]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/syscall.c
linux-user: add name_to_handle_at/open_by_handle_at
[mirror_qemu.git] / linux-user / syscall.c
1 /*
2 * Linux syscalls
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #define _ATFILE_SOURCE
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <stdarg.h>
23 #include <string.h>
24 #include <elf.h>
25 #include <endian.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <time.h>
30 #include <limits.h>
31 #include <grp.h>
32 #include <sys/types.h>
33 #include <sys/ipc.h>
34 #include <sys/msg.h>
35 #include <sys/wait.h>
36 #include <sys/time.h>
37 #include <sys/stat.h>
38 #include <sys/mount.h>
39 #include <sys/file.h>
40 #include <sys/fsuid.h>
41 #include <sys/personality.h>
42 #include <sys/prctl.h>
43 #include <sys/resource.h>
44 #include <sys/mman.h>
45 #include <sys/swap.h>
46 #include <linux/capability.h>
47 #include <signal.h>
48 #include <sched.h>
49 #ifdef __ia64__
50 int __clone2(int (*fn)(void *), void *child_stack_base,
51 size_t stack_size, int flags, void *arg, ...);
52 #endif
53 #include <sys/socket.h>
54 #include <sys/un.h>
55 #include <sys/uio.h>
56 #include <sys/poll.h>
57 #include <sys/times.h>
58 #include <sys/shm.h>
59 #include <sys/sem.h>
60 #include <sys/statfs.h>
61 #include <utime.h>
62 #include <sys/sysinfo.h>
63 //#include <sys/user.h>
64 #include <netinet/ip.h>
65 #include <netinet/tcp.h>
66 #include <linux/wireless.h>
67 #include <linux/icmp.h>
68 #include "qemu-common.h"
69 #ifdef CONFIG_TIMERFD
70 #include <sys/timerfd.h>
71 #endif
72 #ifdef TARGET_GPROF
73 #include <sys/gmon.h>
74 #endif
75 #ifdef CONFIG_EVENTFD
76 #include <sys/eventfd.h>
77 #endif
78 #ifdef CONFIG_EPOLL
79 #include <sys/epoll.h>
80 #endif
81 #ifdef CONFIG_ATTR
82 #include "qemu/xattr.h"
83 #endif
84 #ifdef CONFIG_SENDFILE
85 #include <sys/sendfile.h>
86 #endif
87
88 #define termios host_termios
89 #define winsize host_winsize
90 #define termio host_termio
91 #define sgttyb host_sgttyb /* same as target */
92 #define tchars host_tchars /* same as target */
93 #define ltchars host_ltchars /* same as target */
94
95 #include <linux/termios.h>
96 #include <linux/unistd.h>
97 #include <linux/cdrom.h>
98 #include <linux/hdreg.h>
99 #include <linux/soundcard.h>
100 #include <linux/kd.h>
101 #include <linux/mtio.h>
102 #include <linux/fs.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
105 #endif
106 #include <linux/fb.h>
107 #include <linux/vt.h>
108 #include <linux/dm-ioctl.h>
109 #include <linux/reboot.h>
110 #include <linux/route.h>
111 #include <linux/filter.h>
112 #include <linux/blkpg.h>
113 #include "linux_loop.h"
114 #include "uname.h"
115
116 #include "qemu.h"
117
118 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \
119 CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)
120
121 //#define DEBUG
122
123 //#include <linux/msdos_fs.h>
124 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
125 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
126
127
128 #undef _syscall0
129 #undef _syscall1
130 #undef _syscall2
131 #undef _syscall3
132 #undef _syscall4
133 #undef _syscall5
134 #undef _syscall6
135
136 #define _syscall0(type,name) \
137 static type name (void) \
138 { \
139 return syscall(__NR_##name); \
140 }
141
142 #define _syscall1(type,name,type1,arg1) \
143 static type name (type1 arg1) \
144 { \
145 return syscall(__NR_##name, arg1); \
146 }
147
148 #define _syscall2(type,name,type1,arg1,type2,arg2) \
149 static type name (type1 arg1,type2 arg2) \
150 { \
151 return syscall(__NR_##name, arg1, arg2); \
152 }
153
154 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
155 static type name (type1 arg1,type2 arg2,type3 arg3) \
156 { \
157 return syscall(__NR_##name, arg1, arg2, arg3); \
158 }
159
160 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
161 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
162 { \
163 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
164 }
165
166 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
167 type5,arg5) \
168 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
169 { \
170 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
171 }
172
173
174 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
175 type5,arg5,type6,arg6) \
176 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
177 type6 arg6) \
178 { \
179 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
180 }
181
182
183 #define __NR_sys_uname __NR_uname
184 #define __NR_sys_getcwd1 __NR_getcwd
185 #define __NR_sys_getdents __NR_getdents
186 #define __NR_sys_getdents64 __NR_getdents64
187 #define __NR_sys_getpriority __NR_getpriority
188 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
189 #define __NR_sys_syslog __NR_syslog
190 #define __NR_sys_tgkill __NR_tgkill
191 #define __NR_sys_tkill __NR_tkill
192 #define __NR_sys_futex __NR_futex
193 #define __NR_sys_inotify_init __NR_inotify_init
194 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
195 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
196
197 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \
198 defined(__s390x__)
199 #define __NR__llseek __NR_lseek
200 #endif
201
202 /* Newer kernel ports have llseek() instead of _llseek() */
203 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
204 #define TARGET_NR__llseek TARGET_NR_llseek
205 #endif
206
207 #ifdef __NR_gettid
208 _syscall0(int, gettid)
209 #else
210 /* This is a replacement for the host gettid() and must return a host
211 errno. */
212 static int gettid(void) {
213 return -ENOSYS;
214 }
215 #endif
216 #if defined(TARGET_NR_getdents) && defined(__NR_getdents)
217 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
218 #endif
219 #if !defined(__NR_getdents) || \
220 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
221 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
222 #endif
223 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
224 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
225 loff_t *, res, uint, wh);
226 #endif
227 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo)
228 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
229 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
230 _syscall3(int,sys_tgkill,int,tgid,int,pid,int,sig)
231 #endif
232 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
233 _syscall2(int,sys_tkill,int,tid,int,sig)
234 #endif
235 #ifdef __NR_exit_group
236 _syscall1(int,exit_group,int,error_code)
237 #endif
238 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
239 _syscall1(int,set_tid_address,int *,tidptr)
240 #endif
241 #if defined(TARGET_NR_futex) && defined(__NR_futex)
242 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
243 const struct timespec *,timeout,int *,uaddr2,int,val3)
244 #endif
245 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
246 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
247 unsigned long *, user_mask_ptr);
248 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
249 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
250 unsigned long *, user_mask_ptr);
251 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
252 void *, arg);
253 _syscall2(int, capget, struct __user_cap_header_struct *, header,
254 struct __user_cap_data_struct *, data);
255 _syscall2(int, capset, struct __user_cap_header_struct *, header,
256 struct __user_cap_data_struct *, data);
257 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
258 _syscall2(int, ioprio_get, int, which, int, who)
259 #endif
260 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
261 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
262 #endif
263
264 static bitmask_transtbl fcntl_flags_tbl[] = {
265 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
266 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
267 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
268 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
269 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
270 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
271 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
272 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
273 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
274 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
275 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
276 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
277 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
278 #if defined(O_DIRECT)
279 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
280 #endif
281 #if defined(O_NOATIME)
282 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
283 #endif
284 #if defined(O_CLOEXEC)
285 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
286 #endif
287 #if defined(O_PATH)
288 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
289 #endif
290 /* Don't terminate the list prematurely on 64-bit host+guest. */
291 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
292 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
293 #endif
294 { 0, 0, 0, 0 }
295 };
296
297 static int sys_getcwd1(char *buf, size_t size)
298 {
299 if (getcwd(buf, size) == NULL) {
300 /* getcwd() sets errno */
301 return (-1);
302 }
303 return strlen(buf)+1;
304 }
305
306 static int sys_openat(int dirfd, const char *pathname, int flags, mode_t mode)
307 {
308 /*
309 * open(2) has extra parameter 'mode' when called with
310 * flag O_CREAT.
311 */
312 if ((flags & O_CREAT) != 0) {
313 return (openat(dirfd, pathname, flags, mode));
314 }
315 return (openat(dirfd, pathname, flags));
316 }
317
318 #ifdef TARGET_NR_utimensat
319 #ifdef CONFIG_UTIMENSAT
320 static int sys_utimensat(int dirfd, const char *pathname,
321 const struct timespec times[2], int flags)
322 {
323 if (pathname == NULL)
324 return futimens(dirfd, times);
325 else
326 return utimensat(dirfd, pathname, times, flags);
327 }
328 #elif defined(__NR_utimensat)
329 #define __NR_sys_utimensat __NR_utimensat
330 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
331 const struct timespec *,tsp,int,flags)
332 #else
333 static int sys_utimensat(int dirfd, const char *pathname,
334 const struct timespec times[2], int flags)
335 {
336 errno = ENOSYS;
337 return -1;
338 }
339 #endif
340 #endif /* TARGET_NR_utimensat */
341
342 #ifdef CONFIG_INOTIFY
343 #include <sys/inotify.h>
344
345 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
346 static int sys_inotify_init(void)
347 {
348 return (inotify_init());
349 }
350 #endif
351 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
352 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
353 {
354 return (inotify_add_watch(fd, pathname, mask));
355 }
356 #endif
357 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
358 static int sys_inotify_rm_watch(int fd, int32_t wd)
359 {
360 return (inotify_rm_watch(fd, wd));
361 }
362 #endif
363 #ifdef CONFIG_INOTIFY1
364 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
365 static int sys_inotify_init1(int flags)
366 {
367 return (inotify_init1(flags));
368 }
369 #endif
370 #endif
371 #else
372 /* Userspace can usually survive runtime without inotify */
373 #undef TARGET_NR_inotify_init
374 #undef TARGET_NR_inotify_init1
375 #undef TARGET_NR_inotify_add_watch
376 #undef TARGET_NR_inotify_rm_watch
377 #endif /* CONFIG_INOTIFY */
378
379 #if defined(TARGET_NR_ppoll)
380 #ifndef __NR_ppoll
381 # define __NR_ppoll -1
382 #endif
383 #define __NR_sys_ppoll __NR_ppoll
384 _syscall5(int, sys_ppoll, struct pollfd *, fds, nfds_t, nfds,
385 struct timespec *, timeout, const sigset_t *, sigmask,
386 size_t, sigsetsize)
387 #endif
388
389 #if defined(TARGET_NR_pselect6)
390 #ifndef __NR_pselect6
391 # define __NR_pselect6 -1
392 #endif
393 #define __NR_sys_pselect6 __NR_pselect6
394 _syscall6(int, sys_pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds,
395 fd_set *, exceptfds, struct timespec *, timeout, void *, sig);
396 #endif
397
398 #if defined(TARGET_NR_prlimit64)
399 #ifndef __NR_prlimit64
400 # define __NR_prlimit64 -1
401 #endif
402 #define __NR_sys_prlimit64 __NR_prlimit64
403 /* The glibc rlimit structure may not be that used by the underlying syscall */
404 struct host_rlimit64 {
405 uint64_t rlim_cur;
406 uint64_t rlim_max;
407 };
408 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
409 const struct host_rlimit64 *, new_limit,
410 struct host_rlimit64 *, old_limit)
411 #endif
412
413
414 #if defined(TARGET_NR_timer_create)
415 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
416 static timer_t g_posix_timers[32] = { 0, } ;
417
418 static inline int next_free_host_timer(void)
419 {
420 int k ;
421 /* FIXME: Does finding the next free slot require a lock? */
422 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
423 if (g_posix_timers[k] == 0) {
424 g_posix_timers[k] = (timer_t) 1;
425 return k;
426 }
427 }
428 return -1;
429 }
430 #endif
431
432 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
433 #ifdef TARGET_ARM
434 static inline int regpairs_aligned(void *cpu_env) {
435 return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
436 }
437 #elif defined(TARGET_MIPS)
438 static inline int regpairs_aligned(void *cpu_env) { return 1; }
439 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
440 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
441 * of registers which translates to the same as ARM/MIPS, because we start with
442 * r3 as arg1 */
443 static inline int regpairs_aligned(void *cpu_env) { return 1; }
444 #else
445 static inline int regpairs_aligned(void *cpu_env) { return 0; }
446 #endif
447
448 #define ERRNO_TABLE_SIZE 1200
449
450 /* target_to_host_errno_table[] is initialized from
451 * host_to_target_errno_table[] in syscall_init(). */
452 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
453 };
454
455 /*
456 * This list is the union of errno values overridden in asm-<arch>/errno.h
457 * minus the errnos that are not actually generic to all archs.
458 */
459 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
460 [EIDRM] = TARGET_EIDRM,
461 [ECHRNG] = TARGET_ECHRNG,
462 [EL2NSYNC] = TARGET_EL2NSYNC,
463 [EL3HLT] = TARGET_EL3HLT,
464 [EL3RST] = TARGET_EL3RST,
465 [ELNRNG] = TARGET_ELNRNG,
466 [EUNATCH] = TARGET_EUNATCH,
467 [ENOCSI] = TARGET_ENOCSI,
468 [EL2HLT] = TARGET_EL2HLT,
469 [EDEADLK] = TARGET_EDEADLK,
470 [ENOLCK] = TARGET_ENOLCK,
471 [EBADE] = TARGET_EBADE,
472 [EBADR] = TARGET_EBADR,
473 [EXFULL] = TARGET_EXFULL,
474 [ENOANO] = TARGET_ENOANO,
475 [EBADRQC] = TARGET_EBADRQC,
476 [EBADSLT] = TARGET_EBADSLT,
477 [EBFONT] = TARGET_EBFONT,
478 [ENOSTR] = TARGET_ENOSTR,
479 [ENODATA] = TARGET_ENODATA,
480 [ETIME] = TARGET_ETIME,
481 [ENOSR] = TARGET_ENOSR,
482 [ENONET] = TARGET_ENONET,
483 [ENOPKG] = TARGET_ENOPKG,
484 [EREMOTE] = TARGET_EREMOTE,
485 [ENOLINK] = TARGET_ENOLINK,
486 [EADV] = TARGET_EADV,
487 [ESRMNT] = TARGET_ESRMNT,
488 [ECOMM] = TARGET_ECOMM,
489 [EPROTO] = TARGET_EPROTO,
490 [EDOTDOT] = TARGET_EDOTDOT,
491 [EMULTIHOP] = TARGET_EMULTIHOP,
492 [EBADMSG] = TARGET_EBADMSG,
493 [ENAMETOOLONG] = TARGET_ENAMETOOLONG,
494 [EOVERFLOW] = TARGET_EOVERFLOW,
495 [ENOTUNIQ] = TARGET_ENOTUNIQ,
496 [EBADFD] = TARGET_EBADFD,
497 [EREMCHG] = TARGET_EREMCHG,
498 [ELIBACC] = TARGET_ELIBACC,
499 [ELIBBAD] = TARGET_ELIBBAD,
500 [ELIBSCN] = TARGET_ELIBSCN,
501 [ELIBMAX] = TARGET_ELIBMAX,
502 [ELIBEXEC] = TARGET_ELIBEXEC,
503 [EILSEQ] = TARGET_EILSEQ,
504 [ENOSYS] = TARGET_ENOSYS,
505 [ELOOP] = TARGET_ELOOP,
506 [ERESTART] = TARGET_ERESTART,
507 [ESTRPIPE] = TARGET_ESTRPIPE,
508 [ENOTEMPTY] = TARGET_ENOTEMPTY,
509 [EUSERS] = TARGET_EUSERS,
510 [ENOTSOCK] = TARGET_ENOTSOCK,
511 [EDESTADDRREQ] = TARGET_EDESTADDRREQ,
512 [EMSGSIZE] = TARGET_EMSGSIZE,
513 [EPROTOTYPE] = TARGET_EPROTOTYPE,
514 [ENOPROTOOPT] = TARGET_ENOPROTOOPT,
515 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT,
516 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT,
517 [EOPNOTSUPP] = TARGET_EOPNOTSUPP,
518 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT,
519 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT,
520 [EADDRINUSE] = TARGET_EADDRINUSE,
521 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL,
522 [ENETDOWN] = TARGET_ENETDOWN,
523 [ENETUNREACH] = TARGET_ENETUNREACH,
524 [ENETRESET] = TARGET_ENETRESET,
525 [ECONNABORTED] = TARGET_ECONNABORTED,
526 [ECONNRESET] = TARGET_ECONNRESET,
527 [ENOBUFS] = TARGET_ENOBUFS,
528 [EISCONN] = TARGET_EISCONN,
529 [ENOTCONN] = TARGET_ENOTCONN,
530 [EUCLEAN] = TARGET_EUCLEAN,
531 [ENOTNAM] = TARGET_ENOTNAM,
532 [ENAVAIL] = TARGET_ENAVAIL,
533 [EISNAM] = TARGET_EISNAM,
534 [EREMOTEIO] = TARGET_EREMOTEIO,
535 [ESHUTDOWN] = TARGET_ESHUTDOWN,
536 [ETOOMANYREFS] = TARGET_ETOOMANYREFS,
537 [ETIMEDOUT] = TARGET_ETIMEDOUT,
538 [ECONNREFUSED] = TARGET_ECONNREFUSED,
539 [EHOSTDOWN] = TARGET_EHOSTDOWN,
540 [EHOSTUNREACH] = TARGET_EHOSTUNREACH,
541 [EALREADY] = TARGET_EALREADY,
542 [EINPROGRESS] = TARGET_EINPROGRESS,
543 [ESTALE] = TARGET_ESTALE,
544 [ECANCELED] = TARGET_ECANCELED,
545 [ENOMEDIUM] = TARGET_ENOMEDIUM,
546 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE,
547 #ifdef ENOKEY
548 [ENOKEY] = TARGET_ENOKEY,
549 #endif
550 #ifdef EKEYEXPIRED
551 [EKEYEXPIRED] = TARGET_EKEYEXPIRED,
552 #endif
553 #ifdef EKEYREVOKED
554 [EKEYREVOKED] = TARGET_EKEYREVOKED,
555 #endif
556 #ifdef EKEYREJECTED
557 [EKEYREJECTED] = TARGET_EKEYREJECTED,
558 #endif
559 #ifdef EOWNERDEAD
560 [EOWNERDEAD] = TARGET_EOWNERDEAD,
561 #endif
562 #ifdef ENOTRECOVERABLE
563 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE,
564 #endif
565 };
566
567 static inline int host_to_target_errno(int err)
568 {
569 if(host_to_target_errno_table[err])
570 return host_to_target_errno_table[err];
571 return err;
572 }
573
574 static inline int target_to_host_errno(int err)
575 {
576 if (target_to_host_errno_table[err])
577 return target_to_host_errno_table[err];
578 return err;
579 }
580
581 static inline abi_long get_errno(abi_long ret)
582 {
583 if (ret == -1)
584 return -host_to_target_errno(errno);
585 else
586 return ret;
587 }
588
589 static inline int is_error(abi_long ret)
590 {
591 return (abi_ulong)ret >= (abi_ulong)(-4096);
592 }
593
594 char *target_strerror(int err)
595 {
596 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
597 return NULL;
598 }
599 return strerror(target_to_host_errno(err));
600 }
601
602 static inline int host_to_target_sock_type(int host_type)
603 {
604 int target_type;
605
606 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
607 case SOCK_DGRAM:
608 target_type = TARGET_SOCK_DGRAM;
609 break;
610 case SOCK_STREAM:
611 target_type = TARGET_SOCK_STREAM;
612 break;
613 default:
614 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
615 break;
616 }
617
618 #if defined(SOCK_CLOEXEC)
619 if (host_type & SOCK_CLOEXEC) {
620 target_type |= TARGET_SOCK_CLOEXEC;
621 }
622 #endif
623
624 #if defined(SOCK_NONBLOCK)
625 if (host_type & SOCK_NONBLOCK) {
626 target_type |= TARGET_SOCK_NONBLOCK;
627 }
628 #endif
629
630 return target_type;
631 }
632
633 static abi_ulong target_brk;
634 static abi_ulong target_original_brk;
635 static abi_ulong brk_page;
636
637 void target_set_brk(abi_ulong new_brk)
638 {
639 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
640 brk_page = HOST_PAGE_ALIGN(target_brk);
641 }
642
643 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
644 #define DEBUGF_BRK(message, args...)
645
646 /* do_brk() must return target values and target errnos. */
647 abi_long do_brk(abi_ulong new_brk)
648 {
649 abi_long mapped_addr;
650 int new_alloc_size;
651
652 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
653
654 if (!new_brk) {
655 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
656 return target_brk;
657 }
658 if (new_brk < target_original_brk) {
659 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
660 target_brk);
661 return target_brk;
662 }
663
664 /* If the new brk is less than the highest page reserved to the
665 * target heap allocation, set it and we're almost done... */
666 if (new_brk <= brk_page) {
667 /* Heap contents are initialized to zero, as for anonymous
668 * mapped pages. */
669 if (new_brk > target_brk) {
670 memset(g2h(target_brk), 0, new_brk - target_brk);
671 }
672 target_brk = new_brk;
673 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
674 return target_brk;
675 }
676
677 /* We need to allocate more memory after the brk... Note that
678 * we don't use MAP_FIXED because that will map over the top of
679 * any existing mapping (like the one with the host libc or qemu
680 * itself); instead we treat "mapped but at wrong address" as
681 * a failure and unmap again.
682 */
683 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
684 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
685 PROT_READ|PROT_WRITE,
686 MAP_ANON|MAP_PRIVATE, 0, 0));
687
688 if (mapped_addr == brk_page) {
689 /* Heap contents are initialized to zero, as for anonymous
690 * mapped pages. Technically the new pages are already
691 * initialized to zero since they *are* anonymous mapped
692 * pages, however we have to take care with the contents that
693 * come from the remaining part of the previous page: it may
694 * contains garbage data due to a previous heap usage (grown
695 * then shrunken). */
696 memset(g2h(target_brk), 0, brk_page - target_brk);
697
698 target_brk = new_brk;
699 brk_page = HOST_PAGE_ALIGN(target_brk);
700 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
701 target_brk);
702 return target_brk;
703 } else if (mapped_addr != -1) {
704 /* Mapped but at wrong address, meaning there wasn't actually
705 * enough space for this brk.
706 */
707 target_munmap(mapped_addr, new_alloc_size);
708 mapped_addr = -1;
709 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
710 }
711 else {
712 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
713 }
714
715 #if defined(TARGET_ALPHA)
716 /* We (partially) emulate OSF/1 on Alpha, which requires we
717 return a proper errno, not an unchanged brk value. */
718 return -TARGET_ENOMEM;
719 #endif
720 /* For everything else, return the previous break. */
721 return target_brk;
722 }
723
724 static inline abi_long copy_from_user_fdset(fd_set *fds,
725 abi_ulong target_fds_addr,
726 int n)
727 {
728 int i, nw, j, k;
729 abi_ulong b, *target_fds;
730
731 nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS;
732 if (!(target_fds = lock_user(VERIFY_READ,
733 target_fds_addr,
734 sizeof(abi_ulong) * nw,
735 1)))
736 return -TARGET_EFAULT;
737
738 FD_ZERO(fds);
739 k = 0;
740 for (i = 0; i < nw; i++) {
741 /* grab the abi_ulong */
742 __get_user(b, &target_fds[i]);
743 for (j = 0; j < TARGET_ABI_BITS; j++) {
744 /* check the bit inside the abi_ulong */
745 if ((b >> j) & 1)
746 FD_SET(k, fds);
747 k++;
748 }
749 }
750
751 unlock_user(target_fds, target_fds_addr, 0);
752
753 return 0;
754 }
755
756 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
757 abi_ulong target_fds_addr,
758 int n)
759 {
760 if (target_fds_addr) {
761 if (copy_from_user_fdset(fds, target_fds_addr, n))
762 return -TARGET_EFAULT;
763 *fds_ptr = fds;
764 } else {
765 *fds_ptr = NULL;
766 }
767 return 0;
768 }
769
770 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
771 const fd_set *fds,
772 int n)
773 {
774 int i, nw, j, k;
775 abi_long v;
776 abi_ulong *target_fds;
777
778 nw = (n + TARGET_ABI_BITS - 1) / TARGET_ABI_BITS;
779 if (!(target_fds = lock_user(VERIFY_WRITE,
780 target_fds_addr,
781 sizeof(abi_ulong) * nw,
782 0)))
783 return -TARGET_EFAULT;
784
785 k = 0;
786 for (i = 0; i < nw; i++) {
787 v = 0;
788 for (j = 0; j < TARGET_ABI_BITS; j++) {
789 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
790 k++;
791 }
792 __put_user(v, &target_fds[i]);
793 }
794
795 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
796
797 return 0;
798 }
799
800 #if defined(__alpha__)
801 #define HOST_HZ 1024
802 #else
803 #define HOST_HZ 100
804 #endif
805
806 static inline abi_long host_to_target_clock_t(long ticks)
807 {
808 #if HOST_HZ == TARGET_HZ
809 return ticks;
810 #else
811 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
812 #endif
813 }
814
815 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
816 const struct rusage *rusage)
817 {
818 struct target_rusage *target_rusage;
819
820 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
821 return -TARGET_EFAULT;
822 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
823 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
824 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
825 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
826 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
827 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
828 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
829 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
830 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
831 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
832 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
833 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
834 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
835 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
836 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
837 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
838 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
839 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
840 unlock_user_struct(target_rusage, target_addr, 1);
841
842 return 0;
843 }
844
845 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
846 {
847 abi_ulong target_rlim_swap;
848 rlim_t result;
849
850 target_rlim_swap = tswapal(target_rlim);
851 if (target_rlim_swap == TARGET_RLIM_INFINITY)
852 return RLIM_INFINITY;
853
854 result = target_rlim_swap;
855 if (target_rlim_swap != (rlim_t)result)
856 return RLIM_INFINITY;
857
858 return result;
859 }
860
861 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
862 {
863 abi_ulong target_rlim_swap;
864 abi_ulong result;
865
866 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
867 target_rlim_swap = TARGET_RLIM_INFINITY;
868 else
869 target_rlim_swap = rlim;
870 result = tswapal(target_rlim_swap);
871
872 return result;
873 }
874
875 static inline int target_to_host_resource(int code)
876 {
877 switch (code) {
878 case TARGET_RLIMIT_AS:
879 return RLIMIT_AS;
880 case TARGET_RLIMIT_CORE:
881 return RLIMIT_CORE;
882 case TARGET_RLIMIT_CPU:
883 return RLIMIT_CPU;
884 case TARGET_RLIMIT_DATA:
885 return RLIMIT_DATA;
886 case TARGET_RLIMIT_FSIZE:
887 return RLIMIT_FSIZE;
888 case TARGET_RLIMIT_LOCKS:
889 return RLIMIT_LOCKS;
890 case TARGET_RLIMIT_MEMLOCK:
891 return RLIMIT_MEMLOCK;
892 case TARGET_RLIMIT_MSGQUEUE:
893 return RLIMIT_MSGQUEUE;
894 case TARGET_RLIMIT_NICE:
895 return RLIMIT_NICE;
896 case TARGET_RLIMIT_NOFILE:
897 return RLIMIT_NOFILE;
898 case TARGET_RLIMIT_NPROC:
899 return RLIMIT_NPROC;
900 case TARGET_RLIMIT_RSS:
901 return RLIMIT_RSS;
902 case TARGET_RLIMIT_RTPRIO:
903 return RLIMIT_RTPRIO;
904 case TARGET_RLIMIT_SIGPENDING:
905 return RLIMIT_SIGPENDING;
906 case TARGET_RLIMIT_STACK:
907 return RLIMIT_STACK;
908 default:
909 return code;
910 }
911 }
912
913 static inline abi_long copy_from_user_timeval(struct timeval *tv,
914 abi_ulong target_tv_addr)
915 {
916 struct target_timeval *target_tv;
917
918 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1))
919 return -TARGET_EFAULT;
920
921 __get_user(tv->tv_sec, &target_tv->tv_sec);
922 __get_user(tv->tv_usec, &target_tv->tv_usec);
923
924 unlock_user_struct(target_tv, target_tv_addr, 0);
925
926 return 0;
927 }
928
929 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
930 const struct timeval *tv)
931 {
932 struct target_timeval *target_tv;
933
934 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0))
935 return -TARGET_EFAULT;
936
937 __put_user(tv->tv_sec, &target_tv->tv_sec);
938 __put_user(tv->tv_usec, &target_tv->tv_usec);
939
940 unlock_user_struct(target_tv, target_tv_addr, 1);
941
942 return 0;
943 }
944
945 static inline abi_long copy_from_user_timezone(struct timezone *tz,
946 abi_ulong target_tz_addr)
947 {
948 struct target_timezone *target_tz;
949
950 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
951 return -TARGET_EFAULT;
952 }
953
954 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
955 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
956
957 unlock_user_struct(target_tz, target_tz_addr, 0);
958
959 return 0;
960 }
961
962 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
963 #include <mqueue.h>
964
965 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
966 abi_ulong target_mq_attr_addr)
967 {
968 struct target_mq_attr *target_mq_attr;
969
970 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
971 target_mq_attr_addr, 1))
972 return -TARGET_EFAULT;
973
974 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
975 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
976 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
977 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
978
979 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
980
981 return 0;
982 }
983
984 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
985 const struct mq_attr *attr)
986 {
987 struct target_mq_attr *target_mq_attr;
988
989 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
990 target_mq_attr_addr, 0))
991 return -TARGET_EFAULT;
992
993 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
994 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
995 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
996 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
997
998 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
999
1000 return 0;
1001 }
1002 #endif
1003
1004 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1005 /* do_select() must return target values and target errnos. */
1006 static abi_long do_select(int n,
1007 abi_ulong rfd_addr, abi_ulong wfd_addr,
1008 abi_ulong efd_addr, abi_ulong target_tv_addr)
1009 {
1010 fd_set rfds, wfds, efds;
1011 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1012 struct timeval tv, *tv_ptr;
1013 abi_long ret;
1014
1015 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1016 if (ret) {
1017 return ret;
1018 }
1019 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1020 if (ret) {
1021 return ret;
1022 }
1023 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1024 if (ret) {
1025 return ret;
1026 }
1027
1028 if (target_tv_addr) {
1029 if (copy_from_user_timeval(&tv, target_tv_addr))
1030 return -TARGET_EFAULT;
1031 tv_ptr = &tv;
1032 } else {
1033 tv_ptr = NULL;
1034 }
1035
1036 ret = get_errno(select(n, rfds_ptr, wfds_ptr, efds_ptr, tv_ptr));
1037
1038 if (!is_error(ret)) {
1039 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1040 return -TARGET_EFAULT;
1041 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1042 return -TARGET_EFAULT;
1043 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1044 return -TARGET_EFAULT;
1045
1046 if (target_tv_addr && copy_to_user_timeval(target_tv_addr, &tv))
1047 return -TARGET_EFAULT;
1048 }
1049
1050 return ret;
1051 }
1052 #endif
1053
1054 static abi_long do_pipe2(int host_pipe[], int flags)
1055 {
1056 #ifdef CONFIG_PIPE2
1057 return pipe2(host_pipe, flags);
1058 #else
1059 return -ENOSYS;
1060 #endif
1061 }
1062
1063 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1064 int flags, int is_pipe2)
1065 {
1066 int host_pipe[2];
1067 abi_long ret;
1068 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1069
1070 if (is_error(ret))
1071 return get_errno(ret);
1072
1073 /* Several targets have special calling conventions for the original
1074 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1075 if (!is_pipe2) {
1076 #if defined(TARGET_ALPHA)
1077 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1078 return host_pipe[0];
1079 #elif defined(TARGET_MIPS)
1080 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1081 return host_pipe[0];
1082 #elif defined(TARGET_SH4)
1083 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1084 return host_pipe[0];
1085 #elif defined(TARGET_SPARC)
1086 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1087 return host_pipe[0];
1088 #endif
1089 }
1090
1091 if (put_user_s32(host_pipe[0], pipedes)
1092 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1093 return -TARGET_EFAULT;
1094 return get_errno(ret);
1095 }
1096
1097 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1098 abi_ulong target_addr,
1099 socklen_t len)
1100 {
1101 struct target_ip_mreqn *target_smreqn;
1102
1103 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1104 if (!target_smreqn)
1105 return -TARGET_EFAULT;
1106 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1107 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1108 if (len == sizeof(struct target_ip_mreqn))
1109 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1110 unlock_user(target_smreqn, target_addr, 0);
1111
1112 return 0;
1113 }
1114
1115 static inline abi_long target_to_host_sockaddr(struct sockaddr *addr,
1116 abi_ulong target_addr,
1117 socklen_t len)
1118 {
1119 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1120 sa_family_t sa_family;
1121 struct target_sockaddr *target_saddr;
1122
1123 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1124 if (!target_saddr)
1125 return -TARGET_EFAULT;
1126
1127 sa_family = tswap16(target_saddr->sa_family);
1128
1129 /* Oops. The caller might send a incomplete sun_path; sun_path
1130 * must be terminated by \0 (see the manual page), but
1131 * unfortunately it is quite common to specify sockaddr_un
1132 * length as "strlen(x->sun_path)" while it should be
1133 * "strlen(...) + 1". We'll fix that here if needed.
1134 * Linux kernel has a similar feature.
1135 */
1136
1137 if (sa_family == AF_UNIX) {
1138 if (len < unix_maxlen && len > 0) {
1139 char *cp = (char*)target_saddr;
1140
1141 if ( cp[len-1] && !cp[len] )
1142 len++;
1143 }
1144 if (len > unix_maxlen)
1145 len = unix_maxlen;
1146 }
1147
1148 memcpy(addr, target_saddr, len);
1149 addr->sa_family = sa_family;
1150 if (sa_family == AF_PACKET) {
1151 struct target_sockaddr_ll *lladdr;
1152
1153 lladdr = (struct target_sockaddr_ll *)addr;
1154 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1155 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1156 }
1157 unlock_user(target_saddr, target_addr, 0);
1158
1159 return 0;
1160 }
1161
1162 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1163 struct sockaddr *addr,
1164 socklen_t len)
1165 {
1166 struct target_sockaddr *target_saddr;
1167
1168 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1169 if (!target_saddr)
1170 return -TARGET_EFAULT;
1171 memcpy(target_saddr, addr, len);
1172 target_saddr->sa_family = tswap16(addr->sa_family);
1173 unlock_user(target_saddr, target_addr, len);
1174
1175 return 0;
1176 }
1177
1178 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1179 struct target_msghdr *target_msgh)
1180 {
1181 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1182 abi_long msg_controllen;
1183 abi_ulong target_cmsg_addr;
1184 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1185 socklen_t space = 0;
1186
1187 msg_controllen = tswapal(target_msgh->msg_controllen);
1188 if (msg_controllen < sizeof (struct target_cmsghdr))
1189 goto the_end;
1190 target_cmsg_addr = tswapal(target_msgh->msg_control);
1191 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1192 target_cmsg_start = target_cmsg;
1193 if (!target_cmsg)
1194 return -TARGET_EFAULT;
1195
1196 while (cmsg && target_cmsg) {
1197 void *data = CMSG_DATA(cmsg);
1198 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1199
1200 int len = tswapal(target_cmsg->cmsg_len)
1201 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr));
1202
1203 space += CMSG_SPACE(len);
1204 if (space > msgh->msg_controllen) {
1205 space -= CMSG_SPACE(len);
1206 /* This is a QEMU bug, since we allocated the payload
1207 * area ourselves (unlike overflow in host-to-target
1208 * conversion, which is just the guest giving us a buffer
1209 * that's too small). It can't happen for the payload types
1210 * we currently support; if it becomes an issue in future
1211 * we would need to improve our allocation strategy to
1212 * something more intelligent than "twice the size of the
1213 * target buffer we're reading from".
1214 */
1215 gemu_log("Host cmsg overflow\n");
1216 break;
1217 }
1218
1219 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1220 cmsg->cmsg_level = SOL_SOCKET;
1221 } else {
1222 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1223 }
1224 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1225 cmsg->cmsg_len = CMSG_LEN(len);
1226
1227 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1228 int *fd = (int *)data;
1229 int *target_fd = (int *)target_data;
1230 int i, numfds = len / sizeof(int);
1231
1232 for (i = 0; i < numfds; i++) {
1233 __get_user(fd[i], target_fd + i);
1234 }
1235 } else if (cmsg->cmsg_level == SOL_SOCKET
1236 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1237 struct ucred *cred = (struct ucred *)data;
1238 struct target_ucred *target_cred =
1239 (struct target_ucred *)target_data;
1240
1241 __get_user(cred->pid, &target_cred->pid);
1242 __get_user(cred->uid, &target_cred->uid);
1243 __get_user(cred->gid, &target_cred->gid);
1244 } else {
1245 gemu_log("Unsupported ancillary data: %d/%d\n",
1246 cmsg->cmsg_level, cmsg->cmsg_type);
1247 memcpy(data, target_data, len);
1248 }
1249
1250 cmsg = CMSG_NXTHDR(msgh, cmsg);
1251 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1252 target_cmsg_start);
1253 }
1254 unlock_user(target_cmsg, target_cmsg_addr, 0);
1255 the_end:
1256 msgh->msg_controllen = space;
1257 return 0;
1258 }
1259
1260 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1261 struct msghdr *msgh)
1262 {
1263 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1264 abi_long msg_controllen;
1265 abi_ulong target_cmsg_addr;
1266 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1267 socklen_t space = 0;
1268
1269 msg_controllen = tswapal(target_msgh->msg_controllen);
1270 if (msg_controllen < sizeof (struct target_cmsghdr))
1271 goto the_end;
1272 target_cmsg_addr = tswapal(target_msgh->msg_control);
1273 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1274 target_cmsg_start = target_cmsg;
1275 if (!target_cmsg)
1276 return -TARGET_EFAULT;
1277
1278 while (cmsg && target_cmsg) {
1279 void *data = CMSG_DATA(cmsg);
1280 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1281
1282 int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr));
1283 int tgt_len, tgt_space;
1284
1285 /* We never copy a half-header but may copy half-data;
1286 * this is Linux's behaviour in put_cmsg(). Note that
1287 * truncation here is a guest problem (which we report
1288 * to the guest via the CTRUNC bit), unlike truncation
1289 * in target_to_host_cmsg, which is a QEMU bug.
1290 */
1291 if (msg_controllen < sizeof(struct cmsghdr)) {
1292 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1293 break;
1294 }
1295
1296 if (cmsg->cmsg_level == SOL_SOCKET) {
1297 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1298 } else {
1299 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1300 }
1301 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1302
1303 tgt_len = TARGET_CMSG_LEN(len);
1304
1305 /* Payload types which need a different size of payload on
1306 * the target must adjust tgt_len here.
1307 */
1308 switch (cmsg->cmsg_level) {
1309 case SOL_SOCKET:
1310 switch (cmsg->cmsg_type) {
1311 case SO_TIMESTAMP:
1312 tgt_len = sizeof(struct target_timeval);
1313 break;
1314 default:
1315 break;
1316 }
1317 default:
1318 break;
1319 }
1320
1321 if (msg_controllen < tgt_len) {
1322 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1323 tgt_len = msg_controllen;
1324 }
1325
1326 /* We must now copy-and-convert len bytes of payload
1327 * into tgt_len bytes of destination space. Bear in mind
1328 * that in both source and destination we may be dealing
1329 * with a truncated value!
1330 */
1331 switch (cmsg->cmsg_level) {
1332 case SOL_SOCKET:
1333 switch (cmsg->cmsg_type) {
1334 case SCM_RIGHTS:
1335 {
1336 int *fd = (int *)data;
1337 int *target_fd = (int *)target_data;
1338 int i, numfds = tgt_len / sizeof(int);
1339
1340 for (i = 0; i < numfds; i++) {
1341 __put_user(fd[i], target_fd + i);
1342 }
1343 break;
1344 }
1345 case SO_TIMESTAMP:
1346 {
1347 struct timeval *tv = (struct timeval *)data;
1348 struct target_timeval *target_tv =
1349 (struct target_timeval *)target_data;
1350
1351 if (len != sizeof(struct timeval) ||
1352 tgt_len != sizeof(struct target_timeval)) {
1353 goto unimplemented;
1354 }
1355
1356 /* copy struct timeval to target */
1357 __put_user(tv->tv_sec, &target_tv->tv_sec);
1358 __put_user(tv->tv_usec, &target_tv->tv_usec);
1359 break;
1360 }
1361 case SCM_CREDENTIALS:
1362 {
1363 struct ucred *cred = (struct ucred *)data;
1364 struct target_ucred *target_cred =
1365 (struct target_ucred *)target_data;
1366
1367 __put_user(cred->pid, &target_cred->pid);
1368 __put_user(cred->uid, &target_cred->uid);
1369 __put_user(cred->gid, &target_cred->gid);
1370 break;
1371 }
1372 default:
1373 goto unimplemented;
1374 }
1375 break;
1376
1377 default:
1378 unimplemented:
1379 gemu_log("Unsupported ancillary data: %d/%d\n",
1380 cmsg->cmsg_level, cmsg->cmsg_type);
1381 memcpy(target_data, data, MIN(len, tgt_len));
1382 if (tgt_len > len) {
1383 memset(target_data + len, 0, tgt_len - len);
1384 }
1385 }
1386
1387 target_cmsg->cmsg_len = tswapal(tgt_len);
1388 tgt_space = TARGET_CMSG_SPACE(len);
1389 if (msg_controllen < tgt_space) {
1390 tgt_space = msg_controllen;
1391 }
1392 msg_controllen -= tgt_space;
1393 space += tgt_space;
1394 cmsg = CMSG_NXTHDR(msgh, cmsg);
1395 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1396 target_cmsg_start);
1397 }
1398 unlock_user(target_cmsg, target_cmsg_addr, space);
1399 the_end:
1400 target_msgh->msg_controllen = tswapal(space);
1401 return 0;
1402 }
1403
1404 /* do_setsockopt() Must return target values and target errnos. */
1405 static abi_long do_setsockopt(int sockfd, int level, int optname,
1406 abi_ulong optval_addr, socklen_t optlen)
1407 {
1408 abi_long ret;
1409 int val;
1410 struct ip_mreqn *ip_mreq;
1411 struct ip_mreq_source *ip_mreq_source;
1412
1413 switch(level) {
1414 case SOL_TCP:
1415 /* TCP options all take an 'int' value. */
1416 if (optlen < sizeof(uint32_t))
1417 return -TARGET_EINVAL;
1418
1419 if (get_user_u32(val, optval_addr))
1420 return -TARGET_EFAULT;
1421 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1422 break;
1423 case SOL_IP:
1424 switch(optname) {
1425 case IP_TOS:
1426 case IP_TTL:
1427 case IP_HDRINCL:
1428 case IP_ROUTER_ALERT:
1429 case IP_RECVOPTS:
1430 case IP_RETOPTS:
1431 case IP_PKTINFO:
1432 case IP_MTU_DISCOVER:
1433 case IP_RECVERR:
1434 case IP_RECVTOS:
1435 #ifdef IP_FREEBIND
1436 case IP_FREEBIND:
1437 #endif
1438 case IP_MULTICAST_TTL:
1439 case IP_MULTICAST_LOOP:
1440 val = 0;
1441 if (optlen >= sizeof(uint32_t)) {
1442 if (get_user_u32(val, optval_addr))
1443 return -TARGET_EFAULT;
1444 } else if (optlen >= 1) {
1445 if (get_user_u8(val, optval_addr))
1446 return -TARGET_EFAULT;
1447 }
1448 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
1449 break;
1450 case IP_ADD_MEMBERSHIP:
1451 case IP_DROP_MEMBERSHIP:
1452 if (optlen < sizeof (struct target_ip_mreq) ||
1453 optlen > sizeof (struct target_ip_mreqn))
1454 return -TARGET_EINVAL;
1455
1456 ip_mreq = (struct ip_mreqn *) alloca(optlen);
1457 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
1458 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
1459 break;
1460
1461 case IP_BLOCK_SOURCE:
1462 case IP_UNBLOCK_SOURCE:
1463 case IP_ADD_SOURCE_MEMBERSHIP:
1464 case IP_DROP_SOURCE_MEMBERSHIP:
1465 if (optlen != sizeof (struct target_ip_mreq_source))
1466 return -TARGET_EINVAL;
1467
1468 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
1469 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
1470 unlock_user (ip_mreq_source, optval_addr, 0);
1471 break;
1472
1473 default:
1474 goto unimplemented;
1475 }
1476 break;
1477 case SOL_IPV6:
1478 switch (optname) {
1479 case IPV6_MTU_DISCOVER:
1480 case IPV6_MTU:
1481 case IPV6_V6ONLY:
1482 case IPV6_RECVPKTINFO:
1483 val = 0;
1484 if (optlen < sizeof(uint32_t)) {
1485 return -TARGET_EINVAL;
1486 }
1487 if (get_user_u32(val, optval_addr)) {
1488 return -TARGET_EFAULT;
1489 }
1490 ret = get_errno(setsockopt(sockfd, level, optname,
1491 &val, sizeof(val)));
1492 break;
1493 default:
1494 goto unimplemented;
1495 }
1496 break;
1497 case SOL_RAW:
1498 switch (optname) {
1499 case ICMP_FILTER:
1500 /* struct icmp_filter takes an u32 value */
1501 if (optlen < sizeof(uint32_t)) {
1502 return -TARGET_EINVAL;
1503 }
1504
1505 if (get_user_u32(val, optval_addr)) {
1506 return -TARGET_EFAULT;
1507 }
1508 ret = get_errno(setsockopt(sockfd, level, optname,
1509 &val, sizeof(val)));
1510 break;
1511
1512 default:
1513 goto unimplemented;
1514 }
1515 break;
1516 case TARGET_SOL_SOCKET:
1517 switch (optname) {
1518 case TARGET_SO_RCVTIMEO:
1519 {
1520 struct timeval tv;
1521
1522 optname = SO_RCVTIMEO;
1523
1524 set_timeout:
1525 if (optlen != sizeof(struct target_timeval)) {
1526 return -TARGET_EINVAL;
1527 }
1528
1529 if (copy_from_user_timeval(&tv, optval_addr)) {
1530 return -TARGET_EFAULT;
1531 }
1532
1533 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
1534 &tv, sizeof(tv)));
1535 return ret;
1536 }
1537 case TARGET_SO_SNDTIMEO:
1538 optname = SO_SNDTIMEO;
1539 goto set_timeout;
1540 case TARGET_SO_ATTACH_FILTER:
1541 {
1542 struct target_sock_fprog *tfprog;
1543 struct target_sock_filter *tfilter;
1544 struct sock_fprog fprog;
1545 struct sock_filter *filter;
1546 int i;
1547
1548 if (optlen != sizeof(*tfprog)) {
1549 return -TARGET_EINVAL;
1550 }
1551 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
1552 return -TARGET_EFAULT;
1553 }
1554 if (!lock_user_struct(VERIFY_READ, tfilter,
1555 tswapal(tfprog->filter), 0)) {
1556 unlock_user_struct(tfprog, optval_addr, 1);
1557 return -TARGET_EFAULT;
1558 }
1559
1560 fprog.len = tswap16(tfprog->len);
1561 filter = malloc(fprog.len * sizeof(*filter));
1562 if (filter == NULL) {
1563 unlock_user_struct(tfilter, tfprog->filter, 1);
1564 unlock_user_struct(tfprog, optval_addr, 1);
1565 return -TARGET_ENOMEM;
1566 }
1567 for (i = 0; i < fprog.len; i++) {
1568 filter[i].code = tswap16(tfilter[i].code);
1569 filter[i].jt = tfilter[i].jt;
1570 filter[i].jf = tfilter[i].jf;
1571 filter[i].k = tswap32(tfilter[i].k);
1572 }
1573 fprog.filter = filter;
1574
1575 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
1576 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
1577 free(filter);
1578
1579 unlock_user_struct(tfilter, tfprog->filter, 1);
1580 unlock_user_struct(tfprog, optval_addr, 1);
1581 return ret;
1582 }
1583 case TARGET_SO_BINDTODEVICE:
1584 {
1585 char *dev_ifname, *addr_ifname;
1586
1587 if (optlen > IFNAMSIZ - 1) {
1588 optlen = IFNAMSIZ - 1;
1589 }
1590 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
1591 if (!dev_ifname) {
1592 return -TARGET_EFAULT;
1593 }
1594 optname = SO_BINDTODEVICE;
1595 addr_ifname = alloca(IFNAMSIZ);
1596 memcpy(addr_ifname, dev_ifname, optlen);
1597 addr_ifname[optlen] = 0;
1598 ret = get_errno(setsockopt(sockfd, level, optname, addr_ifname, optlen));
1599 unlock_user (dev_ifname, optval_addr, 0);
1600 return ret;
1601 }
1602 /* Options with 'int' argument. */
1603 case TARGET_SO_DEBUG:
1604 optname = SO_DEBUG;
1605 break;
1606 case TARGET_SO_REUSEADDR:
1607 optname = SO_REUSEADDR;
1608 break;
1609 case TARGET_SO_TYPE:
1610 optname = SO_TYPE;
1611 break;
1612 case TARGET_SO_ERROR:
1613 optname = SO_ERROR;
1614 break;
1615 case TARGET_SO_DONTROUTE:
1616 optname = SO_DONTROUTE;
1617 break;
1618 case TARGET_SO_BROADCAST:
1619 optname = SO_BROADCAST;
1620 break;
1621 case TARGET_SO_SNDBUF:
1622 optname = SO_SNDBUF;
1623 break;
1624 case TARGET_SO_SNDBUFFORCE:
1625 optname = SO_SNDBUFFORCE;
1626 break;
1627 case TARGET_SO_RCVBUF:
1628 optname = SO_RCVBUF;
1629 break;
1630 case TARGET_SO_RCVBUFFORCE:
1631 optname = SO_RCVBUFFORCE;
1632 break;
1633 case TARGET_SO_KEEPALIVE:
1634 optname = SO_KEEPALIVE;
1635 break;
1636 case TARGET_SO_OOBINLINE:
1637 optname = SO_OOBINLINE;
1638 break;
1639 case TARGET_SO_NO_CHECK:
1640 optname = SO_NO_CHECK;
1641 break;
1642 case TARGET_SO_PRIORITY:
1643 optname = SO_PRIORITY;
1644 break;
1645 #ifdef SO_BSDCOMPAT
1646 case TARGET_SO_BSDCOMPAT:
1647 optname = SO_BSDCOMPAT;
1648 break;
1649 #endif
1650 case TARGET_SO_PASSCRED:
1651 optname = SO_PASSCRED;
1652 break;
1653 case TARGET_SO_PASSSEC:
1654 optname = SO_PASSSEC;
1655 break;
1656 case TARGET_SO_TIMESTAMP:
1657 optname = SO_TIMESTAMP;
1658 break;
1659 case TARGET_SO_RCVLOWAT:
1660 optname = SO_RCVLOWAT;
1661 break;
1662 break;
1663 default:
1664 goto unimplemented;
1665 }
1666 if (optlen < sizeof(uint32_t))
1667 return -TARGET_EINVAL;
1668
1669 if (get_user_u32(val, optval_addr))
1670 return -TARGET_EFAULT;
1671 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
1672 break;
1673 default:
1674 unimplemented:
1675 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname);
1676 ret = -TARGET_ENOPROTOOPT;
1677 }
1678 return ret;
1679 }
1680
1681 /* do_getsockopt() Must return target values and target errnos. */
1682 static abi_long do_getsockopt(int sockfd, int level, int optname,
1683 abi_ulong optval_addr, abi_ulong optlen)
1684 {
1685 abi_long ret;
1686 int len, val;
1687 socklen_t lv;
1688
1689 switch(level) {
1690 case TARGET_SOL_SOCKET:
1691 level = SOL_SOCKET;
1692 switch (optname) {
1693 /* These don't just return a single integer */
1694 case TARGET_SO_LINGER:
1695 case TARGET_SO_RCVTIMEO:
1696 case TARGET_SO_SNDTIMEO:
1697 case TARGET_SO_PEERNAME:
1698 goto unimplemented;
1699 case TARGET_SO_PEERCRED: {
1700 struct ucred cr;
1701 socklen_t crlen;
1702 struct target_ucred *tcr;
1703
1704 if (get_user_u32(len, optlen)) {
1705 return -TARGET_EFAULT;
1706 }
1707 if (len < 0) {
1708 return -TARGET_EINVAL;
1709 }
1710
1711 crlen = sizeof(cr);
1712 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
1713 &cr, &crlen));
1714 if (ret < 0) {
1715 return ret;
1716 }
1717 if (len > crlen) {
1718 len = crlen;
1719 }
1720 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
1721 return -TARGET_EFAULT;
1722 }
1723 __put_user(cr.pid, &tcr->pid);
1724 __put_user(cr.uid, &tcr->uid);
1725 __put_user(cr.gid, &tcr->gid);
1726 unlock_user_struct(tcr, optval_addr, 1);
1727 if (put_user_u32(len, optlen)) {
1728 return -TARGET_EFAULT;
1729 }
1730 break;
1731 }
1732 /* Options with 'int' argument. */
1733 case TARGET_SO_DEBUG:
1734 optname = SO_DEBUG;
1735 goto int_case;
1736 case TARGET_SO_REUSEADDR:
1737 optname = SO_REUSEADDR;
1738 goto int_case;
1739 case TARGET_SO_TYPE:
1740 optname = SO_TYPE;
1741 goto int_case;
1742 case TARGET_SO_ERROR:
1743 optname = SO_ERROR;
1744 goto int_case;
1745 case TARGET_SO_DONTROUTE:
1746 optname = SO_DONTROUTE;
1747 goto int_case;
1748 case TARGET_SO_BROADCAST:
1749 optname = SO_BROADCAST;
1750 goto int_case;
1751 case TARGET_SO_SNDBUF:
1752 optname = SO_SNDBUF;
1753 goto int_case;
1754 case TARGET_SO_RCVBUF:
1755 optname = SO_RCVBUF;
1756 goto int_case;
1757 case TARGET_SO_KEEPALIVE:
1758 optname = SO_KEEPALIVE;
1759 goto int_case;
1760 case TARGET_SO_OOBINLINE:
1761 optname = SO_OOBINLINE;
1762 goto int_case;
1763 case TARGET_SO_NO_CHECK:
1764 optname = SO_NO_CHECK;
1765 goto int_case;
1766 case TARGET_SO_PRIORITY:
1767 optname = SO_PRIORITY;
1768 goto int_case;
1769 #ifdef SO_BSDCOMPAT
1770 case TARGET_SO_BSDCOMPAT:
1771 optname = SO_BSDCOMPAT;
1772 goto int_case;
1773 #endif
1774 case TARGET_SO_PASSCRED:
1775 optname = SO_PASSCRED;
1776 goto int_case;
1777 case TARGET_SO_TIMESTAMP:
1778 optname = SO_TIMESTAMP;
1779 goto int_case;
1780 case TARGET_SO_RCVLOWAT:
1781 optname = SO_RCVLOWAT;
1782 goto int_case;
1783 case TARGET_SO_ACCEPTCONN:
1784 optname = SO_ACCEPTCONN;
1785 goto int_case;
1786 default:
1787 goto int_case;
1788 }
1789 break;
1790 case SOL_TCP:
1791 /* TCP options all take an 'int' value. */
1792 int_case:
1793 if (get_user_u32(len, optlen))
1794 return -TARGET_EFAULT;
1795 if (len < 0)
1796 return -TARGET_EINVAL;
1797 lv = sizeof(lv);
1798 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
1799 if (ret < 0)
1800 return ret;
1801 if (optname == SO_TYPE) {
1802 val = host_to_target_sock_type(val);
1803 }
1804 if (len > lv)
1805 len = lv;
1806 if (len == 4) {
1807 if (put_user_u32(val, optval_addr))
1808 return -TARGET_EFAULT;
1809 } else {
1810 if (put_user_u8(val, optval_addr))
1811 return -TARGET_EFAULT;
1812 }
1813 if (put_user_u32(len, optlen))
1814 return -TARGET_EFAULT;
1815 break;
1816 case SOL_IP:
1817 switch(optname) {
1818 case IP_TOS:
1819 case IP_TTL:
1820 case IP_HDRINCL:
1821 case IP_ROUTER_ALERT:
1822 case IP_RECVOPTS:
1823 case IP_RETOPTS:
1824 case IP_PKTINFO:
1825 case IP_MTU_DISCOVER:
1826 case IP_RECVERR:
1827 case IP_RECVTOS:
1828 #ifdef IP_FREEBIND
1829 case IP_FREEBIND:
1830 #endif
1831 case IP_MULTICAST_TTL:
1832 case IP_MULTICAST_LOOP:
1833 if (get_user_u32(len, optlen))
1834 return -TARGET_EFAULT;
1835 if (len < 0)
1836 return -TARGET_EINVAL;
1837 lv = sizeof(lv);
1838 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
1839 if (ret < 0)
1840 return ret;
1841 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
1842 len = 1;
1843 if (put_user_u32(len, optlen)
1844 || put_user_u8(val, optval_addr))
1845 return -TARGET_EFAULT;
1846 } else {
1847 if (len > sizeof(int))
1848 len = sizeof(int);
1849 if (put_user_u32(len, optlen)
1850 || put_user_u32(val, optval_addr))
1851 return -TARGET_EFAULT;
1852 }
1853 break;
1854 default:
1855 ret = -TARGET_ENOPROTOOPT;
1856 break;
1857 }
1858 break;
1859 default:
1860 unimplemented:
1861 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
1862 level, optname);
1863 ret = -TARGET_EOPNOTSUPP;
1864 break;
1865 }
1866 return ret;
1867 }
1868
1869 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
1870 int count, int copy)
1871 {
1872 struct target_iovec *target_vec;
1873 struct iovec *vec;
1874 abi_ulong total_len, max_len;
1875 int i;
1876 int err = 0;
1877 bool bad_address = false;
1878
1879 if (count == 0) {
1880 errno = 0;
1881 return NULL;
1882 }
1883 if (count < 0 || count > IOV_MAX) {
1884 errno = EINVAL;
1885 return NULL;
1886 }
1887
1888 vec = calloc(count, sizeof(struct iovec));
1889 if (vec == NULL) {
1890 errno = ENOMEM;
1891 return NULL;
1892 }
1893
1894 target_vec = lock_user(VERIFY_READ, target_addr,
1895 count * sizeof(struct target_iovec), 1);
1896 if (target_vec == NULL) {
1897 err = EFAULT;
1898 goto fail2;
1899 }
1900
1901 /* ??? If host page size > target page size, this will result in a
1902 value larger than what we can actually support. */
1903 max_len = 0x7fffffff & TARGET_PAGE_MASK;
1904 total_len = 0;
1905
1906 for (i = 0; i < count; i++) {
1907 abi_ulong base = tswapal(target_vec[i].iov_base);
1908 abi_long len = tswapal(target_vec[i].iov_len);
1909
1910 if (len < 0) {
1911 err = EINVAL;
1912 goto fail;
1913 } else if (len == 0) {
1914 /* Zero length pointer is ignored. */
1915 vec[i].iov_base = 0;
1916 } else {
1917 vec[i].iov_base = lock_user(type, base, len, copy);
1918 /* If the first buffer pointer is bad, this is a fault. But
1919 * subsequent bad buffers will result in a partial write; this
1920 * is realized by filling the vector with null pointers and
1921 * zero lengths. */
1922 if (!vec[i].iov_base) {
1923 if (i == 0) {
1924 err = EFAULT;
1925 goto fail;
1926 } else {
1927 bad_address = true;
1928 }
1929 }
1930 if (bad_address) {
1931 len = 0;
1932 }
1933 if (len > max_len - total_len) {
1934 len = max_len - total_len;
1935 }
1936 }
1937 vec[i].iov_len = len;
1938 total_len += len;
1939 }
1940
1941 unlock_user(target_vec, target_addr, 0);
1942 return vec;
1943
1944 fail:
1945 while (--i >= 0) {
1946 if (tswapal(target_vec[i].iov_len) > 0) {
1947 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
1948 }
1949 }
1950 unlock_user(target_vec, target_addr, 0);
1951 fail2:
1952 free(vec);
1953 errno = err;
1954 return NULL;
1955 }
1956
1957 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
1958 int count, int copy)
1959 {
1960 struct target_iovec *target_vec;
1961 int i;
1962
1963 target_vec = lock_user(VERIFY_READ, target_addr,
1964 count * sizeof(struct target_iovec), 1);
1965 if (target_vec) {
1966 for (i = 0; i < count; i++) {
1967 abi_ulong base = tswapal(target_vec[i].iov_base);
1968 abi_long len = tswapal(target_vec[i].iov_len);
1969 if (len < 0) {
1970 break;
1971 }
1972 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
1973 }
1974 unlock_user(target_vec, target_addr, 0);
1975 }
1976
1977 free(vec);
1978 }
1979
1980 static inline int target_to_host_sock_type(int *type)
1981 {
1982 int host_type = 0;
1983 int target_type = *type;
1984
1985 switch (target_type & TARGET_SOCK_TYPE_MASK) {
1986 case TARGET_SOCK_DGRAM:
1987 host_type = SOCK_DGRAM;
1988 break;
1989 case TARGET_SOCK_STREAM:
1990 host_type = SOCK_STREAM;
1991 break;
1992 default:
1993 host_type = target_type & TARGET_SOCK_TYPE_MASK;
1994 break;
1995 }
1996 if (target_type & TARGET_SOCK_CLOEXEC) {
1997 #if defined(SOCK_CLOEXEC)
1998 host_type |= SOCK_CLOEXEC;
1999 #else
2000 return -TARGET_EINVAL;
2001 #endif
2002 }
2003 if (target_type & TARGET_SOCK_NONBLOCK) {
2004 #if defined(SOCK_NONBLOCK)
2005 host_type |= SOCK_NONBLOCK;
2006 #elif !defined(O_NONBLOCK)
2007 return -TARGET_EINVAL;
2008 #endif
2009 }
2010 *type = host_type;
2011 return 0;
2012 }
2013
2014 /* Try to emulate socket type flags after socket creation. */
2015 static int sock_flags_fixup(int fd, int target_type)
2016 {
2017 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
2018 if (target_type & TARGET_SOCK_NONBLOCK) {
2019 int flags = fcntl(fd, F_GETFL);
2020 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
2021 close(fd);
2022 return -TARGET_EINVAL;
2023 }
2024 }
2025 #endif
2026 return fd;
2027 }
2028
2029 /* do_socket() Must return target values and target errnos. */
2030 static abi_long do_socket(int domain, int type, int protocol)
2031 {
2032 int target_type = type;
2033 int ret;
2034
2035 ret = target_to_host_sock_type(&type);
2036 if (ret) {
2037 return ret;
2038 }
2039
2040 if (domain == PF_NETLINK)
2041 return -TARGET_EAFNOSUPPORT;
2042 ret = get_errno(socket(domain, type, protocol));
2043 if (ret >= 0) {
2044 ret = sock_flags_fixup(ret, target_type);
2045 }
2046 return ret;
2047 }
2048
2049 /* do_bind() Must return target values and target errnos. */
2050 static abi_long do_bind(int sockfd, abi_ulong target_addr,
2051 socklen_t addrlen)
2052 {
2053 void *addr;
2054 abi_long ret;
2055
2056 if ((int)addrlen < 0) {
2057 return -TARGET_EINVAL;
2058 }
2059
2060 addr = alloca(addrlen+1);
2061
2062 ret = target_to_host_sockaddr(addr, target_addr, addrlen);
2063 if (ret)
2064 return ret;
2065
2066 return get_errno(bind(sockfd, addr, addrlen));
2067 }
2068
2069 /* do_connect() Must return target values and target errnos. */
2070 static abi_long do_connect(int sockfd, abi_ulong target_addr,
2071 socklen_t addrlen)
2072 {
2073 void *addr;
2074 abi_long ret;
2075
2076 if ((int)addrlen < 0) {
2077 return -TARGET_EINVAL;
2078 }
2079
2080 addr = alloca(addrlen+1);
2081
2082 ret = target_to_host_sockaddr(addr, target_addr, addrlen);
2083 if (ret)
2084 return ret;
2085
2086 return get_errno(connect(sockfd, addr, addrlen));
2087 }
2088
2089 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
2090 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
2091 int flags, int send)
2092 {
2093 abi_long ret, len;
2094 struct msghdr msg;
2095 int count;
2096 struct iovec *vec;
2097 abi_ulong target_vec;
2098
2099 if (msgp->msg_name) {
2100 msg.msg_namelen = tswap32(msgp->msg_namelen);
2101 msg.msg_name = alloca(msg.msg_namelen+1);
2102 ret = target_to_host_sockaddr(msg.msg_name, tswapal(msgp->msg_name),
2103 msg.msg_namelen);
2104 if (ret) {
2105 goto out2;
2106 }
2107 } else {
2108 msg.msg_name = NULL;
2109 msg.msg_namelen = 0;
2110 }
2111 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
2112 msg.msg_control = alloca(msg.msg_controllen);
2113 msg.msg_flags = tswap32(msgp->msg_flags);
2114
2115 count = tswapal(msgp->msg_iovlen);
2116 target_vec = tswapal(msgp->msg_iov);
2117 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
2118 target_vec, count, send);
2119 if (vec == NULL) {
2120 ret = -host_to_target_errno(errno);
2121 goto out2;
2122 }
2123 msg.msg_iovlen = count;
2124 msg.msg_iov = vec;
2125
2126 if (send) {
2127 ret = target_to_host_cmsg(&msg, msgp);
2128 if (ret == 0)
2129 ret = get_errno(sendmsg(fd, &msg, flags));
2130 } else {
2131 ret = get_errno(recvmsg(fd, &msg, flags));
2132 if (!is_error(ret)) {
2133 len = ret;
2134 ret = host_to_target_cmsg(msgp, &msg);
2135 if (!is_error(ret)) {
2136 msgp->msg_namelen = tswap32(msg.msg_namelen);
2137 if (msg.msg_name != NULL) {
2138 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
2139 msg.msg_name, msg.msg_namelen);
2140 if (ret) {
2141 goto out;
2142 }
2143 }
2144
2145 ret = len;
2146 }
2147 }
2148 }
2149
2150 out:
2151 unlock_iovec(vec, target_vec, count, !send);
2152 out2:
2153 return ret;
2154 }
2155
2156 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
2157 int flags, int send)
2158 {
2159 abi_long ret;
2160 struct target_msghdr *msgp;
2161
2162 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
2163 msgp,
2164 target_msg,
2165 send ? 1 : 0)) {
2166 return -TARGET_EFAULT;
2167 }
2168 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
2169 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
2170 return ret;
2171 }
2172
2173 #ifdef TARGET_NR_sendmmsg
2174 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
2175 * so it might not have this *mmsg-specific flag either.
2176 */
2177 #ifndef MSG_WAITFORONE
2178 #define MSG_WAITFORONE 0x10000
2179 #endif
2180
2181 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
2182 unsigned int vlen, unsigned int flags,
2183 int send)
2184 {
2185 struct target_mmsghdr *mmsgp;
2186 abi_long ret = 0;
2187 int i;
2188
2189 if (vlen > UIO_MAXIOV) {
2190 vlen = UIO_MAXIOV;
2191 }
2192
2193 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
2194 if (!mmsgp) {
2195 return -TARGET_EFAULT;
2196 }
2197
2198 for (i = 0; i < vlen; i++) {
2199 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
2200 if (is_error(ret)) {
2201 break;
2202 }
2203 mmsgp[i].msg_len = tswap32(ret);
2204 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2205 if (flags & MSG_WAITFORONE) {
2206 flags |= MSG_DONTWAIT;
2207 }
2208 }
2209
2210 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
2211
2212 /* Return number of datagrams sent if we sent any at all;
2213 * otherwise return the error.
2214 */
2215 if (i) {
2216 return i;
2217 }
2218 return ret;
2219 }
2220 #endif
2221
2222 /* If we don't have a system accept4() then just call accept.
2223 * The callsites to do_accept4() will ensure that they don't
2224 * pass a non-zero flags argument in this config.
2225 */
2226 #ifndef CONFIG_ACCEPT4
2227 static inline int accept4(int sockfd, struct sockaddr *addr,
2228 socklen_t *addrlen, int flags)
2229 {
2230 assert(flags == 0);
2231 return accept(sockfd, addr, addrlen);
2232 }
2233 #endif
2234
2235 /* do_accept4() Must return target values and target errnos. */
2236 static abi_long do_accept4(int fd, abi_ulong target_addr,
2237 abi_ulong target_addrlen_addr, int flags)
2238 {
2239 socklen_t addrlen;
2240 void *addr;
2241 abi_long ret;
2242 int host_flags;
2243
2244 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
2245
2246 if (target_addr == 0) {
2247 return get_errno(accept4(fd, NULL, NULL, host_flags));
2248 }
2249
2250 /* linux returns EINVAL if addrlen pointer is invalid */
2251 if (get_user_u32(addrlen, target_addrlen_addr))
2252 return -TARGET_EINVAL;
2253
2254 if ((int)addrlen < 0) {
2255 return -TARGET_EINVAL;
2256 }
2257
2258 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
2259 return -TARGET_EINVAL;
2260
2261 addr = alloca(addrlen);
2262
2263 ret = get_errno(accept4(fd, addr, &addrlen, host_flags));
2264 if (!is_error(ret)) {
2265 host_to_target_sockaddr(target_addr, addr, addrlen);
2266 if (put_user_u32(addrlen, target_addrlen_addr))
2267 ret = -TARGET_EFAULT;
2268 }
2269 return ret;
2270 }
2271
2272 /* do_getpeername() Must return target values and target errnos. */
2273 static abi_long do_getpeername(int fd, abi_ulong target_addr,
2274 abi_ulong target_addrlen_addr)
2275 {
2276 socklen_t addrlen;
2277 void *addr;
2278 abi_long ret;
2279
2280 if (get_user_u32(addrlen, target_addrlen_addr))
2281 return -TARGET_EFAULT;
2282
2283 if ((int)addrlen < 0) {
2284 return -TARGET_EINVAL;
2285 }
2286
2287 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
2288 return -TARGET_EFAULT;
2289
2290 addr = alloca(addrlen);
2291
2292 ret = get_errno(getpeername(fd, addr, &addrlen));
2293 if (!is_error(ret)) {
2294 host_to_target_sockaddr(target_addr, addr, addrlen);
2295 if (put_user_u32(addrlen, target_addrlen_addr))
2296 ret = -TARGET_EFAULT;
2297 }
2298 return ret;
2299 }
2300
2301 /* do_getsockname() Must return target values and target errnos. */
2302 static abi_long do_getsockname(int fd, abi_ulong target_addr,
2303 abi_ulong target_addrlen_addr)
2304 {
2305 socklen_t addrlen;
2306 void *addr;
2307 abi_long ret;
2308
2309 if (get_user_u32(addrlen, target_addrlen_addr))
2310 return -TARGET_EFAULT;
2311
2312 if ((int)addrlen < 0) {
2313 return -TARGET_EINVAL;
2314 }
2315
2316 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
2317 return -TARGET_EFAULT;
2318
2319 addr = alloca(addrlen);
2320
2321 ret = get_errno(getsockname(fd, addr, &addrlen));
2322 if (!is_error(ret)) {
2323 host_to_target_sockaddr(target_addr, addr, addrlen);
2324 if (put_user_u32(addrlen, target_addrlen_addr))
2325 ret = -TARGET_EFAULT;
2326 }
2327 return ret;
2328 }
2329
2330 /* do_socketpair() Must return target values and target errnos. */
2331 static abi_long do_socketpair(int domain, int type, int protocol,
2332 abi_ulong target_tab_addr)
2333 {
2334 int tab[2];
2335 abi_long ret;
2336
2337 target_to_host_sock_type(&type);
2338
2339 ret = get_errno(socketpair(domain, type, protocol, tab));
2340 if (!is_error(ret)) {
2341 if (put_user_s32(tab[0], target_tab_addr)
2342 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
2343 ret = -TARGET_EFAULT;
2344 }
2345 return ret;
2346 }
2347
2348 /* do_sendto() Must return target values and target errnos. */
2349 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
2350 abi_ulong target_addr, socklen_t addrlen)
2351 {
2352 void *addr;
2353 void *host_msg;
2354 abi_long ret;
2355
2356 if ((int)addrlen < 0) {
2357 return -TARGET_EINVAL;
2358 }
2359
2360 host_msg = lock_user(VERIFY_READ, msg, len, 1);
2361 if (!host_msg)
2362 return -TARGET_EFAULT;
2363 if (target_addr) {
2364 addr = alloca(addrlen+1);
2365 ret = target_to_host_sockaddr(addr, target_addr, addrlen);
2366 if (ret) {
2367 unlock_user(host_msg, msg, 0);
2368 return ret;
2369 }
2370 ret = get_errno(sendto(fd, host_msg, len, flags, addr, addrlen));
2371 } else {
2372 ret = get_errno(send(fd, host_msg, len, flags));
2373 }
2374 unlock_user(host_msg, msg, 0);
2375 return ret;
2376 }
2377
2378 /* do_recvfrom() Must return target values and target errnos. */
2379 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
2380 abi_ulong target_addr,
2381 abi_ulong target_addrlen)
2382 {
2383 socklen_t addrlen;
2384 void *addr;
2385 void *host_msg;
2386 abi_long ret;
2387
2388 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
2389 if (!host_msg)
2390 return -TARGET_EFAULT;
2391 if (target_addr) {
2392 if (get_user_u32(addrlen, target_addrlen)) {
2393 ret = -TARGET_EFAULT;
2394 goto fail;
2395 }
2396 if ((int)addrlen < 0) {
2397 ret = -TARGET_EINVAL;
2398 goto fail;
2399 }
2400 addr = alloca(addrlen);
2401 ret = get_errno(recvfrom(fd, host_msg, len, flags, addr, &addrlen));
2402 } else {
2403 addr = NULL; /* To keep compiler quiet. */
2404 ret = get_errno(qemu_recv(fd, host_msg, len, flags));
2405 }
2406 if (!is_error(ret)) {
2407 if (target_addr) {
2408 host_to_target_sockaddr(target_addr, addr, addrlen);
2409 if (put_user_u32(addrlen, target_addrlen)) {
2410 ret = -TARGET_EFAULT;
2411 goto fail;
2412 }
2413 }
2414 unlock_user(host_msg, msg, len);
2415 } else {
2416 fail:
2417 unlock_user(host_msg, msg, 0);
2418 }
2419 return ret;
2420 }
2421
2422 #ifdef TARGET_NR_socketcall
2423 /* do_socketcall() Must return target values and target errnos. */
2424 static abi_long do_socketcall(int num, abi_ulong vptr)
2425 {
2426 static const unsigned ac[] = { /* number of arguments per call */
2427 [SOCKOP_socket] = 3, /* domain, type, protocol */
2428 [SOCKOP_bind] = 3, /* sockfd, addr, addrlen */
2429 [SOCKOP_connect] = 3, /* sockfd, addr, addrlen */
2430 [SOCKOP_listen] = 2, /* sockfd, backlog */
2431 [SOCKOP_accept] = 3, /* sockfd, addr, addrlen */
2432 [SOCKOP_accept4] = 4, /* sockfd, addr, addrlen, flags */
2433 [SOCKOP_getsockname] = 3, /* sockfd, addr, addrlen */
2434 [SOCKOP_getpeername] = 3, /* sockfd, addr, addrlen */
2435 [SOCKOP_socketpair] = 4, /* domain, type, protocol, tab */
2436 [SOCKOP_send] = 4, /* sockfd, msg, len, flags */
2437 [SOCKOP_recv] = 4, /* sockfd, msg, len, flags */
2438 [SOCKOP_sendto] = 6, /* sockfd, msg, len, flags, addr, addrlen */
2439 [SOCKOP_recvfrom] = 6, /* sockfd, msg, len, flags, addr, addrlen */
2440 [SOCKOP_shutdown] = 2, /* sockfd, how */
2441 [SOCKOP_sendmsg] = 3, /* sockfd, msg, flags */
2442 [SOCKOP_recvmsg] = 3, /* sockfd, msg, flags */
2443 [SOCKOP_setsockopt] = 5, /* sockfd, level, optname, optval, optlen */
2444 [SOCKOP_getsockopt] = 5, /* sockfd, level, optname, optval, optlen */
2445 };
2446 abi_long a[6]; /* max 6 args */
2447
2448 /* first, collect the arguments in a[] according to ac[] */
2449 if (num >= 0 && num < ARRAY_SIZE(ac)) {
2450 unsigned i;
2451 assert(ARRAY_SIZE(a) >= ac[num]); /* ensure we have space for args */
2452 for (i = 0; i < ac[num]; ++i) {
2453 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
2454 return -TARGET_EFAULT;
2455 }
2456 }
2457 }
2458
2459 /* now when we have the args, actually handle the call */
2460 switch (num) {
2461 case SOCKOP_socket: /* domain, type, protocol */
2462 return do_socket(a[0], a[1], a[2]);
2463 case SOCKOP_bind: /* sockfd, addr, addrlen */
2464 return do_bind(a[0], a[1], a[2]);
2465 case SOCKOP_connect: /* sockfd, addr, addrlen */
2466 return do_connect(a[0], a[1], a[2]);
2467 case SOCKOP_listen: /* sockfd, backlog */
2468 return get_errno(listen(a[0], a[1]));
2469 case SOCKOP_accept: /* sockfd, addr, addrlen */
2470 return do_accept4(a[0], a[1], a[2], 0);
2471 case SOCKOP_accept4: /* sockfd, addr, addrlen, flags */
2472 return do_accept4(a[0], a[1], a[2], a[3]);
2473 case SOCKOP_getsockname: /* sockfd, addr, addrlen */
2474 return do_getsockname(a[0], a[1], a[2]);
2475 case SOCKOP_getpeername: /* sockfd, addr, addrlen */
2476 return do_getpeername(a[0], a[1], a[2]);
2477 case SOCKOP_socketpair: /* domain, type, protocol, tab */
2478 return do_socketpair(a[0], a[1], a[2], a[3]);
2479 case SOCKOP_send: /* sockfd, msg, len, flags */
2480 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
2481 case SOCKOP_recv: /* sockfd, msg, len, flags */
2482 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
2483 case SOCKOP_sendto: /* sockfd, msg, len, flags, addr, addrlen */
2484 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
2485 case SOCKOP_recvfrom: /* sockfd, msg, len, flags, addr, addrlen */
2486 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
2487 case SOCKOP_shutdown: /* sockfd, how */
2488 return get_errno(shutdown(a[0], a[1]));
2489 case SOCKOP_sendmsg: /* sockfd, msg, flags */
2490 return do_sendrecvmsg(a[0], a[1], a[2], 1);
2491 case SOCKOP_recvmsg: /* sockfd, msg, flags */
2492 return do_sendrecvmsg(a[0], a[1], a[2], 0);
2493 case SOCKOP_setsockopt: /* sockfd, level, optname, optval, optlen */
2494 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
2495 case SOCKOP_getsockopt: /* sockfd, level, optname, optval, optlen */
2496 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
2497 default:
2498 gemu_log("Unsupported socketcall: %d\n", num);
2499 return -TARGET_ENOSYS;
2500 }
2501 }
2502 #endif
2503
2504 #define N_SHM_REGIONS 32
2505
2506 static struct shm_region {
2507 abi_ulong start;
2508 abi_ulong size;
2509 } shm_regions[N_SHM_REGIONS];
2510
2511 struct target_semid_ds
2512 {
2513 struct target_ipc_perm sem_perm;
2514 abi_ulong sem_otime;
2515 #if !defined(TARGET_PPC64)
2516 abi_ulong __unused1;
2517 #endif
2518 abi_ulong sem_ctime;
2519 #if !defined(TARGET_PPC64)
2520 abi_ulong __unused2;
2521 #endif
2522 abi_ulong sem_nsems;
2523 abi_ulong __unused3;
2524 abi_ulong __unused4;
2525 };
2526
2527 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
2528 abi_ulong target_addr)
2529 {
2530 struct target_ipc_perm *target_ip;
2531 struct target_semid_ds *target_sd;
2532
2533 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
2534 return -TARGET_EFAULT;
2535 target_ip = &(target_sd->sem_perm);
2536 host_ip->__key = tswap32(target_ip->__key);
2537 host_ip->uid = tswap32(target_ip->uid);
2538 host_ip->gid = tswap32(target_ip->gid);
2539 host_ip->cuid = tswap32(target_ip->cuid);
2540 host_ip->cgid = tswap32(target_ip->cgid);
2541 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
2542 host_ip->mode = tswap32(target_ip->mode);
2543 #else
2544 host_ip->mode = tswap16(target_ip->mode);
2545 #endif
2546 #if defined(TARGET_PPC)
2547 host_ip->__seq = tswap32(target_ip->__seq);
2548 #else
2549 host_ip->__seq = tswap16(target_ip->__seq);
2550 #endif
2551 unlock_user_struct(target_sd, target_addr, 0);
2552 return 0;
2553 }
2554
2555 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
2556 struct ipc_perm *host_ip)
2557 {
2558 struct target_ipc_perm *target_ip;
2559 struct target_semid_ds *target_sd;
2560
2561 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
2562 return -TARGET_EFAULT;
2563 target_ip = &(target_sd->sem_perm);
2564 target_ip->__key = tswap32(host_ip->__key);
2565 target_ip->uid = tswap32(host_ip->uid);
2566 target_ip->gid = tswap32(host_ip->gid);
2567 target_ip->cuid = tswap32(host_ip->cuid);
2568 target_ip->cgid = tswap32(host_ip->cgid);
2569 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
2570 target_ip->mode = tswap32(host_ip->mode);
2571 #else
2572 target_ip->mode = tswap16(host_ip->mode);
2573 #endif
2574 #if defined(TARGET_PPC)
2575 target_ip->__seq = tswap32(host_ip->__seq);
2576 #else
2577 target_ip->__seq = tswap16(host_ip->__seq);
2578 #endif
2579 unlock_user_struct(target_sd, target_addr, 1);
2580 return 0;
2581 }
2582
2583 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
2584 abi_ulong target_addr)
2585 {
2586 struct target_semid_ds *target_sd;
2587
2588 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
2589 return -TARGET_EFAULT;
2590 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
2591 return -TARGET_EFAULT;
2592 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
2593 host_sd->sem_otime = tswapal(target_sd->sem_otime);
2594 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
2595 unlock_user_struct(target_sd, target_addr, 0);
2596 return 0;
2597 }
2598
2599 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
2600 struct semid_ds *host_sd)
2601 {
2602 struct target_semid_ds *target_sd;
2603
2604 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
2605 return -TARGET_EFAULT;
2606 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
2607 return -TARGET_EFAULT;
2608 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
2609 target_sd->sem_otime = tswapal(host_sd->sem_otime);
2610 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
2611 unlock_user_struct(target_sd, target_addr, 1);
2612 return 0;
2613 }
2614
2615 struct target_seminfo {
2616 int semmap;
2617 int semmni;
2618 int semmns;
2619 int semmnu;
2620 int semmsl;
2621 int semopm;
2622 int semume;
2623 int semusz;
2624 int semvmx;
2625 int semaem;
2626 };
2627
2628 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
2629 struct seminfo *host_seminfo)
2630 {
2631 struct target_seminfo *target_seminfo;
2632 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
2633 return -TARGET_EFAULT;
2634 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
2635 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
2636 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
2637 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
2638 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
2639 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
2640 __put_user(host_seminfo->semume, &target_seminfo->semume);
2641 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
2642 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
2643 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
2644 unlock_user_struct(target_seminfo, target_addr, 1);
2645 return 0;
2646 }
2647
2648 union semun {
2649 int val;
2650 struct semid_ds *buf;
2651 unsigned short *array;
2652 struct seminfo *__buf;
2653 };
2654
2655 union target_semun {
2656 int val;
2657 abi_ulong buf;
2658 abi_ulong array;
2659 abi_ulong __buf;
2660 };
2661
2662 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
2663 abi_ulong target_addr)
2664 {
2665 int nsems;
2666 unsigned short *array;
2667 union semun semun;
2668 struct semid_ds semid_ds;
2669 int i, ret;
2670
2671 semun.buf = &semid_ds;
2672
2673 ret = semctl(semid, 0, IPC_STAT, semun);
2674 if (ret == -1)
2675 return get_errno(ret);
2676
2677 nsems = semid_ds.sem_nsems;
2678
2679 *host_array = malloc(nsems*sizeof(unsigned short));
2680 if (!*host_array) {
2681 return -TARGET_ENOMEM;
2682 }
2683 array = lock_user(VERIFY_READ, target_addr,
2684 nsems*sizeof(unsigned short), 1);
2685 if (!array) {
2686 free(*host_array);
2687 return -TARGET_EFAULT;
2688 }
2689
2690 for(i=0; i<nsems; i++) {
2691 __get_user((*host_array)[i], &array[i]);
2692 }
2693 unlock_user(array, target_addr, 0);
2694
2695 return 0;
2696 }
2697
2698 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
2699 unsigned short **host_array)
2700 {
2701 int nsems;
2702 unsigned short *array;
2703 union semun semun;
2704 struct semid_ds semid_ds;
2705 int i, ret;
2706
2707 semun.buf = &semid_ds;
2708
2709 ret = semctl(semid, 0, IPC_STAT, semun);
2710 if (ret == -1)
2711 return get_errno(ret);
2712
2713 nsems = semid_ds.sem_nsems;
2714
2715 array = lock_user(VERIFY_WRITE, target_addr,
2716 nsems*sizeof(unsigned short), 0);
2717 if (!array)
2718 return -TARGET_EFAULT;
2719
2720 for(i=0; i<nsems; i++) {
2721 __put_user((*host_array)[i], &array[i]);
2722 }
2723 free(*host_array);
2724 unlock_user(array, target_addr, 1);
2725
2726 return 0;
2727 }
2728
2729 static inline abi_long do_semctl(int semid, int semnum, int cmd,
2730 union target_semun target_su)
2731 {
2732 union semun arg;
2733 struct semid_ds dsarg;
2734 unsigned short *array = NULL;
2735 struct seminfo seminfo;
2736 abi_long ret = -TARGET_EINVAL;
2737 abi_long err;
2738 cmd &= 0xff;
2739
2740 switch( cmd ) {
2741 case GETVAL:
2742 case SETVAL:
2743 /* In 64 bit cross-endian situations, we will erroneously pick up
2744 * the wrong half of the union for the "val" element. To rectify
2745 * this, the entire 8-byte structure is byteswapped, followed by
2746 * a swap of the 4 byte val field. In other cases, the data is
2747 * already in proper host byte order. */
2748 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
2749 target_su.buf = tswapal(target_su.buf);
2750 arg.val = tswap32(target_su.val);
2751 } else {
2752 arg.val = target_su.val;
2753 }
2754 ret = get_errno(semctl(semid, semnum, cmd, arg));
2755 break;
2756 case GETALL:
2757 case SETALL:
2758 err = target_to_host_semarray(semid, &array, target_su.array);
2759 if (err)
2760 return err;
2761 arg.array = array;
2762 ret = get_errno(semctl(semid, semnum, cmd, arg));
2763 err = host_to_target_semarray(semid, target_su.array, &array);
2764 if (err)
2765 return err;
2766 break;
2767 case IPC_STAT:
2768 case IPC_SET:
2769 case SEM_STAT:
2770 err = target_to_host_semid_ds(&dsarg, target_su.buf);
2771 if (err)
2772 return err;
2773 arg.buf = &dsarg;
2774 ret = get_errno(semctl(semid, semnum, cmd, arg));
2775 err = host_to_target_semid_ds(target_su.buf, &dsarg);
2776 if (err)
2777 return err;
2778 break;
2779 case IPC_INFO:
2780 case SEM_INFO:
2781 arg.__buf = &seminfo;
2782 ret = get_errno(semctl(semid, semnum, cmd, arg));
2783 err = host_to_target_seminfo(target_su.__buf, &seminfo);
2784 if (err)
2785 return err;
2786 break;
2787 case IPC_RMID:
2788 case GETPID:
2789 case GETNCNT:
2790 case GETZCNT:
2791 ret = get_errno(semctl(semid, semnum, cmd, NULL));
2792 break;
2793 }
2794
2795 return ret;
2796 }
2797
2798 struct target_sembuf {
2799 unsigned short sem_num;
2800 short sem_op;
2801 short sem_flg;
2802 };
2803
2804 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
2805 abi_ulong target_addr,
2806 unsigned nsops)
2807 {
2808 struct target_sembuf *target_sembuf;
2809 int i;
2810
2811 target_sembuf = lock_user(VERIFY_READ, target_addr,
2812 nsops*sizeof(struct target_sembuf), 1);
2813 if (!target_sembuf)
2814 return -TARGET_EFAULT;
2815
2816 for(i=0; i<nsops; i++) {
2817 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
2818 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
2819 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
2820 }
2821
2822 unlock_user(target_sembuf, target_addr, 0);
2823
2824 return 0;
2825 }
2826
2827 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
2828 {
2829 struct sembuf sops[nsops];
2830
2831 if (target_to_host_sembuf(sops, ptr, nsops))
2832 return -TARGET_EFAULT;
2833
2834 return get_errno(semop(semid, sops, nsops));
2835 }
2836
2837 struct target_msqid_ds
2838 {
2839 struct target_ipc_perm msg_perm;
2840 abi_ulong msg_stime;
2841 #if TARGET_ABI_BITS == 32
2842 abi_ulong __unused1;
2843 #endif
2844 abi_ulong msg_rtime;
2845 #if TARGET_ABI_BITS == 32
2846 abi_ulong __unused2;
2847 #endif
2848 abi_ulong msg_ctime;
2849 #if TARGET_ABI_BITS == 32
2850 abi_ulong __unused3;
2851 #endif
2852 abi_ulong __msg_cbytes;
2853 abi_ulong msg_qnum;
2854 abi_ulong msg_qbytes;
2855 abi_ulong msg_lspid;
2856 abi_ulong msg_lrpid;
2857 abi_ulong __unused4;
2858 abi_ulong __unused5;
2859 };
2860
2861 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
2862 abi_ulong target_addr)
2863 {
2864 struct target_msqid_ds *target_md;
2865
2866 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
2867 return -TARGET_EFAULT;
2868 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
2869 return -TARGET_EFAULT;
2870 host_md->msg_stime = tswapal(target_md->msg_stime);
2871 host_md->msg_rtime = tswapal(target_md->msg_rtime);
2872 host_md->msg_ctime = tswapal(target_md->msg_ctime);
2873 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
2874 host_md->msg_qnum = tswapal(target_md->msg_qnum);
2875 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
2876 host_md->msg_lspid = tswapal(target_md->msg_lspid);
2877 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
2878 unlock_user_struct(target_md, target_addr, 0);
2879 return 0;
2880 }
2881
2882 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
2883 struct msqid_ds *host_md)
2884 {
2885 struct target_msqid_ds *target_md;
2886
2887 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
2888 return -TARGET_EFAULT;
2889 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
2890 return -TARGET_EFAULT;
2891 target_md->msg_stime = tswapal(host_md->msg_stime);
2892 target_md->msg_rtime = tswapal(host_md->msg_rtime);
2893 target_md->msg_ctime = tswapal(host_md->msg_ctime);
2894 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
2895 target_md->msg_qnum = tswapal(host_md->msg_qnum);
2896 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
2897 target_md->msg_lspid = tswapal(host_md->msg_lspid);
2898 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
2899 unlock_user_struct(target_md, target_addr, 1);
2900 return 0;
2901 }
2902
2903 struct target_msginfo {
2904 int msgpool;
2905 int msgmap;
2906 int msgmax;
2907 int msgmnb;
2908 int msgmni;
2909 int msgssz;
2910 int msgtql;
2911 unsigned short int msgseg;
2912 };
2913
2914 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
2915 struct msginfo *host_msginfo)
2916 {
2917 struct target_msginfo *target_msginfo;
2918 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
2919 return -TARGET_EFAULT;
2920 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
2921 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
2922 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
2923 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
2924 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
2925 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
2926 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
2927 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
2928 unlock_user_struct(target_msginfo, target_addr, 1);
2929 return 0;
2930 }
2931
2932 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
2933 {
2934 struct msqid_ds dsarg;
2935 struct msginfo msginfo;
2936 abi_long ret = -TARGET_EINVAL;
2937
2938 cmd &= 0xff;
2939
2940 switch (cmd) {
2941 case IPC_STAT:
2942 case IPC_SET:
2943 case MSG_STAT:
2944 if (target_to_host_msqid_ds(&dsarg,ptr))
2945 return -TARGET_EFAULT;
2946 ret = get_errno(msgctl(msgid, cmd, &dsarg));
2947 if (host_to_target_msqid_ds(ptr,&dsarg))
2948 return -TARGET_EFAULT;
2949 break;
2950 case IPC_RMID:
2951 ret = get_errno(msgctl(msgid, cmd, NULL));
2952 break;
2953 case IPC_INFO:
2954 case MSG_INFO:
2955 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
2956 if (host_to_target_msginfo(ptr, &msginfo))
2957 return -TARGET_EFAULT;
2958 break;
2959 }
2960
2961 return ret;
2962 }
2963
2964 struct target_msgbuf {
2965 abi_long mtype;
2966 char mtext[1];
2967 };
2968
2969 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
2970 ssize_t msgsz, int msgflg)
2971 {
2972 struct target_msgbuf *target_mb;
2973 struct msgbuf *host_mb;
2974 abi_long ret = 0;
2975
2976 if (msgsz < 0) {
2977 return -TARGET_EINVAL;
2978 }
2979
2980 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
2981 return -TARGET_EFAULT;
2982 host_mb = malloc(msgsz+sizeof(long));
2983 if (!host_mb) {
2984 unlock_user_struct(target_mb, msgp, 0);
2985 return -TARGET_ENOMEM;
2986 }
2987 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
2988 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
2989 ret = get_errno(msgsnd(msqid, host_mb, msgsz, msgflg));
2990 free(host_mb);
2991 unlock_user_struct(target_mb, msgp, 0);
2992
2993 return ret;
2994 }
2995
2996 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
2997 unsigned int msgsz, abi_long msgtyp,
2998 int msgflg)
2999 {
3000 struct target_msgbuf *target_mb;
3001 char *target_mtext;
3002 struct msgbuf *host_mb;
3003 abi_long ret = 0;
3004
3005 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
3006 return -TARGET_EFAULT;
3007
3008 host_mb = g_malloc(msgsz+sizeof(long));
3009 ret = get_errno(msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
3010
3011 if (ret > 0) {
3012 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
3013 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
3014 if (!target_mtext) {
3015 ret = -TARGET_EFAULT;
3016 goto end;
3017 }
3018 memcpy(target_mb->mtext, host_mb->mtext, ret);
3019 unlock_user(target_mtext, target_mtext_addr, ret);
3020 }
3021
3022 target_mb->mtype = tswapal(host_mb->mtype);
3023
3024 end:
3025 if (target_mb)
3026 unlock_user_struct(target_mb, msgp, 1);
3027 g_free(host_mb);
3028 return ret;
3029 }
3030
3031 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
3032 abi_ulong target_addr)
3033 {
3034 struct target_shmid_ds *target_sd;
3035
3036 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3037 return -TARGET_EFAULT;
3038 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
3039 return -TARGET_EFAULT;
3040 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
3041 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
3042 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
3043 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
3044 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
3045 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
3046 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
3047 unlock_user_struct(target_sd, target_addr, 0);
3048 return 0;
3049 }
3050
3051 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
3052 struct shmid_ds *host_sd)
3053 {
3054 struct target_shmid_ds *target_sd;
3055
3056 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3057 return -TARGET_EFAULT;
3058 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
3059 return -TARGET_EFAULT;
3060 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
3061 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
3062 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
3063 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
3064 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
3065 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
3066 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
3067 unlock_user_struct(target_sd, target_addr, 1);
3068 return 0;
3069 }
3070
3071 struct target_shminfo {
3072 abi_ulong shmmax;
3073 abi_ulong shmmin;
3074 abi_ulong shmmni;
3075 abi_ulong shmseg;
3076 abi_ulong shmall;
3077 };
3078
3079 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
3080 struct shminfo *host_shminfo)
3081 {
3082 struct target_shminfo *target_shminfo;
3083 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
3084 return -TARGET_EFAULT;
3085 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
3086 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
3087 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
3088 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
3089 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
3090 unlock_user_struct(target_shminfo, target_addr, 1);
3091 return 0;
3092 }
3093
3094 struct target_shm_info {
3095 int used_ids;
3096 abi_ulong shm_tot;
3097 abi_ulong shm_rss;
3098 abi_ulong shm_swp;
3099 abi_ulong swap_attempts;
3100 abi_ulong swap_successes;
3101 };
3102
3103 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
3104 struct shm_info *host_shm_info)
3105 {
3106 struct target_shm_info *target_shm_info;
3107 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
3108 return -TARGET_EFAULT;
3109 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
3110 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
3111 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
3112 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
3113 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
3114 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
3115 unlock_user_struct(target_shm_info, target_addr, 1);
3116 return 0;
3117 }
3118
3119 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
3120 {
3121 struct shmid_ds dsarg;
3122 struct shminfo shminfo;
3123 struct shm_info shm_info;
3124 abi_long ret = -TARGET_EINVAL;
3125
3126 cmd &= 0xff;
3127
3128 switch(cmd) {
3129 case IPC_STAT:
3130 case IPC_SET:
3131 case SHM_STAT:
3132 if (target_to_host_shmid_ds(&dsarg, buf))
3133 return -TARGET_EFAULT;
3134 ret = get_errno(shmctl(shmid, cmd, &dsarg));
3135 if (host_to_target_shmid_ds(buf, &dsarg))
3136 return -TARGET_EFAULT;
3137 break;
3138 case IPC_INFO:
3139 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
3140 if (host_to_target_shminfo(buf, &shminfo))
3141 return -TARGET_EFAULT;
3142 break;
3143 case SHM_INFO:
3144 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
3145 if (host_to_target_shm_info(buf, &shm_info))
3146 return -TARGET_EFAULT;
3147 break;
3148 case IPC_RMID:
3149 case SHM_LOCK:
3150 case SHM_UNLOCK:
3151 ret = get_errno(shmctl(shmid, cmd, NULL));
3152 break;
3153 }
3154
3155 return ret;
3156 }
3157
3158 static inline abi_ulong do_shmat(int shmid, abi_ulong shmaddr, int shmflg)
3159 {
3160 abi_long raddr;
3161 void *host_raddr;
3162 struct shmid_ds shm_info;
3163 int i,ret;
3164
3165 /* find out the length of the shared memory segment */
3166 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
3167 if (is_error(ret)) {
3168 /* can't get length, bail out */
3169 return ret;
3170 }
3171
3172 mmap_lock();
3173
3174 if (shmaddr)
3175 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
3176 else {
3177 abi_ulong mmap_start;
3178
3179 mmap_start = mmap_find_vma(0, shm_info.shm_segsz);
3180
3181 if (mmap_start == -1) {
3182 errno = ENOMEM;
3183 host_raddr = (void *)-1;
3184 } else
3185 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
3186 }
3187
3188 if (host_raddr == (void *)-1) {
3189 mmap_unlock();
3190 return get_errno((long)host_raddr);
3191 }
3192 raddr=h2g((unsigned long)host_raddr);
3193
3194 page_set_flags(raddr, raddr + shm_info.shm_segsz,
3195 PAGE_VALID | PAGE_READ |
3196 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
3197
3198 for (i = 0; i < N_SHM_REGIONS; i++) {
3199 if (shm_regions[i].start == 0) {
3200 shm_regions[i].start = raddr;
3201 shm_regions[i].size = shm_info.shm_segsz;
3202 break;
3203 }
3204 }
3205
3206 mmap_unlock();
3207 return raddr;
3208
3209 }
3210
3211 static inline abi_long do_shmdt(abi_ulong shmaddr)
3212 {
3213 int i;
3214
3215 for (i = 0; i < N_SHM_REGIONS; ++i) {
3216 if (shm_regions[i].start == shmaddr) {
3217 shm_regions[i].start = 0;
3218 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
3219 break;
3220 }
3221 }
3222
3223 return get_errno(shmdt(g2h(shmaddr)));
3224 }
3225
3226 #ifdef TARGET_NR_ipc
3227 /* ??? This only works with linear mappings. */
3228 /* do_ipc() must return target values and target errnos. */
3229 static abi_long do_ipc(unsigned int call, abi_long first,
3230 abi_long second, abi_long third,
3231 abi_long ptr, abi_long fifth)
3232 {
3233 int version;
3234 abi_long ret = 0;
3235
3236 version = call >> 16;
3237 call &= 0xffff;
3238
3239 switch (call) {
3240 case IPCOP_semop:
3241 ret = do_semop(first, ptr, second);
3242 break;
3243
3244 case IPCOP_semget:
3245 ret = get_errno(semget(first, second, third));
3246 break;
3247
3248 case IPCOP_semctl: {
3249 /* The semun argument to semctl is passed by value, so dereference the
3250 * ptr argument. */
3251 abi_ulong atptr;
3252 get_user_ual(atptr, ptr);
3253 ret = do_semctl(first, second, third,
3254 (union target_semun) atptr);
3255 break;
3256 }
3257
3258 case IPCOP_msgget:
3259 ret = get_errno(msgget(first, second));
3260 break;
3261
3262 case IPCOP_msgsnd:
3263 ret = do_msgsnd(first, ptr, second, third);
3264 break;
3265
3266 case IPCOP_msgctl:
3267 ret = do_msgctl(first, second, ptr);
3268 break;
3269
3270 case IPCOP_msgrcv:
3271 switch (version) {
3272 case 0:
3273 {
3274 struct target_ipc_kludge {
3275 abi_long msgp;
3276 abi_long msgtyp;
3277 } *tmp;
3278
3279 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
3280 ret = -TARGET_EFAULT;
3281 break;
3282 }
3283
3284 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
3285
3286 unlock_user_struct(tmp, ptr, 0);
3287 break;
3288 }
3289 default:
3290 ret = do_msgrcv(first, ptr, second, fifth, third);
3291 }
3292 break;
3293
3294 case IPCOP_shmat:
3295 switch (version) {
3296 default:
3297 {
3298 abi_ulong raddr;
3299 raddr = do_shmat(first, ptr, second);
3300 if (is_error(raddr))
3301 return get_errno(raddr);
3302 if (put_user_ual(raddr, third))
3303 return -TARGET_EFAULT;
3304 break;
3305 }
3306 case 1:
3307 ret = -TARGET_EINVAL;
3308 break;
3309 }
3310 break;
3311 case IPCOP_shmdt:
3312 ret = do_shmdt(ptr);
3313 break;
3314
3315 case IPCOP_shmget:
3316 /* IPC_* flag values are the same on all linux platforms */
3317 ret = get_errno(shmget(first, second, third));
3318 break;
3319
3320 /* IPC_* and SHM_* command values are the same on all linux platforms */
3321 case IPCOP_shmctl:
3322 ret = do_shmctl(first, second, ptr);
3323 break;
3324 default:
3325 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version);
3326 ret = -TARGET_ENOSYS;
3327 break;
3328 }
3329 return ret;
3330 }
3331 #endif
3332
3333 /* kernel structure types definitions */
3334
3335 #define STRUCT(name, ...) STRUCT_ ## name,
3336 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
3337 enum {
3338 #include "syscall_types.h"
3339 STRUCT_MAX
3340 };
3341 #undef STRUCT
3342 #undef STRUCT_SPECIAL
3343
3344 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
3345 #define STRUCT_SPECIAL(name)
3346 #include "syscall_types.h"
3347 #undef STRUCT
3348 #undef STRUCT_SPECIAL
3349
3350 typedef struct IOCTLEntry IOCTLEntry;
3351
3352 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
3353 int fd, int cmd, abi_long arg);
3354
3355 struct IOCTLEntry {
3356 int target_cmd;
3357 unsigned int host_cmd;
3358 const char *name;
3359 int access;
3360 do_ioctl_fn *do_ioctl;
3361 const argtype arg_type[5];
3362 };
3363
3364 #define IOC_R 0x0001
3365 #define IOC_W 0x0002
3366 #define IOC_RW (IOC_R | IOC_W)
3367
3368 #define MAX_STRUCT_SIZE 4096
3369
3370 #ifdef CONFIG_FIEMAP
3371 /* So fiemap access checks don't overflow on 32 bit systems.
3372 * This is very slightly smaller than the limit imposed by
3373 * the underlying kernel.
3374 */
3375 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
3376 / sizeof(struct fiemap_extent))
3377
3378 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
3379 int fd, int cmd, abi_long arg)
3380 {
3381 /* The parameter for this ioctl is a struct fiemap followed
3382 * by an array of struct fiemap_extent whose size is set
3383 * in fiemap->fm_extent_count. The array is filled in by the
3384 * ioctl.
3385 */
3386 int target_size_in, target_size_out;
3387 struct fiemap *fm;
3388 const argtype *arg_type = ie->arg_type;
3389 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
3390 void *argptr, *p;
3391 abi_long ret;
3392 int i, extent_size = thunk_type_size(extent_arg_type, 0);
3393 uint32_t outbufsz;
3394 int free_fm = 0;
3395
3396 assert(arg_type[0] == TYPE_PTR);
3397 assert(ie->access == IOC_RW);
3398 arg_type++;
3399 target_size_in = thunk_type_size(arg_type, 0);
3400 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
3401 if (!argptr) {
3402 return -TARGET_EFAULT;
3403 }
3404 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3405 unlock_user(argptr, arg, 0);
3406 fm = (struct fiemap *)buf_temp;
3407 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
3408 return -TARGET_EINVAL;
3409 }
3410
3411 outbufsz = sizeof (*fm) +
3412 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
3413
3414 if (outbufsz > MAX_STRUCT_SIZE) {
3415 /* We can't fit all the extents into the fixed size buffer.
3416 * Allocate one that is large enough and use it instead.
3417 */
3418 fm = malloc(outbufsz);
3419 if (!fm) {
3420 return -TARGET_ENOMEM;
3421 }
3422 memcpy(fm, buf_temp, sizeof(struct fiemap));
3423 free_fm = 1;
3424 }
3425 ret = get_errno(ioctl(fd, ie->host_cmd, fm));
3426 if (!is_error(ret)) {
3427 target_size_out = target_size_in;
3428 /* An extent_count of 0 means we were only counting the extents
3429 * so there are no structs to copy
3430 */
3431 if (fm->fm_extent_count != 0) {
3432 target_size_out += fm->fm_mapped_extents * extent_size;
3433 }
3434 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
3435 if (!argptr) {
3436 ret = -TARGET_EFAULT;
3437 } else {
3438 /* Convert the struct fiemap */
3439 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
3440 if (fm->fm_extent_count != 0) {
3441 p = argptr + target_size_in;
3442 /* ...and then all the struct fiemap_extents */
3443 for (i = 0; i < fm->fm_mapped_extents; i++) {
3444 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
3445 THUNK_TARGET);
3446 p += extent_size;
3447 }
3448 }
3449 unlock_user(argptr, arg, target_size_out);
3450 }
3451 }
3452 if (free_fm) {
3453 free(fm);
3454 }
3455 return ret;
3456 }
3457 #endif
3458
3459 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
3460 int fd, int cmd, abi_long arg)
3461 {
3462 const argtype *arg_type = ie->arg_type;
3463 int target_size;
3464 void *argptr;
3465 int ret;
3466 struct ifconf *host_ifconf;
3467 uint32_t outbufsz;
3468 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
3469 int target_ifreq_size;
3470 int nb_ifreq;
3471 int free_buf = 0;
3472 int i;
3473 int target_ifc_len;
3474 abi_long target_ifc_buf;
3475 int host_ifc_len;
3476 char *host_ifc_buf;
3477
3478 assert(arg_type[0] == TYPE_PTR);
3479 assert(ie->access == IOC_RW);
3480
3481 arg_type++;
3482 target_size = thunk_type_size(arg_type, 0);
3483
3484 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3485 if (!argptr)
3486 return -TARGET_EFAULT;
3487 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3488 unlock_user(argptr, arg, 0);
3489
3490 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
3491 target_ifc_len = host_ifconf->ifc_len;
3492 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
3493
3494 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
3495 nb_ifreq = target_ifc_len / target_ifreq_size;
3496 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
3497
3498 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
3499 if (outbufsz > MAX_STRUCT_SIZE) {
3500 /* We can't fit all the extents into the fixed size buffer.
3501 * Allocate one that is large enough and use it instead.
3502 */
3503 host_ifconf = malloc(outbufsz);
3504 if (!host_ifconf) {
3505 return -TARGET_ENOMEM;
3506 }
3507 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
3508 free_buf = 1;
3509 }
3510 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf);
3511
3512 host_ifconf->ifc_len = host_ifc_len;
3513 host_ifconf->ifc_buf = host_ifc_buf;
3514
3515 ret = get_errno(ioctl(fd, ie->host_cmd, host_ifconf));
3516 if (!is_error(ret)) {
3517 /* convert host ifc_len to target ifc_len */
3518
3519 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
3520 target_ifc_len = nb_ifreq * target_ifreq_size;
3521 host_ifconf->ifc_len = target_ifc_len;
3522
3523 /* restore target ifc_buf */
3524
3525 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
3526
3527 /* copy struct ifconf to target user */
3528
3529 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
3530 if (!argptr)
3531 return -TARGET_EFAULT;
3532 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
3533 unlock_user(argptr, arg, target_size);
3534
3535 /* copy ifreq[] to target user */
3536
3537 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
3538 for (i = 0; i < nb_ifreq ; i++) {
3539 thunk_convert(argptr + i * target_ifreq_size,
3540 host_ifc_buf + i * sizeof(struct ifreq),
3541 ifreq_arg_type, THUNK_TARGET);
3542 }
3543 unlock_user(argptr, target_ifc_buf, target_ifc_len);
3544 }
3545
3546 if (free_buf) {
3547 free(host_ifconf);
3548 }
3549
3550 return ret;
3551 }
3552
3553 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
3554 int cmd, abi_long arg)
3555 {
3556 void *argptr;
3557 struct dm_ioctl *host_dm;
3558 abi_long guest_data;
3559 uint32_t guest_data_size;
3560 int target_size;
3561 const argtype *arg_type = ie->arg_type;
3562 abi_long ret;
3563 void *big_buf = NULL;
3564 char *host_data;
3565
3566 arg_type++;
3567 target_size = thunk_type_size(arg_type, 0);
3568 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3569 if (!argptr) {
3570 ret = -TARGET_EFAULT;
3571 goto out;
3572 }
3573 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3574 unlock_user(argptr, arg, 0);
3575
3576 /* buf_temp is too small, so fetch things into a bigger buffer */
3577 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
3578 memcpy(big_buf, buf_temp, target_size);
3579 buf_temp = big_buf;
3580 host_dm = big_buf;
3581
3582 guest_data = arg + host_dm->data_start;
3583 if ((guest_data - arg) < 0) {
3584 ret = -EINVAL;
3585 goto out;
3586 }
3587 guest_data_size = host_dm->data_size - host_dm->data_start;
3588 host_data = (char*)host_dm + host_dm->data_start;
3589
3590 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
3591 switch (ie->host_cmd) {
3592 case DM_REMOVE_ALL:
3593 case DM_LIST_DEVICES:
3594 case DM_DEV_CREATE:
3595 case DM_DEV_REMOVE:
3596 case DM_DEV_SUSPEND:
3597 case DM_DEV_STATUS:
3598 case DM_DEV_WAIT:
3599 case DM_TABLE_STATUS:
3600 case DM_TABLE_CLEAR:
3601 case DM_TABLE_DEPS:
3602 case DM_LIST_VERSIONS:
3603 /* no input data */
3604 break;
3605 case DM_DEV_RENAME:
3606 case DM_DEV_SET_GEOMETRY:
3607 /* data contains only strings */
3608 memcpy(host_data, argptr, guest_data_size);
3609 break;
3610 case DM_TARGET_MSG:
3611 memcpy(host_data, argptr, guest_data_size);
3612 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
3613 break;
3614 case DM_TABLE_LOAD:
3615 {
3616 void *gspec = argptr;
3617 void *cur_data = host_data;
3618 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
3619 int spec_size = thunk_type_size(arg_type, 0);
3620 int i;
3621
3622 for (i = 0; i < host_dm->target_count; i++) {
3623 struct dm_target_spec *spec = cur_data;
3624 uint32_t next;
3625 int slen;
3626
3627 thunk_convert(spec, gspec, arg_type, THUNK_HOST);
3628 slen = strlen((char*)gspec + spec_size) + 1;
3629 next = spec->next;
3630 spec->next = sizeof(*spec) + slen;
3631 strcpy((char*)&spec[1], gspec + spec_size);
3632 gspec += next;
3633 cur_data += spec->next;
3634 }
3635 break;
3636 }
3637 default:
3638 ret = -TARGET_EINVAL;
3639 unlock_user(argptr, guest_data, 0);
3640 goto out;
3641 }
3642 unlock_user(argptr, guest_data, 0);
3643
3644 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
3645 if (!is_error(ret)) {
3646 guest_data = arg + host_dm->data_start;
3647 guest_data_size = host_dm->data_size - host_dm->data_start;
3648 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
3649 switch (ie->host_cmd) {
3650 case DM_REMOVE_ALL:
3651 case DM_DEV_CREATE:
3652 case DM_DEV_REMOVE:
3653 case DM_DEV_RENAME:
3654 case DM_DEV_SUSPEND:
3655 case DM_DEV_STATUS:
3656 case DM_TABLE_LOAD:
3657 case DM_TABLE_CLEAR:
3658 case DM_TARGET_MSG:
3659 case DM_DEV_SET_GEOMETRY:
3660 /* no return data */
3661 break;
3662 case DM_LIST_DEVICES:
3663 {
3664 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
3665 uint32_t remaining_data = guest_data_size;
3666 void *cur_data = argptr;
3667 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
3668 int nl_size = 12; /* can't use thunk_size due to alignment */
3669
3670 while (1) {
3671 uint32_t next = nl->next;
3672 if (next) {
3673 nl->next = nl_size + (strlen(nl->name) + 1);
3674 }
3675 if (remaining_data < nl->next) {
3676 host_dm->flags |= DM_BUFFER_FULL_FLAG;
3677 break;
3678 }
3679 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
3680 strcpy(cur_data + nl_size, nl->name);
3681 cur_data += nl->next;
3682 remaining_data -= nl->next;
3683 if (!next) {
3684 break;
3685 }
3686 nl = (void*)nl + next;
3687 }
3688 break;
3689 }
3690 case DM_DEV_WAIT:
3691 case DM_TABLE_STATUS:
3692 {
3693 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
3694 void *cur_data = argptr;
3695 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
3696 int spec_size = thunk_type_size(arg_type, 0);
3697 int i;
3698
3699 for (i = 0; i < host_dm->target_count; i++) {
3700 uint32_t next = spec->next;
3701 int slen = strlen((char*)&spec[1]) + 1;
3702 spec->next = (cur_data - argptr) + spec_size + slen;
3703 if (guest_data_size < spec->next) {
3704 host_dm->flags |= DM_BUFFER_FULL_FLAG;
3705 break;
3706 }
3707 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
3708 strcpy(cur_data + spec_size, (char*)&spec[1]);
3709 cur_data = argptr + spec->next;
3710 spec = (void*)host_dm + host_dm->data_start + next;
3711 }
3712 break;
3713 }
3714 case DM_TABLE_DEPS:
3715 {
3716 void *hdata = (void*)host_dm + host_dm->data_start;
3717 int count = *(uint32_t*)hdata;
3718 uint64_t *hdev = hdata + 8;
3719 uint64_t *gdev = argptr + 8;
3720 int i;
3721
3722 *(uint32_t*)argptr = tswap32(count);
3723 for (i = 0; i < count; i++) {
3724 *gdev = tswap64(*hdev);
3725 gdev++;
3726 hdev++;
3727 }
3728 break;
3729 }
3730 case DM_LIST_VERSIONS:
3731 {
3732 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
3733 uint32_t remaining_data = guest_data_size;
3734 void *cur_data = argptr;
3735 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
3736 int vers_size = thunk_type_size(arg_type, 0);
3737
3738 while (1) {
3739 uint32_t next = vers->next;
3740 if (next) {
3741 vers->next = vers_size + (strlen(vers->name) + 1);
3742 }
3743 if (remaining_data < vers->next) {
3744 host_dm->flags |= DM_BUFFER_FULL_FLAG;
3745 break;
3746 }
3747 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
3748 strcpy(cur_data + vers_size, vers->name);
3749 cur_data += vers->next;
3750 remaining_data -= vers->next;
3751 if (!next) {
3752 break;
3753 }
3754 vers = (void*)vers + next;
3755 }
3756 break;
3757 }
3758 default:
3759 unlock_user(argptr, guest_data, 0);
3760 ret = -TARGET_EINVAL;
3761 goto out;
3762 }
3763 unlock_user(argptr, guest_data, guest_data_size);
3764
3765 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
3766 if (!argptr) {
3767 ret = -TARGET_EFAULT;
3768 goto out;
3769 }
3770 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
3771 unlock_user(argptr, arg, target_size);
3772 }
3773 out:
3774 g_free(big_buf);
3775 return ret;
3776 }
3777
3778 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
3779 int cmd, abi_long arg)
3780 {
3781 void *argptr;
3782 int target_size;
3783 const argtype *arg_type = ie->arg_type;
3784 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
3785 abi_long ret;
3786
3787 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
3788 struct blkpg_partition host_part;
3789
3790 /* Read and convert blkpg */
3791 arg_type++;
3792 target_size = thunk_type_size(arg_type, 0);
3793 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3794 if (!argptr) {
3795 ret = -TARGET_EFAULT;
3796 goto out;
3797 }
3798 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3799 unlock_user(argptr, arg, 0);
3800
3801 switch (host_blkpg->op) {
3802 case BLKPG_ADD_PARTITION:
3803 case BLKPG_DEL_PARTITION:
3804 /* payload is struct blkpg_partition */
3805 break;
3806 default:
3807 /* Unknown opcode */
3808 ret = -TARGET_EINVAL;
3809 goto out;
3810 }
3811
3812 /* Read and convert blkpg->data */
3813 arg = (abi_long)(uintptr_t)host_blkpg->data;
3814 target_size = thunk_type_size(part_arg_type, 0);
3815 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3816 if (!argptr) {
3817 ret = -TARGET_EFAULT;
3818 goto out;
3819 }
3820 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
3821 unlock_user(argptr, arg, 0);
3822
3823 /* Swizzle the data pointer to our local copy and call! */
3824 host_blkpg->data = &host_part;
3825 ret = get_errno(ioctl(fd, ie->host_cmd, host_blkpg));
3826
3827 out:
3828 return ret;
3829 }
3830
3831 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
3832 int fd, int cmd, abi_long arg)
3833 {
3834 const argtype *arg_type = ie->arg_type;
3835 const StructEntry *se;
3836 const argtype *field_types;
3837 const int *dst_offsets, *src_offsets;
3838 int target_size;
3839 void *argptr;
3840 abi_ulong *target_rt_dev_ptr;
3841 unsigned long *host_rt_dev_ptr;
3842 abi_long ret;
3843 int i;
3844
3845 assert(ie->access == IOC_W);
3846 assert(*arg_type == TYPE_PTR);
3847 arg_type++;
3848 assert(*arg_type == TYPE_STRUCT);
3849 target_size = thunk_type_size(arg_type, 0);
3850 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3851 if (!argptr) {
3852 return -TARGET_EFAULT;
3853 }
3854 arg_type++;
3855 assert(*arg_type == (int)STRUCT_rtentry);
3856 se = struct_entries + *arg_type++;
3857 assert(se->convert[0] == NULL);
3858 /* convert struct here to be able to catch rt_dev string */
3859 field_types = se->field_types;
3860 dst_offsets = se->field_offsets[THUNK_HOST];
3861 src_offsets = se->field_offsets[THUNK_TARGET];
3862 for (i = 0; i < se->nb_fields; i++) {
3863 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
3864 assert(*field_types == TYPE_PTRVOID);
3865 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
3866 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
3867 if (*target_rt_dev_ptr != 0) {
3868 *host_rt_dev_ptr = (unsigned long)lock_user_string(
3869 tswapal(*target_rt_dev_ptr));
3870 if (!*host_rt_dev_ptr) {
3871 unlock_user(argptr, arg, 0);
3872 return -TARGET_EFAULT;
3873 }
3874 } else {
3875 *host_rt_dev_ptr = 0;
3876 }
3877 field_types++;
3878 continue;
3879 }
3880 field_types = thunk_convert(buf_temp + dst_offsets[i],
3881 argptr + src_offsets[i],
3882 field_types, THUNK_HOST);
3883 }
3884 unlock_user(argptr, arg, 0);
3885
3886 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
3887 if (*host_rt_dev_ptr != 0) {
3888 unlock_user((void *)*host_rt_dev_ptr,
3889 *target_rt_dev_ptr, 0);
3890 }
3891 return ret;
3892 }
3893
3894 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
3895 int fd, int cmd, abi_long arg)
3896 {
3897 int sig = target_to_host_signal(arg);
3898 return get_errno(ioctl(fd, ie->host_cmd, sig));
3899 }
3900
3901 static IOCTLEntry ioctl_entries[] = {
3902 #define IOCTL(cmd, access, ...) \
3903 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
3904 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
3905 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
3906 #include "ioctls.h"
3907 { 0, 0, },
3908 };
3909
3910 /* ??? Implement proper locking for ioctls. */
3911 /* do_ioctl() Must return target values and target errnos. */
3912 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
3913 {
3914 const IOCTLEntry *ie;
3915 const argtype *arg_type;
3916 abi_long ret;
3917 uint8_t buf_temp[MAX_STRUCT_SIZE];
3918 int target_size;
3919 void *argptr;
3920
3921 ie = ioctl_entries;
3922 for(;;) {
3923 if (ie->target_cmd == 0) {
3924 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
3925 return -TARGET_ENOSYS;
3926 }
3927 if (ie->target_cmd == cmd)
3928 break;
3929 ie++;
3930 }
3931 arg_type = ie->arg_type;
3932 #if defined(DEBUG)
3933 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name);
3934 #endif
3935 if (ie->do_ioctl) {
3936 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
3937 }
3938
3939 switch(arg_type[0]) {
3940 case TYPE_NULL:
3941 /* no argument */
3942 ret = get_errno(ioctl(fd, ie->host_cmd));
3943 break;
3944 case TYPE_PTRVOID:
3945 case TYPE_INT:
3946 ret = get_errno(ioctl(fd, ie->host_cmd, arg));
3947 break;
3948 case TYPE_PTR:
3949 arg_type++;
3950 target_size = thunk_type_size(arg_type, 0);
3951 switch(ie->access) {
3952 case IOC_R:
3953 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
3954 if (!is_error(ret)) {
3955 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
3956 if (!argptr)
3957 return -TARGET_EFAULT;
3958 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
3959 unlock_user(argptr, arg, target_size);
3960 }
3961 break;
3962 case IOC_W:
3963 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3964 if (!argptr)
3965 return -TARGET_EFAULT;
3966 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3967 unlock_user(argptr, arg, 0);
3968 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
3969 break;
3970 default:
3971 case IOC_RW:
3972 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
3973 if (!argptr)
3974 return -TARGET_EFAULT;
3975 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
3976 unlock_user(argptr, arg, 0);
3977 ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
3978 if (!is_error(ret)) {
3979 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
3980 if (!argptr)
3981 return -TARGET_EFAULT;
3982 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
3983 unlock_user(argptr, arg, target_size);
3984 }
3985 break;
3986 }
3987 break;
3988 default:
3989 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
3990 (long)cmd, arg_type[0]);
3991 ret = -TARGET_ENOSYS;
3992 break;
3993 }
3994 return ret;
3995 }
3996
3997 static const bitmask_transtbl iflag_tbl[] = {
3998 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
3999 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
4000 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
4001 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
4002 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
4003 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
4004 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
4005 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
4006 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
4007 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
4008 { TARGET_IXON, TARGET_IXON, IXON, IXON },
4009 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
4010 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
4011 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
4012 { 0, 0, 0, 0 }
4013 };
4014
4015 static const bitmask_transtbl oflag_tbl[] = {
4016 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
4017 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
4018 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
4019 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
4020 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
4021 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
4022 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
4023 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
4024 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
4025 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
4026 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
4027 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
4028 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
4029 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
4030 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
4031 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
4032 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
4033 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
4034 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
4035 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
4036 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
4037 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
4038 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
4039 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
4040 { 0, 0, 0, 0 }
4041 };
4042
4043 static const bitmask_transtbl cflag_tbl[] = {
4044 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
4045 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
4046 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
4047 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
4048 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
4049 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
4050 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
4051 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
4052 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
4053 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
4054 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
4055 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
4056 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
4057 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
4058 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
4059 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
4060 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
4061 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
4062 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
4063 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
4064 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
4065 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
4066 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
4067 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
4068 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
4069 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
4070 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
4071 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
4072 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
4073 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
4074 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
4075 { 0, 0, 0, 0 }
4076 };
4077
4078 static const bitmask_transtbl lflag_tbl[] = {
4079 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
4080 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
4081 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
4082 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
4083 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
4084 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
4085 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
4086 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
4087 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
4088 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
4089 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
4090 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
4091 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
4092 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
4093 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
4094 { 0, 0, 0, 0 }
4095 };
4096
4097 static void target_to_host_termios (void *dst, const void *src)
4098 {
4099 struct host_termios *host = dst;
4100 const struct target_termios *target = src;
4101
4102 host->c_iflag =
4103 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
4104 host->c_oflag =
4105 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
4106 host->c_cflag =
4107 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
4108 host->c_lflag =
4109 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
4110 host->c_line = target->c_line;
4111
4112 memset(host->c_cc, 0, sizeof(host->c_cc));
4113 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
4114 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
4115 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
4116 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
4117 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
4118 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
4119 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
4120 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
4121 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
4122 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
4123 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
4124 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
4125 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
4126 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
4127 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
4128 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
4129 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
4130 }
4131
4132 static void host_to_target_termios (void *dst, const void *src)
4133 {
4134 struct target_termios *target = dst;
4135 const struct host_termios *host = src;
4136
4137 target->c_iflag =
4138 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
4139 target->c_oflag =
4140 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
4141 target->c_cflag =
4142 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
4143 target->c_lflag =
4144 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
4145 target->c_line = host->c_line;
4146
4147 memset(target->c_cc, 0, sizeof(target->c_cc));
4148 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
4149 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
4150 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
4151 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
4152 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
4153 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
4154 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
4155 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
4156 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
4157 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
4158 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
4159 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
4160 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
4161 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
4162 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
4163 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
4164 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
4165 }
4166
4167 static const StructEntry struct_termios_def = {
4168 .convert = { host_to_target_termios, target_to_host_termios },
4169 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
4170 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
4171 };
4172
4173 static bitmask_transtbl mmap_flags_tbl[] = {
4174 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
4175 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
4176 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
4177 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS },
4178 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN },
4179 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE },
4180 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE },
4181 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
4182 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, MAP_NORESERVE,
4183 MAP_NORESERVE },
4184 { 0, 0, 0, 0 }
4185 };
4186
4187 #if defined(TARGET_I386)
4188
4189 /* NOTE: there is really one LDT for all the threads */
4190 static uint8_t *ldt_table;
4191
4192 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
4193 {
4194 int size;
4195 void *p;
4196
4197 if (!ldt_table)
4198 return 0;
4199 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
4200 if (size > bytecount)
4201 size = bytecount;
4202 p = lock_user(VERIFY_WRITE, ptr, size, 0);
4203 if (!p)
4204 return -TARGET_EFAULT;
4205 /* ??? Should this by byteswapped? */
4206 memcpy(p, ldt_table, size);
4207 unlock_user(p, ptr, size);
4208 return size;
4209 }
4210
4211 /* XXX: add locking support */
4212 static abi_long write_ldt(CPUX86State *env,
4213 abi_ulong ptr, unsigned long bytecount, int oldmode)
4214 {
4215 struct target_modify_ldt_ldt_s ldt_info;
4216 struct target_modify_ldt_ldt_s *target_ldt_info;
4217 int seg_32bit, contents, read_exec_only, limit_in_pages;
4218 int seg_not_present, useable, lm;
4219 uint32_t *lp, entry_1, entry_2;
4220
4221 if (bytecount != sizeof(ldt_info))
4222 return -TARGET_EINVAL;
4223 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
4224 return -TARGET_EFAULT;
4225 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
4226 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
4227 ldt_info.limit = tswap32(target_ldt_info->limit);
4228 ldt_info.flags = tswap32(target_ldt_info->flags);
4229 unlock_user_struct(target_ldt_info, ptr, 0);
4230
4231 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
4232 return -TARGET_EINVAL;
4233 seg_32bit = ldt_info.flags & 1;
4234 contents = (ldt_info.flags >> 1) & 3;
4235 read_exec_only = (ldt_info.flags >> 3) & 1;
4236 limit_in_pages = (ldt_info.flags >> 4) & 1;
4237 seg_not_present = (ldt_info.flags >> 5) & 1;
4238 useable = (ldt_info.flags >> 6) & 1;
4239 #ifdef TARGET_ABI32
4240 lm = 0;
4241 #else
4242 lm = (ldt_info.flags >> 7) & 1;
4243 #endif
4244 if (contents == 3) {
4245 if (oldmode)
4246 return -TARGET_EINVAL;
4247 if (seg_not_present == 0)
4248 return -TARGET_EINVAL;
4249 }
4250 /* allocate the LDT */
4251 if (!ldt_table) {
4252 env->ldt.base = target_mmap(0,
4253 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
4254 PROT_READ|PROT_WRITE,
4255 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4256 if (env->ldt.base == -1)
4257 return -TARGET_ENOMEM;
4258 memset(g2h(env->ldt.base), 0,
4259 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
4260 env->ldt.limit = 0xffff;
4261 ldt_table = g2h(env->ldt.base);
4262 }
4263
4264 /* NOTE: same code as Linux kernel */
4265 /* Allow LDTs to be cleared by the user. */
4266 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
4267 if (oldmode ||
4268 (contents == 0 &&
4269 read_exec_only == 1 &&
4270 seg_32bit == 0 &&
4271 limit_in_pages == 0 &&
4272 seg_not_present == 1 &&
4273 useable == 0 )) {
4274 entry_1 = 0;
4275 entry_2 = 0;
4276 goto install;
4277 }
4278 }
4279
4280 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
4281 (ldt_info.limit & 0x0ffff);
4282 entry_2 = (ldt_info.base_addr & 0xff000000) |
4283 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
4284 (ldt_info.limit & 0xf0000) |
4285 ((read_exec_only ^ 1) << 9) |
4286 (contents << 10) |
4287 ((seg_not_present ^ 1) << 15) |
4288 (seg_32bit << 22) |
4289 (limit_in_pages << 23) |
4290 (lm << 21) |
4291 0x7000;
4292 if (!oldmode)
4293 entry_2 |= (useable << 20);
4294
4295 /* Install the new entry ... */
4296 install:
4297 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
4298 lp[0] = tswap32(entry_1);
4299 lp[1] = tswap32(entry_2);
4300 return 0;
4301 }
4302
4303 /* specific and weird i386 syscalls */
4304 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
4305 unsigned long bytecount)
4306 {
4307 abi_long ret;
4308
4309 switch (func) {
4310 case 0:
4311 ret = read_ldt(ptr, bytecount);
4312 break;
4313 case 1:
4314 ret = write_ldt(env, ptr, bytecount, 1);
4315 break;
4316 case 0x11:
4317 ret = write_ldt(env, ptr, bytecount, 0);
4318 break;
4319 default:
4320 ret = -TARGET_ENOSYS;
4321 break;
4322 }
4323 return ret;
4324 }
4325
4326 #if defined(TARGET_I386) && defined(TARGET_ABI32)
4327 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
4328 {
4329 uint64_t *gdt_table = g2h(env->gdt.base);
4330 struct target_modify_ldt_ldt_s ldt_info;
4331 struct target_modify_ldt_ldt_s *target_ldt_info;
4332 int seg_32bit, contents, read_exec_only, limit_in_pages;
4333 int seg_not_present, useable, lm;
4334 uint32_t *lp, entry_1, entry_2;
4335 int i;
4336
4337 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
4338 if (!target_ldt_info)
4339 return -TARGET_EFAULT;
4340 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
4341 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
4342 ldt_info.limit = tswap32(target_ldt_info->limit);
4343 ldt_info.flags = tswap32(target_ldt_info->flags);
4344 if (ldt_info.entry_number == -1) {
4345 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
4346 if (gdt_table[i] == 0) {
4347 ldt_info.entry_number = i;
4348 target_ldt_info->entry_number = tswap32(i);
4349 break;
4350 }
4351 }
4352 }
4353 unlock_user_struct(target_ldt_info, ptr, 1);
4354
4355 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
4356 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
4357 return -TARGET_EINVAL;
4358 seg_32bit = ldt_info.flags & 1;
4359 contents = (ldt_info.flags >> 1) & 3;
4360 read_exec_only = (ldt_info.flags >> 3) & 1;
4361 limit_in_pages = (ldt_info.flags >> 4) & 1;
4362 seg_not_present = (ldt_info.flags >> 5) & 1;
4363 useable = (ldt_info.flags >> 6) & 1;
4364 #ifdef TARGET_ABI32
4365 lm = 0;
4366 #else
4367 lm = (ldt_info.flags >> 7) & 1;
4368 #endif
4369
4370 if (contents == 3) {
4371 if (seg_not_present == 0)
4372 return -TARGET_EINVAL;
4373 }
4374
4375 /* NOTE: same code as Linux kernel */
4376 /* Allow LDTs to be cleared by the user. */
4377 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
4378 if ((contents == 0 &&
4379 read_exec_only == 1 &&
4380 seg_32bit == 0 &&
4381 limit_in_pages == 0 &&
4382 seg_not_present == 1 &&
4383 useable == 0 )) {
4384 entry_1 = 0;
4385 entry_2 = 0;
4386 goto install;
4387 }
4388 }
4389
4390 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
4391 (ldt_info.limit & 0x0ffff);
4392 entry_2 = (ldt_info.base_addr & 0xff000000) |
4393 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
4394 (ldt_info.limit & 0xf0000) |
4395 ((read_exec_only ^ 1) << 9) |
4396 (contents << 10) |
4397 ((seg_not_present ^ 1) << 15) |
4398 (seg_32bit << 22) |
4399 (limit_in_pages << 23) |
4400 (useable << 20) |
4401 (lm << 21) |
4402 0x7000;
4403
4404 /* Install the new entry ... */
4405 install:
4406 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
4407 lp[0] = tswap32(entry_1);
4408 lp[1] = tswap32(entry_2);
4409 return 0;
4410 }
4411
4412 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
4413 {
4414 struct target_modify_ldt_ldt_s *target_ldt_info;
4415 uint64_t *gdt_table = g2h(env->gdt.base);
4416 uint32_t base_addr, limit, flags;
4417 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
4418 int seg_not_present, useable, lm;
4419 uint32_t *lp, entry_1, entry_2;
4420
4421 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
4422 if (!target_ldt_info)
4423 return -TARGET_EFAULT;
4424 idx = tswap32(target_ldt_info->entry_number);
4425 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
4426 idx > TARGET_GDT_ENTRY_TLS_MAX) {
4427 unlock_user_struct(target_ldt_info, ptr, 1);
4428 return -TARGET_EINVAL;
4429 }
4430 lp = (uint32_t *)(gdt_table + idx);
4431 entry_1 = tswap32(lp[0]);
4432 entry_2 = tswap32(lp[1]);
4433
4434 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
4435 contents = (entry_2 >> 10) & 3;
4436 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
4437 seg_32bit = (entry_2 >> 22) & 1;
4438 limit_in_pages = (entry_2 >> 23) & 1;
4439 useable = (entry_2 >> 20) & 1;
4440 #ifdef TARGET_ABI32
4441 lm = 0;
4442 #else
4443 lm = (entry_2 >> 21) & 1;
4444 #endif
4445 flags = (seg_32bit << 0) | (contents << 1) |
4446 (read_exec_only << 3) | (limit_in_pages << 4) |
4447 (seg_not_present << 5) | (useable << 6) | (lm << 7);
4448 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
4449 base_addr = (entry_1 >> 16) |
4450 (entry_2 & 0xff000000) |
4451 ((entry_2 & 0xff) << 16);
4452 target_ldt_info->base_addr = tswapal(base_addr);
4453 target_ldt_info->limit = tswap32(limit);
4454 target_ldt_info->flags = tswap32(flags);
4455 unlock_user_struct(target_ldt_info, ptr, 1);
4456 return 0;
4457 }
4458 #endif /* TARGET_I386 && TARGET_ABI32 */
4459
4460 #ifndef TARGET_ABI32
4461 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
4462 {
4463 abi_long ret = 0;
4464 abi_ulong val;
4465 int idx;
4466
4467 switch(code) {
4468 case TARGET_ARCH_SET_GS:
4469 case TARGET_ARCH_SET_FS:
4470 if (code == TARGET_ARCH_SET_GS)
4471 idx = R_GS;
4472 else
4473 idx = R_FS;
4474 cpu_x86_load_seg(env, idx, 0);
4475 env->segs[idx].base = addr;
4476 break;
4477 case TARGET_ARCH_GET_GS:
4478 case TARGET_ARCH_GET_FS:
4479 if (code == TARGET_ARCH_GET_GS)
4480 idx = R_GS;
4481 else
4482 idx = R_FS;
4483 val = env->segs[idx].base;
4484 if (put_user(val, addr, abi_ulong))
4485 ret = -TARGET_EFAULT;
4486 break;
4487 default:
4488 ret = -TARGET_EINVAL;
4489 break;
4490 }
4491 return ret;
4492 }
4493 #endif
4494
4495 #endif /* defined(TARGET_I386) */
4496
4497 #define NEW_STACK_SIZE 0x40000
4498
4499
4500 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
4501 typedef struct {
4502 CPUArchState *env;
4503 pthread_mutex_t mutex;
4504 pthread_cond_t cond;
4505 pthread_t thread;
4506 uint32_t tid;
4507 abi_ulong child_tidptr;
4508 abi_ulong parent_tidptr;
4509 sigset_t sigmask;
4510 } new_thread_info;
4511
4512 static void *clone_func(void *arg)
4513 {
4514 new_thread_info *info = arg;
4515 CPUArchState *env;
4516 CPUState *cpu;
4517 TaskState *ts;
4518
4519 rcu_register_thread();
4520 env = info->env;
4521 cpu = ENV_GET_CPU(env);
4522 thread_cpu = cpu;
4523 ts = (TaskState *)cpu->opaque;
4524 info->tid = gettid();
4525 cpu->host_tid = info->tid;
4526 task_settid(ts);
4527 if (info->child_tidptr)
4528 put_user_u32(info->tid, info->child_tidptr);
4529 if (info->parent_tidptr)
4530 put_user_u32(info->tid, info->parent_tidptr);
4531 /* Enable signals. */
4532 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
4533 /* Signal to the parent that we're ready. */
4534 pthread_mutex_lock(&info->mutex);
4535 pthread_cond_broadcast(&info->cond);
4536 pthread_mutex_unlock(&info->mutex);
4537 /* Wait until the parent has finshed initializing the tls state. */
4538 pthread_mutex_lock(&clone_lock);
4539 pthread_mutex_unlock(&clone_lock);
4540 cpu_loop(env);
4541 /* never exits */
4542 return NULL;
4543 }
4544
4545 /* do_fork() Must return host values and target errnos (unlike most
4546 do_*() functions). */
4547 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
4548 abi_ulong parent_tidptr, target_ulong newtls,
4549 abi_ulong child_tidptr)
4550 {
4551 CPUState *cpu = ENV_GET_CPU(env);
4552 int ret;
4553 TaskState *ts;
4554 CPUState *new_cpu;
4555 CPUArchState *new_env;
4556 unsigned int nptl_flags;
4557 sigset_t sigmask;
4558
4559 /* Emulate vfork() with fork() */
4560 if (flags & CLONE_VFORK)
4561 flags &= ~(CLONE_VFORK | CLONE_VM);
4562
4563 if (flags & CLONE_VM) {
4564 TaskState *parent_ts = (TaskState *)cpu->opaque;
4565 new_thread_info info;
4566 pthread_attr_t attr;
4567
4568 ts = g_malloc0(sizeof(TaskState));
4569 init_task_state(ts);
4570 /* we create a new CPU instance. */
4571 new_env = cpu_copy(env);
4572 /* Init regs that differ from the parent. */
4573 cpu_clone_regs(new_env, newsp);
4574 new_cpu = ENV_GET_CPU(new_env);
4575 new_cpu->opaque = ts;
4576 ts->bprm = parent_ts->bprm;
4577 ts->info = parent_ts->info;
4578 nptl_flags = flags;
4579 flags &= ~CLONE_NPTL_FLAGS2;
4580
4581 if (nptl_flags & CLONE_CHILD_CLEARTID) {
4582 ts->child_tidptr = child_tidptr;
4583 }
4584
4585 if (nptl_flags & CLONE_SETTLS)
4586 cpu_set_tls (new_env, newtls);
4587
4588 /* Grab a mutex so that thread setup appears atomic. */
4589 pthread_mutex_lock(&clone_lock);
4590
4591 memset(&info, 0, sizeof(info));
4592 pthread_mutex_init(&info.mutex, NULL);
4593 pthread_mutex_lock(&info.mutex);
4594 pthread_cond_init(&info.cond, NULL);
4595 info.env = new_env;
4596 if (nptl_flags & CLONE_CHILD_SETTID)
4597 info.child_tidptr = child_tidptr;
4598 if (nptl_flags & CLONE_PARENT_SETTID)
4599 info.parent_tidptr = parent_tidptr;
4600
4601 ret = pthread_attr_init(&attr);
4602 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
4603 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
4604 /* It is not safe to deliver signals until the child has finished
4605 initializing, so temporarily block all signals. */
4606 sigfillset(&sigmask);
4607 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
4608
4609 ret = pthread_create(&info.thread, &attr, clone_func, &info);
4610 /* TODO: Free new CPU state if thread creation failed. */
4611
4612 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
4613 pthread_attr_destroy(&attr);
4614 if (ret == 0) {
4615 /* Wait for the child to initialize. */
4616 pthread_cond_wait(&info.cond, &info.mutex);
4617 ret = info.tid;
4618 if (flags & CLONE_PARENT_SETTID)
4619 put_user_u32(ret, parent_tidptr);
4620 } else {
4621 ret = -1;
4622 }
4623 pthread_mutex_unlock(&info.mutex);
4624 pthread_cond_destroy(&info.cond);
4625 pthread_mutex_destroy(&info.mutex);
4626 pthread_mutex_unlock(&clone_lock);
4627 } else {
4628 /* if no CLONE_VM, we consider it is a fork */
4629 if ((flags & ~(CSIGNAL | CLONE_NPTL_FLAGS2)) != 0) {
4630 return -TARGET_EINVAL;
4631 }
4632 fork_start();
4633 ret = fork();
4634 if (ret == 0) {
4635 /* Child Process. */
4636 rcu_after_fork();
4637 cpu_clone_regs(env, newsp);
4638 fork_end(1);
4639 /* There is a race condition here. The parent process could
4640 theoretically read the TID in the child process before the child
4641 tid is set. This would require using either ptrace
4642 (not implemented) or having *_tidptr to point at a shared memory
4643 mapping. We can't repeat the spinlock hack used above because
4644 the child process gets its own copy of the lock. */
4645 if (flags & CLONE_CHILD_SETTID)
4646 put_user_u32(gettid(), child_tidptr);
4647 if (flags & CLONE_PARENT_SETTID)
4648 put_user_u32(gettid(), parent_tidptr);
4649 ts = (TaskState *)cpu->opaque;
4650 if (flags & CLONE_SETTLS)
4651 cpu_set_tls (env, newtls);
4652 if (flags & CLONE_CHILD_CLEARTID)
4653 ts->child_tidptr = child_tidptr;
4654 } else {
4655 fork_end(0);
4656 }
4657 }
4658 return ret;
4659 }
4660
4661 /* warning : doesn't handle linux specific flags... */
4662 static int target_to_host_fcntl_cmd(int cmd)
4663 {
4664 switch(cmd) {
4665 case TARGET_F_DUPFD:
4666 case TARGET_F_GETFD:
4667 case TARGET_F_SETFD:
4668 case TARGET_F_GETFL:
4669 case TARGET_F_SETFL:
4670 return cmd;
4671 case TARGET_F_GETLK:
4672 return F_GETLK;
4673 case TARGET_F_SETLK:
4674 return F_SETLK;
4675 case TARGET_F_SETLKW:
4676 return F_SETLKW;
4677 case TARGET_F_GETOWN:
4678 return F_GETOWN;
4679 case TARGET_F_SETOWN:
4680 return F_SETOWN;
4681 case TARGET_F_GETSIG:
4682 return F_GETSIG;
4683 case TARGET_F_SETSIG:
4684 return F_SETSIG;
4685 #if TARGET_ABI_BITS == 32
4686 case TARGET_F_GETLK64:
4687 return F_GETLK64;
4688 case TARGET_F_SETLK64:
4689 return F_SETLK64;
4690 case TARGET_F_SETLKW64:
4691 return F_SETLKW64;
4692 #endif
4693 case TARGET_F_SETLEASE:
4694 return F_SETLEASE;
4695 case TARGET_F_GETLEASE:
4696 return F_GETLEASE;
4697 #ifdef F_DUPFD_CLOEXEC
4698 case TARGET_F_DUPFD_CLOEXEC:
4699 return F_DUPFD_CLOEXEC;
4700 #endif
4701 case TARGET_F_NOTIFY:
4702 return F_NOTIFY;
4703 #ifdef F_GETOWN_EX
4704 case TARGET_F_GETOWN_EX:
4705 return F_GETOWN_EX;
4706 #endif
4707 #ifdef F_SETOWN_EX
4708 case TARGET_F_SETOWN_EX:
4709 return F_SETOWN_EX;
4710 #endif
4711 default:
4712 return -TARGET_EINVAL;
4713 }
4714 return -TARGET_EINVAL;
4715 }
4716
4717 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
4718 static const bitmask_transtbl flock_tbl[] = {
4719 TRANSTBL_CONVERT(F_RDLCK),
4720 TRANSTBL_CONVERT(F_WRLCK),
4721 TRANSTBL_CONVERT(F_UNLCK),
4722 TRANSTBL_CONVERT(F_EXLCK),
4723 TRANSTBL_CONVERT(F_SHLCK),
4724 { 0, 0, 0, 0 }
4725 };
4726
4727 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
4728 {
4729 struct flock fl;
4730 struct target_flock *target_fl;
4731 struct flock64 fl64;
4732 struct target_flock64 *target_fl64;
4733 #ifdef F_GETOWN_EX
4734 struct f_owner_ex fox;
4735 struct target_f_owner_ex *target_fox;
4736 #endif
4737 abi_long ret;
4738 int host_cmd = target_to_host_fcntl_cmd(cmd);
4739
4740 if (host_cmd == -TARGET_EINVAL)
4741 return host_cmd;
4742
4743 switch(cmd) {
4744 case TARGET_F_GETLK:
4745 if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1))
4746 return -TARGET_EFAULT;
4747 fl.l_type =
4748 target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl);
4749 fl.l_whence = tswap16(target_fl->l_whence);
4750 fl.l_start = tswapal(target_fl->l_start);
4751 fl.l_len = tswapal(target_fl->l_len);
4752 fl.l_pid = tswap32(target_fl->l_pid);
4753 unlock_user_struct(target_fl, arg, 0);
4754 ret = get_errno(fcntl(fd, host_cmd, &fl));
4755 if (ret == 0) {
4756 if (!lock_user_struct(VERIFY_WRITE, target_fl, arg, 0))
4757 return -TARGET_EFAULT;
4758 target_fl->l_type =
4759 host_to_target_bitmask(tswap16(fl.l_type), flock_tbl);
4760 target_fl->l_whence = tswap16(fl.l_whence);
4761 target_fl->l_start = tswapal(fl.l_start);
4762 target_fl->l_len = tswapal(fl.l_len);
4763 target_fl->l_pid = tswap32(fl.l_pid);
4764 unlock_user_struct(target_fl, arg, 1);
4765 }
4766 break;
4767
4768 case TARGET_F_SETLK:
4769 case TARGET_F_SETLKW:
4770 if (!lock_user_struct(VERIFY_READ, target_fl, arg, 1))
4771 return -TARGET_EFAULT;
4772 fl.l_type =
4773 target_to_host_bitmask(tswap16(target_fl->l_type), flock_tbl);
4774 fl.l_whence = tswap16(target_fl->l_whence);
4775 fl.l_start = tswapal(target_fl->l_start);
4776 fl.l_len = tswapal(target_fl->l_len);
4777 fl.l_pid = tswap32(target_fl->l_pid);
4778 unlock_user_struct(target_fl, arg, 0);
4779 ret = get_errno(fcntl(fd, host_cmd, &fl));
4780 break;
4781
4782 case TARGET_F_GETLK64:
4783 if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1))
4784 return -TARGET_EFAULT;
4785 fl64.l_type =
4786 target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1;
4787 fl64.l_whence = tswap16(target_fl64->l_whence);
4788 fl64.l_start = tswap64(target_fl64->l_start);
4789 fl64.l_len = tswap64(target_fl64->l_len);
4790 fl64.l_pid = tswap32(target_fl64->l_pid);
4791 unlock_user_struct(target_fl64, arg, 0);
4792 ret = get_errno(fcntl(fd, host_cmd, &fl64));
4793 if (ret == 0) {
4794 if (!lock_user_struct(VERIFY_WRITE, target_fl64, arg, 0))
4795 return -TARGET_EFAULT;
4796 target_fl64->l_type =
4797 host_to_target_bitmask(tswap16(fl64.l_type), flock_tbl) >> 1;
4798 target_fl64->l_whence = tswap16(fl64.l_whence);
4799 target_fl64->l_start = tswap64(fl64.l_start);
4800 target_fl64->l_len = tswap64(fl64.l_len);
4801 target_fl64->l_pid = tswap32(fl64.l_pid);
4802 unlock_user_struct(target_fl64, arg, 1);
4803 }
4804 break;
4805 case TARGET_F_SETLK64:
4806 case TARGET_F_SETLKW64:
4807 if (!lock_user_struct(VERIFY_READ, target_fl64, arg, 1))
4808 return -TARGET_EFAULT;
4809 fl64.l_type =
4810 target_to_host_bitmask(tswap16(target_fl64->l_type), flock_tbl) >> 1;
4811 fl64.l_whence = tswap16(target_fl64->l_whence);
4812 fl64.l_start = tswap64(target_fl64->l_start);
4813 fl64.l_len = tswap64(target_fl64->l_len);
4814 fl64.l_pid = tswap32(target_fl64->l_pid);
4815 unlock_user_struct(target_fl64, arg, 0);
4816 ret = get_errno(fcntl(fd, host_cmd, &fl64));
4817 break;
4818
4819 case TARGET_F_GETFL:
4820 ret = get_errno(fcntl(fd, host_cmd, arg));
4821 if (ret >= 0) {
4822 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
4823 }
4824 break;
4825
4826 case TARGET_F_SETFL:
4827 ret = get_errno(fcntl(fd, host_cmd, target_to_host_bitmask(arg, fcntl_flags_tbl)));
4828 break;
4829
4830 #ifdef F_GETOWN_EX
4831 case TARGET_F_GETOWN_EX:
4832 ret = get_errno(fcntl(fd, host_cmd, &fox));
4833 if (ret >= 0) {
4834 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
4835 return -TARGET_EFAULT;
4836 target_fox->type = tswap32(fox.type);
4837 target_fox->pid = tswap32(fox.pid);
4838 unlock_user_struct(target_fox, arg, 1);
4839 }
4840 break;
4841 #endif
4842
4843 #ifdef F_SETOWN_EX
4844 case TARGET_F_SETOWN_EX:
4845 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
4846 return -TARGET_EFAULT;
4847 fox.type = tswap32(target_fox->type);
4848 fox.pid = tswap32(target_fox->pid);
4849 unlock_user_struct(target_fox, arg, 0);
4850 ret = get_errno(fcntl(fd, host_cmd, &fox));
4851 break;
4852 #endif
4853
4854 case TARGET_F_SETOWN:
4855 case TARGET_F_GETOWN:
4856 case TARGET_F_SETSIG:
4857 case TARGET_F_GETSIG:
4858 case TARGET_F_SETLEASE:
4859 case TARGET_F_GETLEASE:
4860 ret = get_errno(fcntl(fd, host_cmd, arg));
4861 break;
4862
4863 default:
4864 ret = get_errno(fcntl(fd, cmd, arg));
4865 break;
4866 }
4867 return ret;
4868 }
4869
4870 #ifdef USE_UID16
4871
4872 static inline int high2lowuid(int uid)
4873 {
4874 if (uid > 65535)
4875 return 65534;
4876 else
4877 return uid;
4878 }
4879
4880 static inline int high2lowgid(int gid)
4881 {
4882 if (gid > 65535)
4883 return 65534;
4884 else
4885 return gid;
4886 }
4887
4888 static inline int low2highuid(int uid)
4889 {
4890 if ((int16_t)uid == -1)
4891 return -1;
4892 else
4893 return uid;
4894 }
4895
4896 static inline int low2highgid(int gid)
4897 {
4898 if ((int16_t)gid == -1)
4899 return -1;
4900 else
4901 return gid;
4902 }
4903 static inline int tswapid(int id)
4904 {
4905 return tswap16(id);
4906 }
4907
4908 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
4909
4910 #else /* !USE_UID16 */
4911 static inline int high2lowuid(int uid)
4912 {
4913 return uid;
4914 }
4915 static inline int high2lowgid(int gid)
4916 {
4917 return gid;
4918 }
4919 static inline int low2highuid(int uid)
4920 {
4921 return uid;
4922 }
4923 static inline int low2highgid(int gid)
4924 {
4925 return gid;
4926 }
4927 static inline int tswapid(int id)
4928 {
4929 return tswap32(id);
4930 }
4931
4932 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
4933
4934 #endif /* USE_UID16 */
4935
4936 void syscall_init(void)
4937 {
4938 IOCTLEntry *ie;
4939 const argtype *arg_type;
4940 int size;
4941 int i;
4942
4943 thunk_init(STRUCT_MAX);
4944
4945 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
4946 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
4947 #include "syscall_types.h"
4948 #undef STRUCT
4949 #undef STRUCT_SPECIAL
4950
4951 /* Build target_to_host_errno_table[] table from
4952 * host_to_target_errno_table[]. */
4953 for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
4954 target_to_host_errno_table[host_to_target_errno_table[i]] = i;
4955 }
4956
4957 /* we patch the ioctl size if necessary. We rely on the fact that
4958 no ioctl has all the bits at '1' in the size field */
4959 ie = ioctl_entries;
4960 while (ie->target_cmd != 0) {
4961 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
4962 TARGET_IOC_SIZEMASK) {
4963 arg_type = ie->arg_type;
4964 if (arg_type[0] != TYPE_PTR) {
4965 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
4966 ie->target_cmd);
4967 exit(1);
4968 }
4969 arg_type++;
4970 size = thunk_type_size(arg_type, 0);
4971 ie->target_cmd = (ie->target_cmd &
4972 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
4973 (size << TARGET_IOC_SIZESHIFT);
4974 }
4975
4976 /* automatic consistency check if same arch */
4977 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
4978 (defined(__x86_64__) && defined(TARGET_X86_64))
4979 if (unlikely(ie->target_cmd != ie->host_cmd)) {
4980 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
4981 ie->name, ie->target_cmd, ie->host_cmd);
4982 }
4983 #endif
4984 ie++;
4985 }
4986 }
4987
4988 #if TARGET_ABI_BITS == 32
4989 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
4990 {
4991 #ifdef TARGET_WORDS_BIGENDIAN
4992 return ((uint64_t)word0 << 32) | word1;
4993 #else
4994 return ((uint64_t)word1 << 32) | word0;
4995 #endif
4996 }
4997 #else /* TARGET_ABI_BITS == 32 */
4998 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
4999 {
5000 return word0;
5001 }
5002 #endif /* TARGET_ABI_BITS != 32 */
5003
5004 #ifdef TARGET_NR_truncate64
5005 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
5006 abi_long arg2,
5007 abi_long arg3,
5008 abi_long arg4)
5009 {
5010 if (regpairs_aligned(cpu_env)) {
5011 arg2 = arg3;
5012 arg3 = arg4;
5013 }
5014 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
5015 }
5016 #endif
5017
5018 #ifdef TARGET_NR_ftruncate64
5019 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
5020 abi_long arg2,
5021 abi_long arg3,
5022 abi_long arg4)
5023 {
5024 if (regpairs_aligned(cpu_env)) {
5025 arg2 = arg3;
5026 arg3 = arg4;
5027 }
5028 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
5029 }
5030 #endif
5031
5032 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
5033 abi_ulong target_addr)
5034 {
5035 struct target_timespec *target_ts;
5036
5037 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1))
5038 return -TARGET_EFAULT;
5039 host_ts->tv_sec = tswapal(target_ts->tv_sec);
5040 host_ts->tv_nsec = tswapal(target_ts->tv_nsec);
5041 unlock_user_struct(target_ts, target_addr, 0);
5042 return 0;
5043 }
5044
5045 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
5046 struct timespec *host_ts)
5047 {
5048 struct target_timespec *target_ts;
5049
5050 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0))
5051 return -TARGET_EFAULT;
5052 target_ts->tv_sec = tswapal(host_ts->tv_sec);
5053 target_ts->tv_nsec = tswapal(host_ts->tv_nsec);
5054 unlock_user_struct(target_ts, target_addr, 1);
5055 return 0;
5056 }
5057
5058 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
5059 abi_ulong target_addr)
5060 {
5061 struct target_itimerspec *target_itspec;
5062
5063 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
5064 return -TARGET_EFAULT;
5065 }
5066
5067 host_itspec->it_interval.tv_sec =
5068 tswapal(target_itspec->it_interval.tv_sec);
5069 host_itspec->it_interval.tv_nsec =
5070 tswapal(target_itspec->it_interval.tv_nsec);
5071 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
5072 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
5073
5074 unlock_user_struct(target_itspec, target_addr, 1);
5075 return 0;
5076 }
5077
5078 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
5079 struct itimerspec *host_its)
5080 {
5081 struct target_itimerspec *target_itspec;
5082
5083 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
5084 return -TARGET_EFAULT;
5085 }
5086
5087 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
5088 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
5089
5090 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
5091 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
5092
5093 unlock_user_struct(target_itspec, target_addr, 0);
5094 return 0;
5095 }
5096
5097 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
5098 abi_ulong target_addr)
5099 {
5100 struct target_sigevent *target_sevp;
5101
5102 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
5103 return -TARGET_EFAULT;
5104 }
5105
5106 /* This union is awkward on 64 bit systems because it has a 32 bit
5107 * integer and a pointer in it; we follow the conversion approach
5108 * used for handling sigval types in signal.c so the guest should get
5109 * the correct value back even if we did a 64 bit byteswap and it's
5110 * using the 32 bit integer.
5111 */
5112 host_sevp->sigev_value.sival_ptr =
5113 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
5114 host_sevp->sigev_signo =
5115 target_to_host_signal(tswap32(target_sevp->sigev_signo));
5116 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
5117 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
5118
5119 unlock_user_struct(target_sevp, target_addr, 1);
5120 return 0;
5121 }
5122
5123 #if defined(TARGET_NR_mlockall)
5124 static inline int target_to_host_mlockall_arg(int arg)
5125 {
5126 int result = 0;
5127
5128 if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
5129 result |= MCL_CURRENT;
5130 }
5131 if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
5132 result |= MCL_FUTURE;
5133 }
5134 return result;
5135 }
5136 #endif
5137
5138 #if defined(TARGET_NR_stat64) || defined(TARGET_NR_newfstatat)
5139 static inline abi_long host_to_target_stat64(void *cpu_env,
5140 abi_ulong target_addr,
5141 struct stat *host_st)
5142 {
5143 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
5144 if (((CPUARMState *)cpu_env)->eabi) {
5145 struct target_eabi_stat64 *target_st;
5146
5147 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
5148 return -TARGET_EFAULT;
5149 memset(target_st, 0, sizeof(struct target_eabi_stat64));
5150 __put_user(host_st->st_dev, &target_st->st_dev);
5151 __put_user(host_st->st_ino, &target_st->st_ino);
5152 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
5153 __put_user(host_st->st_ino, &target_st->__st_ino);
5154 #endif
5155 __put_user(host_st->st_mode, &target_st->st_mode);
5156 __put_user(host_st->st_nlink, &target_st->st_nlink);
5157 __put_user(host_st->st_uid, &target_st->st_uid);
5158 __put_user(host_st->st_gid, &target_st->st_gid);
5159 __put_user(host_st->st_rdev, &target_st->st_rdev);
5160 __put_user(host_st->st_size, &target_st->st_size);
5161 __put_user(host_st->st_blksize, &target_st->st_blksize);
5162 __put_user(host_st->st_blocks, &target_st->st_blocks);
5163 __put_user(host_st->st_atime, &target_st->target_st_atime);
5164 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
5165 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
5166 unlock_user_struct(target_st, target_addr, 1);
5167 } else
5168 #endif
5169 {
5170 #if defined(TARGET_HAS_STRUCT_STAT64)
5171 struct target_stat64 *target_st;
5172 #else
5173 struct target_stat *target_st;
5174 #endif
5175
5176 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
5177 return -TARGET_EFAULT;
5178 memset(target_st, 0, sizeof(*target_st));
5179 __put_user(host_st->st_dev, &target_st->st_dev);
5180 __put_user(host_st->st_ino, &target_st->st_ino);
5181 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
5182 __put_user(host_st->st_ino, &target_st->__st_ino);
5183 #endif
5184 __put_user(host_st->st_mode, &target_st->st_mode);
5185 __put_user(host_st->st_nlink, &target_st->st_nlink);
5186 __put_user(host_st->st_uid, &target_st->st_uid);
5187 __put_user(host_st->st_gid, &target_st->st_gid);
5188 __put_user(host_st->st_rdev, &target_st->st_rdev);
5189 /* XXX: better use of kernel struct */
5190 __put_user(host_st->st_size, &target_st->st_size);
5191 __put_user(host_st->st_blksize, &target_st->st_blksize);
5192 __put_user(host_st->st_blocks, &target_st->st_blocks);
5193 __put_user(host_st->st_atime, &target_st->target_st_atime);
5194 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
5195 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
5196 unlock_user_struct(target_st, target_addr, 1);
5197 }
5198
5199 return 0;
5200 }
5201 #endif
5202
5203 /* ??? Using host futex calls even when target atomic operations
5204 are not really atomic probably breaks things. However implementing
5205 futexes locally would make futexes shared between multiple processes
5206 tricky. However they're probably useless because guest atomic
5207 operations won't work either. */
5208 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
5209 target_ulong uaddr2, int val3)
5210 {
5211 struct timespec ts, *pts;
5212 int base_op;
5213
5214 /* ??? We assume FUTEX_* constants are the same on both host
5215 and target. */
5216 #ifdef FUTEX_CMD_MASK
5217 base_op = op & FUTEX_CMD_MASK;
5218 #else
5219 base_op = op;
5220 #endif
5221 switch (base_op) {
5222 case FUTEX_WAIT:
5223 case FUTEX_WAIT_BITSET:
5224 if (timeout) {
5225 pts = &ts;
5226 target_to_host_timespec(pts, timeout);
5227 } else {
5228 pts = NULL;
5229 }
5230 return get_errno(sys_futex(g2h(uaddr), op, tswap32(val),
5231 pts, NULL, val3));
5232 case FUTEX_WAKE:
5233 return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0));
5234 case FUTEX_FD:
5235 return get_errno(sys_futex(g2h(uaddr), op, val, NULL, NULL, 0));
5236 case FUTEX_REQUEUE:
5237 case FUTEX_CMP_REQUEUE:
5238 case FUTEX_WAKE_OP:
5239 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
5240 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
5241 But the prototype takes a `struct timespec *'; insert casts
5242 to satisfy the compiler. We do not need to tswap TIMEOUT
5243 since it's not compared to guest memory. */
5244 pts = (struct timespec *)(uintptr_t) timeout;
5245 return get_errno(sys_futex(g2h(uaddr), op, val, pts,
5246 g2h(uaddr2),
5247 (base_op == FUTEX_CMP_REQUEUE
5248 ? tswap32(val3)
5249 : val3)));
5250 default:
5251 return -TARGET_ENOSYS;
5252 }
5253 }
5254 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
5255 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
5256 abi_long handle, abi_long mount_id,
5257 abi_long flags)
5258 {
5259 struct file_handle *target_fh;
5260 struct file_handle *fh;
5261 int mid = 0;
5262 abi_long ret;
5263 char *name;
5264 unsigned int size, total_size;
5265
5266 if (get_user_s32(size, handle)) {
5267 return -TARGET_EFAULT;
5268 }
5269
5270 name = lock_user_string(pathname);
5271 if (!name) {
5272 return -TARGET_EFAULT;
5273 }
5274
5275 total_size = sizeof(struct file_handle) + size;
5276 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
5277 if (!target_fh) {
5278 unlock_user(name, pathname, 0);
5279 return -TARGET_EFAULT;
5280 }
5281
5282 fh = g_malloc0(total_size);
5283 fh->handle_bytes = size;
5284
5285 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
5286 unlock_user(name, pathname, 0);
5287
5288 /* man name_to_handle_at(2):
5289 * Other than the use of the handle_bytes field, the caller should treat
5290 * the file_handle structure as an opaque data type
5291 */
5292
5293 memcpy(target_fh, fh, total_size);
5294 target_fh->handle_bytes = tswap32(fh->handle_bytes);
5295 target_fh->handle_type = tswap32(fh->handle_type);
5296 g_free(fh);
5297 unlock_user(target_fh, handle, total_size);
5298
5299 if (put_user_s32(mid, mount_id)) {
5300 return -TARGET_EFAULT;
5301 }
5302
5303 return ret;
5304
5305 }
5306 #endif
5307
5308 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
5309 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
5310 abi_long flags)
5311 {
5312 struct file_handle *target_fh;
5313 struct file_handle *fh;
5314 unsigned int size, total_size;
5315 abi_long ret;
5316
5317 if (get_user_s32(size, handle)) {
5318 return -TARGET_EFAULT;
5319 }
5320
5321 total_size = sizeof(struct file_handle) + size;
5322 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
5323 if (!target_fh) {
5324 return -TARGET_EFAULT;
5325 }
5326
5327 fh = g_malloc0(total_size);
5328 memcpy(fh, target_fh, total_size);
5329 fh->handle_bytes = size;
5330 fh->handle_type = tswap32(target_fh->handle_type);
5331
5332 ret = get_errno(open_by_handle_at(mount_fd, fh,
5333 target_to_host_bitmask(flags, fcntl_flags_tbl)));
5334
5335 g_free(fh);
5336
5337 unlock_user(target_fh, handle, total_size);
5338
5339 return ret;
5340 }
5341 #endif
5342
5343 /* Map host to target signal numbers for the wait family of syscalls.
5344 Assume all other status bits are the same. */
5345 int host_to_target_waitstatus(int status)
5346 {
5347 if (WIFSIGNALED(status)) {
5348 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
5349 }
5350 if (WIFSTOPPED(status)) {
5351 return (host_to_target_signal(WSTOPSIG(status)) << 8)
5352 | (status & 0xff);
5353 }
5354 return status;
5355 }
5356
5357 static int open_self_cmdline(void *cpu_env, int fd)
5358 {
5359 int fd_orig = -1;
5360 bool word_skipped = false;
5361
5362 fd_orig = open("/proc/self/cmdline", O_RDONLY);
5363 if (fd_orig < 0) {
5364 return fd_orig;
5365 }
5366
5367 while (true) {
5368 ssize_t nb_read;
5369 char buf[128];
5370 char *cp_buf = buf;
5371
5372 nb_read = read(fd_orig, buf, sizeof(buf));
5373 if (nb_read < 0) {
5374 fd_orig = close(fd_orig);
5375 return -1;
5376 } else if (nb_read == 0) {
5377 break;
5378 }
5379
5380 if (!word_skipped) {
5381 /* Skip the first string, which is the path to qemu-*-static
5382 instead of the actual command. */
5383 cp_buf = memchr(buf, 0, sizeof(buf));
5384 if (cp_buf) {
5385 /* Null byte found, skip one string */
5386 cp_buf++;
5387 nb_read -= cp_buf - buf;
5388 word_skipped = true;
5389 }
5390 }
5391
5392 if (word_skipped) {
5393 if (write(fd, cp_buf, nb_read) != nb_read) {
5394 close(fd_orig);
5395 return -1;
5396 }
5397 }
5398 }
5399
5400 return close(fd_orig);
5401 }
5402
5403 static int open_self_maps(void *cpu_env, int fd)
5404 {
5405 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
5406 TaskState *ts = cpu->opaque;
5407 FILE *fp;
5408 char *line = NULL;
5409 size_t len = 0;
5410 ssize_t read;
5411
5412 fp = fopen("/proc/self/maps", "r");
5413 if (fp == NULL) {
5414 return -EACCES;
5415 }
5416
5417 while ((read = getline(&line, &len, fp)) != -1) {
5418 int fields, dev_maj, dev_min, inode;
5419 uint64_t min, max, offset;
5420 char flag_r, flag_w, flag_x, flag_p;
5421 char path[512] = "";
5422 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d"
5423 " %512s", &min, &max, &flag_r, &flag_w, &flag_x,
5424 &flag_p, &offset, &dev_maj, &dev_min, &inode, path);
5425
5426 if ((fields < 10) || (fields > 11)) {
5427 continue;
5428 }
5429 if (h2g_valid(min)) {
5430 int flags = page_get_flags(h2g(min));
5431 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX);
5432 if (page_check_range(h2g(min), max - min, flags) == -1) {
5433 continue;
5434 }
5435 if (h2g(min) == ts->info->stack_limit) {
5436 pstrcpy(path, sizeof(path), " [stack]");
5437 }
5438 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx
5439 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n",
5440 h2g(min), h2g(max - 1) + 1, flag_r, flag_w,
5441 flag_x, flag_p, offset, dev_maj, dev_min, inode,
5442 path[0] ? " " : "", path);
5443 }
5444 }
5445
5446 free(line);
5447 fclose(fp);
5448
5449 return 0;
5450 }
5451
5452 static int open_self_stat(void *cpu_env, int fd)
5453 {
5454 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
5455 TaskState *ts = cpu->opaque;
5456 abi_ulong start_stack = ts->info->start_stack;
5457 int i;
5458
5459 for (i = 0; i < 44; i++) {
5460 char buf[128];
5461 int len;
5462 uint64_t val = 0;
5463
5464 if (i == 0) {
5465 /* pid */
5466 val = getpid();
5467 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
5468 } else if (i == 1) {
5469 /* app name */
5470 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]);
5471 } else if (i == 27) {
5472 /* stack bottom */
5473 val = start_stack;
5474 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
5475 } else {
5476 /* for the rest, there is MasterCard */
5477 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' ');
5478 }
5479
5480 len = strlen(buf);
5481 if (write(fd, buf, len) != len) {
5482 return -1;
5483 }
5484 }
5485
5486 return 0;
5487 }
5488
5489 static int open_self_auxv(void *cpu_env, int fd)
5490 {
5491 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
5492 TaskState *ts = cpu->opaque;
5493 abi_ulong auxv = ts->info->saved_auxv;
5494 abi_ulong len = ts->info->auxv_len;
5495 char *ptr;
5496
5497 /*
5498 * Auxiliary vector is stored in target process stack.
5499 * read in whole auxv vector and copy it to file
5500 */
5501 ptr = lock_user(VERIFY_READ, auxv, len, 0);
5502 if (ptr != NULL) {
5503 while (len > 0) {
5504 ssize_t r;
5505 r = write(fd, ptr, len);
5506 if (r <= 0) {
5507 break;
5508 }
5509 len -= r;
5510 ptr += r;
5511 }
5512 lseek(fd, 0, SEEK_SET);
5513 unlock_user(ptr, auxv, len);
5514 }
5515
5516 return 0;
5517 }
5518
5519 static int is_proc_myself(const char *filename, const char *entry)
5520 {
5521 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
5522 filename += strlen("/proc/");
5523 if (!strncmp(filename, "self/", strlen("self/"))) {
5524 filename += strlen("self/");
5525 } else if (*filename >= '1' && *filename <= '9') {
5526 char myself[80];
5527 snprintf(myself, sizeof(myself), "%d/", getpid());
5528 if (!strncmp(filename, myself, strlen(myself))) {
5529 filename += strlen(myself);
5530 } else {
5531 return 0;
5532 }
5533 } else {
5534 return 0;
5535 }
5536 if (!strcmp(filename, entry)) {
5537 return 1;
5538 }
5539 }
5540 return 0;
5541 }
5542
5543 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
5544 static int is_proc(const char *filename, const char *entry)
5545 {
5546 return strcmp(filename, entry) == 0;
5547 }
5548
5549 static int open_net_route(void *cpu_env, int fd)
5550 {
5551 FILE *fp;
5552 char *line = NULL;
5553 size_t len = 0;
5554 ssize_t read;
5555
5556 fp = fopen("/proc/net/route", "r");
5557 if (fp == NULL) {
5558 return -EACCES;
5559 }
5560
5561 /* read header */
5562
5563 read = getline(&line, &len, fp);
5564 dprintf(fd, "%s", line);
5565
5566 /* read routes */
5567
5568 while ((read = getline(&line, &len, fp)) != -1) {
5569 char iface[16];
5570 uint32_t dest, gw, mask;
5571 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
5572 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
5573 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
5574 &mask, &mtu, &window, &irtt);
5575 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
5576 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
5577 metric, tswap32(mask), mtu, window, irtt);
5578 }
5579
5580 free(line);
5581 fclose(fp);
5582
5583 return 0;
5584 }
5585 #endif
5586
5587 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
5588 {
5589 struct fake_open {
5590 const char *filename;
5591 int (*fill)(void *cpu_env, int fd);
5592 int (*cmp)(const char *s1, const char *s2);
5593 };
5594 const struct fake_open *fake_open;
5595 static const struct fake_open fakes[] = {
5596 { "maps", open_self_maps, is_proc_myself },
5597 { "stat", open_self_stat, is_proc_myself },
5598 { "auxv", open_self_auxv, is_proc_myself },
5599 { "cmdline", open_self_cmdline, is_proc_myself },
5600 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
5601 { "/proc/net/route", open_net_route, is_proc },
5602 #endif
5603 { NULL, NULL, NULL }
5604 };
5605
5606 if (is_proc_myself(pathname, "exe")) {
5607 int execfd = qemu_getauxval(AT_EXECFD);
5608 return execfd ? execfd : get_errno(sys_openat(dirfd, exec_path, flags, mode));
5609 }
5610
5611 for (fake_open = fakes; fake_open->filename; fake_open++) {
5612 if (fake_open->cmp(pathname, fake_open->filename)) {
5613 break;
5614 }
5615 }
5616
5617 if (fake_open->filename) {
5618 const char *tmpdir;
5619 char filename[PATH_MAX];
5620 int fd, r;
5621
5622 /* create temporary file to map stat to */
5623 tmpdir = getenv("TMPDIR");
5624 if (!tmpdir)
5625 tmpdir = "/tmp";
5626 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
5627 fd = mkstemp(filename);
5628 if (fd < 0) {
5629 return fd;
5630 }
5631 unlink(filename);
5632
5633 if ((r = fake_open->fill(cpu_env, fd))) {
5634 close(fd);
5635 return r;
5636 }
5637 lseek(fd, 0, SEEK_SET);
5638
5639 return fd;
5640 }
5641
5642 return get_errno(sys_openat(dirfd, path(pathname), flags, mode));
5643 }
5644
5645 #define TIMER_MAGIC 0x0caf0000
5646 #define TIMER_MAGIC_MASK 0xffff0000
5647
5648 /* Convert QEMU provided timer ID back to internal 16bit index format */
5649 static target_timer_t get_timer_id(abi_long arg)
5650 {
5651 target_timer_t timerid = arg;
5652
5653 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
5654 return -TARGET_EINVAL;
5655 }
5656
5657 timerid &= 0xffff;
5658
5659 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
5660 return -TARGET_EINVAL;
5661 }
5662
5663 return timerid;
5664 }
5665
5666 /* do_syscall() should always have a single exit point at the end so
5667 that actions, such as logging of syscall results, can be performed.
5668 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
5669 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
5670 abi_long arg2, abi_long arg3, abi_long arg4,
5671 abi_long arg5, abi_long arg6, abi_long arg7,
5672 abi_long arg8)
5673 {
5674 CPUState *cpu = ENV_GET_CPU(cpu_env);
5675 abi_long ret;
5676 struct stat st;
5677 struct statfs stfs;
5678 void *p;
5679
5680 #ifdef DEBUG
5681 gemu_log("syscall %d", num);
5682 #endif
5683 if(do_strace)
5684 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
5685
5686 switch(num) {
5687 case TARGET_NR_exit:
5688 /* In old applications this may be used to implement _exit(2).
5689 However in threaded applictions it is used for thread termination,
5690 and _exit_group is used for application termination.
5691 Do thread termination if we have more then one thread. */
5692 /* FIXME: This probably breaks if a signal arrives. We should probably
5693 be disabling signals. */
5694 if (CPU_NEXT(first_cpu)) {
5695 TaskState *ts;
5696
5697 cpu_list_lock();
5698 /* Remove the CPU from the list. */
5699 QTAILQ_REMOVE(&cpus, cpu, node);
5700 cpu_list_unlock();
5701 ts = cpu->opaque;
5702 if (ts->child_tidptr) {
5703 put_user_u32(0, ts->child_tidptr);
5704 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
5705 NULL, NULL, 0);
5706 }
5707 thread_cpu = NULL;
5708 object_unref(OBJECT(cpu));
5709 g_free(ts);
5710 rcu_unregister_thread();
5711 pthread_exit(NULL);
5712 }
5713 #ifdef TARGET_GPROF
5714 _mcleanup();
5715 #endif
5716 gdb_exit(cpu_env, arg1);
5717 _exit(arg1);
5718 ret = 0; /* avoid warning */
5719 break;
5720 case TARGET_NR_read:
5721 if (arg3 == 0)
5722 ret = 0;
5723 else {
5724 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
5725 goto efault;
5726 ret = get_errno(read(arg1, p, arg3));
5727 unlock_user(p, arg2, ret);
5728 }
5729 break;
5730 case TARGET_NR_write:
5731 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
5732 goto efault;
5733 ret = get_errno(write(arg1, p, arg3));
5734 unlock_user(p, arg2, 0);
5735 break;
5736 #ifdef TARGET_NR_open
5737 case TARGET_NR_open:
5738 if (!(p = lock_user_string(arg1)))
5739 goto efault;
5740 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
5741 target_to_host_bitmask(arg2, fcntl_flags_tbl),
5742 arg3));
5743 unlock_user(p, arg1, 0);
5744 break;
5745 #endif
5746 case TARGET_NR_openat:
5747 if (!(p = lock_user_string(arg2)))
5748 goto efault;
5749 ret = get_errno(do_openat(cpu_env, arg1, p,
5750 target_to_host_bitmask(arg3, fcntl_flags_tbl),
5751 arg4));
5752 unlock_user(p, arg2, 0);
5753 break;
5754 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
5755 case TARGET_NR_name_to_handle_at:
5756 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
5757 break;
5758 #endif
5759 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
5760 case TARGET_NR_open_by_handle_at:
5761 ret = do_open_by_handle_at(arg1, arg2, arg3);
5762 break;
5763 #endif
5764 case TARGET_NR_close:
5765 ret = get_errno(close(arg1));
5766 break;
5767 case TARGET_NR_brk:
5768 ret = do_brk(arg1);
5769 break;
5770 #ifdef TARGET_NR_fork
5771 case TARGET_NR_fork:
5772 ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0));
5773 break;
5774 #endif
5775 #ifdef TARGET_NR_waitpid
5776 case TARGET_NR_waitpid:
5777 {
5778 int status;
5779 ret = get_errno(waitpid(arg1, &status, arg3));
5780 if (!is_error(ret) && arg2 && ret
5781 && put_user_s32(host_to_target_waitstatus(status), arg2))
5782 goto efault;
5783 }
5784 break;
5785 #endif
5786 #ifdef TARGET_NR_waitid
5787 case TARGET_NR_waitid:
5788 {
5789 siginfo_t info;
5790 info.si_pid = 0;
5791 ret = get_errno(waitid(arg1, arg2, &info, arg4));
5792 if (!is_error(ret) && arg3 && info.si_pid != 0) {
5793 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
5794 goto efault;
5795 host_to_target_siginfo(p, &info);
5796 unlock_user(p, arg3, sizeof(target_siginfo_t));
5797 }
5798 }
5799 break;
5800 #endif
5801 #ifdef TARGET_NR_creat /* not on alpha */
5802 case TARGET_NR_creat:
5803 if (!(p = lock_user_string(arg1)))
5804 goto efault;
5805 ret = get_errno(creat(p, arg2));
5806 unlock_user(p, arg1, 0);
5807 break;
5808 #endif
5809 #ifdef TARGET_NR_link
5810 case TARGET_NR_link:
5811 {
5812 void * p2;
5813 p = lock_user_string(arg1);
5814 p2 = lock_user_string(arg2);
5815 if (!p || !p2)
5816 ret = -TARGET_EFAULT;
5817 else
5818 ret = get_errno(link(p, p2));
5819 unlock_user(p2, arg2, 0);
5820 unlock_user(p, arg1, 0);
5821 }
5822 break;
5823 #endif
5824 #if defined(TARGET_NR_linkat)
5825 case TARGET_NR_linkat:
5826 {
5827 void * p2 = NULL;
5828 if (!arg2 || !arg4)
5829 goto efault;
5830 p = lock_user_string(arg2);
5831 p2 = lock_user_string(arg4);
5832 if (!p || !p2)
5833 ret = -TARGET_EFAULT;
5834 else
5835 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
5836 unlock_user(p, arg2, 0);
5837 unlock_user(p2, arg4, 0);
5838 }
5839 break;
5840 #endif
5841 #ifdef TARGET_NR_unlink
5842 case TARGET_NR_unlink:
5843 if (!(p = lock_user_string(arg1)))
5844 goto efault;
5845 ret = get_errno(unlink(p));
5846 unlock_user(p, arg1, 0);
5847 break;
5848 #endif
5849 #if defined(TARGET_NR_unlinkat)
5850 case TARGET_NR_unlinkat:
5851 if (!(p = lock_user_string(arg2)))
5852 goto efault;
5853 ret = get_errno(unlinkat(arg1, p, arg3));
5854 unlock_user(p, arg2, 0);
5855 break;
5856 #endif
5857 case TARGET_NR_execve:
5858 {
5859 char **argp, **envp;
5860 int argc, envc;
5861 abi_ulong gp;
5862 abi_ulong guest_argp;
5863 abi_ulong guest_envp;
5864 abi_ulong addr;
5865 char **q;
5866 int total_size = 0;
5867
5868 argc = 0;
5869 guest_argp = arg2;
5870 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
5871 if (get_user_ual(addr, gp))
5872 goto efault;
5873 if (!addr)
5874 break;
5875 argc++;
5876 }
5877 envc = 0;
5878 guest_envp = arg3;
5879 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
5880 if (get_user_ual(addr, gp))
5881 goto efault;
5882 if (!addr)
5883 break;
5884 envc++;
5885 }
5886
5887 argp = alloca((argc + 1) * sizeof(void *));
5888 envp = alloca((envc + 1) * sizeof(void *));
5889
5890 for (gp = guest_argp, q = argp; gp;
5891 gp += sizeof(abi_ulong), q++) {
5892 if (get_user_ual(addr, gp))
5893 goto execve_efault;
5894 if (!addr)
5895 break;
5896 if (!(*q = lock_user_string(addr)))
5897 goto execve_efault;
5898 total_size += strlen(*q) + 1;
5899 }
5900 *q = NULL;
5901
5902 for (gp = guest_envp, q = envp; gp;
5903 gp += sizeof(abi_ulong), q++) {
5904 if (get_user_ual(addr, gp))
5905 goto execve_efault;
5906 if (!addr)
5907 break;
5908 if (!(*q = lock_user_string(addr)))
5909 goto execve_efault;
5910 total_size += strlen(*q) + 1;
5911 }
5912 *q = NULL;
5913
5914 if (!(p = lock_user_string(arg1)))
5915 goto execve_efault;
5916 ret = get_errno(execve(p, argp, envp));
5917 unlock_user(p, arg1, 0);
5918
5919 goto execve_end;
5920
5921 execve_efault:
5922 ret = -TARGET_EFAULT;
5923
5924 execve_end:
5925 for (gp = guest_argp, q = argp; *q;
5926 gp += sizeof(abi_ulong), q++) {
5927 if (get_user_ual(addr, gp)
5928 || !addr)
5929 break;
5930 unlock_user(*q, addr, 0);
5931 }
5932 for (gp = guest_envp, q = envp; *q;
5933 gp += sizeof(abi_ulong), q++) {
5934 if (get_user_ual(addr, gp)
5935 || !addr)
5936 break;
5937 unlock_user(*q, addr, 0);
5938 }
5939 }
5940 break;
5941 case TARGET_NR_chdir:
5942 if (!(p = lock_user_string(arg1)))
5943 goto efault;
5944 ret = get_errno(chdir(p));
5945 unlock_user(p, arg1, 0);
5946 break;
5947 #ifdef TARGET_NR_time
5948 case TARGET_NR_time:
5949 {
5950 time_t host_time;
5951 ret = get_errno(time(&host_time));
5952 if (!is_error(ret)
5953 && arg1
5954 && put_user_sal(host_time, arg1))
5955 goto efault;
5956 }
5957 break;
5958 #endif
5959 #ifdef TARGET_NR_mknod
5960 case TARGET_NR_mknod:
5961 if (!(p = lock_user_string(arg1)))
5962 goto efault;
5963 ret = get_errno(mknod(p, arg2, arg3));
5964 unlock_user(p, arg1, 0);
5965 break;
5966 #endif
5967 #if defined(TARGET_NR_mknodat)
5968 case TARGET_NR_mknodat:
5969 if (!(p = lock_user_string(arg2)))
5970 goto efault;
5971 ret = get_errno(mknodat(arg1, p, arg3, arg4));
5972 unlock_user(p, arg2, 0);
5973 break;
5974 #endif
5975 #ifdef TARGET_NR_chmod
5976 case TARGET_NR_chmod:
5977 if (!(p = lock_user_string(arg1)))
5978 goto efault;
5979 ret = get_errno(chmod(p, arg2));
5980 unlock_user(p, arg1, 0);
5981 break;
5982 #endif
5983 #ifdef TARGET_NR_break
5984 case TARGET_NR_break:
5985 goto unimplemented;
5986 #endif
5987 #ifdef TARGET_NR_oldstat
5988 case TARGET_NR_oldstat:
5989 goto unimplemented;
5990 #endif
5991 case TARGET_NR_lseek:
5992 ret = get_errno(lseek(arg1, arg2, arg3));
5993 break;
5994 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
5995 /* Alpha specific */
5996 case TARGET_NR_getxpid:
5997 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
5998 ret = get_errno(getpid());
5999 break;
6000 #endif
6001 #ifdef TARGET_NR_getpid
6002 case TARGET_NR_getpid:
6003 ret = get_errno(getpid());
6004 break;
6005 #endif
6006 case TARGET_NR_mount:
6007 {
6008 /* need to look at the data field */
6009 void *p2, *p3;
6010
6011 if (arg1) {
6012 p = lock_user_string(arg1);
6013 if (!p) {
6014 goto efault;
6015 }
6016 } else {
6017 p = NULL;
6018 }
6019
6020 p2 = lock_user_string(arg2);
6021 if (!p2) {
6022 if (arg1) {
6023 unlock_user(p, arg1, 0);
6024 }
6025 goto efault;
6026 }
6027
6028 if (arg3) {
6029 p3 = lock_user_string(arg3);
6030 if (!p3) {
6031 if (arg1) {
6032 unlock_user(p, arg1, 0);
6033 }
6034 unlock_user(p2, arg2, 0);
6035 goto efault;
6036 }
6037 } else {
6038 p3 = NULL;
6039 }
6040
6041 /* FIXME - arg5 should be locked, but it isn't clear how to
6042 * do that since it's not guaranteed to be a NULL-terminated
6043 * string.
6044 */
6045 if (!arg5) {
6046 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
6047 } else {
6048 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
6049 }
6050 ret = get_errno(ret);
6051
6052 if (arg1) {
6053 unlock_user(p, arg1, 0);
6054 }
6055 unlock_user(p2, arg2, 0);
6056 if (arg3) {
6057 unlock_user(p3, arg3, 0);
6058 }
6059 }
6060 break;
6061 #ifdef TARGET_NR_umount
6062 case TARGET_NR_umount:
6063 if (!(p = lock_user_string(arg1)))
6064 goto efault;
6065 ret = get_errno(umount(p));
6066 unlock_user(p, arg1, 0);
6067 break;
6068 #endif
6069 #ifdef TARGET_NR_stime /* not on alpha */
6070 case TARGET_NR_stime:
6071 {
6072 time_t host_time;
6073 if (get_user_sal(host_time, arg1))
6074 goto efault;
6075 ret = get_errno(stime(&host_time));
6076 }
6077 break;
6078 #endif
6079 case TARGET_NR_ptrace:
6080 goto unimplemented;
6081 #ifdef TARGET_NR_alarm /* not on alpha */
6082 case TARGET_NR_alarm:
6083 ret = alarm(arg1);
6084 break;
6085 #endif
6086 #ifdef TARGET_NR_oldfstat
6087 case TARGET_NR_oldfstat:
6088 goto unimplemented;
6089 #endif
6090 #ifdef TARGET_NR_pause /* not on alpha */
6091 case TARGET_NR_pause:
6092 ret = get_errno(pause());
6093 break;
6094 #endif
6095 #ifdef TARGET_NR_utime
6096 case TARGET_NR_utime:
6097 {
6098 struct utimbuf tbuf, *host_tbuf;
6099 struct target_utimbuf *target_tbuf;
6100 if (arg2) {
6101 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
6102 goto efault;
6103 tbuf.actime = tswapal(target_tbuf->actime);
6104 tbuf.modtime = tswapal(target_tbuf->modtime);
6105 unlock_user_struct(target_tbuf, arg2, 0);
6106 host_tbuf = &tbuf;
6107 } else {
6108 host_tbuf = NULL;
6109 }
6110 if (!(p = lock_user_string(arg1)))
6111 goto efault;
6112 ret = get_errno(utime(p, host_tbuf));
6113 unlock_user(p, arg1, 0);
6114 }
6115 break;
6116 #endif
6117 #ifdef TARGET_NR_utimes
6118 case TARGET_NR_utimes:
6119 {
6120 struct timeval *tvp, tv[2];
6121 if (arg2) {
6122 if (copy_from_user_timeval(&tv[0], arg2)
6123 || copy_from_user_timeval(&tv[1],
6124 arg2 + sizeof(struct target_timeval)))
6125 goto efault;
6126 tvp = tv;
6127 } else {
6128 tvp = NULL;
6129 }
6130 if (!(p = lock_user_string(arg1)))
6131 goto efault;
6132 ret = get_errno(utimes(p, tvp));
6133 unlock_user(p, arg1, 0);
6134 }
6135 break;
6136 #endif
6137 #if defined(TARGET_NR_futimesat)
6138 case TARGET_NR_futimesat:
6139 {
6140 struct timeval *tvp, tv[2];
6141 if (arg3) {
6142 if (copy_from_user_timeval(&tv[0], arg3)
6143 || copy_from_user_timeval(&tv[1],
6144 arg3 + sizeof(struct target_timeval)))
6145 goto efault;
6146 tvp = tv;
6147 } else {
6148 tvp = NULL;
6149 }
6150 if (!(p = lock_user_string(arg2)))
6151 goto efault;
6152 ret = get_errno(futimesat(arg1, path(p), tvp));
6153 unlock_user(p, arg2, 0);
6154 }
6155 break;
6156 #endif
6157 #ifdef TARGET_NR_stty
6158 case TARGET_NR_stty:
6159 goto unimplemented;
6160 #endif
6161 #ifdef TARGET_NR_gtty
6162 case TARGET_NR_gtty:
6163 goto unimplemented;
6164 #endif
6165 #ifdef TARGET_NR_access
6166 case TARGET_NR_access:
6167 if (!(p = lock_user_string(arg1)))
6168 goto efault;
6169 ret = get_errno(access(path(p), arg2));
6170 unlock_user(p, arg1, 0);
6171 break;
6172 #endif
6173 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
6174 case TARGET_NR_faccessat:
6175 if (!(p = lock_user_string(arg2)))
6176 goto efault;
6177 ret = get_errno(faccessat(arg1, p, arg3, 0));
6178 unlock_user(p, arg2, 0);
6179 break;
6180 #endif
6181 #ifdef TARGET_NR_nice /* not on alpha */
6182 case TARGET_NR_nice:
6183 ret = get_errno(nice(arg1));
6184 break;
6185 #endif
6186 #ifdef TARGET_NR_ftime
6187 case TARGET_NR_ftime:
6188 goto unimplemented;
6189 #endif
6190 case TARGET_NR_sync:
6191 sync();
6192 ret = 0;
6193 break;
6194 case TARGET_NR_kill:
6195 ret = get_errno(kill(arg1, target_to_host_signal(arg2)));
6196 break;
6197 #ifdef TARGET_NR_rename
6198 case TARGET_NR_rename:
6199 {
6200 void *p2;
6201 p = lock_user_string(arg1);
6202 p2 = lock_user_string(arg2);
6203 if (!p || !p2)
6204 ret = -TARGET_EFAULT;
6205 else
6206 ret = get_errno(rename(p, p2));
6207 unlock_user(p2, arg2, 0);
6208 unlock_user(p, arg1, 0);
6209 }
6210 break;
6211 #endif
6212 #if defined(TARGET_NR_renameat)
6213 case TARGET_NR_renameat:
6214 {
6215 void *p2;
6216 p = lock_user_string(arg2);
6217 p2 = lock_user_string(arg4);
6218 if (!p || !p2)
6219 ret = -TARGET_EFAULT;
6220 else
6221 ret = get_errno(renameat(arg1, p, arg3, p2));
6222 unlock_user(p2, arg4, 0);
6223 unlock_user(p, arg2, 0);
6224 }
6225 break;
6226 #endif
6227 #ifdef TARGET_NR_mkdir
6228 case TARGET_NR_mkdir:
6229 if (!(p = lock_user_string(arg1)))
6230 goto efault;
6231 ret = get_errno(mkdir(p, arg2));
6232 unlock_user(p, arg1, 0);
6233 break;
6234 #endif
6235 #if defined(TARGET_NR_mkdirat)
6236 case TARGET_NR_mkdirat:
6237 if (!(p = lock_user_string(arg2)))
6238 goto efault;
6239 ret = get_errno(mkdirat(arg1, p, arg3));
6240 unlock_user(p, arg2, 0);
6241 break;
6242 #endif
6243 #ifdef TARGET_NR_rmdir
6244 case TARGET_NR_rmdir:
6245 if (!(p = lock_user_string(arg1)))
6246 goto efault;
6247 ret = get_errno(rmdir(p));
6248 unlock_user(p, arg1, 0);
6249 break;
6250 #endif
6251 case TARGET_NR_dup:
6252 ret = get_errno(dup(arg1));
6253 break;
6254 #ifdef TARGET_NR_pipe
6255 case TARGET_NR_pipe:
6256 ret = do_pipe(cpu_env, arg1, 0, 0);
6257 break;
6258 #endif
6259 #ifdef TARGET_NR_pipe2
6260 case TARGET_NR_pipe2:
6261 ret = do_pipe(cpu_env, arg1,
6262 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
6263 break;
6264 #endif
6265 case TARGET_NR_times:
6266 {
6267 struct target_tms *tmsp;
6268 struct tms tms;
6269 ret = get_errno(times(&tms));
6270 if (arg1) {
6271 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
6272 if (!tmsp)
6273 goto efault;
6274 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
6275 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
6276 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
6277 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
6278 }
6279 if (!is_error(ret))
6280 ret = host_to_target_clock_t(ret);
6281 }
6282 break;
6283 #ifdef TARGET_NR_prof
6284 case TARGET_NR_prof:
6285 goto unimplemented;
6286 #endif
6287 #ifdef TARGET_NR_signal
6288 case TARGET_NR_signal:
6289 goto unimplemented;
6290 #endif
6291 case TARGET_NR_acct:
6292 if (arg1 == 0) {
6293 ret = get_errno(acct(NULL));
6294 } else {
6295 if (!(p = lock_user_string(arg1)))
6296 goto efault;
6297 ret = get_errno(acct(path(p)));
6298 unlock_user(p, arg1, 0);
6299 }
6300 break;
6301 #ifdef TARGET_NR_umount2
6302 case TARGET_NR_umount2:
6303 if (!(p = lock_user_string(arg1)))
6304 goto efault;
6305 ret = get_errno(umount2(p, arg2));
6306 unlock_user(p, arg1, 0);
6307 break;
6308 #endif
6309 #ifdef TARGET_NR_lock
6310 case TARGET_NR_lock:
6311 goto unimplemented;
6312 #endif
6313 case TARGET_NR_ioctl:
6314 ret = do_ioctl(arg1, arg2, arg3);
6315 break;
6316 case TARGET_NR_fcntl:
6317 ret = do_fcntl(arg1, arg2, arg3);
6318 break;
6319 #ifdef TARGET_NR_mpx
6320 case TARGET_NR_mpx:
6321 goto unimplemented;
6322 #endif
6323 case TARGET_NR_setpgid:
6324 ret = get_errno(setpgid(arg1, arg2));
6325 break;
6326 #ifdef TARGET_NR_ulimit
6327 case TARGET_NR_ulimit:
6328 goto unimplemented;
6329 #endif
6330 #ifdef TARGET_NR_oldolduname
6331 case TARGET_NR_oldolduname:
6332 goto unimplemented;
6333 #endif
6334 case TARGET_NR_umask:
6335 ret = get_errno(umask(arg1));
6336 break;
6337 case TARGET_NR_chroot:
6338 if (!(p = lock_user_string(arg1)))
6339 goto efault;
6340 ret = get_errno(chroot(p));
6341 unlock_user(p, arg1, 0);
6342 break;
6343 #ifdef TARGET_NR_ustat
6344 case TARGET_NR_ustat:
6345 goto unimplemented;
6346 #endif
6347 #ifdef TARGET_NR_dup2
6348 case TARGET_NR_dup2:
6349 ret = get_errno(dup2(arg1, arg2));
6350 break;
6351 #endif
6352 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
6353 case TARGET_NR_dup3:
6354 ret = get_errno(dup3(arg1, arg2, arg3));
6355 break;
6356 #endif
6357 #ifdef TARGET_NR_getppid /* not on alpha */
6358 case TARGET_NR_getppid:
6359 ret = get_errno(getppid());
6360 break;
6361 #endif
6362 #ifdef TARGET_NR_getpgrp
6363 case TARGET_NR_getpgrp:
6364 ret = get_errno(getpgrp());
6365 break;
6366 #endif
6367 case TARGET_NR_setsid:
6368 ret = get_errno(setsid());
6369 break;
6370 #ifdef TARGET_NR_sigaction
6371 case TARGET_NR_sigaction:
6372 {
6373 #if defined(TARGET_ALPHA)
6374 struct target_sigaction act, oact, *pact = 0;
6375 struct target_old_sigaction *old_act;
6376 if (arg2) {
6377 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
6378 goto efault;
6379 act._sa_handler = old_act->_sa_handler;
6380 target_siginitset(&act.sa_mask, old_act->sa_mask);
6381 act.sa_flags = old_act->sa_flags;
6382 act.sa_restorer = 0;
6383 unlock_user_struct(old_act, arg2, 0);
6384 pact = &act;
6385 }
6386 ret = get_errno(do_sigaction(arg1, pact, &oact));
6387 if (!is_error(ret) && arg3) {
6388 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
6389 goto efault;
6390 old_act->_sa_handler = oact._sa_handler;
6391 old_act->sa_mask = oact.sa_mask.sig[0];
6392 old_act->sa_flags = oact.sa_flags;
6393 unlock_user_struct(old_act, arg3, 1);
6394 }
6395 #elif defined(TARGET_MIPS)
6396 struct target_sigaction act, oact, *pact, *old_act;
6397
6398 if (arg2) {
6399 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
6400 goto efault;
6401 act._sa_handler = old_act->_sa_handler;
6402 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
6403 act.sa_flags = old_act->sa_flags;
6404 unlock_user_struct(old_act, arg2, 0);
6405 pact = &act;
6406 } else {
6407 pact = NULL;
6408 }
6409
6410 ret = get_errno(do_sigaction(arg1, pact, &oact));
6411
6412 if (!is_error(ret) && arg3) {
6413 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
6414 goto efault;
6415 old_act->_sa_handler = oact._sa_handler;
6416 old_act->sa_flags = oact.sa_flags;
6417 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
6418 old_act->sa_mask.sig[1] = 0;
6419 old_act->sa_mask.sig[2] = 0;
6420 old_act->sa_mask.sig[3] = 0;
6421 unlock_user_struct(old_act, arg3, 1);
6422 }
6423 #else
6424 struct target_old_sigaction *old_act;
6425 struct target_sigaction act, oact, *pact;
6426 if (arg2) {
6427 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
6428 goto efault;
6429 act._sa_handler = old_act->_sa_handler;
6430 target_siginitset(&act.sa_mask, old_act->sa_mask);
6431 act.sa_flags = old_act->sa_flags;
6432 act.sa_restorer = old_act->sa_restorer;
6433 unlock_user_struct(old_act, arg2, 0);
6434 pact = &act;
6435 } else {
6436 pact = NULL;
6437 }
6438 ret = get_errno(do_sigaction(arg1, pact, &oact));
6439 if (!is_error(ret) && arg3) {
6440 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
6441 goto efault;
6442 old_act->_sa_handler = oact._sa_handler;
6443 old_act->sa_mask = oact.sa_mask.sig[0];
6444 old_act->sa_flags = oact.sa_flags;
6445 old_act->sa_restorer = oact.sa_restorer;
6446 unlock_user_struct(old_act, arg3, 1);
6447 }
6448 #endif
6449 }
6450 break;
6451 #endif
6452 case TARGET_NR_rt_sigaction:
6453 {
6454 #if defined(TARGET_ALPHA)
6455 struct target_sigaction act, oact, *pact = 0;
6456 struct target_rt_sigaction *rt_act;
6457 /* ??? arg4 == sizeof(sigset_t). */
6458 if (arg2) {
6459 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
6460 goto efault;
6461 act._sa_handler = rt_act->_sa_handler;
6462 act.sa_mask = rt_act->sa_mask;
6463 act.sa_flags = rt_act->sa_flags;
6464 act.sa_restorer = arg5;
6465 unlock_user_struct(rt_act, arg2, 0);
6466 pact = &act;
6467 }
6468 ret = get_errno(do_sigaction(arg1, pact, &oact));
6469 if (!is_error(ret) && arg3) {
6470 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
6471 goto efault;
6472 rt_act->_sa_handler = oact._sa_handler;
6473 rt_act->sa_mask = oact.sa_mask;
6474 rt_act->sa_flags = oact.sa_flags;
6475 unlock_user_struct(rt_act, arg3, 1);
6476 }
6477 #else
6478 struct target_sigaction *act;
6479 struct target_sigaction *oact;
6480
6481 if (arg2) {
6482 if (!lock_user_struct(VERIFY_READ, act, arg2, 1))
6483 goto efault;
6484 } else
6485 act = NULL;
6486 if (arg3) {
6487 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
6488 ret = -TARGET_EFAULT;
6489 goto rt_sigaction_fail;
6490 }
6491 } else
6492 oact = NULL;
6493 ret = get_errno(do_sigaction(arg1, act, oact));
6494 rt_sigaction_fail:
6495 if (act)
6496 unlock_user_struct(act, arg2, 0);
6497 if (oact)
6498 unlock_user_struct(oact, arg3, 1);
6499 #endif
6500 }
6501 break;
6502 #ifdef TARGET_NR_sgetmask /* not on alpha */
6503 case TARGET_NR_sgetmask:
6504 {
6505 sigset_t cur_set;
6506 abi_ulong target_set;
6507 do_sigprocmask(0, NULL, &cur_set);
6508 host_to_target_old_sigset(&target_set, &cur_set);
6509 ret = target_set;
6510 }
6511 break;
6512 #endif
6513 #ifdef TARGET_NR_ssetmask /* not on alpha */
6514 case TARGET_NR_ssetmask:
6515 {
6516 sigset_t set, oset, cur_set;
6517 abi_ulong target_set = arg1;
6518 do_sigprocmask(0, NULL, &cur_set);
6519 target_to_host_old_sigset(&set, &target_set);
6520 sigorset(&set, &set, &cur_set);
6521 do_sigprocmask(SIG_SETMASK, &set, &oset);
6522 host_to_target_old_sigset(&target_set, &oset);
6523 ret = target_set;
6524 }
6525 break;
6526 #endif
6527 #ifdef TARGET_NR_sigprocmask
6528 case TARGET_NR_sigprocmask:
6529 {
6530 #if defined(TARGET_ALPHA)
6531 sigset_t set, oldset;
6532 abi_ulong mask;
6533 int how;
6534
6535 switch (arg1) {
6536 case TARGET_SIG_BLOCK:
6537 how = SIG_BLOCK;
6538 break;
6539 case TARGET_SIG_UNBLOCK:
6540 how = SIG_UNBLOCK;
6541 break;
6542 case TARGET_SIG_SETMASK:
6543 how = SIG_SETMASK;
6544 break;
6545 default:
6546 ret = -TARGET_EINVAL;
6547 goto fail;
6548 }
6549 mask = arg2;
6550 target_to_host_old_sigset(&set, &mask);
6551
6552 ret = get_errno(do_sigprocmask(how, &set, &oldset));
6553 if (!is_error(ret)) {
6554 host_to_target_old_sigset(&mask, &oldset);
6555 ret = mask;
6556 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
6557 }
6558 #else
6559 sigset_t set, oldset, *set_ptr;
6560 int how;
6561
6562 if (arg2) {
6563 switch (arg1) {
6564 case TARGET_SIG_BLOCK:
6565 how = SIG_BLOCK;
6566 break;
6567 case TARGET_SIG_UNBLOCK:
6568 how = SIG_UNBLOCK;
6569 break;
6570 case TARGET_SIG_SETMASK:
6571 how = SIG_SETMASK;
6572 break;
6573 default:
6574 ret = -TARGET_EINVAL;
6575 goto fail;
6576 }
6577 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
6578 goto efault;
6579 target_to_host_old_sigset(&set, p);
6580 unlock_user(p, arg2, 0);
6581 set_ptr = &set;
6582 } else {
6583 how = 0;
6584 set_ptr = NULL;
6585 }
6586 ret = get_errno(do_sigprocmask(how, set_ptr, &oldset));
6587 if (!is_error(ret) && arg3) {
6588 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
6589 goto efault;
6590 host_to_target_old_sigset(p, &oldset);
6591 unlock_user(p, arg3, sizeof(target_sigset_t));
6592 }
6593 #endif
6594 }
6595 break;
6596 #endif
6597 case TARGET_NR_rt_sigprocmask:
6598 {
6599 int how = arg1;
6600 sigset_t set, oldset, *set_ptr;
6601
6602 if (arg2) {
6603 switch(how) {
6604 case TARGET_SIG_BLOCK:
6605 how = SIG_BLOCK;
6606 break;
6607 case TARGET_SIG_UNBLOCK:
6608 how = SIG_UNBLOCK;
6609 break;
6610 case TARGET_SIG_SETMASK:
6611 how = SIG_SETMASK;
6612 break;
6613 default:
6614 ret = -TARGET_EINVAL;
6615 goto fail;
6616 }
6617 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
6618 goto efault;
6619 target_to_host_sigset(&set, p);
6620 unlock_user(p, arg2, 0);
6621 set_ptr = &set;
6622 } else {
6623 how = 0;
6624 set_ptr = NULL;
6625 }
6626 ret = get_errno(do_sigprocmask(how, set_ptr, &oldset));
6627 if (!is_error(ret) && arg3) {
6628 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
6629 goto efault;
6630 host_to_target_sigset(p, &oldset);
6631 unlock_user(p, arg3, sizeof(target_sigset_t));
6632 }
6633 }
6634 break;
6635 #ifdef TARGET_NR_sigpending
6636 case TARGET_NR_sigpending:
6637 {
6638 sigset_t set;
6639 ret = get_errno(sigpending(&set));
6640 if (!is_error(ret)) {
6641 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
6642 goto efault;
6643 host_to_target_old_sigset(p, &set);
6644 unlock_user(p, arg1, sizeof(target_sigset_t));
6645 }
6646 }
6647 break;
6648 #endif
6649 case TARGET_NR_rt_sigpending:
6650 {
6651 sigset_t set;
6652 ret = get_errno(sigpending(&set));
6653 if (!is_error(ret)) {
6654 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
6655 goto efault;
6656 host_to_target_sigset(p, &set);
6657 unlock_user(p, arg1, sizeof(target_sigset_t));
6658 }
6659 }
6660 break;
6661 #ifdef TARGET_NR_sigsuspend
6662 case TARGET_NR_sigsuspend:
6663 {
6664 sigset_t set;
6665 #if defined(TARGET_ALPHA)
6666 abi_ulong mask = arg1;
6667 target_to_host_old_sigset(&set, &mask);
6668 #else
6669 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
6670 goto efault;
6671 target_to_host_old_sigset(&set, p);
6672 unlock_user(p, arg1, 0);
6673 #endif
6674 ret = get_errno(sigsuspend(&set));
6675 }
6676 break;
6677 #endif
6678 case TARGET_NR_rt_sigsuspend:
6679 {
6680 sigset_t set;
6681 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
6682 goto efault;
6683 target_to_host_sigset(&set, p);
6684 unlock_user(p, arg1, 0);
6685 ret = get_errno(sigsuspend(&set));
6686 }
6687 break;
6688 case TARGET_NR_rt_sigtimedwait:
6689 {
6690 sigset_t set;
6691 struct timespec uts, *puts;
6692 siginfo_t uinfo;
6693
6694 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
6695 goto efault;
6696 target_to_host_sigset(&set, p);
6697 unlock_user(p, arg1, 0);
6698 if (arg3) {
6699 puts = &uts;
6700 target_to_host_timespec(puts, arg3);
6701 } else {
6702 puts = NULL;
6703 }
6704 ret = get_errno(sigtimedwait(&set, &uinfo, puts));
6705 if (!is_error(ret)) {
6706 if (arg2) {
6707 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
6708 0);
6709 if (!p) {
6710 goto efault;
6711 }
6712 host_to_target_siginfo(p, &uinfo);
6713 unlock_user(p, arg2, sizeof(target_siginfo_t));
6714 }
6715 ret = host_to_target_signal(ret);
6716 }
6717 }
6718 break;
6719 case TARGET_NR_rt_sigqueueinfo:
6720 {
6721 siginfo_t uinfo;
6722 if (!(p = lock_user(VERIFY_READ, arg3, sizeof(target_sigset_t), 1)))
6723 goto efault;
6724 target_to_host_siginfo(&uinfo, p);
6725 unlock_user(p, arg1, 0);
6726 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
6727 }
6728 break;
6729 #ifdef TARGET_NR_sigreturn
6730 case TARGET_NR_sigreturn:
6731 /* NOTE: ret is eax, so not transcoding must be done */
6732 ret = do_sigreturn(cpu_env);
6733 break;
6734 #endif
6735 case TARGET_NR_rt_sigreturn:
6736 /* NOTE: ret is eax, so not transcoding must be done */
6737 ret = do_rt_sigreturn(cpu_env);
6738 break;
6739 case TARGET_NR_sethostname:
6740 if (!(p = lock_user_string(arg1)))
6741 goto efault;
6742 ret = get_errno(sethostname(p, arg2));
6743 unlock_user(p, arg1, 0);
6744 break;
6745 case TARGET_NR_setrlimit:
6746 {
6747 int resource = target_to_host_resource(arg1);
6748 struct target_rlimit *target_rlim;
6749 struct rlimit rlim;
6750 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
6751 goto efault;
6752 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
6753 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
6754 unlock_user_struct(target_rlim, arg2, 0);
6755 ret = get_errno(setrlimit(resource, &rlim));
6756 }
6757 break;
6758 case TARGET_NR_getrlimit:
6759 {
6760 int resource = target_to_host_resource(arg1);
6761 struct target_rlimit *target_rlim;
6762 struct rlimit rlim;
6763
6764 ret = get_errno(getrlimit(resource, &rlim));
6765 if (!is_error(ret)) {
6766 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
6767 goto efault;
6768 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
6769 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
6770 unlock_user_struct(target_rlim, arg2, 1);
6771 }
6772 }
6773 break;
6774 case TARGET_NR_getrusage:
6775 {
6776 struct rusage rusage;
6777 ret = get_errno(getrusage(arg1, &rusage));
6778 if (!is_error(ret)) {
6779 ret = host_to_target_rusage(arg2, &rusage);
6780 }
6781 }
6782 break;
6783 case TARGET_NR_gettimeofday:
6784 {
6785 struct timeval tv;
6786 ret = get_errno(gettimeofday(&tv, NULL));
6787 if (!is_error(ret)) {
6788 if (copy_to_user_timeval(arg1, &tv))
6789 goto efault;
6790 }
6791 }
6792 break;
6793 case TARGET_NR_settimeofday:
6794 {
6795 struct timeval tv, *ptv = NULL;
6796 struct timezone tz, *ptz = NULL;
6797
6798 if (arg1) {
6799 if (copy_from_user_timeval(&tv, arg1)) {
6800 goto efault;
6801 }
6802 ptv = &tv;
6803 }
6804
6805 if (arg2) {
6806 if (copy_from_user_timezone(&tz, arg2)) {
6807 goto efault;
6808 }
6809 ptz = &tz;
6810 }
6811
6812 ret = get_errno(settimeofday(ptv, ptz));
6813 }
6814 break;
6815 #if defined(TARGET_NR_select)
6816 case TARGET_NR_select:
6817 #if defined(TARGET_S390X) || defined(TARGET_ALPHA)
6818 ret = do_select(arg1, arg2, arg3, arg4, arg5);
6819 #else
6820 {
6821 struct target_sel_arg_struct *sel;
6822 abi_ulong inp, outp, exp, tvp;
6823 long nsel;
6824
6825 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1))
6826 goto efault;
6827 nsel = tswapal(sel->n);
6828 inp = tswapal(sel->inp);
6829 outp = tswapal(sel->outp);
6830 exp = tswapal(sel->exp);
6831 tvp = tswapal(sel->tvp);
6832 unlock_user_struct(sel, arg1, 0);
6833 ret = do_select(nsel, inp, outp, exp, tvp);
6834 }
6835 #endif
6836 break;
6837 #endif
6838 #ifdef TARGET_NR_pselect6
6839 case TARGET_NR_pselect6:
6840 {
6841 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
6842 fd_set rfds, wfds, efds;
6843 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
6844 struct timespec ts, *ts_ptr;
6845
6846 /*
6847 * The 6th arg is actually two args smashed together,
6848 * so we cannot use the C library.
6849 */
6850 sigset_t set;
6851 struct {
6852 sigset_t *set;
6853 size_t size;
6854 } sig, *sig_ptr;
6855
6856 abi_ulong arg_sigset, arg_sigsize, *arg7;
6857 target_sigset_t *target_sigset;
6858
6859 n = arg1;
6860 rfd_addr = arg2;
6861 wfd_addr = arg3;
6862 efd_addr = arg4;
6863 ts_addr = arg5;
6864
6865 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
6866 if (ret) {
6867 goto fail;
6868 }
6869 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
6870 if (ret) {
6871 goto fail;
6872 }
6873 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
6874 if (ret) {
6875 goto fail;
6876 }
6877
6878 /*
6879 * This takes a timespec, and not a timeval, so we cannot
6880 * use the do_select() helper ...
6881 */
6882 if (ts_addr) {
6883 if (target_to_host_timespec(&ts, ts_addr)) {
6884 goto efault;
6885 }
6886 ts_ptr = &ts;
6887 } else {
6888 ts_ptr = NULL;
6889 }
6890
6891 /* Extract the two packed args for the sigset */
6892 if (arg6) {
6893 sig_ptr = &sig;
6894 sig.size = _NSIG / 8;
6895
6896 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
6897 if (!arg7) {
6898 goto efault;
6899 }
6900 arg_sigset = tswapal(arg7[0]);
6901 arg_sigsize = tswapal(arg7[1]);
6902 unlock_user(arg7, arg6, 0);
6903
6904 if (arg_sigset) {
6905 sig.set = &set;
6906 if (arg_sigsize != sizeof(*target_sigset)) {
6907 /* Like the kernel, we enforce correct size sigsets */
6908 ret = -TARGET_EINVAL;
6909 goto fail;
6910 }
6911 target_sigset = lock_user(VERIFY_READ, arg_sigset,
6912 sizeof(*target_sigset), 1);
6913 if (!target_sigset) {
6914 goto efault;
6915 }
6916 target_to_host_sigset(&set, target_sigset);
6917 unlock_user(target_sigset, arg_sigset, 0);
6918 } else {
6919 sig.set = NULL;
6920 }
6921 } else {
6922 sig_ptr = NULL;
6923 }
6924
6925 ret = get_errno(sys_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
6926 ts_ptr, sig_ptr));
6927
6928 if (!is_error(ret)) {
6929 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
6930 goto efault;
6931 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
6932 goto efault;
6933 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
6934 goto efault;
6935
6936 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
6937 goto efault;
6938 }
6939 }
6940 break;
6941 #endif
6942 #ifdef TARGET_NR_symlink
6943 case TARGET_NR_symlink:
6944 {
6945 void *p2;
6946 p = lock_user_string(arg1);
6947 p2 = lock_user_string(arg2);
6948 if (!p || !p2)
6949 ret = -TARGET_EFAULT;
6950 else
6951 ret = get_errno(symlink(p, p2));
6952 unlock_user(p2, arg2, 0);
6953 unlock_user(p, arg1, 0);
6954 }
6955 break;
6956 #endif
6957 #if defined(TARGET_NR_symlinkat)
6958 case TARGET_NR_symlinkat:
6959 {
6960 void *p2;
6961 p = lock_user_string(arg1);
6962 p2 = lock_user_string(arg3);
6963 if (!p || !p2)
6964 ret = -TARGET_EFAULT;
6965 else
6966 ret = get_errno(symlinkat(p, arg2, p2));
6967 unlock_user(p2, arg3, 0);
6968 unlock_user(p, arg1, 0);
6969 }
6970 break;
6971 #endif
6972 #ifdef TARGET_NR_oldlstat
6973 case TARGET_NR_oldlstat:
6974 goto unimplemented;
6975 #endif
6976 #ifdef TARGET_NR_readlink
6977 case TARGET_NR_readlink:
6978 {
6979 void *p2;
6980 p = lock_user_string(arg1);
6981 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
6982 if (!p || !p2) {
6983 ret = -TARGET_EFAULT;
6984 } else if (!arg3) {
6985 /* Short circuit this for the magic exe check. */
6986 ret = -TARGET_EINVAL;
6987 } else if (is_proc_myself((const char *)p, "exe")) {
6988 char real[PATH_MAX], *temp;
6989 temp = realpath(exec_path, real);
6990 /* Return value is # of bytes that we wrote to the buffer. */
6991 if (temp == NULL) {
6992 ret = get_errno(-1);
6993 } else {
6994 /* Don't worry about sign mismatch as earlier mapping
6995 * logic would have thrown a bad address error. */
6996 ret = MIN(strlen(real), arg3);
6997 /* We cannot NUL terminate the string. */
6998 memcpy(p2, real, ret);
6999 }
7000 } else {
7001 ret = get_errno(readlink(path(p), p2, arg3));
7002 }
7003 unlock_user(p2, arg2, ret);
7004 unlock_user(p, arg1, 0);
7005 }
7006 break;
7007 #endif
7008 #if defined(TARGET_NR_readlinkat)
7009 case TARGET_NR_readlinkat:
7010 {
7011 void *p2;
7012 p = lock_user_string(arg2);
7013 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
7014 if (!p || !p2) {
7015 ret = -TARGET_EFAULT;
7016 } else if (is_proc_myself((const char *)p, "exe")) {
7017 char real[PATH_MAX], *temp;
7018 temp = realpath(exec_path, real);
7019 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
7020 snprintf((char *)p2, arg4, "%s", real);
7021 } else {
7022 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
7023 }
7024 unlock_user(p2, arg3, ret);
7025 unlock_user(p, arg2, 0);
7026 }
7027 break;
7028 #endif
7029 #ifdef TARGET_NR_uselib
7030 case TARGET_NR_uselib:
7031 goto unimplemented;
7032 #endif
7033 #ifdef TARGET_NR_swapon
7034 case TARGET_NR_swapon:
7035 if (!(p = lock_user_string(arg1)))
7036 goto efault;
7037 ret = get_errno(swapon(p, arg2));
7038 unlock_user(p, arg1, 0);
7039 break;
7040 #endif
7041 case TARGET_NR_reboot:
7042 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
7043 /* arg4 must be ignored in all other cases */
7044 p = lock_user_string(arg4);
7045 if (!p) {
7046 goto efault;
7047 }
7048 ret = get_errno(reboot(arg1, arg2, arg3, p));
7049 unlock_user(p, arg4, 0);
7050 } else {
7051 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
7052 }
7053 break;
7054 #ifdef TARGET_NR_readdir
7055 case TARGET_NR_readdir:
7056 goto unimplemented;
7057 #endif
7058 #ifdef TARGET_NR_mmap
7059 case TARGET_NR_mmap:
7060 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7061 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
7062 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
7063 || defined(TARGET_S390X)
7064 {
7065 abi_ulong *v;
7066 abi_ulong v1, v2, v3, v4, v5, v6;
7067 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
7068 goto efault;
7069 v1 = tswapal(v[0]);
7070 v2 = tswapal(v[1]);
7071 v3 = tswapal(v[2]);
7072 v4 = tswapal(v[3]);
7073 v5 = tswapal(v[4]);
7074 v6 = tswapal(v[5]);
7075 unlock_user(v, arg1, 0);
7076 ret = get_errno(target_mmap(v1, v2, v3,
7077 target_to_host_bitmask(v4, mmap_flags_tbl),
7078 v5, v6));
7079 }
7080 #else
7081 ret = get_errno(target_mmap(arg1, arg2, arg3,
7082 target_to_host_bitmask(arg4, mmap_flags_tbl),
7083 arg5,
7084 arg6));
7085 #endif
7086 break;
7087 #endif
7088 #ifdef TARGET_NR_mmap2
7089 case TARGET_NR_mmap2:
7090 #ifndef MMAP_SHIFT
7091 #define MMAP_SHIFT 12
7092 #endif
7093 ret = get_errno(target_mmap(arg1, arg2, arg3,
7094 target_to_host_bitmask(arg4, mmap_flags_tbl),
7095 arg5,
7096 arg6 << MMAP_SHIFT));
7097 break;
7098 #endif
7099 case TARGET_NR_munmap:
7100 ret = get_errno(target_munmap(arg1, arg2));
7101 break;
7102 case TARGET_NR_mprotect:
7103 {
7104 TaskState *ts = cpu->opaque;
7105 /* Special hack to detect libc making the stack executable. */
7106 if ((arg3 & PROT_GROWSDOWN)
7107 && arg1 >= ts->info->stack_limit
7108 && arg1 <= ts->info->start_stack) {
7109 arg3 &= ~PROT_GROWSDOWN;
7110 arg2 = arg2 + arg1 - ts->info->stack_limit;
7111 arg1 = ts->info->stack_limit;
7112 }
7113 }
7114 ret = get_errno(target_mprotect(arg1, arg2, arg3));
7115 break;
7116 #ifdef TARGET_NR_mremap
7117 case TARGET_NR_mremap:
7118 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
7119 break;
7120 #endif
7121 /* ??? msync/mlock/munlock are broken for softmmu. */
7122 #ifdef TARGET_NR_msync
7123 case TARGET_NR_msync:
7124 ret = get_errno(msync(g2h(arg1), arg2, arg3));
7125 break;
7126 #endif
7127 #ifdef TARGET_NR_mlock
7128 case TARGET_NR_mlock:
7129 ret = get_errno(mlock(g2h(arg1), arg2));
7130 break;
7131 #endif
7132 #ifdef TARGET_NR_munlock
7133 case TARGET_NR_munlock:
7134 ret = get_errno(munlock(g2h(arg1), arg2));
7135 break;
7136 #endif
7137 #ifdef TARGET_NR_mlockall
7138 case TARGET_NR_mlockall:
7139 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
7140 break;
7141 #endif
7142 #ifdef TARGET_NR_munlockall
7143 case TARGET_NR_munlockall:
7144 ret = get_errno(munlockall());
7145 break;
7146 #endif
7147 case TARGET_NR_truncate:
7148 if (!(p = lock_user_string(arg1)))
7149 goto efault;
7150 ret = get_errno(truncate(p, arg2));
7151 unlock_user(p, arg1, 0);
7152 break;
7153 case TARGET_NR_ftruncate:
7154 ret = get_errno(ftruncate(arg1, arg2));
7155 break;
7156 case TARGET_NR_fchmod:
7157 ret = get_errno(fchmod(arg1, arg2));
7158 break;
7159 #if defined(TARGET_NR_fchmodat)
7160 case TARGET_NR_fchmodat:
7161 if (!(p = lock_user_string(arg2)))
7162 goto efault;
7163 ret = get_errno(fchmodat(arg1, p, arg3, 0));
7164 unlock_user(p, arg2, 0);
7165 break;
7166 #endif
7167 case TARGET_NR_getpriority:
7168 /* Note that negative values are valid for getpriority, so we must
7169 differentiate based on errno settings. */
7170 errno = 0;
7171 ret = getpriority(arg1, arg2);
7172 if (ret == -1 && errno != 0) {
7173 ret = -host_to_target_errno(errno);
7174 break;
7175 }
7176 #ifdef TARGET_ALPHA
7177 /* Return value is the unbiased priority. Signal no error. */
7178 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
7179 #else
7180 /* Return value is a biased priority to avoid negative numbers. */
7181 ret = 20 - ret;
7182 #endif
7183 break;
7184 case TARGET_NR_setpriority:
7185 ret = get_errno(setpriority(arg1, arg2, arg3));
7186 break;
7187 #ifdef TARGET_NR_profil
7188 case TARGET_NR_profil:
7189 goto unimplemented;
7190 #endif
7191 case TARGET_NR_statfs:
7192 if (!(p = lock_user_string(arg1)))
7193 goto efault;
7194 ret = get_errno(statfs(path(p), &stfs));
7195 unlock_user(p, arg1, 0);
7196 convert_statfs:
7197 if (!is_error(ret)) {
7198 struct target_statfs *target_stfs;
7199
7200 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
7201 goto efault;
7202 __put_user(stfs.f_type, &target_stfs->f_type);
7203 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
7204 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
7205 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
7206 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
7207 __put_user(stfs.f_files, &target_stfs->f_files);
7208 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
7209 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
7210 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
7211 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
7212 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
7213 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
7214 unlock_user_struct(target_stfs, arg2, 1);
7215 }
7216 break;
7217 case TARGET_NR_fstatfs:
7218 ret = get_errno(fstatfs(arg1, &stfs));
7219 goto convert_statfs;
7220 #ifdef TARGET_NR_statfs64
7221 case TARGET_NR_statfs64:
7222 if (!(p = lock_user_string(arg1)))
7223 goto efault;
7224 ret = get_errno(statfs(path(p), &stfs));
7225 unlock_user(p, arg1, 0);
7226 convert_statfs64:
7227 if (!is_error(ret)) {
7228 struct target_statfs64 *target_stfs;
7229
7230 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
7231 goto efault;
7232 __put_user(stfs.f_type, &target_stfs->f_type);
7233 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
7234 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
7235 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
7236 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
7237 __put_user(stfs.f_files, &target_stfs->f_files);
7238 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
7239 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
7240 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
7241 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
7242 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
7243 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
7244 unlock_user_struct(target_stfs, arg3, 1);
7245 }
7246 break;
7247 case TARGET_NR_fstatfs64:
7248 ret = get_errno(fstatfs(arg1, &stfs));
7249 goto convert_statfs64;
7250 #endif
7251 #ifdef TARGET_NR_ioperm
7252 case TARGET_NR_ioperm:
7253 goto unimplemented;
7254 #endif
7255 #ifdef TARGET_NR_socketcall
7256 case TARGET_NR_socketcall:
7257 ret = do_socketcall(arg1, arg2);
7258 break;
7259 #endif
7260 #ifdef TARGET_NR_accept
7261 case TARGET_NR_accept:
7262 ret = do_accept4(arg1, arg2, arg3, 0);
7263 break;
7264 #endif
7265 #ifdef TARGET_NR_accept4
7266 case TARGET_NR_accept4:
7267 #ifdef CONFIG_ACCEPT4
7268 ret = do_accept4(arg1, arg2, arg3, arg4);
7269 #else
7270 goto unimplemented;
7271 #endif
7272 break;
7273 #endif
7274 #ifdef TARGET_NR_bind
7275 case TARGET_NR_bind:
7276 ret = do_bind(arg1, arg2, arg3);
7277 break;
7278 #endif
7279 #ifdef TARGET_NR_connect
7280 case TARGET_NR_connect:
7281 ret = do_connect(arg1, arg2, arg3);
7282 break;
7283 #endif
7284 #ifdef TARGET_NR_getpeername
7285 case TARGET_NR_getpeername:
7286 ret = do_getpeername(arg1, arg2, arg3);
7287 break;
7288 #endif
7289 #ifdef TARGET_NR_getsockname
7290 case TARGET_NR_getsockname:
7291 ret = do_getsockname(arg1, arg2, arg3);
7292 break;
7293 #endif
7294 #ifdef TARGET_NR_getsockopt
7295 case TARGET_NR_getsockopt:
7296 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5);
7297 break;
7298 #endif
7299 #ifdef TARGET_NR_listen
7300 case TARGET_NR_listen:
7301 ret = get_errno(listen(arg1, arg2));
7302 break;
7303 #endif
7304 #ifdef TARGET_NR_recv
7305 case TARGET_NR_recv:
7306 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
7307 break;
7308 #endif
7309 #ifdef TARGET_NR_recvfrom
7310 case TARGET_NR_recvfrom:
7311 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
7312 break;
7313 #endif
7314 #ifdef TARGET_NR_recvmsg
7315 case TARGET_NR_recvmsg:
7316 ret = do_sendrecvmsg(arg1, arg2, arg3, 0);
7317 break;
7318 #endif
7319 #ifdef TARGET_NR_send
7320 case TARGET_NR_send:
7321 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0);
7322 break;
7323 #endif
7324 #ifdef TARGET_NR_sendmsg
7325 case TARGET_NR_sendmsg:
7326 ret = do_sendrecvmsg(arg1, arg2, arg3, 1);
7327 break;
7328 #endif
7329 #ifdef TARGET_NR_sendmmsg
7330 case TARGET_NR_sendmmsg:
7331 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
7332 break;
7333 case TARGET_NR_recvmmsg:
7334 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
7335 break;
7336 #endif
7337 #ifdef TARGET_NR_sendto
7338 case TARGET_NR_sendto:
7339 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
7340 break;
7341 #endif
7342 #ifdef TARGET_NR_shutdown
7343 case TARGET_NR_shutdown:
7344 ret = get_errno(shutdown(arg1, arg2));
7345 break;
7346 #endif
7347 #ifdef TARGET_NR_socket
7348 case TARGET_NR_socket:
7349 ret = do_socket(arg1, arg2, arg3);
7350 break;
7351 #endif
7352 #ifdef TARGET_NR_socketpair
7353 case TARGET_NR_socketpair:
7354 ret = do_socketpair(arg1, arg2, arg3, arg4);
7355 break;
7356 #endif
7357 #ifdef TARGET_NR_setsockopt
7358 case TARGET_NR_setsockopt:
7359 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
7360 break;
7361 #endif
7362
7363 case TARGET_NR_syslog:
7364 if (!(p = lock_user_string(arg2)))
7365 goto efault;
7366 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
7367 unlock_user(p, arg2, 0);
7368 break;
7369
7370 case TARGET_NR_setitimer:
7371 {
7372 struct itimerval value, ovalue, *pvalue;
7373
7374 if (arg2) {
7375 pvalue = &value;
7376 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
7377 || copy_from_user_timeval(&pvalue->it_value,
7378 arg2 + sizeof(struct target_timeval)))
7379 goto efault;
7380 } else {
7381 pvalue = NULL;
7382 }
7383 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
7384 if (!is_error(ret) && arg3) {
7385 if (copy_to_user_timeval(arg3,
7386 &ovalue.it_interval)
7387 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
7388 &ovalue.it_value))
7389 goto efault;
7390 }
7391 }
7392 break;
7393 case TARGET_NR_getitimer:
7394 {
7395 struct itimerval value;
7396
7397 ret = get_errno(getitimer(arg1, &value));
7398 if (!is_error(ret) && arg2) {
7399 if (copy_to_user_timeval(arg2,
7400 &value.it_interval)
7401 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
7402 &value.it_value))
7403 goto efault;
7404 }
7405 }
7406 break;
7407 #ifdef TARGET_NR_stat
7408 case TARGET_NR_stat:
7409 if (!(p = lock_user_string(arg1)))
7410 goto efault;
7411 ret = get_errno(stat(path(p), &st));
7412 unlock_user(p, arg1, 0);
7413 goto do_stat;
7414 #endif
7415 #ifdef TARGET_NR_lstat
7416 case TARGET_NR_lstat:
7417 if (!(p = lock_user_string(arg1)))
7418 goto efault;
7419 ret = get_errno(lstat(path(p), &st));
7420 unlock_user(p, arg1, 0);
7421 goto do_stat;
7422 #endif
7423 case TARGET_NR_fstat:
7424 {
7425 ret = get_errno(fstat(arg1, &st));
7426 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
7427 do_stat:
7428 #endif
7429 if (!is_error(ret)) {
7430 struct target_stat *target_st;
7431
7432 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
7433 goto efault;
7434 memset(target_st, 0, sizeof(*target_st));
7435 __put_user(st.st_dev, &target_st->st_dev);
7436 __put_user(st.st_ino, &target_st->st_ino);
7437 __put_user(st.st_mode, &target_st->st_mode);
7438 __put_user(st.st_uid, &target_st->st_uid);
7439 __put_user(st.st_gid, &target_st->st_gid);
7440 __put_user(st.st_nlink, &target_st->st_nlink);
7441 __put_user(st.st_rdev, &target_st->st_rdev);
7442 __put_user(st.st_size, &target_st->st_size);
7443 __put_user(st.st_blksize, &target_st->st_blksize);
7444 __put_user(st.st_blocks, &target_st->st_blocks);
7445 __put_user(st.st_atime, &target_st->target_st_atime);
7446 __put_user(st.st_mtime, &target_st->target_st_mtime);
7447 __put_user(st.st_ctime, &target_st->target_st_ctime);
7448 unlock_user_struct(target_st, arg2, 1);
7449 }
7450 }
7451 break;
7452 #ifdef TARGET_NR_olduname
7453 case TARGET_NR_olduname:
7454 goto unimplemented;
7455 #endif
7456 #ifdef TARGET_NR_iopl
7457 case TARGET_NR_iopl:
7458 goto unimplemented;
7459 #endif
7460 case TARGET_NR_vhangup:
7461 ret = get_errno(vhangup());
7462 break;
7463 #ifdef TARGET_NR_idle
7464 case TARGET_NR_idle:
7465 goto unimplemented;
7466 #endif
7467 #ifdef TARGET_NR_syscall
7468 case TARGET_NR_syscall:
7469 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
7470 arg6, arg7, arg8, 0);
7471 break;
7472 #endif
7473 case TARGET_NR_wait4:
7474 {
7475 int status;
7476 abi_long status_ptr = arg2;
7477 struct rusage rusage, *rusage_ptr;
7478 abi_ulong target_rusage = arg4;
7479 abi_long rusage_err;
7480 if (target_rusage)
7481 rusage_ptr = &rusage;
7482 else
7483 rusage_ptr = NULL;
7484 ret = get_errno(wait4(arg1, &status, arg3, rusage_ptr));
7485 if (!is_error(ret)) {
7486 if (status_ptr && ret) {
7487 status = host_to_target_waitstatus(status);
7488 if (put_user_s32(status, status_ptr))
7489 goto efault;
7490 }
7491 if (target_rusage) {
7492 rusage_err = host_to_target_rusage(target_rusage, &rusage);
7493 if (rusage_err) {
7494 ret = rusage_err;
7495 }
7496 }
7497 }
7498 }
7499 break;
7500 #ifdef TARGET_NR_swapoff
7501 case TARGET_NR_swapoff:
7502 if (!(p = lock_user_string(arg1)))
7503 goto efault;
7504 ret = get_errno(swapoff(p));
7505 unlock_user(p, arg1, 0);
7506 break;
7507 #endif
7508 case TARGET_NR_sysinfo:
7509 {
7510 struct target_sysinfo *target_value;
7511 struct sysinfo value;
7512 ret = get_errno(sysinfo(&value));
7513 if (!is_error(ret) && arg1)
7514 {
7515 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
7516 goto efault;
7517 __put_user(value.uptime, &target_value->uptime);
7518 __put_user(value.loads[0], &target_value->loads[0]);
7519 __put_user(value.loads[1], &target_value->loads[1]);
7520 __put_user(value.loads[2], &target_value->loads[2]);
7521 __put_user(value.totalram, &target_value->totalram);
7522 __put_user(value.freeram, &target_value->freeram);
7523 __put_user(value.sharedram, &target_value->sharedram);
7524 __put_user(value.bufferram, &target_value->bufferram);
7525 __put_user(value.totalswap, &target_value->totalswap);
7526 __put_user(value.freeswap, &target_value->freeswap);
7527 __put_user(value.procs, &target_value->procs);
7528 __put_user(value.totalhigh, &target_value->totalhigh);
7529 __put_user(value.freehigh, &target_value->freehigh);
7530 __put_user(value.mem_unit, &target_value->mem_unit);
7531 unlock_user_struct(target_value, arg1, 1);
7532 }
7533 }
7534 break;
7535 #ifdef TARGET_NR_ipc
7536 case TARGET_NR_ipc:
7537 ret = do_ipc(arg1, arg2, arg3, arg4, arg5, arg6);
7538 break;
7539 #endif
7540 #ifdef TARGET_NR_semget
7541 case TARGET_NR_semget:
7542 ret = get_errno(semget(arg1, arg2, arg3));
7543 break;
7544 #endif
7545 #ifdef TARGET_NR_semop
7546 case TARGET_NR_semop:
7547 ret = do_semop(arg1, arg2, arg3);
7548 break;
7549 #endif
7550 #ifdef TARGET_NR_semctl
7551 case TARGET_NR_semctl:
7552 ret = do_semctl(arg1, arg2, arg3, (union target_semun)(abi_ulong)arg4);
7553 break;
7554 #endif
7555 #ifdef TARGET_NR_msgctl
7556 case TARGET_NR_msgctl:
7557 ret = do_msgctl(arg1, arg2, arg3);
7558 break;
7559 #endif
7560 #ifdef TARGET_NR_msgget
7561 case TARGET_NR_msgget:
7562 ret = get_errno(msgget(arg1, arg2));
7563 break;
7564 #endif
7565 #ifdef TARGET_NR_msgrcv
7566 case TARGET_NR_msgrcv:
7567 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5);
7568 break;
7569 #endif
7570 #ifdef TARGET_NR_msgsnd
7571 case TARGET_NR_msgsnd:
7572 ret = do_msgsnd(arg1, arg2, arg3, arg4);
7573 break;
7574 #endif
7575 #ifdef TARGET_NR_shmget
7576 case TARGET_NR_shmget:
7577 ret = get_errno(shmget(arg1, arg2, arg3));
7578 break;
7579 #endif
7580 #ifdef TARGET_NR_shmctl
7581 case TARGET_NR_shmctl:
7582 ret = do_shmctl(arg1, arg2, arg3);
7583 break;
7584 #endif
7585 #ifdef TARGET_NR_shmat
7586 case TARGET_NR_shmat:
7587 ret = do_shmat(arg1, arg2, arg3);
7588 break;
7589 #endif
7590 #ifdef TARGET_NR_shmdt
7591 case TARGET_NR_shmdt:
7592 ret = do_shmdt(arg1);
7593 break;
7594 #endif
7595 case TARGET_NR_fsync:
7596 ret = get_errno(fsync(arg1));
7597 break;
7598 case TARGET_NR_clone:
7599 /* Linux manages to have three different orderings for its
7600 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
7601 * match the kernel's CONFIG_CLONE_* settings.
7602 * Microblaze is further special in that it uses a sixth
7603 * implicit argument to clone for the TLS pointer.
7604 */
7605 #if defined(TARGET_MICROBLAZE)
7606 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
7607 #elif defined(TARGET_CLONE_BACKWARDS)
7608 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
7609 #elif defined(TARGET_CLONE_BACKWARDS2)
7610 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
7611 #else
7612 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
7613 #endif
7614 break;
7615 #ifdef __NR_exit_group
7616 /* new thread calls */
7617 case TARGET_NR_exit_group:
7618 #ifdef TARGET_GPROF
7619 _mcleanup();
7620 #endif
7621 gdb_exit(cpu_env, arg1);
7622 ret = get_errno(exit_group(arg1));
7623 break;
7624 #endif
7625 case TARGET_NR_setdomainname:
7626 if (!(p = lock_user_string(arg1)))
7627 goto efault;
7628 ret = get_errno(setdomainname(p, arg2));
7629 unlock_user(p, arg1, 0);
7630 break;
7631 case TARGET_NR_uname:
7632 /* no need to transcode because we use the linux syscall */
7633 {
7634 struct new_utsname * buf;
7635
7636 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
7637 goto efault;
7638 ret = get_errno(sys_uname(buf));
7639 if (!is_error(ret)) {
7640 /* Overrite the native machine name with whatever is being
7641 emulated. */
7642 strcpy (buf->machine, cpu_to_uname_machine(cpu_env));
7643 /* Allow the user to override the reported release. */
7644 if (qemu_uname_release && *qemu_uname_release)
7645 strcpy (buf->release, qemu_uname_release);
7646 }
7647 unlock_user_struct(buf, arg1, 1);
7648 }
7649 break;
7650 #ifdef TARGET_I386
7651 case TARGET_NR_modify_ldt:
7652 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3);
7653 break;
7654 #if !defined(TARGET_X86_64)
7655 case TARGET_NR_vm86old:
7656 goto unimplemented;
7657 case TARGET_NR_vm86:
7658 ret = do_vm86(cpu_env, arg1, arg2);
7659 break;
7660 #endif
7661 #endif
7662 case TARGET_NR_adjtimex:
7663 goto unimplemented;
7664 #ifdef TARGET_NR_create_module
7665 case TARGET_NR_create_module:
7666 #endif
7667 case TARGET_NR_init_module:
7668 case TARGET_NR_delete_module:
7669 #ifdef TARGET_NR_get_kernel_syms
7670 case TARGET_NR_get_kernel_syms:
7671 #endif
7672 goto unimplemented;
7673 case TARGET_NR_quotactl:
7674 goto unimplemented;
7675 case TARGET_NR_getpgid:
7676 ret = get_errno(getpgid(arg1));
7677 break;
7678 case TARGET_NR_fchdir:
7679 ret = get_errno(fchdir(arg1));
7680 break;
7681 #ifdef TARGET_NR_bdflush /* not on x86_64 */
7682 case TARGET_NR_bdflush:
7683 goto unimplemented;
7684 #endif
7685 #ifdef TARGET_NR_sysfs
7686 case TARGET_NR_sysfs:
7687 goto unimplemented;
7688 #endif
7689 case TARGET_NR_personality:
7690 ret = get_errno(personality(arg1));
7691 break;
7692 #ifdef TARGET_NR_afs_syscall
7693 case TARGET_NR_afs_syscall:
7694 goto unimplemented;
7695 #endif
7696 #ifdef TARGET_NR__llseek /* Not on alpha */
7697 case TARGET_NR__llseek:
7698 {
7699 int64_t res;
7700 #if !defined(__NR_llseek)
7701 res = lseek(arg1, ((uint64_t)arg2 << 32) | arg3, arg5);
7702 if (res == -1) {
7703 ret = get_errno(res);
7704 } else {
7705 ret = 0;
7706 }
7707 #else
7708 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
7709 #endif
7710 if ((ret == 0) && put_user_s64(res, arg4)) {
7711 goto efault;
7712 }
7713 }
7714 break;
7715 #endif
7716 #ifdef TARGET_NR_getdents
7717 case TARGET_NR_getdents:
7718 #ifdef __NR_getdents
7719 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
7720 {
7721 struct target_dirent *target_dirp;
7722 struct linux_dirent *dirp;
7723 abi_long count = arg3;
7724
7725 dirp = malloc(count);
7726 if (!dirp) {
7727 ret = -TARGET_ENOMEM;
7728 goto fail;
7729 }
7730
7731 ret = get_errno(sys_getdents(arg1, dirp, count));
7732 if (!is_error(ret)) {
7733 struct linux_dirent *de;
7734 struct target_dirent *tde;
7735 int len = ret;
7736 int reclen, treclen;
7737 int count1, tnamelen;
7738
7739 count1 = 0;
7740 de = dirp;
7741 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
7742 goto efault;
7743 tde = target_dirp;
7744 while (len > 0) {
7745 reclen = de->d_reclen;
7746 tnamelen = reclen - offsetof(struct linux_dirent, d_name);
7747 assert(tnamelen >= 0);
7748 treclen = tnamelen + offsetof(struct target_dirent, d_name);
7749 assert(count1 + treclen <= count);
7750 tde->d_reclen = tswap16(treclen);
7751 tde->d_ino = tswapal(de->d_ino);
7752 tde->d_off = tswapal(de->d_off);
7753 memcpy(tde->d_name, de->d_name, tnamelen);
7754 de = (struct linux_dirent *)((char *)de + reclen);
7755 len -= reclen;
7756 tde = (struct target_dirent *)((char *)tde + treclen);
7757 count1 += treclen;
7758 }
7759 ret = count1;
7760 unlock_user(target_dirp, arg2, ret);
7761 }
7762 free(dirp);
7763 }
7764 #else
7765 {
7766 struct linux_dirent *dirp;
7767 abi_long count = arg3;
7768
7769 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
7770 goto efault;
7771 ret = get_errno(sys_getdents(arg1, dirp, count));
7772 if (!is_error(ret)) {
7773 struct linux_dirent *de;
7774 int len = ret;
7775 int reclen;
7776 de = dirp;
7777 while (len > 0) {
7778 reclen = de->d_reclen;
7779 if (reclen > len)
7780 break;
7781 de->d_reclen = tswap16(reclen);
7782 tswapls(&de->d_ino);
7783 tswapls(&de->d_off);
7784 de = (struct linux_dirent *)((char *)de + reclen);
7785 len -= reclen;
7786 }
7787 }
7788 unlock_user(dirp, arg2, ret);
7789 }
7790 #endif
7791 #else
7792 /* Implement getdents in terms of getdents64 */
7793 {
7794 struct linux_dirent64 *dirp;
7795 abi_long count = arg3;
7796
7797 dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
7798 if (!dirp) {
7799 goto efault;
7800 }
7801 ret = get_errno(sys_getdents64(arg1, dirp, count));
7802 if (!is_error(ret)) {
7803 /* Convert the dirent64 structs to target dirent. We do this
7804 * in-place, since we can guarantee that a target_dirent is no
7805 * larger than a dirent64; however this means we have to be
7806 * careful to read everything before writing in the new format.
7807 */
7808 struct linux_dirent64 *de;
7809 struct target_dirent *tde;
7810 int len = ret;
7811 int tlen = 0;
7812
7813 de = dirp;
7814 tde = (struct target_dirent *)dirp;
7815 while (len > 0) {
7816 int namelen, treclen;
7817 int reclen = de->d_reclen;
7818 uint64_t ino = de->d_ino;
7819 int64_t off = de->d_off;
7820 uint8_t type = de->d_type;
7821
7822 namelen = strlen(de->d_name);
7823 treclen = offsetof(struct target_dirent, d_name)
7824 + namelen + 2;
7825 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
7826
7827 memmove(tde->d_name, de->d_name, namelen + 1);
7828 tde->d_ino = tswapal(ino);
7829 tde->d_off = tswapal(off);
7830 tde->d_reclen = tswap16(treclen);
7831 /* The target_dirent type is in what was formerly a padding
7832 * byte at the end of the structure:
7833 */
7834 *(((char *)tde) + treclen - 1) = type;
7835
7836 de = (struct linux_dirent64 *)((char *)de + reclen);
7837 tde = (struct target_dirent *)((char *)tde + treclen);
7838 len -= reclen;
7839 tlen += treclen;
7840 }
7841 ret = tlen;
7842 }
7843 unlock_user(dirp, arg2, ret);
7844 }
7845 #endif
7846 break;
7847 #endif /* TARGET_NR_getdents */
7848 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
7849 case TARGET_NR_getdents64:
7850 {
7851 struct linux_dirent64 *dirp;
7852 abi_long count = arg3;
7853 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
7854 goto efault;
7855 ret = get_errno(sys_getdents64(arg1, dirp, count));
7856 if (!is_error(ret)) {
7857 struct linux_dirent64 *de;
7858 int len = ret;
7859 int reclen;
7860 de = dirp;
7861 while (len > 0) {
7862 reclen = de->d_reclen;
7863 if (reclen > len)
7864 break;
7865 de->d_reclen = tswap16(reclen);
7866 tswap64s((uint64_t *)&de->d_ino);
7867 tswap64s((uint64_t *)&de->d_off);
7868 de = (struct linux_dirent64 *)((char *)de + reclen);
7869 len -= reclen;
7870 }
7871 }
7872 unlock_user(dirp, arg2, ret);
7873 }
7874 break;
7875 #endif /* TARGET_NR_getdents64 */
7876 #if defined(TARGET_NR__newselect)
7877 case TARGET_NR__newselect:
7878 ret = do_select(arg1, arg2, arg3, arg4, arg5);
7879 break;
7880 #endif
7881 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
7882 # ifdef TARGET_NR_poll
7883 case TARGET_NR_poll:
7884 # endif
7885 # ifdef TARGET_NR_ppoll
7886 case TARGET_NR_ppoll:
7887 # endif
7888 {
7889 struct target_pollfd *target_pfd;
7890 unsigned int nfds = arg2;
7891 int timeout = arg3;
7892 struct pollfd *pfd;
7893 unsigned int i;
7894
7895 target_pfd = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_pollfd) * nfds, 1);
7896 if (!target_pfd)
7897 goto efault;
7898
7899 pfd = alloca(sizeof(struct pollfd) * nfds);
7900 for(i = 0; i < nfds; i++) {
7901 pfd[i].fd = tswap32(target_pfd[i].fd);
7902 pfd[i].events = tswap16(target_pfd[i].events);
7903 }
7904
7905 # ifdef TARGET_NR_ppoll
7906 if (num == TARGET_NR_ppoll) {
7907 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
7908 target_sigset_t *target_set;
7909 sigset_t _set, *set = &_set;
7910
7911 if (arg3) {
7912 if (target_to_host_timespec(timeout_ts, arg3)) {
7913 unlock_user(target_pfd, arg1, 0);
7914 goto efault;
7915 }
7916 } else {
7917 timeout_ts = NULL;
7918 }
7919
7920 if (arg4) {
7921 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
7922 if (!target_set) {
7923 unlock_user(target_pfd, arg1, 0);
7924 goto efault;
7925 }
7926 target_to_host_sigset(set, target_set);
7927 } else {
7928 set = NULL;
7929 }
7930
7931 ret = get_errno(sys_ppoll(pfd, nfds, timeout_ts, set, _NSIG/8));
7932
7933 if (!is_error(ret) && arg3) {
7934 host_to_target_timespec(arg3, timeout_ts);
7935 }
7936 if (arg4) {
7937 unlock_user(target_set, arg4, 0);
7938 }
7939 } else
7940 # endif
7941 ret = get_errno(poll(pfd, nfds, timeout));
7942
7943 if (!is_error(ret)) {
7944 for(i = 0; i < nfds; i++) {
7945 target_pfd[i].revents = tswap16(pfd[i].revents);
7946 }
7947 }
7948 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
7949 }
7950 break;
7951 #endif
7952 case TARGET_NR_flock:
7953 /* NOTE: the flock constant seems to be the same for every
7954 Linux platform */
7955 ret = get_errno(flock(arg1, arg2));
7956 break;
7957 case TARGET_NR_readv:
7958 {
7959 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
7960 if (vec != NULL) {
7961 ret = get_errno(readv(arg1, vec, arg3));
7962 unlock_iovec(vec, arg2, arg3, 1);
7963 } else {
7964 ret = -host_to_target_errno(errno);
7965 }
7966 }
7967 break;
7968 case TARGET_NR_writev:
7969 {
7970 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
7971 if (vec != NULL) {
7972 ret = get_errno(writev(arg1, vec, arg3));
7973 unlock_iovec(vec, arg2, arg3, 0);
7974 } else {
7975 ret = -host_to_target_errno(errno);
7976 }
7977 }
7978 break;
7979 case TARGET_NR_getsid:
7980 ret = get_errno(getsid(arg1));
7981 break;
7982 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
7983 case TARGET_NR_fdatasync:
7984 ret = get_errno(fdatasync(arg1));
7985 break;
7986 #endif
7987 #ifdef TARGET_NR__sysctl
7988 case TARGET_NR__sysctl:
7989 /* We don't implement this, but ENOTDIR is always a safe
7990 return value. */
7991 ret = -TARGET_ENOTDIR;
7992 break;
7993 #endif
7994 case TARGET_NR_sched_getaffinity:
7995 {
7996 unsigned int mask_size;
7997 unsigned long *mask;
7998
7999 /*
8000 * sched_getaffinity needs multiples of ulong, so need to take
8001 * care of mismatches between target ulong and host ulong sizes.
8002 */
8003 if (arg2 & (sizeof(abi_ulong) - 1)) {
8004 ret = -TARGET_EINVAL;
8005 break;
8006 }
8007 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
8008
8009 mask = alloca(mask_size);
8010 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
8011
8012 if (!is_error(ret)) {
8013 if (ret > arg2) {
8014 /* More data returned than the caller's buffer will fit.
8015 * This only happens if sizeof(abi_long) < sizeof(long)
8016 * and the caller passed us a buffer holding an odd number
8017 * of abi_longs. If the host kernel is actually using the
8018 * extra 4 bytes then fail EINVAL; otherwise we can just
8019 * ignore them and only copy the interesting part.
8020 */
8021 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
8022 if (numcpus > arg2 * 8) {
8023 ret = -TARGET_EINVAL;
8024 break;
8025 }
8026 ret = arg2;
8027 }
8028
8029 if (copy_to_user(arg3, mask, ret)) {
8030 goto efault;
8031 }
8032 }
8033 }
8034 break;
8035 case TARGET_NR_sched_setaffinity:
8036 {
8037 unsigned int mask_size;
8038 unsigned long *mask;
8039
8040 /*
8041 * sched_setaffinity needs multiples of ulong, so need to take
8042 * care of mismatches between target ulong and host ulong sizes.
8043 */
8044 if (arg2 & (sizeof(abi_ulong) - 1)) {
8045 ret = -TARGET_EINVAL;
8046 break;
8047 }
8048 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
8049
8050 mask = alloca(mask_size);
8051 if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) {
8052 goto efault;
8053 }
8054 memcpy(mask, p, arg2);
8055 unlock_user_struct(p, arg2, 0);
8056
8057 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
8058 }
8059 break;
8060 case TARGET_NR_sched_setparam:
8061 {
8062 struct sched_param *target_schp;
8063 struct sched_param schp;
8064
8065 if (arg2 == 0) {
8066 return -TARGET_EINVAL;
8067 }
8068 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
8069 goto efault;
8070 schp.sched_priority = tswap32(target_schp->sched_priority);
8071 unlock_user_struct(target_schp, arg2, 0);
8072 ret = get_errno(sched_setparam(arg1, &schp));
8073 }
8074 break;
8075 case TARGET_NR_sched_getparam:
8076 {
8077 struct sched_param *target_schp;
8078 struct sched_param schp;
8079
8080 if (arg2 == 0) {
8081 return -TARGET_EINVAL;
8082 }
8083 ret = get_errno(sched_getparam(arg1, &schp));
8084 if (!is_error(ret)) {
8085 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
8086 goto efault;
8087 target_schp->sched_priority = tswap32(schp.sched_priority);
8088 unlock_user_struct(target_schp, arg2, 1);
8089 }
8090 }
8091 break;
8092 case TARGET_NR_sched_setscheduler:
8093 {
8094 struct sched_param *target_schp;
8095 struct sched_param schp;
8096 if (arg3 == 0) {
8097 return -TARGET_EINVAL;
8098 }
8099 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
8100 goto efault;
8101 schp.sched_priority = tswap32(target_schp->sched_priority);
8102 unlock_user_struct(target_schp, arg3, 0);
8103 ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
8104 }
8105 break;
8106 case TARGET_NR_sched_getscheduler:
8107 ret = get_errno(sched_getscheduler(arg1));
8108 break;
8109 case TARGET_NR_sched_yield:
8110 ret = get_errno(sched_yield());
8111 break;
8112 case TARGET_NR_sched_get_priority_max:
8113 ret = get_errno(sched_get_priority_max(arg1));
8114 break;
8115 case TARGET_NR_sched_get_priority_min:
8116 ret = get_errno(sched_get_priority_min(arg1));
8117 break;
8118 case TARGET_NR_sched_rr_get_interval:
8119 {
8120 struct timespec ts;
8121 ret = get_errno(sched_rr_get_interval(arg1, &ts));
8122 if (!is_error(ret)) {
8123 ret = host_to_target_timespec(arg2, &ts);
8124 }
8125 }
8126 break;
8127 case TARGET_NR_nanosleep:
8128 {
8129 struct timespec req, rem;
8130 target_to_host_timespec(&req, arg1);
8131 ret = get_errno(nanosleep(&req, &rem));
8132 if (is_error(ret) && arg2) {
8133 host_to_target_timespec(arg2, &rem);
8134 }
8135 }
8136 break;
8137 #ifdef TARGET_NR_query_module
8138 case TARGET_NR_query_module:
8139 goto unimplemented;
8140 #endif
8141 #ifdef TARGET_NR_nfsservctl
8142 case TARGET_NR_nfsservctl:
8143 goto unimplemented;
8144 #endif
8145 case TARGET_NR_prctl:
8146 switch (arg1) {
8147 case PR_GET_PDEATHSIG:
8148 {
8149 int deathsig;
8150 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
8151 if (!is_error(ret) && arg2
8152 && put_user_ual(deathsig, arg2)) {
8153 goto efault;
8154 }
8155 break;
8156 }
8157 #ifdef PR_GET_NAME
8158 case PR_GET_NAME:
8159 {
8160 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
8161 if (!name) {
8162 goto efault;
8163 }
8164 ret = get_errno(prctl(arg1, (unsigned long)name,
8165 arg3, arg4, arg5));
8166 unlock_user(name, arg2, 16);
8167 break;
8168 }
8169 case PR_SET_NAME:
8170 {
8171 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
8172 if (!name) {
8173 goto efault;
8174 }
8175 ret = get_errno(prctl(arg1, (unsigned long)name,
8176 arg3, arg4, arg5));
8177 unlock_user(name, arg2, 0);
8178 break;
8179 }
8180 #endif
8181 default:
8182 /* Most prctl options have no pointer arguments */
8183 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
8184 break;
8185 }
8186 break;
8187 #ifdef TARGET_NR_arch_prctl
8188 case TARGET_NR_arch_prctl:
8189 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
8190 ret = do_arch_prctl(cpu_env, arg1, arg2);
8191 break;
8192 #else
8193 goto unimplemented;
8194 #endif
8195 #endif
8196 #ifdef TARGET_NR_pread64
8197 case TARGET_NR_pread64:
8198 if (regpairs_aligned(cpu_env)) {
8199 arg4 = arg5;
8200 arg5 = arg6;
8201 }
8202 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
8203 goto efault;
8204 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
8205 unlock_user(p, arg2, ret);
8206 break;
8207 case TARGET_NR_pwrite64:
8208 if (regpairs_aligned(cpu_env)) {
8209 arg4 = arg5;
8210 arg5 = arg6;
8211 }
8212 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
8213 goto efault;
8214 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
8215 unlock_user(p, arg2, 0);
8216 break;
8217 #endif
8218 case TARGET_NR_getcwd:
8219 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
8220 goto efault;
8221 ret = get_errno(sys_getcwd1(p, arg2));
8222 unlock_user(p, arg1, ret);
8223 break;
8224 case TARGET_NR_capget:
8225 case TARGET_NR_capset:
8226 {
8227 struct target_user_cap_header *target_header;
8228 struct target_user_cap_data *target_data = NULL;
8229 struct __user_cap_header_struct header;
8230 struct __user_cap_data_struct data[2];
8231 struct __user_cap_data_struct *dataptr = NULL;
8232 int i, target_datalen;
8233 int data_items = 1;
8234
8235 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
8236 goto efault;
8237 }
8238 header.version = tswap32(target_header->version);
8239 header.pid = tswap32(target_header->pid);
8240
8241 if (header.version != _LINUX_CAPABILITY_VERSION) {
8242 /* Version 2 and up takes pointer to two user_data structs */
8243 data_items = 2;
8244 }
8245
8246 target_datalen = sizeof(*target_data) * data_items;
8247
8248 if (arg2) {
8249 if (num == TARGET_NR_capget) {
8250 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
8251 } else {
8252 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
8253 }
8254 if (!target_data) {
8255 unlock_user_struct(target_header, arg1, 0);
8256 goto efault;
8257 }
8258
8259 if (num == TARGET_NR_capset) {
8260 for (i = 0; i < data_items; i++) {
8261 data[i].effective = tswap32(target_data[i].effective);
8262 data[i].permitted = tswap32(target_data[i].permitted);
8263 data[i].inheritable = tswap32(target_data[i].inheritable);
8264 }
8265 }
8266
8267 dataptr = data;
8268 }
8269
8270 if (num == TARGET_NR_capget) {
8271 ret = get_errno(capget(&header, dataptr));
8272 } else {
8273 ret = get_errno(capset(&header, dataptr));
8274 }
8275
8276 /* The kernel always updates version for both capget and capset */
8277 target_header->version = tswap32(header.version);
8278 unlock_user_struct(target_header, arg1, 1);
8279
8280 if (arg2) {
8281 if (num == TARGET_NR_capget) {
8282 for (i = 0; i < data_items; i++) {
8283 target_data[i].effective = tswap32(data[i].effective);
8284 target_data[i].permitted = tswap32(data[i].permitted);
8285 target_data[i].inheritable = tswap32(data[i].inheritable);
8286 }
8287 unlock_user(target_data, arg2, target_datalen);
8288 } else {
8289 unlock_user(target_data, arg2, 0);
8290 }
8291 }
8292 break;
8293 }
8294 case TARGET_NR_sigaltstack:
8295 #if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_MIPS) || \
8296 defined(TARGET_SPARC) || defined(TARGET_PPC) || defined(TARGET_ALPHA) || \
8297 defined(TARGET_M68K) || defined(TARGET_S390X) || defined(TARGET_OPENRISC)
8298 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env));
8299 break;
8300 #else
8301 goto unimplemented;
8302 #endif
8303
8304 #ifdef CONFIG_SENDFILE
8305 case TARGET_NR_sendfile:
8306 {
8307 off_t *offp = NULL;
8308 off_t off;
8309 if (arg3) {
8310 ret = get_user_sal(off, arg3);
8311 if (is_error(ret)) {
8312 break;
8313 }
8314 offp = &off;
8315 }
8316 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
8317 if (!is_error(ret) && arg3) {
8318 abi_long ret2 = put_user_sal(off, arg3);
8319 if (is_error(ret2)) {
8320 ret = ret2;
8321 }
8322 }
8323 break;
8324 }
8325 #ifdef TARGET_NR_sendfile64
8326 case TARGET_NR_sendfile64:
8327 {
8328 off_t *offp = NULL;
8329 off_t off;
8330 if (arg3) {
8331 ret = get_user_s64(off, arg3);
8332 if (is_error(ret)) {
8333 break;
8334 }
8335 offp = &off;
8336 }
8337 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
8338 if (!is_error(ret) && arg3) {
8339 abi_long ret2 = put_user_s64(off, arg3);
8340 if (is_error(ret2)) {
8341 ret = ret2;
8342 }
8343 }
8344 break;
8345 }
8346 #endif
8347 #else
8348 case TARGET_NR_sendfile:
8349 #ifdef TARGET_NR_sendfile64
8350 case TARGET_NR_sendfile64:
8351 #endif
8352 goto unimplemented;
8353 #endif
8354
8355 #ifdef TARGET_NR_getpmsg
8356 case TARGET_NR_getpmsg:
8357 goto unimplemented;
8358 #endif
8359 #ifdef TARGET_NR_putpmsg
8360 case TARGET_NR_putpmsg:
8361 goto unimplemented;
8362 #endif
8363 #ifdef TARGET_NR_vfork
8364 case TARGET_NR_vfork:
8365 ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD,
8366 0, 0, 0, 0));
8367 break;
8368 #endif
8369 #ifdef TARGET_NR_ugetrlimit
8370 case TARGET_NR_ugetrlimit:
8371 {
8372 struct rlimit rlim;
8373 int resource = target_to_host_resource(arg1);
8374 ret = get_errno(getrlimit(resource, &rlim));
8375 if (!is_error(ret)) {
8376 struct target_rlimit *target_rlim;
8377 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
8378 goto efault;
8379 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
8380 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
8381 unlock_user_struct(target_rlim, arg2, 1);
8382 }
8383 break;
8384 }
8385 #endif
8386 #ifdef TARGET_NR_truncate64
8387 case TARGET_NR_truncate64:
8388 if (!(p = lock_user_string(arg1)))
8389 goto efault;
8390 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
8391 unlock_user(p, arg1, 0);
8392 break;
8393 #endif
8394 #ifdef TARGET_NR_ftruncate64
8395 case TARGET_NR_ftruncate64:
8396 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
8397 break;
8398 #endif
8399 #ifdef TARGET_NR_stat64
8400 case TARGET_NR_stat64:
8401 if (!(p = lock_user_string(arg1)))
8402 goto efault;
8403 ret = get_errno(stat(path(p), &st));
8404 unlock_user(p, arg1, 0);
8405 if (!is_error(ret))
8406 ret = host_to_target_stat64(cpu_env, arg2, &st);
8407 break;
8408 #endif
8409 #ifdef TARGET_NR_lstat64
8410 case TARGET_NR_lstat64:
8411 if (!(p = lock_user_string(arg1)))
8412 goto efault;
8413 ret = get_errno(lstat(path(p), &st));
8414 unlock_user(p, arg1, 0);
8415 if (!is_error(ret))
8416 ret = host_to_target_stat64(cpu_env, arg2, &st);
8417 break;
8418 #endif
8419 #ifdef TARGET_NR_fstat64
8420 case TARGET_NR_fstat64:
8421 ret = get_errno(fstat(arg1, &st));
8422 if (!is_error(ret))
8423 ret = host_to_target_stat64(cpu_env, arg2, &st);
8424 break;
8425 #endif
8426 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
8427 #ifdef TARGET_NR_fstatat64
8428 case TARGET_NR_fstatat64:
8429 #endif
8430 #ifdef TARGET_NR_newfstatat
8431 case TARGET_NR_newfstatat:
8432 #endif
8433 if (!(p = lock_user_string(arg2)))
8434 goto efault;
8435 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
8436 if (!is_error(ret))
8437 ret = host_to_target_stat64(cpu_env, arg3, &st);
8438 break;
8439 #endif
8440 #ifdef TARGET_NR_lchown
8441 case TARGET_NR_lchown:
8442 if (!(p = lock_user_string(arg1)))
8443 goto efault;
8444 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
8445 unlock_user(p, arg1, 0);
8446 break;
8447 #endif
8448 #ifdef TARGET_NR_getuid
8449 case TARGET_NR_getuid:
8450 ret = get_errno(high2lowuid(getuid()));
8451 break;
8452 #endif
8453 #ifdef TARGET_NR_getgid
8454 case TARGET_NR_getgid:
8455 ret = get_errno(high2lowgid(getgid()));
8456 break;
8457 #endif
8458 #ifdef TARGET_NR_geteuid
8459 case TARGET_NR_geteuid:
8460 ret = get_errno(high2lowuid(geteuid()));
8461 break;
8462 #endif
8463 #ifdef TARGET_NR_getegid
8464 case TARGET_NR_getegid:
8465 ret = get_errno(high2lowgid(getegid()));
8466 break;
8467 #endif
8468 case TARGET_NR_setreuid:
8469 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
8470 break;
8471 case TARGET_NR_setregid:
8472 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
8473 break;
8474 case TARGET_NR_getgroups:
8475 {
8476 int gidsetsize = arg1;
8477 target_id *target_grouplist;
8478 gid_t *grouplist;
8479 int i;
8480
8481 grouplist = alloca(gidsetsize * sizeof(gid_t));
8482 ret = get_errno(getgroups(gidsetsize, grouplist));
8483 if (gidsetsize == 0)
8484 break;
8485 if (!is_error(ret)) {
8486 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
8487 if (!target_grouplist)
8488 goto efault;
8489 for(i = 0;i < ret; i++)
8490 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
8491 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
8492 }
8493 }
8494 break;
8495 case TARGET_NR_setgroups:
8496 {
8497 int gidsetsize = arg1;
8498 target_id *target_grouplist;
8499 gid_t *grouplist = NULL;
8500 int i;
8501 if (gidsetsize) {
8502 grouplist = alloca(gidsetsize * sizeof(gid_t));
8503 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
8504 if (!target_grouplist) {
8505 ret = -TARGET_EFAULT;
8506 goto fail;
8507 }
8508 for (i = 0; i < gidsetsize; i++) {
8509 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
8510 }
8511 unlock_user(target_grouplist, arg2, 0);
8512 }
8513 ret = get_errno(setgroups(gidsetsize, grouplist));
8514 }
8515 break;
8516 case TARGET_NR_fchown:
8517 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
8518 break;
8519 #if defined(TARGET_NR_fchownat)
8520 case TARGET_NR_fchownat:
8521 if (!(p = lock_user_string(arg2)))
8522 goto efault;
8523 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
8524 low2highgid(arg4), arg5));
8525 unlock_user(p, arg2, 0);
8526 break;
8527 #endif
8528 #ifdef TARGET_NR_setresuid
8529 case TARGET_NR_setresuid:
8530 ret = get_errno(setresuid(low2highuid(arg1),
8531 low2highuid(arg2),
8532 low2highuid(arg3)));
8533 break;
8534 #endif
8535 #ifdef TARGET_NR_getresuid
8536 case TARGET_NR_getresuid:
8537 {
8538 uid_t ruid, euid, suid;
8539 ret = get_errno(getresuid(&ruid, &euid, &suid));
8540 if (!is_error(ret)) {
8541 if (put_user_id(high2lowuid(ruid), arg1)
8542 || put_user_id(high2lowuid(euid), arg2)
8543 || put_user_id(high2lowuid(suid), arg3))
8544 goto efault;
8545 }
8546 }
8547 break;
8548 #endif
8549 #ifdef TARGET_NR_getresgid
8550 case TARGET_NR_setresgid:
8551 ret = get_errno(setresgid(low2highgid(arg1),
8552 low2highgid(arg2),
8553 low2highgid(arg3)));
8554 break;
8555 #endif
8556 #ifdef TARGET_NR_getresgid
8557 case TARGET_NR_getresgid:
8558 {
8559 gid_t rgid, egid, sgid;
8560 ret = get_errno(getresgid(&rgid, &egid, &sgid));
8561 if (!is_error(ret)) {
8562 if (put_user_id(high2lowgid(rgid), arg1)
8563 || put_user_id(high2lowgid(egid), arg2)
8564 || put_user_id(high2lowgid(sgid), arg3))
8565 goto efault;
8566 }
8567 }
8568 break;
8569 #endif
8570 #ifdef TARGET_NR_chown
8571 case TARGET_NR_chown:
8572 if (!(p = lock_user_string(arg1)))
8573 goto efault;
8574 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
8575 unlock_user(p, arg1, 0);
8576 break;
8577 #endif
8578 case TARGET_NR_setuid:
8579 ret = get_errno(setuid(low2highuid(arg1)));
8580 break;
8581 case TARGET_NR_setgid:
8582 ret = get_errno(setgid(low2highgid(arg1)));
8583 break;
8584 case TARGET_NR_setfsuid:
8585 ret = get_errno(setfsuid(arg1));
8586 break;
8587 case TARGET_NR_setfsgid:
8588 ret = get_errno(setfsgid(arg1));
8589 break;
8590
8591 #ifdef TARGET_NR_lchown32
8592 case TARGET_NR_lchown32:
8593 if (!(p = lock_user_string(arg1)))
8594 goto efault;
8595 ret = get_errno(lchown(p, arg2, arg3));
8596 unlock_user(p, arg1, 0);
8597 break;
8598 #endif
8599 #ifdef TARGET_NR_getuid32
8600 case TARGET_NR_getuid32:
8601 ret = get_errno(getuid());
8602 break;
8603 #endif
8604
8605 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
8606 /* Alpha specific */
8607 case TARGET_NR_getxuid:
8608 {
8609 uid_t euid;
8610 euid=geteuid();
8611 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
8612 }
8613 ret = get_errno(getuid());
8614 break;
8615 #endif
8616 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
8617 /* Alpha specific */
8618 case TARGET_NR_getxgid:
8619 {
8620 uid_t egid;
8621 egid=getegid();
8622 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
8623 }
8624 ret = get_errno(getgid());
8625 break;
8626 #endif
8627 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
8628 /* Alpha specific */
8629 case TARGET_NR_osf_getsysinfo:
8630 ret = -TARGET_EOPNOTSUPP;
8631 switch (arg1) {
8632 case TARGET_GSI_IEEE_FP_CONTROL:
8633 {
8634 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env);
8635
8636 /* Copied from linux ieee_fpcr_to_swcr. */
8637 swcr = (fpcr >> 35) & SWCR_STATUS_MASK;
8638 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
8639 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
8640 | SWCR_TRAP_ENABLE_DZE
8641 | SWCR_TRAP_ENABLE_OVF);
8642 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF
8643 | SWCR_TRAP_ENABLE_INE);
8644 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
8645 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
8646
8647 if (put_user_u64 (swcr, arg2))
8648 goto efault;
8649 ret = 0;
8650 }
8651 break;
8652
8653 /* case GSI_IEEE_STATE_AT_SIGNAL:
8654 -- Not implemented in linux kernel.
8655 case GSI_UACPROC:
8656 -- Retrieves current unaligned access state; not much used.
8657 case GSI_PROC_TYPE:
8658 -- Retrieves implver information; surely not used.
8659 case GSI_GET_HWRPB:
8660 -- Grabs a copy of the HWRPB; surely not used.
8661 */
8662 }
8663 break;
8664 #endif
8665 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
8666 /* Alpha specific */
8667 case TARGET_NR_osf_setsysinfo:
8668 ret = -TARGET_EOPNOTSUPP;
8669 switch (arg1) {
8670 case TARGET_SSI_IEEE_FP_CONTROL:
8671 {
8672 uint64_t swcr, fpcr, orig_fpcr;
8673
8674 if (get_user_u64 (swcr, arg2)) {
8675 goto efault;
8676 }
8677 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
8678 fpcr = orig_fpcr & FPCR_DYN_MASK;
8679
8680 /* Copied from linux ieee_swcr_to_fpcr. */
8681 fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
8682 fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
8683 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
8684 | SWCR_TRAP_ENABLE_DZE
8685 | SWCR_TRAP_ENABLE_OVF)) << 48;
8686 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
8687 | SWCR_TRAP_ENABLE_INE)) << 57;
8688 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
8689 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
8690
8691 cpu_alpha_store_fpcr(cpu_env, fpcr);
8692 ret = 0;
8693 }
8694 break;
8695
8696 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
8697 {
8698 uint64_t exc, fpcr, orig_fpcr;
8699 int si_code;
8700
8701 if (get_user_u64(exc, arg2)) {
8702 goto efault;
8703 }
8704
8705 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
8706
8707 /* We only add to the exception status here. */
8708 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35);
8709
8710 cpu_alpha_store_fpcr(cpu_env, fpcr);
8711 ret = 0;
8712
8713 /* Old exceptions are not signaled. */
8714 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK);
8715
8716 /* If any exceptions set by this call,
8717 and are unmasked, send a signal. */
8718 si_code = 0;
8719 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) {
8720 si_code = TARGET_FPE_FLTRES;
8721 }
8722 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) {
8723 si_code = TARGET_FPE_FLTUND;
8724 }
8725 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) {
8726 si_code = TARGET_FPE_FLTOVF;
8727 }
8728 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) {
8729 si_code = TARGET_FPE_FLTDIV;
8730 }
8731 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) {
8732 si_code = TARGET_FPE_FLTINV;
8733 }
8734 if (si_code != 0) {
8735 target_siginfo_t info;
8736 info.si_signo = SIGFPE;
8737 info.si_errno = 0;
8738 info.si_code = si_code;
8739 info._sifields._sigfault._addr
8740 = ((CPUArchState *)cpu_env)->pc;
8741 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info);
8742 }
8743 }
8744 break;
8745
8746 /* case SSI_NVPAIRS:
8747 -- Used with SSIN_UACPROC to enable unaligned accesses.
8748 case SSI_IEEE_STATE_AT_SIGNAL:
8749 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
8750 -- Not implemented in linux kernel
8751 */
8752 }
8753 break;
8754 #endif
8755 #ifdef TARGET_NR_osf_sigprocmask
8756 /* Alpha specific. */
8757 case TARGET_NR_osf_sigprocmask:
8758 {
8759 abi_ulong mask;
8760 int how;
8761 sigset_t set, oldset;
8762
8763 switch(arg1) {
8764 case TARGET_SIG_BLOCK:
8765 how = SIG_BLOCK;
8766 break;
8767 case TARGET_SIG_UNBLOCK:
8768 how = SIG_UNBLOCK;
8769 break;
8770 case TARGET_SIG_SETMASK:
8771 how = SIG_SETMASK;
8772 break;
8773 default:
8774 ret = -TARGET_EINVAL;
8775 goto fail;
8776 }
8777 mask = arg2;
8778 target_to_host_old_sigset(&set, &mask);
8779 do_sigprocmask(how, &set, &oldset);
8780 host_to_target_old_sigset(&mask, &oldset);
8781 ret = mask;
8782 }
8783 break;
8784 #endif
8785
8786 #ifdef TARGET_NR_getgid32
8787 case TARGET_NR_getgid32:
8788 ret = get_errno(getgid());
8789 break;
8790 #endif
8791 #ifdef TARGET_NR_geteuid32
8792 case TARGET_NR_geteuid32:
8793 ret = get_errno(geteuid());
8794 break;
8795 #endif
8796 #ifdef TARGET_NR_getegid32
8797 case TARGET_NR_getegid32:
8798 ret = get_errno(getegid());
8799 break;
8800 #endif
8801 #ifdef TARGET_NR_setreuid32
8802 case TARGET_NR_setreuid32:
8803 ret = get_errno(setreuid(arg1, arg2));
8804 break;
8805 #endif
8806 #ifdef TARGET_NR_setregid32
8807 case TARGET_NR_setregid32:
8808 ret = get_errno(setregid(arg1, arg2));
8809 break;
8810 #endif
8811 #ifdef TARGET_NR_getgroups32
8812 case TARGET_NR_getgroups32:
8813 {
8814 int gidsetsize = arg1;
8815 uint32_t *target_grouplist;
8816 gid_t *grouplist;
8817 int i;
8818
8819 grouplist = alloca(gidsetsize * sizeof(gid_t));
8820 ret = get_errno(getgroups(gidsetsize, grouplist));
8821 if (gidsetsize == 0)
8822 break;
8823 if (!is_error(ret)) {
8824 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
8825 if (!target_grouplist) {
8826 ret = -TARGET_EFAULT;
8827 goto fail;
8828 }
8829 for(i = 0;i < ret; i++)
8830 target_grouplist[i] = tswap32(grouplist[i]);
8831 unlock_user(target_grouplist, arg2, gidsetsize * 4);
8832 }
8833 }
8834 break;
8835 #endif
8836 #ifdef TARGET_NR_setgroups32
8837 case TARGET_NR_setgroups32:
8838 {
8839 int gidsetsize = arg1;
8840 uint32_t *target_grouplist;
8841 gid_t *grouplist;
8842 int i;
8843
8844 grouplist = alloca(gidsetsize * sizeof(gid_t));
8845 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
8846 if (!target_grouplist) {
8847 ret = -TARGET_EFAULT;
8848 goto fail;
8849 }
8850 for(i = 0;i < gidsetsize; i++)
8851 grouplist[i] = tswap32(target_grouplist[i]);
8852 unlock_user(target_grouplist, arg2, 0);
8853 ret = get_errno(setgroups(gidsetsize, grouplist));
8854 }
8855 break;
8856 #endif
8857 #ifdef TARGET_NR_fchown32
8858 case TARGET_NR_fchown32:
8859 ret = get_errno(fchown(arg1, arg2, arg3));
8860 break;
8861 #endif
8862 #ifdef TARGET_NR_setresuid32
8863 case TARGET_NR_setresuid32:
8864 ret = get_errno(setresuid(arg1, arg2, arg3));
8865 break;
8866 #endif
8867 #ifdef TARGET_NR_getresuid32
8868 case TARGET_NR_getresuid32:
8869 {
8870 uid_t ruid, euid, suid;
8871 ret = get_errno(getresuid(&ruid, &euid, &suid));
8872 if (!is_error(ret)) {
8873 if (put_user_u32(ruid, arg1)
8874 || put_user_u32(euid, arg2)
8875 || put_user_u32(suid, arg3))
8876 goto efault;
8877 }
8878 }
8879 break;
8880 #endif
8881 #ifdef TARGET_NR_setresgid32
8882 case TARGET_NR_setresgid32:
8883 ret = get_errno(setresgid(arg1, arg2, arg3));
8884 break;
8885 #endif
8886 #ifdef TARGET_NR_getresgid32
8887 case TARGET_NR_getresgid32:
8888 {
8889 gid_t rgid, egid, sgid;
8890 ret = get_errno(getresgid(&rgid, &egid, &sgid));
8891 if (!is_error(ret)) {
8892 if (put_user_u32(rgid, arg1)
8893 || put_user_u32(egid, arg2)
8894 || put_user_u32(sgid, arg3))
8895 goto efault;
8896 }
8897 }
8898 break;
8899 #endif
8900 #ifdef TARGET_NR_chown32
8901 case TARGET_NR_chown32:
8902 if (!(p = lock_user_string(arg1)))
8903 goto efault;
8904 ret = get_errno(chown(p, arg2, arg3));
8905 unlock_user(p, arg1, 0);
8906 break;
8907 #endif
8908 #ifdef TARGET_NR_setuid32
8909 case TARGET_NR_setuid32:
8910 ret = get_errno(setuid(arg1));
8911 break;
8912 #endif
8913 #ifdef TARGET_NR_setgid32
8914 case TARGET_NR_setgid32:
8915 ret = get_errno(setgid(arg1));
8916 break;
8917 #endif
8918 #ifdef TARGET_NR_setfsuid32
8919 case TARGET_NR_setfsuid32:
8920 ret = get_errno(setfsuid(arg1));
8921 break;
8922 #endif
8923 #ifdef TARGET_NR_setfsgid32
8924 case TARGET_NR_setfsgid32:
8925 ret = get_errno(setfsgid(arg1));
8926 break;
8927 #endif
8928
8929 case TARGET_NR_pivot_root:
8930 goto unimplemented;
8931 #ifdef TARGET_NR_mincore
8932 case TARGET_NR_mincore:
8933 {
8934 void *a;
8935 ret = -TARGET_EFAULT;
8936 if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0)))
8937 goto efault;
8938 if (!(p = lock_user_string(arg3)))
8939 goto mincore_fail;
8940 ret = get_errno(mincore(a, arg2, p));
8941 unlock_user(p, arg3, ret);
8942 mincore_fail:
8943 unlock_user(a, arg1, 0);
8944 }
8945 break;
8946 #endif
8947 #ifdef TARGET_NR_arm_fadvise64_64
8948 case TARGET_NR_arm_fadvise64_64:
8949 {
8950 /*
8951 * arm_fadvise64_64 looks like fadvise64_64 but
8952 * with different argument order
8953 */
8954 abi_long temp;
8955 temp = arg3;
8956 arg3 = arg4;
8957 arg4 = temp;
8958 }
8959 #endif
8960 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_arm_fadvise64_64) || defined(TARGET_NR_fadvise64)
8961 #ifdef TARGET_NR_fadvise64_64
8962 case TARGET_NR_fadvise64_64:
8963 #endif
8964 #ifdef TARGET_NR_fadvise64
8965 case TARGET_NR_fadvise64:
8966 #endif
8967 #ifdef TARGET_S390X
8968 switch (arg4) {
8969 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
8970 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
8971 case 6: arg4 = POSIX_FADV_DONTNEED; break;
8972 case 7: arg4 = POSIX_FADV_NOREUSE; break;
8973 default: break;
8974 }
8975 #endif
8976 ret = -posix_fadvise(arg1, arg2, arg3, arg4);
8977 break;
8978 #endif
8979 #ifdef TARGET_NR_madvise
8980 case TARGET_NR_madvise:
8981 /* A straight passthrough may not be safe because qemu sometimes
8982 turns private file-backed mappings into anonymous mappings.
8983 This will break MADV_DONTNEED.
8984 This is a hint, so ignoring and returning success is ok. */
8985 ret = get_errno(0);
8986 break;
8987 #endif
8988 #if TARGET_ABI_BITS == 32
8989 case TARGET_NR_fcntl64:
8990 {
8991 int cmd;
8992 struct flock64 fl;
8993 struct target_flock64 *target_fl;
8994 #ifdef TARGET_ARM
8995 struct target_eabi_flock64 *target_efl;
8996 #endif
8997
8998 cmd = target_to_host_fcntl_cmd(arg2);
8999 if (cmd == -TARGET_EINVAL) {
9000 ret = cmd;
9001 break;
9002 }
9003
9004 switch(arg2) {
9005 case TARGET_F_GETLK64:
9006 #ifdef TARGET_ARM
9007 if (((CPUARMState *)cpu_env)->eabi) {
9008 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1))
9009 goto efault;
9010 fl.l_type = tswap16(target_efl->l_type);
9011 fl.l_whence = tswap16(target_efl->l_whence);
9012 fl.l_start = tswap64(target_efl->l_start);
9013 fl.l_len = tswap64(target_efl->l_len);
9014 fl.l_pid = tswap32(target_efl->l_pid);
9015 unlock_user_struct(target_efl, arg3, 0);
9016 } else
9017 #endif
9018 {
9019 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1))
9020 goto efault;
9021 fl.l_type = tswap16(target_fl->l_type);
9022 fl.l_whence = tswap16(target_fl->l_whence);
9023 fl.l_start = tswap64(target_fl->l_start);
9024 fl.l_len = tswap64(target_fl->l_len);
9025 fl.l_pid = tswap32(target_fl->l_pid);
9026 unlock_user_struct(target_fl, arg3, 0);
9027 }
9028 ret = get_errno(fcntl(arg1, cmd, &fl));
9029 if (ret == 0) {
9030 #ifdef TARGET_ARM
9031 if (((CPUARMState *)cpu_env)->eabi) {
9032 if (!lock_user_struct(VERIFY_WRITE, target_efl, arg3, 0))
9033 goto efault;
9034 target_efl->l_type = tswap16(fl.l_type);
9035 target_efl->l_whence = tswap16(fl.l_whence);
9036 target_efl->l_start = tswap64(fl.l_start);
9037 target_efl->l_len = tswap64(fl.l_len);
9038 target_efl->l_pid = tswap32(fl.l_pid);
9039 unlock_user_struct(target_efl, arg3, 1);
9040 } else
9041 #endif
9042 {
9043 if (!lock_user_struct(VERIFY_WRITE, target_fl, arg3, 0))
9044 goto efault;
9045 target_fl->l_type = tswap16(fl.l_type);
9046 target_fl->l_whence = tswap16(fl.l_whence);
9047 target_fl->l_start = tswap64(fl.l_start);
9048 target_fl->l_len = tswap64(fl.l_len);
9049 target_fl->l_pid = tswap32(fl.l_pid);
9050 unlock_user_struct(target_fl, arg3, 1);
9051 }
9052 }
9053 break;
9054
9055 case TARGET_F_SETLK64:
9056 case TARGET_F_SETLKW64:
9057 #ifdef TARGET_ARM
9058 if (((CPUARMState *)cpu_env)->eabi) {
9059 if (!lock_user_struct(VERIFY_READ, target_efl, arg3, 1))
9060 goto efault;
9061 fl.l_type = tswap16(target_efl->l_type);
9062 fl.l_whence = tswap16(target_efl->l_whence);
9063 fl.l_start = tswap64(target_efl->l_start);
9064 fl.l_len = tswap64(target_efl->l_len);
9065 fl.l_pid = tswap32(target_efl->l_pid);
9066 unlock_user_struct(target_efl, arg3, 0);
9067 } else
9068 #endif
9069 {
9070 if (!lock_user_struct(VERIFY_READ, target_fl, arg3, 1))
9071 goto efault;
9072 fl.l_type = tswap16(target_fl->l_type);
9073 fl.l_whence = tswap16(target_fl->l_whence);
9074 fl.l_start = tswap64(target_fl->l_start);
9075 fl.l_len = tswap64(target_fl->l_len);
9076 fl.l_pid = tswap32(target_fl->l_pid);
9077 unlock_user_struct(target_fl, arg3, 0);
9078 }
9079 ret = get_errno(fcntl(arg1, cmd, &fl));
9080 break;
9081 default:
9082 ret = do_fcntl(arg1, arg2, arg3);
9083 break;
9084 }
9085 break;
9086 }
9087 #endif
9088 #ifdef TARGET_NR_cacheflush
9089 case TARGET_NR_cacheflush:
9090 /* self-modifying code is handled automatically, so nothing needed */
9091 ret = 0;
9092 break;
9093 #endif
9094 #ifdef TARGET_NR_security
9095 case TARGET_NR_security:
9096 goto unimplemented;
9097 #endif
9098 #ifdef TARGET_NR_getpagesize
9099 case TARGET_NR_getpagesize:
9100 ret = TARGET_PAGE_SIZE;
9101 break;
9102 #endif
9103 case TARGET_NR_gettid:
9104 ret = get_errno(gettid());
9105 break;
9106 #ifdef TARGET_NR_readahead
9107 case TARGET_NR_readahead:
9108 #if TARGET_ABI_BITS == 32
9109 if (regpairs_aligned(cpu_env)) {
9110 arg2 = arg3;
9111 arg3 = arg4;
9112 arg4 = arg5;
9113 }
9114 ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4));
9115 #else
9116 ret = get_errno(readahead(arg1, arg2, arg3));
9117 #endif
9118 break;
9119 #endif
9120 #ifdef CONFIG_ATTR
9121 #ifdef TARGET_NR_setxattr
9122 case TARGET_NR_listxattr:
9123 case TARGET_NR_llistxattr:
9124 {
9125 void *p, *b = 0;
9126 if (arg2) {
9127 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9128 if (!b) {
9129 ret = -TARGET_EFAULT;
9130 break;
9131 }
9132 }
9133 p = lock_user_string(arg1);
9134 if (p) {
9135 if (num == TARGET_NR_listxattr) {
9136 ret = get_errno(listxattr(p, b, arg3));
9137 } else {
9138 ret = get_errno(llistxattr(p, b, arg3));
9139 }
9140 } else {
9141 ret = -TARGET_EFAULT;
9142 }
9143 unlock_user(p, arg1, 0);
9144 unlock_user(b, arg2, arg3);
9145 break;
9146 }
9147 case TARGET_NR_flistxattr:
9148 {
9149 void *b = 0;
9150 if (arg2) {
9151 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9152 if (!b) {
9153 ret = -TARGET_EFAULT;
9154 break;
9155 }
9156 }
9157 ret = get_errno(flistxattr(arg1, b, arg3));
9158 unlock_user(b, arg2, arg3);
9159 break;
9160 }
9161 case TARGET_NR_setxattr:
9162 case TARGET_NR_lsetxattr:
9163 {
9164 void *p, *n, *v = 0;
9165 if (arg3) {
9166 v = lock_user(VERIFY_READ, arg3, arg4, 1);
9167 if (!v) {
9168 ret = -TARGET_EFAULT;
9169 break;
9170 }
9171 }
9172 p = lock_user_string(arg1);
9173 n = lock_user_string(arg2);
9174 if (p && n) {
9175 if (num == TARGET_NR_setxattr) {
9176 ret = get_errno(setxattr(p, n, v, arg4, arg5));
9177 } else {
9178 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
9179 }
9180 } else {
9181 ret = -TARGET_EFAULT;
9182 }
9183 unlock_user(p, arg1, 0);
9184 unlock_user(n, arg2, 0);
9185 unlock_user(v, arg3, 0);
9186 }
9187 break;
9188 case TARGET_NR_fsetxattr:
9189 {
9190 void *n, *v = 0;
9191 if (arg3) {
9192 v = lock_user(VERIFY_READ, arg3, arg4, 1);
9193 if (!v) {
9194 ret = -TARGET_EFAULT;
9195 break;
9196 }
9197 }
9198 n = lock_user_string(arg2);
9199 if (n) {
9200 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
9201 } else {
9202 ret = -TARGET_EFAULT;
9203 }
9204 unlock_user(n, arg2, 0);
9205 unlock_user(v, arg3, 0);
9206 }
9207 break;
9208 case TARGET_NR_getxattr:
9209 case TARGET_NR_lgetxattr:
9210 {
9211 void *p, *n, *v = 0;
9212 if (arg3) {
9213 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9214 if (!v) {
9215 ret = -TARGET_EFAULT;
9216 break;
9217 }
9218 }
9219 p = lock_user_string(arg1);
9220 n = lock_user_string(arg2);
9221 if (p && n) {
9222 if (num == TARGET_NR_getxattr) {
9223 ret = get_errno(getxattr(p, n, v, arg4));
9224 } else {
9225 ret = get_errno(lgetxattr(p, n, v, arg4));
9226 }
9227 } else {
9228 ret = -TARGET_EFAULT;
9229 }
9230 unlock_user(p, arg1, 0);
9231 unlock_user(n, arg2, 0);
9232 unlock_user(v, arg3, arg4);
9233 }
9234 break;
9235 case TARGET_NR_fgetxattr:
9236 {
9237 void *n, *v = 0;
9238 if (arg3) {
9239 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9240 if (!v) {
9241 ret = -TARGET_EFAULT;
9242 break;
9243 }
9244 }
9245 n = lock_user_string(arg2);
9246 if (n) {
9247 ret = get_errno(fgetxattr(arg1, n, v, arg4));
9248 } else {
9249 ret = -TARGET_EFAULT;
9250 }
9251 unlock_user(n, arg2, 0);
9252 unlock_user(v, arg3, arg4);
9253 }
9254 break;
9255 case TARGET_NR_removexattr:
9256 case TARGET_NR_lremovexattr:
9257 {
9258 void *p, *n;
9259 p = lock_user_string(arg1);
9260 n = lock_user_string(arg2);
9261 if (p && n) {
9262 if (num == TARGET_NR_removexattr) {
9263 ret = get_errno(removexattr(p, n));
9264 } else {
9265 ret = get_errno(lremovexattr(p, n));
9266 }
9267 } else {
9268 ret = -TARGET_EFAULT;
9269 }
9270 unlock_user(p, arg1, 0);
9271 unlock_user(n, arg2, 0);
9272 }
9273 break;
9274 case TARGET_NR_fremovexattr:
9275 {
9276 void *n;
9277 n = lock_user_string(arg2);
9278 if (n) {
9279 ret = get_errno(fremovexattr(arg1, n));
9280 } else {
9281 ret = -TARGET_EFAULT;
9282 }
9283 unlock_user(n, arg2, 0);
9284 }
9285 break;
9286 #endif
9287 #endif /* CONFIG_ATTR */
9288 #ifdef TARGET_NR_set_thread_area
9289 case TARGET_NR_set_thread_area:
9290 #if defined(TARGET_MIPS)
9291 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
9292 ret = 0;
9293 break;
9294 #elif defined(TARGET_CRIS)
9295 if (arg1 & 0xff)
9296 ret = -TARGET_EINVAL;
9297 else {
9298 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
9299 ret = 0;
9300 }
9301 break;
9302 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
9303 ret = do_set_thread_area(cpu_env, arg1);
9304 break;
9305 #elif defined(TARGET_M68K)
9306 {
9307 TaskState *ts = cpu->opaque;
9308 ts->tp_value = arg1;
9309 ret = 0;
9310 break;
9311 }
9312 #else
9313 goto unimplemented_nowarn;
9314 #endif
9315 #endif
9316 #ifdef TARGET_NR_get_thread_area
9317 case TARGET_NR_get_thread_area:
9318 #if defined(TARGET_I386) && defined(TARGET_ABI32)
9319 ret = do_get_thread_area(cpu_env, arg1);
9320 break;
9321 #elif defined(TARGET_M68K)
9322 {
9323 TaskState *ts = cpu->opaque;
9324 ret = ts->tp_value;
9325 break;
9326 }
9327 #else
9328 goto unimplemented_nowarn;
9329 #endif
9330 #endif
9331 #ifdef TARGET_NR_getdomainname
9332 case TARGET_NR_getdomainname:
9333 goto unimplemented_nowarn;
9334 #endif
9335
9336 #ifdef TARGET_NR_clock_gettime
9337 case TARGET_NR_clock_gettime:
9338 {
9339 struct timespec ts;
9340 ret = get_errno(clock_gettime(arg1, &ts));
9341 if (!is_error(ret)) {
9342 host_to_target_timespec(arg2, &ts);
9343 }
9344 break;
9345 }
9346 #endif
9347 #ifdef TARGET_NR_clock_getres
9348 case TARGET_NR_clock_getres:
9349 {
9350 struct timespec ts;
9351 ret = get_errno(clock_getres(arg1, &ts));
9352 if (!is_error(ret)) {
9353 host_to_target_timespec(arg2, &ts);
9354 }
9355 break;
9356 }
9357 #endif
9358 #ifdef TARGET_NR_clock_nanosleep
9359 case TARGET_NR_clock_nanosleep:
9360 {
9361 struct timespec ts;
9362 target_to_host_timespec(&ts, arg3);
9363 ret = get_errno(clock_nanosleep(arg1, arg2, &ts, arg4 ? &ts : NULL));
9364 if (arg4)
9365 host_to_target_timespec(arg4, &ts);
9366
9367 #if defined(TARGET_PPC)
9368 /* clock_nanosleep is odd in that it returns positive errno values.
9369 * On PPC, CR0 bit 3 should be set in such a situation. */
9370 if (ret) {
9371 ((CPUPPCState *)cpu_env)->crf[0] |= 1;
9372 }
9373 #endif
9374 break;
9375 }
9376 #endif
9377
9378 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
9379 case TARGET_NR_set_tid_address:
9380 ret = get_errno(set_tid_address((int *)g2h(arg1)));
9381 break;
9382 #endif
9383
9384 #if defined(TARGET_NR_tkill) && defined(__NR_tkill)
9385 case TARGET_NR_tkill:
9386 ret = get_errno(sys_tkill((int)arg1, target_to_host_signal(arg2)));
9387 break;
9388 #endif
9389
9390 #if defined(TARGET_NR_tgkill) && defined(__NR_tgkill)
9391 case TARGET_NR_tgkill:
9392 ret = get_errno(sys_tgkill((int)arg1, (int)arg2,
9393 target_to_host_signal(arg3)));
9394 break;
9395 #endif
9396
9397 #ifdef TARGET_NR_set_robust_list
9398 case TARGET_NR_set_robust_list:
9399 case TARGET_NR_get_robust_list:
9400 /* The ABI for supporting robust futexes has userspace pass
9401 * the kernel a pointer to a linked list which is updated by
9402 * userspace after the syscall; the list is walked by the kernel
9403 * when the thread exits. Since the linked list in QEMU guest
9404 * memory isn't a valid linked list for the host and we have
9405 * no way to reliably intercept the thread-death event, we can't
9406 * support these. Silently return ENOSYS so that guest userspace
9407 * falls back to a non-robust futex implementation (which should
9408 * be OK except in the corner case of the guest crashing while
9409 * holding a mutex that is shared with another process via
9410 * shared memory).
9411 */
9412 goto unimplemented_nowarn;
9413 #endif
9414
9415 #if defined(TARGET_NR_utimensat)
9416 case TARGET_NR_utimensat:
9417 {
9418 struct timespec *tsp, ts[2];
9419 if (!arg3) {
9420 tsp = NULL;
9421 } else {
9422 target_to_host_timespec(ts, arg3);
9423 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
9424 tsp = ts;
9425 }
9426 if (!arg2)
9427 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
9428 else {
9429 if (!(p = lock_user_string(arg2))) {
9430 ret = -TARGET_EFAULT;
9431 goto fail;
9432 }
9433 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
9434 unlock_user(p, arg2, 0);
9435 }
9436 }
9437 break;
9438 #endif
9439 case TARGET_NR_futex:
9440 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
9441 break;
9442 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
9443 case TARGET_NR_inotify_init:
9444 ret = get_errno(sys_inotify_init());
9445 break;
9446 #endif
9447 #ifdef CONFIG_INOTIFY1
9448 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
9449 case TARGET_NR_inotify_init1:
9450 ret = get_errno(sys_inotify_init1(arg1));
9451 break;
9452 #endif
9453 #endif
9454 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
9455 case TARGET_NR_inotify_add_watch:
9456 p = lock_user_string(arg2);
9457 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
9458 unlock_user(p, arg2, 0);
9459 break;
9460 #endif
9461 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
9462 case TARGET_NR_inotify_rm_watch:
9463 ret = get_errno(sys_inotify_rm_watch(arg1, arg2));
9464 break;
9465 #endif
9466
9467 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
9468 case TARGET_NR_mq_open:
9469 {
9470 struct mq_attr posix_mq_attr, *attrp;
9471
9472 p = lock_user_string(arg1 - 1);
9473 if (arg4 != 0) {
9474 copy_from_user_mq_attr (&posix_mq_attr, arg4);
9475 attrp = &posix_mq_attr;
9476 } else {
9477 attrp = 0;
9478 }
9479 ret = get_errno(mq_open(p, arg2, arg3, attrp));
9480 unlock_user (p, arg1, 0);
9481 }
9482 break;
9483
9484 case TARGET_NR_mq_unlink:
9485 p = lock_user_string(arg1 - 1);
9486 ret = get_errno(mq_unlink(p));
9487 unlock_user (p, arg1, 0);
9488 break;
9489
9490 case TARGET_NR_mq_timedsend:
9491 {
9492 struct timespec ts;
9493
9494 p = lock_user (VERIFY_READ, arg2, arg3, 1);
9495 if (arg5 != 0) {
9496 target_to_host_timespec(&ts, arg5);
9497 ret = get_errno(mq_timedsend(arg1, p, arg3, arg4, &ts));
9498 host_to_target_timespec(arg5, &ts);
9499 }
9500 else
9501 ret = get_errno(mq_send(arg1, p, arg3, arg4));
9502 unlock_user (p, arg2, arg3);
9503 }
9504 break;
9505
9506 case TARGET_NR_mq_timedreceive:
9507 {
9508 struct timespec ts;
9509 unsigned int prio;
9510
9511 p = lock_user (VERIFY_READ, arg2, arg3, 1);
9512 if (arg5 != 0) {
9513 target_to_host_timespec(&ts, arg5);
9514 ret = get_errno(mq_timedreceive(arg1, p, arg3, &prio, &ts));
9515 host_to_target_timespec(arg5, &ts);
9516 }
9517 else
9518 ret = get_errno(mq_receive(arg1, p, arg3, &prio));
9519 unlock_user (p, arg2, arg3);
9520 if (arg4 != 0)
9521 put_user_u32(prio, arg4);
9522 }
9523 break;
9524
9525 /* Not implemented for now... */
9526 /* case TARGET_NR_mq_notify: */
9527 /* break; */
9528
9529 case TARGET_NR_mq_getsetattr:
9530 {
9531 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
9532 ret = 0;
9533 if (arg3 != 0) {
9534 ret = mq_getattr(arg1, &posix_mq_attr_out);
9535 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
9536 }
9537 if (arg2 != 0) {
9538 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
9539 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out);
9540 }
9541
9542 }
9543 break;
9544 #endif
9545
9546 #ifdef CONFIG_SPLICE
9547 #ifdef TARGET_NR_tee
9548 case TARGET_NR_tee:
9549 {
9550 ret = get_errno(tee(arg1,arg2,arg3,arg4));
9551 }
9552 break;
9553 #endif
9554 #ifdef TARGET_NR_splice
9555 case TARGET_NR_splice:
9556 {
9557 loff_t loff_in, loff_out;
9558 loff_t *ploff_in = NULL, *ploff_out = NULL;
9559 if (arg2) {
9560 if (get_user_u64(loff_in, arg2)) {
9561 goto efault;
9562 }
9563 ploff_in = &loff_in;
9564 }
9565 if (arg4) {
9566 if (get_user_u64(loff_out, arg4)) {
9567 goto efault;
9568 }
9569 ploff_out = &loff_out;
9570 }
9571 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
9572 if (arg2) {
9573 if (put_user_u64(loff_in, arg2)) {
9574 goto efault;
9575 }
9576 }
9577 if (arg4) {
9578 if (put_user_u64(loff_out, arg4)) {
9579 goto efault;
9580 }
9581 }
9582 }
9583 break;
9584 #endif
9585 #ifdef TARGET_NR_vmsplice
9586 case TARGET_NR_vmsplice:
9587 {
9588 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
9589 if (vec != NULL) {
9590 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
9591 unlock_iovec(vec, arg2, arg3, 0);
9592 } else {
9593 ret = -host_to_target_errno(errno);
9594 }
9595 }
9596 break;
9597 #endif
9598 #endif /* CONFIG_SPLICE */
9599 #ifdef CONFIG_EVENTFD
9600 #if defined(TARGET_NR_eventfd)
9601 case TARGET_NR_eventfd:
9602 ret = get_errno(eventfd(arg1, 0));
9603 break;
9604 #endif
9605 #if defined(TARGET_NR_eventfd2)
9606 case TARGET_NR_eventfd2:
9607 {
9608 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
9609 if (arg2 & TARGET_O_NONBLOCK) {
9610 host_flags |= O_NONBLOCK;
9611 }
9612 if (arg2 & TARGET_O_CLOEXEC) {
9613 host_flags |= O_CLOEXEC;
9614 }
9615 ret = get_errno(eventfd(arg1, host_flags));
9616 break;
9617 }
9618 #endif
9619 #endif /* CONFIG_EVENTFD */
9620 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
9621 case TARGET_NR_fallocate:
9622 #if TARGET_ABI_BITS == 32
9623 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
9624 target_offset64(arg5, arg6)));
9625 #else
9626 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
9627 #endif
9628 break;
9629 #endif
9630 #if defined(CONFIG_SYNC_FILE_RANGE)
9631 #if defined(TARGET_NR_sync_file_range)
9632 case TARGET_NR_sync_file_range:
9633 #if TARGET_ABI_BITS == 32
9634 #if defined(TARGET_MIPS)
9635 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
9636 target_offset64(arg5, arg6), arg7));
9637 #else
9638 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
9639 target_offset64(arg4, arg5), arg6));
9640 #endif /* !TARGET_MIPS */
9641 #else
9642 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
9643 #endif
9644 break;
9645 #endif
9646 #if defined(TARGET_NR_sync_file_range2)
9647 case TARGET_NR_sync_file_range2:
9648 /* This is like sync_file_range but the arguments are reordered */
9649 #if TARGET_ABI_BITS == 32
9650 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
9651 target_offset64(arg5, arg6), arg2));
9652 #else
9653 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
9654 #endif
9655 break;
9656 #endif
9657 #endif
9658 #if defined(CONFIG_EPOLL)
9659 #if defined(TARGET_NR_epoll_create)
9660 case TARGET_NR_epoll_create:
9661 ret = get_errno(epoll_create(arg1));
9662 break;
9663 #endif
9664 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
9665 case TARGET_NR_epoll_create1:
9666 ret = get_errno(epoll_create1(arg1));
9667 break;
9668 #endif
9669 #if defined(TARGET_NR_epoll_ctl)
9670 case TARGET_NR_epoll_ctl:
9671 {
9672 struct epoll_event ep;
9673 struct epoll_event *epp = 0;
9674 if (arg4) {
9675 struct target_epoll_event *target_ep;
9676 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
9677 goto efault;
9678 }
9679 ep.events = tswap32(target_ep->events);
9680 /* The epoll_data_t union is just opaque data to the kernel,
9681 * so we transfer all 64 bits across and need not worry what
9682 * actual data type it is.
9683 */
9684 ep.data.u64 = tswap64(target_ep->data.u64);
9685 unlock_user_struct(target_ep, arg4, 0);
9686 epp = &ep;
9687 }
9688 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp));
9689 break;
9690 }
9691 #endif
9692
9693 #if defined(TARGET_NR_epoll_pwait) && defined(CONFIG_EPOLL_PWAIT)
9694 #define IMPLEMENT_EPOLL_PWAIT
9695 #endif
9696 #if defined(TARGET_NR_epoll_wait) || defined(IMPLEMENT_EPOLL_PWAIT)
9697 #if defined(TARGET_NR_epoll_wait)
9698 case TARGET_NR_epoll_wait:
9699 #endif
9700 #if defined(IMPLEMENT_EPOLL_PWAIT)
9701 case TARGET_NR_epoll_pwait:
9702 #endif
9703 {
9704 struct target_epoll_event *target_ep;
9705 struct epoll_event *ep;
9706 int epfd = arg1;
9707 int maxevents = arg3;
9708 int timeout = arg4;
9709
9710 target_ep = lock_user(VERIFY_WRITE, arg2,
9711 maxevents * sizeof(struct target_epoll_event), 1);
9712 if (!target_ep) {
9713 goto efault;
9714 }
9715
9716 ep = alloca(maxevents * sizeof(struct epoll_event));
9717
9718 switch (num) {
9719 #if defined(IMPLEMENT_EPOLL_PWAIT)
9720 case TARGET_NR_epoll_pwait:
9721 {
9722 target_sigset_t *target_set;
9723 sigset_t _set, *set = &_set;
9724
9725 if (arg5) {
9726 target_set = lock_user(VERIFY_READ, arg5,
9727 sizeof(target_sigset_t), 1);
9728 if (!target_set) {
9729 unlock_user(target_ep, arg2, 0);
9730 goto efault;
9731 }
9732 target_to_host_sigset(set, target_set);
9733 unlock_user(target_set, arg5, 0);
9734 } else {
9735 set = NULL;
9736 }
9737
9738 ret = get_errno(epoll_pwait(epfd, ep, maxevents, timeout, set));
9739 break;
9740 }
9741 #endif
9742 #if defined(TARGET_NR_epoll_wait)
9743 case TARGET_NR_epoll_wait:
9744 ret = get_errno(epoll_wait(epfd, ep, maxevents, timeout));
9745 break;
9746 #endif
9747 default:
9748 ret = -TARGET_ENOSYS;
9749 }
9750 if (!is_error(ret)) {
9751 int i;
9752 for (i = 0; i < ret; i++) {
9753 target_ep[i].events = tswap32(ep[i].events);
9754 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
9755 }
9756 }
9757 unlock_user(target_ep, arg2, ret * sizeof(struct target_epoll_event));
9758 break;
9759 }
9760 #endif
9761 #endif
9762 #ifdef TARGET_NR_prlimit64
9763 case TARGET_NR_prlimit64:
9764 {
9765 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
9766 struct target_rlimit64 *target_rnew, *target_rold;
9767 struct host_rlimit64 rnew, rold, *rnewp = 0;
9768 int resource = target_to_host_resource(arg2);
9769 if (arg3) {
9770 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
9771 goto efault;
9772 }
9773 rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
9774 rnew.rlim_max = tswap64(target_rnew->rlim_max);
9775 unlock_user_struct(target_rnew, arg3, 0);
9776 rnewp = &rnew;
9777 }
9778
9779 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
9780 if (!is_error(ret) && arg4) {
9781 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
9782 goto efault;
9783 }
9784 target_rold->rlim_cur = tswap64(rold.rlim_cur);
9785 target_rold->rlim_max = tswap64(rold.rlim_max);
9786 unlock_user_struct(target_rold, arg4, 1);
9787 }
9788 break;
9789 }
9790 #endif
9791 #ifdef TARGET_NR_gethostname
9792 case TARGET_NR_gethostname:
9793 {
9794 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9795 if (name) {
9796 ret = get_errno(gethostname(name, arg2));
9797 unlock_user(name, arg1, arg2);
9798 } else {
9799 ret = -TARGET_EFAULT;
9800 }
9801 break;
9802 }
9803 #endif
9804 #ifdef TARGET_NR_atomic_cmpxchg_32
9805 case TARGET_NR_atomic_cmpxchg_32:
9806 {
9807 /* should use start_exclusive from main.c */
9808 abi_ulong mem_value;
9809 if (get_user_u32(mem_value, arg6)) {
9810 target_siginfo_t info;
9811 info.si_signo = SIGSEGV;
9812 info.si_errno = 0;
9813 info.si_code = TARGET_SEGV_MAPERR;
9814 info._sifields._sigfault._addr = arg6;
9815 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info);
9816 ret = 0xdeadbeef;
9817
9818 }
9819 if (mem_value == arg2)
9820 put_user_u32(arg1, arg6);
9821 ret = mem_value;
9822 break;
9823 }
9824 #endif
9825 #ifdef TARGET_NR_atomic_barrier
9826 case TARGET_NR_atomic_barrier:
9827 {
9828 /* Like the kernel implementation and the qemu arm barrier, no-op this? */
9829 ret = 0;
9830 break;
9831 }
9832 #endif
9833
9834 #ifdef TARGET_NR_timer_create
9835 case TARGET_NR_timer_create:
9836 {
9837 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
9838
9839 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
9840
9841 int clkid = arg1;
9842 int timer_index = next_free_host_timer();
9843
9844 if (timer_index < 0) {
9845 ret = -TARGET_EAGAIN;
9846 } else {
9847 timer_t *phtimer = g_posix_timers + timer_index;
9848
9849 if (arg2) {
9850 phost_sevp = &host_sevp;
9851 ret = target_to_host_sigevent(phost_sevp, arg2);
9852 if (ret != 0) {
9853 break;
9854 }
9855 }
9856
9857 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
9858 if (ret) {
9859 phtimer = NULL;
9860 } else {
9861 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
9862 goto efault;
9863 }
9864 }
9865 }
9866 break;
9867 }
9868 #endif
9869
9870 #ifdef TARGET_NR_timer_settime
9871 case TARGET_NR_timer_settime:
9872 {
9873 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
9874 * struct itimerspec * old_value */
9875 target_timer_t timerid = get_timer_id(arg1);
9876
9877 if (timerid < 0) {
9878 ret = timerid;
9879 } else if (arg3 == 0) {
9880 ret = -TARGET_EINVAL;
9881 } else {
9882 timer_t htimer = g_posix_timers[timerid];
9883 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
9884
9885 target_to_host_itimerspec(&hspec_new, arg3);
9886 ret = get_errno(
9887 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
9888 host_to_target_itimerspec(arg2, &hspec_old);
9889 }
9890 break;
9891 }
9892 #endif
9893
9894 #ifdef TARGET_NR_timer_gettime
9895 case TARGET_NR_timer_gettime:
9896 {
9897 /* args: timer_t timerid, struct itimerspec *curr_value */
9898 target_timer_t timerid = get_timer_id(arg1);
9899
9900 if (timerid < 0) {
9901 ret = timerid;
9902 } else if (!arg2) {
9903 ret = -TARGET_EFAULT;
9904 } else {
9905 timer_t htimer = g_posix_timers[timerid];
9906 struct itimerspec hspec;
9907 ret = get_errno(timer_gettime(htimer, &hspec));
9908
9909 if (host_to_target_itimerspec(arg2, &hspec)) {
9910 ret = -TARGET_EFAULT;
9911 }
9912 }
9913 break;
9914 }
9915 #endif
9916
9917 #ifdef TARGET_NR_timer_getoverrun
9918 case TARGET_NR_timer_getoverrun:
9919 {
9920 /* args: timer_t timerid */
9921 target_timer_t timerid = get_timer_id(arg1);
9922
9923 if (timerid < 0) {
9924 ret = timerid;
9925 } else {
9926 timer_t htimer = g_posix_timers[timerid];
9927 ret = get_errno(timer_getoverrun(htimer));
9928 }
9929 break;
9930 }
9931 #endif
9932
9933 #ifdef TARGET_NR_timer_delete
9934 case TARGET_NR_timer_delete:
9935 {
9936 /* args: timer_t timerid */
9937 target_timer_t timerid = get_timer_id(arg1);
9938
9939 if (timerid < 0) {
9940 ret = timerid;
9941 } else {
9942 timer_t htimer = g_posix_timers[timerid];
9943 ret = get_errno(timer_delete(htimer));
9944 g_posix_timers[timerid] = 0;
9945 }
9946 break;
9947 }
9948 #endif
9949
9950 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
9951 case TARGET_NR_timerfd_create:
9952 ret = get_errno(timerfd_create(arg1,
9953 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
9954 break;
9955 #endif
9956
9957 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
9958 case TARGET_NR_timerfd_gettime:
9959 {
9960 struct itimerspec its_curr;
9961
9962 ret = get_errno(timerfd_gettime(arg1, &its_curr));
9963
9964 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
9965 goto efault;
9966 }
9967 }
9968 break;
9969 #endif
9970
9971 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
9972 case TARGET_NR_timerfd_settime:
9973 {
9974 struct itimerspec its_new, its_old, *p_new;
9975
9976 if (arg3) {
9977 if (target_to_host_itimerspec(&its_new, arg3)) {
9978 goto efault;
9979 }
9980 p_new = &its_new;
9981 } else {
9982 p_new = NULL;
9983 }
9984
9985 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
9986
9987 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
9988 goto efault;
9989 }
9990 }
9991 break;
9992 #endif
9993
9994 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
9995 case TARGET_NR_ioprio_get:
9996 ret = get_errno(ioprio_get(arg1, arg2));
9997 break;
9998 #endif
9999
10000 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
10001 case TARGET_NR_ioprio_set:
10002 ret = get_errno(ioprio_set(arg1, arg2, arg3));
10003 break;
10004 #endif
10005
10006 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
10007 case TARGET_NR_setns:
10008 ret = get_errno(setns(arg1, arg2));
10009 break;
10010 #endif
10011 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
10012 case TARGET_NR_unshare:
10013 ret = get_errno(unshare(arg1));
10014 break;
10015 #endif
10016
10017 default:
10018 unimplemented:
10019 gemu_log("qemu: Unsupported syscall: %d\n", num);
10020 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
10021 unimplemented_nowarn:
10022 #endif
10023 ret = -TARGET_ENOSYS;
10024 break;
10025 }
10026 fail:
10027 #ifdef DEBUG
10028 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret);
10029 #endif
10030 if(do_strace)
10031 print_syscall_ret(num, ret);
10032 return ret;
10033 efault:
10034 ret = -TARGET_EFAULT;
10035 goto fail;
10036 }