]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/syscall.c
riscv: Clean up includes
[mirror_qemu.git] / linux-user / syscall.c
1 /*
2 * Linux syscalls
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include "qemu/plugin.h"
26 #include "tcg/startup.h"
27 #include "target_mman.h"
28 #include <elf.h>
29 #include <endian.h>
30 #include <grp.h>
31 #include <sys/ipc.h>
32 #include <sys/msg.h>
33 #include <sys/wait.h>
34 #include <sys/mount.h>
35 #include <sys/file.h>
36 #include <sys/fsuid.h>
37 #include <sys/personality.h>
38 #include <sys/prctl.h>
39 #include <sys/resource.h>
40 #include <sys/swap.h>
41 #include <linux/capability.h>
42 #include <sched.h>
43 #include <sys/timex.h>
44 #include <sys/socket.h>
45 #include <linux/sockios.h>
46 #include <sys/un.h>
47 #include <sys/uio.h>
48 #include <poll.h>
49 #include <sys/times.h>
50 #include <sys/shm.h>
51 #include <sys/sem.h>
52 #include <sys/statfs.h>
53 #include <utime.h>
54 #include <sys/sysinfo.h>
55 #include <sys/signalfd.h>
56 //#include <sys/user.h>
57 #include <netinet/in.h>
58 #include <netinet/ip.h>
59 #include <netinet/tcp.h>
60 #include <netinet/udp.h>
61 #include <linux/wireless.h>
62 #include <linux/icmp.h>
63 #include <linux/icmpv6.h>
64 #include <linux/if_tun.h>
65 #include <linux/in6.h>
66 #include <linux/errqueue.h>
67 #include <linux/random.h>
68 #ifdef CONFIG_TIMERFD
69 #include <sys/timerfd.h>
70 #endif
71 #ifdef CONFIG_EVENTFD
72 #include <sys/eventfd.h>
73 #endif
74 #ifdef CONFIG_EPOLL
75 #include <sys/epoll.h>
76 #endif
77 #ifdef CONFIG_ATTR
78 #include "qemu/xattr.h"
79 #endif
80 #ifdef CONFIG_SENDFILE
81 #include <sys/sendfile.h>
82 #endif
83 #ifdef HAVE_SYS_KCOV_H
84 #include <sys/kcov.h>
85 #endif
86
87 #define termios host_termios
88 #define winsize host_winsize
89 #define termio host_termio
90 #define sgttyb host_sgttyb /* same as target */
91 #define tchars host_tchars /* same as target */
92 #define ltchars host_ltchars /* same as target */
93
94 #include <linux/termios.h>
95 #include <linux/unistd.h>
96 #include <linux/cdrom.h>
97 #include <linux/hdreg.h>
98 #include <linux/soundcard.h>
99 #include <linux/kd.h>
100 #include <linux/mtio.h>
101 #include <linux/fs.h>
102 #include <linux/fd.h>
103 #if defined(CONFIG_FIEMAP)
104 #include <linux/fiemap.h>
105 #endif
106 #include <linux/fb.h>
107 #if defined(CONFIG_USBFS)
108 #include <linux/usbdevice_fs.h>
109 #include <linux/usb/ch9.h>
110 #endif
111 #include <linux/vt.h>
112 #include <linux/dm-ioctl.h>
113 #include <linux/reboot.h>
114 #include <linux/route.h>
115 #include <linux/filter.h>
116 #include <linux/blkpg.h>
117 #include <netpacket/packet.h>
118 #include <linux/netlink.h>
119 #include <linux/if_alg.h>
120 #include <linux/rtc.h>
121 #include <sound/asound.h>
122 #ifdef HAVE_BTRFS_H
123 #include <linux/btrfs.h>
124 #endif
125 #ifdef HAVE_DRM_H
126 #include <libdrm/drm.h>
127 #include <libdrm/i915_drm.h>
128 #endif
129 #include "linux_loop.h"
130 #include "uname.h"
131
132 #include "qemu.h"
133 #include "user-internals.h"
134 #include "strace.h"
135 #include "signal-common.h"
136 #include "loader.h"
137 #include "user-mmap.h"
138 #include "user/safe-syscall.h"
139 #include "qemu/guest-random.h"
140 #include "qemu/selfmap.h"
141 #include "user/syscall-trace.h"
142 #include "special-errno.h"
143 #include "qapi/error.h"
144 #include "fd-trans.h"
145 #include "cpu_loop-common.h"
146
147 #ifndef CLONE_IO
148 #define CLONE_IO 0x80000000 /* Clone io context */
149 #endif
150
151 /* We can't directly call the host clone syscall, because this will
152 * badly confuse libc (breaking mutexes, for example). So we must
153 * divide clone flags into:
154 * * flag combinations that look like pthread_create()
155 * * flag combinations that look like fork()
156 * * flags we can implement within QEMU itself
157 * * flags we can't support and will return an error for
158 */
159 /* For thread creation, all these flags must be present; for
160 * fork, none must be present.
161 */
162 #define CLONE_THREAD_FLAGS \
163 (CLONE_VM | CLONE_FS | CLONE_FILES | \
164 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
165
166 /* These flags are ignored:
167 * CLONE_DETACHED is now ignored by the kernel;
168 * CLONE_IO is just an optimisation hint to the I/O scheduler
169 */
170 #define CLONE_IGNORED_FLAGS \
171 (CLONE_DETACHED | CLONE_IO)
172
173 #ifndef CLONE_PIDFD
174 # define CLONE_PIDFD 0x00001000
175 #endif
176
177 /* Flags for fork which we can implement within QEMU itself */
178 #define CLONE_OPTIONAL_FORK_FLAGS \
179 (CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_PIDFD | \
180 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
181
182 /* Flags for thread creation which we can implement within QEMU itself */
183 #define CLONE_OPTIONAL_THREAD_FLAGS \
184 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
185 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
186
187 #define CLONE_INVALID_FORK_FLAGS \
188 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
189
190 #define CLONE_INVALID_THREAD_FLAGS \
191 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
192 CLONE_IGNORED_FLAGS))
193
194 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
195 * have almost all been allocated. We cannot support any of
196 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
197 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
198 * The checks against the invalid thread masks above will catch these.
199 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
200 */
201
202 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
203 * once. This exercises the codepaths for restart.
204 */
205 //#define DEBUG_ERESTARTSYS
206
207 //#include <linux/msdos_fs.h>
208 #define VFAT_IOCTL_READDIR_BOTH \
209 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
210 #define VFAT_IOCTL_READDIR_SHORT \
211 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
212
213 #undef _syscall0
214 #undef _syscall1
215 #undef _syscall2
216 #undef _syscall3
217 #undef _syscall4
218 #undef _syscall5
219 #undef _syscall6
220
221 #define _syscall0(type,name) \
222 static type name (void) \
223 { \
224 return syscall(__NR_##name); \
225 }
226
227 #define _syscall1(type,name,type1,arg1) \
228 static type name (type1 arg1) \
229 { \
230 return syscall(__NR_##name, arg1); \
231 }
232
233 #define _syscall2(type,name,type1,arg1,type2,arg2) \
234 static type name (type1 arg1,type2 arg2) \
235 { \
236 return syscall(__NR_##name, arg1, arg2); \
237 }
238
239 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
240 static type name (type1 arg1,type2 arg2,type3 arg3) \
241 { \
242 return syscall(__NR_##name, arg1, arg2, arg3); \
243 }
244
245 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
247 { \
248 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
249 }
250
251 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
252 type5,arg5) \
253 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
254 { \
255 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
256 }
257
258
259 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
260 type5,arg5,type6,arg6) \
261 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
262 type6 arg6) \
263 { \
264 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
265 }
266
267
268 #define __NR_sys_uname __NR_uname
269 #define __NR_sys_getcwd1 __NR_getcwd
270 #define __NR_sys_getdents __NR_getdents
271 #define __NR_sys_getdents64 __NR_getdents64
272 #define __NR_sys_getpriority __NR_getpriority
273 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
274 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
275 #define __NR_sys_syslog __NR_syslog
276 #if defined(__NR_futex)
277 # define __NR_sys_futex __NR_futex
278 #endif
279 #if defined(__NR_futex_time64)
280 # define __NR_sys_futex_time64 __NR_futex_time64
281 #endif
282 #define __NR_sys_statx __NR_statx
283
284 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
285 #define __NR__llseek __NR_lseek
286 #endif
287
288 /* Newer kernel ports have llseek() instead of _llseek() */
289 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
290 #define TARGET_NR__llseek TARGET_NR_llseek
291 #endif
292
293 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
294 #ifndef TARGET_O_NONBLOCK_MASK
295 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
296 #endif
297
298 #define __NR_sys_gettid __NR_gettid
299 _syscall0(int, sys_gettid)
300
301 /* For the 64-bit guest on 32-bit host case we must emulate
302 * getdents using getdents64, because otherwise the host
303 * might hand us back more dirent records than we can fit
304 * into the guest buffer after structure format conversion.
305 * Otherwise we emulate getdents with getdents if the host has it.
306 */
307 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
308 #define EMULATE_GETDENTS_WITH_GETDENTS
309 #endif
310
311 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
312 _syscall3(int, sys_getdents, unsigned int, fd, struct linux_dirent *, dirp, unsigned int, count);
313 #endif
314 #if (defined(TARGET_NR_getdents) && \
315 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
316 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
317 _syscall3(int, sys_getdents64, unsigned int, fd, struct linux_dirent64 *, dirp, unsigned int, count);
318 #endif
319 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
320 _syscall5(int, _llseek, unsigned int, fd, unsigned long, hi, unsigned long, lo,
321 loff_t *, res, unsigned int, wh);
322 #endif
323 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
324 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
325 siginfo_t *, uinfo)
326 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
327 #ifdef __NR_exit_group
328 _syscall1(int,exit_group,int,error_code)
329 #endif
330 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
331 #define __NR_sys_close_range __NR_close_range
332 _syscall3(int,sys_close_range,int,first,int,last,int,flags)
333 #ifndef CLOSE_RANGE_CLOEXEC
334 #define CLOSE_RANGE_CLOEXEC (1U << 2)
335 #endif
336 #endif
337 #if defined(__NR_futex)
338 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
339 const struct timespec *,timeout,int *,uaddr2,int,val3)
340 #endif
341 #if defined(__NR_futex_time64)
342 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
343 const struct timespec *,timeout,int *,uaddr2,int,val3)
344 #endif
345 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
346 _syscall2(int, pidfd_open, pid_t, pid, unsigned int, flags);
347 #endif
348 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
349 _syscall4(int, pidfd_send_signal, int, pidfd, int, sig, siginfo_t *, info,
350 unsigned int, flags);
351 #endif
352 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
353 _syscall3(int, pidfd_getfd, int, pidfd, int, targetfd, unsigned int, flags);
354 #endif
355 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
356 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
357 unsigned long *, user_mask_ptr);
358 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
359 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
360 unsigned long *, user_mask_ptr);
361 /* sched_attr is not defined in glibc */
362 struct sched_attr {
363 uint32_t size;
364 uint32_t sched_policy;
365 uint64_t sched_flags;
366 int32_t sched_nice;
367 uint32_t sched_priority;
368 uint64_t sched_runtime;
369 uint64_t sched_deadline;
370 uint64_t sched_period;
371 uint32_t sched_util_min;
372 uint32_t sched_util_max;
373 };
374 #define __NR_sys_sched_getattr __NR_sched_getattr
375 _syscall4(int, sys_sched_getattr, pid_t, pid, struct sched_attr *, attr,
376 unsigned int, size, unsigned int, flags);
377 #define __NR_sys_sched_setattr __NR_sched_setattr
378 _syscall3(int, sys_sched_setattr, pid_t, pid, struct sched_attr *, attr,
379 unsigned int, flags);
380 #define __NR_sys_sched_getscheduler __NR_sched_getscheduler
381 _syscall1(int, sys_sched_getscheduler, pid_t, pid);
382 #define __NR_sys_sched_setscheduler __NR_sched_setscheduler
383 _syscall3(int, sys_sched_setscheduler, pid_t, pid, int, policy,
384 const struct sched_param *, param);
385 #define __NR_sys_sched_getparam __NR_sched_getparam
386 _syscall2(int, sys_sched_getparam, pid_t, pid,
387 struct sched_param *, param);
388 #define __NR_sys_sched_setparam __NR_sched_setparam
389 _syscall2(int, sys_sched_setparam, pid_t, pid,
390 const struct sched_param *, param);
391 #define __NR_sys_getcpu __NR_getcpu
392 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
393 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
394 void *, arg);
395 _syscall2(int, capget, struct __user_cap_header_struct *, header,
396 struct __user_cap_data_struct *, data);
397 _syscall2(int, capset, struct __user_cap_header_struct *, header,
398 struct __user_cap_data_struct *, data);
399 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
400 _syscall2(int, ioprio_get, int, which, int, who)
401 #endif
402 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
403 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
404 #endif
405 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
406 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
407 #endif
408
409 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
410 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
411 unsigned long, idx1, unsigned long, idx2)
412 #endif
413
414 /*
415 * It is assumed that struct statx is architecture independent.
416 */
417 #if defined(TARGET_NR_statx) && defined(__NR_statx)
418 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
419 unsigned int, mask, struct target_statx *, statxbuf)
420 #endif
421 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
422 _syscall2(int, membarrier, int, cmd, int, flags)
423 #endif
424
425 static const bitmask_transtbl fcntl_flags_tbl[] = {
426 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
427 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
428 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
429 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
430 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
431 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
432 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
433 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
434 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
435 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
436 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
437 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
438 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
439 #if defined(O_DIRECT)
440 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
441 #endif
442 #if defined(O_NOATIME)
443 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
444 #endif
445 #if defined(O_CLOEXEC)
446 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
447 #endif
448 #if defined(O_PATH)
449 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
450 #endif
451 #if defined(O_TMPFILE)
452 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
453 #endif
454 /* Don't terminate the list prematurely on 64-bit host+guest. */
455 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
456 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
457 #endif
458 };
459
460 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
461
462 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
463 #if defined(__NR_utimensat)
464 #define __NR_sys_utimensat __NR_utimensat
465 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
466 const struct timespec *,tsp,int,flags)
467 #else
468 static int sys_utimensat(int dirfd, const char *pathname,
469 const struct timespec times[2], int flags)
470 {
471 errno = ENOSYS;
472 return -1;
473 }
474 #endif
475 #endif /* TARGET_NR_utimensat */
476
477 #ifdef TARGET_NR_renameat2
478 #if defined(__NR_renameat2)
479 #define __NR_sys_renameat2 __NR_renameat2
480 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
481 const char *, new, unsigned int, flags)
482 #else
483 static int sys_renameat2(int oldfd, const char *old,
484 int newfd, const char *new, int flags)
485 {
486 if (flags == 0) {
487 return renameat(oldfd, old, newfd, new);
488 }
489 errno = ENOSYS;
490 return -1;
491 }
492 #endif
493 #endif /* TARGET_NR_renameat2 */
494
495 #ifdef CONFIG_INOTIFY
496 #include <sys/inotify.h>
497 #else
498 /* Userspace can usually survive runtime without inotify */
499 #undef TARGET_NR_inotify_init
500 #undef TARGET_NR_inotify_init1
501 #undef TARGET_NR_inotify_add_watch
502 #undef TARGET_NR_inotify_rm_watch
503 #endif /* CONFIG_INOTIFY */
504
505 #if defined(TARGET_NR_prlimit64)
506 #ifndef __NR_prlimit64
507 # define __NR_prlimit64 -1
508 #endif
509 #define __NR_sys_prlimit64 __NR_prlimit64
510 /* The glibc rlimit structure may not be that used by the underlying syscall */
511 struct host_rlimit64 {
512 uint64_t rlim_cur;
513 uint64_t rlim_max;
514 };
515 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
516 const struct host_rlimit64 *, new_limit,
517 struct host_rlimit64 *, old_limit)
518 #endif
519
520
521 #if defined(TARGET_NR_timer_create)
522 /* Maximum of 32 active POSIX timers allowed at any one time. */
523 #define GUEST_TIMER_MAX 32
524 static timer_t g_posix_timers[GUEST_TIMER_MAX];
525 static int g_posix_timer_allocated[GUEST_TIMER_MAX];
526
527 static inline int next_free_host_timer(void)
528 {
529 int k;
530 for (k = 0; k < ARRAY_SIZE(g_posix_timer_allocated); k++) {
531 if (qatomic_xchg(g_posix_timer_allocated + k, 1) == 0) {
532 return k;
533 }
534 }
535 return -1;
536 }
537
538 static inline void free_host_timer_slot(int id)
539 {
540 qatomic_store_release(g_posix_timer_allocated + id, 0);
541 }
542 #endif
543
544 static inline int host_to_target_errno(int host_errno)
545 {
546 switch (host_errno) {
547 #define E(X) case X: return TARGET_##X;
548 #include "errnos.c.inc"
549 #undef E
550 default:
551 return host_errno;
552 }
553 }
554
555 static inline int target_to_host_errno(int target_errno)
556 {
557 switch (target_errno) {
558 #define E(X) case TARGET_##X: return X;
559 #include "errnos.c.inc"
560 #undef E
561 default:
562 return target_errno;
563 }
564 }
565
566 abi_long get_errno(abi_long ret)
567 {
568 if (ret == -1)
569 return -host_to_target_errno(errno);
570 else
571 return ret;
572 }
573
574 const char *target_strerror(int err)
575 {
576 if (err == QEMU_ERESTARTSYS) {
577 return "To be restarted";
578 }
579 if (err == QEMU_ESIGRETURN) {
580 return "Successful exit from sigreturn";
581 }
582
583 return strerror(target_to_host_errno(err));
584 }
585
586 static int check_zeroed_user(abi_long addr, size_t ksize, size_t usize)
587 {
588 int i;
589 uint8_t b;
590 if (usize <= ksize) {
591 return 1;
592 }
593 for (i = ksize; i < usize; i++) {
594 if (get_user_u8(b, addr + i)) {
595 return -TARGET_EFAULT;
596 }
597 if (b != 0) {
598 return 0;
599 }
600 }
601 return 1;
602 }
603
604 #define safe_syscall0(type, name) \
605 static type safe_##name(void) \
606 { \
607 return safe_syscall(__NR_##name); \
608 }
609
610 #define safe_syscall1(type, name, type1, arg1) \
611 static type safe_##name(type1 arg1) \
612 { \
613 return safe_syscall(__NR_##name, arg1); \
614 }
615
616 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
617 static type safe_##name(type1 arg1, type2 arg2) \
618 { \
619 return safe_syscall(__NR_##name, arg1, arg2); \
620 }
621
622 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
623 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
624 { \
625 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
626 }
627
628 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
629 type4, arg4) \
630 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
631 { \
632 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
633 }
634
635 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
636 type4, arg4, type5, arg5) \
637 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
638 type5 arg5) \
639 { \
640 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
641 }
642
643 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
644 type4, arg4, type5, arg5, type6, arg6) \
645 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
646 type5 arg5, type6 arg6) \
647 { \
648 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
649 }
650
651 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
652 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
653 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
654 int, flags, mode_t, mode)
655 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
656 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
657 struct rusage *, rusage)
658 #endif
659 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
660 int, options, struct rusage *, rusage)
661 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
662 safe_syscall5(int, execveat, int, dirfd, const char *, filename,
663 char **, argv, char **, envp, int, flags)
664 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
665 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
666 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
667 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
668 #endif
669 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
670 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
671 struct timespec *, tsp, const sigset_t *, sigmask,
672 size_t, sigsetsize)
673 #endif
674 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
675 int, maxevents, int, timeout, const sigset_t *, sigmask,
676 size_t, sigsetsize)
677 #if defined(__NR_futex)
678 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
679 const struct timespec *,timeout,int *,uaddr2,int,val3)
680 #endif
681 #if defined(__NR_futex_time64)
682 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
683 const struct timespec *,timeout,int *,uaddr2,int,val3)
684 #endif
685 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
686 safe_syscall2(int, kill, pid_t, pid, int, sig)
687 safe_syscall2(int, tkill, int, tid, int, sig)
688 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
689 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
690 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
691 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
692 unsigned long, pos_l, unsigned long, pos_h)
693 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
694 unsigned long, pos_l, unsigned long, pos_h)
695 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
696 socklen_t, addrlen)
697 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
698 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
699 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
700 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
701 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
702 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
703 safe_syscall2(int, flock, int, fd, int, operation)
704 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
705 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
706 const struct timespec *, uts, size_t, sigsetsize)
707 #endif
708 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
709 int, flags)
710 #if defined(TARGET_NR_nanosleep)
711 safe_syscall2(int, nanosleep, const struct timespec *, req,
712 struct timespec *, rem)
713 #endif
714 #if defined(TARGET_NR_clock_nanosleep) || \
715 defined(TARGET_NR_clock_nanosleep_time64)
716 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
717 const struct timespec *, req, struct timespec *, rem)
718 #endif
719 #ifdef __NR_ipc
720 #ifdef __s390x__
721 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
722 void *, ptr)
723 #else
724 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
725 void *, ptr, long, fifth)
726 #endif
727 #endif
728 #ifdef __NR_msgsnd
729 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
730 int, flags)
731 #endif
732 #ifdef __NR_msgrcv
733 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
734 long, msgtype, int, flags)
735 #endif
736 #ifdef __NR_semtimedop
737 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
738 unsigned, nsops, const struct timespec *, timeout)
739 #endif
740 #if defined(TARGET_NR_mq_timedsend) || \
741 defined(TARGET_NR_mq_timedsend_time64)
742 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
743 size_t, len, unsigned, prio, const struct timespec *, timeout)
744 #endif
745 #if defined(TARGET_NR_mq_timedreceive) || \
746 defined(TARGET_NR_mq_timedreceive_time64)
747 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
748 size_t, len, unsigned *, prio, const struct timespec *, timeout)
749 #endif
750 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
751 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
752 int, outfd, loff_t *, poutoff, size_t, length,
753 unsigned int, flags)
754 #endif
755
756 /* We do ioctl like this rather than via safe_syscall3 to preserve the
757 * "third argument might be integer or pointer or not present" behaviour of
758 * the libc function.
759 */
760 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
761 /* Similarly for fcntl. Note that callers must always:
762 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
763 * use the flock64 struct rather than unsuffixed flock
764 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
765 */
766 #ifdef __NR_fcntl64
767 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
768 #else
769 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
770 #endif
771
772 static inline int host_to_target_sock_type(int host_type)
773 {
774 int target_type;
775
776 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
777 case SOCK_DGRAM:
778 target_type = TARGET_SOCK_DGRAM;
779 break;
780 case SOCK_STREAM:
781 target_type = TARGET_SOCK_STREAM;
782 break;
783 default:
784 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
785 break;
786 }
787
788 #if defined(SOCK_CLOEXEC)
789 if (host_type & SOCK_CLOEXEC) {
790 target_type |= TARGET_SOCK_CLOEXEC;
791 }
792 #endif
793
794 #if defined(SOCK_NONBLOCK)
795 if (host_type & SOCK_NONBLOCK) {
796 target_type |= TARGET_SOCK_NONBLOCK;
797 }
798 #endif
799
800 return target_type;
801 }
802
803 static abi_ulong target_brk, initial_target_brk;
804
805 void target_set_brk(abi_ulong new_brk)
806 {
807 target_brk = TARGET_PAGE_ALIGN(new_brk);
808 initial_target_brk = target_brk;
809 }
810
811 /* do_brk() must return target values and target errnos. */
812 abi_long do_brk(abi_ulong brk_val)
813 {
814 abi_long mapped_addr;
815 abi_ulong new_brk;
816 abi_ulong old_brk;
817
818 /* brk pointers are always untagged */
819
820 /* do not allow to shrink below initial brk value */
821 if (brk_val < initial_target_brk) {
822 return target_brk;
823 }
824
825 new_brk = TARGET_PAGE_ALIGN(brk_val);
826 old_brk = TARGET_PAGE_ALIGN(target_brk);
827
828 /* new and old target_brk might be on the same page */
829 if (new_brk == old_brk) {
830 target_brk = brk_val;
831 return target_brk;
832 }
833
834 /* Release heap if necessary */
835 if (new_brk < old_brk) {
836 target_munmap(new_brk, old_brk - new_brk);
837
838 target_brk = brk_val;
839 return target_brk;
840 }
841
842 mapped_addr = target_mmap(old_brk, new_brk - old_brk,
843 PROT_READ | PROT_WRITE,
844 MAP_FIXED_NOREPLACE | MAP_ANON | MAP_PRIVATE,
845 -1, 0);
846
847 if (mapped_addr == old_brk) {
848 target_brk = brk_val;
849 return target_brk;
850 }
851
852 #if defined(TARGET_ALPHA)
853 /* We (partially) emulate OSF/1 on Alpha, which requires we
854 return a proper errno, not an unchanged brk value. */
855 return -TARGET_ENOMEM;
856 #endif
857 /* For everything else, return the previous break. */
858 return target_brk;
859 }
860
861 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
862 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
863 static inline abi_long copy_from_user_fdset(fd_set *fds,
864 abi_ulong target_fds_addr,
865 int n)
866 {
867 int i, nw, j, k;
868 abi_ulong b, *target_fds;
869
870 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
871 if (!(target_fds = lock_user(VERIFY_READ,
872 target_fds_addr,
873 sizeof(abi_ulong) * nw,
874 1)))
875 return -TARGET_EFAULT;
876
877 FD_ZERO(fds);
878 k = 0;
879 for (i = 0; i < nw; i++) {
880 /* grab the abi_ulong */
881 __get_user(b, &target_fds[i]);
882 for (j = 0; j < TARGET_ABI_BITS; j++) {
883 /* check the bit inside the abi_ulong */
884 if ((b >> j) & 1)
885 FD_SET(k, fds);
886 k++;
887 }
888 }
889
890 unlock_user(target_fds, target_fds_addr, 0);
891
892 return 0;
893 }
894
895 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
896 abi_ulong target_fds_addr,
897 int n)
898 {
899 if (target_fds_addr) {
900 if (copy_from_user_fdset(fds, target_fds_addr, n))
901 return -TARGET_EFAULT;
902 *fds_ptr = fds;
903 } else {
904 *fds_ptr = NULL;
905 }
906 return 0;
907 }
908
909 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
910 const fd_set *fds,
911 int n)
912 {
913 int i, nw, j, k;
914 abi_long v;
915 abi_ulong *target_fds;
916
917 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
918 if (!(target_fds = lock_user(VERIFY_WRITE,
919 target_fds_addr,
920 sizeof(abi_ulong) * nw,
921 0)))
922 return -TARGET_EFAULT;
923
924 k = 0;
925 for (i = 0; i < nw; i++) {
926 v = 0;
927 for (j = 0; j < TARGET_ABI_BITS; j++) {
928 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
929 k++;
930 }
931 __put_user(v, &target_fds[i]);
932 }
933
934 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
935
936 return 0;
937 }
938 #endif
939
940 #if defined(__alpha__)
941 #define HOST_HZ 1024
942 #else
943 #define HOST_HZ 100
944 #endif
945
946 static inline abi_long host_to_target_clock_t(long ticks)
947 {
948 #if HOST_HZ == TARGET_HZ
949 return ticks;
950 #else
951 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
952 #endif
953 }
954
955 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
956 const struct rusage *rusage)
957 {
958 struct target_rusage *target_rusage;
959
960 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
961 return -TARGET_EFAULT;
962 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
963 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
964 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
965 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
966 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
967 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
968 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
969 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
970 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
971 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
972 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
973 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
974 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
975 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
976 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
977 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
978 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
979 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
980 unlock_user_struct(target_rusage, target_addr, 1);
981
982 return 0;
983 }
984
985 #ifdef TARGET_NR_setrlimit
986 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
987 {
988 abi_ulong target_rlim_swap;
989 rlim_t result;
990
991 target_rlim_swap = tswapal(target_rlim);
992 if (target_rlim_swap == TARGET_RLIM_INFINITY)
993 return RLIM_INFINITY;
994
995 result = target_rlim_swap;
996 if (target_rlim_swap != (rlim_t)result)
997 return RLIM_INFINITY;
998
999 return result;
1000 }
1001 #endif
1002
1003 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
1004 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1005 {
1006 abi_ulong target_rlim_swap;
1007 abi_ulong result;
1008
1009 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1010 target_rlim_swap = TARGET_RLIM_INFINITY;
1011 else
1012 target_rlim_swap = rlim;
1013 result = tswapal(target_rlim_swap);
1014
1015 return result;
1016 }
1017 #endif
1018
1019 static inline int target_to_host_resource(int code)
1020 {
1021 switch (code) {
1022 case TARGET_RLIMIT_AS:
1023 return RLIMIT_AS;
1024 case TARGET_RLIMIT_CORE:
1025 return RLIMIT_CORE;
1026 case TARGET_RLIMIT_CPU:
1027 return RLIMIT_CPU;
1028 case TARGET_RLIMIT_DATA:
1029 return RLIMIT_DATA;
1030 case TARGET_RLIMIT_FSIZE:
1031 return RLIMIT_FSIZE;
1032 case TARGET_RLIMIT_LOCKS:
1033 return RLIMIT_LOCKS;
1034 case TARGET_RLIMIT_MEMLOCK:
1035 return RLIMIT_MEMLOCK;
1036 case TARGET_RLIMIT_MSGQUEUE:
1037 return RLIMIT_MSGQUEUE;
1038 case TARGET_RLIMIT_NICE:
1039 return RLIMIT_NICE;
1040 case TARGET_RLIMIT_NOFILE:
1041 return RLIMIT_NOFILE;
1042 case TARGET_RLIMIT_NPROC:
1043 return RLIMIT_NPROC;
1044 case TARGET_RLIMIT_RSS:
1045 return RLIMIT_RSS;
1046 case TARGET_RLIMIT_RTPRIO:
1047 return RLIMIT_RTPRIO;
1048 #ifdef RLIMIT_RTTIME
1049 case TARGET_RLIMIT_RTTIME:
1050 return RLIMIT_RTTIME;
1051 #endif
1052 case TARGET_RLIMIT_SIGPENDING:
1053 return RLIMIT_SIGPENDING;
1054 case TARGET_RLIMIT_STACK:
1055 return RLIMIT_STACK;
1056 default:
1057 return code;
1058 }
1059 }
1060
1061 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1062 abi_ulong target_tv_addr)
1063 {
1064 struct target_timeval *target_tv;
1065
1066 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1067 return -TARGET_EFAULT;
1068 }
1069
1070 __get_user(tv->tv_sec, &target_tv->tv_sec);
1071 __get_user(tv->tv_usec, &target_tv->tv_usec);
1072
1073 unlock_user_struct(target_tv, target_tv_addr, 0);
1074
1075 return 0;
1076 }
1077
1078 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1079 const struct timeval *tv)
1080 {
1081 struct target_timeval *target_tv;
1082
1083 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1084 return -TARGET_EFAULT;
1085 }
1086
1087 __put_user(tv->tv_sec, &target_tv->tv_sec);
1088 __put_user(tv->tv_usec, &target_tv->tv_usec);
1089
1090 unlock_user_struct(target_tv, target_tv_addr, 1);
1091
1092 return 0;
1093 }
1094
1095 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1096 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1097 abi_ulong target_tv_addr)
1098 {
1099 struct target__kernel_sock_timeval *target_tv;
1100
1101 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1102 return -TARGET_EFAULT;
1103 }
1104
1105 __get_user(tv->tv_sec, &target_tv->tv_sec);
1106 __get_user(tv->tv_usec, &target_tv->tv_usec);
1107
1108 unlock_user_struct(target_tv, target_tv_addr, 0);
1109
1110 return 0;
1111 }
1112 #endif
1113
1114 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1115 const struct timeval *tv)
1116 {
1117 struct target__kernel_sock_timeval *target_tv;
1118
1119 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1120 return -TARGET_EFAULT;
1121 }
1122
1123 __put_user(tv->tv_sec, &target_tv->tv_sec);
1124 __put_user(tv->tv_usec, &target_tv->tv_usec);
1125
1126 unlock_user_struct(target_tv, target_tv_addr, 1);
1127
1128 return 0;
1129 }
1130
1131 #if defined(TARGET_NR_futex) || \
1132 defined(TARGET_NR_rt_sigtimedwait) || \
1133 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1134 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1135 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1136 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1137 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1138 defined(TARGET_NR_timer_settime) || \
1139 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1140 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1141 abi_ulong target_addr)
1142 {
1143 struct target_timespec *target_ts;
1144
1145 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1146 return -TARGET_EFAULT;
1147 }
1148 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1149 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1150 unlock_user_struct(target_ts, target_addr, 0);
1151 return 0;
1152 }
1153 #endif
1154
1155 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1156 defined(TARGET_NR_timer_settime64) || \
1157 defined(TARGET_NR_mq_timedsend_time64) || \
1158 defined(TARGET_NR_mq_timedreceive_time64) || \
1159 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1160 defined(TARGET_NR_clock_nanosleep_time64) || \
1161 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1162 defined(TARGET_NR_utimensat) || \
1163 defined(TARGET_NR_utimensat_time64) || \
1164 defined(TARGET_NR_semtimedop_time64) || \
1165 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1166 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1167 abi_ulong target_addr)
1168 {
1169 struct target__kernel_timespec *target_ts;
1170
1171 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1172 return -TARGET_EFAULT;
1173 }
1174 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1175 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1176 /* in 32bit mode, this drops the padding */
1177 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1178 unlock_user_struct(target_ts, target_addr, 0);
1179 return 0;
1180 }
1181 #endif
1182
1183 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1184 struct timespec *host_ts)
1185 {
1186 struct target_timespec *target_ts;
1187
1188 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1189 return -TARGET_EFAULT;
1190 }
1191 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1192 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1193 unlock_user_struct(target_ts, target_addr, 1);
1194 return 0;
1195 }
1196
1197 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1198 struct timespec *host_ts)
1199 {
1200 struct target__kernel_timespec *target_ts;
1201
1202 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1203 return -TARGET_EFAULT;
1204 }
1205 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1206 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1207 unlock_user_struct(target_ts, target_addr, 1);
1208 return 0;
1209 }
1210
1211 #if defined(TARGET_NR_gettimeofday)
1212 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1213 struct timezone *tz)
1214 {
1215 struct target_timezone *target_tz;
1216
1217 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1218 return -TARGET_EFAULT;
1219 }
1220
1221 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1222 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1223
1224 unlock_user_struct(target_tz, target_tz_addr, 1);
1225
1226 return 0;
1227 }
1228 #endif
1229
1230 #if defined(TARGET_NR_settimeofday)
1231 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1232 abi_ulong target_tz_addr)
1233 {
1234 struct target_timezone *target_tz;
1235
1236 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1237 return -TARGET_EFAULT;
1238 }
1239
1240 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1241 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1242
1243 unlock_user_struct(target_tz, target_tz_addr, 0);
1244
1245 return 0;
1246 }
1247 #endif
1248
1249 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1250 #include <mqueue.h>
1251
1252 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1253 abi_ulong target_mq_attr_addr)
1254 {
1255 struct target_mq_attr *target_mq_attr;
1256
1257 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1258 target_mq_attr_addr, 1))
1259 return -TARGET_EFAULT;
1260
1261 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1262 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1263 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1264 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1265
1266 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1267
1268 return 0;
1269 }
1270
1271 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1272 const struct mq_attr *attr)
1273 {
1274 struct target_mq_attr *target_mq_attr;
1275
1276 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1277 target_mq_attr_addr, 0))
1278 return -TARGET_EFAULT;
1279
1280 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1281 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1282 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1283 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1284
1285 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1286
1287 return 0;
1288 }
1289 #endif
1290
1291 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1292 /* do_select() must return target values and target errnos. */
1293 static abi_long do_select(int n,
1294 abi_ulong rfd_addr, abi_ulong wfd_addr,
1295 abi_ulong efd_addr, abi_ulong target_tv_addr)
1296 {
1297 fd_set rfds, wfds, efds;
1298 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1299 struct timeval tv;
1300 struct timespec ts, *ts_ptr;
1301 abi_long ret;
1302
1303 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1304 if (ret) {
1305 return ret;
1306 }
1307 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1308 if (ret) {
1309 return ret;
1310 }
1311 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1312 if (ret) {
1313 return ret;
1314 }
1315
1316 if (target_tv_addr) {
1317 if (copy_from_user_timeval(&tv, target_tv_addr))
1318 return -TARGET_EFAULT;
1319 ts.tv_sec = tv.tv_sec;
1320 ts.tv_nsec = tv.tv_usec * 1000;
1321 ts_ptr = &ts;
1322 } else {
1323 ts_ptr = NULL;
1324 }
1325
1326 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1327 ts_ptr, NULL));
1328
1329 if (!is_error(ret)) {
1330 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1331 return -TARGET_EFAULT;
1332 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1333 return -TARGET_EFAULT;
1334 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1335 return -TARGET_EFAULT;
1336
1337 if (target_tv_addr) {
1338 tv.tv_sec = ts.tv_sec;
1339 tv.tv_usec = ts.tv_nsec / 1000;
1340 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1341 return -TARGET_EFAULT;
1342 }
1343 }
1344 }
1345
1346 return ret;
1347 }
1348
1349 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1350 static abi_long do_old_select(abi_ulong arg1)
1351 {
1352 struct target_sel_arg_struct *sel;
1353 abi_ulong inp, outp, exp, tvp;
1354 long nsel;
1355
1356 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1357 return -TARGET_EFAULT;
1358 }
1359
1360 nsel = tswapal(sel->n);
1361 inp = tswapal(sel->inp);
1362 outp = tswapal(sel->outp);
1363 exp = tswapal(sel->exp);
1364 tvp = tswapal(sel->tvp);
1365
1366 unlock_user_struct(sel, arg1, 0);
1367
1368 return do_select(nsel, inp, outp, exp, tvp);
1369 }
1370 #endif
1371 #endif
1372
1373 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1374 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1375 abi_long arg4, abi_long arg5, abi_long arg6,
1376 bool time64)
1377 {
1378 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1379 fd_set rfds, wfds, efds;
1380 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1381 struct timespec ts, *ts_ptr;
1382 abi_long ret;
1383
1384 /*
1385 * The 6th arg is actually two args smashed together,
1386 * so we cannot use the C library.
1387 */
1388 struct {
1389 sigset_t *set;
1390 size_t size;
1391 } sig, *sig_ptr;
1392
1393 abi_ulong arg_sigset, arg_sigsize, *arg7;
1394
1395 n = arg1;
1396 rfd_addr = arg2;
1397 wfd_addr = arg3;
1398 efd_addr = arg4;
1399 ts_addr = arg5;
1400
1401 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1402 if (ret) {
1403 return ret;
1404 }
1405 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1406 if (ret) {
1407 return ret;
1408 }
1409 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1410 if (ret) {
1411 return ret;
1412 }
1413
1414 /*
1415 * This takes a timespec, and not a timeval, so we cannot
1416 * use the do_select() helper ...
1417 */
1418 if (ts_addr) {
1419 if (time64) {
1420 if (target_to_host_timespec64(&ts, ts_addr)) {
1421 return -TARGET_EFAULT;
1422 }
1423 } else {
1424 if (target_to_host_timespec(&ts, ts_addr)) {
1425 return -TARGET_EFAULT;
1426 }
1427 }
1428 ts_ptr = &ts;
1429 } else {
1430 ts_ptr = NULL;
1431 }
1432
1433 /* Extract the two packed args for the sigset */
1434 sig_ptr = NULL;
1435 if (arg6) {
1436 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1437 if (!arg7) {
1438 return -TARGET_EFAULT;
1439 }
1440 arg_sigset = tswapal(arg7[0]);
1441 arg_sigsize = tswapal(arg7[1]);
1442 unlock_user(arg7, arg6, 0);
1443
1444 if (arg_sigset) {
1445 ret = process_sigsuspend_mask(&sig.set, arg_sigset, arg_sigsize);
1446 if (ret != 0) {
1447 return ret;
1448 }
1449 sig_ptr = &sig;
1450 sig.size = SIGSET_T_SIZE;
1451 }
1452 }
1453
1454 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1455 ts_ptr, sig_ptr));
1456
1457 if (sig_ptr) {
1458 finish_sigsuspend_mask(ret);
1459 }
1460
1461 if (!is_error(ret)) {
1462 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1463 return -TARGET_EFAULT;
1464 }
1465 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1466 return -TARGET_EFAULT;
1467 }
1468 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1469 return -TARGET_EFAULT;
1470 }
1471 if (time64) {
1472 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1473 return -TARGET_EFAULT;
1474 }
1475 } else {
1476 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1477 return -TARGET_EFAULT;
1478 }
1479 }
1480 }
1481 return ret;
1482 }
1483 #endif
1484
1485 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1486 defined(TARGET_NR_ppoll_time64)
1487 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1488 abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1489 {
1490 struct target_pollfd *target_pfd;
1491 unsigned int nfds = arg2;
1492 struct pollfd *pfd;
1493 unsigned int i;
1494 abi_long ret;
1495
1496 pfd = NULL;
1497 target_pfd = NULL;
1498 if (nfds) {
1499 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1500 return -TARGET_EINVAL;
1501 }
1502 target_pfd = lock_user(VERIFY_WRITE, arg1,
1503 sizeof(struct target_pollfd) * nfds, 1);
1504 if (!target_pfd) {
1505 return -TARGET_EFAULT;
1506 }
1507
1508 pfd = alloca(sizeof(struct pollfd) * nfds);
1509 for (i = 0; i < nfds; i++) {
1510 pfd[i].fd = tswap32(target_pfd[i].fd);
1511 pfd[i].events = tswap16(target_pfd[i].events);
1512 }
1513 }
1514 if (ppoll) {
1515 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1516 sigset_t *set = NULL;
1517
1518 if (arg3) {
1519 if (time64) {
1520 if (target_to_host_timespec64(timeout_ts, arg3)) {
1521 unlock_user(target_pfd, arg1, 0);
1522 return -TARGET_EFAULT;
1523 }
1524 } else {
1525 if (target_to_host_timespec(timeout_ts, arg3)) {
1526 unlock_user(target_pfd, arg1, 0);
1527 return -TARGET_EFAULT;
1528 }
1529 }
1530 } else {
1531 timeout_ts = NULL;
1532 }
1533
1534 if (arg4) {
1535 ret = process_sigsuspend_mask(&set, arg4, arg5);
1536 if (ret != 0) {
1537 unlock_user(target_pfd, arg1, 0);
1538 return ret;
1539 }
1540 }
1541
1542 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1543 set, SIGSET_T_SIZE));
1544
1545 if (set) {
1546 finish_sigsuspend_mask(ret);
1547 }
1548 if (!is_error(ret) && arg3) {
1549 if (time64) {
1550 if (host_to_target_timespec64(arg3, timeout_ts)) {
1551 return -TARGET_EFAULT;
1552 }
1553 } else {
1554 if (host_to_target_timespec(arg3, timeout_ts)) {
1555 return -TARGET_EFAULT;
1556 }
1557 }
1558 }
1559 } else {
1560 struct timespec ts, *pts;
1561
1562 if (arg3 >= 0) {
1563 /* Convert ms to secs, ns */
1564 ts.tv_sec = arg3 / 1000;
1565 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1566 pts = &ts;
1567 } else {
1568 /* -ve poll() timeout means "infinite" */
1569 pts = NULL;
1570 }
1571 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1572 }
1573
1574 if (!is_error(ret)) {
1575 for (i = 0; i < nfds; i++) {
1576 target_pfd[i].revents = tswap16(pfd[i].revents);
1577 }
1578 }
1579 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1580 return ret;
1581 }
1582 #endif
1583
1584 static abi_long do_pipe(CPUArchState *cpu_env, abi_ulong pipedes,
1585 int flags, int is_pipe2)
1586 {
1587 int host_pipe[2];
1588 abi_long ret;
1589 ret = pipe2(host_pipe, flags);
1590
1591 if (is_error(ret))
1592 return get_errno(ret);
1593
1594 /* Several targets have special calling conventions for the original
1595 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1596 if (!is_pipe2) {
1597 #if defined(TARGET_ALPHA)
1598 cpu_env->ir[IR_A4] = host_pipe[1];
1599 return host_pipe[0];
1600 #elif defined(TARGET_MIPS)
1601 cpu_env->active_tc.gpr[3] = host_pipe[1];
1602 return host_pipe[0];
1603 #elif defined(TARGET_SH4)
1604 cpu_env->gregs[1] = host_pipe[1];
1605 return host_pipe[0];
1606 #elif defined(TARGET_SPARC)
1607 cpu_env->regwptr[1] = host_pipe[1];
1608 return host_pipe[0];
1609 #endif
1610 }
1611
1612 if (put_user_s32(host_pipe[0], pipedes)
1613 || put_user_s32(host_pipe[1], pipedes + sizeof(abi_int)))
1614 return -TARGET_EFAULT;
1615 return get_errno(ret);
1616 }
1617
1618 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1619 abi_ulong target_addr,
1620 socklen_t len)
1621 {
1622 struct target_ip_mreqn *target_smreqn;
1623
1624 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1625 if (!target_smreqn)
1626 return -TARGET_EFAULT;
1627 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1628 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1629 if (len == sizeof(struct target_ip_mreqn))
1630 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1631 unlock_user(target_smreqn, target_addr, 0);
1632
1633 return 0;
1634 }
1635
1636 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1637 abi_ulong target_addr,
1638 socklen_t len)
1639 {
1640 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1641 sa_family_t sa_family;
1642 struct target_sockaddr *target_saddr;
1643
1644 if (fd_trans_target_to_host_addr(fd)) {
1645 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1646 }
1647
1648 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1649 if (!target_saddr)
1650 return -TARGET_EFAULT;
1651
1652 sa_family = tswap16(target_saddr->sa_family);
1653
1654 /* Oops. The caller might send a incomplete sun_path; sun_path
1655 * must be terminated by \0 (see the manual page), but
1656 * unfortunately it is quite common to specify sockaddr_un
1657 * length as "strlen(x->sun_path)" while it should be
1658 * "strlen(...) + 1". We'll fix that here if needed.
1659 * Linux kernel has a similar feature.
1660 */
1661
1662 if (sa_family == AF_UNIX) {
1663 if (len < unix_maxlen && len > 0) {
1664 char *cp = (char*)target_saddr;
1665
1666 if ( cp[len-1] && !cp[len] )
1667 len++;
1668 }
1669 if (len > unix_maxlen)
1670 len = unix_maxlen;
1671 }
1672
1673 memcpy(addr, target_saddr, len);
1674 addr->sa_family = sa_family;
1675 if (sa_family == AF_NETLINK) {
1676 struct sockaddr_nl *nladdr;
1677
1678 nladdr = (struct sockaddr_nl *)addr;
1679 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1680 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1681 } else if (sa_family == AF_PACKET) {
1682 struct target_sockaddr_ll *lladdr;
1683
1684 lladdr = (struct target_sockaddr_ll *)addr;
1685 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1686 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1687 } else if (sa_family == AF_INET6) {
1688 struct sockaddr_in6 *in6addr;
1689
1690 in6addr = (struct sockaddr_in6 *)addr;
1691 in6addr->sin6_scope_id = tswap32(in6addr->sin6_scope_id);
1692 }
1693 unlock_user(target_saddr, target_addr, 0);
1694
1695 return 0;
1696 }
1697
1698 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1699 struct sockaddr *addr,
1700 socklen_t len)
1701 {
1702 struct target_sockaddr *target_saddr;
1703
1704 if (len == 0) {
1705 return 0;
1706 }
1707 assert(addr);
1708
1709 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1710 if (!target_saddr)
1711 return -TARGET_EFAULT;
1712 memcpy(target_saddr, addr, len);
1713 if (len >= offsetof(struct target_sockaddr, sa_family) +
1714 sizeof(target_saddr->sa_family)) {
1715 target_saddr->sa_family = tswap16(addr->sa_family);
1716 }
1717 if (addr->sa_family == AF_NETLINK &&
1718 len >= sizeof(struct target_sockaddr_nl)) {
1719 struct target_sockaddr_nl *target_nl =
1720 (struct target_sockaddr_nl *)target_saddr;
1721 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1722 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1723 } else if (addr->sa_family == AF_PACKET) {
1724 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1725 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1726 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1727 } else if (addr->sa_family == AF_INET6 &&
1728 len >= sizeof(struct target_sockaddr_in6)) {
1729 struct target_sockaddr_in6 *target_in6 =
1730 (struct target_sockaddr_in6 *)target_saddr;
1731 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1732 }
1733 unlock_user(target_saddr, target_addr, len);
1734
1735 return 0;
1736 }
1737
1738 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1739 struct target_msghdr *target_msgh)
1740 {
1741 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1742 abi_long msg_controllen;
1743 abi_ulong target_cmsg_addr;
1744 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1745 socklen_t space = 0;
1746
1747 msg_controllen = tswapal(target_msgh->msg_controllen);
1748 if (msg_controllen < sizeof (struct target_cmsghdr))
1749 goto the_end;
1750 target_cmsg_addr = tswapal(target_msgh->msg_control);
1751 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1752 target_cmsg_start = target_cmsg;
1753 if (!target_cmsg)
1754 return -TARGET_EFAULT;
1755
1756 while (cmsg && target_cmsg) {
1757 void *data = CMSG_DATA(cmsg);
1758 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1759
1760 int len = tswapal(target_cmsg->cmsg_len)
1761 - sizeof(struct target_cmsghdr);
1762
1763 space += CMSG_SPACE(len);
1764 if (space > msgh->msg_controllen) {
1765 space -= CMSG_SPACE(len);
1766 /* This is a QEMU bug, since we allocated the payload
1767 * area ourselves (unlike overflow in host-to-target
1768 * conversion, which is just the guest giving us a buffer
1769 * that's too small). It can't happen for the payload types
1770 * we currently support; if it becomes an issue in future
1771 * we would need to improve our allocation strategy to
1772 * something more intelligent than "twice the size of the
1773 * target buffer we're reading from".
1774 */
1775 qemu_log_mask(LOG_UNIMP,
1776 ("Unsupported ancillary data %d/%d: "
1777 "unhandled msg size\n"),
1778 tswap32(target_cmsg->cmsg_level),
1779 tswap32(target_cmsg->cmsg_type));
1780 break;
1781 }
1782
1783 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1784 cmsg->cmsg_level = SOL_SOCKET;
1785 } else {
1786 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1787 }
1788 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1789 cmsg->cmsg_len = CMSG_LEN(len);
1790
1791 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1792 int *fd = (int *)data;
1793 int *target_fd = (int *)target_data;
1794 int i, numfds = len / sizeof(int);
1795
1796 for (i = 0; i < numfds; i++) {
1797 __get_user(fd[i], target_fd + i);
1798 }
1799 } else if (cmsg->cmsg_level == SOL_SOCKET
1800 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1801 struct ucred *cred = (struct ucred *)data;
1802 struct target_ucred *target_cred =
1803 (struct target_ucred *)target_data;
1804
1805 __get_user(cred->pid, &target_cred->pid);
1806 __get_user(cred->uid, &target_cred->uid);
1807 __get_user(cred->gid, &target_cred->gid);
1808 } else if (cmsg->cmsg_level == SOL_ALG) {
1809 uint32_t *dst = (uint32_t *)data;
1810
1811 memcpy(dst, target_data, len);
1812 /* fix endianness of first 32-bit word */
1813 if (len >= sizeof(uint32_t)) {
1814 *dst = tswap32(*dst);
1815 }
1816 } else {
1817 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1818 cmsg->cmsg_level, cmsg->cmsg_type);
1819 memcpy(data, target_data, len);
1820 }
1821
1822 cmsg = CMSG_NXTHDR(msgh, cmsg);
1823 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1824 target_cmsg_start);
1825 }
1826 unlock_user(target_cmsg, target_cmsg_addr, 0);
1827 the_end:
1828 msgh->msg_controllen = space;
1829 return 0;
1830 }
1831
1832 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1833 struct msghdr *msgh)
1834 {
1835 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1836 abi_long msg_controllen;
1837 abi_ulong target_cmsg_addr;
1838 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1839 socklen_t space = 0;
1840
1841 msg_controllen = tswapal(target_msgh->msg_controllen);
1842 if (msg_controllen < sizeof (struct target_cmsghdr))
1843 goto the_end;
1844 target_cmsg_addr = tswapal(target_msgh->msg_control);
1845 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1846 target_cmsg_start = target_cmsg;
1847 if (!target_cmsg)
1848 return -TARGET_EFAULT;
1849
1850 while (cmsg && target_cmsg) {
1851 void *data = CMSG_DATA(cmsg);
1852 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1853
1854 int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1855 int tgt_len, tgt_space;
1856
1857 /* We never copy a half-header but may copy half-data;
1858 * this is Linux's behaviour in put_cmsg(). Note that
1859 * truncation here is a guest problem (which we report
1860 * to the guest via the CTRUNC bit), unlike truncation
1861 * in target_to_host_cmsg, which is a QEMU bug.
1862 */
1863 if (msg_controllen < sizeof(struct target_cmsghdr)) {
1864 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1865 break;
1866 }
1867
1868 if (cmsg->cmsg_level == SOL_SOCKET) {
1869 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1870 } else {
1871 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1872 }
1873 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1874
1875 /* Payload types which need a different size of payload on
1876 * the target must adjust tgt_len here.
1877 */
1878 tgt_len = len;
1879 switch (cmsg->cmsg_level) {
1880 case SOL_SOCKET:
1881 switch (cmsg->cmsg_type) {
1882 case SO_TIMESTAMP:
1883 tgt_len = sizeof(struct target_timeval);
1884 break;
1885 default:
1886 break;
1887 }
1888 break;
1889 default:
1890 break;
1891 }
1892
1893 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1894 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1895 tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1896 }
1897
1898 /* We must now copy-and-convert len bytes of payload
1899 * into tgt_len bytes of destination space. Bear in mind
1900 * that in both source and destination we may be dealing
1901 * with a truncated value!
1902 */
1903 switch (cmsg->cmsg_level) {
1904 case SOL_SOCKET:
1905 switch (cmsg->cmsg_type) {
1906 case SCM_RIGHTS:
1907 {
1908 int *fd = (int *)data;
1909 int *target_fd = (int *)target_data;
1910 int i, numfds = tgt_len / sizeof(int);
1911
1912 for (i = 0; i < numfds; i++) {
1913 __put_user(fd[i], target_fd + i);
1914 }
1915 break;
1916 }
1917 case SO_TIMESTAMP:
1918 {
1919 struct timeval *tv = (struct timeval *)data;
1920 struct target_timeval *target_tv =
1921 (struct target_timeval *)target_data;
1922
1923 if (len != sizeof(struct timeval) ||
1924 tgt_len != sizeof(struct target_timeval)) {
1925 goto unimplemented;
1926 }
1927
1928 /* copy struct timeval to target */
1929 __put_user(tv->tv_sec, &target_tv->tv_sec);
1930 __put_user(tv->tv_usec, &target_tv->tv_usec);
1931 break;
1932 }
1933 case SCM_CREDENTIALS:
1934 {
1935 struct ucred *cred = (struct ucred *)data;
1936 struct target_ucred *target_cred =
1937 (struct target_ucred *)target_data;
1938
1939 __put_user(cred->pid, &target_cred->pid);
1940 __put_user(cred->uid, &target_cred->uid);
1941 __put_user(cred->gid, &target_cred->gid);
1942 break;
1943 }
1944 default:
1945 goto unimplemented;
1946 }
1947 break;
1948
1949 case SOL_IP:
1950 switch (cmsg->cmsg_type) {
1951 case IP_TTL:
1952 {
1953 uint32_t *v = (uint32_t *)data;
1954 uint32_t *t_int = (uint32_t *)target_data;
1955
1956 if (len != sizeof(uint32_t) ||
1957 tgt_len != sizeof(uint32_t)) {
1958 goto unimplemented;
1959 }
1960 __put_user(*v, t_int);
1961 break;
1962 }
1963 case IP_RECVERR:
1964 {
1965 struct errhdr_t {
1966 struct sock_extended_err ee;
1967 struct sockaddr_in offender;
1968 };
1969 struct errhdr_t *errh = (struct errhdr_t *)data;
1970 struct errhdr_t *target_errh =
1971 (struct errhdr_t *)target_data;
1972
1973 if (len != sizeof(struct errhdr_t) ||
1974 tgt_len != sizeof(struct errhdr_t)) {
1975 goto unimplemented;
1976 }
1977 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1978 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1979 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1980 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1981 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1982 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1983 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1984 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1985 (void *) &errh->offender, sizeof(errh->offender));
1986 break;
1987 }
1988 default:
1989 goto unimplemented;
1990 }
1991 break;
1992
1993 case SOL_IPV6:
1994 switch (cmsg->cmsg_type) {
1995 case IPV6_HOPLIMIT:
1996 {
1997 uint32_t *v = (uint32_t *)data;
1998 uint32_t *t_int = (uint32_t *)target_data;
1999
2000 if (len != sizeof(uint32_t) ||
2001 tgt_len != sizeof(uint32_t)) {
2002 goto unimplemented;
2003 }
2004 __put_user(*v, t_int);
2005 break;
2006 }
2007 case IPV6_RECVERR:
2008 {
2009 struct errhdr6_t {
2010 struct sock_extended_err ee;
2011 struct sockaddr_in6 offender;
2012 };
2013 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2014 struct errhdr6_t *target_errh =
2015 (struct errhdr6_t *)target_data;
2016
2017 if (len != sizeof(struct errhdr6_t) ||
2018 tgt_len != sizeof(struct errhdr6_t)) {
2019 goto unimplemented;
2020 }
2021 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2022 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2023 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
2024 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2025 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2026 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2027 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2028 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2029 (void *) &errh->offender, sizeof(errh->offender));
2030 break;
2031 }
2032 default:
2033 goto unimplemented;
2034 }
2035 break;
2036
2037 default:
2038 unimplemented:
2039 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2040 cmsg->cmsg_level, cmsg->cmsg_type);
2041 memcpy(target_data, data, MIN(len, tgt_len));
2042 if (tgt_len > len) {
2043 memset(target_data + len, 0, tgt_len - len);
2044 }
2045 }
2046
2047 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2048 tgt_space = TARGET_CMSG_SPACE(tgt_len);
2049 if (msg_controllen < tgt_space) {
2050 tgt_space = msg_controllen;
2051 }
2052 msg_controllen -= tgt_space;
2053 space += tgt_space;
2054 cmsg = CMSG_NXTHDR(msgh, cmsg);
2055 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2056 target_cmsg_start);
2057 }
2058 unlock_user(target_cmsg, target_cmsg_addr, space);
2059 the_end:
2060 target_msgh->msg_controllen = tswapal(space);
2061 return 0;
2062 }
2063
2064 /* do_setsockopt() Must return target values and target errnos. */
2065 static abi_long do_setsockopt(int sockfd, int level, int optname,
2066 abi_ulong optval_addr, socklen_t optlen)
2067 {
2068 abi_long ret;
2069 int val;
2070 struct ip_mreqn *ip_mreq;
2071 struct ip_mreq_source *ip_mreq_source;
2072
2073 switch(level) {
2074 case SOL_TCP:
2075 case SOL_UDP:
2076 /* TCP and UDP options all take an 'int' value. */
2077 if (optlen < sizeof(uint32_t))
2078 return -TARGET_EINVAL;
2079
2080 if (get_user_u32(val, optval_addr))
2081 return -TARGET_EFAULT;
2082 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2083 break;
2084 case SOL_IP:
2085 switch(optname) {
2086 case IP_TOS:
2087 case IP_TTL:
2088 case IP_HDRINCL:
2089 case IP_ROUTER_ALERT:
2090 case IP_RECVOPTS:
2091 case IP_RETOPTS:
2092 case IP_PKTINFO:
2093 case IP_MTU_DISCOVER:
2094 case IP_RECVERR:
2095 case IP_RECVTTL:
2096 case IP_RECVTOS:
2097 #ifdef IP_FREEBIND
2098 case IP_FREEBIND:
2099 #endif
2100 case IP_MULTICAST_TTL:
2101 case IP_MULTICAST_LOOP:
2102 val = 0;
2103 if (optlen >= sizeof(uint32_t)) {
2104 if (get_user_u32(val, optval_addr))
2105 return -TARGET_EFAULT;
2106 } else if (optlen >= 1) {
2107 if (get_user_u8(val, optval_addr))
2108 return -TARGET_EFAULT;
2109 }
2110 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2111 break;
2112 case IP_ADD_MEMBERSHIP:
2113 case IP_DROP_MEMBERSHIP:
2114 if (optlen < sizeof (struct target_ip_mreq) ||
2115 optlen > sizeof (struct target_ip_mreqn))
2116 return -TARGET_EINVAL;
2117
2118 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2119 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2120 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2121 break;
2122
2123 case IP_BLOCK_SOURCE:
2124 case IP_UNBLOCK_SOURCE:
2125 case IP_ADD_SOURCE_MEMBERSHIP:
2126 case IP_DROP_SOURCE_MEMBERSHIP:
2127 if (optlen != sizeof (struct target_ip_mreq_source))
2128 return -TARGET_EINVAL;
2129
2130 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2131 if (!ip_mreq_source) {
2132 return -TARGET_EFAULT;
2133 }
2134 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2135 unlock_user (ip_mreq_source, optval_addr, 0);
2136 break;
2137
2138 default:
2139 goto unimplemented;
2140 }
2141 break;
2142 case SOL_IPV6:
2143 switch (optname) {
2144 case IPV6_MTU_DISCOVER:
2145 case IPV6_MTU:
2146 case IPV6_V6ONLY:
2147 case IPV6_RECVPKTINFO:
2148 case IPV6_UNICAST_HOPS:
2149 case IPV6_MULTICAST_HOPS:
2150 case IPV6_MULTICAST_LOOP:
2151 case IPV6_RECVERR:
2152 case IPV6_RECVHOPLIMIT:
2153 case IPV6_2292HOPLIMIT:
2154 case IPV6_CHECKSUM:
2155 case IPV6_ADDRFORM:
2156 case IPV6_2292PKTINFO:
2157 case IPV6_RECVTCLASS:
2158 case IPV6_RECVRTHDR:
2159 case IPV6_2292RTHDR:
2160 case IPV6_RECVHOPOPTS:
2161 case IPV6_2292HOPOPTS:
2162 case IPV6_RECVDSTOPTS:
2163 case IPV6_2292DSTOPTS:
2164 case IPV6_TCLASS:
2165 case IPV6_ADDR_PREFERENCES:
2166 #ifdef IPV6_RECVPATHMTU
2167 case IPV6_RECVPATHMTU:
2168 #endif
2169 #ifdef IPV6_TRANSPARENT
2170 case IPV6_TRANSPARENT:
2171 #endif
2172 #ifdef IPV6_FREEBIND
2173 case IPV6_FREEBIND:
2174 #endif
2175 #ifdef IPV6_RECVORIGDSTADDR
2176 case IPV6_RECVORIGDSTADDR:
2177 #endif
2178 val = 0;
2179 if (optlen < sizeof(uint32_t)) {
2180 return -TARGET_EINVAL;
2181 }
2182 if (get_user_u32(val, optval_addr)) {
2183 return -TARGET_EFAULT;
2184 }
2185 ret = get_errno(setsockopt(sockfd, level, optname,
2186 &val, sizeof(val)));
2187 break;
2188 case IPV6_PKTINFO:
2189 {
2190 struct in6_pktinfo pki;
2191
2192 if (optlen < sizeof(pki)) {
2193 return -TARGET_EINVAL;
2194 }
2195
2196 if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2197 return -TARGET_EFAULT;
2198 }
2199
2200 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2201
2202 ret = get_errno(setsockopt(sockfd, level, optname,
2203 &pki, sizeof(pki)));
2204 break;
2205 }
2206 case IPV6_ADD_MEMBERSHIP:
2207 case IPV6_DROP_MEMBERSHIP:
2208 {
2209 struct ipv6_mreq ipv6mreq;
2210
2211 if (optlen < sizeof(ipv6mreq)) {
2212 return -TARGET_EINVAL;
2213 }
2214
2215 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2216 return -TARGET_EFAULT;
2217 }
2218
2219 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2220
2221 ret = get_errno(setsockopt(sockfd, level, optname,
2222 &ipv6mreq, sizeof(ipv6mreq)));
2223 break;
2224 }
2225 default:
2226 goto unimplemented;
2227 }
2228 break;
2229 case SOL_ICMPV6:
2230 switch (optname) {
2231 case ICMPV6_FILTER:
2232 {
2233 struct icmp6_filter icmp6f;
2234
2235 if (optlen > sizeof(icmp6f)) {
2236 optlen = sizeof(icmp6f);
2237 }
2238
2239 if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2240 return -TARGET_EFAULT;
2241 }
2242
2243 for (val = 0; val < 8; val++) {
2244 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2245 }
2246
2247 ret = get_errno(setsockopt(sockfd, level, optname,
2248 &icmp6f, optlen));
2249 break;
2250 }
2251 default:
2252 goto unimplemented;
2253 }
2254 break;
2255 case SOL_RAW:
2256 switch (optname) {
2257 case ICMP_FILTER:
2258 case IPV6_CHECKSUM:
2259 /* those take an u32 value */
2260 if (optlen < sizeof(uint32_t)) {
2261 return -TARGET_EINVAL;
2262 }
2263
2264 if (get_user_u32(val, optval_addr)) {
2265 return -TARGET_EFAULT;
2266 }
2267 ret = get_errno(setsockopt(sockfd, level, optname,
2268 &val, sizeof(val)));
2269 break;
2270
2271 default:
2272 goto unimplemented;
2273 }
2274 break;
2275 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2276 case SOL_ALG:
2277 switch (optname) {
2278 case ALG_SET_KEY:
2279 {
2280 char *alg_key = g_malloc(optlen);
2281
2282 if (!alg_key) {
2283 return -TARGET_ENOMEM;
2284 }
2285 if (copy_from_user(alg_key, optval_addr, optlen)) {
2286 g_free(alg_key);
2287 return -TARGET_EFAULT;
2288 }
2289 ret = get_errno(setsockopt(sockfd, level, optname,
2290 alg_key, optlen));
2291 g_free(alg_key);
2292 break;
2293 }
2294 case ALG_SET_AEAD_AUTHSIZE:
2295 {
2296 ret = get_errno(setsockopt(sockfd, level, optname,
2297 NULL, optlen));
2298 break;
2299 }
2300 default:
2301 goto unimplemented;
2302 }
2303 break;
2304 #endif
2305 case TARGET_SOL_SOCKET:
2306 switch (optname) {
2307 case TARGET_SO_RCVTIMEO:
2308 {
2309 struct timeval tv;
2310
2311 optname = SO_RCVTIMEO;
2312
2313 set_timeout:
2314 if (optlen != sizeof(struct target_timeval)) {
2315 return -TARGET_EINVAL;
2316 }
2317
2318 if (copy_from_user_timeval(&tv, optval_addr)) {
2319 return -TARGET_EFAULT;
2320 }
2321
2322 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2323 &tv, sizeof(tv)));
2324 return ret;
2325 }
2326 case TARGET_SO_SNDTIMEO:
2327 optname = SO_SNDTIMEO;
2328 goto set_timeout;
2329 case TARGET_SO_ATTACH_FILTER:
2330 {
2331 struct target_sock_fprog *tfprog;
2332 struct target_sock_filter *tfilter;
2333 struct sock_fprog fprog;
2334 struct sock_filter *filter;
2335 int i;
2336
2337 if (optlen != sizeof(*tfprog)) {
2338 return -TARGET_EINVAL;
2339 }
2340 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2341 return -TARGET_EFAULT;
2342 }
2343 if (!lock_user_struct(VERIFY_READ, tfilter,
2344 tswapal(tfprog->filter), 0)) {
2345 unlock_user_struct(tfprog, optval_addr, 1);
2346 return -TARGET_EFAULT;
2347 }
2348
2349 fprog.len = tswap16(tfprog->len);
2350 filter = g_try_new(struct sock_filter, fprog.len);
2351 if (filter == NULL) {
2352 unlock_user_struct(tfilter, tfprog->filter, 1);
2353 unlock_user_struct(tfprog, optval_addr, 1);
2354 return -TARGET_ENOMEM;
2355 }
2356 for (i = 0; i < fprog.len; i++) {
2357 filter[i].code = tswap16(tfilter[i].code);
2358 filter[i].jt = tfilter[i].jt;
2359 filter[i].jf = tfilter[i].jf;
2360 filter[i].k = tswap32(tfilter[i].k);
2361 }
2362 fprog.filter = filter;
2363
2364 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2365 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2366 g_free(filter);
2367
2368 unlock_user_struct(tfilter, tfprog->filter, 1);
2369 unlock_user_struct(tfprog, optval_addr, 1);
2370 return ret;
2371 }
2372 case TARGET_SO_BINDTODEVICE:
2373 {
2374 char *dev_ifname, *addr_ifname;
2375
2376 if (optlen > IFNAMSIZ - 1) {
2377 optlen = IFNAMSIZ - 1;
2378 }
2379 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2380 if (!dev_ifname) {
2381 return -TARGET_EFAULT;
2382 }
2383 optname = SO_BINDTODEVICE;
2384 addr_ifname = alloca(IFNAMSIZ);
2385 memcpy(addr_ifname, dev_ifname, optlen);
2386 addr_ifname[optlen] = 0;
2387 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2388 addr_ifname, optlen));
2389 unlock_user (dev_ifname, optval_addr, 0);
2390 return ret;
2391 }
2392 case TARGET_SO_LINGER:
2393 {
2394 struct linger lg;
2395 struct target_linger *tlg;
2396
2397 if (optlen != sizeof(struct target_linger)) {
2398 return -TARGET_EINVAL;
2399 }
2400 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2401 return -TARGET_EFAULT;
2402 }
2403 __get_user(lg.l_onoff, &tlg->l_onoff);
2404 __get_user(lg.l_linger, &tlg->l_linger);
2405 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2406 &lg, sizeof(lg)));
2407 unlock_user_struct(tlg, optval_addr, 0);
2408 return ret;
2409 }
2410 /* Options with 'int' argument. */
2411 case TARGET_SO_DEBUG:
2412 optname = SO_DEBUG;
2413 break;
2414 case TARGET_SO_REUSEADDR:
2415 optname = SO_REUSEADDR;
2416 break;
2417 #ifdef SO_REUSEPORT
2418 case TARGET_SO_REUSEPORT:
2419 optname = SO_REUSEPORT;
2420 break;
2421 #endif
2422 case TARGET_SO_TYPE:
2423 optname = SO_TYPE;
2424 break;
2425 case TARGET_SO_ERROR:
2426 optname = SO_ERROR;
2427 break;
2428 case TARGET_SO_DONTROUTE:
2429 optname = SO_DONTROUTE;
2430 break;
2431 case TARGET_SO_BROADCAST:
2432 optname = SO_BROADCAST;
2433 break;
2434 case TARGET_SO_SNDBUF:
2435 optname = SO_SNDBUF;
2436 break;
2437 case TARGET_SO_SNDBUFFORCE:
2438 optname = SO_SNDBUFFORCE;
2439 break;
2440 case TARGET_SO_RCVBUF:
2441 optname = SO_RCVBUF;
2442 break;
2443 case TARGET_SO_RCVBUFFORCE:
2444 optname = SO_RCVBUFFORCE;
2445 break;
2446 case TARGET_SO_KEEPALIVE:
2447 optname = SO_KEEPALIVE;
2448 break;
2449 case TARGET_SO_OOBINLINE:
2450 optname = SO_OOBINLINE;
2451 break;
2452 case TARGET_SO_NO_CHECK:
2453 optname = SO_NO_CHECK;
2454 break;
2455 case TARGET_SO_PRIORITY:
2456 optname = SO_PRIORITY;
2457 break;
2458 #ifdef SO_BSDCOMPAT
2459 case TARGET_SO_BSDCOMPAT:
2460 optname = SO_BSDCOMPAT;
2461 break;
2462 #endif
2463 case TARGET_SO_PASSCRED:
2464 optname = SO_PASSCRED;
2465 break;
2466 case TARGET_SO_PASSSEC:
2467 optname = SO_PASSSEC;
2468 break;
2469 case TARGET_SO_TIMESTAMP:
2470 optname = SO_TIMESTAMP;
2471 break;
2472 case TARGET_SO_RCVLOWAT:
2473 optname = SO_RCVLOWAT;
2474 break;
2475 default:
2476 goto unimplemented;
2477 }
2478 if (optlen < sizeof(uint32_t))
2479 return -TARGET_EINVAL;
2480
2481 if (get_user_u32(val, optval_addr))
2482 return -TARGET_EFAULT;
2483 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2484 break;
2485 #ifdef SOL_NETLINK
2486 case SOL_NETLINK:
2487 switch (optname) {
2488 case NETLINK_PKTINFO:
2489 case NETLINK_ADD_MEMBERSHIP:
2490 case NETLINK_DROP_MEMBERSHIP:
2491 case NETLINK_BROADCAST_ERROR:
2492 case NETLINK_NO_ENOBUFS:
2493 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2494 case NETLINK_LISTEN_ALL_NSID:
2495 case NETLINK_CAP_ACK:
2496 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2497 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2498 case NETLINK_EXT_ACK:
2499 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2500 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2501 case NETLINK_GET_STRICT_CHK:
2502 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2503 break;
2504 default:
2505 goto unimplemented;
2506 }
2507 val = 0;
2508 if (optlen < sizeof(uint32_t)) {
2509 return -TARGET_EINVAL;
2510 }
2511 if (get_user_u32(val, optval_addr)) {
2512 return -TARGET_EFAULT;
2513 }
2514 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2515 sizeof(val)));
2516 break;
2517 #endif /* SOL_NETLINK */
2518 default:
2519 unimplemented:
2520 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2521 level, optname);
2522 ret = -TARGET_ENOPROTOOPT;
2523 }
2524 return ret;
2525 }
2526
2527 /* do_getsockopt() Must return target values and target errnos. */
2528 static abi_long do_getsockopt(int sockfd, int level, int optname,
2529 abi_ulong optval_addr, abi_ulong optlen)
2530 {
2531 abi_long ret;
2532 int len, val;
2533 socklen_t lv;
2534
2535 switch(level) {
2536 case TARGET_SOL_SOCKET:
2537 level = SOL_SOCKET;
2538 switch (optname) {
2539 /* These don't just return a single integer */
2540 case TARGET_SO_PEERNAME:
2541 goto unimplemented;
2542 case TARGET_SO_RCVTIMEO: {
2543 struct timeval tv;
2544 socklen_t tvlen;
2545
2546 optname = SO_RCVTIMEO;
2547
2548 get_timeout:
2549 if (get_user_u32(len, optlen)) {
2550 return -TARGET_EFAULT;
2551 }
2552 if (len < 0) {
2553 return -TARGET_EINVAL;
2554 }
2555
2556 tvlen = sizeof(tv);
2557 ret = get_errno(getsockopt(sockfd, level, optname,
2558 &tv, &tvlen));
2559 if (ret < 0) {
2560 return ret;
2561 }
2562 if (len > sizeof(struct target_timeval)) {
2563 len = sizeof(struct target_timeval);
2564 }
2565 if (copy_to_user_timeval(optval_addr, &tv)) {
2566 return -TARGET_EFAULT;
2567 }
2568 if (put_user_u32(len, optlen)) {
2569 return -TARGET_EFAULT;
2570 }
2571 break;
2572 }
2573 case TARGET_SO_SNDTIMEO:
2574 optname = SO_SNDTIMEO;
2575 goto get_timeout;
2576 case TARGET_SO_PEERCRED: {
2577 struct ucred cr;
2578 socklen_t crlen;
2579 struct target_ucred *tcr;
2580
2581 if (get_user_u32(len, optlen)) {
2582 return -TARGET_EFAULT;
2583 }
2584 if (len < 0) {
2585 return -TARGET_EINVAL;
2586 }
2587
2588 crlen = sizeof(cr);
2589 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2590 &cr, &crlen));
2591 if (ret < 0) {
2592 return ret;
2593 }
2594 if (len > crlen) {
2595 len = crlen;
2596 }
2597 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2598 return -TARGET_EFAULT;
2599 }
2600 __put_user(cr.pid, &tcr->pid);
2601 __put_user(cr.uid, &tcr->uid);
2602 __put_user(cr.gid, &tcr->gid);
2603 unlock_user_struct(tcr, optval_addr, 1);
2604 if (put_user_u32(len, optlen)) {
2605 return -TARGET_EFAULT;
2606 }
2607 break;
2608 }
2609 case TARGET_SO_PEERSEC: {
2610 char *name;
2611
2612 if (get_user_u32(len, optlen)) {
2613 return -TARGET_EFAULT;
2614 }
2615 if (len < 0) {
2616 return -TARGET_EINVAL;
2617 }
2618 name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2619 if (!name) {
2620 return -TARGET_EFAULT;
2621 }
2622 lv = len;
2623 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2624 name, &lv));
2625 if (put_user_u32(lv, optlen)) {
2626 ret = -TARGET_EFAULT;
2627 }
2628 unlock_user(name, optval_addr, lv);
2629 break;
2630 }
2631 case TARGET_SO_LINGER:
2632 {
2633 struct linger lg;
2634 socklen_t lglen;
2635 struct target_linger *tlg;
2636
2637 if (get_user_u32(len, optlen)) {
2638 return -TARGET_EFAULT;
2639 }
2640 if (len < 0) {
2641 return -TARGET_EINVAL;
2642 }
2643
2644 lglen = sizeof(lg);
2645 ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2646 &lg, &lglen));
2647 if (ret < 0) {
2648 return ret;
2649 }
2650 if (len > lglen) {
2651 len = lglen;
2652 }
2653 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2654 return -TARGET_EFAULT;
2655 }
2656 __put_user(lg.l_onoff, &tlg->l_onoff);
2657 __put_user(lg.l_linger, &tlg->l_linger);
2658 unlock_user_struct(tlg, optval_addr, 1);
2659 if (put_user_u32(len, optlen)) {
2660 return -TARGET_EFAULT;
2661 }
2662 break;
2663 }
2664 /* Options with 'int' argument. */
2665 case TARGET_SO_DEBUG:
2666 optname = SO_DEBUG;
2667 goto int_case;
2668 case TARGET_SO_REUSEADDR:
2669 optname = SO_REUSEADDR;
2670 goto int_case;
2671 #ifdef SO_REUSEPORT
2672 case TARGET_SO_REUSEPORT:
2673 optname = SO_REUSEPORT;
2674 goto int_case;
2675 #endif
2676 case TARGET_SO_TYPE:
2677 optname = SO_TYPE;
2678 goto int_case;
2679 case TARGET_SO_ERROR:
2680 optname = SO_ERROR;
2681 goto int_case;
2682 case TARGET_SO_DONTROUTE:
2683 optname = SO_DONTROUTE;
2684 goto int_case;
2685 case TARGET_SO_BROADCAST:
2686 optname = SO_BROADCAST;
2687 goto int_case;
2688 case TARGET_SO_SNDBUF:
2689 optname = SO_SNDBUF;
2690 goto int_case;
2691 case TARGET_SO_RCVBUF:
2692 optname = SO_RCVBUF;
2693 goto int_case;
2694 case TARGET_SO_KEEPALIVE:
2695 optname = SO_KEEPALIVE;
2696 goto int_case;
2697 case TARGET_SO_OOBINLINE:
2698 optname = SO_OOBINLINE;
2699 goto int_case;
2700 case TARGET_SO_NO_CHECK:
2701 optname = SO_NO_CHECK;
2702 goto int_case;
2703 case TARGET_SO_PRIORITY:
2704 optname = SO_PRIORITY;
2705 goto int_case;
2706 #ifdef SO_BSDCOMPAT
2707 case TARGET_SO_BSDCOMPAT:
2708 optname = SO_BSDCOMPAT;
2709 goto int_case;
2710 #endif
2711 case TARGET_SO_PASSCRED:
2712 optname = SO_PASSCRED;
2713 goto int_case;
2714 case TARGET_SO_TIMESTAMP:
2715 optname = SO_TIMESTAMP;
2716 goto int_case;
2717 case TARGET_SO_RCVLOWAT:
2718 optname = SO_RCVLOWAT;
2719 goto int_case;
2720 case TARGET_SO_ACCEPTCONN:
2721 optname = SO_ACCEPTCONN;
2722 goto int_case;
2723 case TARGET_SO_PROTOCOL:
2724 optname = SO_PROTOCOL;
2725 goto int_case;
2726 case TARGET_SO_DOMAIN:
2727 optname = SO_DOMAIN;
2728 goto int_case;
2729 default:
2730 goto int_case;
2731 }
2732 break;
2733 case SOL_TCP:
2734 case SOL_UDP:
2735 /* TCP and UDP options all take an 'int' value. */
2736 int_case:
2737 if (get_user_u32(len, optlen))
2738 return -TARGET_EFAULT;
2739 if (len < 0)
2740 return -TARGET_EINVAL;
2741 lv = sizeof(lv);
2742 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2743 if (ret < 0)
2744 return ret;
2745 switch (optname) {
2746 case SO_TYPE:
2747 val = host_to_target_sock_type(val);
2748 break;
2749 case SO_ERROR:
2750 val = host_to_target_errno(val);
2751 break;
2752 }
2753 if (len > lv)
2754 len = lv;
2755 if (len == 4) {
2756 if (put_user_u32(val, optval_addr))
2757 return -TARGET_EFAULT;
2758 } else {
2759 if (put_user_u8(val, optval_addr))
2760 return -TARGET_EFAULT;
2761 }
2762 if (put_user_u32(len, optlen))
2763 return -TARGET_EFAULT;
2764 break;
2765 case SOL_IP:
2766 switch(optname) {
2767 case IP_TOS:
2768 case IP_TTL:
2769 case IP_HDRINCL:
2770 case IP_ROUTER_ALERT:
2771 case IP_RECVOPTS:
2772 case IP_RETOPTS:
2773 case IP_PKTINFO:
2774 case IP_MTU_DISCOVER:
2775 case IP_RECVERR:
2776 case IP_RECVTOS:
2777 #ifdef IP_FREEBIND
2778 case IP_FREEBIND:
2779 #endif
2780 case IP_MULTICAST_TTL:
2781 case IP_MULTICAST_LOOP:
2782 if (get_user_u32(len, optlen))
2783 return -TARGET_EFAULT;
2784 if (len < 0)
2785 return -TARGET_EINVAL;
2786 lv = sizeof(lv);
2787 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2788 if (ret < 0)
2789 return ret;
2790 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2791 len = 1;
2792 if (put_user_u32(len, optlen)
2793 || put_user_u8(val, optval_addr))
2794 return -TARGET_EFAULT;
2795 } else {
2796 if (len > sizeof(int))
2797 len = sizeof(int);
2798 if (put_user_u32(len, optlen)
2799 || put_user_u32(val, optval_addr))
2800 return -TARGET_EFAULT;
2801 }
2802 break;
2803 default:
2804 ret = -TARGET_ENOPROTOOPT;
2805 break;
2806 }
2807 break;
2808 case SOL_IPV6:
2809 switch (optname) {
2810 case IPV6_MTU_DISCOVER:
2811 case IPV6_MTU:
2812 case IPV6_V6ONLY:
2813 case IPV6_RECVPKTINFO:
2814 case IPV6_UNICAST_HOPS:
2815 case IPV6_MULTICAST_HOPS:
2816 case IPV6_MULTICAST_LOOP:
2817 case IPV6_RECVERR:
2818 case IPV6_RECVHOPLIMIT:
2819 case IPV6_2292HOPLIMIT:
2820 case IPV6_CHECKSUM:
2821 case IPV6_ADDRFORM:
2822 case IPV6_2292PKTINFO:
2823 case IPV6_RECVTCLASS:
2824 case IPV6_RECVRTHDR:
2825 case IPV6_2292RTHDR:
2826 case IPV6_RECVHOPOPTS:
2827 case IPV6_2292HOPOPTS:
2828 case IPV6_RECVDSTOPTS:
2829 case IPV6_2292DSTOPTS:
2830 case IPV6_TCLASS:
2831 case IPV6_ADDR_PREFERENCES:
2832 #ifdef IPV6_RECVPATHMTU
2833 case IPV6_RECVPATHMTU:
2834 #endif
2835 #ifdef IPV6_TRANSPARENT
2836 case IPV6_TRANSPARENT:
2837 #endif
2838 #ifdef IPV6_FREEBIND
2839 case IPV6_FREEBIND:
2840 #endif
2841 #ifdef IPV6_RECVORIGDSTADDR
2842 case IPV6_RECVORIGDSTADDR:
2843 #endif
2844 if (get_user_u32(len, optlen))
2845 return -TARGET_EFAULT;
2846 if (len < 0)
2847 return -TARGET_EINVAL;
2848 lv = sizeof(lv);
2849 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2850 if (ret < 0)
2851 return ret;
2852 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2853 len = 1;
2854 if (put_user_u32(len, optlen)
2855 || put_user_u8(val, optval_addr))
2856 return -TARGET_EFAULT;
2857 } else {
2858 if (len > sizeof(int))
2859 len = sizeof(int);
2860 if (put_user_u32(len, optlen)
2861 || put_user_u32(val, optval_addr))
2862 return -TARGET_EFAULT;
2863 }
2864 break;
2865 default:
2866 ret = -TARGET_ENOPROTOOPT;
2867 break;
2868 }
2869 break;
2870 #ifdef SOL_NETLINK
2871 case SOL_NETLINK:
2872 switch (optname) {
2873 case NETLINK_PKTINFO:
2874 case NETLINK_BROADCAST_ERROR:
2875 case NETLINK_NO_ENOBUFS:
2876 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2877 case NETLINK_LISTEN_ALL_NSID:
2878 case NETLINK_CAP_ACK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2881 case NETLINK_EXT_ACK:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2884 case NETLINK_GET_STRICT_CHK:
2885 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2886 if (get_user_u32(len, optlen)) {
2887 return -TARGET_EFAULT;
2888 }
2889 if (len != sizeof(val)) {
2890 return -TARGET_EINVAL;
2891 }
2892 lv = len;
2893 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2894 if (ret < 0) {
2895 return ret;
2896 }
2897 if (put_user_u32(lv, optlen)
2898 || put_user_u32(val, optval_addr)) {
2899 return -TARGET_EFAULT;
2900 }
2901 break;
2902 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2903 case NETLINK_LIST_MEMBERSHIPS:
2904 {
2905 uint32_t *results;
2906 int i;
2907 if (get_user_u32(len, optlen)) {
2908 return -TARGET_EFAULT;
2909 }
2910 if (len < 0) {
2911 return -TARGET_EINVAL;
2912 }
2913 results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2914 if (!results && len > 0) {
2915 return -TARGET_EFAULT;
2916 }
2917 lv = len;
2918 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2919 if (ret < 0) {
2920 unlock_user(results, optval_addr, 0);
2921 return ret;
2922 }
2923 /* swap host endianness to target endianness. */
2924 for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2925 results[i] = tswap32(results[i]);
2926 }
2927 if (put_user_u32(lv, optlen)) {
2928 return -TARGET_EFAULT;
2929 }
2930 unlock_user(results, optval_addr, 0);
2931 break;
2932 }
2933 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2934 default:
2935 goto unimplemented;
2936 }
2937 break;
2938 #endif /* SOL_NETLINK */
2939 default:
2940 unimplemented:
2941 qemu_log_mask(LOG_UNIMP,
2942 "getsockopt level=%d optname=%d not yet supported\n",
2943 level, optname);
2944 ret = -TARGET_EOPNOTSUPP;
2945 break;
2946 }
2947 return ret;
2948 }
2949
2950 /* Convert target low/high pair representing file offset into the host
2951 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2952 * as the kernel doesn't handle them either.
2953 */
2954 static void target_to_host_low_high(abi_ulong tlow,
2955 abi_ulong thigh,
2956 unsigned long *hlow,
2957 unsigned long *hhigh)
2958 {
2959 uint64_t off = tlow |
2960 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2961 TARGET_LONG_BITS / 2;
2962
2963 *hlow = off;
2964 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2965 }
2966
2967 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2968 abi_ulong count, int copy)
2969 {
2970 struct target_iovec *target_vec;
2971 struct iovec *vec;
2972 abi_ulong total_len, max_len;
2973 int i;
2974 int err = 0;
2975 bool bad_address = false;
2976
2977 if (count == 0) {
2978 errno = 0;
2979 return NULL;
2980 }
2981 if (count > IOV_MAX) {
2982 errno = EINVAL;
2983 return NULL;
2984 }
2985
2986 vec = g_try_new0(struct iovec, count);
2987 if (vec == NULL) {
2988 errno = ENOMEM;
2989 return NULL;
2990 }
2991
2992 target_vec = lock_user(VERIFY_READ, target_addr,
2993 count * sizeof(struct target_iovec), 1);
2994 if (target_vec == NULL) {
2995 err = EFAULT;
2996 goto fail2;
2997 }
2998
2999 /* ??? If host page size > target page size, this will result in a
3000 value larger than what we can actually support. */
3001 max_len = 0x7fffffff & TARGET_PAGE_MASK;
3002 total_len = 0;
3003
3004 for (i = 0; i < count; i++) {
3005 abi_ulong base = tswapal(target_vec[i].iov_base);
3006 abi_long len = tswapal(target_vec[i].iov_len);
3007
3008 if (len < 0) {
3009 err = EINVAL;
3010 goto fail;
3011 } else if (len == 0) {
3012 /* Zero length pointer is ignored. */
3013 vec[i].iov_base = 0;
3014 } else {
3015 vec[i].iov_base = lock_user(type, base, len, copy);
3016 /* If the first buffer pointer is bad, this is a fault. But
3017 * subsequent bad buffers will result in a partial write; this
3018 * is realized by filling the vector with null pointers and
3019 * zero lengths. */
3020 if (!vec[i].iov_base) {
3021 if (i == 0) {
3022 err = EFAULT;
3023 goto fail;
3024 } else {
3025 bad_address = true;
3026 }
3027 }
3028 if (bad_address) {
3029 len = 0;
3030 }
3031 if (len > max_len - total_len) {
3032 len = max_len - total_len;
3033 }
3034 }
3035 vec[i].iov_len = len;
3036 total_len += len;
3037 }
3038
3039 unlock_user(target_vec, target_addr, 0);
3040 return vec;
3041
3042 fail:
3043 while (--i >= 0) {
3044 if (tswapal(target_vec[i].iov_len) > 0) {
3045 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3046 }
3047 }
3048 unlock_user(target_vec, target_addr, 0);
3049 fail2:
3050 g_free(vec);
3051 errno = err;
3052 return NULL;
3053 }
3054
3055 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3056 abi_ulong count, int copy)
3057 {
3058 struct target_iovec *target_vec;
3059 int i;
3060
3061 target_vec = lock_user(VERIFY_READ, target_addr,
3062 count * sizeof(struct target_iovec), 1);
3063 if (target_vec) {
3064 for (i = 0; i < count; i++) {
3065 abi_ulong base = tswapal(target_vec[i].iov_base);
3066 abi_long len = tswapal(target_vec[i].iov_len);
3067 if (len < 0) {
3068 break;
3069 }
3070 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3071 }
3072 unlock_user(target_vec, target_addr, 0);
3073 }
3074
3075 g_free(vec);
3076 }
3077
3078 static inline int target_to_host_sock_type(int *type)
3079 {
3080 int host_type = 0;
3081 int target_type = *type;
3082
3083 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3084 case TARGET_SOCK_DGRAM:
3085 host_type = SOCK_DGRAM;
3086 break;
3087 case TARGET_SOCK_STREAM:
3088 host_type = SOCK_STREAM;
3089 break;
3090 default:
3091 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3092 break;
3093 }
3094 if (target_type & TARGET_SOCK_CLOEXEC) {
3095 #if defined(SOCK_CLOEXEC)
3096 host_type |= SOCK_CLOEXEC;
3097 #else
3098 return -TARGET_EINVAL;
3099 #endif
3100 }
3101 if (target_type & TARGET_SOCK_NONBLOCK) {
3102 #if defined(SOCK_NONBLOCK)
3103 host_type |= SOCK_NONBLOCK;
3104 #elif !defined(O_NONBLOCK)
3105 return -TARGET_EINVAL;
3106 #endif
3107 }
3108 *type = host_type;
3109 return 0;
3110 }
3111
3112 /* Try to emulate socket type flags after socket creation. */
3113 static int sock_flags_fixup(int fd, int target_type)
3114 {
3115 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3116 if (target_type & TARGET_SOCK_NONBLOCK) {
3117 int flags = fcntl(fd, F_GETFL);
3118 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3119 close(fd);
3120 return -TARGET_EINVAL;
3121 }
3122 }
3123 #endif
3124 return fd;
3125 }
3126
3127 /* do_socket() Must return target values and target errnos. */
3128 static abi_long do_socket(int domain, int type, int protocol)
3129 {
3130 int target_type = type;
3131 int ret;
3132
3133 ret = target_to_host_sock_type(&type);
3134 if (ret) {
3135 return ret;
3136 }
3137
3138 if (domain == PF_NETLINK && !(
3139 #ifdef CONFIG_RTNETLINK
3140 protocol == NETLINK_ROUTE ||
3141 #endif
3142 protocol == NETLINK_KOBJECT_UEVENT ||
3143 protocol == NETLINK_AUDIT)) {
3144 return -TARGET_EPROTONOSUPPORT;
3145 }
3146
3147 if (domain == AF_PACKET ||
3148 (domain == AF_INET && type == SOCK_PACKET)) {
3149 protocol = tswap16(protocol);
3150 }
3151
3152 ret = get_errno(socket(domain, type, protocol));
3153 if (ret >= 0) {
3154 ret = sock_flags_fixup(ret, target_type);
3155 if (type == SOCK_PACKET) {
3156 /* Manage an obsolete case :
3157 * if socket type is SOCK_PACKET, bind by name
3158 */
3159 fd_trans_register(ret, &target_packet_trans);
3160 } else if (domain == PF_NETLINK) {
3161 switch (protocol) {
3162 #ifdef CONFIG_RTNETLINK
3163 case NETLINK_ROUTE:
3164 fd_trans_register(ret, &target_netlink_route_trans);
3165 break;
3166 #endif
3167 case NETLINK_KOBJECT_UEVENT:
3168 /* nothing to do: messages are strings */
3169 break;
3170 case NETLINK_AUDIT:
3171 fd_trans_register(ret, &target_netlink_audit_trans);
3172 break;
3173 default:
3174 g_assert_not_reached();
3175 }
3176 }
3177 }
3178 return ret;
3179 }
3180
3181 /* do_bind() Must return target values and target errnos. */
3182 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3183 socklen_t addrlen)
3184 {
3185 void *addr;
3186 abi_long ret;
3187
3188 if ((int)addrlen < 0) {
3189 return -TARGET_EINVAL;
3190 }
3191
3192 addr = alloca(addrlen+1);
3193
3194 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3195 if (ret)
3196 return ret;
3197
3198 return get_errno(bind(sockfd, addr, addrlen));
3199 }
3200
3201 /* do_connect() Must return target values and target errnos. */
3202 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3203 socklen_t addrlen)
3204 {
3205 void *addr;
3206 abi_long ret;
3207
3208 if ((int)addrlen < 0) {
3209 return -TARGET_EINVAL;
3210 }
3211
3212 addr = alloca(addrlen+1);
3213
3214 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3215 if (ret)
3216 return ret;
3217
3218 return get_errno(safe_connect(sockfd, addr, addrlen));
3219 }
3220
3221 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3222 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3223 int flags, int send)
3224 {
3225 abi_long ret, len;
3226 struct msghdr msg;
3227 abi_ulong count;
3228 struct iovec *vec;
3229 abi_ulong target_vec;
3230
3231 if (msgp->msg_name) {
3232 msg.msg_namelen = tswap32(msgp->msg_namelen);
3233 msg.msg_name = alloca(msg.msg_namelen+1);
3234 ret = target_to_host_sockaddr(fd, msg.msg_name,
3235 tswapal(msgp->msg_name),
3236 msg.msg_namelen);
3237 if (ret == -TARGET_EFAULT) {
3238 /* For connected sockets msg_name and msg_namelen must
3239 * be ignored, so returning EFAULT immediately is wrong.
3240 * Instead, pass a bad msg_name to the host kernel, and
3241 * let it decide whether to return EFAULT or not.
3242 */
3243 msg.msg_name = (void *)-1;
3244 } else if (ret) {
3245 goto out2;
3246 }
3247 } else {
3248 msg.msg_name = NULL;
3249 msg.msg_namelen = 0;
3250 }
3251 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3252 msg.msg_control = alloca(msg.msg_controllen);
3253 memset(msg.msg_control, 0, msg.msg_controllen);
3254
3255 msg.msg_flags = tswap32(msgp->msg_flags);
3256
3257 count = tswapal(msgp->msg_iovlen);
3258 target_vec = tswapal(msgp->msg_iov);
3259
3260 if (count > IOV_MAX) {
3261 /* sendrcvmsg returns a different errno for this condition than
3262 * readv/writev, so we must catch it here before lock_iovec() does.
3263 */
3264 ret = -TARGET_EMSGSIZE;
3265 goto out2;
3266 }
3267
3268 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3269 target_vec, count, send);
3270 if (vec == NULL) {
3271 ret = -host_to_target_errno(errno);
3272 /* allow sending packet without any iov, e.g. with MSG_MORE flag */
3273 if (!send || ret) {
3274 goto out2;
3275 }
3276 }
3277 msg.msg_iovlen = count;
3278 msg.msg_iov = vec;
3279
3280 if (send) {
3281 if (fd_trans_target_to_host_data(fd)) {
3282 void *host_msg;
3283
3284 host_msg = g_malloc(msg.msg_iov->iov_len);
3285 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3286 ret = fd_trans_target_to_host_data(fd)(host_msg,
3287 msg.msg_iov->iov_len);
3288 if (ret >= 0) {
3289 msg.msg_iov->iov_base = host_msg;
3290 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3291 }
3292 g_free(host_msg);
3293 } else {
3294 ret = target_to_host_cmsg(&msg, msgp);
3295 if (ret == 0) {
3296 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3297 }
3298 }
3299 } else {
3300 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3301 if (!is_error(ret)) {
3302 len = ret;
3303 if (fd_trans_host_to_target_data(fd)) {
3304 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3305 MIN(msg.msg_iov->iov_len, len));
3306 }
3307 if (!is_error(ret)) {
3308 ret = host_to_target_cmsg(msgp, &msg);
3309 }
3310 if (!is_error(ret)) {
3311 msgp->msg_namelen = tswap32(msg.msg_namelen);
3312 msgp->msg_flags = tswap32(msg.msg_flags);
3313 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3314 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3315 msg.msg_name, msg.msg_namelen);
3316 if (ret) {
3317 goto out;
3318 }
3319 }
3320
3321 ret = len;
3322 }
3323 }
3324 }
3325
3326 out:
3327 if (vec) {
3328 unlock_iovec(vec, target_vec, count, !send);
3329 }
3330 out2:
3331 return ret;
3332 }
3333
3334 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3335 int flags, int send)
3336 {
3337 abi_long ret;
3338 struct target_msghdr *msgp;
3339
3340 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3341 msgp,
3342 target_msg,
3343 send ? 1 : 0)) {
3344 return -TARGET_EFAULT;
3345 }
3346 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3347 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3348 return ret;
3349 }
3350
3351 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3352 * so it might not have this *mmsg-specific flag either.
3353 */
3354 #ifndef MSG_WAITFORONE
3355 #define MSG_WAITFORONE 0x10000
3356 #endif
3357
3358 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3359 unsigned int vlen, unsigned int flags,
3360 int send)
3361 {
3362 struct target_mmsghdr *mmsgp;
3363 abi_long ret = 0;
3364 int i;
3365
3366 if (vlen > UIO_MAXIOV) {
3367 vlen = UIO_MAXIOV;
3368 }
3369
3370 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3371 if (!mmsgp) {
3372 return -TARGET_EFAULT;
3373 }
3374
3375 for (i = 0; i < vlen; i++) {
3376 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3377 if (is_error(ret)) {
3378 break;
3379 }
3380 mmsgp[i].msg_len = tswap32(ret);
3381 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3382 if (flags & MSG_WAITFORONE) {
3383 flags |= MSG_DONTWAIT;
3384 }
3385 }
3386
3387 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3388
3389 /* Return number of datagrams sent if we sent any at all;
3390 * otherwise return the error.
3391 */
3392 if (i) {
3393 return i;
3394 }
3395 return ret;
3396 }
3397
3398 /* do_accept4() Must return target values and target errnos. */
3399 static abi_long do_accept4(int fd, abi_ulong target_addr,
3400 abi_ulong target_addrlen_addr, int flags)
3401 {
3402 socklen_t addrlen, ret_addrlen;
3403 void *addr;
3404 abi_long ret;
3405 int host_flags;
3406
3407 if (flags & ~(TARGET_SOCK_CLOEXEC | TARGET_SOCK_NONBLOCK)) {
3408 return -TARGET_EINVAL;
3409 }
3410
3411 host_flags = 0;
3412 if (flags & TARGET_SOCK_NONBLOCK) {
3413 host_flags |= SOCK_NONBLOCK;
3414 }
3415 if (flags & TARGET_SOCK_CLOEXEC) {
3416 host_flags |= SOCK_CLOEXEC;
3417 }
3418
3419 if (target_addr == 0) {
3420 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3421 }
3422
3423 /* linux returns EFAULT if addrlen pointer is invalid */
3424 if (get_user_u32(addrlen, target_addrlen_addr))
3425 return -TARGET_EFAULT;
3426
3427 if ((int)addrlen < 0) {
3428 return -TARGET_EINVAL;
3429 }
3430
3431 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3432 return -TARGET_EFAULT;
3433 }
3434
3435 addr = alloca(addrlen);
3436
3437 ret_addrlen = addrlen;
3438 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3439 if (!is_error(ret)) {
3440 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3441 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3442 ret = -TARGET_EFAULT;
3443 }
3444 }
3445 return ret;
3446 }
3447
3448 /* do_getpeername() Must return target values and target errnos. */
3449 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3450 abi_ulong target_addrlen_addr)
3451 {
3452 socklen_t addrlen, ret_addrlen;
3453 void *addr;
3454 abi_long ret;
3455
3456 if (get_user_u32(addrlen, target_addrlen_addr))
3457 return -TARGET_EFAULT;
3458
3459 if ((int)addrlen < 0) {
3460 return -TARGET_EINVAL;
3461 }
3462
3463 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3464 return -TARGET_EFAULT;
3465 }
3466
3467 addr = alloca(addrlen);
3468
3469 ret_addrlen = addrlen;
3470 ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3471 if (!is_error(ret)) {
3472 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3473 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3474 ret = -TARGET_EFAULT;
3475 }
3476 }
3477 return ret;
3478 }
3479
3480 /* do_getsockname() Must return target values and target errnos. */
3481 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3482 abi_ulong target_addrlen_addr)
3483 {
3484 socklen_t addrlen, ret_addrlen;
3485 void *addr;
3486 abi_long ret;
3487
3488 if (get_user_u32(addrlen, target_addrlen_addr))
3489 return -TARGET_EFAULT;
3490
3491 if ((int)addrlen < 0) {
3492 return -TARGET_EINVAL;
3493 }
3494
3495 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3496 return -TARGET_EFAULT;
3497 }
3498
3499 addr = alloca(addrlen);
3500
3501 ret_addrlen = addrlen;
3502 ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3503 if (!is_error(ret)) {
3504 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3505 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3506 ret = -TARGET_EFAULT;
3507 }
3508 }
3509 return ret;
3510 }
3511
3512 /* do_socketpair() Must return target values and target errnos. */
3513 static abi_long do_socketpair(int domain, int type, int protocol,
3514 abi_ulong target_tab_addr)
3515 {
3516 int tab[2];
3517 abi_long ret;
3518
3519 target_to_host_sock_type(&type);
3520
3521 ret = get_errno(socketpair(domain, type, protocol, tab));
3522 if (!is_error(ret)) {
3523 if (put_user_s32(tab[0], target_tab_addr)
3524 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3525 ret = -TARGET_EFAULT;
3526 }
3527 return ret;
3528 }
3529
3530 /* do_sendto() Must return target values and target errnos. */
3531 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3532 abi_ulong target_addr, socklen_t addrlen)
3533 {
3534 void *addr;
3535 void *host_msg;
3536 void *copy_msg = NULL;
3537 abi_long ret;
3538
3539 if ((int)addrlen < 0) {
3540 return -TARGET_EINVAL;
3541 }
3542
3543 host_msg = lock_user(VERIFY_READ, msg, len, 1);
3544 if (!host_msg)
3545 return -TARGET_EFAULT;
3546 if (fd_trans_target_to_host_data(fd)) {
3547 copy_msg = host_msg;
3548 host_msg = g_malloc(len);
3549 memcpy(host_msg, copy_msg, len);
3550 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3551 if (ret < 0) {
3552 goto fail;
3553 }
3554 }
3555 if (target_addr) {
3556 addr = alloca(addrlen+1);
3557 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3558 if (ret) {
3559 goto fail;
3560 }
3561 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3562 } else {
3563 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3564 }
3565 fail:
3566 if (copy_msg) {
3567 g_free(host_msg);
3568 host_msg = copy_msg;
3569 }
3570 unlock_user(host_msg, msg, 0);
3571 return ret;
3572 }
3573
3574 /* do_recvfrom() Must return target values and target errnos. */
3575 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3576 abi_ulong target_addr,
3577 abi_ulong target_addrlen)
3578 {
3579 socklen_t addrlen, ret_addrlen;
3580 void *addr;
3581 void *host_msg;
3582 abi_long ret;
3583
3584 if (!msg) {
3585 host_msg = NULL;
3586 } else {
3587 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3588 if (!host_msg) {
3589 return -TARGET_EFAULT;
3590 }
3591 }
3592 if (target_addr) {
3593 if (get_user_u32(addrlen, target_addrlen)) {
3594 ret = -TARGET_EFAULT;
3595 goto fail;
3596 }
3597 if ((int)addrlen < 0) {
3598 ret = -TARGET_EINVAL;
3599 goto fail;
3600 }
3601 addr = alloca(addrlen);
3602 ret_addrlen = addrlen;
3603 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3604 addr, &ret_addrlen));
3605 } else {
3606 addr = NULL; /* To keep compiler quiet. */
3607 addrlen = 0; /* To keep compiler quiet. */
3608 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3609 }
3610 if (!is_error(ret)) {
3611 if (fd_trans_host_to_target_data(fd)) {
3612 abi_long trans;
3613 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3614 if (is_error(trans)) {
3615 ret = trans;
3616 goto fail;
3617 }
3618 }
3619 if (target_addr) {
3620 host_to_target_sockaddr(target_addr, addr,
3621 MIN(addrlen, ret_addrlen));
3622 if (put_user_u32(ret_addrlen, target_addrlen)) {
3623 ret = -TARGET_EFAULT;
3624 goto fail;
3625 }
3626 }
3627 unlock_user(host_msg, msg, len);
3628 } else {
3629 fail:
3630 unlock_user(host_msg, msg, 0);
3631 }
3632 return ret;
3633 }
3634
3635 #ifdef TARGET_NR_socketcall
3636 /* do_socketcall() must return target values and target errnos. */
3637 static abi_long do_socketcall(int num, abi_ulong vptr)
3638 {
3639 static const unsigned nargs[] = { /* number of arguments per operation */
3640 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
3641 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
3642 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
3643 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */
3644 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
3645 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3646 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3647 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */
3648 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */
3649 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */
3650 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */
3651 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */
3652 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */
3653 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3654 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3655 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */
3656 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */
3657 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */
3658 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */
3659 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */
3660 };
3661 abi_long a[6]; /* max 6 args */
3662 unsigned i;
3663
3664 /* check the range of the first argument num */
3665 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3666 if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3667 return -TARGET_EINVAL;
3668 }
3669 /* ensure we have space for args */
3670 if (nargs[num] > ARRAY_SIZE(a)) {
3671 return -TARGET_EINVAL;
3672 }
3673 /* collect the arguments in a[] according to nargs[] */
3674 for (i = 0; i < nargs[num]; ++i) {
3675 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3676 return -TARGET_EFAULT;
3677 }
3678 }
3679 /* now when we have the args, invoke the appropriate underlying function */
3680 switch (num) {
3681 case TARGET_SYS_SOCKET: /* domain, type, protocol */
3682 return do_socket(a[0], a[1], a[2]);
3683 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3684 return do_bind(a[0], a[1], a[2]);
3685 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3686 return do_connect(a[0], a[1], a[2]);
3687 case TARGET_SYS_LISTEN: /* sockfd, backlog */
3688 return get_errno(listen(a[0], a[1]));
3689 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3690 return do_accept4(a[0], a[1], a[2], 0);
3691 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3692 return do_getsockname(a[0], a[1], a[2]);
3693 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3694 return do_getpeername(a[0], a[1], a[2]);
3695 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3696 return do_socketpair(a[0], a[1], a[2], a[3]);
3697 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3698 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3699 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3700 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3701 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3702 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3703 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3704 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3705 case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3706 return get_errno(shutdown(a[0], a[1]));
3707 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3708 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3709 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3710 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3711 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3712 return do_sendrecvmsg(a[0], a[1], a[2], 1);
3713 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3714 return do_sendrecvmsg(a[0], a[1], a[2], 0);
3715 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3716 return do_accept4(a[0], a[1], a[2], a[3]);
3717 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3718 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3719 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3720 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3721 default:
3722 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3723 return -TARGET_EINVAL;
3724 }
3725 }
3726 #endif
3727
3728 #ifndef TARGET_SEMID64_DS
3729 /* asm-generic version of this struct */
3730 struct target_semid64_ds
3731 {
3732 struct target_ipc_perm sem_perm;
3733 abi_ulong sem_otime;
3734 #if TARGET_ABI_BITS == 32
3735 abi_ulong __unused1;
3736 #endif
3737 abi_ulong sem_ctime;
3738 #if TARGET_ABI_BITS == 32
3739 abi_ulong __unused2;
3740 #endif
3741 abi_ulong sem_nsems;
3742 abi_ulong __unused3;
3743 abi_ulong __unused4;
3744 };
3745 #endif
3746
3747 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3748 abi_ulong target_addr)
3749 {
3750 struct target_ipc_perm *target_ip;
3751 struct target_semid64_ds *target_sd;
3752
3753 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3754 return -TARGET_EFAULT;
3755 target_ip = &(target_sd->sem_perm);
3756 host_ip->__key = tswap32(target_ip->__key);
3757 host_ip->uid = tswap32(target_ip->uid);
3758 host_ip->gid = tswap32(target_ip->gid);
3759 host_ip->cuid = tswap32(target_ip->cuid);
3760 host_ip->cgid = tswap32(target_ip->cgid);
3761 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3762 host_ip->mode = tswap32(target_ip->mode);
3763 #else
3764 host_ip->mode = tswap16(target_ip->mode);
3765 #endif
3766 #if defined(TARGET_PPC)
3767 host_ip->__seq = tswap32(target_ip->__seq);
3768 #else
3769 host_ip->__seq = tswap16(target_ip->__seq);
3770 #endif
3771 unlock_user_struct(target_sd, target_addr, 0);
3772 return 0;
3773 }
3774
3775 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3776 struct ipc_perm *host_ip)
3777 {
3778 struct target_ipc_perm *target_ip;
3779 struct target_semid64_ds *target_sd;
3780
3781 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3782 return -TARGET_EFAULT;
3783 target_ip = &(target_sd->sem_perm);
3784 target_ip->__key = tswap32(host_ip->__key);
3785 target_ip->uid = tswap32(host_ip->uid);
3786 target_ip->gid = tswap32(host_ip->gid);
3787 target_ip->cuid = tswap32(host_ip->cuid);
3788 target_ip->cgid = tswap32(host_ip->cgid);
3789 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3790 target_ip->mode = tswap32(host_ip->mode);
3791 #else
3792 target_ip->mode = tswap16(host_ip->mode);
3793 #endif
3794 #if defined(TARGET_PPC)
3795 target_ip->__seq = tswap32(host_ip->__seq);
3796 #else
3797 target_ip->__seq = tswap16(host_ip->__seq);
3798 #endif
3799 unlock_user_struct(target_sd, target_addr, 1);
3800 return 0;
3801 }
3802
3803 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3804 abi_ulong target_addr)
3805 {
3806 struct target_semid64_ds *target_sd;
3807
3808 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3809 return -TARGET_EFAULT;
3810 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3811 return -TARGET_EFAULT;
3812 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3813 host_sd->sem_otime = tswapal(target_sd->sem_otime);
3814 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3815 unlock_user_struct(target_sd, target_addr, 0);
3816 return 0;
3817 }
3818
3819 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3820 struct semid_ds *host_sd)
3821 {
3822 struct target_semid64_ds *target_sd;
3823
3824 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3825 return -TARGET_EFAULT;
3826 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3827 return -TARGET_EFAULT;
3828 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3829 target_sd->sem_otime = tswapal(host_sd->sem_otime);
3830 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3831 unlock_user_struct(target_sd, target_addr, 1);
3832 return 0;
3833 }
3834
3835 struct target_seminfo {
3836 int semmap;
3837 int semmni;
3838 int semmns;
3839 int semmnu;
3840 int semmsl;
3841 int semopm;
3842 int semume;
3843 int semusz;
3844 int semvmx;
3845 int semaem;
3846 };
3847
3848 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3849 struct seminfo *host_seminfo)
3850 {
3851 struct target_seminfo *target_seminfo;
3852 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3853 return -TARGET_EFAULT;
3854 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3855 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3856 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3857 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3858 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3859 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3860 __put_user(host_seminfo->semume, &target_seminfo->semume);
3861 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3862 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3863 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3864 unlock_user_struct(target_seminfo, target_addr, 1);
3865 return 0;
3866 }
3867
3868 union semun {
3869 int val;
3870 struct semid_ds *buf;
3871 unsigned short *array;
3872 struct seminfo *__buf;
3873 };
3874
3875 union target_semun {
3876 int val;
3877 abi_ulong buf;
3878 abi_ulong array;
3879 abi_ulong __buf;
3880 };
3881
3882 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3883 abi_ulong target_addr)
3884 {
3885 int nsems;
3886 unsigned short *array;
3887 union semun semun;
3888 struct semid_ds semid_ds;
3889 int i, ret;
3890
3891 semun.buf = &semid_ds;
3892
3893 ret = semctl(semid, 0, IPC_STAT, semun);
3894 if (ret == -1)
3895 return get_errno(ret);
3896
3897 nsems = semid_ds.sem_nsems;
3898
3899 *host_array = g_try_new(unsigned short, nsems);
3900 if (!*host_array) {
3901 return -TARGET_ENOMEM;
3902 }
3903 array = lock_user(VERIFY_READ, target_addr,
3904 nsems*sizeof(unsigned short), 1);
3905 if (!array) {
3906 g_free(*host_array);
3907 return -TARGET_EFAULT;
3908 }
3909
3910 for(i=0; i<nsems; i++) {
3911 __get_user((*host_array)[i], &array[i]);
3912 }
3913 unlock_user(array, target_addr, 0);
3914
3915 return 0;
3916 }
3917
3918 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3919 unsigned short **host_array)
3920 {
3921 int nsems;
3922 unsigned short *array;
3923 union semun semun;
3924 struct semid_ds semid_ds;
3925 int i, ret;
3926
3927 semun.buf = &semid_ds;
3928
3929 ret = semctl(semid, 0, IPC_STAT, semun);
3930 if (ret == -1)
3931 return get_errno(ret);
3932
3933 nsems = semid_ds.sem_nsems;
3934
3935 array = lock_user(VERIFY_WRITE, target_addr,
3936 nsems*sizeof(unsigned short), 0);
3937 if (!array)
3938 return -TARGET_EFAULT;
3939
3940 for(i=0; i<nsems; i++) {
3941 __put_user((*host_array)[i], &array[i]);
3942 }
3943 g_free(*host_array);
3944 unlock_user(array, target_addr, 1);
3945
3946 return 0;
3947 }
3948
3949 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3950 abi_ulong target_arg)
3951 {
3952 union target_semun target_su = { .buf = target_arg };
3953 union semun arg;
3954 struct semid_ds dsarg;
3955 unsigned short *array = NULL;
3956 struct seminfo seminfo;
3957 abi_long ret = -TARGET_EINVAL;
3958 abi_long err;
3959 cmd &= 0xff;
3960
3961 switch( cmd ) {
3962 case GETVAL:
3963 case SETVAL:
3964 /* In 64 bit cross-endian situations, we will erroneously pick up
3965 * the wrong half of the union for the "val" element. To rectify
3966 * this, the entire 8-byte structure is byteswapped, followed by
3967 * a swap of the 4 byte val field. In other cases, the data is
3968 * already in proper host byte order. */
3969 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3970 target_su.buf = tswapal(target_su.buf);
3971 arg.val = tswap32(target_su.val);
3972 } else {
3973 arg.val = target_su.val;
3974 }
3975 ret = get_errno(semctl(semid, semnum, cmd, arg));
3976 break;
3977 case GETALL:
3978 case SETALL:
3979 err = target_to_host_semarray(semid, &array, target_su.array);
3980 if (err)
3981 return err;
3982 arg.array = array;
3983 ret = get_errno(semctl(semid, semnum, cmd, arg));
3984 err = host_to_target_semarray(semid, target_su.array, &array);
3985 if (err)
3986 return err;
3987 break;
3988 case IPC_STAT:
3989 case IPC_SET:
3990 case SEM_STAT:
3991 err = target_to_host_semid_ds(&dsarg, target_su.buf);
3992 if (err)
3993 return err;
3994 arg.buf = &dsarg;
3995 ret = get_errno(semctl(semid, semnum, cmd, arg));
3996 err = host_to_target_semid_ds(target_su.buf, &dsarg);
3997 if (err)
3998 return err;
3999 break;
4000 case IPC_INFO:
4001 case SEM_INFO:
4002 arg.__buf = &seminfo;
4003 ret = get_errno(semctl(semid, semnum, cmd, arg));
4004 err = host_to_target_seminfo(target_su.__buf, &seminfo);
4005 if (err)
4006 return err;
4007 break;
4008 case IPC_RMID:
4009 case GETPID:
4010 case GETNCNT:
4011 case GETZCNT:
4012 ret = get_errno(semctl(semid, semnum, cmd, NULL));
4013 break;
4014 }
4015
4016 return ret;
4017 }
4018
4019 struct target_sembuf {
4020 unsigned short sem_num;
4021 short sem_op;
4022 short sem_flg;
4023 };
4024
4025 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4026 abi_ulong target_addr,
4027 unsigned nsops)
4028 {
4029 struct target_sembuf *target_sembuf;
4030 int i;
4031
4032 target_sembuf = lock_user(VERIFY_READ, target_addr,
4033 nsops*sizeof(struct target_sembuf), 1);
4034 if (!target_sembuf)
4035 return -TARGET_EFAULT;
4036
4037 for(i=0; i<nsops; i++) {
4038 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4039 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4040 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4041 }
4042
4043 unlock_user(target_sembuf, target_addr, 0);
4044
4045 return 0;
4046 }
4047
4048 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4049 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4050
4051 /*
4052 * This macro is required to handle the s390 variants, which passes the
4053 * arguments in a different order than default.
4054 */
4055 #ifdef __s390x__
4056 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4057 (__nsops), (__timeout), (__sops)
4058 #else
4059 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4060 (__nsops), 0, (__sops), (__timeout)
4061 #endif
4062
4063 static inline abi_long do_semtimedop(int semid,
4064 abi_long ptr,
4065 unsigned nsops,
4066 abi_long timeout, bool time64)
4067 {
4068 struct sembuf *sops;
4069 struct timespec ts, *pts = NULL;
4070 abi_long ret;
4071
4072 if (timeout) {
4073 pts = &ts;
4074 if (time64) {
4075 if (target_to_host_timespec64(pts, timeout)) {
4076 return -TARGET_EFAULT;
4077 }
4078 } else {
4079 if (target_to_host_timespec(pts, timeout)) {
4080 return -TARGET_EFAULT;
4081 }
4082 }
4083 }
4084
4085 if (nsops > TARGET_SEMOPM) {
4086 return -TARGET_E2BIG;
4087 }
4088
4089 sops = g_new(struct sembuf, nsops);
4090
4091 if (target_to_host_sembuf(sops, ptr, nsops)) {
4092 g_free(sops);
4093 return -TARGET_EFAULT;
4094 }
4095
4096 ret = -TARGET_ENOSYS;
4097 #ifdef __NR_semtimedop
4098 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4099 #endif
4100 #ifdef __NR_ipc
4101 if (ret == -TARGET_ENOSYS) {
4102 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4103 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4104 }
4105 #endif
4106 g_free(sops);
4107 return ret;
4108 }
4109 #endif
4110
4111 struct target_msqid_ds
4112 {
4113 struct target_ipc_perm msg_perm;
4114 abi_ulong msg_stime;
4115 #if TARGET_ABI_BITS == 32
4116 abi_ulong __unused1;
4117 #endif
4118 abi_ulong msg_rtime;
4119 #if TARGET_ABI_BITS == 32
4120 abi_ulong __unused2;
4121 #endif
4122 abi_ulong msg_ctime;
4123 #if TARGET_ABI_BITS == 32
4124 abi_ulong __unused3;
4125 #endif
4126 abi_ulong __msg_cbytes;
4127 abi_ulong msg_qnum;
4128 abi_ulong msg_qbytes;
4129 abi_ulong msg_lspid;
4130 abi_ulong msg_lrpid;
4131 abi_ulong __unused4;
4132 abi_ulong __unused5;
4133 };
4134
4135 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4136 abi_ulong target_addr)
4137 {
4138 struct target_msqid_ds *target_md;
4139
4140 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4141 return -TARGET_EFAULT;
4142 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4143 return -TARGET_EFAULT;
4144 host_md->msg_stime = tswapal(target_md->msg_stime);
4145 host_md->msg_rtime = tswapal(target_md->msg_rtime);
4146 host_md->msg_ctime = tswapal(target_md->msg_ctime);
4147 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4148 host_md->msg_qnum = tswapal(target_md->msg_qnum);
4149 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4150 host_md->msg_lspid = tswapal(target_md->msg_lspid);
4151 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4152 unlock_user_struct(target_md, target_addr, 0);
4153 return 0;
4154 }
4155
4156 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4157 struct msqid_ds *host_md)
4158 {
4159 struct target_msqid_ds *target_md;
4160
4161 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4162 return -TARGET_EFAULT;
4163 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4164 return -TARGET_EFAULT;
4165 target_md->msg_stime = tswapal(host_md->msg_stime);
4166 target_md->msg_rtime = tswapal(host_md->msg_rtime);
4167 target_md->msg_ctime = tswapal(host_md->msg_ctime);
4168 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4169 target_md->msg_qnum = tswapal(host_md->msg_qnum);
4170 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4171 target_md->msg_lspid = tswapal(host_md->msg_lspid);
4172 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4173 unlock_user_struct(target_md, target_addr, 1);
4174 return 0;
4175 }
4176
4177 struct target_msginfo {
4178 int msgpool;
4179 int msgmap;
4180 int msgmax;
4181 int msgmnb;
4182 int msgmni;
4183 int msgssz;
4184 int msgtql;
4185 unsigned short int msgseg;
4186 };
4187
4188 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4189 struct msginfo *host_msginfo)
4190 {
4191 struct target_msginfo *target_msginfo;
4192 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4193 return -TARGET_EFAULT;
4194 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4195 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4196 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4197 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4198 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4199 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4200 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4201 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4202 unlock_user_struct(target_msginfo, target_addr, 1);
4203 return 0;
4204 }
4205
4206 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4207 {
4208 struct msqid_ds dsarg;
4209 struct msginfo msginfo;
4210 abi_long ret = -TARGET_EINVAL;
4211
4212 cmd &= 0xff;
4213
4214 switch (cmd) {
4215 case IPC_STAT:
4216 case IPC_SET:
4217 case MSG_STAT:
4218 if (target_to_host_msqid_ds(&dsarg,ptr))
4219 return -TARGET_EFAULT;
4220 ret = get_errno(msgctl(msgid, cmd, &dsarg));
4221 if (host_to_target_msqid_ds(ptr,&dsarg))
4222 return -TARGET_EFAULT;
4223 break;
4224 case IPC_RMID:
4225 ret = get_errno(msgctl(msgid, cmd, NULL));
4226 break;
4227 case IPC_INFO:
4228 case MSG_INFO:
4229 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4230 if (host_to_target_msginfo(ptr, &msginfo))
4231 return -TARGET_EFAULT;
4232 break;
4233 }
4234
4235 return ret;
4236 }
4237
4238 struct target_msgbuf {
4239 abi_long mtype;
4240 char mtext[1];
4241 };
4242
4243 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4244 ssize_t msgsz, int msgflg)
4245 {
4246 struct target_msgbuf *target_mb;
4247 struct msgbuf *host_mb;
4248 abi_long ret = 0;
4249
4250 if (msgsz < 0) {
4251 return -TARGET_EINVAL;
4252 }
4253
4254 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4255 return -TARGET_EFAULT;
4256 host_mb = g_try_malloc(msgsz + sizeof(long));
4257 if (!host_mb) {
4258 unlock_user_struct(target_mb, msgp, 0);
4259 return -TARGET_ENOMEM;
4260 }
4261 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4262 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4263 ret = -TARGET_ENOSYS;
4264 #ifdef __NR_msgsnd
4265 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4266 #endif
4267 #ifdef __NR_ipc
4268 if (ret == -TARGET_ENOSYS) {
4269 #ifdef __s390x__
4270 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4271 host_mb));
4272 #else
4273 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4274 host_mb, 0));
4275 #endif
4276 }
4277 #endif
4278 g_free(host_mb);
4279 unlock_user_struct(target_mb, msgp, 0);
4280
4281 return ret;
4282 }
4283
4284 #ifdef __NR_ipc
4285 #if defined(__sparc__)
4286 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */
4287 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4288 #elif defined(__s390x__)
4289 /* The s390 sys_ipc variant has only five parameters. */
4290 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4291 ((long int[]){(long int)__msgp, __msgtyp})
4292 #else
4293 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4294 ((long int[]){(long int)__msgp, __msgtyp}), 0
4295 #endif
4296 #endif
4297
4298 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4299 ssize_t msgsz, abi_long msgtyp,
4300 int msgflg)
4301 {
4302 struct target_msgbuf *target_mb;
4303 char *target_mtext;
4304 struct msgbuf *host_mb;
4305 abi_long ret = 0;
4306
4307 if (msgsz < 0) {
4308 return -TARGET_EINVAL;
4309 }
4310
4311 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4312 return -TARGET_EFAULT;
4313
4314 host_mb = g_try_malloc(msgsz + sizeof(long));
4315 if (!host_mb) {
4316 ret = -TARGET_ENOMEM;
4317 goto end;
4318 }
4319 ret = -TARGET_ENOSYS;
4320 #ifdef __NR_msgrcv
4321 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4322 #endif
4323 #ifdef __NR_ipc
4324 if (ret == -TARGET_ENOSYS) {
4325 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4326 msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4327 }
4328 #endif
4329
4330 if (ret > 0) {
4331 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4332 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4333 if (!target_mtext) {
4334 ret = -TARGET_EFAULT;
4335 goto end;
4336 }
4337 memcpy(target_mb->mtext, host_mb->mtext, ret);
4338 unlock_user(target_mtext, target_mtext_addr, ret);
4339 }
4340
4341 target_mb->mtype = tswapal(host_mb->mtype);
4342
4343 end:
4344 if (target_mb)
4345 unlock_user_struct(target_mb, msgp, 1);
4346 g_free(host_mb);
4347 return ret;
4348 }
4349
4350 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4351 abi_ulong target_addr)
4352 {
4353 struct target_shmid_ds *target_sd;
4354
4355 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4356 return -TARGET_EFAULT;
4357 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4358 return -TARGET_EFAULT;
4359 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4360 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4361 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4362 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4363 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4364 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4365 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4366 unlock_user_struct(target_sd, target_addr, 0);
4367 return 0;
4368 }
4369
4370 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4371 struct shmid_ds *host_sd)
4372 {
4373 struct target_shmid_ds *target_sd;
4374
4375 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4376 return -TARGET_EFAULT;
4377 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4378 return -TARGET_EFAULT;
4379 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4380 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4381 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4382 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4383 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4384 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4385 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4386 unlock_user_struct(target_sd, target_addr, 1);
4387 return 0;
4388 }
4389
4390 struct target_shminfo {
4391 abi_ulong shmmax;
4392 abi_ulong shmmin;
4393 abi_ulong shmmni;
4394 abi_ulong shmseg;
4395 abi_ulong shmall;
4396 };
4397
4398 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4399 struct shminfo *host_shminfo)
4400 {
4401 struct target_shminfo *target_shminfo;
4402 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4403 return -TARGET_EFAULT;
4404 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4405 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4406 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4407 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4408 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4409 unlock_user_struct(target_shminfo, target_addr, 1);
4410 return 0;
4411 }
4412
4413 struct target_shm_info {
4414 int used_ids;
4415 abi_ulong shm_tot;
4416 abi_ulong shm_rss;
4417 abi_ulong shm_swp;
4418 abi_ulong swap_attempts;
4419 abi_ulong swap_successes;
4420 };
4421
4422 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4423 struct shm_info *host_shm_info)
4424 {
4425 struct target_shm_info *target_shm_info;
4426 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4427 return -TARGET_EFAULT;
4428 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4429 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4430 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4431 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4432 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4433 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4434 unlock_user_struct(target_shm_info, target_addr, 1);
4435 return 0;
4436 }
4437
4438 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4439 {
4440 struct shmid_ds dsarg;
4441 struct shminfo shminfo;
4442 struct shm_info shm_info;
4443 abi_long ret = -TARGET_EINVAL;
4444
4445 cmd &= 0xff;
4446
4447 switch(cmd) {
4448 case IPC_STAT:
4449 case IPC_SET:
4450 case SHM_STAT:
4451 if (target_to_host_shmid_ds(&dsarg, buf))
4452 return -TARGET_EFAULT;
4453 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4454 if (host_to_target_shmid_ds(buf, &dsarg))
4455 return -TARGET_EFAULT;
4456 break;
4457 case IPC_INFO:
4458 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4459 if (host_to_target_shminfo(buf, &shminfo))
4460 return -TARGET_EFAULT;
4461 break;
4462 case SHM_INFO:
4463 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4464 if (host_to_target_shm_info(buf, &shm_info))
4465 return -TARGET_EFAULT;
4466 break;
4467 case IPC_RMID:
4468 case SHM_LOCK:
4469 case SHM_UNLOCK:
4470 ret = get_errno(shmctl(shmid, cmd, NULL));
4471 break;
4472 }
4473
4474 return ret;
4475 }
4476
4477 #ifdef TARGET_NR_ipc
4478 /* ??? This only works with linear mappings. */
4479 /* do_ipc() must return target values and target errnos. */
4480 static abi_long do_ipc(CPUArchState *cpu_env,
4481 unsigned int call, abi_long first,
4482 abi_long second, abi_long third,
4483 abi_long ptr, abi_long fifth)
4484 {
4485 int version;
4486 abi_long ret = 0;
4487
4488 version = call >> 16;
4489 call &= 0xffff;
4490
4491 switch (call) {
4492 case IPCOP_semop:
4493 ret = do_semtimedop(first, ptr, second, 0, false);
4494 break;
4495 case IPCOP_semtimedop:
4496 /*
4497 * The s390 sys_ipc variant has only five parameters instead of six
4498 * (as for default variant) and the only difference is the handling of
4499 * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4500 * to a struct timespec where the generic variant uses fifth parameter.
4501 */
4502 #if defined(TARGET_S390X)
4503 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4504 #else
4505 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4506 #endif
4507 break;
4508
4509 case IPCOP_semget:
4510 ret = get_errno(semget(first, second, third));
4511 break;
4512
4513 case IPCOP_semctl: {
4514 /* The semun argument to semctl is passed by value, so dereference the
4515 * ptr argument. */
4516 abi_ulong atptr;
4517 get_user_ual(atptr, ptr);
4518 ret = do_semctl(first, second, third, atptr);
4519 break;
4520 }
4521
4522 case IPCOP_msgget:
4523 ret = get_errno(msgget(first, second));
4524 break;
4525
4526 case IPCOP_msgsnd:
4527 ret = do_msgsnd(first, ptr, second, third);
4528 break;
4529
4530 case IPCOP_msgctl:
4531 ret = do_msgctl(first, second, ptr);
4532 break;
4533
4534 case IPCOP_msgrcv:
4535 switch (version) {
4536 case 0:
4537 {
4538 struct target_ipc_kludge {
4539 abi_long msgp;
4540 abi_long msgtyp;
4541 } *tmp;
4542
4543 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4544 ret = -TARGET_EFAULT;
4545 break;
4546 }
4547
4548 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4549
4550 unlock_user_struct(tmp, ptr, 0);
4551 break;
4552 }
4553 default:
4554 ret = do_msgrcv(first, ptr, second, fifth, third);
4555 }
4556 break;
4557
4558 case IPCOP_shmat:
4559 switch (version) {
4560 default:
4561 {
4562 abi_ulong raddr;
4563 raddr = target_shmat(cpu_env, first, ptr, second);
4564 if (is_error(raddr))
4565 return get_errno(raddr);
4566 if (put_user_ual(raddr, third))
4567 return -TARGET_EFAULT;
4568 break;
4569 }
4570 case 1:
4571 ret = -TARGET_EINVAL;
4572 break;
4573 }
4574 break;
4575 case IPCOP_shmdt:
4576 ret = target_shmdt(ptr);
4577 break;
4578
4579 case IPCOP_shmget:
4580 /* IPC_* flag values are the same on all linux platforms */
4581 ret = get_errno(shmget(first, second, third));
4582 break;
4583
4584 /* IPC_* and SHM_* command values are the same on all linux platforms */
4585 case IPCOP_shmctl:
4586 ret = do_shmctl(first, second, ptr);
4587 break;
4588 default:
4589 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4590 call, version);
4591 ret = -TARGET_ENOSYS;
4592 break;
4593 }
4594 return ret;
4595 }
4596 #endif
4597
4598 /* kernel structure types definitions */
4599
4600 #define STRUCT(name, ...) STRUCT_ ## name,
4601 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4602 enum {
4603 #include "syscall_types.h"
4604 STRUCT_MAX
4605 };
4606 #undef STRUCT
4607 #undef STRUCT_SPECIAL
4608
4609 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4610 #define STRUCT_SPECIAL(name)
4611 #include "syscall_types.h"
4612 #undef STRUCT
4613 #undef STRUCT_SPECIAL
4614
4615 #define MAX_STRUCT_SIZE 4096
4616
4617 #ifdef CONFIG_FIEMAP
4618 /* So fiemap access checks don't overflow on 32 bit systems.
4619 * This is very slightly smaller than the limit imposed by
4620 * the underlying kernel.
4621 */
4622 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4623 / sizeof(struct fiemap_extent))
4624
4625 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4626 int fd, int cmd, abi_long arg)
4627 {
4628 /* The parameter for this ioctl is a struct fiemap followed
4629 * by an array of struct fiemap_extent whose size is set
4630 * in fiemap->fm_extent_count. The array is filled in by the
4631 * ioctl.
4632 */
4633 int target_size_in, target_size_out;
4634 struct fiemap *fm;
4635 const argtype *arg_type = ie->arg_type;
4636 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4637 void *argptr, *p;
4638 abi_long ret;
4639 int i, extent_size = thunk_type_size(extent_arg_type, 0);
4640 uint32_t outbufsz;
4641 int free_fm = 0;
4642
4643 assert(arg_type[0] == TYPE_PTR);
4644 assert(ie->access == IOC_RW);
4645 arg_type++;
4646 target_size_in = thunk_type_size(arg_type, 0);
4647 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4648 if (!argptr) {
4649 return -TARGET_EFAULT;
4650 }
4651 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4652 unlock_user(argptr, arg, 0);
4653 fm = (struct fiemap *)buf_temp;
4654 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4655 return -TARGET_EINVAL;
4656 }
4657
4658 outbufsz = sizeof (*fm) +
4659 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4660
4661 if (outbufsz > MAX_STRUCT_SIZE) {
4662 /* We can't fit all the extents into the fixed size buffer.
4663 * Allocate one that is large enough and use it instead.
4664 */
4665 fm = g_try_malloc(outbufsz);
4666 if (!fm) {
4667 return -TARGET_ENOMEM;
4668 }
4669 memcpy(fm, buf_temp, sizeof(struct fiemap));
4670 free_fm = 1;
4671 }
4672 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4673 if (!is_error(ret)) {
4674 target_size_out = target_size_in;
4675 /* An extent_count of 0 means we were only counting the extents
4676 * so there are no structs to copy
4677 */
4678 if (fm->fm_extent_count != 0) {
4679 target_size_out += fm->fm_mapped_extents * extent_size;
4680 }
4681 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4682 if (!argptr) {
4683 ret = -TARGET_EFAULT;
4684 } else {
4685 /* Convert the struct fiemap */
4686 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4687 if (fm->fm_extent_count != 0) {
4688 p = argptr + target_size_in;
4689 /* ...and then all the struct fiemap_extents */
4690 for (i = 0; i < fm->fm_mapped_extents; i++) {
4691 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4692 THUNK_TARGET);
4693 p += extent_size;
4694 }
4695 }
4696 unlock_user(argptr, arg, target_size_out);
4697 }
4698 }
4699 if (free_fm) {
4700 g_free(fm);
4701 }
4702 return ret;
4703 }
4704 #endif
4705
4706 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4707 int fd, int cmd, abi_long arg)
4708 {
4709 const argtype *arg_type = ie->arg_type;
4710 int target_size;
4711 void *argptr;
4712 int ret;
4713 struct ifconf *host_ifconf;
4714 uint32_t outbufsz;
4715 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4716 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4717 int target_ifreq_size;
4718 int nb_ifreq;
4719 int free_buf = 0;
4720 int i;
4721 int target_ifc_len;
4722 abi_long target_ifc_buf;
4723 int host_ifc_len;
4724 char *host_ifc_buf;
4725
4726 assert(arg_type[0] == TYPE_PTR);
4727 assert(ie->access == IOC_RW);
4728
4729 arg_type++;
4730 target_size = thunk_type_size(arg_type, 0);
4731
4732 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4733 if (!argptr)
4734 return -TARGET_EFAULT;
4735 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4736 unlock_user(argptr, arg, 0);
4737
4738 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4739 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4740 target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4741
4742 if (target_ifc_buf != 0) {
4743 target_ifc_len = host_ifconf->ifc_len;
4744 nb_ifreq = target_ifc_len / target_ifreq_size;
4745 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4746
4747 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4748 if (outbufsz > MAX_STRUCT_SIZE) {
4749 /*
4750 * We can't fit all the extents into the fixed size buffer.
4751 * Allocate one that is large enough and use it instead.
4752 */
4753 host_ifconf = g_try_malloc(outbufsz);
4754 if (!host_ifconf) {
4755 return -TARGET_ENOMEM;
4756 }
4757 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4758 free_buf = 1;
4759 }
4760 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4761
4762 host_ifconf->ifc_len = host_ifc_len;
4763 } else {
4764 host_ifc_buf = NULL;
4765 }
4766 host_ifconf->ifc_buf = host_ifc_buf;
4767
4768 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4769 if (!is_error(ret)) {
4770 /* convert host ifc_len to target ifc_len */
4771
4772 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4773 target_ifc_len = nb_ifreq * target_ifreq_size;
4774 host_ifconf->ifc_len = target_ifc_len;
4775
4776 /* restore target ifc_buf */
4777
4778 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4779
4780 /* copy struct ifconf to target user */
4781
4782 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4783 if (!argptr)
4784 return -TARGET_EFAULT;
4785 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4786 unlock_user(argptr, arg, target_size);
4787
4788 if (target_ifc_buf != 0) {
4789 /* copy ifreq[] to target user */
4790 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4791 for (i = 0; i < nb_ifreq ; i++) {
4792 thunk_convert(argptr + i * target_ifreq_size,
4793 host_ifc_buf + i * sizeof(struct ifreq),
4794 ifreq_arg_type, THUNK_TARGET);
4795 }
4796 unlock_user(argptr, target_ifc_buf, target_ifc_len);
4797 }
4798 }
4799
4800 if (free_buf) {
4801 g_free(host_ifconf);
4802 }
4803
4804 return ret;
4805 }
4806
4807 #if defined(CONFIG_USBFS)
4808 #if HOST_LONG_BITS > 64
4809 #error USBDEVFS thunks do not support >64 bit hosts yet.
4810 #endif
4811 struct live_urb {
4812 uint64_t target_urb_adr;
4813 uint64_t target_buf_adr;
4814 char *target_buf_ptr;
4815 struct usbdevfs_urb host_urb;
4816 };
4817
4818 static GHashTable *usbdevfs_urb_hashtable(void)
4819 {
4820 static GHashTable *urb_hashtable;
4821
4822 if (!urb_hashtable) {
4823 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4824 }
4825 return urb_hashtable;
4826 }
4827
4828 static void urb_hashtable_insert(struct live_urb *urb)
4829 {
4830 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4831 g_hash_table_insert(urb_hashtable, urb, urb);
4832 }
4833
4834 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4835 {
4836 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4837 return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4838 }
4839
4840 static void urb_hashtable_remove(struct live_urb *urb)
4841 {
4842 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4843 g_hash_table_remove(urb_hashtable, urb);
4844 }
4845
4846 static abi_long
4847 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4848 int fd, int cmd, abi_long arg)
4849 {
4850 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4851 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4852 struct live_urb *lurb;
4853 void *argptr;
4854 uint64_t hurb;
4855 int target_size;
4856 uintptr_t target_urb_adr;
4857 abi_long ret;
4858
4859 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4860
4861 memset(buf_temp, 0, sizeof(uint64_t));
4862 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4863 if (is_error(ret)) {
4864 return ret;
4865 }
4866
4867 memcpy(&hurb, buf_temp, sizeof(uint64_t));
4868 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4869 if (!lurb->target_urb_adr) {
4870 return -TARGET_EFAULT;
4871 }
4872 urb_hashtable_remove(lurb);
4873 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4874 lurb->host_urb.buffer_length);
4875 lurb->target_buf_ptr = NULL;
4876
4877 /* restore the guest buffer pointer */
4878 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4879
4880 /* update the guest urb struct */
4881 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4882 if (!argptr) {
4883 g_free(lurb);
4884 return -TARGET_EFAULT;
4885 }
4886 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
4887 unlock_user(argptr, lurb->target_urb_adr, target_size);
4888
4889 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
4890 /* write back the urb handle */
4891 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4892 if (!argptr) {
4893 g_free(lurb);
4894 return -TARGET_EFAULT;
4895 }
4896
4897 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
4898 target_urb_adr = lurb->target_urb_adr;
4899 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
4900 unlock_user(argptr, arg, target_size);
4901
4902 g_free(lurb);
4903 return ret;
4904 }
4905
4906 static abi_long
4907 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
4908 uint8_t *buf_temp __attribute__((unused)),
4909 int fd, int cmd, abi_long arg)
4910 {
4911 struct live_urb *lurb;
4912
4913 /* map target address back to host URB with metadata. */
4914 lurb = urb_hashtable_lookup(arg);
4915 if (!lurb) {
4916 return -TARGET_EFAULT;
4917 }
4918 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4919 }
4920
4921 static abi_long
4922 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
4923 int fd, int cmd, abi_long arg)
4924 {
4925 const argtype *arg_type = ie->arg_type;
4926 int target_size;
4927 abi_long ret;
4928 void *argptr;
4929 int rw_dir;
4930 struct live_urb *lurb;
4931
4932 /*
4933 * each submitted URB needs to map to a unique ID for the
4934 * kernel, and that unique ID needs to be a pointer to
4935 * host memory. hence, we need to malloc for each URB.
4936 * isochronous transfers have a variable length struct.
4937 */
4938 arg_type++;
4939 target_size = thunk_type_size(arg_type, THUNK_TARGET);
4940
4941 /* construct host copy of urb and metadata */
4942 lurb = g_try_new0(struct live_urb, 1);
4943 if (!lurb) {
4944 return -TARGET_ENOMEM;
4945 }
4946
4947 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4948 if (!argptr) {
4949 g_free(lurb);
4950 return -TARGET_EFAULT;
4951 }
4952 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
4953 unlock_user(argptr, arg, 0);
4954
4955 lurb->target_urb_adr = arg;
4956 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
4957
4958 /* buffer space used depends on endpoint type so lock the entire buffer */
4959 /* control type urbs should check the buffer contents for true direction */
4960 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
4961 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
4962 lurb->host_urb.buffer_length, 1);
4963 if (lurb->target_buf_ptr == NULL) {
4964 g_free(lurb);
4965 return -TARGET_EFAULT;
4966 }
4967
4968 /* update buffer pointer in host copy */
4969 lurb->host_urb.buffer = lurb->target_buf_ptr;
4970
4971 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
4972 if (is_error(ret)) {
4973 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
4974 g_free(lurb);
4975 } else {
4976 urb_hashtable_insert(lurb);
4977 }
4978
4979 return ret;
4980 }
4981 #endif /* CONFIG_USBFS */
4982
4983 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4984 int cmd, abi_long arg)
4985 {
4986 void *argptr;
4987 struct dm_ioctl *host_dm;
4988 abi_long guest_data;
4989 uint32_t guest_data_size;
4990 int target_size;
4991 const argtype *arg_type = ie->arg_type;
4992 abi_long ret;
4993 void *big_buf = NULL;
4994 char *host_data;
4995
4996 arg_type++;
4997 target_size = thunk_type_size(arg_type, 0);
4998 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4999 if (!argptr) {
5000 ret = -TARGET_EFAULT;
5001 goto out;
5002 }
5003 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5004 unlock_user(argptr, arg, 0);
5005
5006 /* buf_temp is too small, so fetch things into a bigger buffer */
5007 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5008 memcpy(big_buf, buf_temp, target_size);
5009 buf_temp = big_buf;
5010 host_dm = big_buf;
5011
5012 guest_data = arg + host_dm->data_start;
5013 if ((guest_data - arg) < 0) {
5014 ret = -TARGET_EINVAL;
5015 goto out;
5016 }
5017 guest_data_size = host_dm->data_size - host_dm->data_start;
5018 host_data = (char*)host_dm + host_dm->data_start;
5019
5020 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5021 if (!argptr) {
5022 ret = -TARGET_EFAULT;
5023 goto out;
5024 }
5025
5026 switch (ie->host_cmd) {
5027 case DM_REMOVE_ALL:
5028 case DM_LIST_DEVICES:
5029 case DM_DEV_CREATE:
5030 case DM_DEV_REMOVE:
5031 case DM_DEV_SUSPEND:
5032 case DM_DEV_STATUS:
5033 case DM_DEV_WAIT:
5034 case DM_TABLE_STATUS:
5035 case DM_TABLE_CLEAR:
5036 case DM_TABLE_DEPS:
5037 case DM_LIST_VERSIONS:
5038 /* no input data */
5039 break;
5040 case DM_DEV_RENAME:
5041 case DM_DEV_SET_GEOMETRY:
5042 /* data contains only strings */
5043 memcpy(host_data, argptr, guest_data_size);
5044 break;
5045 case DM_TARGET_MSG:
5046 memcpy(host_data, argptr, guest_data_size);
5047 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5048 break;
5049 case DM_TABLE_LOAD:
5050 {
5051 void *gspec = argptr;
5052 void *cur_data = host_data;
5053 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5054 int spec_size = thunk_type_size(dm_arg_type, 0);
5055 int i;
5056
5057 for (i = 0; i < host_dm->target_count; i++) {
5058 struct dm_target_spec *spec = cur_data;
5059 uint32_t next;
5060 int slen;
5061
5062 thunk_convert(spec, gspec, dm_arg_type, THUNK_HOST);
5063 slen = strlen((char*)gspec + spec_size) + 1;
5064 next = spec->next;
5065 spec->next = sizeof(*spec) + slen;
5066 strcpy((char*)&spec[1], gspec + spec_size);
5067 gspec += next;
5068 cur_data += spec->next;
5069 }
5070 break;
5071 }
5072 default:
5073 ret = -TARGET_EINVAL;
5074 unlock_user(argptr, guest_data, 0);
5075 goto out;
5076 }
5077 unlock_user(argptr, guest_data, 0);
5078
5079 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5080 if (!is_error(ret)) {
5081 guest_data = arg + host_dm->data_start;
5082 guest_data_size = host_dm->data_size - host_dm->data_start;
5083 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5084 switch (ie->host_cmd) {
5085 case DM_REMOVE_ALL:
5086 case DM_DEV_CREATE:
5087 case DM_DEV_REMOVE:
5088 case DM_DEV_RENAME:
5089 case DM_DEV_SUSPEND:
5090 case DM_DEV_STATUS:
5091 case DM_TABLE_LOAD:
5092 case DM_TABLE_CLEAR:
5093 case DM_TARGET_MSG:
5094 case DM_DEV_SET_GEOMETRY:
5095 /* no return data */
5096 break;
5097 case DM_LIST_DEVICES:
5098 {
5099 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5100 uint32_t remaining_data = guest_data_size;
5101 void *cur_data = argptr;
5102 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5103 int nl_size = 12; /* can't use thunk_size due to alignment */
5104
5105 while (1) {
5106 uint32_t next = nl->next;
5107 if (next) {
5108 nl->next = nl_size + (strlen(nl->name) + 1);
5109 }
5110 if (remaining_data < nl->next) {
5111 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5112 break;
5113 }
5114 thunk_convert(cur_data, nl, dm_arg_type, THUNK_TARGET);
5115 strcpy(cur_data + nl_size, nl->name);
5116 cur_data += nl->next;
5117 remaining_data -= nl->next;
5118 if (!next) {
5119 break;
5120 }
5121 nl = (void*)nl + next;
5122 }
5123 break;
5124 }
5125 case DM_DEV_WAIT:
5126 case DM_TABLE_STATUS:
5127 {
5128 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5129 void *cur_data = argptr;
5130 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5131 int spec_size = thunk_type_size(dm_arg_type, 0);
5132 int i;
5133
5134 for (i = 0; i < host_dm->target_count; i++) {
5135 uint32_t next = spec->next;
5136 int slen = strlen((char*)&spec[1]) + 1;
5137 spec->next = (cur_data - argptr) + spec_size + slen;
5138 if (guest_data_size < spec->next) {
5139 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5140 break;
5141 }
5142 thunk_convert(cur_data, spec, dm_arg_type, THUNK_TARGET);
5143 strcpy(cur_data + spec_size, (char*)&spec[1]);
5144 cur_data = argptr + spec->next;
5145 spec = (void*)host_dm + host_dm->data_start + next;
5146 }
5147 break;
5148 }
5149 case DM_TABLE_DEPS:
5150 {
5151 void *hdata = (void*)host_dm + host_dm->data_start;
5152 int count = *(uint32_t*)hdata;
5153 uint64_t *hdev = hdata + 8;
5154 uint64_t *gdev = argptr + 8;
5155 int i;
5156
5157 *(uint32_t*)argptr = tswap32(count);
5158 for (i = 0; i < count; i++) {
5159 *gdev = tswap64(*hdev);
5160 gdev++;
5161 hdev++;
5162 }
5163 break;
5164 }
5165 case DM_LIST_VERSIONS:
5166 {
5167 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5168 uint32_t remaining_data = guest_data_size;
5169 void *cur_data = argptr;
5170 const argtype dm_arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5171 int vers_size = thunk_type_size(dm_arg_type, 0);
5172
5173 while (1) {
5174 uint32_t next = vers->next;
5175 if (next) {
5176 vers->next = vers_size + (strlen(vers->name) + 1);
5177 }
5178 if (remaining_data < vers->next) {
5179 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5180 break;
5181 }
5182 thunk_convert(cur_data, vers, dm_arg_type, THUNK_TARGET);
5183 strcpy(cur_data + vers_size, vers->name);
5184 cur_data += vers->next;
5185 remaining_data -= vers->next;
5186 if (!next) {
5187 break;
5188 }
5189 vers = (void*)vers + next;
5190 }
5191 break;
5192 }
5193 default:
5194 unlock_user(argptr, guest_data, 0);
5195 ret = -TARGET_EINVAL;
5196 goto out;
5197 }
5198 unlock_user(argptr, guest_data, guest_data_size);
5199
5200 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5201 if (!argptr) {
5202 ret = -TARGET_EFAULT;
5203 goto out;
5204 }
5205 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5206 unlock_user(argptr, arg, target_size);
5207 }
5208 out:
5209 g_free(big_buf);
5210 return ret;
5211 }
5212
5213 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5214 int cmd, abi_long arg)
5215 {
5216 void *argptr;
5217 int target_size;
5218 const argtype *arg_type = ie->arg_type;
5219 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5220 abi_long ret;
5221
5222 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5223 struct blkpg_partition host_part;
5224
5225 /* Read and convert blkpg */
5226 arg_type++;
5227 target_size = thunk_type_size(arg_type, 0);
5228 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5229 if (!argptr) {
5230 ret = -TARGET_EFAULT;
5231 goto out;
5232 }
5233 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5234 unlock_user(argptr, arg, 0);
5235
5236 switch (host_blkpg->op) {
5237 case BLKPG_ADD_PARTITION:
5238 case BLKPG_DEL_PARTITION:
5239 /* payload is struct blkpg_partition */
5240 break;
5241 default:
5242 /* Unknown opcode */
5243 ret = -TARGET_EINVAL;
5244 goto out;
5245 }
5246
5247 /* Read and convert blkpg->data */
5248 arg = (abi_long)(uintptr_t)host_blkpg->data;
5249 target_size = thunk_type_size(part_arg_type, 0);
5250 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5251 if (!argptr) {
5252 ret = -TARGET_EFAULT;
5253 goto out;
5254 }
5255 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5256 unlock_user(argptr, arg, 0);
5257
5258 /* Swizzle the data pointer to our local copy and call! */
5259 host_blkpg->data = &host_part;
5260 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5261
5262 out:
5263 return ret;
5264 }
5265
5266 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5267 int fd, int cmd, abi_long arg)
5268 {
5269 const argtype *arg_type = ie->arg_type;
5270 const StructEntry *se;
5271 const argtype *field_types;
5272 const int *dst_offsets, *src_offsets;
5273 int target_size;
5274 void *argptr;
5275 abi_ulong *target_rt_dev_ptr = NULL;
5276 unsigned long *host_rt_dev_ptr = NULL;
5277 abi_long ret;
5278 int i;
5279
5280 assert(ie->access == IOC_W);
5281 assert(*arg_type == TYPE_PTR);
5282 arg_type++;
5283 assert(*arg_type == TYPE_STRUCT);
5284 target_size = thunk_type_size(arg_type, 0);
5285 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5286 if (!argptr) {
5287 return -TARGET_EFAULT;
5288 }
5289 arg_type++;
5290 assert(*arg_type == (int)STRUCT_rtentry);
5291 se = struct_entries + *arg_type++;
5292 assert(se->convert[0] == NULL);
5293 /* convert struct here to be able to catch rt_dev string */
5294 field_types = se->field_types;
5295 dst_offsets = se->field_offsets[THUNK_HOST];
5296 src_offsets = se->field_offsets[THUNK_TARGET];
5297 for (i = 0; i < se->nb_fields; i++) {
5298 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5299 assert(*field_types == TYPE_PTRVOID);
5300 target_rt_dev_ptr = argptr + src_offsets[i];
5301 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5302 if (*target_rt_dev_ptr != 0) {
5303 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5304 tswapal(*target_rt_dev_ptr));
5305 if (!*host_rt_dev_ptr) {
5306 unlock_user(argptr, arg, 0);
5307 return -TARGET_EFAULT;
5308 }
5309 } else {
5310 *host_rt_dev_ptr = 0;
5311 }
5312 field_types++;
5313 continue;
5314 }
5315 field_types = thunk_convert(buf_temp + dst_offsets[i],
5316 argptr + src_offsets[i],
5317 field_types, THUNK_HOST);
5318 }
5319 unlock_user(argptr, arg, 0);
5320
5321 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5322
5323 assert(host_rt_dev_ptr != NULL);
5324 assert(target_rt_dev_ptr != NULL);
5325 if (*host_rt_dev_ptr != 0) {
5326 unlock_user((void *)*host_rt_dev_ptr,
5327 *target_rt_dev_ptr, 0);
5328 }
5329 return ret;
5330 }
5331
5332 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5333 int fd, int cmd, abi_long arg)
5334 {
5335 int sig = target_to_host_signal(arg);
5336 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5337 }
5338
5339 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5340 int fd, int cmd, abi_long arg)
5341 {
5342 struct timeval tv;
5343 abi_long ret;
5344
5345 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5346 if (is_error(ret)) {
5347 return ret;
5348 }
5349
5350 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5351 if (copy_to_user_timeval(arg, &tv)) {
5352 return -TARGET_EFAULT;
5353 }
5354 } else {
5355 if (copy_to_user_timeval64(arg, &tv)) {
5356 return -TARGET_EFAULT;
5357 }
5358 }
5359
5360 return ret;
5361 }
5362
5363 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5364 int fd, int cmd, abi_long arg)
5365 {
5366 struct timespec ts;
5367 abi_long ret;
5368
5369 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5370 if (is_error(ret)) {
5371 return ret;
5372 }
5373
5374 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5375 if (host_to_target_timespec(arg, &ts)) {
5376 return -TARGET_EFAULT;
5377 }
5378 } else{
5379 if (host_to_target_timespec64(arg, &ts)) {
5380 return -TARGET_EFAULT;
5381 }
5382 }
5383
5384 return ret;
5385 }
5386
5387 #ifdef TIOCGPTPEER
5388 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5389 int fd, int cmd, abi_long arg)
5390 {
5391 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5392 return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5393 }
5394 #endif
5395
5396 #ifdef HAVE_DRM_H
5397
5398 static void unlock_drm_version(struct drm_version *host_ver,
5399 struct target_drm_version *target_ver,
5400 bool copy)
5401 {
5402 unlock_user(host_ver->name, target_ver->name,
5403 copy ? host_ver->name_len : 0);
5404 unlock_user(host_ver->date, target_ver->date,
5405 copy ? host_ver->date_len : 0);
5406 unlock_user(host_ver->desc, target_ver->desc,
5407 copy ? host_ver->desc_len : 0);
5408 }
5409
5410 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5411 struct target_drm_version *target_ver)
5412 {
5413 memset(host_ver, 0, sizeof(*host_ver));
5414
5415 __get_user(host_ver->name_len, &target_ver->name_len);
5416 if (host_ver->name_len) {
5417 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5418 target_ver->name_len, 0);
5419 if (!host_ver->name) {
5420 return -EFAULT;
5421 }
5422 }
5423
5424 __get_user(host_ver->date_len, &target_ver->date_len);
5425 if (host_ver->date_len) {
5426 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5427 target_ver->date_len, 0);
5428 if (!host_ver->date) {
5429 goto err;
5430 }
5431 }
5432
5433 __get_user(host_ver->desc_len, &target_ver->desc_len);
5434 if (host_ver->desc_len) {
5435 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5436 target_ver->desc_len, 0);
5437 if (!host_ver->desc) {
5438 goto err;
5439 }
5440 }
5441
5442 return 0;
5443 err:
5444 unlock_drm_version(host_ver, target_ver, false);
5445 return -EFAULT;
5446 }
5447
5448 static inline void host_to_target_drmversion(
5449 struct target_drm_version *target_ver,
5450 struct drm_version *host_ver)
5451 {
5452 __put_user(host_ver->version_major, &target_ver->version_major);
5453 __put_user(host_ver->version_minor, &target_ver->version_minor);
5454 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5455 __put_user(host_ver->name_len, &target_ver->name_len);
5456 __put_user(host_ver->date_len, &target_ver->date_len);
5457 __put_user(host_ver->desc_len, &target_ver->desc_len);
5458 unlock_drm_version(host_ver, target_ver, true);
5459 }
5460
5461 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5462 int fd, int cmd, abi_long arg)
5463 {
5464 struct drm_version *ver;
5465 struct target_drm_version *target_ver;
5466 abi_long ret;
5467
5468 switch (ie->host_cmd) {
5469 case DRM_IOCTL_VERSION:
5470 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5471 return -TARGET_EFAULT;
5472 }
5473 ver = (struct drm_version *)buf_temp;
5474 ret = target_to_host_drmversion(ver, target_ver);
5475 if (!is_error(ret)) {
5476 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5477 if (is_error(ret)) {
5478 unlock_drm_version(ver, target_ver, false);
5479 } else {
5480 host_to_target_drmversion(target_ver, ver);
5481 }
5482 }
5483 unlock_user_struct(target_ver, arg, 0);
5484 return ret;
5485 }
5486 return -TARGET_ENOSYS;
5487 }
5488
5489 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5490 struct drm_i915_getparam *gparam,
5491 int fd, abi_long arg)
5492 {
5493 abi_long ret;
5494 int value;
5495 struct target_drm_i915_getparam *target_gparam;
5496
5497 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5498 return -TARGET_EFAULT;
5499 }
5500
5501 __get_user(gparam->param, &target_gparam->param);
5502 gparam->value = &value;
5503 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5504 put_user_s32(value, target_gparam->value);
5505
5506 unlock_user_struct(target_gparam, arg, 0);
5507 return ret;
5508 }
5509
5510 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5511 int fd, int cmd, abi_long arg)
5512 {
5513 switch (ie->host_cmd) {
5514 case DRM_IOCTL_I915_GETPARAM:
5515 return do_ioctl_drm_i915_getparam(ie,
5516 (struct drm_i915_getparam *)buf_temp,
5517 fd, arg);
5518 default:
5519 return -TARGET_ENOSYS;
5520 }
5521 }
5522
5523 #endif
5524
5525 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5526 int fd, int cmd, abi_long arg)
5527 {
5528 struct tun_filter *filter = (struct tun_filter *)buf_temp;
5529 struct tun_filter *target_filter;
5530 char *target_addr;
5531
5532 assert(ie->access == IOC_W);
5533
5534 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5535 if (!target_filter) {
5536 return -TARGET_EFAULT;
5537 }
5538 filter->flags = tswap16(target_filter->flags);
5539 filter->count = tswap16(target_filter->count);
5540 unlock_user(target_filter, arg, 0);
5541
5542 if (filter->count) {
5543 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5544 MAX_STRUCT_SIZE) {
5545 return -TARGET_EFAULT;
5546 }
5547
5548 target_addr = lock_user(VERIFY_READ,
5549 arg + offsetof(struct tun_filter, addr),
5550 filter->count * ETH_ALEN, 1);
5551 if (!target_addr) {
5552 return -TARGET_EFAULT;
5553 }
5554 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5555 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5556 }
5557
5558 return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5559 }
5560
5561 IOCTLEntry ioctl_entries[] = {
5562 #define IOCTL(cmd, access, ...) \
5563 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5564 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5565 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5566 #define IOCTL_IGNORE(cmd) \
5567 { TARGET_ ## cmd, 0, #cmd },
5568 #include "ioctls.h"
5569 { 0, 0, },
5570 };
5571
5572 /* ??? Implement proper locking for ioctls. */
5573 /* do_ioctl() Must return target values and target errnos. */
5574 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5575 {
5576 const IOCTLEntry *ie;
5577 const argtype *arg_type;
5578 abi_long ret;
5579 uint8_t buf_temp[MAX_STRUCT_SIZE];
5580 int target_size;
5581 void *argptr;
5582
5583 ie = ioctl_entries;
5584 for(;;) {
5585 if (ie->target_cmd == 0) {
5586 qemu_log_mask(
5587 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5588 return -TARGET_ENOTTY;
5589 }
5590 if (ie->target_cmd == cmd)
5591 break;
5592 ie++;
5593 }
5594 arg_type = ie->arg_type;
5595 if (ie->do_ioctl) {
5596 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5597 } else if (!ie->host_cmd) {
5598 /* Some architectures define BSD ioctls in their headers
5599 that are not implemented in Linux. */
5600 return -TARGET_ENOTTY;
5601 }
5602
5603 switch(arg_type[0]) {
5604 case TYPE_NULL:
5605 /* no argument */
5606 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5607 break;
5608 case TYPE_PTRVOID:
5609 case TYPE_INT:
5610 case TYPE_LONG:
5611 case TYPE_ULONG:
5612 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5613 break;
5614 case TYPE_PTR:
5615 arg_type++;
5616 target_size = thunk_type_size(arg_type, 0);
5617 switch(ie->access) {
5618 case IOC_R:
5619 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5620 if (!is_error(ret)) {
5621 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5622 if (!argptr)
5623 return -TARGET_EFAULT;
5624 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5625 unlock_user(argptr, arg, target_size);
5626 }
5627 break;
5628 case IOC_W:
5629 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5630 if (!argptr)
5631 return -TARGET_EFAULT;
5632 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5633 unlock_user(argptr, arg, 0);
5634 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5635 break;
5636 default:
5637 case IOC_RW:
5638 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5639 if (!argptr)
5640 return -TARGET_EFAULT;
5641 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5642 unlock_user(argptr, arg, 0);
5643 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5644 if (!is_error(ret)) {
5645 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5646 if (!argptr)
5647 return -TARGET_EFAULT;
5648 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5649 unlock_user(argptr, arg, target_size);
5650 }
5651 break;
5652 }
5653 break;
5654 default:
5655 qemu_log_mask(LOG_UNIMP,
5656 "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5657 (long)cmd, arg_type[0]);
5658 ret = -TARGET_ENOTTY;
5659 break;
5660 }
5661 return ret;
5662 }
5663
5664 static const bitmask_transtbl iflag_tbl[] = {
5665 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5666 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5667 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5668 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5669 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5670 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5671 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5672 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5673 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5674 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5675 { TARGET_IXON, TARGET_IXON, IXON, IXON },
5676 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5677 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5678 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5679 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5680 };
5681
5682 static const bitmask_transtbl oflag_tbl[] = {
5683 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5684 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5685 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5686 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5687 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5688 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5689 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5690 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5691 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5692 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5693 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5694 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5695 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5696 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5697 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5698 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5699 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5700 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5701 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5702 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5703 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5704 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5705 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5706 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5707 };
5708
5709 static const bitmask_transtbl cflag_tbl[] = {
5710 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5711 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5712 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5713 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5714 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5715 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5716 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5717 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5718 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5719 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5720 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5721 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5722 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5723 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5724 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5725 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5726 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5727 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5728 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5729 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5730 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5731 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5732 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5733 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5734 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5735 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5736 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5737 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5738 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5739 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5740 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5741 };
5742
5743 static const bitmask_transtbl lflag_tbl[] = {
5744 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5745 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5746 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5747 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5748 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5749 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5750 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5751 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5752 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5753 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5754 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5755 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5756 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5757 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5758 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5759 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5760 };
5761
5762 static void target_to_host_termios (void *dst, const void *src)
5763 {
5764 struct host_termios *host = dst;
5765 const struct target_termios *target = src;
5766
5767 host->c_iflag =
5768 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5769 host->c_oflag =
5770 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5771 host->c_cflag =
5772 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5773 host->c_lflag =
5774 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5775 host->c_line = target->c_line;
5776
5777 memset(host->c_cc, 0, sizeof(host->c_cc));
5778 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5779 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5780 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5781 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5782 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5783 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5784 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5785 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5786 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5787 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5788 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5789 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5790 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5791 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5792 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5793 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5794 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5795 }
5796
5797 static void host_to_target_termios (void *dst, const void *src)
5798 {
5799 struct target_termios *target = dst;
5800 const struct host_termios *host = src;
5801
5802 target->c_iflag =
5803 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5804 target->c_oflag =
5805 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5806 target->c_cflag =
5807 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5808 target->c_lflag =
5809 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5810 target->c_line = host->c_line;
5811
5812 memset(target->c_cc, 0, sizeof(target->c_cc));
5813 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5814 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5815 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5816 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5817 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5818 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5819 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5820 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5821 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5822 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5823 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5824 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5825 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5826 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5827 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5828 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5829 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5830 }
5831
5832 static const StructEntry struct_termios_def = {
5833 .convert = { host_to_target_termios, target_to_host_termios },
5834 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5835 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5836 .print = print_termios,
5837 };
5838
5839 /* If the host does not provide these bits, they may be safely discarded. */
5840 #ifndef MAP_SYNC
5841 #define MAP_SYNC 0
5842 #endif
5843 #ifndef MAP_UNINITIALIZED
5844 #define MAP_UNINITIALIZED 0
5845 #endif
5846
5847 static const bitmask_transtbl mmap_flags_tbl[] = {
5848 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5849 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5850 MAP_ANONYMOUS, MAP_ANONYMOUS },
5851 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5852 MAP_GROWSDOWN, MAP_GROWSDOWN },
5853 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5854 MAP_DENYWRITE, MAP_DENYWRITE },
5855 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5856 MAP_EXECUTABLE, MAP_EXECUTABLE },
5857 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5858 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5859 MAP_NORESERVE, MAP_NORESERVE },
5860 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5861 /* MAP_STACK had been ignored by the kernel for quite some time.
5862 Recognize it for the target insofar as we do not want to pass
5863 it through to the host. */
5864 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5865 { TARGET_MAP_NONBLOCK, TARGET_MAP_NONBLOCK, MAP_NONBLOCK, MAP_NONBLOCK },
5866 { TARGET_MAP_POPULATE, TARGET_MAP_POPULATE, MAP_POPULATE, MAP_POPULATE },
5867 { TARGET_MAP_FIXED_NOREPLACE, TARGET_MAP_FIXED_NOREPLACE,
5868 MAP_FIXED_NOREPLACE, MAP_FIXED_NOREPLACE },
5869 { TARGET_MAP_UNINITIALIZED, TARGET_MAP_UNINITIALIZED,
5870 MAP_UNINITIALIZED, MAP_UNINITIALIZED },
5871 };
5872
5873 /*
5874 * Arrange for legacy / undefined architecture specific flags to be
5875 * ignored by mmap handling code.
5876 */
5877 #ifndef TARGET_MAP_32BIT
5878 #define TARGET_MAP_32BIT 0
5879 #endif
5880 #ifndef TARGET_MAP_HUGE_2MB
5881 #define TARGET_MAP_HUGE_2MB 0
5882 #endif
5883 #ifndef TARGET_MAP_HUGE_1GB
5884 #define TARGET_MAP_HUGE_1GB 0
5885 #endif
5886
5887 static abi_long do_mmap(abi_ulong addr, abi_ulong len, int prot,
5888 int target_flags, int fd, off_t offset)
5889 {
5890 /*
5891 * The historical set of flags that all mmap types implicitly support.
5892 */
5893 enum {
5894 TARGET_LEGACY_MAP_MASK = TARGET_MAP_SHARED
5895 | TARGET_MAP_PRIVATE
5896 | TARGET_MAP_FIXED
5897 | TARGET_MAP_ANONYMOUS
5898 | TARGET_MAP_DENYWRITE
5899 | TARGET_MAP_EXECUTABLE
5900 | TARGET_MAP_UNINITIALIZED
5901 | TARGET_MAP_GROWSDOWN
5902 | TARGET_MAP_LOCKED
5903 | TARGET_MAP_NORESERVE
5904 | TARGET_MAP_POPULATE
5905 | TARGET_MAP_NONBLOCK
5906 | TARGET_MAP_STACK
5907 | TARGET_MAP_HUGETLB
5908 | TARGET_MAP_32BIT
5909 | TARGET_MAP_HUGE_2MB
5910 | TARGET_MAP_HUGE_1GB
5911 };
5912 int host_flags;
5913
5914 switch (target_flags & TARGET_MAP_TYPE) {
5915 case TARGET_MAP_PRIVATE:
5916 host_flags = MAP_PRIVATE;
5917 break;
5918 case TARGET_MAP_SHARED:
5919 host_flags = MAP_SHARED;
5920 break;
5921 case TARGET_MAP_SHARED_VALIDATE:
5922 /*
5923 * MAP_SYNC is only supported for MAP_SHARED_VALIDATE, and is
5924 * therefore omitted from mmap_flags_tbl and TARGET_LEGACY_MAP_MASK.
5925 */
5926 if (target_flags & ~(TARGET_LEGACY_MAP_MASK | TARGET_MAP_SYNC)) {
5927 return -TARGET_EOPNOTSUPP;
5928 }
5929 host_flags = MAP_SHARED_VALIDATE;
5930 if (target_flags & TARGET_MAP_SYNC) {
5931 host_flags |= MAP_SYNC;
5932 }
5933 break;
5934 default:
5935 return -TARGET_EINVAL;
5936 }
5937 host_flags |= target_to_host_bitmask(target_flags, mmap_flags_tbl);
5938
5939 return get_errno(target_mmap(addr, len, prot, host_flags, fd, offset));
5940 }
5941
5942 /*
5943 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5944 * TARGET_I386 is defined if TARGET_X86_64 is defined
5945 */
5946 #if defined(TARGET_I386)
5947
5948 /* NOTE: there is really one LDT for all the threads */
5949 static uint8_t *ldt_table;
5950
5951 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5952 {
5953 int size;
5954 void *p;
5955
5956 if (!ldt_table)
5957 return 0;
5958 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5959 if (size > bytecount)
5960 size = bytecount;
5961 p = lock_user(VERIFY_WRITE, ptr, size, 0);
5962 if (!p)
5963 return -TARGET_EFAULT;
5964 /* ??? Should this by byteswapped? */
5965 memcpy(p, ldt_table, size);
5966 unlock_user(p, ptr, size);
5967 return size;
5968 }
5969
5970 /* XXX: add locking support */
5971 static abi_long write_ldt(CPUX86State *env,
5972 abi_ulong ptr, unsigned long bytecount, int oldmode)
5973 {
5974 struct target_modify_ldt_ldt_s ldt_info;
5975 struct target_modify_ldt_ldt_s *target_ldt_info;
5976 int seg_32bit, contents, read_exec_only, limit_in_pages;
5977 int seg_not_present, useable, lm;
5978 uint32_t *lp, entry_1, entry_2;
5979
5980 if (bytecount != sizeof(ldt_info))
5981 return -TARGET_EINVAL;
5982 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5983 return -TARGET_EFAULT;
5984 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5985 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5986 ldt_info.limit = tswap32(target_ldt_info->limit);
5987 ldt_info.flags = tswap32(target_ldt_info->flags);
5988 unlock_user_struct(target_ldt_info, ptr, 0);
5989
5990 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5991 return -TARGET_EINVAL;
5992 seg_32bit = ldt_info.flags & 1;
5993 contents = (ldt_info.flags >> 1) & 3;
5994 read_exec_only = (ldt_info.flags >> 3) & 1;
5995 limit_in_pages = (ldt_info.flags >> 4) & 1;
5996 seg_not_present = (ldt_info.flags >> 5) & 1;
5997 useable = (ldt_info.flags >> 6) & 1;
5998 #ifdef TARGET_ABI32
5999 lm = 0;
6000 #else
6001 lm = (ldt_info.flags >> 7) & 1;
6002 #endif
6003 if (contents == 3) {
6004 if (oldmode)
6005 return -TARGET_EINVAL;
6006 if (seg_not_present == 0)
6007 return -TARGET_EINVAL;
6008 }
6009 /* allocate the LDT */
6010 if (!ldt_table) {
6011 env->ldt.base = target_mmap(0,
6012 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6013 PROT_READ|PROT_WRITE,
6014 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6015 if (env->ldt.base == -1)
6016 return -TARGET_ENOMEM;
6017 memset(g2h_untagged(env->ldt.base), 0,
6018 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6019 env->ldt.limit = 0xffff;
6020 ldt_table = g2h_untagged(env->ldt.base);
6021 }
6022
6023 /* NOTE: same code as Linux kernel */
6024 /* Allow LDTs to be cleared by the user. */
6025 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6026 if (oldmode ||
6027 (contents == 0 &&
6028 read_exec_only == 1 &&
6029 seg_32bit == 0 &&
6030 limit_in_pages == 0 &&
6031 seg_not_present == 1 &&
6032 useable == 0 )) {
6033 entry_1 = 0;
6034 entry_2 = 0;
6035 goto install;
6036 }
6037 }
6038
6039 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6040 (ldt_info.limit & 0x0ffff);
6041 entry_2 = (ldt_info.base_addr & 0xff000000) |
6042 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6043 (ldt_info.limit & 0xf0000) |
6044 ((read_exec_only ^ 1) << 9) |
6045 (contents << 10) |
6046 ((seg_not_present ^ 1) << 15) |
6047 (seg_32bit << 22) |
6048 (limit_in_pages << 23) |
6049 (lm << 21) |
6050 0x7000;
6051 if (!oldmode)
6052 entry_2 |= (useable << 20);
6053
6054 /* Install the new entry ... */
6055 install:
6056 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6057 lp[0] = tswap32(entry_1);
6058 lp[1] = tswap32(entry_2);
6059 return 0;
6060 }
6061
6062 /* specific and weird i386 syscalls */
6063 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6064 unsigned long bytecount)
6065 {
6066 abi_long ret;
6067
6068 switch (func) {
6069 case 0:
6070 ret = read_ldt(ptr, bytecount);
6071 break;
6072 case 1:
6073 ret = write_ldt(env, ptr, bytecount, 1);
6074 break;
6075 case 0x11:
6076 ret = write_ldt(env, ptr, bytecount, 0);
6077 break;
6078 default:
6079 ret = -TARGET_ENOSYS;
6080 break;
6081 }
6082 return ret;
6083 }
6084
6085 #if defined(TARGET_ABI32)
6086 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6087 {
6088 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6089 struct target_modify_ldt_ldt_s ldt_info;
6090 struct target_modify_ldt_ldt_s *target_ldt_info;
6091 int seg_32bit, contents, read_exec_only, limit_in_pages;
6092 int seg_not_present, useable, lm;
6093 uint32_t *lp, entry_1, entry_2;
6094 int i;
6095
6096 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6097 if (!target_ldt_info)
6098 return -TARGET_EFAULT;
6099 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6100 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6101 ldt_info.limit = tswap32(target_ldt_info->limit);
6102 ldt_info.flags = tswap32(target_ldt_info->flags);
6103 if (ldt_info.entry_number == -1) {
6104 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6105 if (gdt_table[i] == 0) {
6106 ldt_info.entry_number = i;
6107 target_ldt_info->entry_number = tswap32(i);
6108 break;
6109 }
6110 }
6111 }
6112 unlock_user_struct(target_ldt_info, ptr, 1);
6113
6114 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6115 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6116 return -TARGET_EINVAL;
6117 seg_32bit = ldt_info.flags & 1;
6118 contents = (ldt_info.flags >> 1) & 3;
6119 read_exec_only = (ldt_info.flags >> 3) & 1;
6120 limit_in_pages = (ldt_info.flags >> 4) & 1;
6121 seg_not_present = (ldt_info.flags >> 5) & 1;
6122 useable = (ldt_info.flags >> 6) & 1;
6123 #ifdef TARGET_ABI32
6124 lm = 0;
6125 #else
6126 lm = (ldt_info.flags >> 7) & 1;
6127 #endif
6128
6129 if (contents == 3) {
6130 if (seg_not_present == 0)
6131 return -TARGET_EINVAL;
6132 }
6133
6134 /* NOTE: same code as Linux kernel */
6135 /* Allow LDTs to be cleared by the user. */
6136 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6137 if ((contents == 0 &&
6138 read_exec_only == 1 &&
6139 seg_32bit == 0 &&
6140 limit_in_pages == 0 &&
6141 seg_not_present == 1 &&
6142 useable == 0 )) {
6143 entry_1 = 0;
6144 entry_2 = 0;
6145 goto install;
6146 }
6147 }
6148
6149 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6150 (ldt_info.limit & 0x0ffff);
6151 entry_2 = (ldt_info.base_addr & 0xff000000) |
6152 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6153 (ldt_info.limit & 0xf0000) |
6154 ((read_exec_only ^ 1) << 9) |
6155 (contents << 10) |
6156 ((seg_not_present ^ 1) << 15) |
6157 (seg_32bit << 22) |
6158 (limit_in_pages << 23) |
6159 (useable << 20) |
6160 (lm << 21) |
6161 0x7000;
6162
6163 /* Install the new entry ... */
6164 install:
6165 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6166 lp[0] = tswap32(entry_1);
6167 lp[1] = tswap32(entry_2);
6168 return 0;
6169 }
6170
6171 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6172 {
6173 struct target_modify_ldt_ldt_s *target_ldt_info;
6174 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6175 uint32_t base_addr, limit, flags;
6176 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6177 int seg_not_present, useable, lm;
6178 uint32_t *lp, entry_1, entry_2;
6179
6180 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6181 if (!target_ldt_info)
6182 return -TARGET_EFAULT;
6183 idx = tswap32(target_ldt_info->entry_number);
6184 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6185 idx > TARGET_GDT_ENTRY_TLS_MAX) {
6186 unlock_user_struct(target_ldt_info, ptr, 1);
6187 return -TARGET_EINVAL;
6188 }
6189 lp = (uint32_t *)(gdt_table + idx);
6190 entry_1 = tswap32(lp[0]);
6191 entry_2 = tswap32(lp[1]);
6192
6193 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6194 contents = (entry_2 >> 10) & 3;
6195 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6196 seg_32bit = (entry_2 >> 22) & 1;
6197 limit_in_pages = (entry_2 >> 23) & 1;
6198 useable = (entry_2 >> 20) & 1;
6199 #ifdef TARGET_ABI32
6200 lm = 0;
6201 #else
6202 lm = (entry_2 >> 21) & 1;
6203 #endif
6204 flags = (seg_32bit << 0) | (contents << 1) |
6205 (read_exec_only << 3) | (limit_in_pages << 4) |
6206 (seg_not_present << 5) | (useable << 6) | (lm << 7);
6207 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
6208 base_addr = (entry_1 >> 16) |
6209 (entry_2 & 0xff000000) |
6210 ((entry_2 & 0xff) << 16);
6211 target_ldt_info->base_addr = tswapal(base_addr);
6212 target_ldt_info->limit = tswap32(limit);
6213 target_ldt_info->flags = tswap32(flags);
6214 unlock_user_struct(target_ldt_info, ptr, 1);
6215 return 0;
6216 }
6217
6218 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6219 {
6220 return -TARGET_ENOSYS;
6221 }
6222 #else
6223 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6224 {
6225 abi_long ret = 0;
6226 abi_ulong val;
6227 int idx;
6228
6229 switch(code) {
6230 case TARGET_ARCH_SET_GS:
6231 case TARGET_ARCH_SET_FS:
6232 if (code == TARGET_ARCH_SET_GS)
6233 idx = R_GS;
6234 else
6235 idx = R_FS;
6236 cpu_x86_load_seg(env, idx, 0);
6237 env->segs[idx].base = addr;
6238 break;
6239 case TARGET_ARCH_GET_GS:
6240 case TARGET_ARCH_GET_FS:
6241 if (code == TARGET_ARCH_GET_GS)
6242 idx = R_GS;
6243 else
6244 idx = R_FS;
6245 val = env->segs[idx].base;
6246 if (put_user(val, addr, abi_ulong))
6247 ret = -TARGET_EFAULT;
6248 break;
6249 default:
6250 ret = -TARGET_EINVAL;
6251 break;
6252 }
6253 return ret;
6254 }
6255 #endif /* defined(TARGET_ABI32 */
6256 #endif /* defined(TARGET_I386) */
6257
6258 /*
6259 * These constants are generic. Supply any that are missing from the host.
6260 */
6261 #ifndef PR_SET_NAME
6262 # define PR_SET_NAME 15
6263 # define PR_GET_NAME 16
6264 #endif
6265 #ifndef PR_SET_FP_MODE
6266 # define PR_SET_FP_MODE 45
6267 # define PR_GET_FP_MODE 46
6268 # define PR_FP_MODE_FR (1 << 0)
6269 # define PR_FP_MODE_FRE (1 << 1)
6270 #endif
6271 #ifndef PR_SVE_SET_VL
6272 # define PR_SVE_SET_VL 50
6273 # define PR_SVE_GET_VL 51
6274 # define PR_SVE_VL_LEN_MASK 0xffff
6275 # define PR_SVE_VL_INHERIT (1 << 17)
6276 #endif
6277 #ifndef PR_PAC_RESET_KEYS
6278 # define PR_PAC_RESET_KEYS 54
6279 # define PR_PAC_APIAKEY (1 << 0)
6280 # define PR_PAC_APIBKEY (1 << 1)
6281 # define PR_PAC_APDAKEY (1 << 2)
6282 # define PR_PAC_APDBKEY (1 << 3)
6283 # define PR_PAC_APGAKEY (1 << 4)
6284 #endif
6285 #ifndef PR_SET_TAGGED_ADDR_CTRL
6286 # define PR_SET_TAGGED_ADDR_CTRL 55
6287 # define PR_GET_TAGGED_ADDR_CTRL 56
6288 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
6289 #endif
6290 #ifndef PR_MTE_TCF_SHIFT
6291 # define PR_MTE_TCF_SHIFT 1
6292 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT)
6293 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT)
6294 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT)
6295 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT)
6296 # define PR_MTE_TAG_SHIFT 3
6297 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT)
6298 #endif
6299 #ifndef PR_SET_IO_FLUSHER
6300 # define PR_SET_IO_FLUSHER 57
6301 # define PR_GET_IO_FLUSHER 58
6302 #endif
6303 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6304 # define PR_SET_SYSCALL_USER_DISPATCH 59
6305 #endif
6306 #ifndef PR_SME_SET_VL
6307 # define PR_SME_SET_VL 63
6308 # define PR_SME_GET_VL 64
6309 # define PR_SME_VL_LEN_MASK 0xffff
6310 # define PR_SME_VL_INHERIT (1 << 17)
6311 #endif
6312
6313 #include "target_prctl.h"
6314
6315 static abi_long do_prctl_inval0(CPUArchState *env)
6316 {
6317 return -TARGET_EINVAL;
6318 }
6319
6320 static abi_long do_prctl_inval1(CPUArchState *env, abi_long arg2)
6321 {
6322 return -TARGET_EINVAL;
6323 }
6324
6325 #ifndef do_prctl_get_fp_mode
6326 #define do_prctl_get_fp_mode do_prctl_inval0
6327 #endif
6328 #ifndef do_prctl_set_fp_mode
6329 #define do_prctl_set_fp_mode do_prctl_inval1
6330 #endif
6331 #ifndef do_prctl_sve_get_vl
6332 #define do_prctl_sve_get_vl do_prctl_inval0
6333 #endif
6334 #ifndef do_prctl_sve_set_vl
6335 #define do_prctl_sve_set_vl do_prctl_inval1
6336 #endif
6337 #ifndef do_prctl_reset_keys
6338 #define do_prctl_reset_keys do_prctl_inval1
6339 #endif
6340 #ifndef do_prctl_set_tagged_addr_ctrl
6341 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6342 #endif
6343 #ifndef do_prctl_get_tagged_addr_ctrl
6344 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6345 #endif
6346 #ifndef do_prctl_get_unalign
6347 #define do_prctl_get_unalign do_prctl_inval1
6348 #endif
6349 #ifndef do_prctl_set_unalign
6350 #define do_prctl_set_unalign do_prctl_inval1
6351 #endif
6352 #ifndef do_prctl_sme_get_vl
6353 #define do_prctl_sme_get_vl do_prctl_inval0
6354 #endif
6355 #ifndef do_prctl_sme_set_vl
6356 #define do_prctl_sme_set_vl do_prctl_inval1
6357 #endif
6358
6359 static abi_long do_prctl(CPUArchState *env, abi_long option, abi_long arg2,
6360 abi_long arg3, abi_long arg4, abi_long arg5)
6361 {
6362 abi_long ret;
6363
6364 switch (option) {
6365 case PR_GET_PDEATHSIG:
6366 {
6367 int deathsig;
6368 ret = get_errno(prctl(PR_GET_PDEATHSIG, &deathsig,
6369 arg3, arg4, arg5));
6370 if (!is_error(ret) &&
6371 put_user_s32(host_to_target_signal(deathsig), arg2)) {
6372 return -TARGET_EFAULT;
6373 }
6374 return ret;
6375 }
6376 case PR_SET_PDEATHSIG:
6377 return get_errno(prctl(PR_SET_PDEATHSIG, target_to_host_signal(arg2),
6378 arg3, arg4, arg5));
6379 case PR_GET_NAME:
6380 {
6381 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
6382 if (!name) {
6383 return -TARGET_EFAULT;
6384 }
6385 ret = get_errno(prctl(PR_GET_NAME, (uintptr_t)name,
6386 arg3, arg4, arg5));
6387 unlock_user(name, arg2, 16);
6388 return ret;
6389 }
6390 case PR_SET_NAME:
6391 {
6392 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
6393 if (!name) {
6394 return -TARGET_EFAULT;
6395 }
6396 ret = get_errno(prctl(PR_SET_NAME, (uintptr_t)name,
6397 arg3, arg4, arg5));
6398 unlock_user(name, arg2, 0);
6399 return ret;
6400 }
6401 case PR_GET_FP_MODE:
6402 return do_prctl_get_fp_mode(env);
6403 case PR_SET_FP_MODE:
6404 return do_prctl_set_fp_mode(env, arg2);
6405 case PR_SVE_GET_VL:
6406 return do_prctl_sve_get_vl(env);
6407 case PR_SVE_SET_VL:
6408 return do_prctl_sve_set_vl(env, arg2);
6409 case PR_SME_GET_VL:
6410 return do_prctl_sme_get_vl(env);
6411 case PR_SME_SET_VL:
6412 return do_prctl_sme_set_vl(env, arg2);
6413 case PR_PAC_RESET_KEYS:
6414 if (arg3 || arg4 || arg5) {
6415 return -TARGET_EINVAL;
6416 }
6417 return do_prctl_reset_keys(env, arg2);
6418 case PR_SET_TAGGED_ADDR_CTRL:
6419 if (arg3 || arg4 || arg5) {
6420 return -TARGET_EINVAL;
6421 }
6422 return do_prctl_set_tagged_addr_ctrl(env, arg2);
6423 case PR_GET_TAGGED_ADDR_CTRL:
6424 if (arg2 || arg3 || arg4 || arg5) {
6425 return -TARGET_EINVAL;
6426 }
6427 return do_prctl_get_tagged_addr_ctrl(env);
6428
6429 case PR_GET_UNALIGN:
6430 return do_prctl_get_unalign(env, arg2);
6431 case PR_SET_UNALIGN:
6432 return do_prctl_set_unalign(env, arg2);
6433
6434 case PR_CAP_AMBIENT:
6435 case PR_CAPBSET_READ:
6436 case PR_CAPBSET_DROP:
6437 case PR_GET_DUMPABLE:
6438 case PR_SET_DUMPABLE:
6439 case PR_GET_KEEPCAPS:
6440 case PR_SET_KEEPCAPS:
6441 case PR_GET_SECUREBITS:
6442 case PR_SET_SECUREBITS:
6443 case PR_GET_TIMING:
6444 case PR_SET_TIMING:
6445 case PR_GET_TIMERSLACK:
6446 case PR_SET_TIMERSLACK:
6447 case PR_MCE_KILL:
6448 case PR_MCE_KILL_GET:
6449 case PR_GET_NO_NEW_PRIVS:
6450 case PR_SET_NO_NEW_PRIVS:
6451 case PR_GET_IO_FLUSHER:
6452 case PR_SET_IO_FLUSHER:
6453 /* Some prctl options have no pointer arguments and we can pass on. */
6454 return get_errno(prctl(option, arg2, arg3, arg4, arg5));
6455
6456 case PR_GET_CHILD_SUBREAPER:
6457 case PR_SET_CHILD_SUBREAPER:
6458 case PR_GET_SPECULATION_CTRL:
6459 case PR_SET_SPECULATION_CTRL:
6460 case PR_GET_TID_ADDRESS:
6461 /* TODO */
6462 return -TARGET_EINVAL;
6463
6464 case PR_GET_FPEXC:
6465 case PR_SET_FPEXC:
6466 /* Was used for SPE on PowerPC. */
6467 return -TARGET_EINVAL;
6468
6469 case PR_GET_ENDIAN:
6470 case PR_SET_ENDIAN:
6471 case PR_GET_FPEMU:
6472 case PR_SET_FPEMU:
6473 case PR_SET_MM:
6474 case PR_GET_SECCOMP:
6475 case PR_SET_SECCOMP:
6476 case PR_SET_SYSCALL_USER_DISPATCH:
6477 case PR_GET_THP_DISABLE:
6478 case PR_SET_THP_DISABLE:
6479 case PR_GET_TSC:
6480 case PR_SET_TSC:
6481 /* Disable to prevent the target disabling stuff we need. */
6482 return -TARGET_EINVAL;
6483
6484 default:
6485 qemu_log_mask(LOG_UNIMP, "Unsupported prctl: " TARGET_ABI_FMT_ld "\n",
6486 option);
6487 return -TARGET_EINVAL;
6488 }
6489 }
6490
6491 #define NEW_STACK_SIZE 0x40000
6492
6493
6494 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6495 typedef struct {
6496 CPUArchState *env;
6497 pthread_mutex_t mutex;
6498 pthread_cond_t cond;
6499 pthread_t thread;
6500 uint32_t tid;
6501 abi_ulong child_tidptr;
6502 abi_ulong parent_tidptr;
6503 sigset_t sigmask;
6504 } new_thread_info;
6505
6506 static void *clone_func(void *arg)
6507 {
6508 new_thread_info *info = arg;
6509 CPUArchState *env;
6510 CPUState *cpu;
6511 TaskState *ts;
6512
6513 rcu_register_thread();
6514 tcg_register_thread();
6515 env = info->env;
6516 cpu = env_cpu(env);
6517 thread_cpu = cpu;
6518 ts = (TaskState *)cpu->opaque;
6519 info->tid = sys_gettid();
6520 task_settid(ts);
6521 if (info->child_tidptr)
6522 put_user_u32(info->tid, info->child_tidptr);
6523 if (info->parent_tidptr)
6524 put_user_u32(info->tid, info->parent_tidptr);
6525 qemu_guest_random_seed_thread_part2(cpu->random_seed);
6526 /* Enable signals. */
6527 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6528 /* Signal to the parent that we're ready. */
6529 pthread_mutex_lock(&info->mutex);
6530 pthread_cond_broadcast(&info->cond);
6531 pthread_mutex_unlock(&info->mutex);
6532 /* Wait until the parent has finished initializing the tls state. */
6533 pthread_mutex_lock(&clone_lock);
6534 pthread_mutex_unlock(&clone_lock);
6535 cpu_loop(env);
6536 /* never exits */
6537 return NULL;
6538 }
6539
6540 /* do_fork() Must return host values and target errnos (unlike most
6541 do_*() functions). */
6542 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6543 abi_ulong parent_tidptr, target_ulong newtls,
6544 abi_ulong child_tidptr)
6545 {
6546 CPUState *cpu = env_cpu(env);
6547 int ret;
6548 TaskState *ts;
6549 CPUState *new_cpu;
6550 CPUArchState *new_env;
6551 sigset_t sigmask;
6552
6553 flags &= ~CLONE_IGNORED_FLAGS;
6554
6555 /* Emulate vfork() with fork() */
6556 if (flags & CLONE_VFORK)
6557 flags &= ~(CLONE_VFORK | CLONE_VM);
6558
6559 if (flags & CLONE_VM) {
6560 TaskState *parent_ts = (TaskState *)cpu->opaque;
6561 new_thread_info info;
6562 pthread_attr_t attr;
6563
6564 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6565 (flags & CLONE_INVALID_THREAD_FLAGS)) {
6566 return -TARGET_EINVAL;
6567 }
6568
6569 ts = g_new0(TaskState, 1);
6570 init_task_state(ts);
6571
6572 /* Grab a mutex so that thread setup appears atomic. */
6573 pthread_mutex_lock(&clone_lock);
6574
6575 /*
6576 * If this is our first additional thread, we need to ensure we
6577 * generate code for parallel execution and flush old translations.
6578 * Do this now so that the copy gets CF_PARALLEL too.
6579 */
6580 if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6581 cpu->tcg_cflags |= CF_PARALLEL;
6582 tb_flush(cpu);
6583 }
6584
6585 /* we create a new CPU instance. */
6586 new_env = cpu_copy(env);
6587 /* Init regs that differ from the parent. */
6588 cpu_clone_regs_child(new_env, newsp, flags);
6589 cpu_clone_regs_parent(env, flags);
6590 new_cpu = env_cpu(new_env);
6591 new_cpu->opaque = ts;
6592 ts->bprm = parent_ts->bprm;
6593 ts->info = parent_ts->info;
6594 ts->signal_mask = parent_ts->signal_mask;
6595
6596 if (flags & CLONE_CHILD_CLEARTID) {
6597 ts->child_tidptr = child_tidptr;
6598 }
6599
6600 if (flags & CLONE_SETTLS) {
6601 cpu_set_tls (new_env, newtls);
6602 }
6603
6604 memset(&info, 0, sizeof(info));
6605 pthread_mutex_init(&info.mutex, NULL);
6606 pthread_mutex_lock(&info.mutex);
6607 pthread_cond_init(&info.cond, NULL);
6608 info.env = new_env;
6609 if (flags & CLONE_CHILD_SETTID) {
6610 info.child_tidptr = child_tidptr;
6611 }
6612 if (flags & CLONE_PARENT_SETTID) {
6613 info.parent_tidptr = parent_tidptr;
6614 }
6615
6616 ret = pthread_attr_init(&attr);
6617 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6618 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6619 /* It is not safe to deliver signals until the child has finished
6620 initializing, so temporarily block all signals. */
6621 sigfillset(&sigmask);
6622 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6623 cpu->random_seed = qemu_guest_random_seed_thread_part1();
6624
6625 ret = pthread_create(&info.thread, &attr, clone_func, &info);
6626 /* TODO: Free new CPU state if thread creation failed. */
6627
6628 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6629 pthread_attr_destroy(&attr);
6630 if (ret == 0) {
6631 /* Wait for the child to initialize. */
6632 pthread_cond_wait(&info.cond, &info.mutex);
6633 ret = info.tid;
6634 } else {
6635 ret = -1;
6636 }
6637 pthread_mutex_unlock(&info.mutex);
6638 pthread_cond_destroy(&info.cond);
6639 pthread_mutex_destroy(&info.mutex);
6640 pthread_mutex_unlock(&clone_lock);
6641 } else {
6642 /* if no CLONE_VM, we consider it is a fork */
6643 if (flags & CLONE_INVALID_FORK_FLAGS) {
6644 return -TARGET_EINVAL;
6645 }
6646
6647 /* We can't support custom termination signals */
6648 if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6649 return -TARGET_EINVAL;
6650 }
6651
6652 #if !defined(__NR_pidfd_open) || !defined(TARGET_NR_pidfd_open)
6653 if (flags & CLONE_PIDFD) {
6654 return -TARGET_EINVAL;
6655 }
6656 #endif
6657
6658 /* Can not allow CLONE_PIDFD with CLONE_PARENT_SETTID */
6659 if ((flags & CLONE_PIDFD) && (flags & CLONE_PARENT_SETTID)) {
6660 return -TARGET_EINVAL;
6661 }
6662
6663 if (block_signals()) {
6664 return -QEMU_ERESTARTSYS;
6665 }
6666
6667 fork_start();
6668 ret = fork();
6669 if (ret == 0) {
6670 /* Child Process. */
6671 cpu_clone_regs_child(env, newsp, flags);
6672 fork_end(1);
6673 /* There is a race condition here. The parent process could
6674 theoretically read the TID in the child process before the child
6675 tid is set. This would require using either ptrace
6676 (not implemented) or having *_tidptr to point at a shared memory
6677 mapping. We can't repeat the spinlock hack used above because
6678 the child process gets its own copy of the lock. */
6679 if (flags & CLONE_CHILD_SETTID)
6680 put_user_u32(sys_gettid(), child_tidptr);
6681 if (flags & CLONE_PARENT_SETTID)
6682 put_user_u32(sys_gettid(), parent_tidptr);
6683 ts = (TaskState *)cpu->opaque;
6684 if (flags & CLONE_SETTLS)
6685 cpu_set_tls (env, newtls);
6686 if (flags & CLONE_CHILD_CLEARTID)
6687 ts->child_tidptr = child_tidptr;
6688 } else {
6689 cpu_clone_regs_parent(env, flags);
6690 if (flags & CLONE_PIDFD) {
6691 int pid_fd = 0;
6692 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
6693 int pid_child = ret;
6694 pid_fd = pidfd_open(pid_child, 0);
6695 if (pid_fd >= 0) {
6696 fcntl(pid_fd, F_SETFD, fcntl(pid_fd, F_GETFL)
6697 | FD_CLOEXEC);
6698 } else {
6699 pid_fd = 0;
6700 }
6701 #endif
6702 put_user_u32(pid_fd, parent_tidptr);
6703 }
6704 fork_end(0);
6705 }
6706 g_assert(!cpu_in_exclusive_context(cpu));
6707 }
6708 return ret;
6709 }
6710
6711 /* warning : doesn't handle linux specific flags... */
6712 static int target_to_host_fcntl_cmd(int cmd)
6713 {
6714 int ret;
6715
6716 switch(cmd) {
6717 case TARGET_F_DUPFD:
6718 case TARGET_F_GETFD:
6719 case TARGET_F_SETFD:
6720 case TARGET_F_GETFL:
6721 case TARGET_F_SETFL:
6722 case TARGET_F_OFD_GETLK:
6723 case TARGET_F_OFD_SETLK:
6724 case TARGET_F_OFD_SETLKW:
6725 ret = cmd;
6726 break;
6727 case TARGET_F_GETLK:
6728 ret = F_GETLK64;
6729 break;
6730 case TARGET_F_SETLK:
6731 ret = F_SETLK64;
6732 break;
6733 case TARGET_F_SETLKW:
6734 ret = F_SETLKW64;
6735 break;
6736 case TARGET_F_GETOWN:
6737 ret = F_GETOWN;
6738 break;
6739 case TARGET_F_SETOWN:
6740 ret = F_SETOWN;
6741 break;
6742 case TARGET_F_GETSIG:
6743 ret = F_GETSIG;
6744 break;
6745 case TARGET_F_SETSIG:
6746 ret = F_SETSIG;
6747 break;
6748 #if TARGET_ABI_BITS == 32
6749 case TARGET_F_GETLK64:
6750 ret = F_GETLK64;
6751 break;
6752 case TARGET_F_SETLK64:
6753 ret = F_SETLK64;
6754 break;
6755 case TARGET_F_SETLKW64:
6756 ret = F_SETLKW64;
6757 break;
6758 #endif
6759 case TARGET_F_SETLEASE:
6760 ret = F_SETLEASE;
6761 break;
6762 case TARGET_F_GETLEASE:
6763 ret = F_GETLEASE;
6764 break;
6765 #ifdef F_DUPFD_CLOEXEC
6766 case TARGET_F_DUPFD_CLOEXEC:
6767 ret = F_DUPFD_CLOEXEC;
6768 break;
6769 #endif
6770 case TARGET_F_NOTIFY:
6771 ret = F_NOTIFY;
6772 break;
6773 #ifdef F_GETOWN_EX
6774 case TARGET_F_GETOWN_EX:
6775 ret = F_GETOWN_EX;
6776 break;
6777 #endif
6778 #ifdef F_SETOWN_EX
6779 case TARGET_F_SETOWN_EX:
6780 ret = F_SETOWN_EX;
6781 break;
6782 #endif
6783 #ifdef F_SETPIPE_SZ
6784 case TARGET_F_SETPIPE_SZ:
6785 ret = F_SETPIPE_SZ;
6786 break;
6787 case TARGET_F_GETPIPE_SZ:
6788 ret = F_GETPIPE_SZ;
6789 break;
6790 #endif
6791 #ifdef F_ADD_SEALS
6792 case TARGET_F_ADD_SEALS:
6793 ret = F_ADD_SEALS;
6794 break;
6795 case TARGET_F_GET_SEALS:
6796 ret = F_GET_SEALS;
6797 break;
6798 #endif
6799 default:
6800 ret = -TARGET_EINVAL;
6801 break;
6802 }
6803
6804 #if defined(__powerpc64__)
6805 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6806 * is not supported by kernel. The glibc fcntl call actually adjusts
6807 * them to 5, 6 and 7 before making the syscall(). Since we make the
6808 * syscall directly, adjust to what is supported by the kernel.
6809 */
6810 if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6811 ret -= F_GETLK64 - 5;
6812 }
6813 #endif
6814
6815 return ret;
6816 }
6817
6818 #define FLOCK_TRANSTBL \
6819 switch (type) { \
6820 TRANSTBL_CONVERT(F_RDLCK); \
6821 TRANSTBL_CONVERT(F_WRLCK); \
6822 TRANSTBL_CONVERT(F_UNLCK); \
6823 }
6824
6825 static int target_to_host_flock(int type)
6826 {
6827 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6828 FLOCK_TRANSTBL
6829 #undef TRANSTBL_CONVERT
6830 return -TARGET_EINVAL;
6831 }
6832
6833 static int host_to_target_flock(int type)
6834 {
6835 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6836 FLOCK_TRANSTBL
6837 #undef TRANSTBL_CONVERT
6838 /* if we don't know how to convert the value coming
6839 * from the host we copy to the target field as-is
6840 */
6841 return type;
6842 }
6843
6844 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6845 abi_ulong target_flock_addr)
6846 {
6847 struct target_flock *target_fl;
6848 int l_type;
6849
6850 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6851 return -TARGET_EFAULT;
6852 }
6853
6854 __get_user(l_type, &target_fl->l_type);
6855 l_type = target_to_host_flock(l_type);
6856 if (l_type < 0) {
6857 return l_type;
6858 }
6859 fl->l_type = l_type;
6860 __get_user(fl->l_whence, &target_fl->l_whence);
6861 __get_user(fl->l_start, &target_fl->l_start);
6862 __get_user(fl->l_len, &target_fl->l_len);
6863 __get_user(fl->l_pid, &target_fl->l_pid);
6864 unlock_user_struct(target_fl, target_flock_addr, 0);
6865 return 0;
6866 }
6867
6868 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6869 const struct flock64 *fl)
6870 {
6871 struct target_flock *target_fl;
6872 short l_type;
6873
6874 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6875 return -TARGET_EFAULT;
6876 }
6877
6878 l_type = host_to_target_flock(fl->l_type);
6879 __put_user(l_type, &target_fl->l_type);
6880 __put_user(fl->l_whence, &target_fl->l_whence);
6881 __put_user(fl->l_start, &target_fl->l_start);
6882 __put_user(fl->l_len, &target_fl->l_len);
6883 __put_user(fl->l_pid, &target_fl->l_pid);
6884 unlock_user_struct(target_fl, target_flock_addr, 1);
6885 return 0;
6886 }
6887
6888 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6889 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6890
6891 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6892 struct target_oabi_flock64 {
6893 abi_short l_type;
6894 abi_short l_whence;
6895 abi_llong l_start;
6896 abi_llong l_len;
6897 abi_int l_pid;
6898 } QEMU_PACKED;
6899
6900 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6901 abi_ulong target_flock_addr)
6902 {
6903 struct target_oabi_flock64 *target_fl;
6904 int l_type;
6905
6906 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6907 return -TARGET_EFAULT;
6908 }
6909
6910 __get_user(l_type, &target_fl->l_type);
6911 l_type = target_to_host_flock(l_type);
6912 if (l_type < 0) {
6913 return l_type;
6914 }
6915 fl->l_type = l_type;
6916 __get_user(fl->l_whence, &target_fl->l_whence);
6917 __get_user(fl->l_start, &target_fl->l_start);
6918 __get_user(fl->l_len, &target_fl->l_len);
6919 __get_user(fl->l_pid, &target_fl->l_pid);
6920 unlock_user_struct(target_fl, target_flock_addr, 0);
6921 return 0;
6922 }
6923
6924 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6925 const struct flock64 *fl)
6926 {
6927 struct target_oabi_flock64 *target_fl;
6928 short l_type;
6929
6930 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6931 return -TARGET_EFAULT;
6932 }
6933
6934 l_type = host_to_target_flock(fl->l_type);
6935 __put_user(l_type, &target_fl->l_type);
6936 __put_user(fl->l_whence, &target_fl->l_whence);
6937 __put_user(fl->l_start, &target_fl->l_start);
6938 __put_user(fl->l_len, &target_fl->l_len);
6939 __put_user(fl->l_pid, &target_fl->l_pid);
6940 unlock_user_struct(target_fl, target_flock_addr, 1);
6941 return 0;
6942 }
6943 #endif
6944
6945 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6946 abi_ulong target_flock_addr)
6947 {
6948 struct target_flock64 *target_fl;
6949 int l_type;
6950
6951 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6952 return -TARGET_EFAULT;
6953 }
6954
6955 __get_user(l_type, &target_fl->l_type);
6956 l_type = target_to_host_flock(l_type);
6957 if (l_type < 0) {
6958 return l_type;
6959 }
6960 fl->l_type = l_type;
6961 __get_user(fl->l_whence, &target_fl->l_whence);
6962 __get_user(fl->l_start, &target_fl->l_start);
6963 __get_user(fl->l_len, &target_fl->l_len);
6964 __get_user(fl->l_pid, &target_fl->l_pid);
6965 unlock_user_struct(target_fl, target_flock_addr, 0);
6966 return 0;
6967 }
6968
6969 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6970 const struct flock64 *fl)
6971 {
6972 struct target_flock64 *target_fl;
6973 short l_type;
6974
6975 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6976 return -TARGET_EFAULT;
6977 }
6978
6979 l_type = host_to_target_flock(fl->l_type);
6980 __put_user(l_type, &target_fl->l_type);
6981 __put_user(fl->l_whence, &target_fl->l_whence);
6982 __put_user(fl->l_start, &target_fl->l_start);
6983 __put_user(fl->l_len, &target_fl->l_len);
6984 __put_user(fl->l_pid, &target_fl->l_pid);
6985 unlock_user_struct(target_fl, target_flock_addr, 1);
6986 return 0;
6987 }
6988
6989 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6990 {
6991 struct flock64 fl64;
6992 #ifdef F_GETOWN_EX
6993 struct f_owner_ex fox;
6994 struct target_f_owner_ex *target_fox;
6995 #endif
6996 abi_long ret;
6997 int host_cmd = target_to_host_fcntl_cmd(cmd);
6998
6999 if (host_cmd == -TARGET_EINVAL)
7000 return host_cmd;
7001
7002 switch(cmd) {
7003 case TARGET_F_GETLK:
7004 ret = copy_from_user_flock(&fl64, arg);
7005 if (ret) {
7006 return ret;
7007 }
7008 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7009 if (ret == 0) {
7010 ret = copy_to_user_flock(arg, &fl64);
7011 }
7012 break;
7013
7014 case TARGET_F_SETLK:
7015 case TARGET_F_SETLKW:
7016 ret = copy_from_user_flock(&fl64, arg);
7017 if (ret) {
7018 return ret;
7019 }
7020 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7021 break;
7022
7023 case TARGET_F_GETLK64:
7024 case TARGET_F_OFD_GETLK:
7025 ret = copy_from_user_flock64(&fl64, arg);
7026 if (ret) {
7027 return ret;
7028 }
7029 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7030 if (ret == 0) {
7031 ret = copy_to_user_flock64(arg, &fl64);
7032 }
7033 break;
7034 case TARGET_F_SETLK64:
7035 case TARGET_F_SETLKW64:
7036 case TARGET_F_OFD_SETLK:
7037 case TARGET_F_OFD_SETLKW:
7038 ret = copy_from_user_flock64(&fl64, arg);
7039 if (ret) {
7040 return ret;
7041 }
7042 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
7043 break;
7044
7045 case TARGET_F_GETFL:
7046 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7047 if (ret >= 0) {
7048 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
7049 /* tell 32-bit guests it uses largefile on 64-bit hosts: */
7050 if (O_LARGEFILE == 0 && HOST_LONG_BITS == 64) {
7051 ret |= TARGET_O_LARGEFILE;
7052 }
7053 }
7054 break;
7055
7056 case TARGET_F_SETFL:
7057 ret = get_errno(safe_fcntl(fd, host_cmd,
7058 target_to_host_bitmask(arg,
7059 fcntl_flags_tbl)));
7060 break;
7061
7062 #ifdef F_GETOWN_EX
7063 case TARGET_F_GETOWN_EX:
7064 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7065 if (ret >= 0) {
7066 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
7067 return -TARGET_EFAULT;
7068 target_fox->type = tswap32(fox.type);
7069 target_fox->pid = tswap32(fox.pid);
7070 unlock_user_struct(target_fox, arg, 1);
7071 }
7072 break;
7073 #endif
7074
7075 #ifdef F_SETOWN_EX
7076 case TARGET_F_SETOWN_EX:
7077 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
7078 return -TARGET_EFAULT;
7079 fox.type = tswap32(target_fox->type);
7080 fox.pid = tswap32(target_fox->pid);
7081 unlock_user_struct(target_fox, arg, 0);
7082 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
7083 break;
7084 #endif
7085
7086 case TARGET_F_SETSIG:
7087 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
7088 break;
7089
7090 case TARGET_F_GETSIG:
7091 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
7092 break;
7093
7094 case TARGET_F_SETOWN:
7095 case TARGET_F_GETOWN:
7096 case TARGET_F_SETLEASE:
7097 case TARGET_F_GETLEASE:
7098 case TARGET_F_SETPIPE_SZ:
7099 case TARGET_F_GETPIPE_SZ:
7100 case TARGET_F_ADD_SEALS:
7101 case TARGET_F_GET_SEALS:
7102 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
7103 break;
7104
7105 default:
7106 ret = get_errno(safe_fcntl(fd, cmd, arg));
7107 break;
7108 }
7109 return ret;
7110 }
7111
7112 #ifdef USE_UID16
7113
7114 static inline int high2lowuid(int uid)
7115 {
7116 if (uid > 65535)
7117 return 65534;
7118 else
7119 return uid;
7120 }
7121
7122 static inline int high2lowgid(int gid)
7123 {
7124 if (gid > 65535)
7125 return 65534;
7126 else
7127 return gid;
7128 }
7129
7130 static inline int low2highuid(int uid)
7131 {
7132 if ((int16_t)uid == -1)
7133 return -1;
7134 else
7135 return uid;
7136 }
7137
7138 static inline int low2highgid(int gid)
7139 {
7140 if ((int16_t)gid == -1)
7141 return -1;
7142 else
7143 return gid;
7144 }
7145 static inline int tswapid(int id)
7146 {
7147 return tswap16(id);
7148 }
7149
7150 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7151
7152 #else /* !USE_UID16 */
7153 static inline int high2lowuid(int uid)
7154 {
7155 return uid;
7156 }
7157 static inline int high2lowgid(int gid)
7158 {
7159 return gid;
7160 }
7161 static inline int low2highuid(int uid)
7162 {
7163 return uid;
7164 }
7165 static inline int low2highgid(int gid)
7166 {
7167 return gid;
7168 }
7169 static inline int tswapid(int id)
7170 {
7171 return tswap32(id);
7172 }
7173
7174 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7175
7176 #endif /* USE_UID16 */
7177
7178 /* We must do direct syscalls for setting UID/GID, because we want to
7179 * implement the Linux system call semantics of "change only for this thread",
7180 * not the libc/POSIX semantics of "change for all threads in process".
7181 * (See http://ewontfix.com/17/ for more details.)
7182 * We use the 32-bit version of the syscalls if present; if it is not
7183 * then either the host architecture supports 32-bit UIDs natively with
7184 * the standard syscall, or the 16-bit UID is the best we can do.
7185 */
7186 #ifdef __NR_setuid32
7187 #define __NR_sys_setuid __NR_setuid32
7188 #else
7189 #define __NR_sys_setuid __NR_setuid
7190 #endif
7191 #ifdef __NR_setgid32
7192 #define __NR_sys_setgid __NR_setgid32
7193 #else
7194 #define __NR_sys_setgid __NR_setgid
7195 #endif
7196 #ifdef __NR_setresuid32
7197 #define __NR_sys_setresuid __NR_setresuid32
7198 #else
7199 #define __NR_sys_setresuid __NR_setresuid
7200 #endif
7201 #ifdef __NR_setresgid32
7202 #define __NR_sys_setresgid __NR_setresgid32
7203 #else
7204 #define __NR_sys_setresgid __NR_setresgid
7205 #endif
7206
7207 _syscall1(int, sys_setuid, uid_t, uid)
7208 _syscall1(int, sys_setgid, gid_t, gid)
7209 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
7210 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
7211
7212 void syscall_init(void)
7213 {
7214 IOCTLEntry *ie;
7215 const argtype *arg_type;
7216 int size;
7217
7218 thunk_init(STRUCT_MAX);
7219
7220 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7221 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7222 #include "syscall_types.h"
7223 #undef STRUCT
7224 #undef STRUCT_SPECIAL
7225
7226 /* we patch the ioctl size if necessary. We rely on the fact that
7227 no ioctl has all the bits at '1' in the size field */
7228 ie = ioctl_entries;
7229 while (ie->target_cmd != 0) {
7230 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
7231 TARGET_IOC_SIZEMASK) {
7232 arg_type = ie->arg_type;
7233 if (arg_type[0] != TYPE_PTR) {
7234 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7235 ie->target_cmd);
7236 exit(1);
7237 }
7238 arg_type++;
7239 size = thunk_type_size(arg_type, 0);
7240 ie->target_cmd = (ie->target_cmd &
7241 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7242 (size << TARGET_IOC_SIZESHIFT);
7243 }
7244
7245 /* automatic consistency check if same arch */
7246 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7247 (defined(__x86_64__) && defined(TARGET_X86_64))
7248 if (unlikely(ie->target_cmd != ie->host_cmd)) {
7249 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7250 ie->name, ie->target_cmd, ie->host_cmd);
7251 }
7252 #endif
7253 ie++;
7254 }
7255 }
7256
7257 #ifdef TARGET_NR_truncate64
7258 static inline abi_long target_truncate64(CPUArchState *cpu_env, const char *arg1,
7259 abi_long arg2,
7260 abi_long arg3,
7261 abi_long arg4)
7262 {
7263 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7264 arg2 = arg3;
7265 arg3 = arg4;
7266 }
7267 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7268 }
7269 #endif
7270
7271 #ifdef TARGET_NR_ftruncate64
7272 static inline abi_long target_ftruncate64(CPUArchState *cpu_env, abi_long arg1,
7273 abi_long arg2,
7274 abi_long arg3,
7275 abi_long arg4)
7276 {
7277 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7278 arg2 = arg3;
7279 arg3 = arg4;
7280 }
7281 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7282 }
7283 #endif
7284
7285 #if defined(TARGET_NR_timer_settime) || \
7286 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7287 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7288 abi_ulong target_addr)
7289 {
7290 if (target_to_host_timespec(&host_its->it_interval, target_addr +
7291 offsetof(struct target_itimerspec,
7292 it_interval)) ||
7293 target_to_host_timespec(&host_its->it_value, target_addr +
7294 offsetof(struct target_itimerspec,
7295 it_value))) {
7296 return -TARGET_EFAULT;
7297 }
7298
7299 return 0;
7300 }
7301 #endif
7302
7303 #if defined(TARGET_NR_timer_settime64) || \
7304 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7305 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7306 abi_ulong target_addr)
7307 {
7308 if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7309 offsetof(struct target__kernel_itimerspec,
7310 it_interval)) ||
7311 target_to_host_timespec64(&host_its->it_value, target_addr +
7312 offsetof(struct target__kernel_itimerspec,
7313 it_value))) {
7314 return -TARGET_EFAULT;
7315 }
7316
7317 return 0;
7318 }
7319 #endif
7320
7321 #if ((defined(TARGET_NR_timerfd_gettime) || \
7322 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7323 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7324 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7325 struct itimerspec *host_its)
7326 {
7327 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7328 it_interval),
7329 &host_its->it_interval) ||
7330 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7331 it_value),
7332 &host_its->it_value)) {
7333 return -TARGET_EFAULT;
7334 }
7335 return 0;
7336 }
7337 #endif
7338
7339 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7340 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7341 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7342 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7343 struct itimerspec *host_its)
7344 {
7345 if (host_to_target_timespec64(target_addr +
7346 offsetof(struct target__kernel_itimerspec,
7347 it_interval),
7348 &host_its->it_interval) ||
7349 host_to_target_timespec64(target_addr +
7350 offsetof(struct target__kernel_itimerspec,
7351 it_value),
7352 &host_its->it_value)) {
7353 return -TARGET_EFAULT;
7354 }
7355 return 0;
7356 }
7357 #endif
7358
7359 #if defined(TARGET_NR_adjtimex) || \
7360 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7361 static inline abi_long target_to_host_timex(struct timex *host_tx,
7362 abi_long target_addr)
7363 {
7364 struct target_timex *target_tx;
7365
7366 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7367 return -TARGET_EFAULT;
7368 }
7369
7370 __get_user(host_tx->modes, &target_tx->modes);
7371 __get_user(host_tx->offset, &target_tx->offset);
7372 __get_user(host_tx->freq, &target_tx->freq);
7373 __get_user(host_tx->maxerror, &target_tx->maxerror);
7374 __get_user(host_tx->esterror, &target_tx->esterror);
7375 __get_user(host_tx->status, &target_tx->status);
7376 __get_user(host_tx->constant, &target_tx->constant);
7377 __get_user(host_tx->precision, &target_tx->precision);
7378 __get_user(host_tx->tolerance, &target_tx->tolerance);
7379 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7380 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7381 __get_user(host_tx->tick, &target_tx->tick);
7382 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7383 __get_user(host_tx->jitter, &target_tx->jitter);
7384 __get_user(host_tx->shift, &target_tx->shift);
7385 __get_user(host_tx->stabil, &target_tx->stabil);
7386 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7387 __get_user(host_tx->calcnt, &target_tx->calcnt);
7388 __get_user(host_tx->errcnt, &target_tx->errcnt);
7389 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7390 __get_user(host_tx->tai, &target_tx->tai);
7391
7392 unlock_user_struct(target_tx, target_addr, 0);
7393 return 0;
7394 }
7395
7396 static inline abi_long host_to_target_timex(abi_long target_addr,
7397 struct timex *host_tx)
7398 {
7399 struct target_timex *target_tx;
7400
7401 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7402 return -TARGET_EFAULT;
7403 }
7404
7405 __put_user(host_tx->modes, &target_tx->modes);
7406 __put_user(host_tx->offset, &target_tx->offset);
7407 __put_user(host_tx->freq, &target_tx->freq);
7408 __put_user(host_tx->maxerror, &target_tx->maxerror);
7409 __put_user(host_tx->esterror, &target_tx->esterror);
7410 __put_user(host_tx->status, &target_tx->status);
7411 __put_user(host_tx->constant, &target_tx->constant);
7412 __put_user(host_tx->precision, &target_tx->precision);
7413 __put_user(host_tx->tolerance, &target_tx->tolerance);
7414 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7415 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7416 __put_user(host_tx->tick, &target_tx->tick);
7417 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7418 __put_user(host_tx->jitter, &target_tx->jitter);
7419 __put_user(host_tx->shift, &target_tx->shift);
7420 __put_user(host_tx->stabil, &target_tx->stabil);
7421 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7422 __put_user(host_tx->calcnt, &target_tx->calcnt);
7423 __put_user(host_tx->errcnt, &target_tx->errcnt);
7424 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7425 __put_user(host_tx->tai, &target_tx->tai);
7426
7427 unlock_user_struct(target_tx, target_addr, 1);
7428 return 0;
7429 }
7430 #endif
7431
7432
7433 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7434 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7435 abi_long target_addr)
7436 {
7437 struct target__kernel_timex *target_tx;
7438
7439 if (copy_from_user_timeval64(&host_tx->time, target_addr +
7440 offsetof(struct target__kernel_timex,
7441 time))) {
7442 return -TARGET_EFAULT;
7443 }
7444
7445 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7446 return -TARGET_EFAULT;
7447 }
7448
7449 __get_user(host_tx->modes, &target_tx->modes);
7450 __get_user(host_tx->offset, &target_tx->offset);
7451 __get_user(host_tx->freq, &target_tx->freq);
7452 __get_user(host_tx->maxerror, &target_tx->maxerror);
7453 __get_user(host_tx->esterror, &target_tx->esterror);
7454 __get_user(host_tx->status, &target_tx->status);
7455 __get_user(host_tx->constant, &target_tx->constant);
7456 __get_user(host_tx->precision, &target_tx->precision);
7457 __get_user(host_tx->tolerance, &target_tx->tolerance);
7458 __get_user(host_tx->tick, &target_tx->tick);
7459 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7460 __get_user(host_tx->jitter, &target_tx->jitter);
7461 __get_user(host_tx->shift, &target_tx->shift);
7462 __get_user(host_tx->stabil, &target_tx->stabil);
7463 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7464 __get_user(host_tx->calcnt, &target_tx->calcnt);
7465 __get_user(host_tx->errcnt, &target_tx->errcnt);
7466 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7467 __get_user(host_tx->tai, &target_tx->tai);
7468
7469 unlock_user_struct(target_tx, target_addr, 0);
7470 return 0;
7471 }
7472
7473 static inline abi_long host_to_target_timex64(abi_long target_addr,
7474 struct timex *host_tx)
7475 {
7476 struct target__kernel_timex *target_tx;
7477
7478 if (copy_to_user_timeval64(target_addr +
7479 offsetof(struct target__kernel_timex, time),
7480 &host_tx->time)) {
7481 return -TARGET_EFAULT;
7482 }
7483
7484 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7485 return -TARGET_EFAULT;
7486 }
7487
7488 __put_user(host_tx->modes, &target_tx->modes);
7489 __put_user(host_tx->offset, &target_tx->offset);
7490 __put_user(host_tx->freq, &target_tx->freq);
7491 __put_user(host_tx->maxerror, &target_tx->maxerror);
7492 __put_user(host_tx->esterror, &target_tx->esterror);
7493 __put_user(host_tx->status, &target_tx->status);
7494 __put_user(host_tx->constant, &target_tx->constant);
7495 __put_user(host_tx->precision, &target_tx->precision);
7496 __put_user(host_tx->tolerance, &target_tx->tolerance);
7497 __put_user(host_tx->tick, &target_tx->tick);
7498 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7499 __put_user(host_tx->jitter, &target_tx->jitter);
7500 __put_user(host_tx->shift, &target_tx->shift);
7501 __put_user(host_tx->stabil, &target_tx->stabil);
7502 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7503 __put_user(host_tx->calcnt, &target_tx->calcnt);
7504 __put_user(host_tx->errcnt, &target_tx->errcnt);
7505 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7506 __put_user(host_tx->tai, &target_tx->tai);
7507
7508 unlock_user_struct(target_tx, target_addr, 1);
7509 return 0;
7510 }
7511 #endif
7512
7513 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7514 #define sigev_notify_thread_id _sigev_un._tid
7515 #endif
7516
7517 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7518 abi_ulong target_addr)
7519 {
7520 struct target_sigevent *target_sevp;
7521
7522 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7523 return -TARGET_EFAULT;
7524 }
7525
7526 /* This union is awkward on 64 bit systems because it has a 32 bit
7527 * integer and a pointer in it; we follow the conversion approach
7528 * used for handling sigval types in signal.c so the guest should get
7529 * the correct value back even if we did a 64 bit byteswap and it's
7530 * using the 32 bit integer.
7531 */
7532 host_sevp->sigev_value.sival_ptr =
7533 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7534 host_sevp->sigev_signo =
7535 target_to_host_signal(tswap32(target_sevp->sigev_signo));
7536 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7537 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7538
7539 unlock_user_struct(target_sevp, target_addr, 1);
7540 return 0;
7541 }
7542
7543 #if defined(TARGET_NR_mlockall)
7544 static inline int target_to_host_mlockall_arg(int arg)
7545 {
7546 int result = 0;
7547
7548 if (arg & TARGET_MCL_CURRENT) {
7549 result |= MCL_CURRENT;
7550 }
7551 if (arg & TARGET_MCL_FUTURE) {
7552 result |= MCL_FUTURE;
7553 }
7554 #ifdef MCL_ONFAULT
7555 if (arg & TARGET_MCL_ONFAULT) {
7556 result |= MCL_ONFAULT;
7557 }
7558 #endif
7559
7560 return result;
7561 }
7562 #endif
7563
7564 static inline int target_to_host_msync_arg(abi_long arg)
7565 {
7566 return ((arg & TARGET_MS_ASYNC) ? MS_ASYNC : 0) |
7567 ((arg & TARGET_MS_INVALIDATE) ? MS_INVALIDATE : 0) |
7568 ((arg & TARGET_MS_SYNC) ? MS_SYNC : 0) |
7569 (arg & ~(TARGET_MS_ASYNC | TARGET_MS_INVALIDATE | TARGET_MS_SYNC));
7570 }
7571
7572 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
7573 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
7574 defined(TARGET_NR_newfstatat))
7575 static inline abi_long host_to_target_stat64(CPUArchState *cpu_env,
7576 abi_ulong target_addr,
7577 struct stat *host_st)
7578 {
7579 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7580 if (cpu_env->eabi) {
7581 struct target_eabi_stat64 *target_st;
7582
7583 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7584 return -TARGET_EFAULT;
7585 memset(target_st, 0, sizeof(struct target_eabi_stat64));
7586 __put_user(host_st->st_dev, &target_st->st_dev);
7587 __put_user(host_st->st_ino, &target_st->st_ino);
7588 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7589 __put_user(host_st->st_ino, &target_st->__st_ino);
7590 #endif
7591 __put_user(host_st->st_mode, &target_st->st_mode);
7592 __put_user(host_st->st_nlink, &target_st->st_nlink);
7593 __put_user(host_st->st_uid, &target_st->st_uid);
7594 __put_user(host_st->st_gid, &target_st->st_gid);
7595 __put_user(host_st->st_rdev, &target_st->st_rdev);
7596 __put_user(host_st->st_size, &target_st->st_size);
7597 __put_user(host_st->st_blksize, &target_st->st_blksize);
7598 __put_user(host_st->st_blocks, &target_st->st_blocks);
7599 __put_user(host_st->st_atime, &target_st->target_st_atime);
7600 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7601 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7602 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7603 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7604 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7605 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7606 #endif
7607 unlock_user_struct(target_st, target_addr, 1);
7608 } else
7609 #endif
7610 {
7611 #if defined(TARGET_HAS_STRUCT_STAT64)
7612 struct target_stat64 *target_st;
7613 #else
7614 struct target_stat *target_st;
7615 #endif
7616
7617 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7618 return -TARGET_EFAULT;
7619 memset(target_st, 0, sizeof(*target_st));
7620 __put_user(host_st->st_dev, &target_st->st_dev);
7621 __put_user(host_st->st_ino, &target_st->st_ino);
7622 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7623 __put_user(host_st->st_ino, &target_st->__st_ino);
7624 #endif
7625 __put_user(host_st->st_mode, &target_st->st_mode);
7626 __put_user(host_st->st_nlink, &target_st->st_nlink);
7627 __put_user(host_st->st_uid, &target_st->st_uid);
7628 __put_user(host_st->st_gid, &target_st->st_gid);
7629 __put_user(host_st->st_rdev, &target_st->st_rdev);
7630 /* XXX: better use of kernel struct */
7631 __put_user(host_st->st_size, &target_st->st_size);
7632 __put_user(host_st->st_blksize, &target_st->st_blksize);
7633 __put_user(host_st->st_blocks, &target_st->st_blocks);
7634 __put_user(host_st->st_atime, &target_st->target_st_atime);
7635 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7636 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7637 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7638 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7639 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7640 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7641 #endif
7642 unlock_user_struct(target_st, target_addr, 1);
7643 }
7644
7645 return 0;
7646 }
7647 #endif
7648
7649 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7650 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7651 abi_ulong target_addr)
7652 {
7653 struct target_statx *target_stx;
7654
7655 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) {
7656 return -TARGET_EFAULT;
7657 }
7658 memset(target_stx, 0, sizeof(*target_stx));
7659
7660 __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7661 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7662 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7663 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7664 __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7665 __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7666 __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7667 __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7668 __put_user(host_stx->stx_size, &target_stx->stx_size);
7669 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7670 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7671 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7672 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7673 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7674 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7675 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7676 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7677 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7678 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7679 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7680 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7681 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7682 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7683
7684 unlock_user_struct(target_stx, target_addr, 1);
7685
7686 return 0;
7687 }
7688 #endif
7689
7690 static int do_sys_futex(int *uaddr, int op, int val,
7691 const struct timespec *timeout, int *uaddr2,
7692 int val3)
7693 {
7694 #if HOST_LONG_BITS == 64
7695 #if defined(__NR_futex)
7696 /* always a 64-bit time_t, it doesn't define _time64 version */
7697 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7698
7699 #endif
7700 #else /* HOST_LONG_BITS == 64 */
7701 #if defined(__NR_futex_time64)
7702 if (sizeof(timeout->tv_sec) == 8) {
7703 /* _time64 function on 32bit arch */
7704 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7705 }
7706 #endif
7707 #if defined(__NR_futex)
7708 /* old function on 32bit arch */
7709 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7710 #endif
7711 #endif /* HOST_LONG_BITS == 64 */
7712 g_assert_not_reached();
7713 }
7714
7715 static int do_safe_futex(int *uaddr, int op, int val,
7716 const struct timespec *timeout, int *uaddr2,
7717 int val3)
7718 {
7719 #if HOST_LONG_BITS == 64
7720 #if defined(__NR_futex)
7721 /* always a 64-bit time_t, it doesn't define _time64 version */
7722 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7723 #endif
7724 #else /* HOST_LONG_BITS == 64 */
7725 #if defined(__NR_futex_time64)
7726 if (sizeof(timeout->tv_sec) == 8) {
7727 /* _time64 function on 32bit arch */
7728 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7729 val3));
7730 }
7731 #endif
7732 #if defined(__NR_futex)
7733 /* old function on 32bit arch */
7734 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7735 #endif
7736 #endif /* HOST_LONG_BITS == 64 */
7737 return -TARGET_ENOSYS;
7738 }
7739
7740 /* ??? Using host futex calls even when target atomic operations
7741 are not really atomic probably breaks things. However implementing
7742 futexes locally would make futexes shared between multiple processes
7743 tricky. However they're probably useless because guest atomic
7744 operations won't work either. */
7745 #if defined(TARGET_NR_futex) || defined(TARGET_NR_futex_time64)
7746 static int do_futex(CPUState *cpu, bool time64, target_ulong uaddr,
7747 int op, int val, target_ulong timeout,
7748 target_ulong uaddr2, int val3)
7749 {
7750 struct timespec ts, *pts = NULL;
7751 void *haddr2 = NULL;
7752 int base_op;
7753
7754 /* We assume FUTEX_* constants are the same on both host and target. */
7755 #ifdef FUTEX_CMD_MASK
7756 base_op = op & FUTEX_CMD_MASK;
7757 #else
7758 base_op = op;
7759 #endif
7760 switch (base_op) {
7761 case FUTEX_WAIT:
7762 case FUTEX_WAIT_BITSET:
7763 val = tswap32(val);
7764 break;
7765 case FUTEX_WAIT_REQUEUE_PI:
7766 val = tswap32(val);
7767 haddr2 = g2h(cpu, uaddr2);
7768 break;
7769 case FUTEX_LOCK_PI:
7770 case FUTEX_LOCK_PI2:
7771 break;
7772 case FUTEX_WAKE:
7773 case FUTEX_WAKE_BITSET:
7774 case FUTEX_TRYLOCK_PI:
7775 case FUTEX_UNLOCK_PI:
7776 timeout = 0;
7777 break;
7778 case FUTEX_FD:
7779 val = target_to_host_signal(val);
7780 timeout = 0;
7781 break;
7782 case FUTEX_CMP_REQUEUE:
7783 case FUTEX_CMP_REQUEUE_PI:
7784 val3 = tswap32(val3);
7785 /* fall through */
7786 case FUTEX_REQUEUE:
7787 case FUTEX_WAKE_OP:
7788 /*
7789 * For these, the 4th argument is not TIMEOUT, but VAL2.
7790 * But the prototype of do_safe_futex takes a pointer, so
7791 * insert casts to satisfy the compiler. We do not need
7792 * to tswap VAL2 since it's not compared to guest memory.
7793 */
7794 pts = (struct timespec *)(uintptr_t)timeout;
7795 timeout = 0;
7796 haddr2 = g2h(cpu, uaddr2);
7797 break;
7798 default:
7799 return -TARGET_ENOSYS;
7800 }
7801 if (timeout) {
7802 pts = &ts;
7803 if (time64
7804 ? target_to_host_timespec64(pts, timeout)
7805 : target_to_host_timespec(pts, timeout)) {
7806 return -TARGET_EFAULT;
7807 }
7808 }
7809 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, haddr2, val3);
7810 }
7811 #endif
7812
7813 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7814 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7815 abi_long handle, abi_long mount_id,
7816 abi_long flags)
7817 {
7818 struct file_handle *target_fh;
7819 struct file_handle *fh;
7820 int mid = 0;
7821 abi_long ret;
7822 char *name;
7823 unsigned int size, total_size;
7824
7825 if (get_user_s32(size, handle)) {
7826 return -TARGET_EFAULT;
7827 }
7828
7829 name = lock_user_string(pathname);
7830 if (!name) {
7831 return -TARGET_EFAULT;
7832 }
7833
7834 total_size = sizeof(struct file_handle) + size;
7835 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7836 if (!target_fh) {
7837 unlock_user(name, pathname, 0);
7838 return -TARGET_EFAULT;
7839 }
7840
7841 fh = g_malloc0(total_size);
7842 fh->handle_bytes = size;
7843
7844 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7845 unlock_user(name, pathname, 0);
7846
7847 /* man name_to_handle_at(2):
7848 * Other than the use of the handle_bytes field, the caller should treat
7849 * the file_handle structure as an opaque data type
7850 */
7851
7852 memcpy(target_fh, fh, total_size);
7853 target_fh->handle_bytes = tswap32(fh->handle_bytes);
7854 target_fh->handle_type = tswap32(fh->handle_type);
7855 g_free(fh);
7856 unlock_user(target_fh, handle, total_size);
7857
7858 if (put_user_s32(mid, mount_id)) {
7859 return -TARGET_EFAULT;
7860 }
7861
7862 return ret;
7863
7864 }
7865 #endif
7866
7867 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7868 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7869 abi_long flags)
7870 {
7871 struct file_handle *target_fh;
7872 struct file_handle *fh;
7873 unsigned int size, total_size;
7874 abi_long ret;
7875
7876 if (get_user_s32(size, handle)) {
7877 return -TARGET_EFAULT;
7878 }
7879
7880 total_size = sizeof(struct file_handle) + size;
7881 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7882 if (!target_fh) {
7883 return -TARGET_EFAULT;
7884 }
7885
7886 fh = g_memdup(target_fh, total_size);
7887 fh->handle_bytes = size;
7888 fh->handle_type = tswap32(target_fh->handle_type);
7889
7890 ret = get_errno(open_by_handle_at(mount_fd, fh,
7891 target_to_host_bitmask(flags, fcntl_flags_tbl)));
7892
7893 g_free(fh);
7894
7895 unlock_user(target_fh, handle, total_size);
7896
7897 return ret;
7898 }
7899 #endif
7900
7901 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7902
7903 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7904 {
7905 int host_flags;
7906 target_sigset_t *target_mask;
7907 sigset_t host_mask;
7908 abi_long ret;
7909
7910 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7911 return -TARGET_EINVAL;
7912 }
7913 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7914 return -TARGET_EFAULT;
7915 }
7916
7917 target_to_host_sigset(&host_mask, target_mask);
7918
7919 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7920
7921 ret = get_errno(signalfd(fd, &host_mask, host_flags));
7922 if (ret >= 0) {
7923 fd_trans_register(ret, &target_signalfd_trans);
7924 }
7925
7926 unlock_user_struct(target_mask, mask, 0);
7927
7928 return ret;
7929 }
7930 #endif
7931
7932 /* Map host to target signal numbers for the wait family of syscalls.
7933 Assume all other status bits are the same. */
7934 int host_to_target_waitstatus(int status)
7935 {
7936 if (WIFSIGNALED(status)) {
7937 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7938 }
7939 if (WIFSTOPPED(status)) {
7940 return (host_to_target_signal(WSTOPSIG(status)) << 8)
7941 | (status & 0xff);
7942 }
7943 return status;
7944 }
7945
7946 static int open_self_cmdline(CPUArchState *cpu_env, int fd)
7947 {
7948 CPUState *cpu = env_cpu(cpu_env);
7949 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7950 int i;
7951
7952 for (i = 0; i < bprm->argc; i++) {
7953 size_t len = strlen(bprm->argv[i]) + 1;
7954
7955 if (write(fd, bprm->argv[i], len) != len) {
7956 return -1;
7957 }
7958 }
7959
7960 return 0;
7961 }
7962
7963 struct open_self_maps_data {
7964 TaskState *ts;
7965 IntervalTreeRoot *host_maps;
7966 int fd;
7967 bool smaps;
7968 };
7969
7970 /*
7971 * Subroutine to output one line of /proc/self/maps,
7972 * or one region of /proc/self/smaps.
7973 */
7974
7975 #ifdef TARGET_HPPA
7976 # define test_stack(S, E, L) (E == L)
7977 #else
7978 # define test_stack(S, E, L) (S == L)
7979 #endif
7980
7981 static void open_self_maps_4(const struct open_self_maps_data *d,
7982 const MapInfo *mi, abi_ptr start,
7983 abi_ptr end, unsigned flags)
7984 {
7985 const struct image_info *info = d->ts->info;
7986 const char *path = mi->path;
7987 uint64_t offset;
7988 int fd = d->fd;
7989 int count;
7990
7991 if (test_stack(start, end, info->stack_limit)) {
7992 path = "[stack]";
7993 } else if (start == info->brk) {
7994 path = "[heap]";
7995 } else if (start == info->vdso) {
7996 path = "[vdso]";
7997 }
7998
7999 /* Except null device (MAP_ANON), adjust offset for this fragment. */
8000 offset = mi->offset;
8001 if (mi->dev) {
8002 uintptr_t hstart = (uintptr_t)g2h_untagged(start);
8003 offset += hstart - mi->itree.start;
8004 }
8005
8006 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
8007 " %c%c%c%c %08" PRIx64 " %02x:%02x %"PRId64,
8008 start, end,
8009 (flags & PAGE_READ) ? 'r' : '-',
8010 (flags & PAGE_WRITE_ORG) ? 'w' : '-',
8011 (flags & PAGE_EXEC) ? 'x' : '-',
8012 mi->is_priv ? 'p' : 's',
8013 offset, major(mi->dev), minor(mi->dev),
8014 (uint64_t)mi->inode);
8015 if (path) {
8016 dprintf(fd, "%*s%s\n", 73 - count, "", path);
8017 } else {
8018 dprintf(fd, "\n");
8019 }
8020
8021 if (d->smaps) {
8022 unsigned long size = end - start;
8023 unsigned long page_size_kb = TARGET_PAGE_SIZE >> 10;
8024 unsigned long size_kb = size >> 10;
8025
8026 dprintf(fd, "Size: %lu kB\n"
8027 "KernelPageSize: %lu kB\n"
8028 "MMUPageSize: %lu kB\n"
8029 "Rss: 0 kB\n"
8030 "Pss: 0 kB\n"
8031 "Pss_Dirty: 0 kB\n"
8032 "Shared_Clean: 0 kB\n"
8033 "Shared_Dirty: 0 kB\n"
8034 "Private_Clean: 0 kB\n"
8035 "Private_Dirty: 0 kB\n"
8036 "Referenced: 0 kB\n"
8037 "Anonymous: %lu kB\n"
8038 "LazyFree: 0 kB\n"
8039 "AnonHugePages: 0 kB\n"
8040 "ShmemPmdMapped: 0 kB\n"
8041 "FilePmdMapped: 0 kB\n"
8042 "Shared_Hugetlb: 0 kB\n"
8043 "Private_Hugetlb: 0 kB\n"
8044 "Swap: 0 kB\n"
8045 "SwapPss: 0 kB\n"
8046 "Locked: 0 kB\n"
8047 "THPeligible: 0\n"
8048 "VmFlags:%s%s%s%s%s%s%s%s\n",
8049 size_kb, page_size_kb, page_size_kb,
8050 (flags & PAGE_ANON ? size_kb : 0),
8051 (flags & PAGE_READ) ? " rd" : "",
8052 (flags & PAGE_WRITE_ORG) ? " wr" : "",
8053 (flags & PAGE_EXEC) ? " ex" : "",
8054 mi->is_priv ? "" : " sh",
8055 (flags & PAGE_READ) ? " mr" : "",
8056 (flags & PAGE_WRITE_ORG) ? " mw" : "",
8057 (flags & PAGE_EXEC) ? " me" : "",
8058 mi->is_priv ? "" : " ms");
8059 }
8060 }
8061
8062 /*
8063 * Callback for walk_memory_regions, when read_self_maps() fails.
8064 * Proceed without the benefit of host /proc/self/maps cross-check.
8065 */
8066 static int open_self_maps_3(void *opaque, target_ulong guest_start,
8067 target_ulong guest_end, unsigned long flags)
8068 {
8069 static const MapInfo mi = { .is_priv = true };
8070
8071 open_self_maps_4(opaque, &mi, guest_start, guest_end, flags);
8072 return 0;
8073 }
8074
8075 /*
8076 * Callback for walk_memory_regions, when read_self_maps() succeeds.
8077 */
8078 static int open_self_maps_2(void *opaque, target_ulong guest_start,
8079 target_ulong guest_end, unsigned long flags)
8080 {
8081 const struct open_self_maps_data *d = opaque;
8082 uintptr_t host_start = (uintptr_t)g2h_untagged(guest_start);
8083 uintptr_t host_last = (uintptr_t)g2h_untagged(guest_end - 1);
8084
8085 while (1) {
8086 IntervalTreeNode *n =
8087 interval_tree_iter_first(d->host_maps, host_start, host_start);
8088 MapInfo *mi = container_of(n, MapInfo, itree);
8089 uintptr_t this_hlast = MIN(host_last, n->last);
8090 target_ulong this_gend = h2g(this_hlast) + 1;
8091
8092 open_self_maps_4(d, mi, guest_start, this_gend, flags);
8093
8094 if (this_hlast == host_last) {
8095 return 0;
8096 }
8097 host_start = this_hlast + 1;
8098 guest_start = h2g(host_start);
8099 }
8100 }
8101
8102 static int open_self_maps_1(CPUArchState *env, int fd, bool smaps)
8103 {
8104 struct open_self_maps_data d = {
8105 .ts = env_cpu(env)->opaque,
8106 .host_maps = read_self_maps(),
8107 .fd = fd,
8108 .smaps = smaps
8109 };
8110
8111 if (d.host_maps) {
8112 walk_memory_regions(&d, open_self_maps_2);
8113 free_self_maps(d.host_maps);
8114 } else {
8115 walk_memory_regions(&d, open_self_maps_3);
8116 }
8117 return 0;
8118 }
8119
8120 static int open_self_maps(CPUArchState *cpu_env, int fd)
8121 {
8122 return open_self_maps_1(cpu_env, fd, false);
8123 }
8124
8125 static int open_self_smaps(CPUArchState *cpu_env, int fd)
8126 {
8127 return open_self_maps_1(cpu_env, fd, true);
8128 }
8129
8130 static int open_self_stat(CPUArchState *cpu_env, int fd)
8131 {
8132 CPUState *cpu = env_cpu(cpu_env);
8133 TaskState *ts = cpu->opaque;
8134 g_autoptr(GString) buf = g_string_new(NULL);
8135 int i;
8136
8137 for (i = 0; i < 44; i++) {
8138 if (i == 0) {
8139 /* pid */
8140 g_string_printf(buf, FMT_pid " ", getpid());
8141 } else if (i == 1) {
8142 /* app name */
8143 gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
8144 bin = bin ? bin + 1 : ts->bprm->argv[0];
8145 g_string_printf(buf, "(%.15s) ", bin);
8146 } else if (i == 2) {
8147 /* task state */
8148 g_string_assign(buf, "R "); /* we are running right now */
8149 } else if (i == 3) {
8150 /* ppid */
8151 g_string_printf(buf, FMT_pid " ", getppid());
8152 } else if (i == 21) {
8153 /* starttime */
8154 g_string_printf(buf, "%" PRIu64 " ", ts->start_boottime);
8155 } else if (i == 27) {
8156 /* stack bottom */
8157 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
8158 } else {
8159 /* for the rest, there is MasterCard */
8160 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
8161 }
8162
8163 if (write(fd, buf->str, buf->len) != buf->len) {
8164 return -1;
8165 }
8166 }
8167
8168 return 0;
8169 }
8170
8171 static int open_self_auxv(CPUArchState *cpu_env, int fd)
8172 {
8173 CPUState *cpu = env_cpu(cpu_env);
8174 TaskState *ts = cpu->opaque;
8175 abi_ulong auxv = ts->info->saved_auxv;
8176 abi_ulong len = ts->info->auxv_len;
8177 char *ptr;
8178
8179 /*
8180 * Auxiliary vector is stored in target process stack.
8181 * read in whole auxv vector and copy it to file
8182 */
8183 ptr = lock_user(VERIFY_READ, auxv, len, 0);
8184 if (ptr != NULL) {
8185 while (len > 0) {
8186 ssize_t r;
8187 r = write(fd, ptr, len);
8188 if (r <= 0) {
8189 break;
8190 }
8191 len -= r;
8192 ptr += r;
8193 }
8194 lseek(fd, 0, SEEK_SET);
8195 unlock_user(ptr, auxv, len);
8196 }
8197
8198 return 0;
8199 }
8200
8201 static int is_proc_myself(const char *filename, const char *entry)
8202 {
8203 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
8204 filename += strlen("/proc/");
8205 if (!strncmp(filename, "self/", strlen("self/"))) {
8206 filename += strlen("self/");
8207 } else if (*filename >= '1' && *filename <= '9') {
8208 char myself[80];
8209 snprintf(myself, sizeof(myself), "%d/", getpid());
8210 if (!strncmp(filename, myself, strlen(myself))) {
8211 filename += strlen(myself);
8212 } else {
8213 return 0;
8214 }
8215 } else {
8216 return 0;
8217 }
8218 if (!strcmp(filename, entry)) {
8219 return 1;
8220 }
8221 }
8222 return 0;
8223 }
8224
8225 static void excp_dump_file(FILE *logfile, CPUArchState *env,
8226 const char *fmt, int code)
8227 {
8228 if (logfile) {
8229 CPUState *cs = env_cpu(env);
8230
8231 fprintf(logfile, fmt, code);
8232 fprintf(logfile, "Failing executable: %s\n", exec_path);
8233 cpu_dump_state(cs, logfile, 0);
8234 open_self_maps(env, fileno(logfile));
8235 }
8236 }
8237
8238 void target_exception_dump(CPUArchState *env, const char *fmt, int code)
8239 {
8240 /* dump to console */
8241 excp_dump_file(stderr, env, fmt, code);
8242
8243 /* dump to log file */
8244 if (qemu_log_separate()) {
8245 FILE *logfile = qemu_log_trylock();
8246
8247 excp_dump_file(logfile, env, fmt, code);
8248 qemu_log_unlock(logfile);
8249 }
8250 }
8251
8252 #include "target_proc.h"
8253
8254 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN || \
8255 defined(HAVE_ARCH_PROC_CPUINFO) || \
8256 defined(HAVE_ARCH_PROC_HARDWARE)
8257 static int is_proc(const char *filename, const char *entry)
8258 {
8259 return strcmp(filename, entry) == 0;
8260 }
8261 #endif
8262
8263 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8264 static int open_net_route(CPUArchState *cpu_env, int fd)
8265 {
8266 FILE *fp;
8267 char *line = NULL;
8268 size_t len = 0;
8269 ssize_t read;
8270
8271 fp = fopen("/proc/net/route", "r");
8272 if (fp == NULL) {
8273 return -1;
8274 }
8275
8276 /* read header */
8277
8278 read = getline(&line, &len, fp);
8279 dprintf(fd, "%s", line);
8280
8281 /* read routes */
8282
8283 while ((read = getline(&line, &len, fp)) != -1) {
8284 char iface[16];
8285 uint32_t dest, gw, mask;
8286 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
8287 int fields;
8288
8289 fields = sscanf(line,
8290 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8291 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
8292 &mask, &mtu, &window, &irtt);
8293 if (fields != 11) {
8294 continue;
8295 }
8296 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8297 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
8298 metric, tswap32(mask), mtu, window, irtt);
8299 }
8300
8301 free(line);
8302 fclose(fp);
8303
8304 return 0;
8305 }
8306 #endif
8307
8308 int do_guest_openat(CPUArchState *cpu_env, int dirfd, const char *fname,
8309 int flags, mode_t mode, bool safe)
8310 {
8311 g_autofree char *proc_name = NULL;
8312 const char *pathname;
8313 struct fake_open {
8314 const char *filename;
8315 int (*fill)(CPUArchState *cpu_env, int fd);
8316 int (*cmp)(const char *s1, const char *s2);
8317 };
8318 const struct fake_open *fake_open;
8319 static const struct fake_open fakes[] = {
8320 { "maps", open_self_maps, is_proc_myself },
8321 { "smaps", open_self_smaps, is_proc_myself },
8322 { "stat", open_self_stat, is_proc_myself },
8323 { "auxv", open_self_auxv, is_proc_myself },
8324 { "cmdline", open_self_cmdline, is_proc_myself },
8325 #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN
8326 { "/proc/net/route", open_net_route, is_proc },
8327 #endif
8328 #if defined(HAVE_ARCH_PROC_CPUINFO)
8329 { "/proc/cpuinfo", open_cpuinfo, is_proc },
8330 #endif
8331 #if defined(HAVE_ARCH_PROC_HARDWARE)
8332 { "/proc/hardware", open_hardware, is_proc },
8333 #endif
8334 { NULL, NULL, NULL }
8335 };
8336
8337 /* if this is a file from /proc/ filesystem, expand full name */
8338 proc_name = realpath(fname, NULL);
8339 if (proc_name && strncmp(proc_name, "/proc/", 6) == 0) {
8340 pathname = proc_name;
8341 } else {
8342 pathname = fname;
8343 }
8344
8345 if (is_proc_myself(pathname, "exe")) {
8346 if (safe) {
8347 return safe_openat(dirfd, exec_path, flags, mode);
8348 } else {
8349 return openat(dirfd, exec_path, flags, mode);
8350 }
8351 }
8352
8353 for (fake_open = fakes; fake_open->filename; fake_open++) {
8354 if (fake_open->cmp(pathname, fake_open->filename)) {
8355 break;
8356 }
8357 }
8358
8359 if (fake_open->filename) {
8360 const char *tmpdir;
8361 char filename[PATH_MAX];
8362 int fd, r;
8363
8364 fd = memfd_create("qemu-open", 0);
8365 if (fd < 0) {
8366 if (errno != ENOSYS) {
8367 return fd;
8368 }
8369 /* create temporary file to map stat to */
8370 tmpdir = getenv("TMPDIR");
8371 if (!tmpdir)
8372 tmpdir = "/tmp";
8373 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8374 fd = mkstemp(filename);
8375 if (fd < 0) {
8376 return fd;
8377 }
8378 unlink(filename);
8379 }
8380
8381 if ((r = fake_open->fill(cpu_env, fd))) {
8382 int e = errno;
8383 close(fd);
8384 errno = e;
8385 return r;
8386 }
8387 lseek(fd, 0, SEEK_SET);
8388
8389 return fd;
8390 }
8391
8392 if (safe) {
8393 return safe_openat(dirfd, path(pathname), flags, mode);
8394 } else {
8395 return openat(dirfd, path(pathname), flags, mode);
8396 }
8397 }
8398
8399 ssize_t do_guest_readlink(const char *pathname, char *buf, size_t bufsiz)
8400 {
8401 ssize_t ret;
8402
8403 if (!pathname || !buf) {
8404 errno = EFAULT;
8405 return -1;
8406 }
8407
8408 if (!bufsiz) {
8409 /* Short circuit this for the magic exe check. */
8410 errno = EINVAL;
8411 return -1;
8412 }
8413
8414 if (is_proc_myself((const char *)pathname, "exe")) {
8415 /*
8416 * Don't worry about sign mismatch as earlier mapping
8417 * logic would have thrown a bad address error.
8418 */
8419 ret = MIN(strlen(exec_path), bufsiz);
8420 /* We cannot NUL terminate the string. */
8421 memcpy(buf, exec_path, ret);
8422 } else {
8423 ret = readlink(path(pathname), buf, bufsiz);
8424 }
8425
8426 return ret;
8427 }
8428
8429 static int do_execv(CPUArchState *cpu_env, int dirfd,
8430 abi_long pathname, abi_long guest_argp,
8431 abi_long guest_envp, int flags, bool is_execveat)
8432 {
8433 int ret;
8434 char **argp, **envp;
8435 int argc, envc;
8436 abi_ulong gp;
8437 abi_ulong addr;
8438 char **q;
8439 void *p;
8440
8441 argc = 0;
8442
8443 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8444 if (get_user_ual(addr, gp)) {
8445 return -TARGET_EFAULT;
8446 }
8447 if (!addr) {
8448 break;
8449 }
8450 argc++;
8451 }
8452 envc = 0;
8453 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8454 if (get_user_ual(addr, gp)) {
8455 return -TARGET_EFAULT;
8456 }
8457 if (!addr) {
8458 break;
8459 }
8460 envc++;
8461 }
8462
8463 argp = g_new0(char *, argc + 1);
8464 envp = g_new0(char *, envc + 1);
8465
8466 for (gp = guest_argp, q = argp; gp; gp += sizeof(abi_ulong), q++) {
8467 if (get_user_ual(addr, gp)) {
8468 goto execve_efault;
8469 }
8470 if (!addr) {
8471 break;
8472 }
8473 *q = lock_user_string(addr);
8474 if (!*q) {
8475 goto execve_efault;
8476 }
8477 }
8478 *q = NULL;
8479
8480 for (gp = guest_envp, q = envp; gp; gp += sizeof(abi_ulong), q++) {
8481 if (get_user_ual(addr, gp)) {
8482 goto execve_efault;
8483 }
8484 if (!addr) {
8485 break;
8486 }
8487 *q = lock_user_string(addr);
8488 if (!*q) {
8489 goto execve_efault;
8490 }
8491 }
8492 *q = NULL;
8493
8494 /*
8495 * Although execve() is not an interruptible syscall it is
8496 * a special case where we must use the safe_syscall wrapper:
8497 * if we allow a signal to happen before we make the host
8498 * syscall then we will 'lose' it, because at the point of
8499 * execve the process leaves QEMU's control. So we use the
8500 * safe syscall wrapper to ensure that we either take the
8501 * signal as a guest signal, or else it does not happen
8502 * before the execve completes and makes it the other
8503 * program's problem.
8504 */
8505 p = lock_user_string(pathname);
8506 if (!p) {
8507 goto execve_efault;
8508 }
8509
8510 const char *exe = p;
8511 if (is_proc_myself(p, "exe")) {
8512 exe = exec_path;
8513 }
8514 ret = is_execveat
8515 ? safe_execveat(dirfd, exe, argp, envp, flags)
8516 : safe_execve(exe, argp, envp);
8517 ret = get_errno(ret);
8518
8519 unlock_user(p, pathname, 0);
8520
8521 goto execve_end;
8522
8523 execve_efault:
8524 ret = -TARGET_EFAULT;
8525
8526 execve_end:
8527 for (gp = guest_argp, q = argp; *q; gp += sizeof(abi_ulong), q++) {
8528 if (get_user_ual(addr, gp) || !addr) {
8529 break;
8530 }
8531 unlock_user(*q, addr, 0);
8532 }
8533 for (gp = guest_envp, q = envp; *q; gp += sizeof(abi_ulong), q++) {
8534 if (get_user_ual(addr, gp) || !addr) {
8535 break;
8536 }
8537 unlock_user(*q, addr, 0);
8538 }
8539
8540 g_free(argp);
8541 g_free(envp);
8542 return ret;
8543 }
8544
8545 #define TIMER_MAGIC 0x0caf0000
8546 #define TIMER_MAGIC_MASK 0xffff0000
8547
8548 /* Convert QEMU provided timer ID back to internal 16bit index format */
8549 static target_timer_t get_timer_id(abi_long arg)
8550 {
8551 target_timer_t timerid = arg;
8552
8553 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8554 return -TARGET_EINVAL;
8555 }
8556
8557 timerid &= 0xffff;
8558
8559 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8560 return -TARGET_EINVAL;
8561 }
8562
8563 return timerid;
8564 }
8565
8566 static int target_to_host_cpu_mask(unsigned long *host_mask,
8567 size_t host_size,
8568 abi_ulong target_addr,
8569 size_t target_size)
8570 {
8571 unsigned target_bits = sizeof(abi_ulong) * 8;
8572 unsigned host_bits = sizeof(*host_mask) * 8;
8573 abi_ulong *target_mask;
8574 unsigned i, j;
8575
8576 assert(host_size >= target_size);
8577
8578 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8579 if (!target_mask) {
8580 return -TARGET_EFAULT;
8581 }
8582 memset(host_mask, 0, host_size);
8583
8584 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8585 unsigned bit = i * target_bits;
8586 abi_ulong val;
8587
8588 __get_user(val, &target_mask[i]);
8589 for (j = 0; j < target_bits; j++, bit++) {
8590 if (val & (1UL << j)) {
8591 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8592 }
8593 }
8594 }
8595
8596 unlock_user(target_mask, target_addr, 0);
8597 return 0;
8598 }
8599
8600 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8601 size_t host_size,
8602 abi_ulong target_addr,
8603 size_t target_size)
8604 {
8605 unsigned target_bits = sizeof(abi_ulong) * 8;
8606 unsigned host_bits = sizeof(*host_mask) * 8;
8607 abi_ulong *target_mask;
8608 unsigned i, j;
8609
8610 assert(host_size >= target_size);
8611
8612 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8613 if (!target_mask) {
8614 return -TARGET_EFAULT;
8615 }
8616
8617 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8618 unsigned bit = i * target_bits;
8619 abi_ulong val = 0;
8620
8621 for (j = 0; j < target_bits; j++, bit++) {
8622 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8623 val |= 1UL << j;
8624 }
8625 }
8626 __put_user(val, &target_mask[i]);
8627 }
8628
8629 unlock_user(target_mask, target_addr, target_size);
8630 return 0;
8631 }
8632
8633 #ifdef TARGET_NR_getdents
8634 static int do_getdents(abi_long dirfd, abi_long arg2, abi_long count)
8635 {
8636 g_autofree void *hdirp = NULL;
8637 void *tdirp;
8638 int hlen, hoff, toff;
8639 int hreclen, treclen;
8640 off64_t prev_diroff = 0;
8641
8642 hdirp = g_try_malloc(count);
8643 if (!hdirp) {
8644 return -TARGET_ENOMEM;
8645 }
8646
8647 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8648 hlen = sys_getdents(dirfd, hdirp, count);
8649 #else
8650 hlen = sys_getdents64(dirfd, hdirp, count);
8651 #endif
8652
8653 hlen = get_errno(hlen);
8654 if (is_error(hlen)) {
8655 return hlen;
8656 }
8657
8658 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8659 if (!tdirp) {
8660 return -TARGET_EFAULT;
8661 }
8662
8663 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8664 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8665 struct linux_dirent *hde = hdirp + hoff;
8666 #else
8667 struct linux_dirent64 *hde = hdirp + hoff;
8668 #endif
8669 struct target_dirent *tde = tdirp + toff;
8670 int namelen;
8671 uint8_t type;
8672
8673 namelen = strlen(hde->d_name);
8674 hreclen = hde->d_reclen;
8675 treclen = offsetof(struct target_dirent, d_name) + namelen + 2;
8676 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent));
8677
8678 if (toff + treclen > count) {
8679 /*
8680 * If the host struct is smaller than the target struct, or
8681 * requires less alignment and thus packs into less space,
8682 * then the host can return more entries than we can pass
8683 * on to the guest.
8684 */
8685 if (toff == 0) {
8686 toff = -TARGET_EINVAL; /* result buffer is too small */
8687 break;
8688 }
8689 /*
8690 * Return what we have, resetting the file pointer to the
8691 * location of the first record not returned.
8692 */
8693 lseek64(dirfd, prev_diroff, SEEK_SET);
8694 break;
8695 }
8696
8697 prev_diroff = hde->d_off;
8698 tde->d_ino = tswapal(hde->d_ino);
8699 tde->d_off = tswapal(hde->d_off);
8700 tde->d_reclen = tswap16(treclen);
8701 memcpy(tde->d_name, hde->d_name, namelen + 1);
8702
8703 /*
8704 * The getdents type is in what was formerly a padding byte at the
8705 * end of the structure.
8706 */
8707 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8708 type = *((uint8_t *)hde + hreclen - 1);
8709 #else
8710 type = hde->d_type;
8711 #endif
8712 *((uint8_t *)tde + treclen - 1) = type;
8713 }
8714
8715 unlock_user(tdirp, arg2, toff);
8716 return toff;
8717 }
8718 #endif /* TARGET_NR_getdents */
8719
8720 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8721 static int do_getdents64(abi_long dirfd, abi_long arg2, abi_long count)
8722 {
8723 g_autofree void *hdirp = NULL;
8724 void *tdirp;
8725 int hlen, hoff, toff;
8726 int hreclen, treclen;
8727 off64_t prev_diroff = 0;
8728
8729 hdirp = g_try_malloc(count);
8730 if (!hdirp) {
8731 return -TARGET_ENOMEM;
8732 }
8733
8734 hlen = get_errno(sys_getdents64(dirfd, hdirp, count));
8735 if (is_error(hlen)) {
8736 return hlen;
8737 }
8738
8739 tdirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8740 if (!tdirp) {
8741 return -TARGET_EFAULT;
8742 }
8743
8744 for (hoff = toff = 0; hoff < hlen; hoff += hreclen, toff += treclen) {
8745 struct linux_dirent64 *hde = hdirp + hoff;
8746 struct target_dirent64 *tde = tdirp + toff;
8747 int namelen;
8748
8749 namelen = strlen(hde->d_name) + 1;
8750 hreclen = hde->d_reclen;
8751 treclen = offsetof(struct target_dirent64, d_name) + namelen;
8752 treclen = QEMU_ALIGN_UP(treclen, __alignof(struct target_dirent64));
8753
8754 if (toff + treclen > count) {
8755 /*
8756 * If the host struct is smaller than the target struct, or
8757 * requires less alignment and thus packs into less space,
8758 * then the host can return more entries than we can pass
8759 * on to the guest.
8760 */
8761 if (toff == 0) {
8762 toff = -TARGET_EINVAL; /* result buffer is too small */
8763 break;
8764 }
8765 /*
8766 * Return what we have, resetting the file pointer to the
8767 * location of the first record not returned.
8768 */
8769 lseek64(dirfd, prev_diroff, SEEK_SET);
8770 break;
8771 }
8772
8773 prev_diroff = hde->d_off;
8774 tde->d_ino = tswap64(hde->d_ino);
8775 tde->d_off = tswap64(hde->d_off);
8776 tde->d_reclen = tswap16(treclen);
8777 tde->d_type = hde->d_type;
8778 memcpy(tde->d_name, hde->d_name, namelen);
8779 }
8780
8781 unlock_user(tdirp, arg2, toff);
8782 return toff;
8783 }
8784 #endif /* TARGET_NR_getdents64 */
8785
8786 #if defined(TARGET_NR_riscv_hwprobe)
8787
8788 #define RISCV_HWPROBE_KEY_MVENDORID 0
8789 #define RISCV_HWPROBE_KEY_MARCHID 1
8790 #define RISCV_HWPROBE_KEY_MIMPID 2
8791
8792 #define RISCV_HWPROBE_KEY_BASE_BEHAVIOR 3
8793 #define RISCV_HWPROBE_BASE_BEHAVIOR_IMA (1 << 0)
8794
8795 #define RISCV_HWPROBE_KEY_IMA_EXT_0 4
8796 #define RISCV_HWPROBE_IMA_FD (1 << 0)
8797 #define RISCV_HWPROBE_IMA_C (1 << 1)
8798 #define RISCV_HWPROBE_IMA_V (1 << 2)
8799 #define RISCV_HWPROBE_EXT_ZBA (1 << 3)
8800 #define RISCV_HWPROBE_EXT_ZBB (1 << 4)
8801 #define RISCV_HWPROBE_EXT_ZBS (1 << 5)
8802
8803 #define RISCV_HWPROBE_KEY_CPUPERF_0 5
8804 #define RISCV_HWPROBE_MISALIGNED_UNKNOWN (0 << 0)
8805 #define RISCV_HWPROBE_MISALIGNED_EMULATED (1 << 0)
8806 #define RISCV_HWPROBE_MISALIGNED_SLOW (2 << 0)
8807 #define RISCV_HWPROBE_MISALIGNED_FAST (3 << 0)
8808 #define RISCV_HWPROBE_MISALIGNED_UNSUPPORTED (4 << 0)
8809 #define RISCV_HWPROBE_MISALIGNED_MASK (7 << 0)
8810
8811 #define RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE 6
8812
8813 struct riscv_hwprobe {
8814 abi_llong key;
8815 abi_ullong value;
8816 };
8817
8818 static void risc_hwprobe_fill_pairs(CPURISCVState *env,
8819 struct riscv_hwprobe *pair,
8820 size_t pair_count)
8821 {
8822 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env);
8823
8824 for (; pair_count > 0; pair_count--, pair++) {
8825 abi_llong key;
8826 abi_ullong value;
8827 __put_user(0, &pair->value);
8828 __get_user(key, &pair->key);
8829 switch (key) {
8830 case RISCV_HWPROBE_KEY_MVENDORID:
8831 __put_user(cfg->mvendorid, &pair->value);
8832 break;
8833 case RISCV_HWPROBE_KEY_MARCHID:
8834 __put_user(cfg->marchid, &pair->value);
8835 break;
8836 case RISCV_HWPROBE_KEY_MIMPID:
8837 __put_user(cfg->mimpid, &pair->value);
8838 break;
8839 case RISCV_HWPROBE_KEY_BASE_BEHAVIOR:
8840 value = riscv_has_ext(env, RVI) &&
8841 riscv_has_ext(env, RVM) &&
8842 riscv_has_ext(env, RVA) ?
8843 RISCV_HWPROBE_BASE_BEHAVIOR_IMA : 0;
8844 __put_user(value, &pair->value);
8845 break;
8846 case RISCV_HWPROBE_KEY_IMA_EXT_0:
8847 value = riscv_has_ext(env, RVF) &&
8848 riscv_has_ext(env, RVD) ?
8849 RISCV_HWPROBE_IMA_FD : 0;
8850 value |= riscv_has_ext(env, RVC) ?
8851 RISCV_HWPROBE_IMA_C : 0;
8852 value |= riscv_has_ext(env, RVV) ?
8853 RISCV_HWPROBE_IMA_V : 0;
8854 value |= cfg->ext_zba ?
8855 RISCV_HWPROBE_EXT_ZBA : 0;
8856 value |= cfg->ext_zbb ?
8857 RISCV_HWPROBE_EXT_ZBB : 0;
8858 value |= cfg->ext_zbs ?
8859 RISCV_HWPROBE_EXT_ZBS : 0;
8860 __put_user(value, &pair->value);
8861 break;
8862 case RISCV_HWPROBE_KEY_CPUPERF_0:
8863 __put_user(RISCV_HWPROBE_MISALIGNED_FAST, &pair->value);
8864 break;
8865 case RISCV_HWPROBE_KEY_ZICBOZ_BLOCK_SIZE:
8866 value = cfg->ext_zicboz ? cfg->cboz_blocksize : 0;
8867 __put_user(value, &pair->value);
8868 break;
8869 default:
8870 __put_user(-1, &pair->key);
8871 break;
8872 }
8873 }
8874 }
8875
8876 static int cpu_set_valid(abi_long arg3, abi_long arg4)
8877 {
8878 int ret, i, tmp;
8879 size_t host_mask_size, target_mask_size;
8880 unsigned long *host_mask;
8881
8882 /*
8883 * cpu_set_t represent CPU masks as bit masks of type unsigned long *.
8884 * arg3 contains the cpu count.
8885 */
8886 tmp = (8 * sizeof(abi_ulong));
8887 target_mask_size = ((arg3 + tmp - 1) / tmp) * sizeof(abi_ulong);
8888 host_mask_size = (target_mask_size + (sizeof(*host_mask) - 1)) &
8889 ~(sizeof(*host_mask) - 1);
8890
8891 host_mask = alloca(host_mask_size);
8892
8893 ret = target_to_host_cpu_mask(host_mask, host_mask_size,
8894 arg4, target_mask_size);
8895 if (ret != 0) {
8896 return ret;
8897 }
8898
8899 for (i = 0 ; i < host_mask_size / sizeof(*host_mask); i++) {
8900 if (host_mask[i] != 0) {
8901 return 0;
8902 }
8903 }
8904 return -TARGET_EINVAL;
8905 }
8906
8907 static abi_long do_riscv_hwprobe(CPUArchState *cpu_env, abi_long arg1,
8908 abi_long arg2, abi_long arg3,
8909 abi_long arg4, abi_long arg5)
8910 {
8911 int ret;
8912 struct riscv_hwprobe *host_pairs;
8913
8914 /* flags must be 0 */
8915 if (arg5 != 0) {
8916 return -TARGET_EINVAL;
8917 }
8918
8919 /* check cpu_set */
8920 if (arg3 != 0) {
8921 ret = cpu_set_valid(arg3, arg4);
8922 if (ret != 0) {
8923 return ret;
8924 }
8925 } else if (arg4 != 0) {
8926 return -TARGET_EINVAL;
8927 }
8928
8929 /* no pairs */
8930 if (arg2 == 0) {
8931 return 0;
8932 }
8933
8934 host_pairs = lock_user(VERIFY_WRITE, arg1,
8935 sizeof(*host_pairs) * (size_t)arg2, 0);
8936 if (host_pairs == NULL) {
8937 return -TARGET_EFAULT;
8938 }
8939 risc_hwprobe_fill_pairs(cpu_env, host_pairs, arg2);
8940 unlock_user(host_pairs, arg1, sizeof(*host_pairs) * (size_t)arg2);
8941 return 0;
8942 }
8943 #endif /* TARGET_NR_riscv_hwprobe */
8944
8945 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8946 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
8947 #endif
8948
8949 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
8950 #define __NR_sys_open_tree __NR_open_tree
8951 _syscall3(int, sys_open_tree, int, __dfd, const char *, __filename,
8952 unsigned int, __flags)
8953 #endif
8954
8955 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
8956 #define __NR_sys_move_mount __NR_move_mount
8957 _syscall5(int, sys_move_mount, int, __from_dfd, const char *, __from_pathname,
8958 int, __to_dfd, const char *, __to_pathname, unsigned int, flag)
8959 #endif
8960
8961 /* This is an internal helper for do_syscall so that it is easier
8962 * to have a single return point, so that actions, such as logging
8963 * of syscall results, can be performed.
8964 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8965 */
8966 static abi_long do_syscall1(CPUArchState *cpu_env, int num, abi_long arg1,
8967 abi_long arg2, abi_long arg3, abi_long arg4,
8968 abi_long arg5, abi_long arg6, abi_long arg7,
8969 abi_long arg8)
8970 {
8971 CPUState *cpu = env_cpu(cpu_env);
8972 abi_long ret;
8973 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8974 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8975 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8976 || defined(TARGET_NR_statx)
8977 struct stat st;
8978 #endif
8979 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8980 || defined(TARGET_NR_fstatfs)
8981 struct statfs stfs;
8982 #endif
8983 void *p;
8984
8985 switch(num) {
8986 case TARGET_NR_exit:
8987 /* In old applications this may be used to implement _exit(2).
8988 However in threaded applications it is used for thread termination,
8989 and _exit_group is used for application termination.
8990 Do thread termination if we have more then one thread. */
8991
8992 if (block_signals()) {
8993 return -QEMU_ERESTARTSYS;
8994 }
8995
8996 pthread_mutex_lock(&clone_lock);
8997
8998 if (CPU_NEXT(first_cpu)) {
8999 TaskState *ts = cpu->opaque;
9000
9001 if (ts->child_tidptr) {
9002 put_user_u32(0, ts->child_tidptr);
9003 do_sys_futex(g2h(cpu, ts->child_tidptr),
9004 FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
9005 }
9006
9007 object_unparent(OBJECT(cpu));
9008 object_unref(OBJECT(cpu));
9009 /*
9010 * At this point the CPU should be unrealized and removed
9011 * from cpu lists. We can clean-up the rest of the thread
9012 * data without the lock held.
9013 */
9014
9015 pthread_mutex_unlock(&clone_lock);
9016
9017 thread_cpu = NULL;
9018 g_free(ts);
9019 rcu_unregister_thread();
9020 pthread_exit(NULL);
9021 }
9022
9023 pthread_mutex_unlock(&clone_lock);
9024 preexit_cleanup(cpu_env, arg1);
9025 _exit(arg1);
9026 return 0; /* avoid warning */
9027 case TARGET_NR_read:
9028 if (arg2 == 0 && arg3 == 0) {
9029 return get_errno(safe_read(arg1, 0, 0));
9030 } else {
9031 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9032 return -TARGET_EFAULT;
9033 ret = get_errno(safe_read(arg1, p, arg3));
9034 if (ret >= 0 &&
9035 fd_trans_host_to_target_data(arg1)) {
9036 ret = fd_trans_host_to_target_data(arg1)(p, ret);
9037 }
9038 unlock_user(p, arg2, ret);
9039 }
9040 return ret;
9041 case TARGET_NR_write:
9042 if (arg2 == 0 && arg3 == 0) {
9043 return get_errno(safe_write(arg1, 0, 0));
9044 }
9045 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9046 return -TARGET_EFAULT;
9047 if (fd_trans_target_to_host_data(arg1)) {
9048 void *copy = g_malloc(arg3);
9049 memcpy(copy, p, arg3);
9050 ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
9051 if (ret >= 0) {
9052 ret = get_errno(safe_write(arg1, copy, ret));
9053 }
9054 g_free(copy);
9055 } else {
9056 ret = get_errno(safe_write(arg1, p, arg3));
9057 }
9058 unlock_user(p, arg2, 0);
9059 return ret;
9060
9061 #ifdef TARGET_NR_open
9062 case TARGET_NR_open:
9063 if (!(p = lock_user_string(arg1)))
9064 return -TARGET_EFAULT;
9065 ret = get_errno(do_guest_openat(cpu_env, AT_FDCWD, p,
9066 target_to_host_bitmask(arg2, fcntl_flags_tbl),
9067 arg3, true));
9068 fd_trans_unregister(ret);
9069 unlock_user(p, arg1, 0);
9070 return ret;
9071 #endif
9072 case TARGET_NR_openat:
9073 if (!(p = lock_user_string(arg2)))
9074 return -TARGET_EFAULT;
9075 ret = get_errno(do_guest_openat(cpu_env, arg1, p,
9076 target_to_host_bitmask(arg3, fcntl_flags_tbl),
9077 arg4, true));
9078 fd_trans_unregister(ret);
9079 unlock_user(p, arg2, 0);
9080 return ret;
9081 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9082 case TARGET_NR_name_to_handle_at:
9083 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
9084 return ret;
9085 #endif
9086 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
9087 case TARGET_NR_open_by_handle_at:
9088 ret = do_open_by_handle_at(arg1, arg2, arg3);
9089 fd_trans_unregister(ret);
9090 return ret;
9091 #endif
9092 #if defined(__NR_pidfd_open) && defined(TARGET_NR_pidfd_open)
9093 case TARGET_NR_pidfd_open:
9094 return get_errno(pidfd_open(arg1, arg2));
9095 #endif
9096 #if defined(__NR_pidfd_send_signal) && defined(TARGET_NR_pidfd_send_signal)
9097 case TARGET_NR_pidfd_send_signal:
9098 {
9099 siginfo_t uinfo, *puinfo;
9100
9101 if (arg3) {
9102 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9103 if (!p) {
9104 return -TARGET_EFAULT;
9105 }
9106 target_to_host_siginfo(&uinfo, p);
9107 unlock_user(p, arg3, 0);
9108 puinfo = &uinfo;
9109 } else {
9110 puinfo = NULL;
9111 }
9112 ret = get_errno(pidfd_send_signal(arg1, target_to_host_signal(arg2),
9113 puinfo, arg4));
9114 }
9115 return ret;
9116 #endif
9117 #if defined(__NR_pidfd_getfd) && defined(TARGET_NR_pidfd_getfd)
9118 case TARGET_NR_pidfd_getfd:
9119 return get_errno(pidfd_getfd(arg1, arg2, arg3));
9120 #endif
9121 case TARGET_NR_close:
9122 fd_trans_unregister(arg1);
9123 return get_errno(close(arg1));
9124 #if defined(__NR_close_range) && defined(TARGET_NR_close_range)
9125 case TARGET_NR_close_range:
9126 ret = get_errno(sys_close_range(arg1, arg2, arg3));
9127 if (ret == 0 && !(arg3 & CLOSE_RANGE_CLOEXEC)) {
9128 abi_long fd, maxfd;
9129 maxfd = MIN(arg2, target_fd_max);
9130 for (fd = arg1; fd < maxfd; fd++) {
9131 fd_trans_unregister(fd);
9132 }
9133 }
9134 return ret;
9135 #endif
9136
9137 case TARGET_NR_brk:
9138 return do_brk(arg1);
9139 #ifdef TARGET_NR_fork
9140 case TARGET_NR_fork:
9141 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
9142 #endif
9143 #ifdef TARGET_NR_waitpid
9144 case TARGET_NR_waitpid:
9145 {
9146 int status;
9147 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
9148 if (!is_error(ret) && arg2 && ret
9149 && put_user_s32(host_to_target_waitstatus(status), arg2))
9150 return -TARGET_EFAULT;
9151 }
9152 return ret;
9153 #endif
9154 #ifdef TARGET_NR_waitid
9155 case TARGET_NR_waitid:
9156 {
9157 siginfo_t info;
9158 info.si_pid = 0;
9159 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
9160 if (!is_error(ret) && arg3 && info.si_pid != 0) {
9161 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
9162 return -TARGET_EFAULT;
9163 host_to_target_siginfo(p, &info);
9164 unlock_user(p, arg3, sizeof(target_siginfo_t));
9165 }
9166 }
9167 return ret;
9168 #endif
9169 #ifdef TARGET_NR_creat /* not on alpha */
9170 case TARGET_NR_creat:
9171 if (!(p = lock_user_string(arg1)))
9172 return -TARGET_EFAULT;
9173 ret = get_errno(creat(p, arg2));
9174 fd_trans_unregister(ret);
9175 unlock_user(p, arg1, 0);
9176 return ret;
9177 #endif
9178 #ifdef TARGET_NR_link
9179 case TARGET_NR_link:
9180 {
9181 void * p2;
9182 p = lock_user_string(arg1);
9183 p2 = lock_user_string(arg2);
9184 if (!p || !p2)
9185 ret = -TARGET_EFAULT;
9186 else
9187 ret = get_errno(link(p, p2));
9188 unlock_user(p2, arg2, 0);
9189 unlock_user(p, arg1, 0);
9190 }
9191 return ret;
9192 #endif
9193 #if defined(TARGET_NR_linkat)
9194 case TARGET_NR_linkat:
9195 {
9196 void * p2 = NULL;
9197 if (!arg2 || !arg4)
9198 return -TARGET_EFAULT;
9199 p = lock_user_string(arg2);
9200 p2 = lock_user_string(arg4);
9201 if (!p || !p2)
9202 ret = -TARGET_EFAULT;
9203 else
9204 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
9205 unlock_user(p, arg2, 0);
9206 unlock_user(p2, arg4, 0);
9207 }
9208 return ret;
9209 #endif
9210 #ifdef TARGET_NR_unlink
9211 case TARGET_NR_unlink:
9212 if (!(p = lock_user_string(arg1)))
9213 return -TARGET_EFAULT;
9214 ret = get_errno(unlink(p));
9215 unlock_user(p, arg1, 0);
9216 return ret;
9217 #endif
9218 #if defined(TARGET_NR_unlinkat)
9219 case TARGET_NR_unlinkat:
9220 if (!(p = lock_user_string(arg2)))
9221 return -TARGET_EFAULT;
9222 ret = get_errno(unlinkat(arg1, p, arg3));
9223 unlock_user(p, arg2, 0);
9224 return ret;
9225 #endif
9226 case TARGET_NR_execveat:
9227 return do_execv(cpu_env, arg1, arg2, arg3, arg4, arg5, true);
9228 case TARGET_NR_execve:
9229 return do_execv(cpu_env, AT_FDCWD, arg1, arg2, arg3, 0, false);
9230 case TARGET_NR_chdir:
9231 if (!(p = lock_user_string(arg1)))
9232 return -TARGET_EFAULT;
9233 ret = get_errno(chdir(p));
9234 unlock_user(p, arg1, 0);
9235 return ret;
9236 #ifdef TARGET_NR_time
9237 case TARGET_NR_time:
9238 {
9239 time_t host_time;
9240 ret = get_errno(time(&host_time));
9241 if (!is_error(ret)
9242 && arg1
9243 && put_user_sal(host_time, arg1))
9244 return -TARGET_EFAULT;
9245 }
9246 return ret;
9247 #endif
9248 #ifdef TARGET_NR_mknod
9249 case TARGET_NR_mknod:
9250 if (!(p = lock_user_string(arg1)))
9251 return -TARGET_EFAULT;
9252 ret = get_errno(mknod(p, arg2, arg3));
9253 unlock_user(p, arg1, 0);
9254 return ret;
9255 #endif
9256 #if defined(TARGET_NR_mknodat)
9257 case TARGET_NR_mknodat:
9258 if (!(p = lock_user_string(arg2)))
9259 return -TARGET_EFAULT;
9260 ret = get_errno(mknodat(arg1, p, arg3, arg4));
9261 unlock_user(p, arg2, 0);
9262 return ret;
9263 #endif
9264 #ifdef TARGET_NR_chmod
9265 case TARGET_NR_chmod:
9266 if (!(p = lock_user_string(arg1)))
9267 return -TARGET_EFAULT;
9268 ret = get_errno(chmod(p, arg2));
9269 unlock_user(p, arg1, 0);
9270 return ret;
9271 #endif
9272 #ifdef TARGET_NR_lseek
9273 case TARGET_NR_lseek:
9274 return get_errno(lseek(arg1, arg2, arg3));
9275 #endif
9276 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
9277 /* Alpha specific */
9278 case TARGET_NR_getxpid:
9279 cpu_env->ir[IR_A4] = getppid();
9280 return get_errno(getpid());
9281 #endif
9282 #ifdef TARGET_NR_getpid
9283 case TARGET_NR_getpid:
9284 return get_errno(getpid());
9285 #endif
9286 case TARGET_NR_mount:
9287 {
9288 /* need to look at the data field */
9289 void *p2, *p3;
9290
9291 if (arg1) {
9292 p = lock_user_string(arg1);
9293 if (!p) {
9294 return -TARGET_EFAULT;
9295 }
9296 } else {
9297 p = NULL;
9298 }
9299
9300 p2 = lock_user_string(arg2);
9301 if (!p2) {
9302 if (arg1) {
9303 unlock_user(p, arg1, 0);
9304 }
9305 return -TARGET_EFAULT;
9306 }
9307
9308 if (arg3) {
9309 p3 = lock_user_string(arg3);
9310 if (!p3) {
9311 if (arg1) {
9312 unlock_user(p, arg1, 0);
9313 }
9314 unlock_user(p2, arg2, 0);
9315 return -TARGET_EFAULT;
9316 }
9317 } else {
9318 p3 = NULL;
9319 }
9320
9321 /* FIXME - arg5 should be locked, but it isn't clear how to
9322 * do that since it's not guaranteed to be a NULL-terminated
9323 * string.
9324 */
9325 if (!arg5) {
9326 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
9327 } else {
9328 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
9329 }
9330 ret = get_errno(ret);
9331
9332 if (arg1) {
9333 unlock_user(p, arg1, 0);
9334 }
9335 unlock_user(p2, arg2, 0);
9336 if (arg3) {
9337 unlock_user(p3, arg3, 0);
9338 }
9339 }
9340 return ret;
9341 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
9342 #if defined(TARGET_NR_umount)
9343 case TARGET_NR_umount:
9344 #endif
9345 #if defined(TARGET_NR_oldumount)
9346 case TARGET_NR_oldumount:
9347 #endif
9348 if (!(p = lock_user_string(arg1)))
9349 return -TARGET_EFAULT;
9350 ret = get_errno(umount(p));
9351 unlock_user(p, arg1, 0);
9352 return ret;
9353 #endif
9354 #if defined(TARGET_NR_move_mount) && defined(__NR_move_mount)
9355 case TARGET_NR_move_mount:
9356 {
9357 void *p2, *p4;
9358
9359 if (!arg2 || !arg4) {
9360 return -TARGET_EFAULT;
9361 }
9362
9363 p2 = lock_user_string(arg2);
9364 if (!p2) {
9365 return -TARGET_EFAULT;
9366 }
9367
9368 p4 = lock_user_string(arg4);
9369 if (!p4) {
9370 unlock_user(p2, arg2, 0);
9371 return -TARGET_EFAULT;
9372 }
9373 ret = get_errno(sys_move_mount(arg1, p2, arg3, p4, arg5));
9374
9375 unlock_user(p2, arg2, 0);
9376 unlock_user(p4, arg4, 0);
9377
9378 return ret;
9379 }
9380 #endif
9381 #if defined(TARGET_NR_open_tree) && defined(__NR_open_tree)
9382 case TARGET_NR_open_tree:
9383 {
9384 void *p2;
9385 int host_flags;
9386
9387 if (!arg2) {
9388 return -TARGET_EFAULT;
9389 }
9390
9391 p2 = lock_user_string(arg2);
9392 if (!p2) {
9393 return -TARGET_EFAULT;
9394 }
9395
9396 host_flags = arg3 & ~TARGET_O_CLOEXEC;
9397 if (arg3 & TARGET_O_CLOEXEC) {
9398 host_flags |= O_CLOEXEC;
9399 }
9400
9401 ret = get_errno(sys_open_tree(arg1, p2, host_flags));
9402
9403 unlock_user(p2, arg2, 0);
9404
9405 return ret;
9406 }
9407 #endif
9408 #ifdef TARGET_NR_stime /* not on alpha */
9409 case TARGET_NR_stime:
9410 {
9411 struct timespec ts;
9412 ts.tv_nsec = 0;
9413 if (get_user_sal(ts.tv_sec, arg1)) {
9414 return -TARGET_EFAULT;
9415 }
9416 return get_errno(clock_settime(CLOCK_REALTIME, &ts));
9417 }
9418 #endif
9419 #ifdef TARGET_NR_alarm /* not on alpha */
9420 case TARGET_NR_alarm:
9421 return alarm(arg1);
9422 #endif
9423 #ifdef TARGET_NR_pause /* not on alpha */
9424 case TARGET_NR_pause:
9425 if (!block_signals()) {
9426 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
9427 }
9428 return -TARGET_EINTR;
9429 #endif
9430 #ifdef TARGET_NR_utime
9431 case TARGET_NR_utime:
9432 {
9433 struct utimbuf tbuf, *host_tbuf;
9434 struct target_utimbuf *target_tbuf;
9435 if (arg2) {
9436 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
9437 return -TARGET_EFAULT;
9438 tbuf.actime = tswapal(target_tbuf->actime);
9439 tbuf.modtime = tswapal(target_tbuf->modtime);
9440 unlock_user_struct(target_tbuf, arg2, 0);
9441 host_tbuf = &tbuf;
9442 } else {
9443 host_tbuf = NULL;
9444 }
9445 if (!(p = lock_user_string(arg1)))
9446 return -TARGET_EFAULT;
9447 ret = get_errno(utime(p, host_tbuf));
9448 unlock_user(p, arg1, 0);
9449 }
9450 return ret;
9451 #endif
9452 #ifdef TARGET_NR_utimes
9453 case TARGET_NR_utimes:
9454 {
9455 struct timeval *tvp, tv[2];
9456 if (arg2) {
9457 if (copy_from_user_timeval(&tv[0], arg2)
9458 || copy_from_user_timeval(&tv[1],
9459 arg2 + sizeof(struct target_timeval)))
9460 return -TARGET_EFAULT;
9461 tvp = tv;
9462 } else {
9463 tvp = NULL;
9464 }
9465 if (!(p = lock_user_string(arg1)))
9466 return -TARGET_EFAULT;
9467 ret = get_errno(utimes(p, tvp));
9468 unlock_user(p, arg1, 0);
9469 }
9470 return ret;
9471 #endif
9472 #if defined(TARGET_NR_futimesat)
9473 case TARGET_NR_futimesat:
9474 {
9475 struct timeval *tvp, tv[2];
9476 if (arg3) {
9477 if (copy_from_user_timeval(&tv[0], arg3)
9478 || copy_from_user_timeval(&tv[1],
9479 arg3 + sizeof(struct target_timeval)))
9480 return -TARGET_EFAULT;
9481 tvp = tv;
9482 } else {
9483 tvp = NULL;
9484 }
9485 if (!(p = lock_user_string(arg2))) {
9486 return -TARGET_EFAULT;
9487 }
9488 ret = get_errno(futimesat(arg1, path(p), tvp));
9489 unlock_user(p, arg2, 0);
9490 }
9491 return ret;
9492 #endif
9493 #ifdef TARGET_NR_access
9494 case TARGET_NR_access:
9495 if (!(p = lock_user_string(arg1))) {
9496 return -TARGET_EFAULT;
9497 }
9498 ret = get_errno(access(path(p), arg2));
9499 unlock_user(p, arg1, 0);
9500 return ret;
9501 #endif
9502 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9503 case TARGET_NR_faccessat:
9504 if (!(p = lock_user_string(arg2))) {
9505 return -TARGET_EFAULT;
9506 }
9507 ret = get_errno(faccessat(arg1, p, arg3, 0));
9508 unlock_user(p, arg2, 0);
9509 return ret;
9510 #endif
9511 #if defined(TARGET_NR_faccessat2)
9512 case TARGET_NR_faccessat2:
9513 if (!(p = lock_user_string(arg2))) {
9514 return -TARGET_EFAULT;
9515 }
9516 ret = get_errno(faccessat(arg1, p, arg3, arg4));
9517 unlock_user(p, arg2, 0);
9518 return ret;
9519 #endif
9520 #ifdef TARGET_NR_nice /* not on alpha */
9521 case TARGET_NR_nice:
9522 return get_errno(nice(arg1));
9523 #endif
9524 case TARGET_NR_sync:
9525 sync();
9526 return 0;
9527 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9528 case TARGET_NR_syncfs:
9529 return get_errno(syncfs(arg1));
9530 #endif
9531 case TARGET_NR_kill:
9532 return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
9533 #ifdef TARGET_NR_rename
9534 case TARGET_NR_rename:
9535 {
9536 void *p2;
9537 p = lock_user_string(arg1);
9538 p2 = lock_user_string(arg2);
9539 if (!p || !p2)
9540 ret = -TARGET_EFAULT;
9541 else
9542 ret = get_errno(rename(p, p2));
9543 unlock_user(p2, arg2, 0);
9544 unlock_user(p, arg1, 0);
9545 }
9546 return ret;
9547 #endif
9548 #if defined(TARGET_NR_renameat)
9549 case TARGET_NR_renameat:
9550 {
9551 void *p2;
9552 p = lock_user_string(arg2);
9553 p2 = lock_user_string(arg4);
9554 if (!p || !p2)
9555 ret = -TARGET_EFAULT;
9556 else
9557 ret = get_errno(renameat(arg1, p, arg3, p2));
9558 unlock_user(p2, arg4, 0);
9559 unlock_user(p, arg2, 0);
9560 }
9561 return ret;
9562 #endif
9563 #if defined(TARGET_NR_renameat2)
9564 case TARGET_NR_renameat2:
9565 {
9566 void *p2;
9567 p = lock_user_string(arg2);
9568 p2 = lock_user_string(arg4);
9569 if (!p || !p2) {
9570 ret = -TARGET_EFAULT;
9571 } else {
9572 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
9573 }
9574 unlock_user(p2, arg4, 0);
9575 unlock_user(p, arg2, 0);
9576 }
9577 return ret;
9578 #endif
9579 #ifdef TARGET_NR_mkdir
9580 case TARGET_NR_mkdir:
9581 if (!(p = lock_user_string(arg1)))
9582 return -TARGET_EFAULT;
9583 ret = get_errno(mkdir(p, arg2));
9584 unlock_user(p, arg1, 0);
9585 return ret;
9586 #endif
9587 #if defined(TARGET_NR_mkdirat)
9588 case TARGET_NR_mkdirat:
9589 if (!(p = lock_user_string(arg2)))
9590 return -TARGET_EFAULT;
9591 ret = get_errno(mkdirat(arg1, p, arg3));
9592 unlock_user(p, arg2, 0);
9593 return ret;
9594 #endif
9595 #ifdef TARGET_NR_rmdir
9596 case TARGET_NR_rmdir:
9597 if (!(p = lock_user_string(arg1)))
9598 return -TARGET_EFAULT;
9599 ret = get_errno(rmdir(p));
9600 unlock_user(p, arg1, 0);
9601 return ret;
9602 #endif
9603 case TARGET_NR_dup:
9604 ret = get_errno(dup(arg1));
9605 if (ret >= 0) {
9606 fd_trans_dup(arg1, ret);
9607 }
9608 return ret;
9609 #ifdef TARGET_NR_pipe
9610 case TARGET_NR_pipe:
9611 return do_pipe(cpu_env, arg1, 0, 0);
9612 #endif
9613 #ifdef TARGET_NR_pipe2
9614 case TARGET_NR_pipe2:
9615 return do_pipe(cpu_env, arg1,
9616 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
9617 #endif
9618 case TARGET_NR_times:
9619 {
9620 struct target_tms *tmsp;
9621 struct tms tms;
9622 ret = get_errno(times(&tms));
9623 if (arg1) {
9624 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
9625 if (!tmsp)
9626 return -TARGET_EFAULT;
9627 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
9628 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
9629 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
9630 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
9631 }
9632 if (!is_error(ret))
9633 ret = host_to_target_clock_t(ret);
9634 }
9635 return ret;
9636 case TARGET_NR_acct:
9637 if (arg1 == 0) {
9638 ret = get_errno(acct(NULL));
9639 } else {
9640 if (!(p = lock_user_string(arg1))) {
9641 return -TARGET_EFAULT;
9642 }
9643 ret = get_errno(acct(path(p)));
9644 unlock_user(p, arg1, 0);
9645 }
9646 return ret;
9647 #ifdef TARGET_NR_umount2
9648 case TARGET_NR_umount2:
9649 if (!(p = lock_user_string(arg1)))
9650 return -TARGET_EFAULT;
9651 ret = get_errno(umount2(p, arg2));
9652 unlock_user(p, arg1, 0);
9653 return ret;
9654 #endif
9655 case TARGET_NR_ioctl:
9656 return do_ioctl(arg1, arg2, arg3);
9657 #ifdef TARGET_NR_fcntl
9658 case TARGET_NR_fcntl:
9659 return do_fcntl(arg1, arg2, arg3);
9660 #endif
9661 case TARGET_NR_setpgid:
9662 return get_errno(setpgid(arg1, arg2));
9663 case TARGET_NR_umask:
9664 return get_errno(umask(arg1));
9665 case TARGET_NR_chroot:
9666 if (!(p = lock_user_string(arg1)))
9667 return -TARGET_EFAULT;
9668 ret = get_errno(chroot(p));
9669 unlock_user(p, arg1, 0);
9670 return ret;
9671 #ifdef TARGET_NR_dup2
9672 case TARGET_NR_dup2:
9673 ret = get_errno(dup2(arg1, arg2));
9674 if (ret >= 0) {
9675 fd_trans_dup(arg1, arg2);
9676 }
9677 return ret;
9678 #endif
9679 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9680 case TARGET_NR_dup3:
9681 {
9682 int host_flags;
9683
9684 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
9685 return -EINVAL;
9686 }
9687 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
9688 ret = get_errno(dup3(arg1, arg2, host_flags));
9689 if (ret >= 0) {
9690 fd_trans_dup(arg1, arg2);
9691 }
9692 return ret;
9693 }
9694 #endif
9695 #ifdef TARGET_NR_getppid /* not on alpha */
9696 case TARGET_NR_getppid:
9697 return get_errno(getppid());
9698 #endif
9699 #ifdef TARGET_NR_getpgrp
9700 case TARGET_NR_getpgrp:
9701 return get_errno(getpgrp());
9702 #endif
9703 case TARGET_NR_setsid:
9704 return get_errno(setsid());
9705 #ifdef TARGET_NR_sigaction
9706 case TARGET_NR_sigaction:
9707 {
9708 #if defined(TARGET_MIPS)
9709 struct target_sigaction act, oact, *pact, *old_act;
9710
9711 if (arg2) {
9712 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9713 return -TARGET_EFAULT;
9714 act._sa_handler = old_act->_sa_handler;
9715 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
9716 act.sa_flags = old_act->sa_flags;
9717 unlock_user_struct(old_act, arg2, 0);
9718 pact = &act;
9719 } else {
9720 pact = NULL;
9721 }
9722
9723 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9724
9725 if (!is_error(ret) && arg3) {
9726 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9727 return -TARGET_EFAULT;
9728 old_act->_sa_handler = oact._sa_handler;
9729 old_act->sa_flags = oact.sa_flags;
9730 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
9731 old_act->sa_mask.sig[1] = 0;
9732 old_act->sa_mask.sig[2] = 0;
9733 old_act->sa_mask.sig[3] = 0;
9734 unlock_user_struct(old_act, arg3, 1);
9735 }
9736 #else
9737 struct target_old_sigaction *old_act;
9738 struct target_sigaction act, oact, *pact;
9739 if (arg2) {
9740 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
9741 return -TARGET_EFAULT;
9742 act._sa_handler = old_act->_sa_handler;
9743 target_siginitset(&act.sa_mask, old_act->sa_mask);
9744 act.sa_flags = old_act->sa_flags;
9745 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9746 act.sa_restorer = old_act->sa_restorer;
9747 #endif
9748 unlock_user_struct(old_act, arg2, 0);
9749 pact = &act;
9750 } else {
9751 pact = NULL;
9752 }
9753 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
9754 if (!is_error(ret) && arg3) {
9755 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
9756 return -TARGET_EFAULT;
9757 old_act->_sa_handler = oact._sa_handler;
9758 old_act->sa_mask = oact.sa_mask.sig[0];
9759 old_act->sa_flags = oact.sa_flags;
9760 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9761 old_act->sa_restorer = oact.sa_restorer;
9762 #endif
9763 unlock_user_struct(old_act, arg3, 1);
9764 }
9765 #endif
9766 }
9767 return ret;
9768 #endif
9769 case TARGET_NR_rt_sigaction:
9770 {
9771 /*
9772 * For Alpha and SPARC this is a 5 argument syscall, with
9773 * a 'restorer' parameter which must be copied into the
9774 * sa_restorer field of the sigaction struct.
9775 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9776 * and arg5 is the sigsetsize.
9777 */
9778 #if defined(TARGET_ALPHA)
9779 target_ulong sigsetsize = arg4;
9780 target_ulong restorer = arg5;
9781 #elif defined(TARGET_SPARC)
9782 target_ulong restorer = arg4;
9783 target_ulong sigsetsize = arg5;
9784 #else
9785 target_ulong sigsetsize = arg4;
9786 target_ulong restorer = 0;
9787 #endif
9788 struct target_sigaction *act = NULL;
9789 struct target_sigaction *oact = NULL;
9790
9791 if (sigsetsize != sizeof(target_sigset_t)) {
9792 return -TARGET_EINVAL;
9793 }
9794 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
9795 return -TARGET_EFAULT;
9796 }
9797 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
9798 ret = -TARGET_EFAULT;
9799 } else {
9800 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
9801 if (oact) {
9802 unlock_user_struct(oact, arg3, 1);
9803 }
9804 }
9805 if (act) {
9806 unlock_user_struct(act, arg2, 0);
9807 }
9808 }
9809 return ret;
9810 #ifdef TARGET_NR_sgetmask /* not on alpha */
9811 case TARGET_NR_sgetmask:
9812 {
9813 sigset_t cur_set;
9814 abi_ulong target_set;
9815 ret = do_sigprocmask(0, NULL, &cur_set);
9816 if (!ret) {
9817 host_to_target_old_sigset(&target_set, &cur_set);
9818 ret = target_set;
9819 }
9820 }
9821 return ret;
9822 #endif
9823 #ifdef TARGET_NR_ssetmask /* not on alpha */
9824 case TARGET_NR_ssetmask:
9825 {
9826 sigset_t set, oset;
9827 abi_ulong target_set = arg1;
9828 target_to_host_old_sigset(&set, &target_set);
9829 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
9830 if (!ret) {
9831 host_to_target_old_sigset(&target_set, &oset);
9832 ret = target_set;
9833 }
9834 }
9835 return ret;
9836 #endif
9837 #ifdef TARGET_NR_sigprocmask
9838 case TARGET_NR_sigprocmask:
9839 {
9840 #if defined(TARGET_ALPHA)
9841 sigset_t set, oldset;
9842 abi_ulong mask;
9843 int how;
9844
9845 switch (arg1) {
9846 case TARGET_SIG_BLOCK:
9847 how = SIG_BLOCK;
9848 break;
9849 case TARGET_SIG_UNBLOCK:
9850 how = SIG_UNBLOCK;
9851 break;
9852 case TARGET_SIG_SETMASK:
9853 how = SIG_SETMASK;
9854 break;
9855 default:
9856 return -TARGET_EINVAL;
9857 }
9858 mask = arg2;
9859 target_to_host_old_sigset(&set, &mask);
9860
9861 ret = do_sigprocmask(how, &set, &oldset);
9862 if (!is_error(ret)) {
9863 host_to_target_old_sigset(&mask, &oldset);
9864 ret = mask;
9865 cpu_env->ir[IR_V0] = 0; /* force no error */
9866 }
9867 #else
9868 sigset_t set, oldset, *set_ptr;
9869 int how;
9870
9871 if (arg2) {
9872 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9873 if (!p) {
9874 return -TARGET_EFAULT;
9875 }
9876 target_to_host_old_sigset(&set, p);
9877 unlock_user(p, arg2, 0);
9878 set_ptr = &set;
9879 switch (arg1) {
9880 case TARGET_SIG_BLOCK:
9881 how = SIG_BLOCK;
9882 break;
9883 case TARGET_SIG_UNBLOCK:
9884 how = SIG_UNBLOCK;
9885 break;
9886 case TARGET_SIG_SETMASK:
9887 how = SIG_SETMASK;
9888 break;
9889 default:
9890 return -TARGET_EINVAL;
9891 }
9892 } else {
9893 how = 0;
9894 set_ptr = NULL;
9895 }
9896 ret = do_sigprocmask(how, set_ptr, &oldset);
9897 if (!is_error(ret) && arg3) {
9898 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9899 return -TARGET_EFAULT;
9900 host_to_target_old_sigset(p, &oldset);
9901 unlock_user(p, arg3, sizeof(target_sigset_t));
9902 }
9903 #endif
9904 }
9905 return ret;
9906 #endif
9907 case TARGET_NR_rt_sigprocmask:
9908 {
9909 int how = arg1;
9910 sigset_t set, oldset, *set_ptr;
9911
9912 if (arg4 != sizeof(target_sigset_t)) {
9913 return -TARGET_EINVAL;
9914 }
9915
9916 if (arg2) {
9917 p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1);
9918 if (!p) {
9919 return -TARGET_EFAULT;
9920 }
9921 target_to_host_sigset(&set, p);
9922 unlock_user(p, arg2, 0);
9923 set_ptr = &set;
9924 switch(how) {
9925 case TARGET_SIG_BLOCK:
9926 how = SIG_BLOCK;
9927 break;
9928 case TARGET_SIG_UNBLOCK:
9929 how = SIG_UNBLOCK;
9930 break;
9931 case TARGET_SIG_SETMASK:
9932 how = SIG_SETMASK;
9933 break;
9934 default:
9935 return -TARGET_EINVAL;
9936 }
9937 } else {
9938 how = 0;
9939 set_ptr = NULL;
9940 }
9941 ret = do_sigprocmask(how, set_ptr, &oldset);
9942 if (!is_error(ret) && arg3) {
9943 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9944 return -TARGET_EFAULT;
9945 host_to_target_sigset(p, &oldset);
9946 unlock_user(p, arg3, sizeof(target_sigset_t));
9947 }
9948 }
9949 return ret;
9950 #ifdef TARGET_NR_sigpending
9951 case TARGET_NR_sigpending:
9952 {
9953 sigset_t set;
9954 ret = get_errno(sigpending(&set));
9955 if (!is_error(ret)) {
9956 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9957 return -TARGET_EFAULT;
9958 host_to_target_old_sigset(p, &set);
9959 unlock_user(p, arg1, sizeof(target_sigset_t));
9960 }
9961 }
9962 return ret;
9963 #endif
9964 case TARGET_NR_rt_sigpending:
9965 {
9966 sigset_t set;
9967
9968 /* Yes, this check is >, not != like most. We follow the kernel's
9969 * logic and it does it like this because it implements
9970 * NR_sigpending through the same code path, and in that case
9971 * the old_sigset_t is smaller in size.
9972 */
9973 if (arg2 > sizeof(target_sigset_t)) {
9974 return -TARGET_EINVAL;
9975 }
9976
9977 ret = get_errno(sigpending(&set));
9978 if (!is_error(ret)) {
9979 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9980 return -TARGET_EFAULT;
9981 host_to_target_sigset(p, &set);
9982 unlock_user(p, arg1, sizeof(target_sigset_t));
9983 }
9984 }
9985 return ret;
9986 #ifdef TARGET_NR_sigsuspend
9987 case TARGET_NR_sigsuspend:
9988 {
9989 sigset_t *set;
9990
9991 #if defined(TARGET_ALPHA)
9992 TaskState *ts = cpu->opaque;
9993 /* target_to_host_old_sigset will bswap back */
9994 abi_ulong mask = tswapal(arg1);
9995 set = &ts->sigsuspend_mask;
9996 target_to_host_old_sigset(set, &mask);
9997 #else
9998 ret = process_sigsuspend_mask(&set, arg1, sizeof(target_sigset_t));
9999 if (ret != 0) {
10000 return ret;
10001 }
10002 #endif
10003 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10004 finish_sigsuspend_mask(ret);
10005 }
10006 return ret;
10007 #endif
10008 case TARGET_NR_rt_sigsuspend:
10009 {
10010 sigset_t *set;
10011
10012 ret = process_sigsuspend_mask(&set, arg1, arg2);
10013 if (ret != 0) {
10014 return ret;
10015 }
10016 ret = get_errno(safe_rt_sigsuspend(set, SIGSET_T_SIZE));
10017 finish_sigsuspend_mask(ret);
10018 }
10019 return ret;
10020 #ifdef TARGET_NR_rt_sigtimedwait
10021 case TARGET_NR_rt_sigtimedwait:
10022 {
10023 sigset_t set;
10024 struct timespec uts, *puts;
10025 siginfo_t uinfo;
10026
10027 if (arg4 != sizeof(target_sigset_t)) {
10028 return -TARGET_EINVAL;
10029 }
10030
10031 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
10032 return -TARGET_EFAULT;
10033 target_to_host_sigset(&set, p);
10034 unlock_user(p, arg1, 0);
10035 if (arg3) {
10036 puts = &uts;
10037 if (target_to_host_timespec(puts, arg3)) {
10038 return -TARGET_EFAULT;
10039 }
10040 } else {
10041 puts = NULL;
10042 }
10043 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10044 SIGSET_T_SIZE));
10045 if (!is_error(ret)) {
10046 if (arg2) {
10047 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
10048 0);
10049 if (!p) {
10050 return -TARGET_EFAULT;
10051 }
10052 host_to_target_siginfo(p, &uinfo);
10053 unlock_user(p, arg2, sizeof(target_siginfo_t));
10054 }
10055 ret = host_to_target_signal(ret);
10056 }
10057 }
10058 return ret;
10059 #endif
10060 #ifdef TARGET_NR_rt_sigtimedwait_time64
10061 case TARGET_NR_rt_sigtimedwait_time64:
10062 {
10063 sigset_t set;
10064 struct timespec uts, *puts;
10065 siginfo_t uinfo;
10066
10067 if (arg4 != sizeof(target_sigset_t)) {
10068 return -TARGET_EINVAL;
10069 }
10070
10071 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
10072 if (!p) {
10073 return -TARGET_EFAULT;
10074 }
10075 target_to_host_sigset(&set, p);
10076 unlock_user(p, arg1, 0);
10077 if (arg3) {
10078 puts = &uts;
10079 if (target_to_host_timespec64(puts, arg3)) {
10080 return -TARGET_EFAULT;
10081 }
10082 } else {
10083 puts = NULL;
10084 }
10085 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
10086 SIGSET_T_SIZE));
10087 if (!is_error(ret)) {
10088 if (arg2) {
10089 p = lock_user(VERIFY_WRITE, arg2,
10090 sizeof(target_siginfo_t), 0);
10091 if (!p) {
10092 return -TARGET_EFAULT;
10093 }
10094 host_to_target_siginfo(p, &uinfo);
10095 unlock_user(p, arg2, sizeof(target_siginfo_t));
10096 }
10097 ret = host_to_target_signal(ret);
10098 }
10099 }
10100 return ret;
10101 #endif
10102 case TARGET_NR_rt_sigqueueinfo:
10103 {
10104 siginfo_t uinfo;
10105
10106 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
10107 if (!p) {
10108 return -TARGET_EFAULT;
10109 }
10110 target_to_host_siginfo(&uinfo, p);
10111 unlock_user(p, arg3, 0);
10112 ret = get_errno(sys_rt_sigqueueinfo(arg1, target_to_host_signal(arg2), &uinfo));
10113 }
10114 return ret;
10115 case TARGET_NR_rt_tgsigqueueinfo:
10116 {
10117 siginfo_t uinfo;
10118
10119 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
10120 if (!p) {
10121 return -TARGET_EFAULT;
10122 }
10123 target_to_host_siginfo(&uinfo, p);
10124 unlock_user(p, arg4, 0);
10125 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, target_to_host_signal(arg3), &uinfo));
10126 }
10127 return ret;
10128 #ifdef TARGET_NR_sigreturn
10129 case TARGET_NR_sigreturn:
10130 if (block_signals()) {
10131 return -QEMU_ERESTARTSYS;
10132 }
10133 return do_sigreturn(cpu_env);
10134 #endif
10135 case TARGET_NR_rt_sigreturn:
10136 if (block_signals()) {
10137 return -QEMU_ERESTARTSYS;
10138 }
10139 return do_rt_sigreturn(cpu_env);
10140 case TARGET_NR_sethostname:
10141 if (!(p = lock_user_string(arg1)))
10142 return -TARGET_EFAULT;
10143 ret = get_errno(sethostname(p, arg2));
10144 unlock_user(p, arg1, 0);
10145 return ret;
10146 #ifdef TARGET_NR_setrlimit
10147 case TARGET_NR_setrlimit:
10148 {
10149 int resource = target_to_host_resource(arg1);
10150 struct target_rlimit *target_rlim;
10151 struct rlimit rlim;
10152 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
10153 return -TARGET_EFAULT;
10154 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
10155 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
10156 unlock_user_struct(target_rlim, arg2, 0);
10157 /*
10158 * If we just passed through resource limit settings for memory then
10159 * they would also apply to QEMU's own allocations, and QEMU will
10160 * crash or hang or die if its allocations fail. Ideally we would
10161 * track the guest allocations in QEMU and apply the limits ourselves.
10162 * For now, just tell the guest the call succeeded but don't actually
10163 * limit anything.
10164 */
10165 if (resource != RLIMIT_AS &&
10166 resource != RLIMIT_DATA &&
10167 resource != RLIMIT_STACK) {
10168 return get_errno(setrlimit(resource, &rlim));
10169 } else {
10170 return 0;
10171 }
10172 }
10173 #endif
10174 #ifdef TARGET_NR_getrlimit
10175 case TARGET_NR_getrlimit:
10176 {
10177 int resource = target_to_host_resource(arg1);
10178 struct target_rlimit *target_rlim;
10179 struct rlimit rlim;
10180
10181 ret = get_errno(getrlimit(resource, &rlim));
10182 if (!is_error(ret)) {
10183 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10184 return -TARGET_EFAULT;
10185 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10186 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10187 unlock_user_struct(target_rlim, arg2, 1);
10188 }
10189 }
10190 return ret;
10191 #endif
10192 case TARGET_NR_getrusage:
10193 {
10194 struct rusage rusage;
10195 ret = get_errno(getrusage(arg1, &rusage));
10196 if (!is_error(ret)) {
10197 ret = host_to_target_rusage(arg2, &rusage);
10198 }
10199 }
10200 return ret;
10201 #if defined(TARGET_NR_gettimeofday)
10202 case TARGET_NR_gettimeofday:
10203 {
10204 struct timeval tv;
10205 struct timezone tz;
10206
10207 ret = get_errno(gettimeofday(&tv, &tz));
10208 if (!is_error(ret)) {
10209 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
10210 return -TARGET_EFAULT;
10211 }
10212 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
10213 return -TARGET_EFAULT;
10214 }
10215 }
10216 }
10217 return ret;
10218 #endif
10219 #if defined(TARGET_NR_settimeofday)
10220 case TARGET_NR_settimeofday:
10221 {
10222 struct timeval tv, *ptv = NULL;
10223 struct timezone tz, *ptz = NULL;
10224
10225 if (arg1) {
10226 if (copy_from_user_timeval(&tv, arg1)) {
10227 return -TARGET_EFAULT;
10228 }
10229 ptv = &tv;
10230 }
10231
10232 if (arg2) {
10233 if (copy_from_user_timezone(&tz, arg2)) {
10234 return -TARGET_EFAULT;
10235 }
10236 ptz = &tz;
10237 }
10238
10239 return get_errno(settimeofday(ptv, ptz));
10240 }
10241 #endif
10242 #if defined(TARGET_NR_select)
10243 case TARGET_NR_select:
10244 #if defined(TARGET_WANT_NI_OLD_SELECT)
10245 /* some architectures used to have old_select here
10246 * but now ENOSYS it.
10247 */
10248 ret = -TARGET_ENOSYS;
10249 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
10250 ret = do_old_select(arg1);
10251 #else
10252 ret = do_select(arg1, arg2, arg3, arg4, arg5);
10253 #endif
10254 return ret;
10255 #endif
10256 #ifdef TARGET_NR_pselect6
10257 case TARGET_NR_pselect6:
10258 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
10259 #endif
10260 #ifdef TARGET_NR_pselect6_time64
10261 case TARGET_NR_pselect6_time64:
10262 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
10263 #endif
10264 #ifdef TARGET_NR_symlink
10265 case TARGET_NR_symlink:
10266 {
10267 void *p2;
10268 p = lock_user_string(arg1);
10269 p2 = lock_user_string(arg2);
10270 if (!p || !p2)
10271 ret = -TARGET_EFAULT;
10272 else
10273 ret = get_errno(symlink(p, p2));
10274 unlock_user(p2, arg2, 0);
10275 unlock_user(p, arg1, 0);
10276 }
10277 return ret;
10278 #endif
10279 #if defined(TARGET_NR_symlinkat)
10280 case TARGET_NR_symlinkat:
10281 {
10282 void *p2;
10283 p = lock_user_string(arg1);
10284 p2 = lock_user_string(arg3);
10285 if (!p || !p2)
10286 ret = -TARGET_EFAULT;
10287 else
10288 ret = get_errno(symlinkat(p, arg2, p2));
10289 unlock_user(p2, arg3, 0);
10290 unlock_user(p, arg1, 0);
10291 }
10292 return ret;
10293 #endif
10294 #ifdef TARGET_NR_readlink
10295 case TARGET_NR_readlink:
10296 {
10297 void *p2;
10298 p = lock_user_string(arg1);
10299 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10300 ret = get_errno(do_guest_readlink(p, p2, arg3));
10301 unlock_user(p2, arg2, ret);
10302 unlock_user(p, arg1, 0);
10303 }
10304 return ret;
10305 #endif
10306 #if defined(TARGET_NR_readlinkat)
10307 case TARGET_NR_readlinkat:
10308 {
10309 void *p2;
10310 p = lock_user_string(arg2);
10311 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10312 if (!p || !p2) {
10313 ret = -TARGET_EFAULT;
10314 } else if (!arg4) {
10315 /* Short circuit this for the magic exe check. */
10316 ret = -TARGET_EINVAL;
10317 } else if (is_proc_myself((const char *)p, "exe")) {
10318 /*
10319 * Don't worry about sign mismatch as earlier mapping
10320 * logic would have thrown a bad address error.
10321 */
10322 ret = MIN(strlen(exec_path), arg4);
10323 /* We cannot NUL terminate the string. */
10324 memcpy(p2, exec_path, ret);
10325 } else {
10326 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
10327 }
10328 unlock_user(p2, arg3, ret);
10329 unlock_user(p, arg2, 0);
10330 }
10331 return ret;
10332 #endif
10333 #ifdef TARGET_NR_swapon
10334 case TARGET_NR_swapon:
10335 if (!(p = lock_user_string(arg1)))
10336 return -TARGET_EFAULT;
10337 ret = get_errno(swapon(p, arg2));
10338 unlock_user(p, arg1, 0);
10339 return ret;
10340 #endif
10341 case TARGET_NR_reboot:
10342 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
10343 /* arg4 must be ignored in all other cases */
10344 p = lock_user_string(arg4);
10345 if (!p) {
10346 return -TARGET_EFAULT;
10347 }
10348 ret = get_errno(reboot(arg1, arg2, arg3, p));
10349 unlock_user(p, arg4, 0);
10350 } else {
10351 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
10352 }
10353 return ret;
10354 #ifdef TARGET_NR_mmap
10355 case TARGET_NR_mmap:
10356 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
10357 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
10358 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
10359 || defined(TARGET_S390X)
10360 {
10361 abi_ulong *v;
10362 abi_ulong v1, v2, v3, v4, v5, v6;
10363 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
10364 return -TARGET_EFAULT;
10365 v1 = tswapal(v[0]);
10366 v2 = tswapal(v[1]);
10367 v3 = tswapal(v[2]);
10368 v4 = tswapal(v[3]);
10369 v5 = tswapal(v[4]);
10370 v6 = tswapal(v[5]);
10371 unlock_user(v, arg1, 0);
10372 return do_mmap(v1, v2, v3, v4, v5, v6);
10373 }
10374 #else
10375 /* mmap pointers are always untagged */
10376 return do_mmap(arg1, arg2, arg3, arg4, arg5, arg6);
10377 #endif
10378 #endif
10379 #ifdef TARGET_NR_mmap2
10380 case TARGET_NR_mmap2:
10381 #ifndef MMAP_SHIFT
10382 #define MMAP_SHIFT 12
10383 #endif
10384 return do_mmap(arg1, arg2, arg3, arg4, arg5,
10385 (off_t)(abi_ulong)arg6 << MMAP_SHIFT);
10386 #endif
10387 case TARGET_NR_munmap:
10388 arg1 = cpu_untagged_addr(cpu, arg1);
10389 return get_errno(target_munmap(arg1, arg2));
10390 case TARGET_NR_mprotect:
10391 arg1 = cpu_untagged_addr(cpu, arg1);
10392 {
10393 TaskState *ts = cpu->opaque;
10394 /* Special hack to detect libc making the stack executable. */
10395 if ((arg3 & PROT_GROWSDOWN)
10396 && arg1 >= ts->info->stack_limit
10397 && arg1 <= ts->info->start_stack) {
10398 arg3 &= ~PROT_GROWSDOWN;
10399 arg2 = arg2 + arg1 - ts->info->stack_limit;
10400 arg1 = ts->info->stack_limit;
10401 }
10402 }
10403 return get_errno(target_mprotect(arg1, arg2, arg3));
10404 #ifdef TARGET_NR_mremap
10405 case TARGET_NR_mremap:
10406 arg1 = cpu_untagged_addr(cpu, arg1);
10407 /* mremap new_addr (arg5) is always untagged */
10408 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
10409 #endif
10410 /* ??? msync/mlock/munlock are broken for softmmu. */
10411 #ifdef TARGET_NR_msync
10412 case TARGET_NR_msync:
10413 return get_errno(msync(g2h(cpu, arg1), arg2,
10414 target_to_host_msync_arg(arg3)));
10415 #endif
10416 #ifdef TARGET_NR_mlock
10417 case TARGET_NR_mlock:
10418 return get_errno(mlock(g2h(cpu, arg1), arg2));
10419 #endif
10420 #ifdef TARGET_NR_munlock
10421 case TARGET_NR_munlock:
10422 return get_errno(munlock(g2h(cpu, arg1), arg2));
10423 #endif
10424 #ifdef TARGET_NR_mlockall
10425 case TARGET_NR_mlockall:
10426 return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
10427 #endif
10428 #ifdef TARGET_NR_munlockall
10429 case TARGET_NR_munlockall:
10430 return get_errno(munlockall());
10431 #endif
10432 #ifdef TARGET_NR_truncate
10433 case TARGET_NR_truncate:
10434 if (!(p = lock_user_string(arg1)))
10435 return -TARGET_EFAULT;
10436 ret = get_errno(truncate(p, arg2));
10437 unlock_user(p, arg1, 0);
10438 return ret;
10439 #endif
10440 #ifdef TARGET_NR_ftruncate
10441 case TARGET_NR_ftruncate:
10442 return get_errno(ftruncate(arg1, arg2));
10443 #endif
10444 case TARGET_NR_fchmod:
10445 return get_errno(fchmod(arg1, arg2));
10446 #if defined(TARGET_NR_fchmodat)
10447 case TARGET_NR_fchmodat:
10448 if (!(p = lock_user_string(arg2)))
10449 return -TARGET_EFAULT;
10450 ret = get_errno(fchmodat(arg1, p, arg3, 0));
10451 unlock_user(p, arg2, 0);
10452 return ret;
10453 #endif
10454 case TARGET_NR_getpriority:
10455 /* Note that negative values are valid for getpriority, so we must
10456 differentiate based on errno settings. */
10457 errno = 0;
10458 ret = getpriority(arg1, arg2);
10459 if (ret == -1 && errno != 0) {
10460 return -host_to_target_errno(errno);
10461 }
10462 #ifdef TARGET_ALPHA
10463 /* Return value is the unbiased priority. Signal no error. */
10464 cpu_env->ir[IR_V0] = 0;
10465 #else
10466 /* Return value is a biased priority to avoid negative numbers. */
10467 ret = 20 - ret;
10468 #endif
10469 return ret;
10470 case TARGET_NR_setpriority:
10471 return get_errno(setpriority(arg1, arg2, arg3));
10472 #ifdef TARGET_NR_statfs
10473 case TARGET_NR_statfs:
10474 if (!(p = lock_user_string(arg1))) {
10475 return -TARGET_EFAULT;
10476 }
10477 ret = get_errno(statfs(path(p), &stfs));
10478 unlock_user(p, arg1, 0);
10479 convert_statfs:
10480 if (!is_error(ret)) {
10481 struct target_statfs *target_stfs;
10482
10483 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
10484 return -TARGET_EFAULT;
10485 __put_user(stfs.f_type, &target_stfs->f_type);
10486 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10487 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10488 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10489 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10490 __put_user(stfs.f_files, &target_stfs->f_files);
10491 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10492 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10493 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10494 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10495 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10496 #ifdef _STATFS_F_FLAGS
10497 __put_user(stfs.f_flags, &target_stfs->f_flags);
10498 #else
10499 __put_user(0, &target_stfs->f_flags);
10500 #endif
10501 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10502 unlock_user_struct(target_stfs, arg2, 1);
10503 }
10504 return ret;
10505 #endif
10506 #ifdef TARGET_NR_fstatfs
10507 case TARGET_NR_fstatfs:
10508 ret = get_errno(fstatfs(arg1, &stfs));
10509 goto convert_statfs;
10510 #endif
10511 #ifdef TARGET_NR_statfs64
10512 case TARGET_NR_statfs64:
10513 if (!(p = lock_user_string(arg1))) {
10514 return -TARGET_EFAULT;
10515 }
10516 ret = get_errno(statfs(path(p), &stfs));
10517 unlock_user(p, arg1, 0);
10518 convert_statfs64:
10519 if (!is_error(ret)) {
10520 struct target_statfs64 *target_stfs;
10521
10522 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
10523 return -TARGET_EFAULT;
10524 __put_user(stfs.f_type, &target_stfs->f_type);
10525 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
10526 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
10527 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
10528 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
10529 __put_user(stfs.f_files, &target_stfs->f_files);
10530 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
10531 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
10532 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
10533 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
10534 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
10535 #ifdef _STATFS_F_FLAGS
10536 __put_user(stfs.f_flags, &target_stfs->f_flags);
10537 #else
10538 __put_user(0, &target_stfs->f_flags);
10539 #endif
10540 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
10541 unlock_user_struct(target_stfs, arg3, 1);
10542 }
10543 return ret;
10544 case TARGET_NR_fstatfs64:
10545 ret = get_errno(fstatfs(arg1, &stfs));
10546 goto convert_statfs64;
10547 #endif
10548 #ifdef TARGET_NR_socketcall
10549 case TARGET_NR_socketcall:
10550 return do_socketcall(arg1, arg2);
10551 #endif
10552 #ifdef TARGET_NR_accept
10553 case TARGET_NR_accept:
10554 return do_accept4(arg1, arg2, arg3, 0);
10555 #endif
10556 #ifdef TARGET_NR_accept4
10557 case TARGET_NR_accept4:
10558 return do_accept4(arg1, arg2, arg3, arg4);
10559 #endif
10560 #ifdef TARGET_NR_bind
10561 case TARGET_NR_bind:
10562 return do_bind(arg1, arg2, arg3);
10563 #endif
10564 #ifdef TARGET_NR_connect
10565 case TARGET_NR_connect:
10566 return do_connect(arg1, arg2, arg3);
10567 #endif
10568 #ifdef TARGET_NR_getpeername
10569 case TARGET_NR_getpeername:
10570 return do_getpeername(arg1, arg2, arg3);
10571 #endif
10572 #ifdef TARGET_NR_getsockname
10573 case TARGET_NR_getsockname:
10574 return do_getsockname(arg1, arg2, arg3);
10575 #endif
10576 #ifdef TARGET_NR_getsockopt
10577 case TARGET_NR_getsockopt:
10578 return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
10579 #endif
10580 #ifdef TARGET_NR_listen
10581 case TARGET_NR_listen:
10582 return get_errno(listen(arg1, arg2));
10583 #endif
10584 #ifdef TARGET_NR_recv
10585 case TARGET_NR_recv:
10586 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
10587 #endif
10588 #ifdef TARGET_NR_recvfrom
10589 case TARGET_NR_recvfrom:
10590 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
10591 #endif
10592 #ifdef TARGET_NR_recvmsg
10593 case TARGET_NR_recvmsg:
10594 return do_sendrecvmsg(arg1, arg2, arg3, 0);
10595 #endif
10596 #ifdef TARGET_NR_send
10597 case TARGET_NR_send:
10598 return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
10599 #endif
10600 #ifdef TARGET_NR_sendmsg
10601 case TARGET_NR_sendmsg:
10602 return do_sendrecvmsg(arg1, arg2, arg3, 1);
10603 #endif
10604 #ifdef TARGET_NR_sendmmsg
10605 case TARGET_NR_sendmmsg:
10606 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
10607 #endif
10608 #ifdef TARGET_NR_recvmmsg
10609 case TARGET_NR_recvmmsg:
10610 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
10611 #endif
10612 #ifdef TARGET_NR_sendto
10613 case TARGET_NR_sendto:
10614 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
10615 #endif
10616 #ifdef TARGET_NR_shutdown
10617 case TARGET_NR_shutdown:
10618 return get_errno(shutdown(arg1, arg2));
10619 #endif
10620 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10621 case TARGET_NR_getrandom:
10622 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
10623 if (!p) {
10624 return -TARGET_EFAULT;
10625 }
10626 ret = get_errno(getrandom(p, arg2, arg3));
10627 unlock_user(p, arg1, ret);
10628 return ret;
10629 #endif
10630 #ifdef TARGET_NR_socket
10631 case TARGET_NR_socket:
10632 return do_socket(arg1, arg2, arg3);
10633 #endif
10634 #ifdef TARGET_NR_socketpair
10635 case TARGET_NR_socketpair:
10636 return do_socketpair(arg1, arg2, arg3, arg4);
10637 #endif
10638 #ifdef TARGET_NR_setsockopt
10639 case TARGET_NR_setsockopt:
10640 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
10641 #endif
10642 #if defined(TARGET_NR_syslog)
10643 case TARGET_NR_syslog:
10644 {
10645 int len = arg2;
10646
10647 switch (arg1) {
10648 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */
10649 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */
10650 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
10651 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */
10652 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */
10653 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
10654 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */
10655 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */
10656 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
10657 case TARGET_SYSLOG_ACTION_READ: /* Read from log */
10658 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */
10659 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */
10660 {
10661 if (len < 0) {
10662 return -TARGET_EINVAL;
10663 }
10664 if (len == 0) {
10665 return 0;
10666 }
10667 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10668 if (!p) {
10669 return -TARGET_EFAULT;
10670 }
10671 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
10672 unlock_user(p, arg2, arg3);
10673 }
10674 return ret;
10675 default:
10676 return -TARGET_EINVAL;
10677 }
10678 }
10679 break;
10680 #endif
10681 case TARGET_NR_setitimer:
10682 {
10683 struct itimerval value, ovalue, *pvalue;
10684
10685 if (arg2) {
10686 pvalue = &value;
10687 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
10688 || copy_from_user_timeval(&pvalue->it_value,
10689 arg2 + sizeof(struct target_timeval)))
10690 return -TARGET_EFAULT;
10691 } else {
10692 pvalue = NULL;
10693 }
10694 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
10695 if (!is_error(ret) && arg3) {
10696 if (copy_to_user_timeval(arg3,
10697 &ovalue.it_interval)
10698 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
10699 &ovalue.it_value))
10700 return -TARGET_EFAULT;
10701 }
10702 }
10703 return ret;
10704 case TARGET_NR_getitimer:
10705 {
10706 struct itimerval value;
10707
10708 ret = get_errno(getitimer(arg1, &value));
10709 if (!is_error(ret) && arg2) {
10710 if (copy_to_user_timeval(arg2,
10711 &value.it_interval)
10712 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
10713 &value.it_value))
10714 return -TARGET_EFAULT;
10715 }
10716 }
10717 return ret;
10718 #ifdef TARGET_NR_stat
10719 case TARGET_NR_stat:
10720 if (!(p = lock_user_string(arg1))) {
10721 return -TARGET_EFAULT;
10722 }
10723 ret = get_errno(stat(path(p), &st));
10724 unlock_user(p, arg1, 0);
10725 goto do_stat;
10726 #endif
10727 #ifdef TARGET_NR_lstat
10728 case TARGET_NR_lstat:
10729 if (!(p = lock_user_string(arg1))) {
10730 return -TARGET_EFAULT;
10731 }
10732 ret = get_errno(lstat(path(p), &st));
10733 unlock_user(p, arg1, 0);
10734 goto do_stat;
10735 #endif
10736 #ifdef TARGET_NR_fstat
10737 case TARGET_NR_fstat:
10738 {
10739 ret = get_errno(fstat(arg1, &st));
10740 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10741 do_stat:
10742 #endif
10743 if (!is_error(ret)) {
10744 struct target_stat *target_st;
10745
10746 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
10747 return -TARGET_EFAULT;
10748 memset(target_st, 0, sizeof(*target_st));
10749 __put_user(st.st_dev, &target_st->st_dev);
10750 __put_user(st.st_ino, &target_st->st_ino);
10751 __put_user(st.st_mode, &target_st->st_mode);
10752 __put_user(st.st_uid, &target_st->st_uid);
10753 __put_user(st.st_gid, &target_st->st_gid);
10754 __put_user(st.st_nlink, &target_st->st_nlink);
10755 __put_user(st.st_rdev, &target_st->st_rdev);
10756 __put_user(st.st_size, &target_st->st_size);
10757 __put_user(st.st_blksize, &target_st->st_blksize);
10758 __put_user(st.st_blocks, &target_st->st_blocks);
10759 __put_user(st.st_atime, &target_st->target_st_atime);
10760 __put_user(st.st_mtime, &target_st->target_st_mtime);
10761 __put_user(st.st_ctime, &target_st->target_st_ctime);
10762 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10763 __put_user(st.st_atim.tv_nsec,
10764 &target_st->target_st_atime_nsec);
10765 __put_user(st.st_mtim.tv_nsec,
10766 &target_st->target_st_mtime_nsec);
10767 __put_user(st.st_ctim.tv_nsec,
10768 &target_st->target_st_ctime_nsec);
10769 #endif
10770 unlock_user_struct(target_st, arg2, 1);
10771 }
10772 }
10773 return ret;
10774 #endif
10775 case TARGET_NR_vhangup:
10776 return get_errno(vhangup());
10777 #ifdef TARGET_NR_syscall
10778 case TARGET_NR_syscall:
10779 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
10780 arg6, arg7, arg8, 0);
10781 #endif
10782 #if defined(TARGET_NR_wait4)
10783 case TARGET_NR_wait4:
10784 {
10785 int status;
10786 abi_long status_ptr = arg2;
10787 struct rusage rusage, *rusage_ptr;
10788 abi_ulong target_rusage = arg4;
10789 abi_long rusage_err;
10790 if (target_rusage)
10791 rusage_ptr = &rusage;
10792 else
10793 rusage_ptr = NULL;
10794 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
10795 if (!is_error(ret)) {
10796 if (status_ptr && ret) {
10797 status = host_to_target_waitstatus(status);
10798 if (put_user_s32(status, status_ptr))
10799 return -TARGET_EFAULT;
10800 }
10801 if (target_rusage) {
10802 rusage_err = host_to_target_rusage(target_rusage, &rusage);
10803 if (rusage_err) {
10804 ret = rusage_err;
10805 }
10806 }
10807 }
10808 }
10809 return ret;
10810 #endif
10811 #ifdef TARGET_NR_swapoff
10812 case TARGET_NR_swapoff:
10813 if (!(p = lock_user_string(arg1)))
10814 return -TARGET_EFAULT;
10815 ret = get_errno(swapoff(p));
10816 unlock_user(p, arg1, 0);
10817 return ret;
10818 #endif
10819 case TARGET_NR_sysinfo:
10820 {
10821 struct target_sysinfo *target_value;
10822 struct sysinfo value;
10823 ret = get_errno(sysinfo(&value));
10824 if (!is_error(ret) && arg1)
10825 {
10826 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10827 return -TARGET_EFAULT;
10828 __put_user(value.uptime, &target_value->uptime);
10829 __put_user(value.loads[0], &target_value->loads[0]);
10830 __put_user(value.loads[1], &target_value->loads[1]);
10831 __put_user(value.loads[2], &target_value->loads[2]);
10832 __put_user(value.totalram, &target_value->totalram);
10833 __put_user(value.freeram, &target_value->freeram);
10834 __put_user(value.sharedram, &target_value->sharedram);
10835 __put_user(value.bufferram, &target_value->bufferram);
10836 __put_user(value.totalswap, &target_value->totalswap);
10837 __put_user(value.freeswap, &target_value->freeswap);
10838 __put_user(value.procs, &target_value->procs);
10839 __put_user(value.totalhigh, &target_value->totalhigh);
10840 __put_user(value.freehigh, &target_value->freehigh);
10841 __put_user(value.mem_unit, &target_value->mem_unit);
10842 unlock_user_struct(target_value, arg1, 1);
10843 }
10844 }
10845 return ret;
10846 #ifdef TARGET_NR_ipc
10847 case TARGET_NR_ipc:
10848 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10849 #endif
10850 #ifdef TARGET_NR_semget
10851 case TARGET_NR_semget:
10852 return get_errno(semget(arg1, arg2, arg3));
10853 #endif
10854 #ifdef TARGET_NR_semop
10855 case TARGET_NR_semop:
10856 return do_semtimedop(arg1, arg2, arg3, 0, false);
10857 #endif
10858 #ifdef TARGET_NR_semtimedop
10859 case TARGET_NR_semtimedop:
10860 return do_semtimedop(arg1, arg2, arg3, arg4, false);
10861 #endif
10862 #ifdef TARGET_NR_semtimedop_time64
10863 case TARGET_NR_semtimedop_time64:
10864 return do_semtimedop(arg1, arg2, arg3, arg4, true);
10865 #endif
10866 #ifdef TARGET_NR_semctl
10867 case TARGET_NR_semctl:
10868 return do_semctl(arg1, arg2, arg3, arg4);
10869 #endif
10870 #ifdef TARGET_NR_msgctl
10871 case TARGET_NR_msgctl:
10872 return do_msgctl(arg1, arg2, arg3);
10873 #endif
10874 #ifdef TARGET_NR_msgget
10875 case TARGET_NR_msgget:
10876 return get_errno(msgget(arg1, arg2));
10877 #endif
10878 #ifdef TARGET_NR_msgrcv
10879 case TARGET_NR_msgrcv:
10880 return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10881 #endif
10882 #ifdef TARGET_NR_msgsnd
10883 case TARGET_NR_msgsnd:
10884 return do_msgsnd(arg1, arg2, arg3, arg4);
10885 #endif
10886 #ifdef TARGET_NR_shmget
10887 case TARGET_NR_shmget:
10888 return get_errno(shmget(arg1, arg2, arg3));
10889 #endif
10890 #ifdef TARGET_NR_shmctl
10891 case TARGET_NR_shmctl:
10892 return do_shmctl(arg1, arg2, arg3);
10893 #endif
10894 #ifdef TARGET_NR_shmat
10895 case TARGET_NR_shmat:
10896 return target_shmat(cpu_env, arg1, arg2, arg3);
10897 #endif
10898 #ifdef TARGET_NR_shmdt
10899 case TARGET_NR_shmdt:
10900 return target_shmdt(arg1);
10901 #endif
10902 case TARGET_NR_fsync:
10903 return get_errno(fsync(arg1));
10904 case TARGET_NR_clone:
10905 /* Linux manages to have three different orderings for its
10906 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10907 * match the kernel's CONFIG_CLONE_* settings.
10908 * Microblaze is further special in that it uses a sixth
10909 * implicit argument to clone for the TLS pointer.
10910 */
10911 #if defined(TARGET_MICROBLAZE)
10912 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10913 #elif defined(TARGET_CLONE_BACKWARDS)
10914 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10915 #elif defined(TARGET_CLONE_BACKWARDS2)
10916 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10917 #else
10918 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10919 #endif
10920 return ret;
10921 #ifdef __NR_exit_group
10922 /* new thread calls */
10923 case TARGET_NR_exit_group:
10924 preexit_cleanup(cpu_env, arg1);
10925 return get_errno(exit_group(arg1));
10926 #endif
10927 case TARGET_NR_setdomainname:
10928 if (!(p = lock_user_string(arg1)))
10929 return -TARGET_EFAULT;
10930 ret = get_errno(setdomainname(p, arg2));
10931 unlock_user(p, arg1, 0);
10932 return ret;
10933 case TARGET_NR_uname:
10934 /* no need to transcode because we use the linux syscall */
10935 {
10936 struct new_utsname * buf;
10937
10938 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10939 return -TARGET_EFAULT;
10940 ret = get_errno(sys_uname(buf));
10941 if (!is_error(ret)) {
10942 /* Overwrite the native machine name with whatever is being
10943 emulated. */
10944 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10945 sizeof(buf->machine));
10946 /* Allow the user to override the reported release. */
10947 if (qemu_uname_release && *qemu_uname_release) {
10948 g_strlcpy(buf->release, qemu_uname_release,
10949 sizeof(buf->release));
10950 }
10951 }
10952 unlock_user_struct(buf, arg1, 1);
10953 }
10954 return ret;
10955 #ifdef TARGET_I386
10956 case TARGET_NR_modify_ldt:
10957 return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10958 #if !defined(TARGET_X86_64)
10959 case TARGET_NR_vm86:
10960 return do_vm86(cpu_env, arg1, arg2);
10961 #endif
10962 #endif
10963 #if defined(TARGET_NR_adjtimex)
10964 case TARGET_NR_adjtimex:
10965 {
10966 struct timex host_buf;
10967
10968 if (target_to_host_timex(&host_buf, arg1) != 0) {
10969 return -TARGET_EFAULT;
10970 }
10971 ret = get_errno(adjtimex(&host_buf));
10972 if (!is_error(ret)) {
10973 if (host_to_target_timex(arg1, &host_buf) != 0) {
10974 return -TARGET_EFAULT;
10975 }
10976 }
10977 }
10978 return ret;
10979 #endif
10980 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10981 case TARGET_NR_clock_adjtime:
10982 {
10983 struct timex htx;
10984
10985 if (target_to_host_timex(&htx, arg2) != 0) {
10986 return -TARGET_EFAULT;
10987 }
10988 ret = get_errno(clock_adjtime(arg1, &htx));
10989 if (!is_error(ret) && host_to_target_timex(arg2, &htx)) {
10990 return -TARGET_EFAULT;
10991 }
10992 }
10993 return ret;
10994 #endif
10995 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10996 case TARGET_NR_clock_adjtime64:
10997 {
10998 struct timex htx;
10999
11000 if (target_to_host_timex64(&htx, arg2) != 0) {
11001 return -TARGET_EFAULT;
11002 }
11003 ret = get_errno(clock_adjtime(arg1, &htx));
11004 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
11005 return -TARGET_EFAULT;
11006 }
11007 }
11008 return ret;
11009 #endif
11010 case TARGET_NR_getpgid:
11011 return get_errno(getpgid(arg1));
11012 case TARGET_NR_fchdir:
11013 return get_errno(fchdir(arg1));
11014 case TARGET_NR_personality:
11015 return get_errno(personality(arg1));
11016 #ifdef TARGET_NR__llseek /* Not on alpha */
11017 case TARGET_NR__llseek:
11018 {
11019 int64_t res;
11020 #if !defined(__NR_llseek)
11021 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
11022 if (res == -1) {
11023 ret = get_errno(res);
11024 } else {
11025 ret = 0;
11026 }
11027 #else
11028 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
11029 #endif
11030 if ((ret == 0) && put_user_s64(res, arg4)) {
11031 return -TARGET_EFAULT;
11032 }
11033 }
11034 return ret;
11035 #endif
11036 #ifdef TARGET_NR_getdents
11037 case TARGET_NR_getdents:
11038 return do_getdents(arg1, arg2, arg3);
11039 #endif /* TARGET_NR_getdents */
11040 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
11041 case TARGET_NR_getdents64:
11042 return do_getdents64(arg1, arg2, arg3);
11043 #endif /* TARGET_NR_getdents64 */
11044 #if defined(TARGET_NR__newselect)
11045 case TARGET_NR__newselect:
11046 return do_select(arg1, arg2, arg3, arg4, arg5);
11047 #endif
11048 #ifdef TARGET_NR_poll
11049 case TARGET_NR_poll:
11050 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
11051 #endif
11052 #ifdef TARGET_NR_ppoll
11053 case TARGET_NR_ppoll:
11054 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
11055 #endif
11056 #ifdef TARGET_NR_ppoll_time64
11057 case TARGET_NR_ppoll_time64:
11058 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
11059 #endif
11060 case TARGET_NR_flock:
11061 /* NOTE: the flock constant seems to be the same for every
11062 Linux platform */
11063 return get_errno(safe_flock(arg1, arg2));
11064 case TARGET_NR_readv:
11065 {
11066 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11067 if (vec != NULL) {
11068 ret = get_errno(safe_readv(arg1, vec, arg3));
11069 unlock_iovec(vec, arg2, arg3, 1);
11070 } else {
11071 ret = -host_to_target_errno(errno);
11072 }
11073 }
11074 return ret;
11075 case TARGET_NR_writev:
11076 {
11077 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11078 if (vec != NULL) {
11079 ret = get_errno(safe_writev(arg1, vec, arg3));
11080 unlock_iovec(vec, arg2, arg3, 0);
11081 } else {
11082 ret = -host_to_target_errno(errno);
11083 }
11084 }
11085 return ret;
11086 #if defined(TARGET_NR_preadv)
11087 case TARGET_NR_preadv:
11088 {
11089 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
11090 if (vec != NULL) {
11091 unsigned long low, high;
11092
11093 target_to_host_low_high(arg4, arg5, &low, &high);
11094 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
11095 unlock_iovec(vec, arg2, arg3, 1);
11096 } else {
11097 ret = -host_to_target_errno(errno);
11098 }
11099 }
11100 return ret;
11101 #endif
11102 #if defined(TARGET_NR_pwritev)
11103 case TARGET_NR_pwritev:
11104 {
11105 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11106 if (vec != NULL) {
11107 unsigned long low, high;
11108
11109 target_to_host_low_high(arg4, arg5, &low, &high);
11110 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
11111 unlock_iovec(vec, arg2, arg3, 0);
11112 } else {
11113 ret = -host_to_target_errno(errno);
11114 }
11115 }
11116 return ret;
11117 #endif
11118 case TARGET_NR_getsid:
11119 return get_errno(getsid(arg1));
11120 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
11121 case TARGET_NR_fdatasync:
11122 return get_errno(fdatasync(arg1));
11123 #endif
11124 case TARGET_NR_sched_getaffinity:
11125 {
11126 unsigned int mask_size;
11127 unsigned long *mask;
11128
11129 /*
11130 * sched_getaffinity needs multiples of ulong, so need to take
11131 * care of mismatches between target ulong and host ulong sizes.
11132 */
11133 if (arg2 & (sizeof(abi_ulong) - 1)) {
11134 return -TARGET_EINVAL;
11135 }
11136 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11137
11138 mask = alloca(mask_size);
11139 memset(mask, 0, mask_size);
11140 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
11141
11142 if (!is_error(ret)) {
11143 if (ret > arg2) {
11144 /* More data returned than the caller's buffer will fit.
11145 * This only happens if sizeof(abi_long) < sizeof(long)
11146 * and the caller passed us a buffer holding an odd number
11147 * of abi_longs. If the host kernel is actually using the
11148 * extra 4 bytes then fail EINVAL; otherwise we can just
11149 * ignore them and only copy the interesting part.
11150 */
11151 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
11152 if (numcpus > arg2 * 8) {
11153 return -TARGET_EINVAL;
11154 }
11155 ret = arg2;
11156 }
11157
11158 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
11159 return -TARGET_EFAULT;
11160 }
11161 }
11162 }
11163 return ret;
11164 case TARGET_NR_sched_setaffinity:
11165 {
11166 unsigned int mask_size;
11167 unsigned long *mask;
11168
11169 /*
11170 * sched_setaffinity needs multiples of ulong, so need to take
11171 * care of mismatches between target ulong and host ulong sizes.
11172 */
11173 if (arg2 & (sizeof(abi_ulong) - 1)) {
11174 return -TARGET_EINVAL;
11175 }
11176 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
11177 mask = alloca(mask_size);
11178
11179 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
11180 if (ret) {
11181 return ret;
11182 }
11183
11184 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
11185 }
11186 case TARGET_NR_getcpu:
11187 {
11188 unsigned cpuid, node;
11189 ret = get_errno(sys_getcpu(arg1 ? &cpuid : NULL,
11190 arg2 ? &node : NULL,
11191 NULL));
11192 if (is_error(ret)) {
11193 return ret;
11194 }
11195 if (arg1 && put_user_u32(cpuid, arg1)) {
11196 return -TARGET_EFAULT;
11197 }
11198 if (arg2 && put_user_u32(node, arg2)) {
11199 return -TARGET_EFAULT;
11200 }
11201 }
11202 return ret;
11203 case TARGET_NR_sched_setparam:
11204 {
11205 struct target_sched_param *target_schp;
11206 struct sched_param schp;
11207
11208 if (arg2 == 0) {
11209 return -TARGET_EINVAL;
11210 }
11211 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1)) {
11212 return -TARGET_EFAULT;
11213 }
11214 schp.sched_priority = tswap32(target_schp->sched_priority);
11215 unlock_user_struct(target_schp, arg2, 0);
11216 return get_errno(sys_sched_setparam(arg1, &schp));
11217 }
11218 case TARGET_NR_sched_getparam:
11219 {
11220 struct target_sched_param *target_schp;
11221 struct sched_param schp;
11222
11223 if (arg2 == 0) {
11224 return -TARGET_EINVAL;
11225 }
11226 ret = get_errno(sys_sched_getparam(arg1, &schp));
11227 if (!is_error(ret)) {
11228 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0)) {
11229 return -TARGET_EFAULT;
11230 }
11231 target_schp->sched_priority = tswap32(schp.sched_priority);
11232 unlock_user_struct(target_schp, arg2, 1);
11233 }
11234 }
11235 return ret;
11236 case TARGET_NR_sched_setscheduler:
11237 {
11238 struct target_sched_param *target_schp;
11239 struct sched_param schp;
11240 if (arg3 == 0) {
11241 return -TARGET_EINVAL;
11242 }
11243 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1)) {
11244 return -TARGET_EFAULT;
11245 }
11246 schp.sched_priority = tswap32(target_schp->sched_priority);
11247 unlock_user_struct(target_schp, arg3, 0);
11248 return get_errno(sys_sched_setscheduler(arg1, arg2, &schp));
11249 }
11250 case TARGET_NR_sched_getscheduler:
11251 return get_errno(sys_sched_getscheduler(arg1));
11252 case TARGET_NR_sched_getattr:
11253 {
11254 struct target_sched_attr *target_scha;
11255 struct sched_attr scha;
11256 if (arg2 == 0) {
11257 return -TARGET_EINVAL;
11258 }
11259 if (arg3 > sizeof(scha)) {
11260 arg3 = sizeof(scha);
11261 }
11262 ret = get_errno(sys_sched_getattr(arg1, &scha, arg3, arg4));
11263 if (!is_error(ret)) {
11264 target_scha = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11265 if (!target_scha) {
11266 return -TARGET_EFAULT;
11267 }
11268 target_scha->size = tswap32(scha.size);
11269 target_scha->sched_policy = tswap32(scha.sched_policy);
11270 target_scha->sched_flags = tswap64(scha.sched_flags);
11271 target_scha->sched_nice = tswap32(scha.sched_nice);
11272 target_scha->sched_priority = tswap32(scha.sched_priority);
11273 target_scha->sched_runtime = tswap64(scha.sched_runtime);
11274 target_scha->sched_deadline = tswap64(scha.sched_deadline);
11275 target_scha->sched_period = tswap64(scha.sched_period);
11276 if (scha.size > offsetof(struct sched_attr, sched_util_min)) {
11277 target_scha->sched_util_min = tswap32(scha.sched_util_min);
11278 target_scha->sched_util_max = tswap32(scha.sched_util_max);
11279 }
11280 unlock_user(target_scha, arg2, arg3);
11281 }
11282 return ret;
11283 }
11284 case TARGET_NR_sched_setattr:
11285 {
11286 struct target_sched_attr *target_scha;
11287 struct sched_attr scha;
11288 uint32_t size;
11289 int zeroed;
11290 if (arg2 == 0) {
11291 return -TARGET_EINVAL;
11292 }
11293 if (get_user_u32(size, arg2)) {
11294 return -TARGET_EFAULT;
11295 }
11296 if (!size) {
11297 size = offsetof(struct target_sched_attr, sched_util_min);
11298 }
11299 if (size < offsetof(struct target_sched_attr, sched_util_min)) {
11300 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11301 return -TARGET_EFAULT;
11302 }
11303 return -TARGET_E2BIG;
11304 }
11305
11306 zeroed = check_zeroed_user(arg2, sizeof(struct target_sched_attr), size);
11307 if (zeroed < 0) {
11308 return zeroed;
11309 } else if (zeroed == 0) {
11310 if (put_user_u32(sizeof(struct target_sched_attr), arg2)) {
11311 return -TARGET_EFAULT;
11312 }
11313 return -TARGET_E2BIG;
11314 }
11315 if (size > sizeof(struct target_sched_attr)) {
11316 size = sizeof(struct target_sched_attr);
11317 }
11318
11319 target_scha = lock_user(VERIFY_READ, arg2, size, 1);
11320 if (!target_scha) {
11321 return -TARGET_EFAULT;
11322 }
11323 scha.size = size;
11324 scha.sched_policy = tswap32(target_scha->sched_policy);
11325 scha.sched_flags = tswap64(target_scha->sched_flags);
11326 scha.sched_nice = tswap32(target_scha->sched_nice);
11327 scha.sched_priority = tswap32(target_scha->sched_priority);
11328 scha.sched_runtime = tswap64(target_scha->sched_runtime);
11329 scha.sched_deadline = tswap64(target_scha->sched_deadline);
11330 scha.sched_period = tswap64(target_scha->sched_period);
11331 if (size > offsetof(struct target_sched_attr, sched_util_min)) {
11332 scha.sched_util_min = tswap32(target_scha->sched_util_min);
11333 scha.sched_util_max = tswap32(target_scha->sched_util_max);
11334 }
11335 unlock_user(target_scha, arg2, 0);
11336 return get_errno(sys_sched_setattr(arg1, &scha, arg3));
11337 }
11338 case TARGET_NR_sched_yield:
11339 return get_errno(sched_yield());
11340 case TARGET_NR_sched_get_priority_max:
11341 return get_errno(sched_get_priority_max(arg1));
11342 case TARGET_NR_sched_get_priority_min:
11343 return get_errno(sched_get_priority_min(arg1));
11344 #ifdef TARGET_NR_sched_rr_get_interval
11345 case TARGET_NR_sched_rr_get_interval:
11346 {
11347 struct timespec ts;
11348 ret = get_errno(sched_rr_get_interval(arg1, &ts));
11349 if (!is_error(ret)) {
11350 ret = host_to_target_timespec(arg2, &ts);
11351 }
11352 }
11353 return ret;
11354 #endif
11355 #ifdef TARGET_NR_sched_rr_get_interval_time64
11356 case TARGET_NR_sched_rr_get_interval_time64:
11357 {
11358 struct timespec ts;
11359 ret = get_errno(sched_rr_get_interval(arg1, &ts));
11360 if (!is_error(ret)) {
11361 ret = host_to_target_timespec64(arg2, &ts);
11362 }
11363 }
11364 return ret;
11365 #endif
11366 #if defined(TARGET_NR_nanosleep)
11367 case TARGET_NR_nanosleep:
11368 {
11369 struct timespec req, rem;
11370 target_to_host_timespec(&req, arg1);
11371 ret = get_errno(safe_nanosleep(&req, &rem));
11372 if (is_error(ret) && arg2) {
11373 host_to_target_timespec(arg2, &rem);
11374 }
11375 }
11376 return ret;
11377 #endif
11378 case TARGET_NR_prctl:
11379 return do_prctl(cpu_env, arg1, arg2, arg3, arg4, arg5);
11380 break;
11381 #ifdef TARGET_NR_arch_prctl
11382 case TARGET_NR_arch_prctl:
11383 return do_arch_prctl(cpu_env, arg1, arg2);
11384 #endif
11385 #ifdef TARGET_NR_pread64
11386 case TARGET_NR_pread64:
11387 if (regpairs_aligned(cpu_env, num)) {
11388 arg4 = arg5;
11389 arg5 = arg6;
11390 }
11391 if (arg2 == 0 && arg3 == 0) {
11392 /* Special-case NULL buffer and zero length, which should succeed */
11393 p = 0;
11394 } else {
11395 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11396 if (!p) {
11397 return -TARGET_EFAULT;
11398 }
11399 }
11400 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
11401 unlock_user(p, arg2, ret);
11402 return ret;
11403 case TARGET_NR_pwrite64:
11404 if (regpairs_aligned(cpu_env, num)) {
11405 arg4 = arg5;
11406 arg5 = arg6;
11407 }
11408 if (arg2 == 0 && arg3 == 0) {
11409 /* Special-case NULL buffer and zero length, which should succeed */
11410 p = 0;
11411 } else {
11412 p = lock_user(VERIFY_READ, arg2, arg3, 1);
11413 if (!p) {
11414 return -TARGET_EFAULT;
11415 }
11416 }
11417 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
11418 unlock_user(p, arg2, 0);
11419 return ret;
11420 #endif
11421 case TARGET_NR_getcwd:
11422 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
11423 return -TARGET_EFAULT;
11424 ret = get_errno(sys_getcwd1(p, arg2));
11425 unlock_user(p, arg1, ret);
11426 return ret;
11427 case TARGET_NR_capget:
11428 case TARGET_NR_capset:
11429 {
11430 struct target_user_cap_header *target_header;
11431 struct target_user_cap_data *target_data = NULL;
11432 struct __user_cap_header_struct header;
11433 struct __user_cap_data_struct data[2];
11434 struct __user_cap_data_struct *dataptr = NULL;
11435 int i, target_datalen;
11436 int data_items = 1;
11437
11438 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
11439 return -TARGET_EFAULT;
11440 }
11441 header.version = tswap32(target_header->version);
11442 header.pid = tswap32(target_header->pid);
11443
11444 if (header.version != _LINUX_CAPABILITY_VERSION) {
11445 /* Version 2 and up takes pointer to two user_data structs */
11446 data_items = 2;
11447 }
11448
11449 target_datalen = sizeof(*target_data) * data_items;
11450
11451 if (arg2) {
11452 if (num == TARGET_NR_capget) {
11453 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
11454 } else {
11455 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
11456 }
11457 if (!target_data) {
11458 unlock_user_struct(target_header, arg1, 0);
11459 return -TARGET_EFAULT;
11460 }
11461
11462 if (num == TARGET_NR_capset) {
11463 for (i = 0; i < data_items; i++) {
11464 data[i].effective = tswap32(target_data[i].effective);
11465 data[i].permitted = tswap32(target_data[i].permitted);
11466 data[i].inheritable = tswap32(target_data[i].inheritable);
11467 }
11468 }
11469
11470 dataptr = data;
11471 }
11472
11473 if (num == TARGET_NR_capget) {
11474 ret = get_errno(capget(&header, dataptr));
11475 } else {
11476 ret = get_errno(capset(&header, dataptr));
11477 }
11478
11479 /* The kernel always updates version for both capget and capset */
11480 target_header->version = tswap32(header.version);
11481 unlock_user_struct(target_header, arg1, 1);
11482
11483 if (arg2) {
11484 if (num == TARGET_NR_capget) {
11485 for (i = 0; i < data_items; i++) {
11486 target_data[i].effective = tswap32(data[i].effective);
11487 target_data[i].permitted = tswap32(data[i].permitted);
11488 target_data[i].inheritable = tswap32(data[i].inheritable);
11489 }
11490 unlock_user(target_data, arg2, target_datalen);
11491 } else {
11492 unlock_user(target_data, arg2, 0);
11493 }
11494 }
11495 return ret;
11496 }
11497 case TARGET_NR_sigaltstack:
11498 return do_sigaltstack(arg1, arg2, cpu_env);
11499
11500 #ifdef CONFIG_SENDFILE
11501 #ifdef TARGET_NR_sendfile
11502 case TARGET_NR_sendfile:
11503 {
11504 off_t *offp = NULL;
11505 off_t off;
11506 if (arg3) {
11507 ret = get_user_sal(off, arg3);
11508 if (is_error(ret)) {
11509 return ret;
11510 }
11511 offp = &off;
11512 }
11513 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11514 if (!is_error(ret) && arg3) {
11515 abi_long ret2 = put_user_sal(off, arg3);
11516 if (is_error(ret2)) {
11517 ret = ret2;
11518 }
11519 }
11520 return ret;
11521 }
11522 #endif
11523 #ifdef TARGET_NR_sendfile64
11524 case TARGET_NR_sendfile64:
11525 {
11526 off_t *offp = NULL;
11527 off_t off;
11528 if (arg3) {
11529 ret = get_user_s64(off, arg3);
11530 if (is_error(ret)) {
11531 return ret;
11532 }
11533 offp = &off;
11534 }
11535 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11536 if (!is_error(ret) && arg3) {
11537 abi_long ret2 = put_user_s64(off, arg3);
11538 if (is_error(ret2)) {
11539 ret = ret2;
11540 }
11541 }
11542 return ret;
11543 }
11544 #endif
11545 #endif
11546 #ifdef TARGET_NR_vfork
11547 case TARGET_NR_vfork:
11548 return get_errno(do_fork(cpu_env,
11549 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11550 0, 0, 0, 0));
11551 #endif
11552 #ifdef TARGET_NR_ugetrlimit
11553 case TARGET_NR_ugetrlimit:
11554 {
11555 struct rlimit rlim;
11556 int resource = target_to_host_resource(arg1);
11557 ret = get_errno(getrlimit(resource, &rlim));
11558 if (!is_error(ret)) {
11559 struct target_rlimit *target_rlim;
11560 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11561 return -TARGET_EFAULT;
11562 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11563 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11564 unlock_user_struct(target_rlim, arg2, 1);
11565 }
11566 return ret;
11567 }
11568 #endif
11569 #ifdef TARGET_NR_truncate64
11570 case TARGET_NR_truncate64:
11571 if (!(p = lock_user_string(arg1)))
11572 return -TARGET_EFAULT;
11573 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11574 unlock_user(p, arg1, 0);
11575 return ret;
11576 #endif
11577 #ifdef TARGET_NR_ftruncate64
11578 case TARGET_NR_ftruncate64:
11579 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11580 #endif
11581 #ifdef TARGET_NR_stat64
11582 case TARGET_NR_stat64:
11583 if (!(p = lock_user_string(arg1))) {
11584 return -TARGET_EFAULT;
11585 }
11586 ret = get_errno(stat(path(p), &st));
11587 unlock_user(p, arg1, 0);
11588 if (!is_error(ret))
11589 ret = host_to_target_stat64(cpu_env, arg2, &st);
11590 return ret;
11591 #endif
11592 #ifdef TARGET_NR_lstat64
11593 case TARGET_NR_lstat64:
11594 if (!(p = lock_user_string(arg1))) {
11595 return -TARGET_EFAULT;
11596 }
11597 ret = get_errno(lstat(path(p), &st));
11598 unlock_user(p, arg1, 0);
11599 if (!is_error(ret))
11600 ret = host_to_target_stat64(cpu_env, arg2, &st);
11601 return ret;
11602 #endif
11603 #ifdef TARGET_NR_fstat64
11604 case TARGET_NR_fstat64:
11605 ret = get_errno(fstat(arg1, &st));
11606 if (!is_error(ret))
11607 ret = host_to_target_stat64(cpu_env, arg2, &st);
11608 return ret;
11609 #endif
11610 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11611 #ifdef TARGET_NR_fstatat64
11612 case TARGET_NR_fstatat64:
11613 #endif
11614 #ifdef TARGET_NR_newfstatat
11615 case TARGET_NR_newfstatat:
11616 #endif
11617 if (!(p = lock_user_string(arg2))) {
11618 return -TARGET_EFAULT;
11619 }
11620 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11621 unlock_user(p, arg2, 0);
11622 if (!is_error(ret))
11623 ret = host_to_target_stat64(cpu_env, arg3, &st);
11624 return ret;
11625 #endif
11626 #if defined(TARGET_NR_statx)
11627 case TARGET_NR_statx:
11628 {
11629 struct target_statx *target_stx;
11630 int dirfd = arg1;
11631 int flags = arg3;
11632
11633 p = lock_user_string(arg2);
11634 if (p == NULL) {
11635 return -TARGET_EFAULT;
11636 }
11637 #if defined(__NR_statx)
11638 {
11639 /*
11640 * It is assumed that struct statx is architecture independent.
11641 */
11642 struct target_statx host_stx;
11643 int mask = arg4;
11644
11645 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11646 if (!is_error(ret)) {
11647 if (host_to_target_statx(&host_stx, arg5) != 0) {
11648 unlock_user(p, arg2, 0);
11649 return -TARGET_EFAULT;
11650 }
11651 }
11652
11653 if (ret != -TARGET_ENOSYS) {
11654 unlock_user(p, arg2, 0);
11655 return ret;
11656 }
11657 }
11658 #endif
11659 ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11660 unlock_user(p, arg2, 0);
11661
11662 if (!is_error(ret)) {
11663 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11664 return -TARGET_EFAULT;
11665 }
11666 memset(target_stx, 0, sizeof(*target_stx));
11667 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11668 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11669 __put_user(st.st_ino, &target_stx->stx_ino);
11670 __put_user(st.st_mode, &target_stx->stx_mode);
11671 __put_user(st.st_uid, &target_stx->stx_uid);
11672 __put_user(st.st_gid, &target_stx->stx_gid);
11673 __put_user(st.st_nlink, &target_stx->stx_nlink);
11674 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11675 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11676 __put_user(st.st_size, &target_stx->stx_size);
11677 __put_user(st.st_blksize, &target_stx->stx_blksize);
11678 __put_user(st.st_blocks, &target_stx->stx_blocks);
11679 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11680 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11681 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11682 unlock_user_struct(target_stx, arg5, 1);
11683 }
11684 }
11685 return ret;
11686 #endif
11687 #ifdef TARGET_NR_lchown
11688 case TARGET_NR_lchown:
11689 if (!(p = lock_user_string(arg1)))
11690 return -TARGET_EFAULT;
11691 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11692 unlock_user(p, arg1, 0);
11693 return ret;
11694 #endif
11695 #ifdef TARGET_NR_getuid
11696 case TARGET_NR_getuid:
11697 return get_errno(high2lowuid(getuid()));
11698 #endif
11699 #ifdef TARGET_NR_getgid
11700 case TARGET_NR_getgid:
11701 return get_errno(high2lowgid(getgid()));
11702 #endif
11703 #ifdef TARGET_NR_geteuid
11704 case TARGET_NR_geteuid:
11705 return get_errno(high2lowuid(geteuid()));
11706 #endif
11707 #ifdef TARGET_NR_getegid
11708 case TARGET_NR_getegid:
11709 return get_errno(high2lowgid(getegid()));
11710 #endif
11711 case TARGET_NR_setreuid:
11712 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11713 case TARGET_NR_setregid:
11714 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11715 case TARGET_NR_getgroups:
11716 { /* the same code as for TARGET_NR_getgroups32 */
11717 int gidsetsize = arg1;
11718 target_id *target_grouplist;
11719 g_autofree gid_t *grouplist = NULL;
11720 int i;
11721
11722 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11723 return -TARGET_EINVAL;
11724 }
11725 if (gidsetsize > 0) {
11726 grouplist = g_try_new(gid_t, gidsetsize);
11727 if (!grouplist) {
11728 return -TARGET_ENOMEM;
11729 }
11730 }
11731 ret = get_errno(getgroups(gidsetsize, grouplist));
11732 if (!is_error(ret) && gidsetsize > 0) {
11733 target_grouplist = lock_user(VERIFY_WRITE, arg2,
11734 gidsetsize * sizeof(target_id), 0);
11735 if (!target_grouplist) {
11736 return -TARGET_EFAULT;
11737 }
11738 for (i = 0; i < ret; i++) {
11739 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11740 }
11741 unlock_user(target_grouplist, arg2,
11742 gidsetsize * sizeof(target_id));
11743 }
11744 return ret;
11745 }
11746 case TARGET_NR_setgroups:
11747 { /* the same code as for TARGET_NR_setgroups32 */
11748 int gidsetsize = arg1;
11749 target_id *target_grouplist;
11750 g_autofree gid_t *grouplist = NULL;
11751 int i;
11752
11753 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
11754 return -TARGET_EINVAL;
11755 }
11756 if (gidsetsize > 0) {
11757 grouplist = g_try_new(gid_t, gidsetsize);
11758 if (!grouplist) {
11759 return -TARGET_ENOMEM;
11760 }
11761 target_grouplist = lock_user(VERIFY_READ, arg2,
11762 gidsetsize * sizeof(target_id), 1);
11763 if (!target_grouplist) {
11764 return -TARGET_EFAULT;
11765 }
11766 for (i = 0; i < gidsetsize; i++) {
11767 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11768 }
11769 unlock_user(target_grouplist, arg2,
11770 gidsetsize * sizeof(target_id));
11771 }
11772 return get_errno(setgroups(gidsetsize, grouplist));
11773 }
11774 case TARGET_NR_fchown:
11775 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11776 #if defined(TARGET_NR_fchownat)
11777 case TARGET_NR_fchownat:
11778 if (!(p = lock_user_string(arg2)))
11779 return -TARGET_EFAULT;
11780 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11781 low2highgid(arg4), arg5));
11782 unlock_user(p, arg2, 0);
11783 return ret;
11784 #endif
11785 #ifdef TARGET_NR_setresuid
11786 case TARGET_NR_setresuid:
11787 return get_errno(sys_setresuid(low2highuid(arg1),
11788 low2highuid(arg2),
11789 low2highuid(arg3)));
11790 #endif
11791 #ifdef TARGET_NR_getresuid
11792 case TARGET_NR_getresuid:
11793 {
11794 uid_t ruid, euid, suid;
11795 ret = get_errno(getresuid(&ruid, &euid, &suid));
11796 if (!is_error(ret)) {
11797 if (put_user_id(high2lowuid(ruid), arg1)
11798 || put_user_id(high2lowuid(euid), arg2)
11799 || put_user_id(high2lowuid(suid), arg3))
11800 return -TARGET_EFAULT;
11801 }
11802 }
11803 return ret;
11804 #endif
11805 #ifdef TARGET_NR_getresgid
11806 case TARGET_NR_setresgid:
11807 return get_errno(sys_setresgid(low2highgid(arg1),
11808 low2highgid(arg2),
11809 low2highgid(arg3)));
11810 #endif
11811 #ifdef TARGET_NR_getresgid
11812 case TARGET_NR_getresgid:
11813 {
11814 gid_t rgid, egid, sgid;
11815 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11816 if (!is_error(ret)) {
11817 if (put_user_id(high2lowgid(rgid), arg1)
11818 || put_user_id(high2lowgid(egid), arg2)
11819 || put_user_id(high2lowgid(sgid), arg3))
11820 return -TARGET_EFAULT;
11821 }
11822 }
11823 return ret;
11824 #endif
11825 #ifdef TARGET_NR_chown
11826 case TARGET_NR_chown:
11827 if (!(p = lock_user_string(arg1)))
11828 return -TARGET_EFAULT;
11829 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11830 unlock_user(p, arg1, 0);
11831 return ret;
11832 #endif
11833 case TARGET_NR_setuid:
11834 return get_errno(sys_setuid(low2highuid(arg1)));
11835 case TARGET_NR_setgid:
11836 return get_errno(sys_setgid(low2highgid(arg1)));
11837 case TARGET_NR_setfsuid:
11838 return get_errno(setfsuid(arg1));
11839 case TARGET_NR_setfsgid:
11840 return get_errno(setfsgid(arg1));
11841
11842 #ifdef TARGET_NR_lchown32
11843 case TARGET_NR_lchown32:
11844 if (!(p = lock_user_string(arg1)))
11845 return -TARGET_EFAULT;
11846 ret = get_errno(lchown(p, arg2, arg3));
11847 unlock_user(p, arg1, 0);
11848 return ret;
11849 #endif
11850 #ifdef TARGET_NR_getuid32
11851 case TARGET_NR_getuid32:
11852 return get_errno(getuid());
11853 #endif
11854
11855 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11856 /* Alpha specific */
11857 case TARGET_NR_getxuid:
11858 {
11859 uid_t euid;
11860 euid=geteuid();
11861 cpu_env->ir[IR_A4]=euid;
11862 }
11863 return get_errno(getuid());
11864 #endif
11865 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11866 /* Alpha specific */
11867 case TARGET_NR_getxgid:
11868 {
11869 uid_t egid;
11870 egid=getegid();
11871 cpu_env->ir[IR_A4]=egid;
11872 }
11873 return get_errno(getgid());
11874 #endif
11875 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11876 /* Alpha specific */
11877 case TARGET_NR_osf_getsysinfo:
11878 ret = -TARGET_EOPNOTSUPP;
11879 switch (arg1) {
11880 case TARGET_GSI_IEEE_FP_CONTROL:
11881 {
11882 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11883 uint64_t swcr = cpu_env->swcr;
11884
11885 swcr &= ~SWCR_STATUS_MASK;
11886 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11887
11888 if (put_user_u64 (swcr, arg2))
11889 return -TARGET_EFAULT;
11890 ret = 0;
11891 }
11892 break;
11893
11894 /* case GSI_IEEE_STATE_AT_SIGNAL:
11895 -- Not implemented in linux kernel.
11896 case GSI_UACPROC:
11897 -- Retrieves current unaligned access state; not much used.
11898 case GSI_PROC_TYPE:
11899 -- Retrieves implver information; surely not used.
11900 case GSI_GET_HWRPB:
11901 -- Grabs a copy of the HWRPB; surely not used.
11902 */
11903 }
11904 return ret;
11905 #endif
11906 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11907 /* Alpha specific */
11908 case TARGET_NR_osf_setsysinfo:
11909 ret = -TARGET_EOPNOTSUPP;
11910 switch (arg1) {
11911 case TARGET_SSI_IEEE_FP_CONTROL:
11912 {
11913 uint64_t swcr, fpcr;
11914
11915 if (get_user_u64 (swcr, arg2)) {
11916 return -TARGET_EFAULT;
11917 }
11918
11919 /*
11920 * The kernel calls swcr_update_status to update the
11921 * status bits from the fpcr at every point that it
11922 * could be queried. Therefore, we store the status
11923 * bits only in FPCR.
11924 */
11925 cpu_env->swcr = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11926
11927 fpcr = cpu_alpha_load_fpcr(cpu_env);
11928 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11929 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11930 cpu_alpha_store_fpcr(cpu_env, fpcr);
11931 ret = 0;
11932 }
11933 break;
11934
11935 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11936 {
11937 uint64_t exc, fpcr, fex;
11938
11939 if (get_user_u64(exc, arg2)) {
11940 return -TARGET_EFAULT;
11941 }
11942 exc &= SWCR_STATUS_MASK;
11943 fpcr = cpu_alpha_load_fpcr(cpu_env);
11944
11945 /* Old exceptions are not signaled. */
11946 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11947 fex = exc & ~fex;
11948 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11949 fex &= (cpu_env)->swcr;
11950
11951 /* Update the hardware fpcr. */
11952 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11953 cpu_alpha_store_fpcr(cpu_env, fpcr);
11954
11955 if (fex) {
11956 int si_code = TARGET_FPE_FLTUNK;
11957 target_siginfo_t info;
11958
11959 if (fex & SWCR_TRAP_ENABLE_DNO) {
11960 si_code = TARGET_FPE_FLTUND;
11961 }
11962 if (fex & SWCR_TRAP_ENABLE_INE) {
11963 si_code = TARGET_FPE_FLTRES;
11964 }
11965 if (fex & SWCR_TRAP_ENABLE_UNF) {
11966 si_code = TARGET_FPE_FLTUND;
11967 }
11968 if (fex & SWCR_TRAP_ENABLE_OVF) {
11969 si_code = TARGET_FPE_FLTOVF;
11970 }
11971 if (fex & SWCR_TRAP_ENABLE_DZE) {
11972 si_code = TARGET_FPE_FLTDIV;
11973 }
11974 if (fex & SWCR_TRAP_ENABLE_INV) {
11975 si_code = TARGET_FPE_FLTINV;
11976 }
11977
11978 info.si_signo = SIGFPE;
11979 info.si_errno = 0;
11980 info.si_code = si_code;
11981 info._sifields._sigfault._addr = (cpu_env)->pc;
11982 queue_signal(cpu_env, info.si_signo,
11983 QEMU_SI_FAULT, &info);
11984 }
11985 ret = 0;
11986 }
11987 break;
11988
11989 /* case SSI_NVPAIRS:
11990 -- Used with SSIN_UACPROC to enable unaligned accesses.
11991 case SSI_IEEE_STATE_AT_SIGNAL:
11992 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11993 -- Not implemented in linux kernel
11994 */
11995 }
11996 return ret;
11997 #endif
11998 #ifdef TARGET_NR_osf_sigprocmask
11999 /* Alpha specific. */
12000 case TARGET_NR_osf_sigprocmask:
12001 {
12002 abi_ulong mask;
12003 int how;
12004 sigset_t set, oldset;
12005
12006 switch(arg1) {
12007 case TARGET_SIG_BLOCK:
12008 how = SIG_BLOCK;
12009 break;
12010 case TARGET_SIG_UNBLOCK:
12011 how = SIG_UNBLOCK;
12012 break;
12013 case TARGET_SIG_SETMASK:
12014 how = SIG_SETMASK;
12015 break;
12016 default:
12017 return -TARGET_EINVAL;
12018 }
12019 mask = arg2;
12020 target_to_host_old_sigset(&set, &mask);
12021 ret = do_sigprocmask(how, &set, &oldset);
12022 if (!ret) {
12023 host_to_target_old_sigset(&mask, &oldset);
12024 ret = mask;
12025 }
12026 }
12027 return ret;
12028 #endif
12029
12030 #ifdef TARGET_NR_getgid32
12031 case TARGET_NR_getgid32:
12032 return get_errno(getgid());
12033 #endif
12034 #ifdef TARGET_NR_geteuid32
12035 case TARGET_NR_geteuid32:
12036 return get_errno(geteuid());
12037 #endif
12038 #ifdef TARGET_NR_getegid32
12039 case TARGET_NR_getegid32:
12040 return get_errno(getegid());
12041 #endif
12042 #ifdef TARGET_NR_setreuid32
12043 case TARGET_NR_setreuid32:
12044 return get_errno(setreuid(arg1, arg2));
12045 #endif
12046 #ifdef TARGET_NR_setregid32
12047 case TARGET_NR_setregid32:
12048 return get_errno(setregid(arg1, arg2));
12049 #endif
12050 #ifdef TARGET_NR_getgroups32
12051 case TARGET_NR_getgroups32:
12052 { /* the same code as for TARGET_NR_getgroups */
12053 int gidsetsize = arg1;
12054 uint32_t *target_grouplist;
12055 g_autofree gid_t *grouplist = NULL;
12056 int i;
12057
12058 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12059 return -TARGET_EINVAL;
12060 }
12061 if (gidsetsize > 0) {
12062 grouplist = g_try_new(gid_t, gidsetsize);
12063 if (!grouplist) {
12064 return -TARGET_ENOMEM;
12065 }
12066 }
12067 ret = get_errno(getgroups(gidsetsize, grouplist));
12068 if (!is_error(ret) && gidsetsize > 0) {
12069 target_grouplist = lock_user(VERIFY_WRITE, arg2,
12070 gidsetsize * 4, 0);
12071 if (!target_grouplist) {
12072 return -TARGET_EFAULT;
12073 }
12074 for (i = 0; i < ret; i++) {
12075 target_grouplist[i] = tswap32(grouplist[i]);
12076 }
12077 unlock_user(target_grouplist, arg2, gidsetsize * 4);
12078 }
12079 return ret;
12080 }
12081 #endif
12082 #ifdef TARGET_NR_setgroups32
12083 case TARGET_NR_setgroups32:
12084 { /* the same code as for TARGET_NR_setgroups */
12085 int gidsetsize = arg1;
12086 uint32_t *target_grouplist;
12087 g_autofree gid_t *grouplist = NULL;
12088 int i;
12089
12090 if (gidsetsize > NGROUPS_MAX || gidsetsize < 0) {
12091 return -TARGET_EINVAL;
12092 }
12093 if (gidsetsize > 0) {
12094 grouplist = g_try_new(gid_t, gidsetsize);
12095 if (!grouplist) {
12096 return -TARGET_ENOMEM;
12097 }
12098 target_grouplist = lock_user(VERIFY_READ, arg2,
12099 gidsetsize * 4, 1);
12100 if (!target_grouplist) {
12101 return -TARGET_EFAULT;
12102 }
12103 for (i = 0; i < gidsetsize; i++) {
12104 grouplist[i] = tswap32(target_grouplist[i]);
12105 }
12106 unlock_user(target_grouplist, arg2, 0);
12107 }
12108 return get_errno(setgroups(gidsetsize, grouplist));
12109 }
12110 #endif
12111 #ifdef TARGET_NR_fchown32
12112 case TARGET_NR_fchown32:
12113 return get_errno(fchown(arg1, arg2, arg3));
12114 #endif
12115 #ifdef TARGET_NR_setresuid32
12116 case TARGET_NR_setresuid32:
12117 return get_errno(sys_setresuid(arg1, arg2, arg3));
12118 #endif
12119 #ifdef TARGET_NR_getresuid32
12120 case TARGET_NR_getresuid32:
12121 {
12122 uid_t ruid, euid, suid;
12123 ret = get_errno(getresuid(&ruid, &euid, &suid));
12124 if (!is_error(ret)) {
12125 if (put_user_u32(ruid, arg1)
12126 || put_user_u32(euid, arg2)
12127 || put_user_u32(suid, arg3))
12128 return -TARGET_EFAULT;
12129 }
12130 }
12131 return ret;
12132 #endif
12133 #ifdef TARGET_NR_setresgid32
12134 case TARGET_NR_setresgid32:
12135 return get_errno(sys_setresgid(arg1, arg2, arg3));
12136 #endif
12137 #ifdef TARGET_NR_getresgid32
12138 case TARGET_NR_getresgid32:
12139 {
12140 gid_t rgid, egid, sgid;
12141 ret = get_errno(getresgid(&rgid, &egid, &sgid));
12142 if (!is_error(ret)) {
12143 if (put_user_u32(rgid, arg1)
12144 || put_user_u32(egid, arg2)
12145 || put_user_u32(sgid, arg3))
12146 return -TARGET_EFAULT;
12147 }
12148 }
12149 return ret;
12150 #endif
12151 #ifdef TARGET_NR_chown32
12152 case TARGET_NR_chown32:
12153 if (!(p = lock_user_string(arg1)))
12154 return -TARGET_EFAULT;
12155 ret = get_errno(chown(p, arg2, arg3));
12156 unlock_user(p, arg1, 0);
12157 return ret;
12158 #endif
12159 #ifdef TARGET_NR_setuid32
12160 case TARGET_NR_setuid32:
12161 return get_errno(sys_setuid(arg1));
12162 #endif
12163 #ifdef TARGET_NR_setgid32
12164 case TARGET_NR_setgid32:
12165 return get_errno(sys_setgid(arg1));
12166 #endif
12167 #ifdef TARGET_NR_setfsuid32
12168 case TARGET_NR_setfsuid32:
12169 return get_errno(setfsuid(arg1));
12170 #endif
12171 #ifdef TARGET_NR_setfsgid32
12172 case TARGET_NR_setfsgid32:
12173 return get_errno(setfsgid(arg1));
12174 #endif
12175 #ifdef TARGET_NR_mincore
12176 case TARGET_NR_mincore:
12177 {
12178 void *a = lock_user(VERIFY_NONE, arg1, arg2, 0);
12179 if (!a) {
12180 return -TARGET_ENOMEM;
12181 }
12182 p = lock_user_string(arg3);
12183 if (!p) {
12184 ret = -TARGET_EFAULT;
12185 } else {
12186 ret = get_errno(mincore(a, arg2, p));
12187 unlock_user(p, arg3, ret);
12188 }
12189 unlock_user(a, arg1, 0);
12190 }
12191 return ret;
12192 #endif
12193 #ifdef TARGET_NR_arm_fadvise64_64
12194 case TARGET_NR_arm_fadvise64_64:
12195 /* arm_fadvise64_64 looks like fadvise64_64 but
12196 * with different argument order: fd, advice, offset, len
12197 * rather than the usual fd, offset, len, advice.
12198 * Note that offset and len are both 64-bit so appear as
12199 * pairs of 32-bit registers.
12200 */
12201 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
12202 target_offset64(arg5, arg6), arg2);
12203 return -host_to_target_errno(ret);
12204 #endif
12205
12206 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12207
12208 #ifdef TARGET_NR_fadvise64_64
12209 case TARGET_NR_fadvise64_64:
12210 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
12211 /* 6 args: fd, advice, offset (high, low), len (high, low) */
12212 ret = arg2;
12213 arg2 = arg3;
12214 arg3 = arg4;
12215 arg4 = arg5;
12216 arg5 = arg6;
12217 arg6 = ret;
12218 #else
12219 /* 6 args: fd, offset (high, low), len (high, low), advice */
12220 if (regpairs_aligned(cpu_env, num)) {
12221 /* offset is in (3,4), len in (5,6) and advice in 7 */
12222 arg2 = arg3;
12223 arg3 = arg4;
12224 arg4 = arg5;
12225 arg5 = arg6;
12226 arg6 = arg7;
12227 }
12228 #endif
12229 ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
12230 target_offset64(arg4, arg5), arg6);
12231 return -host_to_target_errno(ret);
12232 #endif
12233
12234 #ifdef TARGET_NR_fadvise64
12235 case TARGET_NR_fadvise64:
12236 /* 5 args: fd, offset (high, low), len, advice */
12237 if (regpairs_aligned(cpu_env, num)) {
12238 /* offset is in (3,4), len in 5 and advice in 6 */
12239 arg2 = arg3;
12240 arg3 = arg4;
12241 arg4 = arg5;
12242 arg5 = arg6;
12243 }
12244 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
12245 return -host_to_target_errno(ret);
12246 #endif
12247
12248 #else /* not a 32-bit ABI */
12249 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
12250 #ifdef TARGET_NR_fadvise64_64
12251 case TARGET_NR_fadvise64_64:
12252 #endif
12253 #ifdef TARGET_NR_fadvise64
12254 case TARGET_NR_fadvise64:
12255 #endif
12256 #ifdef TARGET_S390X
12257 switch (arg4) {
12258 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
12259 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
12260 case 6: arg4 = POSIX_FADV_DONTNEED; break;
12261 case 7: arg4 = POSIX_FADV_NOREUSE; break;
12262 default: break;
12263 }
12264 #endif
12265 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
12266 #endif
12267 #endif /* end of 64-bit ABI fadvise handling */
12268
12269 #ifdef TARGET_NR_madvise
12270 case TARGET_NR_madvise:
12271 return target_madvise(arg1, arg2, arg3);
12272 #endif
12273 #ifdef TARGET_NR_fcntl64
12274 case TARGET_NR_fcntl64:
12275 {
12276 int cmd;
12277 struct flock64 fl;
12278 from_flock64_fn *copyfrom = copy_from_user_flock64;
12279 to_flock64_fn *copyto = copy_to_user_flock64;
12280
12281 #ifdef TARGET_ARM
12282 if (!cpu_env->eabi) {
12283 copyfrom = copy_from_user_oabi_flock64;
12284 copyto = copy_to_user_oabi_flock64;
12285 }
12286 #endif
12287
12288 cmd = target_to_host_fcntl_cmd(arg2);
12289 if (cmd == -TARGET_EINVAL) {
12290 return cmd;
12291 }
12292
12293 switch(arg2) {
12294 case TARGET_F_GETLK64:
12295 ret = copyfrom(&fl, arg3);
12296 if (ret) {
12297 break;
12298 }
12299 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12300 if (ret == 0) {
12301 ret = copyto(arg3, &fl);
12302 }
12303 break;
12304
12305 case TARGET_F_SETLK64:
12306 case TARGET_F_SETLKW64:
12307 ret = copyfrom(&fl, arg3);
12308 if (ret) {
12309 break;
12310 }
12311 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
12312 break;
12313 default:
12314 ret = do_fcntl(arg1, arg2, arg3);
12315 break;
12316 }
12317 return ret;
12318 }
12319 #endif
12320 #ifdef TARGET_NR_cacheflush
12321 case TARGET_NR_cacheflush:
12322 /* self-modifying code is handled automatically, so nothing needed */
12323 return 0;
12324 #endif
12325 #ifdef TARGET_NR_getpagesize
12326 case TARGET_NR_getpagesize:
12327 return TARGET_PAGE_SIZE;
12328 #endif
12329 case TARGET_NR_gettid:
12330 return get_errno(sys_gettid());
12331 #ifdef TARGET_NR_readahead
12332 case TARGET_NR_readahead:
12333 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
12334 if (regpairs_aligned(cpu_env, num)) {
12335 arg2 = arg3;
12336 arg3 = arg4;
12337 arg4 = arg5;
12338 }
12339 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
12340 #else
12341 ret = get_errno(readahead(arg1, arg2, arg3));
12342 #endif
12343 return ret;
12344 #endif
12345 #ifdef CONFIG_ATTR
12346 #ifdef TARGET_NR_setxattr
12347 case TARGET_NR_listxattr:
12348 case TARGET_NR_llistxattr:
12349 {
12350 void *b = 0;
12351 if (arg2) {
12352 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12353 if (!b) {
12354 return -TARGET_EFAULT;
12355 }
12356 }
12357 p = lock_user_string(arg1);
12358 if (p) {
12359 if (num == TARGET_NR_listxattr) {
12360 ret = get_errno(listxattr(p, b, arg3));
12361 } else {
12362 ret = get_errno(llistxattr(p, b, arg3));
12363 }
12364 } else {
12365 ret = -TARGET_EFAULT;
12366 }
12367 unlock_user(p, arg1, 0);
12368 unlock_user(b, arg2, arg3);
12369 return ret;
12370 }
12371 case TARGET_NR_flistxattr:
12372 {
12373 void *b = 0;
12374 if (arg2) {
12375 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
12376 if (!b) {
12377 return -TARGET_EFAULT;
12378 }
12379 }
12380 ret = get_errno(flistxattr(arg1, b, arg3));
12381 unlock_user(b, arg2, arg3);
12382 return ret;
12383 }
12384 case TARGET_NR_setxattr:
12385 case TARGET_NR_lsetxattr:
12386 {
12387 void *n, *v = 0;
12388 if (arg3) {
12389 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12390 if (!v) {
12391 return -TARGET_EFAULT;
12392 }
12393 }
12394 p = lock_user_string(arg1);
12395 n = lock_user_string(arg2);
12396 if (p && n) {
12397 if (num == TARGET_NR_setxattr) {
12398 ret = get_errno(setxattr(p, n, v, arg4, arg5));
12399 } else {
12400 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
12401 }
12402 } else {
12403 ret = -TARGET_EFAULT;
12404 }
12405 unlock_user(p, arg1, 0);
12406 unlock_user(n, arg2, 0);
12407 unlock_user(v, arg3, 0);
12408 }
12409 return ret;
12410 case TARGET_NR_fsetxattr:
12411 {
12412 void *n, *v = 0;
12413 if (arg3) {
12414 v = lock_user(VERIFY_READ, arg3, arg4, 1);
12415 if (!v) {
12416 return -TARGET_EFAULT;
12417 }
12418 }
12419 n = lock_user_string(arg2);
12420 if (n) {
12421 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
12422 } else {
12423 ret = -TARGET_EFAULT;
12424 }
12425 unlock_user(n, arg2, 0);
12426 unlock_user(v, arg3, 0);
12427 }
12428 return ret;
12429 case TARGET_NR_getxattr:
12430 case TARGET_NR_lgetxattr:
12431 {
12432 void *n, *v = 0;
12433 if (arg3) {
12434 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12435 if (!v) {
12436 return -TARGET_EFAULT;
12437 }
12438 }
12439 p = lock_user_string(arg1);
12440 n = lock_user_string(arg2);
12441 if (p && n) {
12442 if (num == TARGET_NR_getxattr) {
12443 ret = get_errno(getxattr(p, n, v, arg4));
12444 } else {
12445 ret = get_errno(lgetxattr(p, n, v, arg4));
12446 }
12447 } else {
12448 ret = -TARGET_EFAULT;
12449 }
12450 unlock_user(p, arg1, 0);
12451 unlock_user(n, arg2, 0);
12452 unlock_user(v, arg3, arg4);
12453 }
12454 return ret;
12455 case TARGET_NR_fgetxattr:
12456 {
12457 void *n, *v = 0;
12458 if (arg3) {
12459 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
12460 if (!v) {
12461 return -TARGET_EFAULT;
12462 }
12463 }
12464 n = lock_user_string(arg2);
12465 if (n) {
12466 ret = get_errno(fgetxattr(arg1, n, v, arg4));
12467 } else {
12468 ret = -TARGET_EFAULT;
12469 }
12470 unlock_user(n, arg2, 0);
12471 unlock_user(v, arg3, arg4);
12472 }
12473 return ret;
12474 case TARGET_NR_removexattr:
12475 case TARGET_NR_lremovexattr:
12476 {
12477 void *n;
12478 p = lock_user_string(arg1);
12479 n = lock_user_string(arg2);
12480 if (p && n) {
12481 if (num == TARGET_NR_removexattr) {
12482 ret = get_errno(removexattr(p, n));
12483 } else {
12484 ret = get_errno(lremovexattr(p, n));
12485 }
12486 } else {
12487 ret = -TARGET_EFAULT;
12488 }
12489 unlock_user(p, arg1, 0);
12490 unlock_user(n, arg2, 0);
12491 }
12492 return ret;
12493 case TARGET_NR_fremovexattr:
12494 {
12495 void *n;
12496 n = lock_user_string(arg2);
12497 if (n) {
12498 ret = get_errno(fremovexattr(arg1, n));
12499 } else {
12500 ret = -TARGET_EFAULT;
12501 }
12502 unlock_user(n, arg2, 0);
12503 }
12504 return ret;
12505 #endif
12506 #endif /* CONFIG_ATTR */
12507 #ifdef TARGET_NR_set_thread_area
12508 case TARGET_NR_set_thread_area:
12509 #if defined(TARGET_MIPS)
12510 cpu_env->active_tc.CP0_UserLocal = arg1;
12511 return 0;
12512 #elif defined(TARGET_CRIS)
12513 if (arg1 & 0xff)
12514 ret = -TARGET_EINVAL;
12515 else {
12516 cpu_env->pregs[PR_PID] = arg1;
12517 ret = 0;
12518 }
12519 return ret;
12520 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12521 return do_set_thread_area(cpu_env, arg1);
12522 #elif defined(TARGET_M68K)
12523 {
12524 TaskState *ts = cpu->opaque;
12525 ts->tp_value = arg1;
12526 return 0;
12527 }
12528 #else
12529 return -TARGET_ENOSYS;
12530 #endif
12531 #endif
12532 #ifdef TARGET_NR_get_thread_area
12533 case TARGET_NR_get_thread_area:
12534 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12535 return do_get_thread_area(cpu_env, arg1);
12536 #elif defined(TARGET_M68K)
12537 {
12538 TaskState *ts = cpu->opaque;
12539 return ts->tp_value;
12540 }
12541 #else
12542 return -TARGET_ENOSYS;
12543 #endif
12544 #endif
12545 #ifdef TARGET_NR_getdomainname
12546 case TARGET_NR_getdomainname:
12547 return -TARGET_ENOSYS;
12548 #endif
12549
12550 #ifdef TARGET_NR_clock_settime
12551 case TARGET_NR_clock_settime:
12552 {
12553 struct timespec ts;
12554
12555 ret = target_to_host_timespec(&ts, arg2);
12556 if (!is_error(ret)) {
12557 ret = get_errno(clock_settime(arg1, &ts));
12558 }
12559 return ret;
12560 }
12561 #endif
12562 #ifdef TARGET_NR_clock_settime64
12563 case TARGET_NR_clock_settime64:
12564 {
12565 struct timespec ts;
12566
12567 ret = target_to_host_timespec64(&ts, arg2);
12568 if (!is_error(ret)) {
12569 ret = get_errno(clock_settime(arg1, &ts));
12570 }
12571 return ret;
12572 }
12573 #endif
12574 #ifdef TARGET_NR_clock_gettime
12575 case TARGET_NR_clock_gettime:
12576 {
12577 struct timespec ts;
12578 ret = get_errno(clock_gettime(arg1, &ts));
12579 if (!is_error(ret)) {
12580 ret = host_to_target_timespec(arg2, &ts);
12581 }
12582 return ret;
12583 }
12584 #endif
12585 #ifdef TARGET_NR_clock_gettime64
12586 case TARGET_NR_clock_gettime64:
12587 {
12588 struct timespec ts;
12589 ret = get_errno(clock_gettime(arg1, &ts));
12590 if (!is_error(ret)) {
12591 ret = host_to_target_timespec64(arg2, &ts);
12592 }
12593 return ret;
12594 }
12595 #endif
12596 #ifdef TARGET_NR_clock_getres
12597 case TARGET_NR_clock_getres:
12598 {
12599 struct timespec ts;
12600 ret = get_errno(clock_getres(arg1, &ts));
12601 if (!is_error(ret)) {
12602 host_to_target_timespec(arg2, &ts);
12603 }
12604 return ret;
12605 }
12606 #endif
12607 #ifdef TARGET_NR_clock_getres_time64
12608 case TARGET_NR_clock_getres_time64:
12609 {
12610 struct timespec ts;
12611 ret = get_errno(clock_getres(arg1, &ts));
12612 if (!is_error(ret)) {
12613 host_to_target_timespec64(arg2, &ts);
12614 }
12615 return ret;
12616 }
12617 #endif
12618 #ifdef TARGET_NR_clock_nanosleep
12619 case TARGET_NR_clock_nanosleep:
12620 {
12621 struct timespec ts;
12622 if (target_to_host_timespec(&ts, arg3)) {
12623 return -TARGET_EFAULT;
12624 }
12625 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12626 &ts, arg4 ? &ts : NULL));
12627 /*
12628 * if the call is interrupted by a signal handler, it fails
12629 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12630 * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12631 */
12632 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12633 host_to_target_timespec(arg4, &ts)) {
12634 return -TARGET_EFAULT;
12635 }
12636
12637 return ret;
12638 }
12639 #endif
12640 #ifdef TARGET_NR_clock_nanosleep_time64
12641 case TARGET_NR_clock_nanosleep_time64:
12642 {
12643 struct timespec ts;
12644
12645 if (target_to_host_timespec64(&ts, arg3)) {
12646 return -TARGET_EFAULT;
12647 }
12648
12649 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12650 &ts, arg4 ? &ts : NULL));
12651
12652 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12653 host_to_target_timespec64(arg4, &ts)) {
12654 return -TARGET_EFAULT;
12655 }
12656 return ret;
12657 }
12658 #endif
12659
12660 #if defined(TARGET_NR_set_tid_address)
12661 case TARGET_NR_set_tid_address:
12662 {
12663 TaskState *ts = cpu->opaque;
12664 ts->child_tidptr = arg1;
12665 /* do not call host set_tid_address() syscall, instead return tid() */
12666 return get_errno(sys_gettid());
12667 }
12668 #endif
12669
12670 case TARGET_NR_tkill:
12671 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12672
12673 case TARGET_NR_tgkill:
12674 return get_errno(safe_tgkill((int)arg1, (int)arg2,
12675 target_to_host_signal(arg3)));
12676
12677 #ifdef TARGET_NR_set_robust_list
12678 case TARGET_NR_set_robust_list:
12679 case TARGET_NR_get_robust_list:
12680 /* The ABI for supporting robust futexes has userspace pass
12681 * the kernel a pointer to a linked list which is updated by
12682 * userspace after the syscall; the list is walked by the kernel
12683 * when the thread exits. Since the linked list in QEMU guest
12684 * memory isn't a valid linked list for the host and we have
12685 * no way to reliably intercept the thread-death event, we can't
12686 * support these. Silently return ENOSYS so that guest userspace
12687 * falls back to a non-robust futex implementation (which should
12688 * be OK except in the corner case of the guest crashing while
12689 * holding a mutex that is shared with another process via
12690 * shared memory).
12691 */
12692 return -TARGET_ENOSYS;
12693 #endif
12694
12695 #if defined(TARGET_NR_utimensat)
12696 case TARGET_NR_utimensat:
12697 {
12698 struct timespec *tsp, ts[2];
12699 if (!arg3) {
12700 tsp = NULL;
12701 } else {
12702 if (target_to_host_timespec(ts, arg3)) {
12703 return -TARGET_EFAULT;
12704 }
12705 if (target_to_host_timespec(ts + 1, arg3 +
12706 sizeof(struct target_timespec))) {
12707 return -TARGET_EFAULT;
12708 }
12709 tsp = ts;
12710 }
12711 if (!arg2)
12712 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12713 else {
12714 if (!(p = lock_user_string(arg2))) {
12715 return -TARGET_EFAULT;
12716 }
12717 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12718 unlock_user(p, arg2, 0);
12719 }
12720 }
12721 return ret;
12722 #endif
12723 #ifdef TARGET_NR_utimensat_time64
12724 case TARGET_NR_utimensat_time64:
12725 {
12726 struct timespec *tsp, ts[2];
12727 if (!arg3) {
12728 tsp = NULL;
12729 } else {
12730 if (target_to_host_timespec64(ts, arg3)) {
12731 return -TARGET_EFAULT;
12732 }
12733 if (target_to_host_timespec64(ts + 1, arg3 +
12734 sizeof(struct target__kernel_timespec))) {
12735 return -TARGET_EFAULT;
12736 }
12737 tsp = ts;
12738 }
12739 if (!arg2)
12740 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12741 else {
12742 p = lock_user_string(arg2);
12743 if (!p) {
12744 return -TARGET_EFAULT;
12745 }
12746 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12747 unlock_user(p, arg2, 0);
12748 }
12749 }
12750 return ret;
12751 #endif
12752 #ifdef TARGET_NR_futex
12753 case TARGET_NR_futex:
12754 return do_futex(cpu, false, arg1, arg2, arg3, arg4, arg5, arg6);
12755 #endif
12756 #ifdef TARGET_NR_futex_time64
12757 case TARGET_NR_futex_time64:
12758 return do_futex(cpu, true, arg1, arg2, arg3, arg4, arg5, arg6);
12759 #endif
12760 #ifdef CONFIG_INOTIFY
12761 #if defined(TARGET_NR_inotify_init)
12762 case TARGET_NR_inotify_init:
12763 ret = get_errno(inotify_init());
12764 if (ret >= 0) {
12765 fd_trans_register(ret, &target_inotify_trans);
12766 }
12767 return ret;
12768 #endif
12769 #if defined(TARGET_NR_inotify_init1) && defined(CONFIG_INOTIFY1)
12770 case TARGET_NR_inotify_init1:
12771 ret = get_errno(inotify_init1(target_to_host_bitmask(arg1,
12772 fcntl_flags_tbl)));
12773 if (ret >= 0) {
12774 fd_trans_register(ret, &target_inotify_trans);
12775 }
12776 return ret;
12777 #endif
12778 #if defined(TARGET_NR_inotify_add_watch)
12779 case TARGET_NR_inotify_add_watch:
12780 p = lock_user_string(arg2);
12781 ret = get_errno(inotify_add_watch(arg1, path(p), arg3));
12782 unlock_user(p, arg2, 0);
12783 return ret;
12784 #endif
12785 #if defined(TARGET_NR_inotify_rm_watch)
12786 case TARGET_NR_inotify_rm_watch:
12787 return get_errno(inotify_rm_watch(arg1, arg2));
12788 #endif
12789 #endif
12790
12791 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12792 case TARGET_NR_mq_open:
12793 {
12794 struct mq_attr posix_mq_attr;
12795 struct mq_attr *pposix_mq_attr;
12796 int host_flags;
12797
12798 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12799 pposix_mq_attr = NULL;
12800 if (arg4) {
12801 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12802 return -TARGET_EFAULT;
12803 }
12804 pposix_mq_attr = &posix_mq_attr;
12805 }
12806 p = lock_user_string(arg1 - 1);
12807 if (!p) {
12808 return -TARGET_EFAULT;
12809 }
12810 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12811 unlock_user (p, arg1, 0);
12812 }
12813 return ret;
12814
12815 case TARGET_NR_mq_unlink:
12816 p = lock_user_string(arg1 - 1);
12817 if (!p) {
12818 return -TARGET_EFAULT;
12819 }
12820 ret = get_errno(mq_unlink(p));
12821 unlock_user (p, arg1, 0);
12822 return ret;
12823
12824 #ifdef TARGET_NR_mq_timedsend
12825 case TARGET_NR_mq_timedsend:
12826 {
12827 struct timespec ts;
12828
12829 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12830 if (arg5 != 0) {
12831 if (target_to_host_timespec(&ts, arg5)) {
12832 return -TARGET_EFAULT;
12833 }
12834 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12835 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12836 return -TARGET_EFAULT;
12837 }
12838 } else {
12839 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12840 }
12841 unlock_user (p, arg2, arg3);
12842 }
12843 return ret;
12844 #endif
12845 #ifdef TARGET_NR_mq_timedsend_time64
12846 case TARGET_NR_mq_timedsend_time64:
12847 {
12848 struct timespec ts;
12849
12850 p = lock_user(VERIFY_READ, arg2, arg3, 1);
12851 if (arg5 != 0) {
12852 if (target_to_host_timespec64(&ts, arg5)) {
12853 return -TARGET_EFAULT;
12854 }
12855 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12856 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12857 return -TARGET_EFAULT;
12858 }
12859 } else {
12860 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12861 }
12862 unlock_user(p, arg2, arg3);
12863 }
12864 return ret;
12865 #endif
12866
12867 #ifdef TARGET_NR_mq_timedreceive
12868 case TARGET_NR_mq_timedreceive:
12869 {
12870 struct timespec ts;
12871 unsigned int prio;
12872
12873 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12874 if (arg5 != 0) {
12875 if (target_to_host_timespec(&ts, arg5)) {
12876 return -TARGET_EFAULT;
12877 }
12878 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12879 &prio, &ts));
12880 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12881 return -TARGET_EFAULT;
12882 }
12883 } else {
12884 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12885 &prio, NULL));
12886 }
12887 unlock_user (p, arg2, arg3);
12888 if (arg4 != 0)
12889 put_user_u32(prio, arg4);
12890 }
12891 return ret;
12892 #endif
12893 #ifdef TARGET_NR_mq_timedreceive_time64
12894 case TARGET_NR_mq_timedreceive_time64:
12895 {
12896 struct timespec ts;
12897 unsigned int prio;
12898
12899 p = lock_user(VERIFY_READ, arg2, arg3, 1);
12900 if (arg5 != 0) {
12901 if (target_to_host_timespec64(&ts, arg5)) {
12902 return -TARGET_EFAULT;
12903 }
12904 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12905 &prio, &ts));
12906 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12907 return -TARGET_EFAULT;
12908 }
12909 } else {
12910 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12911 &prio, NULL));
12912 }
12913 unlock_user(p, arg2, arg3);
12914 if (arg4 != 0) {
12915 put_user_u32(prio, arg4);
12916 }
12917 }
12918 return ret;
12919 #endif
12920
12921 /* Not implemented for now... */
12922 /* case TARGET_NR_mq_notify: */
12923 /* break; */
12924
12925 case TARGET_NR_mq_getsetattr:
12926 {
12927 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12928 ret = 0;
12929 if (arg2 != 0) {
12930 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12931 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12932 &posix_mq_attr_out));
12933 } else if (arg3 != 0) {
12934 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12935 }
12936 if (ret == 0 && arg3 != 0) {
12937 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12938 }
12939 }
12940 return ret;
12941 #endif
12942
12943 #ifdef CONFIG_SPLICE
12944 #ifdef TARGET_NR_tee
12945 case TARGET_NR_tee:
12946 {
12947 ret = get_errno(tee(arg1,arg2,arg3,arg4));
12948 }
12949 return ret;
12950 #endif
12951 #ifdef TARGET_NR_splice
12952 case TARGET_NR_splice:
12953 {
12954 loff_t loff_in, loff_out;
12955 loff_t *ploff_in = NULL, *ploff_out = NULL;
12956 if (arg2) {
12957 if (get_user_u64(loff_in, arg2)) {
12958 return -TARGET_EFAULT;
12959 }
12960 ploff_in = &loff_in;
12961 }
12962 if (arg4) {
12963 if (get_user_u64(loff_out, arg4)) {
12964 return -TARGET_EFAULT;
12965 }
12966 ploff_out = &loff_out;
12967 }
12968 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12969 if (arg2) {
12970 if (put_user_u64(loff_in, arg2)) {
12971 return -TARGET_EFAULT;
12972 }
12973 }
12974 if (arg4) {
12975 if (put_user_u64(loff_out, arg4)) {
12976 return -TARGET_EFAULT;
12977 }
12978 }
12979 }
12980 return ret;
12981 #endif
12982 #ifdef TARGET_NR_vmsplice
12983 case TARGET_NR_vmsplice:
12984 {
12985 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12986 if (vec != NULL) {
12987 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12988 unlock_iovec(vec, arg2, arg3, 0);
12989 } else {
12990 ret = -host_to_target_errno(errno);
12991 }
12992 }
12993 return ret;
12994 #endif
12995 #endif /* CONFIG_SPLICE */
12996 #ifdef CONFIG_EVENTFD
12997 #if defined(TARGET_NR_eventfd)
12998 case TARGET_NR_eventfd:
12999 ret = get_errno(eventfd(arg1, 0));
13000 if (ret >= 0) {
13001 fd_trans_register(ret, &target_eventfd_trans);
13002 }
13003 return ret;
13004 #endif
13005 #if defined(TARGET_NR_eventfd2)
13006 case TARGET_NR_eventfd2:
13007 {
13008 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
13009 if (arg2 & TARGET_O_NONBLOCK) {
13010 host_flags |= O_NONBLOCK;
13011 }
13012 if (arg2 & TARGET_O_CLOEXEC) {
13013 host_flags |= O_CLOEXEC;
13014 }
13015 ret = get_errno(eventfd(arg1, host_flags));
13016 if (ret >= 0) {
13017 fd_trans_register(ret, &target_eventfd_trans);
13018 }
13019 return ret;
13020 }
13021 #endif
13022 #endif /* CONFIG_EVENTFD */
13023 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
13024 case TARGET_NR_fallocate:
13025 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13026 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
13027 target_offset64(arg5, arg6)));
13028 #else
13029 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
13030 #endif
13031 return ret;
13032 #endif
13033 #if defined(CONFIG_SYNC_FILE_RANGE)
13034 #if defined(TARGET_NR_sync_file_range)
13035 case TARGET_NR_sync_file_range:
13036 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13037 #if defined(TARGET_MIPS)
13038 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13039 target_offset64(arg5, arg6), arg7));
13040 #else
13041 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
13042 target_offset64(arg4, arg5), arg6));
13043 #endif /* !TARGET_MIPS */
13044 #else
13045 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
13046 #endif
13047 return ret;
13048 #endif
13049 #if defined(TARGET_NR_sync_file_range2) || \
13050 defined(TARGET_NR_arm_sync_file_range)
13051 #if defined(TARGET_NR_sync_file_range2)
13052 case TARGET_NR_sync_file_range2:
13053 #endif
13054 #if defined(TARGET_NR_arm_sync_file_range)
13055 case TARGET_NR_arm_sync_file_range:
13056 #endif
13057 /* This is like sync_file_range but the arguments are reordered */
13058 #if TARGET_ABI_BITS == 32 && !defined(TARGET_ABI_MIPSN32)
13059 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
13060 target_offset64(arg5, arg6), arg2));
13061 #else
13062 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
13063 #endif
13064 return ret;
13065 #endif
13066 #endif
13067 #if defined(TARGET_NR_signalfd4)
13068 case TARGET_NR_signalfd4:
13069 return do_signalfd4(arg1, arg2, arg4);
13070 #endif
13071 #if defined(TARGET_NR_signalfd)
13072 case TARGET_NR_signalfd:
13073 return do_signalfd4(arg1, arg2, 0);
13074 #endif
13075 #if defined(CONFIG_EPOLL)
13076 #if defined(TARGET_NR_epoll_create)
13077 case TARGET_NR_epoll_create:
13078 return get_errno(epoll_create(arg1));
13079 #endif
13080 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
13081 case TARGET_NR_epoll_create1:
13082 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
13083 #endif
13084 #if defined(TARGET_NR_epoll_ctl)
13085 case TARGET_NR_epoll_ctl:
13086 {
13087 struct epoll_event ep;
13088 struct epoll_event *epp = 0;
13089 if (arg4) {
13090 if (arg2 != EPOLL_CTL_DEL) {
13091 struct target_epoll_event *target_ep;
13092 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
13093 return -TARGET_EFAULT;
13094 }
13095 ep.events = tswap32(target_ep->events);
13096 /*
13097 * The epoll_data_t union is just opaque data to the kernel,
13098 * so we transfer all 64 bits across and need not worry what
13099 * actual data type it is.
13100 */
13101 ep.data.u64 = tswap64(target_ep->data.u64);
13102 unlock_user_struct(target_ep, arg4, 0);
13103 }
13104 /*
13105 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
13106 * non-null pointer, even though this argument is ignored.
13107 *
13108 */
13109 epp = &ep;
13110 }
13111 return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
13112 }
13113 #endif
13114
13115 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
13116 #if defined(TARGET_NR_epoll_wait)
13117 case TARGET_NR_epoll_wait:
13118 #endif
13119 #if defined(TARGET_NR_epoll_pwait)
13120 case TARGET_NR_epoll_pwait:
13121 #endif
13122 {
13123 struct target_epoll_event *target_ep;
13124 struct epoll_event *ep;
13125 int epfd = arg1;
13126 int maxevents = arg3;
13127 int timeout = arg4;
13128
13129 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
13130 return -TARGET_EINVAL;
13131 }
13132
13133 target_ep = lock_user(VERIFY_WRITE, arg2,
13134 maxevents * sizeof(struct target_epoll_event), 1);
13135 if (!target_ep) {
13136 return -TARGET_EFAULT;
13137 }
13138
13139 ep = g_try_new(struct epoll_event, maxevents);
13140 if (!ep) {
13141 unlock_user(target_ep, arg2, 0);
13142 return -TARGET_ENOMEM;
13143 }
13144
13145 switch (num) {
13146 #if defined(TARGET_NR_epoll_pwait)
13147 case TARGET_NR_epoll_pwait:
13148 {
13149 sigset_t *set = NULL;
13150
13151 if (arg5) {
13152 ret = process_sigsuspend_mask(&set, arg5, arg6);
13153 if (ret != 0) {
13154 break;
13155 }
13156 }
13157
13158 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13159 set, SIGSET_T_SIZE));
13160
13161 if (set) {
13162 finish_sigsuspend_mask(ret);
13163 }
13164 break;
13165 }
13166 #endif
13167 #if defined(TARGET_NR_epoll_wait)
13168 case TARGET_NR_epoll_wait:
13169 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
13170 NULL, 0));
13171 break;
13172 #endif
13173 default:
13174 ret = -TARGET_ENOSYS;
13175 }
13176 if (!is_error(ret)) {
13177 int i;
13178 for (i = 0; i < ret; i++) {
13179 target_ep[i].events = tswap32(ep[i].events);
13180 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
13181 }
13182 unlock_user(target_ep, arg2,
13183 ret * sizeof(struct target_epoll_event));
13184 } else {
13185 unlock_user(target_ep, arg2, 0);
13186 }
13187 g_free(ep);
13188 return ret;
13189 }
13190 #endif
13191 #endif
13192 #ifdef TARGET_NR_prlimit64
13193 case TARGET_NR_prlimit64:
13194 {
13195 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
13196 struct target_rlimit64 *target_rnew, *target_rold;
13197 struct host_rlimit64 rnew, rold, *rnewp = 0;
13198 int resource = target_to_host_resource(arg2);
13199
13200 if (arg3 && (resource != RLIMIT_AS &&
13201 resource != RLIMIT_DATA &&
13202 resource != RLIMIT_STACK)) {
13203 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
13204 return -TARGET_EFAULT;
13205 }
13206 __get_user(rnew.rlim_cur, &target_rnew->rlim_cur);
13207 __get_user(rnew.rlim_max, &target_rnew->rlim_max);
13208 unlock_user_struct(target_rnew, arg3, 0);
13209 rnewp = &rnew;
13210 }
13211
13212 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
13213 if (!is_error(ret) && arg4) {
13214 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
13215 return -TARGET_EFAULT;
13216 }
13217 __put_user(rold.rlim_cur, &target_rold->rlim_cur);
13218 __put_user(rold.rlim_max, &target_rold->rlim_max);
13219 unlock_user_struct(target_rold, arg4, 1);
13220 }
13221 return ret;
13222 }
13223 #endif
13224 #ifdef TARGET_NR_gethostname
13225 case TARGET_NR_gethostname:
13226 {
13227 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
13228 if (name) {
13229 ret = get_errno(gethostname(name, arg2));
13230 unlock_user(name, arg1, arg2);
13231 } else {
13232 ret = -TARGET_EFAULT;
13233 }
13234 return ret;
13235 }
13236 #endif
13237 #ifdef TARGET_NR_atomic_cmpxchg_32
13238 case TARGET_NR_atomic_cmpxchg_32:
13239 {
13240 /* should use start_exclusive from main.c */
13241 abi_ulong mem_value;
13242 if (get_user_u32(mem_value, arg6)) {
13243 target_siginfo_t info;
13244 info.si_signo = SIGSEGV;
13245 info.si_errno = 0;
13246 info.si_code = TARGET_SEGV_MAPERR;
13247 info._sifields._sigfault._addr = arg6;
13248 queue_signal(cpu_env, info.si_signo, QEMU_SI_FAULT, &info);
13249 ret = 0xdeadbeef;
13250
13251 }
13252 if (mem_value == arg2)
13253 put_user_u32(arg1, arg6);
13254 return mem_value;
13255 }
13256 #endif
13257 #ifdef TARGET_NR_atomic_barrier
13258 case TARGET_NR_atomic_barrier:
13259 /* Like the kernel implementation and the
13260 qemu arm barrier, no-op this? */
13261 return 0;
13262 #endif
13263
13264 #ifdef TARGET_NR_timer_create
13265 case TARGET_NR_timer_create:
13266 {
13267 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
13268
13269 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
13270
13271 int clkid = arg1;
13272 int timer_index = next_free_host_timer();
13273
13274 if (timer_index < 0) {
13275 ret = -TARGET_EAGAIN;
13276 } else {
13277 timer_t *phtimer = g_posix_timers + timer_index;
13278
13279 if (arg2) {
13280 phost_sevp = &host_sevp;
13281 ret = target_to_host_sigevent(phost_sevp, arg2);
13282 if (ret != 0) {
13283 free_host_timer_slot(timer_index);
13284 return ret;
13285 }
13286 }
13287
13288 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
13289 if (ret) {
13290 free_host_timer_slot(timer_index);
13291 } else {
13292 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
13293 timer_delete(*phtimer);
13294 free_host_timer_slot(timer_index);
13295 return -TARGET_EFAULT;
13296 }
13297 }
13298 }
13299 return ret;
13300 }
13301 #endif
13302
13303 #ifdef TARGET_NR_timer_settime
13304 case TARGET_NR_timer_settime:
13305 {
13306 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
13307 * struct itimerspec * old_value */
13308 target_timer_t timerid = get_timer_id(arg1);
13309
13310 if (timerid < 0) {
13311 ret = timerid;
13312 } else if (arg3 == 0) {
13313 ret = -TARGET_EINVAL;
13314 } else {
13315 timer_t htimer = g_posix_timers[timerid];
13316 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13317
13318 if (target_to_host_itimerspec(&hspec_new, arg3)) {
13319 return -TARGET_EFAULT;
13320 }
13321 ret = get_errno(
13322 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13323 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
13324 return -TARGET_EFAULT;
13325 }
13326 }
13327 return ret;
13328 }
13329 #endif
13330
13331 #ifdef TARGET_NR_timer_settime64
13332 case TARGET_NR_timer_settime64:
13333 {
13334 target_timer_t timerid = get_timer_id(arg1);
13335
13336 if (timerid < 0) {
13337 ret = timerid;
13338 } else if (arg3 == 0) {
13339 ret = -TARGET_EINVAL;
13340 } else {
13341 timer_t htimer = g_posix_timers[timerid];
13342 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
13343
13344 if (target_to_host_itimerspec64(&hspec_new, arg3)) {
13345 return -TARGET_EFAULT;
13346 }
13347 ret = get_errno(
13348 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
13349 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
13350 return -TARGET_EFAULT;
13351 }
13352 }
13353 return ret;
13354 }
13355 #endif
13356
13357 #ifdef TARGET_NR_timer_gettime
13358 case TARGET_NR_timer_gettime:
13359 {
13360 /* args: timer_t timerid, struct itimerspec *curr_value */
13361 target_timer_t timerid = get_timer_id(arg1);
13362
13363 if (timerid < 0) {
13364 ret = timerid;
13365 } else if (!arg2) {
13366 ret = -TARGET_EFAULT;
13367 } else {
13368 timer_t htimer = g_posix_timers[timerid];
13369 struct itimerspec hspec;
13370 ret = get_errno(timer_gettime(htimer, &hspec));
13371
13372 if (host_to_target_itimerspec(arg2, &hspec)) {
13373 ret = -TARGET_EFAULT;
13374 }
13375 }
13376 return ret;
13377 }
13378 #endif
13379
13380 #ifdef TARGET_NR_timer_gettime64
13381 case TARGET_NR_timer_gettime64:
13382 {
13383 /* args: timer_t timerid, struct itimerspec64 *curr_value */
13384 target_timer_t timerid = get_timer_id(arg1);
13385
13386 if (timerid < 0) {
13387 ret = timerid;
13388 } else if (!arg2) {
13389 ret = -TARGET_EFAULT;
13390 } else {
13391 timer_t htimer = g_posix_timers[timerid];
13392 struct itimerspec hspec;
13393 ret = get_errno(timer_gettime(htimer, &hspec));
13394
13395 if (host_to_target_itimerspec64(arg2, &hspec)) {
13396 ret = -TARGET_EFAULT;
13397 }
13398 }
13399 return ret;
13400 }
13401 #endif
13402
13403 #ifdef TARGET_NR_timer_getoverrun
13404 case TARGET_NR_timer_getoverrun:
13405 {
13406 /* args: timer_t timerid */
13407 target_timer_t timerid = get_timer_id(arg1);
13408
13409 if (timerid < 0) {
13410 ret = timerid;
13411 } else {
13412 timer_t htimer = g_posix_timers[timerid];
13413 ret = get_errno(timer_getoverrun(htimer));
13414 }
13415 return ret;
13416 }
13417 #endif
13418
13419 #ifdef TARGET_NR_timer_delete
13420 case TARGET_NR_timer_delete:
13421 {
13422 /* args: timer_t timerid */
13423 target_timer_t timerid = get_timer_id(arg1);
13424
13425 if (timerid < 0) {
13426 ret = timerid;
13427 } else {
13428 timer_t htimer = g_posix_timers[timerid];
13429 ret = get_errno(timer_delete(htimer));
13430 free_host_timer_slot(timerid);
13431 }
13432 return ret;
13433 }
13434 #endif
13435
13436 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
13437 case TARGET_NR_timerfd_create:
13438 ret = get_errno(timerfd_create(arg1,
13439 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
13440 if (ret >= 0) {
13441 fd_trans_register(ret, &target_timerfd_trans);
13442 }
13443 return ret;
13444 #endif
13445
13446 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
13447 case TARGET_NR_timerfd_gettime:
13448 {
13449 struct itimerspec its_curr;
13450
13451 ret = get_errno(timerfd_gettime(arg1, &its_curr));
13452
13453 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
13454 return -TARGET_EFAULT;
13455 }
13456 }
13457 return ret;
13458 #endif
13459
13460 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
13461 case TARGET_NR_timerfd_gettime64:
13462 {
13463 struct itimerspec its_curr;
13464
13465 ret = get_errno(timerfd_gettime(arg1, &its_curr));
13466
13467 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
13468 return -TARGET_EFAULT;
13469 }
13470 }
13471 return ret;
13472 #endif
13473
13474 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
13475 case TARGET_NR_timerfd_settime:
13476 {
13477 struct itimerspec its_new, its_old, *p_new;
13478
13479 if (arg3) {
13480 if (target_to_host_itimerspec(&its_new, arg3)) {
13481 return -TARGET_EFAULT;
13482 }
13483 p_new = &its_new;
13484 } else {
13485 p_new = NULL;
13486 }
13487
13488 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13489
13490 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
13491 return -TARGET_EFAULT;
13492 }
13493 }
13494 return ret;
13495 #endif
13496
13497 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13498 case TARGET_NR_timerfd_settime64:
13499 {
13500 struct itimerspec its_new, its_old, *p_new;
13501
13502 if (arg3) {
13503 if (target_to_host_itimerspec64(&its_new, arg3)) {
13504 return -TARGET_EFAULT;
13505 }
13506 p_new = &its_new;
13507 } else {
13508 p_new = NULL;
13509 }
13510
13511 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13512
13513 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13514 return -TARGET_EFAULT;
13515 }
13516 }
13517 return ret;
13518 #endif
13519
13520 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13521 case TARGET_NR_ioprio_get:
13522 return get_errno(ioprio_get(arg1, arg2));
13523 #endif
13524
13525 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13526 case TARGET_NR_ioprio_set:
13527 return get_errno(ioprio_set(arg1, arg2, arg3));
13528 #endif
13529
13530 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13531 case TARGET_NR_setns:
13532 return get_errno(setns(arg1, arg2));
13533 #endif
13534 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13535 case TARGET_NR_unshare:
13536 return get_errno(unshare(arg1));
13537 #endif
13538 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13539 case TARGET_NR_kcmp:
13540 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13541 #endif
13542 #ifdef TARGET_NR_swapcontext
13543 case TARGET_NR_swapcontext:
13544 /* PowerPC specific. */
13545 return do_swapcontext(cpu_env, arg1, arg2, arg3);
13546 #endif
13547 #ifdef TARGET_NR_memfd_create
13548 case TARGET_NR_memfd_create:
13549 p = lock_user_string(arg1);
13550 if (!p) {
13551 return -TARGET_EFAULT;
13552 }
13553 ret = get_errno(memfd_create(p, arg2));
13554 fd_trans_unregister(ret);
13555 unlock_user(p, arg1, 0);
13556 return ret;
13557 #endif
13558 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13559 case TARGET_NR_membarrier:
13560 return get_errno(membarrier(arg1, arg2));
13561 #endif
13562
13563 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13564 case TARGET_NR_copy_file_range:
13565 {
13566 loff_t inoff, outoff;
13567 loff_t *pinoff = NULL, *poutoff = NULL;
13568
13569 if (arg2) {
13570 if (get_user_u64(inoff, arg2)) {
13571 return -TARGET_EFAULT;
13572 }
13573 pinoff = &inoff;
13574 }
13575 if (arg4) {
13576 if (get_user_u64(outoff, arg4)) {
13577 return -TARGET_EFAULT;
13578 }
13579 poutoff = &outoff;
13580 }
13581 /* Do not sign-extend the count parameter. */
13582 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13583 (abi_ulong)arg5, arg6));
13584 if (!is_error(ret) && ret > 0) {
13585 if (arg2) {
13586 if (put_user_u64(inoff, arg2)) {
13587 return -TARGET_EFAULT;
13588 }
13589 }
13590 if (arg4) {
13591 if (put_user_u64(outoff, arg4)) {
13592 return -TARGET_EFAULT;
13593 }
13594 }
13595 }
13596 }
13597 return ret;
13598 #endif
13599
13600 #if defined(TARGET_NR_pivot_root)
13601 case TARGET_NR_pivot_root:
13602 {
13603 void *p2;
13604 p = lock_user_string(arg1); /* new_root */
13605 p2 = lock_user_string(arg2); /* put_old */
13606 if (!p || !p2) {
13607 ret = -TARGET_EFAULT;
13608 } else {
13609 ret = get_errno(pivot_root(p, p2));
13610 }
13611 unlock_user(p2, arg2, 0);
13612 unlock_user(p, arg1, 0);
13613 }
13614 return ret;
13615 #endif
13616
13617 #if defined(TARGET_NR_riscv_hwprobe)
13618 case TARGET_NR_riscv_hwprobe:
13619 return do_riscv_hwprobe(cpu_env, arg1, arg2, arg3, arg4, arg5);
13620 #endif
13621
13622 default:
13623 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13624 return -TARGET_ENOSYS;
13625 }
13626 return ret;
13627 }
13628
13629 abi_long do_syscall(CPUArchState *cpu_env, int num, abi_long arg1,
13630 abi_long arg2, abi_long arg3, abi_long arg4,
13631 abi_long arg5, abi_long arg6, abi_long arg7,
13632 abi_long arg8)
13633 {
13634 CPUState *cpu = env_cpu(cpu_env);
13635 abi_long ret;
13636
13637 #ifdef DEBUG_ERESTARTSYS
13638 /* Debug-only code for exercising the syscall-restart code paths
13639 * in the per-architecture cpu main loops: restart every syscall
13640 * the guest makes once before letting it through.
13641 */
13642 {
13643 static bool flag;
13644 flag = !flag;
13645 if (flag) {
13646 return -QEMU_ERESTARTSYS;
13647 }
13648 }
13649 #endif
13650
13651 record_syscall_start(cpu, num, arg1,
13652 arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13653
13654 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13655 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13656 }
13657
13658 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13659 arg5, arg6, arg7, arg8);
13660
13661 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13662 print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13663 arg3, arg4, arg5, arg6);
13664 }
13665
13666 record_syscall_return(cpu, num, ret);
13667 return ret;
13668 }