattr:
12621 case TARGET_NR_lsetxattr:
12622 {
12623 void *p, *n, *v = 0;
12624 if (arg3) {
12625 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12626 if (!v) {
12627 return -TARGET_EFAULT;
12628 }
12629 }
12630 p = lock_user_string(arg1);
12631 n = lock_user_string(arg2);
12632 if (p && n) {
12633 if (num == TARGET_NR_setxattr) {
12634 ret = get_errno(setxattr(p, n, v, arg4, arg5));
12635 } else {
12636 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12637 }
12638 } else {
12639 ret = -TARGET_EFAULT;
12640 }
12641 unlock_user(p, arg1, 0);
12642 unlock_user(n, arg2, 0);
12643 unlock_user(v, arg3, 0);
12644 }
12645 return ret;
12646 case TARGET_NR_fsetxattr:
12647 {
12648 void *n, *v = 0;
12649 if (arg3) {
12650 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12651 if (!v) {
12652 return -TARGET_EFAULT;
12653 }
12654 }
12655 n = lock_user_string(arg2);
12656 if (n) {
12657 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12658 } else {
12659 ret = -TARGET_EFAULT;
12660 }
12661 unlock_user(n, arg2, 0);
12662 unlock_user(v, arg3, 0);
12663 }
12664 return ret;
12665 case TARGET_NR_getxattr:
12666 case TARGET_NR_lgetxattr:
12667 {
12668 void *p, *n, *v = 0;
12669 if (arg3) {
12670 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12671 if (!v) {
12672 return -TARGET_EFAULT;
12673 }
12674 }
12675 p = lock_user_string(arg1);
12676 n = lock_user_string(arg2);
12677 if (p && n) {
12678 if (num == TARGET_NR_getxattr) {
12679 ret = get_errno(getxattr(p, n, v, arg4));
12680 } else {
12681 ret = get_errno(lgetxattr(p, n, v, arg4));
12682 }
12683 } else {
12684 ret = -TARGET_EFAULT;
12685 }
12686 unlock_user(p, arg1, 0);
12687 unlock_user(n, arg2, 0);
12688 unlock_user(v, arg3, arg4);
12689 }
12690 return ret;
12691 case TARGET_NR_fgetxattr:
12692 {
12693 void *n, *v = 0;
12694 if (arg3) {
12695 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12696 if (!v) {
12697 return -TARGET_EFAULT;
12698 }
12699 }
12700 n = lock_user_string(arg2);
12701 if (n) {
12702 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12703 } else {
12704 ret = -TARGET_EFAULT;
12705 }
12706 unlock_user(n, arg2, 0);
12707 unlock_user(v, arg3, arg4);
12708 }
12709 return ret;
12710 case TARGET_NR_removexattr:
12711 case TARGET_NR_lremovexattr:
12712 {
12713 void *p, *n;
12714 p = lock_user_string(arg1);
12715 n = lock_user_string(arg2);
12716 if (p && n) {
12717 if (num == TARGET_NR_removexattr) {
12718 ret = get_errno(removexattr(p, n));
12719 } else {
12720 ret = get_errno(lremovexattr(p, n));
12721 }
12722 } else {
12723 ret = -TARGET_EFAULT;
12724 }
12725 unlock_user(p, arg1, 0);
12726 unlock_user(n, arg2, 0);
12727 }
12728 return ret;
12729 case TARGET_NR_fremovexattr:
12730 {
12731 void *n;
12732 n = lock_user_string(arg2);
12733 if (n) {
12734 ret = get_errno(fremovexattr(arg1, n));
12735 } else {
12736 ret = -TARGET_EFAULT;
12737 }
12738 unlock_user(n, arg2, 0);
12739 }
12740 return ret;
12741 #endif
12742 #endif /* CONFIG_ATTR */
12743 #ifdef TARGET_NR_set_thread_area
12744 case TARGET_NR_set_thread_area:
12745 #if defined(TARGET_MIPS)
12746 cpu_env->active_tc.CP0_UserLocal = arg1;
12747 return 0;
12748 #elif defined(TARGET_CRIS)
12749 if (arg1 & 0xff)
12750 ret = -TARGET_EINVAL;
12751 else {
12752 cpu_env->pregs[PR_PID] = arg1;
12753 ret = 0;
12754 }
12755 return ret;
12756 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12757 return do_set_thread_area(cpu_env, arg1);
12758 #elif defined(TARGET_M68K)
12759 {
12760 TaskState *ts = cpu->opaque;
12761 ts->tp_value = arg1;
12762 return 0;
12763 }
12764 #else
12765 return -TARGET_ENOSYS;
12766 #endif
12767 #endif
12768 #ifdef TARGET_NR_get_thread_area
12769 case TARGET_NR_get_thread_area:
12770 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12771 return do_get_thread_area(cpu_env, arg1);
12772 #elif defined(TARGET_M68K)
12773 {
12774 TaskState *ts = cpu->opaque;
12775 return ts->tp_value;
12776 }
12777 #else
12778 return -TARGET_ENOSYS;
12779 #endif
12780 #endif
12781 #ifdef TARGET_NR_getdomainname
12782 case TARGET_NR_getdomainname:
12783 return -TARGET_ENOSYS;
12784 #endif
12785
12786 #ifdef TARGET_NR_clock_settime
12787 case TARGET_NR_clock_settime:
12788 {
12789 struct timespec ts;
12790
12791 ret = target_to_host_timespec(&ts, arg2);
12792 if (!is_error(ret)) {
12793 ret = get_errno(clock_settime(arg1, &ts));
12794 }
12795 return ret;
12796 }
12797 #endif
12798 #ifdef TARGET_NR_clock_settime64
12799 case TARGET_NR_clock_settime64:
12800 {
12801 struct timespec ts;
12802
12803 ret = target_to_host_timespec64(&ts, arg2);
12804 if (!is_error(ret)) {
12805 ret = get_errno(clock_settime(arg1, &ts));
12806 }
12807 return ret;
12808 }
12809 #endif
12810 #ifdef TARGET_NR_clock_gettime
12811 case TARGET_NR_clock_gettime:
12812 {
12813 struct timespec ts;
12814 ret = get_errno(clock_gettime(arg1, &ts));
12815 if (!is_error(ret)) {
12816 ret = host_to_target_timespec(arg2, &ts);
12817 }
12818 return ret;
12819 }
12820 #endif
12821 #ifdef TARGET_NR_clock_gettime64
12822 case TARGET_NR_clock_gettime64:
12823 {
12824 struct timespec ts;
12825 ret = get_errno(clock_gettime(arg1, &ts));
12826 if (!is_error(ret)) {
12827 ret = host_to_target_timespec64(arg2, &ts);
12828 }
12829 return ret;
12830 }
12831 #endif
12832 #ifdef TARGET_NR_clock_getres
12833 case TARGET_NR_clock_getres:
12834 {
12835 struct timespec ts;
12836 ret = get_errno(clock_getres(arg1, &ts));
12837 if (!is_error(ret)) {
12838 host_to_target_timespec(arg2, &ts);
12839 }
12840 return ret;
12841 }
12842 #endif
12843 #ifdef TARGET_NR_clock_getres_time64
12844 case TARGET_NR_clock_getres_time64:
12845 {
12846 struct timespec ts;
12847 ret = get_errno(clock_getres(arg1, &ts));
12848 if (!is_error(ret)) {
12849 host_to_target_timespec64(arg2, &ts);
12850 }
12851 return ret;
12852 }
12853 #endif
12854 #ifdef TARGET_NR_clock_nanosleep
12855 case TARGET_NR_clock_nanosleep:
12856 {
12857 struct timespec ts;
12858 if (target_to_host_timespec(&ts, arg3)) {
12859 return -TARGET_EFAULT;
12860 }
12861 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12862 &ts, arg4 ? &ts : NULL));
12863 /*
12864 * if the call is interrupted by a signal handler, it fails
12865 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12866 * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12867 */
12868 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12869 host_to_target_timespec(arg4, &ts)) {
12870 return -TARGET_EFAULT;
12871 }
12872
12873 return ret;
12874 }
12875 #endif
12876 #ifdef TARGET_NR_clock_nanosleep_time64
12877 case TARGET_NR_clock_nanosleep_time64:
12878 {
12879 struct timespec ts;
12880
12881 if (target_to_host_timespec64(&ts, arg3)) {
12882 return -TARGET_EFAULT;
12883 }
12884
12885 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12886 &ts, arg4 ? &ts : NULL));
12887
12888 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12889 host_to_target_timespec64(arg4, &ts)) {
12890 return -TARGET_EFAULT;
12891 }
12892 return ret;
12893 }
12894 #endif
12895
12896 #if defined(TARGET_NR_set_tid_address)
12897 case TARGET_NR_set_tid_address:
12898 {
12899 TaskState *ts = cpu->opaque;
12900 ts->child_tidptr = arg1;
12901 /* do not call host set_tid_address() syscall, instead return tid() */
12902 return get_errno(sys_gettid());
12903 }
12904 #endif
12905
12906 case TARGET_NR_tkill:
12907 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12908
12909 case TARGET_NR_tgkill:
12910 return get_errno(safe_tgkill((int)arg1, (int)arg2,
12911 target_to_host_signal(arg3)));
12912
12913 #ifdef TARGET_NR_set_robust_list
12914 case TARGET_NR_set_robust_list:
12915 case TARGET_NR_get_robust_list:
12916 /* The ABI for supporting robust futexes has userspace pass
12917 * the kernel a pointer to a linked list which is updated by
12918 * userspace after the syscall; the list is walked by the kernel
12919 * when the thread exits. Since the linked list in QEMU guest
12920 * memory isn't a valid linked list for the host and we have
12921 * no way to reliably intercept the thread-death event, we can't
12922 * support these. Silently return ENOSYS so that guest userspace
12923 * falls back to a non-robust futex implementation (which should
12924 * be OK except in the corner case of the guest crashing while
12925 * holding a mutex that is shared with another process via
12926 * shared memory).
12927 */
12928 return -TARGET_ENOSYS;
12929 #endif
12930
12931 #if defined(TARGET_NR_utimensat)
12932 case TARGET_NR_utimensat:
12933 {
12934 struct timespec *tsp, ts[2];
12935 if (!arg3) {
12936 tsp = NULL;
12937 } else {
12938 if (target_to_host_timespec(ts, arg3)) {
12939 return -TARGET_EFAULT;
12940 }
12941 if (target_to_host_timespec(ts + 1, arg3 +
12942 sizeof(struct target_timespec))) {
12943 return -TARGET_EFAULT;
12944 }
12945 tsp = ts;
12946 }
12947 if (!arg2)
12948 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12949 else {
12950 if (!(p = lock_user_string(arg2))) {
12951 return -TARGET_EFAULT;
12952 }
12953 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12954 unlock_user(p, arg2, 0);
12955 }
12956 }
12957 return ret;
12958 #endif
12959 #ifdef TARGET_NR_utimensat_time64
12960 case TARGET_NR_utimensat_time64:
12961 {
12962 struct timespec *tsp, ts[2];
12963 if (!arg3) {
12964 tsp = NULL;
12965 } else {
12966 if (target_to_host_timespec64(ts, arg3)) {
12967 return -TARGET_EFAULT;
12968 }
12969 if (target_to_host_timespec64(ts + 1, arg3 +
12970 sizeof(struct target__kernel_timespec))) {
12971 return -TARGET_EFAULT;
12972 }
12973 tsp = ts;
12974 }
12975 if (!arg2)
12976 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12977 else {
12978 p = lock_user_string(arg2);
12979 if (!p) {
12980 return -TARGET_EFAULT;
12981 }
12982 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12983 unlock_user(p, arg2, 0);
12984 }
12985 }
12986 return ret;
12987 #endif
12988 #ifdef TARGET_NR_futex
12989 case TARGET_NR_futex:
12990 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12991 #endif
12992 #ifdef TARGET_NR_futex_time64
12993 case TARGET_NR_futex_time64:
12994 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12995 #endif
12996 #ifdef CONFIG_INOTIFY
12997 #if defined(TARGET_NR_inotify_init)
12998 case TARGET_NR_inotify_init:
12999 ret = get_errno(inotify_init());
13000 if (ret >= 0) {
13001 fd_trans_register(ret, &target_inotify_trans);
13002 }
13003 return ret;
13004 #endif
13005 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
13006 case TARGET_NR_inotify_init1:
13007 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
13008 fcntl_flags_tbl)));
13009 if (ret >= 0) {
13010 fd_trans_register(ret, &target_inotify_trans);
13011 }
13012 return ret;
13013 #endif
13014 #if defined(TARGET_NR_inotify_add_watch)
13015 case TARGET_NR_inotify_add_watch:
13016 p = lock_user_string(arg2);
13017 ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
13018 unlock_user(p, arg2, 0);
13019 return ret;
13020 #endif
13021 #if defined(TARGET_NR_inotify_rm_watch)
13022 case TARGET_NR_inotify_rm_watch:
13023 return get_errno(inotify_rm_watch(arg1, arg2));
13024 #endif
13025 #endif
13026
13027 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
13028 case TARGET_NR_mq_open:
13029 {
13030 struct mq_attr posix_mq_attr;
13031 struct mq_attr *pposix_mq_attr;
13032 int host_flags;
13033
13034 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
13035 pposix_mq_attr = NULL;
13036 if (arg4) {
13037 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
13038 return -TARGET_EFAULT;
13039 }
13040 pposix_mq_attr = &posix_mq_attr;
13041 }
13042 p = lock_user_string(arg1 - 1);
13043 if (!p) {
13044 return -TARGET_EFAULT;
13045 }
13046 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
13047 unlock_user (p, arg1, 0);
13048 }
13049 return ret;
13050
13051 case TARGET_NR_mq_unlink:
13052 p = lock_user_string(arg1 - 1);
13053 if (!p) {
13054 return -TARGET_EFAULT;
13055 }
13056 ret = get_errno(mq_unlink(p));
13057 unlock_user (p, arg1, 0);
13058 return ret;
13059
13060 #ifdef TARGET_NR_mq_timedsend
13061 case TARGET_NR_mq_timedsend:
13062 {
13063 struct timespec ts;
13064
13065 p = lock_user (VERIFY_READ, arg2, arg3, 1);
13066 if (arg5 != 0) {
13067 if (target_to_host_timespec(&ts, arg5)) {
13068 return -TARGET_EFAULT;
13069 }
13070 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
13071 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
13072 return -TARGET_EFAULT;
13073 }
13074 } else {
13075 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
13076 }
13077 unlock_user (p, arg2, arg3);
13078 }
13079 return ret;
13080 #endif
13081 #ifdef TARGET_NR_mq_timedsend_time64
13082 case TARGET_NR_mq_timedsend_time64:
13083 {
13084 struct timespec ts;
13085
13086 p = lock_user(VERIFY_READ, arg2, arg3, 1);
13087 if (arg5 != 0) {
13088 if (target_to_host_timespec64(&ts, arg5)) {
13089 return -TARGET_EFAULT;
13090 }
13091 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
13092 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13093 return -TARGET_EFAULT;
13094 }
13095 } else {
13096 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
13097 }
13098 unlock_user(p, arg2, arg3);
13099 }
13100 return ret;
13101 #endif
13102
13103 #ifdef TARGET_NR_mq_timedreceive
13104 case TARGET_NR_mq_timedreceive:
13105 {
13106 struct timespec ts;
13107 unsigned int prio;
13108
13109 p = lock_user (VERIFY_READ, arg2, arg3, 1);
13110 if (arg5 != 0) {
13111 if (target_to_host_timespec(&ts, arg5)) {
13112 return -TARGET_EFAULT;
13113 }
13114 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13115 &prio, &ts));
13116 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
13117 return -TARGET_EFAULT;
13118 }
13119 } else {
13120 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13121 &prio, NULL));
13122 }
13123 unlock_user (p, arg2, arg3);
13124 if (arg4 != 0)
13125 put_user_u32(prio, arg4);
13126 }
13127 return ret;
13128 #endif
13129 #ifdef TARGET_NR_mq_timedreceive_time64
13130 case TARGET_NR_mq_timedreceive_time64:
13131 {
13132 struct timespec ts;
13133 unsigned int prio;
13134
13135 p = lock_user(VERIFY_READ, arg2, arg3, 1);
13136 if (arg5 != 0) {
13137 if (target_to_host_timespec64(&ts, arg5)) {
13138 return -TARGET_EFAULT;
13139 }
13140 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13141 &prio, &ts));
13142 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
13143 return -TARGET_EFAULT;
13144 }
13145 } else {
13146 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
13147 &prio, NULL));
13148 }
13149 unlock_user(p, arg2, arg3);
13150 if (arg4 != 0) {
13151 put_user_u32(prio, arg4);
13152 }
13153 }
13154 return ret;
13155 #endif
13156
13157 /* Not implemented for now... */
13158 /* case TARGET_NR_mq_notify: */
13159 /* break; */
13160
13161 case TARGET_NR_mq_getsetattr:
13162 {
13163 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
13164 ret = 0;
13165 if (arg2 != 0) {
13166 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
13167 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
13168 &posix_mq_attr_out));
13169 } else if (arg3 != 0) {
13170 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
13171 }
13172 if (ret == 0 && arg3 != 0) {
13173 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
13174 }
13175 }
13176 return ret;
13177 #endif
13178
13179 #ifdef CONFIG_SPLICE
13180 #ifdef TARGET_NR_tee
13181 case TARGET_NR_tee:
13182 {
13183 ret = get_errno(tee(arg1,arg2,arg3,arg4));
13184 }
13185 return ret;
13186 #endif
13187 #ifdef TARGET_NR_splice
13188 case TARGET_NR_splice:
13189 {
13190 loff_t loff_in, loff_out;
13191 loff_t *ploff_in = NULL, *ploff_out = NULL;
13192 if (arg2) {
13193 if (get_user_u64(loff_in, arg2)) {
13194 return -TARGET_EFAULT;
13195 }
13196 ploff_in = &loff_in;
13197 }
13198 if (arg4) {
13199 if (get_user_u64(loff_out, arg4)) {
13200 return -TARGET_EFAULT;
13201 }
13202 ploff_out = &loff_out;
13203 }
13204 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
13205 if (arg2) {
13206 if (put_user_u64(loff_in, arg2)) {
13207 return -TARGET_EFAULT;
13208 }
13209 }
13210 if (arg4) {
13211 if (put_user_u64(loff_out, arg4)) {
13212 return -TARGET_EFAULT;
13213 }
13214 }
13215 }
13216 return ret;
13217 #endif
13218 #ifdef TARGET_NR_vmsplice
13219 case TARGET_NR_vmsplice:
13220 {
13221 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
13222 if (vec != NULL) {
13223 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
13224 unlock_iovec(vec, arg2, arg3, 0);
13225 } else {
13226 ret = -host_to_target_errno(errno);
13227 }
13228 }
13229 return ret;
13230 #endif
13231 #endif /* CONFIG_SPLICE */
13232 #ifdef CONFIG_EVENTFD
13233 #if defined(TARGET_NR_eventfd)
13234 case TARGET_NR_eventfd:
13235 ret = get_errno(eventfd(arg1, 0));
13236 if (ret >= 0) {
13237 fd_trans_register(ret, &target_eventfd_trans);
13238 }
13239 return ret;
13240 #endif
13241 #if defined(TARGET_NR_eventfd2)
13242 case TARGET_NR_eventfd2:
13243 {
13244 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13245 if (arg2 & TARGET_O_NONBLOCK) {
13246 host_flags |= O_NONBLOCK;
13247 }
13248 if (arg2 & TARGET_O_CLOEXEC) {
13249 host_flags |= O_CLOEXEC;
13250 }
13251 ret = get_errno(eventfd(arg1, host_flags));
13252 if (ret >= 0) {
13253 fd_trans_register(ret, &target_eventfd_trans);
13254 }
13255 return ret;
13256 }
13257 #endif
13258 #endif /* CONFIG_EVENTFD */
13259 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13260 case TARGET_NR_fallocate:
13261 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13262 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13263 target_offset64(arg5, arg6)));
13264 #else
13265 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13266 #endif
13267 return ret;
13268 #endif
13269 #if defined(CONFIG_SYNC_FILE_RANGE)
13270 #if defined(TARGET_NR_sync_file_range)
13271 case TARGET_NR_sync_file_range:
13272 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13273 #if defined(TARGET_MIPS)
13274 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13275 target_offset64(arg5, arg6), arg7));
13276 #else
13277 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13278 target_offset64(arg4, arg5), arg6));
13279 #endif /* !TARGET_MIPS */
13280 #else
13281 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13282 #endif
13283 return ret;
13284 #endif
13285 #if defined(TARGET_NR_sync_file_range2) || \
13286 defined(TARGET_NR_arm_sync_file_range)
13287 #if defined(TARGET_NR_sync_file_range2)
13288 case TARGET_NR_sync_file_range2:
13289 #endif
13290 #if defined(TARGET_NR_arm_sync_file_range)
13291 case TARGET_NR_arm_sync_file_range:
13292 #endif
13293 /* This is like sync_file_range but the arguments are reordered */
13294 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13295 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13296 target_offset64(arg5, arg6), arg2));
13297 #else
13298 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13299 #endif
13300 return ret;
13301 #endif
13302 #endif
13303 #if defined(TARGET_NR_signalfd4)
13304 case TARGET_NR_signalfd4:
13305 return do_signalfd4(arg1, arg2, arg4);
13306 #endif
13307 #if defined(TARGET_NR_signalfd)
13308 case TARGET_NR_signalfd:
13309 return do_signalfd4(arg1, arg2, 0);
13310 #endif
13311 #if defined(CONFIG_EPOLL)
13312 #if defined(TARGET_NR_epoll_create)
13313 case TARGET_NR_epoll_create:
13314 return get_errno(epoll_create(arg1));
13315 #endif
13316 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13317 case TARGET_NR_epoll_create1:
13318 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13319 #endif
13320 #if defined(TARGET_NR_epoll_ctl)
13321 case TARGET_NR_epoll_ctl:
13322 {
13323 struct epoll_event ep;
13324 struct epoll_event *epp = 0;
13325 if (arg4) {
13326 if (arg2 != EPOLL_CTL_DEL) {
13327 struct target_epoll_event *target_ep;
13328 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13329 return -TARGET_EFAULT;
13330 }
13331 ep.events = tswap32(target_ep->events);
13332 /*
13333 * The epoll_data_t union is just opaque data to the kernel,
13334 * so we transfer all 64 bits across and need not worry what
13335 * actual data type it is.
13336 */
13337 ep.data.u64 = tswap64(target_ep->data.u64);
13338 unlock_user_struct(target_ep, arg4, 0);
13339 }
13340 /*
13341 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13342 * non-null pointer, even though this argument is ignored.
13343 *
13344 */
13345 epp = &ep;
13346 }
13347 return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13348 }
13349 #endif
13350
13351 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13352 #if defined(TARGET_NR_epoll_wait)
13353 case TARGET_NR_epoll_wait:
13354 #endif
13355 #if defined(TARGET_NR_epoll_pwait)
13356 case TARGET_NR_epoll_pwait:
13357 #endif
13358 {
13359 struct target_epoll_event *target_ep;
13360 struct epoll_event *ep;
13361 int epfd = arg1;
13362 int maxevents = arg3;
13363 int timeout = arg4;
13364
13365 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13366 return -TARGET_EINVAL;
13367 }
13368
13369 target_ep = lock_user(VERIFY_WRITE, arg2,
13370 maxevents * sizeof(struct target_epoll_event), 1);
13371 if (!target_ep) {
13372 return -TARGET_EFAULT;
13373 }
13374
13375 ep = g_try_new(struct epoll_event, maxevents);
13376 if (!ep) {
13377 unlock_user(target_ep, arg2, 0);
13378 return -TARGET_ENOMEM;
13379 }
13380
13381 switch (num) {
13382 #if defined(TARGET_NR_epoll_pwait)
13383 case TARGET_NR_epoll_pwait:
13384 {
13385 sigset_t *set = NULL;
13386
13387 if (arg5) {
13388 ret = process_sigsuspend_mask(&set, arg5, arg6);
13389 if (ret != 0) {
13390 break;
13391 }
13392 }
13393
13394 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13395 set, SIGSET_T_SIZE));
13396
13397 if (set) {
13398 finish_sigsuspend_mask(ret);
13399 }
13400 break;
13401 }
13402 #endif
13403 #if defined(TARGET_NR_epoll_wait)
13404 case TARGET_NR_epoll_wait:
13405 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13406 NULL, 0));
13407 break;
13408 #endif
13409 default:
13410 ret = -TARGET_ENOSYS;
13411 }
13412 if (!is_error(ret)) {
13413 int i;
13414 for (i = 0; i < ret; i++) {
13415 target_ep[i].events = tswap32(ep[i].events);
13416 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13417 }
13418 unlock_user(target_ep, arg2,
13419 ret * sizeof(struct target_epoll_event));
13420 } else {
13421 unlock_user(target_ep, arg2, 0);
13422 }
13423 g_free(ep);
13424 return ret;
13425 }
13426 #endif
13427 #endif
13428 #ifdef TARGET_NR_prlimit64
13429 case TARGET_NR_prlimit64:
13430 {
13431 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13432 struct target_rlimit64 *target_rnew, *target_rold;
13433 struct host_rlimit64 rnew, rold, *rnewp = 0;
13434 int resource = target_to_host_resource(arg2);
13435
13436 if (arg3 && (resource != RLIMIT_AS &&
13437 resource != RLIMIT_DATA &&
13438 resource != RLIMIT_STACK)) {
13439 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13440 return -TARGET_EFAULT;
13441 }
13442 __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13443 __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13444 unlock_user_struct(target_rnew, arg3, 0);
13445 rnewp = &rnew;
13446 }
13447
13448 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13449 if (!is_error(ret) && arg4) {
13450 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13451 return -TARGET_EFAULT;
13452 }
13453 __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13454 __put_user(rold.rlim_max, &target_rold->rlim_max);
13455 unlock_user_struct(target_rold, arg4, 1);
13456 }
13457 return ret;
13458 }
13459 #endif
13460 #ifdef TARGET_NR_gethostname
13461 case TARGET_NR_gethostname:
13462 {
13463 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13464 if (name) {
13465 ret = get_errno(gethostname(name, arg2));
13466 unlock_user(name, arg1, arg2);
13467 } else {
13468 ret = -TARGET_EFAULT;
13469 }
13470 return ret;
13471 }
13472 #endif
13473 #ifdef TARGET_NR_atomic_cmpxchg_32
13474 case TARGET_NR_atomic_cmpxchg_32:
13475 {
13476 /* should use start_exclusive from main.c */
13477 abi_ulong mem_value;
13478 if (get_user_u32(mem_value, arg6)) {
13479 target_siginfo_t info;
13480 info.si_signo = SIGSEGV;
13481 info.si_errno = 0;
13482 info.si_code = TARGET_SEGV_MAPERR;
13483 info._sifields._sigfault._addr = arg6;
13484 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13485 ret = 0xdeadbeef;
13486
13487 }
13488 if (mem_value == arg2)
13489 put_user_u32(arg1, arg6);
13490 return mem_value;
13491 }
13492 #endif
13493 #ifdef TARGET_NR_atomic_barrier
13494 case TARGET_NR_atomic_barrier:
13495 /* Like the kernel implementation and the
13496 qemu arm barrier, no-op this? */
13497 return 0;
13498 #endif
13499
13500 #ifdef TARGET_NR_timer_create
13501 case TARGET_NR_timer_create:
13502 {
13503 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13504
13505 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13506
13507 int clkid = arg1;
13508 int timer_index = next_free_host_timer();
13509
13510 if (timer_index < 0) {
13511 ret = -TARGET_EAGAIN;
13512 } else {
13513 timer_t *phtimer = g_posix_timers + timer_index;
13514
13515 if (arg2) {
13516 phost_sevp = &host_sevp;
13517 ret = target_to_host_sigevent(phost_sevp, arg2);
13518 if (ret != 0) {
13519 free_host_timer_slot(timer_index);
13520 return ret;
13521 }
13522 }
13523
13524 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13525 if (ret) {
13526 free_host_timer_slot(timer_index);
13527 } else {
13528 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13529 timer_delete(*phtimer);
13530 free_host_timer_slot(timer_index);
13531 return -TARGET_EFAULT;
13532 }
13533 }
13534 }
13535 return ret;
13536 }
13537 #endif
13538
13539 #ifdef TARGET_NR_timer_settime
13540 case TARGET_NR_timer_settime:
13541 {
13542 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13543 * struct itimerspec * old_value */
13544 target_timer_t timerid = get_timer_id(arg1);
13545
13546 if (timerid < 0) {
13547 ret = timerid;
13548 } else if (arg3 == 0) {
13549 ret = -TARGET_EINVAL;
13550 } else {
13551 timer_t htimer = g_posix_timers[timerid];
13552 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13553
13554 if (target_to_host_itimerspec(&hspec_new, arg3)) {
13555 return -TARGET_EFAULT;
13556 }
13557 ret = get_errno(
13558 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13559 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13560 return -TARGET_EFAULT;
13561 }
13562 }
13563 return ret;
13564 }
13565 #endif
13566
13567 #ifdef TARGET_NR_timer_settime64
13568 case TARGET_NR_timer_settime64:
13569 {
13570 target_timer_t timerid = get_timer_id(arg1);
13571
13572 if (timerid < 0) {
13573 ret = timerid;
13574 } else if (arg3 == 0) {
13575 ret = -TARGET_EINVAL;
13576 } else {
13577 timer_t htimer = g_posix_timers[timerid];
13578 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13579
13580 if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13581 return -TARGET_EFAULT;
13582 }
13583 ret = get_errno(
13584 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13585 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13586 return -TARGET_EFAULT;
13587 }
13588 }
13589 return ret;
13590 }
13591 #endif
13592
13593 #ifdef TARGET_NR_timer_gettime
13594 case TARGET_NR_timer_gettime:
13595 {
13596 /* args: timer_t timerid, struct itimerspec *curr_value */
13597 target_timer_t timerid = get_timer_id(arg1);
13598
13599 if (timerid < 0) {
13600 ret = timerid;
13601 } else if (!arg2) {
13602 ret = -TARGET_EFAULT;
13603 } else {
13604 timer_t htimer = g_posix_timers[timerid];
13605 struct itimerspec hspec;
13606 ret = get_errno(timer_gettime(htimer, &hspec));
13607
13608 if (host_to_target_itimerspec(arg2, &hspec)) {
13609 ret = -TARGET_EFAULT;
13610 }
13611 }
13612 return ret;
13613 }
13614 #endif
13615
13616 #ifdef TARGET_NR_timer_gettime64
13617 case TARGET_NR_timer_gettime64:
13618 {
13619 /* args: timer_t timerid, struct itimerspec64 *curr_value */
13620 target_timer_t timerid = get_timer_id(arg1);
13621
13622 if (timerid < 0) {
13623 ret = timerid;
13624 } else if (!arg2) {
13625 ret = -TARGET_EFAULT;
13626 } else {
13627 timer_t htimer = g_posix_timers[timerid];
13628 struct itimerspec hspec;
13629 ret = get_errno(timer_gettime(htimer, &hspec));
13630
13631 if (host_to_target_itimerspec64(arg2, &hspec)) {
13632 ret = -TARGET_EFAULT;
13633 }
13634 }
13635 return ret;
13636 }
13637 #endif
13638
13639 #ifdef TARGET_NR_timer_getoverrun
13640 case TARGET_NR_timer_getoverrun:
13641 {
13642 /* args: timer_t timerid */
13643 target_timer_t timerid = get_timer_id(arg1);
13644
13645 if (timerid < 0) {
13646 ret = timerid;
13647 } else {
13648 timer_t htimer = g_posix_timers[timerid];
13649 ret = get_errno(timer_getoverrun(htimer));
13650 }
13651 return ret;
13652 }
13653 #endif
13654
13655 #ifdef TARGET_NR_timer_delete
13656 case TARGET_NR_timer_delete:
13657 {
13658 /* args: timer_t timerid */
13659 target_timer_t timerid = get_timer_id(arg1);
13660
13661 if (timerid < 0) {
13662 ret = timerid;
13663 } else {
13664 timer_t htimer = g_posix_timers[timerid];
13665 ret = get_errno(timer_delete(htimer));
13666 free_host_timer_slot(timerid);
13667 }
13668 return ret;
13669 }
13670 #endif
13671
13672 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13673 case TARGET_NR_timerfd_create:
13674 ret = get_errno(timerfd_create(arg1,
13675 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13676 if (ret >= 0) {
13677 fd_trans_register(ret, &target_timerfd_trans);
13678 }
13679 return ret;
13680 #endif
13681
13682 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13683 case TARGET_NR_timerfd_gettime:
13684 {
13685 struct itimerspec its_curr;
13686
13687 ret = get_errno(timerfd_gettime(arg1, &its_curr));
13688
13689 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13690 return -TARGET_EFAULT;
13691 }
13692 }
13693 return ret;
13694 #endif
13695
13696 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13697 case TARGET_NR_timerfd_gettime64:
13698 {
13699 struct itimerspec its_curr;
13700
13701 ret = get_errno(timerfd_gettime(arg1, &its_curr));
13702
13703 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13704 return -TARGET_EFAULT;
13705 }
13706 }
13707 return ret;
13708 #endif
13709
13710 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13711 case TARGET_NR_timerfd_settime:
13712 {
13713 struct itimerspec its_new, its_old, *p_new;
13714
13715 if (arg3) {
13716 if (target_to_host_itimerspec(&its_new, arg3)) {
13717 return -TARGET_EFAULT;
13718 }
13719 p_new = &its_new;
13720 } else {
13721 p_new = NULL;
13722 }
13723
13724 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13725
13726 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13727 return -TARGET_EFAULT;
13728 }
13729 }
13730 return ret;
13731 #endif
13732
13733 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13734 case TARGET_NR_timerfd_settime64:
13735 {
13736 struct itimerspec its_new, its_old, *p_new;
13737
13738 if (arg3) {
13739 if (target_to_host_itimerspec64(&its_new, arg3)) {
13740 return -TARGET_EFAULT;
13741 }
13742 p_new = &its_new;
13743 } else {
13744 p_new = NULL;
13745 }
13746
13747 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13748
13749 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13750 return -TARGET_EFAULT;
13751 }
13752 }
13753 return ret;
13754 #endif
13755
13756 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13757 case TARGET_NR_ioprio_get:
13758 return get_errno(ioprio_get(arg1, arg2));
13759 #endif
13760
13761 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13762 case TARGET_NR_ioprio_set:
13763 return get_errno(ioprio_set(arg1, arg2, arg3));
13764 #endif
13765
13766 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13767 case TARGET_NR_setns:
13768 return get_errno(setns(arg1, arg2));
13769 #endif
13770 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13771 case TARGET_NR_unshare:
13772 return get_errno(unshare(arg1));
13773 #endif
13774 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13775 case TARGET_NR_kcmp:
13776 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13777 #endif
13778 #ifdef TARGET_NR_swapcontext
13779 case TARGET_NR_swapcontext:
13780 /* PowerPC specific. */
13781 return do_swapcontext(cpu_env, arg1, arg2, arg3);
13782 #endif
13783 #ifdef TARGET_NR_memfd_create
13784 case TARGET_NR_memfd_create:
13785 p = lock_user_string(arg1);
13786 if (!p) {
13787 return -TARGET_EFAULT;
13788 }
13789 ret = get_errno(memfd_create(p, arg2));
13790 fd_trans_unregister(ret);
13791 unlock_user(p, arg1, 0);
13792 return ret;
13793 #endif
13794 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13795 case TARGET_NR_membarrier:
13796 return get_errno(membarrier(arg1, arg2));
13797 #endif
13798
13799 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13800 case TARGET_NR_copy_file_range:
13801 {
13802 loff_t inoff, outoff;
13803 loff_t *pinoff = NULL, *poutoff = NULL;
13804
13805 if (arg2) {
13806 if (get_user_u64(inoff, arg2)) {
13807 return -TARGET_EFAULT;
13808 }
13809 pinoff = &inoff;
13810 }
13811 if (arg4) {
13812 if (get_user_u64(outoff, arg4)) {
13813 return -TARGET_EFAULT;
13814 }
13815 poutoff = &outoff;
13816 }
13817 /* Do not sign-extend the count parameter. */
13818 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13819 (abi_ulong)arg5, arg6));
13820 if (!is_error(ret) && ret > 0) {
13821 if (arg2) {
13822 if (put_user_u64(inoff, arg2)) {
13823 return -TARGET_EFAULT;
13824 }
13825 }
13826 if (arg4) {
13827 if (put_user_u64(outoff, arg4)) {
13828 return -TARGET_EFAULT;
13829 }
13830 }
13831 }
13832 }
13833 return ret;
13834 #endif
13835
13836 #if defined(TARGET_NR_pivot_root)
13837 case TARGET_NR_pivot_root:
13838 {
13839 void *p2;
13840 p = lock_user_string(arg1); /* new_root */
13841 p2 = lock_user_string(arg2); /* put_old */
13842 if (!p || !p2) {
13843 ret = -TARGET_EFAULT;
13844 } else {
13845 ret = get_errno(pivot_root(p, p2));
13846 }
13847 unlock_user(p2, arg2, 0);
13848 unlock_user(p, arg1, 0);
13849 }
13850 return ret;
13851 #endif
13852
13853 #if defined(TARGET_NR_riscv_hwprobe)
13854 case TARGET_NR_riscv_hwprobe:
13855 return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13856 #endif
13857
13858 default:
13859 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13860 return -TARGET_ENOSYS;
13861 }
13862 return ret;
13863 }
13864
13865 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13866 abi_long arg2, abi_long arg3, abi_long arg4,
13867 abi_long arg5, abi_long arg6, abi_long arg7,
13868 abi_long arg8)
13869 {
13870 CPUState *cpu = env_cpu(cpu_env);
13871 abi_long ret;
13872
13873 #ifdef DEBUG_ERESTARTSYS
13874 /* Debug-only code for exercising the syscall-restart code paths
13875 * in the per-architecture cpu main loops: restart every syscall
13876 * the guest makes once before letting it through.
13877 */
13878 {
13879 static bool flag;
13880 flag = !flag;
13881 if (flag) {
13882 return -QEMU_ERESTARTSYS;
13883 }
13884 }
13885 #endif
13886
13887 record_syscall_start(cpu, num, arg1,
13888 arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13889
13890 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13891 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13892 }
13893
13894 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13895 arg5, arg6, arg7, arg8);
13896
13897 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13898 print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13899 arg3, arg4, arg5, arg6);
13900 }
13901
13902 record_syscall_return(cpu, num, ret);
13903 return ret;
13904 }