4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
31 #include <sys/mount.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
38 #include <linux/capability.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
46 #include <sys/times.h>
49 #include <sys/statfs.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <linux/wireless.h>
59 #include <linux/icmp.h>
60 #include <linux/icmpv6.h>
61 #include <linux/if_tun.h>
62 #include <linux/in6.h>
63 #include <linux/errqueue.h>
64 #include <linux/random.h>
66 #include <sys/timerfd.h>
69 #include <sys/eventfd.h>
72 #include <sys/epoll.h>
75 #include "qemu/xattr.h"
77 #ifdef CONFIG_SENDFILE
78 #include <sys/sendfile.h>
80 #ifdef HAVE_SYS_KCOV_H
84 #define termios host_termios
85 #define winsize host_winsize
86 #define termio host_termio
87 #define sgttyb host_sgttyb /* same as target */
88 #define tchars host_tchars /* same as target */
89 #define ltchars host_ltchars /* same as target */
91 #include <linux/termios.h>
92 #include <linux/unistd.h>
93 #include <linux/cdrom.h>
94 #include <linux/hdreg.h>
95 #include <linux/soundcard.h>
97 #include <linux/mtio.h>
100 #if defined(CONFIG_FIEMAP)
101 #include <linux/fiemap.h>
103 #include <linux/fb.h>
104 #if defined(CONFIG_USBFS)
105 #include <linux/usbdevice_fs.h>
106 #include <linux/usb/ch9.h>
108 #include <linux/vt.h>
109 #include <linux/dm-ioctl.h>
110 #include <linux/reboot.h>
111 #include <linux/route.h>
112 #include <linux/filter.h>
113 #include <linux/blkpg.h>
114 #include <netpacket/packet.h>
115 #include <linux/netlink.h>
116 #include <linux/if_alg.h>
117 #include <linux/rtc.h>
118 #include <sound/asound.h>
120 #include <linux/btrfs.h>
123 #include <libdrm/drm.h>
124 #include <libdrm/i915_drm.h>
126 #include "linux_loop.h"
130 #include "user-internals.h"
132 #include "signal-common.h"
134 #include "user-mmap.h"
135 #include "user/safe-syscall.h"
136 #include "qemu/guest-random.h"
137 #include "qemu/selfmap.h"
138 #include "user/syscall-trace.h"
139 #include "special-errno.h"
140 #include "qapi/error.h"
141 #include "fd-trans.h"
145 #define CLONE_IO 0x80000000 /* Clone io context */
148 /* We can't directly call the host clone syscall, because this will
149 * badly confuse libc (breaking mutexes, for example). So we must
150 * divide clone flags into:
151 * * flag combinations that look like pthread_create()
152 * * flag combinations that look like fork()
153 * * flags we can implement within QEMU itself
154 * * flags we can't support and will return an error for
156 /* For thread creation, all these flags must be present; for
157 * fork, none must be present.
159 #define CLONE_THREAD_FLAGS \
160 (CLONE_VM | CLONE_FS | CLONE_FILES | \
161 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
163 /* These flags are ignored:
164 * CLONE_DETACHED is now ignored by the kernel;
165 * CLONE_IO is just an optimisation hint to the I/O scheduler
167 #define CLONE_IGNORED_FLAGS \
168 (CLONE_DETACHED | CLONE_IO)
170 /* Flags for fork which we can implement within QEMU itself */
171 #define CLONE_OPTIONAL_FORK_FLAGS \
172 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
173 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
175 /* Flags for thread creation which we can implement within QEMU itself */
176 #define CLONE_OPTIONAL_THREAD_FLAGS \
177 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
178 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
180 #define CLONE_INVALID_FORK_FLAGS \
181 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
183 #define CLONE_INVALID_THREAD_FLAGS \
184 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
185 CLONE_IGNORED_FLAGS))
187 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
188 * have almost all been allocated. We cannot support any of
189 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
190 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
191 * The checks against the invalid thread masks above will catch these.
192 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
195 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
196 * once. This exercises the codepaths for restart.
198 //#define DEBUG_ERESTARTSYS
200 //#include <linux/msdos_fs.h>
201 #define VFAT_IOCTL_READDIR_BOTH \
202 _IOC(_IOC_READ, 'r', 1, (sizeof(struct linux_dirent) + 256) * 2)
203 #define VFAT_IOCTL_READDIR_SHORT \
204 _IOC(_IOC_READ, 'r', 2, (sizeof(struct linux_dirent) + 256) * 2)
214 #define _syscall0(type,name) \
215 static type name (void) \
217 return syscall(__NR_##name); \
220 #define _syscall1(type,name,type1,arg1) \
221 static type name (type1 arg1) \
223 return syscall(__NR_##name, arg1); \
226 #define _syscall2(type,name,type1,arg1,type2,arg2) \
227 static type name (type1 arg1,type2 arg2) \
229 return syscall(__NR_##name, arg1, arg2); \
232 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
233 static type name (type1 arg1,type2 arg2,type3 arg3) \
235 return syscall(__NR_##name, arg1, arg2, arg3); \
238 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
239 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
241 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
244 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
246 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
248 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
252 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
253 type5,arg5,type6,arg6) \
254 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
257 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
261 #define __NR_sys_uname __NR_uname
262 #define __NR_sys_getcwd1 __NR_getcwd
263 #define __NR_sys_getdents __NR_getdents
264 #define __NR_sys_getdents64 __NR_getdents64
265 #define __NR_sys_getpriority __NR_getpriority
266 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
267 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
268 #define __NR_sys_syslog __NR_syslog
269 #if defined(__NR_futex)
270 # define __NR_sys_futex __NR_futex
272 #if defined(__NR_futex_time64)
273 # define __NR_sys_futex_time64 __NR_futex_time64
275 #define __NR_sys_inotify_init __NR_inotify_init
276 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
277 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
278 #define __NR_sys_statx __NR_statx
280 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
281 #define __NR__llseek __NR_lseek
284 /* Newer kernel ports have llseek() instead of _llseek() */
285 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
286 #define TARGET_NR__llseek TARGET_NR_llseek
289 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
290 #ifndef TARGET_O_NONBLOCK_MASK
291 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
294 #define __NR_sys_gettid __NR_gettid
295 _syscall0(int, sys_gettid
)
297 /* For the 64-bit guest on 32-bit host case we must emulate
298 * getdents using getdents64, because otherwise the host
299 * might hand us back more dirent records than we can fit
300 * into the guest buffer after structure format conversion.
301 * Otherwise we emulate getdents with getdents if the host has it.
303 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
304 #define EMULATE_GETDENTS_WITH_GETDENTS
307 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
308 _syscall3(int, sys_getdents
, uint
, fd
, struct linux_dirent
*, dirp
, uint
, count
);
310 #if (defined(TARGET_NR_getdents) && \
311 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
312 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
313 _syscall3(int, sys_getdents64
, uint
, fd
, struct linux_dirent64
*, dirp
, uint
, count
);
315 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
316 _syscall5(int, _llseek
, uint
, fd
, ulong
, hi
, ulong
, lo
,
317 loff_t
*, res
, uint
, wh
);
319 _syscall3(int, sys_rt_sigqueueinfo
, pid_t
, pid
, int, sig
, siginfo_t
*, uinfo
)
320 _syscall4(int, sys_rt_tgsigqueueinfo
, pid_t
, pid
, pid_t
, tid
, int, sig
,
322 _syscall3(int,sys_syslog
,int,type
,char*,bufp
,int,len
)
323 #ifdef __NR_exit_group
324 _syscall1(int,exit_group
,int,error_code
)
326 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
327 _syscall1(int,set_tid_address
,int *,tidptr
)
329 #if defined(__NR_futex)
330 _syscall6(int,sys_futex
,int *,uaddr
,int,op
,int,val
,
331 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
333 #if defined(__NR_futex_time64)
334 _syscall6(int,sys_futex_time64
,int *,uaddr
,int,op
,int,val
,
335 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
337 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
338 _syscall3(int, sys_sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
339 unsigned long *, user_mask_ptr
);
340 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
341 _syscall3(int, sys_sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
342 unsigned long *, user_mask_ptr
);
343 #define __NR_sys_getcpu __NR_getcpu
344 _syscall3(int, sys_getcpu
, unsigned *, cpu
, unsigned *, node
, void *, tcache
);
345 _syscall4(int, reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
347 _syscall2(int, capget
, struct __user_cap_header_struct
*, header
,
348 struct __user_cap_data_struct
*, data
);
349 _syscall2(int, capset
, struct __user_cap_header_struct
*, header
,
350 struct __user_cap_data_struct
*, data
);
351 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
352 _syscall2(int, ioprio_get
, int, which
, int, who
)
354 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
355 _syscall3(int, ioprio_set
, int, which
, int, who
, int, ioprio
)
357 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
358 _syscall3(int, getrandom
, void *, buf
, size_t, buflen
, unsigned int, flags
)
361 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
362 _syscall5(int, kcmp
, pid_t
, pid1
, pid_t
, pid2
, int, type
,
363 unsigned long, idx1
, unsigned long, idx2
)
367 * It is assumed that struct statx is architecture independent.
369 #if defined(TARGET_NR_statx) && defined(__NR_statx)
370 _syscall5(int, sys_statx
, int, dirfd
, const char *, pathname
, int, flags
,
371 unsigned int, mask
, struct target_statx
*, statxbuf
)
373 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
374 _syscall2(int, membarrier
, int, cmd
, int, flags
)
377 static const bitmask_transtbl fcntl_flags_tbl
[] = {
378 { TARGET_O_ACCMODE
, TARGET_O_WRONLY
, O_ACCMODE
, O_WRONLY
, },
379 { TARGET_O_ACCMODE
, TARGET_O_RDWR
, O_ACCMODE
, O_RDWR
, },
380 { TARGET_O_CREAT
, TARGET_O_CREAT
, O_CREAT
, O_CREAT
, },
381 { TARGET_O_EXCL
, TARGET_O_EXCL
, O_EXCL
, O_EXCL
, },
382 { TARGET_O_NOCTTY
, TARGET_O_NOCTTY
, O_NOCTTY
, O_NOCTTY
, },
383 { TARGET_O_TRUNC
, TARGET_O_TRUNC
, O_TRUNC
, O_TRUNC
, },
384 { TARGET_O_APPEND
, TARGET_O_APPEND
, O_APPEND
, O_APPEND
, },
385 { TARGET_O_NONBLOCK
, TARGET_O_NONBLOCK
, O_NONBLOCK
, O_NONBLOCK
, },
386 { TARGET_O_SYNC
, TARGET_O_DSYNC
, O_SYNC
, O_DSYNC
, },
387 { TARGET_O_SYNC
, TARGET_O_SYNC
, O_SYNC
, O_SYNC
, },
388 { TARGET_FASYNC
, TARGET_FASYNC
, FASYNC
, FASYNC
, },
389 { TARGET_O_DIRECTORY
, TARGET_O_DIRECTORY
, O_DIRECTORY
, O_DIRECTORY
, },
390 { TARGET_O_NOFOLLOW
, TARGET_O_NOFOLLOW
, O_NOFOLLOW
, O_NOFOLLOW
, },
391 #if defined(O_DIRECT)
392 { TARGET_O_DIRECT
, TARGET_O_DIRECT
, O_DIRECT
, O_DIRECT
, },
394 #if defined(O_NOATIME)
395 { TARGET_O_NOATIME
, TARGET_O_NOATIME
, O_NOATIME
, O_NOATIME
},
397 #if defined(O_CLOEXEC)
398 { TARGET_O_CLOEXEC
, TARGET_O_CLOEXEC
, O_CLOEXEC
, O_CLOEXEC
},
401 { TARGET_O_PATH
, TARGET_O_PATH
, O_PATH
, O_PATH
},
403 #if defined(O_TMPFILE)
404 { TARGET_O_TMPFILE
, TARGET_O_TMPFILE
, O_TMPFILE
, O_TMPFILE
},
406 /* Don't terminate the list prematurely on 64-bit host+guest. */
407 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
408 { TARGET_O_LARGEFILE
, TARGET_O_LARGEFILE
, O_LARGEFILE
, O_LARGEFILE
, },
413 _syscall2(int, sys_getcwd1
, char *, buf
, size_t, size
)
415 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
416 #if defined(__NR_utimensat)
417 #define __NR_sys_utimensat __NR_utimensat
418 _syscall4(int,sys_utimensat
,int,dirfd
,const char *,pathname
,
419 const struct timespec
*,tsp
,int,flags
)
421 static int sys_utimensat(int dirfd
, const char *pathname
,
422 const struct timespec times
[2], int flags
)
428 #endif /* TARGET_NR_utimensat */
430 #ifdef TARGET_NR_renameat2
431 #if defined(__NR_renameat2)
432 #define __NR_sys_renameat2 __NR_renameat2
433 _syscall5(int, sys_renameat2
, int, oldfd
, const char *, old
, int, newfd
,
434 const char *, new, unsigned int, flags
)
436 static int sys_renameat2(int oldfd
, const char *old
,
437 int newfd
, const char *new, int flags
)
440 return renameat(oldfd
, old
, newfd
, new);
446 #endif /* TARGET_NR_renameat2 */
448 #ifdef CONFIG_INOTIFY
449 #include <sys/inotify.h>
451 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
452 static int sys_inotify_init(void)
454 return (inotify_init());
457 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
458 static int sys_inotify_add_watch(int fd
,const char *pathname
, int32_t mask
)
460 return (inotify_add_watch(fd
, pathname
, mask
));
463 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
464 static int sys_inotify_rm_watch(int fd
, int32_t wd
)
466 return (inotify_rm_watch(fd
, wd
));
469 #ifdef CONFIG_INOTIFY1
470 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
471 static int sys_inotify_init1(int flags
)
473 return (inotify_init1(flags
));
478 /* Userspace can usually survive runtime without inotify */
479 #undef TARGET_NR_inotify_init
480 #undef TARGET_NR_inotify_init1
481 #undef TARGET_NR_inotify_add_watch
482 #undef TARGET_NR_inotify_rm_watch
483 #endif /* CONFIG_INOTIFY */
485 #if defined(TARGET_NR_prlimit64)
486 #ifndef __NR_prlimit64
487 # define __NR_prlimit64 -1
489 #define __NR_sys_prlimit64 __NR_prlimit64
490 /* The glibc rlimit structure may not be that used by the underlying syscall */
491 struct host_rlimit64
{
495 _syscall4(int, sys_prlimit64
, pid_t
, pid
, int, resource
,
496 const struct host_rlimit64
*, new_limit
,
497 struct host_rlimit64
*, old_limit
)
501 #if defined(TARGET_NR_timer_create)
502 /* Maximum of 32 active POSIX timers allowed at any one time. */
503 static timer_t g_posix_timers
[32] = { 0, } ;
505 static inline int next_free_host_timer(void)
508 /* FIXME: Does finding the next free slot require a lock? */
509 for (k
= 0; k
< ARRAY_SIZE(g_posix_timers
); k
++) {
510 if (g_posix_timers
[k
] == 0) {
511 g_posix_timers
[k
] = (timer_t
) 1;
519 static inline int host_to_target_errno(int host_errno
)
521 switch (host_errno
) {
522 #define E(X) case X: return TARGET_##X;
523 #include "errnos.c.inc"
530 static inline int target_to_host_errno(int target_errno
)
532 switch (target_errno
) {
533 #define E(X) case TARGET_##X: return X;
534 #include "errnos.c.inc"
541 static inline abi_long
get_errno(abi_long ret
)
544 return -host_to_target_errno(errno
);
549 const char *target_strerror(int err
)
551 if (err
== QEMU_ERESTARTSYS
) {
552 return "To be restarted";
554 if (err
== QEMU_ESIGRETURN
) {
555 return "Successful exit from sigreturn";
558 return strerror(target_to_host_errno(err
));
561 #define safe_syscall0(type, name) \
562 static type safe_##name(void) \
564 return safe_syscall(__NR_##name); \
567 #define safe_syscall1(type, name, type1, arg1) \
568 static type safe_##name(type1 arg1) \
570 return safe_syscall(__NR_##name, arg1); \
573 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
574 static type safe_##name(type1 arg1, type2 arg2) \
576 return safe_syscall(__NR_##name, arg1, arg2); \
579 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
580 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
582 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
585 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
587 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
589 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
592 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
593 type4, arg4, type5, arg5) \
594 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
597 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
600 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
601 type4, arg4, type5, arg5, type6, arg6) \
602 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
603 type5 arg5, type6 arg6) \
605 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
608 safe_syscall3(ssize_t
, read
, int, fd
, void *, buff
, size_t, count
)
609 safe_syscall3(ssize_t
, write
, int, fd
, const void *, buff
, size_t, count
)
610 safe_syscall4(int, openat
, int, dirfd
, const char *, pathname
, \
611 int, flags
, mode_t
, mode
)
612 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
613 safe_syscall4(pid_t
, wait4
, pid_t
, pid
, int *, status
, int, options
, \
614 struct rusage
*, rusage
)
616 safe_syscall5(int, waitid
, idtype_t
, idtype
, id_t
, id
, siginfo_t
*, infop
, \
617 int, options
, struct rusage
*, rusage
)
618 safe_syscall3(int, execve
, const char *, filename
, char **, argv
, char **, envp
)
619 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
620 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
621 safe_syscall6(int, pselect6
, int, nfds
, fd_set
*, readfds
, fd_set
*, writefds
, \
622 fd_set
*, exceptfds
, struct timespec
*, timeout
, void *, sig
)
624 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
625 safe_syscall5(int, ppoll
, struct pollfd
*, ufds
, unsigned int, nfds
,
626 struct timespec
*, tsp
, const sigset_t
*, sigmask
,
629 safe_syscall6(int, epoll_pwait
, int, epfd
, struct epoll_event
*, events
,
630 int, maxevents
, int, timeout
, const sigset_t
*, sigmask
,
632 #if defined(__NR_futex)
633 safe_syscall6(int,futex
,int *,uaddr
,int,op
,int,val
, \
634 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
636 #if defined(__NR_futex_time64)
637 safe_syscall6(int,futex_time64
,int *,uaddr
,int,op
,int,val
, \
638 const struct timespec
*,timeout
,int *,uaddr2
,int,val3
)
640 safe_syscall2(int, rt_sigsuspend
, sigset_t
*, newset
, size_t, sigsetsize
)
641 safe_syscall2(int, kill
, pid_t
, pid
, int, sig
)
642 safe_syscall2(int, tkill
, int, tid
, int, sig
)
643 safe_syscall3(int, tgkill
, int, tgid
, int, pid
, int, sig
)
644 safe_syscall3(ssize_t
, readv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
645 safe_syscall3(ssize_t
, writev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
)
646 safe_syscall5(ssize_t
, preadv
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
647 unsigned long, pos_l
, unsigned long, pos_h
)
648 safe_syscall5(ssize_t
, pwritev
, int, fd
, const struct iovec
*, iov
, int, iovcnt
,
649 unsigned long, pos_l
, unsigned long, pos_h
)
650 safe_syscall3(int, connect
, int, fd
, const struct sockaddr
*, addr
,
652 safe_syscall6(ssize_t
, sendto
, int, fd
, const void *, buf
, size_t, len
,
653 int, flags
, const struct sockaddr
*, addr
, socklen_t
, addrlen
)
654 safe_syscall6(ssize_t
, recvfrom
, int, fd
, void *, buf
, size_t, len
,
655 int, flags
, struct sockaddr
*, addr
, socklen_t
*, addrlen
)
656 safe_syscall3(ssize_t
, sendmsg
, int, fd
, const struct msghdr
*, msg
, int, flags
)
657 safe_syscall3(ssize_t
, recvmsg
, int, fd
, struct msghdr
*, msg
, int, flags
)
658 safe_syscall2(int, flock
, int, fd
, int, operation
)
659 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
660 safe_syscall4(int, rt_sigtimedwait
, const sigset_t
*, these
, siginfo_t
*, uinfo
,
661 const struct timespec
*, uts
, size_t, sigsetsize
)
663 safe_syscall4(int, accept4
, int, fd
, struct sockaddr
*, addr
, socklen_t
*, len
,
665 #if defined(TARGET_NR_nanosleep)
666 safe_syscall2(int, nanosleep
, const struct timespec
*, req
,
667 struct timespec
*, rem
)
669 #if defined(TARGET_NR_clock_nanosleep) || \
670 defined(TARGET_NR_clock_nanosleep_time64)
671 safe_syscall4(int, clock_nanosleep
, const clockid_t
, clock
, int, flags
,
672 const struct timespec
*, req
, struct timespec
*, rem
)
676 safe_syscall5(int, ipc
, int, call
, long, first
, long, second
, long, third
,
679 safe_syscall6(int, ipc
, int, call
, long, first
, long, second
, long, third
,
680 void *, ptr
, long, fifth
)
684 safe_syscall4(int, msgsnd
, int, msgid
, const void *, msgp
, size_t, sz
,
688 safe_syscall5(int, msgrcv
, int, msgid
, void *, msgp
, size_t, sz
,
689 long, msgtype
, int, flags
)
691 #ifdef __NR_semtimedop
692 safe_syscall4(int, semtimedop
, int, semid
, struct sembuf
*, tsops
,
693 unsigned, nsops
, const struct timespec
*, timeout
)
695 #if defined(TARGET_NR_mq_timedsend) || \
696 defined(TARGET_NR_mq_timedsend_time64)
697 safe_syscall5(int, mq_timedsend
, int, mqdes
, const char *, msg_ptr
,
698 size_t, len
, unsigned, prio
, const struct timespec
*, timeout
)
700 #if defined(TARGET_NR_mq_timedreceive) || \
701 defined(TARGET_NR_mq_timedreceive_time64)
702 safe_syscall5(int, mq_timedreceive
, int, mqdes
, char *, msg_ptr
,
703 size_t, len
, unsigned *, prio
, const struct timespec
*, timeout
)
705 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
706 safe_syscall6(ssize_t
, copy_file_range
, int, infd
, loff_t
*, pinoff
,
707 int, outfd
, loff_t
*, poutoff
, size_t, length
,
711 /* We do ioctl like this rather than via safe_syscall3 to preserve the
712 * "third argument might be integer or pointer or not present" behaviour of
715 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
716 /* Similarly for fcntl. Note that callers must always:
717 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
718 * use the flock64 struct rather than unsuffixed flock
719 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
722 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
724 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
727 static inline int host_to_target_sock_type(int host_type
)
731 switch (host_type
& 0xf /* SOCK_TYPE_MASK */) {
733 target_type
= TARGET_SOCK_DGRAM
;
736 target_type
= TARGET_SOCK_STREAM
;
739 target_type
= host_type
& 0xf /* SOCK_TYPE_MASK */;
743 #if defined(SOCK_CLOEXEC)
744 if (host_type
& SOCK_CLOEXEC
) {
745 target_type
|= TARGET_SOCK_CLOEXEC
;
749 #if defined(SOCK_NONBLOCK)
750 if (host_type
& SOCK_NONBLOCK
) {
751 target_type
|= TARGET_SOCK_NONBLOCK
;
758 static abi_ulong target_brk
;
759 static abi_ulong target_original_brk
;
760 static abi_ulong brk_page
;
762 void target_set_brk(abi_ulong new_brk
)
764 target_original_brk
= target_brk
= HOST_PAGE_ALIGN(new_brk
);
765 brk_page
= HOST_PAGE_ALIGN(target_brk
);
768 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
769 #define DEBUGF_BRK(message, args...)
771 /* do_brk() must return target values and target errnos. */
772 abi_long
do_brk(abi_ulong new_brk
)
774 abi_long mapped_addr
;
775 abi_ulong new_alloc_size
;
777 /* brk pointers are always untagged */
779 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx
") -> ", new_brk
);
782 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (!new_brk)\n", target_brk
);
785 if (new_brk
< target_original_brk
) {
786 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk < target_original_brk)\n",
791 /* If the new brk is less than the highest page reserved to the
792 * target heap allocation, set it and we're almost done... */
793 if (new_brk
<= brk_page
) {
794 /* Heap contents are initialized to zero, as for anonymous
796 if (new_brk
> target_brk
) {
797 memset(g2h_untagged(target_brk
), 0, new_brk
- target_brk
);
799 target_brk
= new_brk
;
800 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (new_brk <= brk_page)\n", target_brk
);
804 /* We need to allocate more memory after the brk... Note that
805 * we don't use MAP_FIXED because that will map over the top of
806 * any existing mapping (like the one with the host libc or qemu
807 * itself); instead we treat "mapped but at wrong address" as
808 * a failure and unmap again.
810 new_alloc_size
= HOST_PAGE_ALIGN(new_brk
- brk_page
);
811 mapped_addr
= get_errno(target_mmap(brk_page
, new_alloc_size
,
812 PROT_READ
|PROT_WRITE
,
813 MAP_ANON
|MAP_PRIVATE
, 0, 0));
815 if (mapped_addr
== brk_page
) {
816 /* Heap contents are initialized to zero, as for anonymous
817 * mapped pages. Technically the new pages are already
818 * initialized to zero since they *are* anonymous mapped
819 * pages, however we have to take care with the contents that
820 * come from the remaining part of the previous page: it may
821 * contains garbage data due to a previous heap usage (grown
823 memset(g2h_untagged(target_brk
), 0, brk_page
- target_brk
);
825 target_brk
= new_brk
;
826 brk_page
= HOST_PAGE_ALIGN(target_brk
);
827 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr == brk_page)\n",
830 } else if (mapped_addr
!= -1) {
831 /* Mapped but at wrong address, meaning there wasn't actually
832 * enough space for this brk.
834 target_munmap(mapped_addr
, new_alloc_size
);
836 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (mapped_addr != -1)\n", target_brk
);
839 DEBUGF_BRK(TARGET_ABI_FMT_lx
" (otherwise)\n", target_brk
);
842 #if defined(TARGET_ALPHA)
843 /* We (partially) emulate OSF/1 on Alpha, which requires we
844 return a proper errno, not an unchanged brk value. */
845 return -TARGET_ENOMEM
;
847 /* For everything else, return the previous break. */
851 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
852 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
853 static inline abi_long
copy_from_user_fdset(fd_set
*fds
,
854 abi_ulong target_fds_addr
,
858 abi_ulong b
, *target_fds
;
860 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
861 if (!(target_fds
= lock_user(VERIFY_READ
,
863 sizeof(abi_ulong
) * nw
,
865 return -TARGET_EFAULT
;
869 for (i
= 0; i
< nw
; i
++) {
870 /* grab the abi_ulong */
871 __get_user(b
, &target_fds
[i
]);
872 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
873 /* check the bit inside the abi_ulong */
880 unlock_user(target_fds
, target_fds_addr
, 0);
885 static inline abi_ulong
copy_from_user_fdset_ptr(fd_set
*fds
, fd_set
**fds_ptr
,
886 abi_ulong target_fds_addr
,
889 if (target_fds_addr
) {
890 if (copy_from_user_fdset(fds
, target_fds_addr
, n
))
891 return -TARGET_EFAULT
;
899 static inline abi_long
copy_to_user_fdset(abi_ulong target_fds_addr
,
905 abi_ulong
*target_fds
;
907 nw
= DIV_ROUND_UP(n
, TARGET_ABI_BITS
);
908 if (!(target_fds
= lock_user(VERIFY_WRITE
,
910 sizeof(abi_ulong
) * nw
,
912 return -TARGET_EFAULT
;
915 for (i
= 0; i
< nw
; i
++) {
917 for (j
= 0; j
< TARGET_ABI_BITS
; j
++) {
918 v
|= ((abi_ulong
)(FD_ISSET(k
, fds
) != 0) << j
);
921 __put_user(v
, &target_fds
[i
]);
924 unlock_user(target_fds
, target_fds_addr
, sizeof(abi_ulong
) * nw
);
930 #if defined(__alpha__)
936 static inline abi_long
host_to_target_clock_t(long ticks
)
938 #if HOST_HZ == TARGET_HZ
941 return ((int64_t)ticks
* TARGET_HZ
) / HOST_HZ
;
945 static inline abi_long
host_to_target_rusage(abi_ulong target_addr
,
946 const struct rusage
*rusage
)
948 struct target_rusage
*target_rusage
;
950 if (!lock_user_struct(VERIFY_WRITE
, target_rusage
, target_addr
, 0))
951 return -TARGET_EFAULT
;
952 target_rusage
->ru_utime
.tv_sec
= tswapal(rusage
->ru_utime
.tv_sec
);
953 target_rusage
->ru_utime
.tv_usec
= tswapal(rusage
->ru_utime
.tv_usec
);
954 target_rusage
->ru_stime
.tv_sec
= tswapal(rusage
->ru_stime
.tv_sec
);
955 target_rusage
->ru_stime
.tv_usec
= tswapal(rusage
->ru_stime
.tv_usec
);
956 target_rusage
->ru_maxrss
= tswapal(rusage
->ru_maxrss
);
957 target_rusage
->ru_ixrss
= tswapal(rusage
->ru_ixrss
);
958 target_rusage
->ru_idrss
= tswapal(rusage
->ru_idrss
);
959 target_rusage
->ru_isrss
= tswapal(rusage
->ru_isrss
);
960 target_rusage
->ru_minflt
= tswapal(rusage
->ru_minflt
);
961 target_rusage
->ru_majflt
= tswapal(rusage
->ru_majflt
);
962 target_rusage
->ru_nswap
= tswapal(rusage
->ru_nswap
);
963 target_rusage
->ru_inblock
= tswapal(rusage
->ru_inblock
);
964 target_rusage
->ru_oublock
= tswapal(rusage
->ru_oublock
);
965 target_rusage
->ru_msgsnd
= tswapal(rusage
->ru_msgsnd
);
966 target_rusage
->ru_msgrcv
= tswapal(rusage
->ru_msgrcv
);
967 target_rusage
->ru_nsignals
= tswapal(rusage
->ru_nsignals
);
968 target_rusage
->ru_nvcsw
= tswapal(rusage
->ru_nvcsw
);
969 target_rusage
->ru_nivcsw
= tswapal(rusage
->ru_nivcsw
);
970 unlock_user_struct(target_rusage
, target_addr
, 1);
975 #ifdef TARGET_NR_setrlimit
976 static inline rlim_t
target_to_host_rlim(abi_ulong target_rlim
)
978 abi_ulong target_rlim_swap
;
981 target_rlim_swap
= tswapal(target_rlim
);
982 if (target_rlim_swap
== TARGET_RLIM_INFINITY
)
983 return RLIM_INFINITY
;
985 result
= target_rlim_swap
;
986 if (target_rlim_swap
!= (rlim_t
)result
)
987 return RLIM_INFINITY
;
993 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
994 static inline abi_ulong
host_to_target_rlim(rlim_t rlim
)
996 abi_ulong target_rlim_swap
;
999 if (rlim
== RLIM_INFINITY
|| rlim
!= (abi_long
)rlim
)
1000 target_rlim_swap
= TARGET_RLIM_INFINITY
;
1002 target_rlim_swap
= rlim
;
1003 result
= tswapal(target_rlim_swap
);
1009 static inline int target_to_host_resource(int code
)
1012 case TARGET_RLIMIT_AS
:
1014 case TARGET_RLIMIT_CORE
:
1016 case TARGET_RLIMIT_CPU
:
1018 case TARGET_RLIMIT_DATA
:
1020 case TARGET_RLIMIT_FSIZE
:
1021 return RLIMIT_FSIZE
;
1022 case TARGET_RLIMIT_LOCKS
:
1023 return RLIMIT_LOCKS
;
1024 case TARGET_RLIMIT_MEMLOCK
:
1025 return RLIMIT_MEMLOCK
;
1026 case TARGET_RLIMIT_MSGQUEUE
:
1027 return RLIMIT_MSGQUEUE
;
1028 case TARGET_RLIMIT_NICE
:
1030 case TARGET_RLIMIT_NOFILE
:
1031 return RLIMIT_NOFILE
;
1032 case TARGET_RLIMIT_NPROC
:
1033 return RLIMIT_NPROC
;
1034 case TARGET_RLIMIT_RSS
:
1036 case TARGET_RLIMIT_RTPRIO
:
1037 return RLIMIT_RTPRIO
;
1038 case TARGET_RLIMIT_SIGPENDING
:
1039 return RLIMIT_SIGPENDING
;
1040 case TARGET_RLIMIT_STACK
:
1041 return RLIMIT_STACK
;
1047 static inline abi_long
copy_from_user_timeval(struct timeval
*tv
,
1048 abi_ulong target_tv_addr
)
1050 struct target_timeval
*target_tv
;
1052 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1)) {
1053 return -TARGET_EFAULT
;
1056 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1057 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1059 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1064 static inline abi_long
copy_to_user_timeval(abi_ulong target_tv_addr
,
1065 const struct timeval
*tv
)
1067 struct target_timeval
*target_tv
;
1069 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0)) {
1070 return -TARGET_EFAULT
;
1073 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1074 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1076 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1081 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1082 static inline abi_long
copy_from_user_timeval64(struct timeval
*tv
,
1083 abi_ulong target_tv_addr
)
1085 struct target__kernel_sock_timeval
*target_tv
;
1087 if (!lock_user_struct(VERIFY_READ
, target_tv
, target_tv_addr
, 1)) {
1088 return -TARGET_EFAULT
;
1091 __get_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1092 __get_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1094 unlock_user_struct(target_tv
, target_tv_addr
, 0);
1100 static inline abi_long
copy_to_user_timeval64(abi_ulong target_tv_addr
,
1101 const struct timeval
*tv
)
1103 struct target__kernel_sock_timeval
*target_tv
;
1105 if (!lock_user_struct(VERIFY_WRITE
, target_tv
, target_tv_addr
, 0)) {
1106 return -TARGET_EFAULT
;
1109 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1110 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1112 unlock_user_struct(target_tv
, target_tv_addr
, 1);
1117 #if defined(TARGET_NR_futex) || \
1118 defined(TARGET_NR_rt_sigtimedwait) || \
1119 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1120 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1121 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1122 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1123 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1124 defined(TARGET_NR_timer_settime) || \
1125 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1126 static inline abi_long
target_to_host_timespec(struct timespec
*host_ts
,
1127 abi_ulong target_addr
)
1129 struct target_timespec
*target_ts
;
1131 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1)) {
1132 return -TARGET_EFAULT
;
1134 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1135 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1136 unlock_user_struct(target_ts
, target_addr
, 0);
1141 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1142 defined(TARGET_NR_timer_settime64) || \
1143 defined(TARGET_NR_mq_timedsend_time64) || \
1144 defined(TARGET_NR_mq_timedreceive_time64) || \
1145 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1146 defined(TARGET_NR_clock_nanosleep_time64) || \
1147 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1148 defined(TARGET_NR_utimensat) || \
1149 defined(TARGET_NR_utimensat_time64) || \
1150 defined(TARGET_NR_semtimedop_time64) || \
1151 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1152 static inline abi_long
target_to_host_timespec64(struct timespec
*host_ts
,
1153 abi_ulong target_addr
)
1155 struct target__kernel_timespec
*target_ts
;
1157 if (!lock_user_struct(VERIFY_READ
, target_ts
, target_addr
, 1)) {
1158 return -TARGET_EFAULT
;
1160 __get_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1161 __get_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1162 /* in 32bit mode, this drops the padding */
1163 host_ts
->tv_nsec
= (long)(abi_long
)host_ts
->tv_nsec
;
1164 unlock_user_struct(target_ts
, target_addr
, 0);
1169 static inline abi_long
host_to_target_timespec(abi_ulong target_addr
,
1170 struct timespec
*host_ts
)
1172 struct target_timespec
*target_ts
;
1174 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0)) {
1175 return -TARGET_EFAULT
;
1177 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1178 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1179 unlock_user_struct(target_ts
, target_addr
, 1);
1183 static inline abi_long
host_to_target_timespec64(abi_ulong target_addr
,
1184 struct timespec
*host_ts
)
1186 struct target__kernel_timespec
*target_ts
;
1188 if (!lock_user_struct(VERIFY_WRITE
, target_ts
, target_addr
, 0)) {
1189 return -TARGET_EFAULT
;
1191 __put_user(host_ts
->tv_sec
, &target_ts
->tv_sec
);
1192 __put_user(host_ts
->tv_nsec
, &target_ts
->tv_nsec
);
1193 unlock_user_struct(target_ts
, target_addr
, 1);
1197 #if defined(TARGET_NR_gettimeofday)
1198 static inline abi_long
copy_to_user_timezone(abi_ulong target_tz_addr
,
1199 struct timezone
*tz
)
1201 struct target_timezone
*target_tz
;
1203 if (!lock_user_struct(VERIFY_WRITE
, target_tz
, target_tz_addr
, 1)) {
1204 return -TARGET_EFAULT
;
1207 __put_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1208 __put_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1210 unlock_user_struct(target_tz
, target_tz_addr
, 1);
1216 #if defined(TARGET_NR_settimeofday)
1217 static inline abi_long
copy_from_user_timezone(struct timezone
*tz
,
1218 abi_ulong target_tz_addr
)
1220 struct target_timezone
*target_tz
;
1222 if (!lock_user_struct(VERIFY_READ
, target_tz
, target_tz_addr
, 1)) {
1223 return -TARGET_EFAULT
;
1226 __get_user(tz
->tz_minuteswest
, &target_tz
->tz_minuteswest
);
1227 __get_user(tz
->tz_dsttime
, &target_tz
->tz_dsttime
);
1229 unlock_user_struct(target_tz
, target_tz_addr
, 0);
1235 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1238 static inline abi_long
copy_from_user_mq_attr(struct mq_attr
*attr
,
1239 abi_ulong target_mq_attr_addr
)
1241 struct target_mq_attr
*target_mq_attr
;
1243 if (!lock_user_struct(VERIFY_READ
, target_mq_attr
,
1244 target_mq_attr_addr
, 1))
1245 return -TARGET_EFAULT
;
1247 __get_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1248 __get_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1249 __get_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1250 __get_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1252 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 0);
1257 static inline abi_long
copy_to_user_mq_attr(abi_ulong target_mq_attr_addr
,
1258 const struct mq_attr
*attr
)
1260 struct target_mq_attr
*target_mq_attr
;
1262 if (!lock_user_struct(VERIFY_WRITE
, target_mq_attr
,
1263 target_mq_attr_addr
, 0))
1264 return -TARGET_EFAULT
;
1266 __put_user(attr
->mq_flags
, &target_mq_attr
->mq_flags
);
1267 __put_user(attr
->mq_maxmsg
, &target_mq_attr
->mq_maxmsg
);
1268 __put_user(attr
->mq_msgsize
, &target_mq_attr
->mq_msgsize
);
1269 __put_user(attr
->mq_curmsgs
, &target_mq_attr
->mq_curmsgs
);
1271 unlock_user_struct(target_mq_attr
, target_mq_attr_addr
, 1);
1277 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1278 /* do_select() must return target values and target errnos. */
1279 static abi_long
do_select(int n
,
1280 abi_ulong rfd_addr
, abi_ulong wfd_addr
,
1281 abi_ulong efd_addr
, abi_ulong target_tv_addr
)
1283 fd_set rfds
, wfds
, efds
;
1284 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1286 struct timespec ts
, *ts_ptr
;
1289 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1293 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1297 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1302 if (target_tv_addr
) {
1303 if (copy_from_user_timeval(&tv
, target_tv_addr
))
1304 return -TARGET_EFAULT
;
1305 ts
.tv_sec
= tv
.tv_sec
;
1306 ts
.tv_nsec
= tv
.tv_usec
* 1000;
1312 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1315 if (!is_error(ret
)) {
1316 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
))
1317 return -TARGET_EFAULT
;
1318 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
))
1319 return -TARGET_EFAULT
;
1320 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
))
1321 return -TARGET_EFAULT
;
1323 if (target_tv_addr
) {
1324 tv
.tv_sec
= ts
.tv_sec
;
1325 tv
.tv_usec
= ts
.tv_nsec
/ 1000;
1326 if (copy_to_user_timeval(target_tv_addr
, &tv
)) {
1327 return -TARGET_EFAULT
;
1335 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1336 static abi_long
do_old_select(abi_ulong arg1
)
1338 struct target_sel_arg_struct
*sel
;
1339 abi_ulong inp
, outp
, exp
, tvp
;
1342 if (!lock_user_struct(VERIFY_READ
, sel
, arg1
, 1)) {
1343 return -TARGET_EFAULT
;
1346 nsel
= tswapal(sel
->n
);
1347 inp
= tswapal(sel
->inp
);
1348 outp
= tswapal(sel
->outp
);
1349 exp
= tswapal(sel
->exp
);
1350 tvp
= tswapal(sel
->tvp
);
1352 unlock_user_struct(sel
, arg1
, 0);
1354 return do_select(nsel
, inp
, outp
, exp
, tvp
);
1359 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1360 static abi_long
do_pselect6(abi_long arg1
, abi_long arg2
, abi_long arg3
,
1361 abi_long arg4
, abi_long arg5
, abi_long arg6
,
1364 abi_long rfd_addr
, wfd_addr
, efd_addr
, n
, ts_addr
;
1365 fd_set rfds
, wfds
, efds
;
1366 fd_set
*rfds_ptr
, *wfds_ptr
, *efds_ptr
;
1367 struct timespec ts
, *ts_ptr
;
1371 * The 6th arg is actually two args smashed together,
1372 * so we cannot use the C library.
1380 abi_ulong arg_sigset
, arg_sigsize
, *arg7
;
1381 target_sigset_t
*target_sigset
;
1389 ret
= copy_from_user_fdset_ptr(&rfds
, &rfds_ptr
, rfd_addr
, n
);
1393 ret
= copy_from_user_fdset_ptr(&wfds
, &wfds_ptr
, wfd_addr
, n
);
1397 ret
= copy_from_user_fdset_ptr(&efds
, &efds_ptr
, efd_addr
, n
);
1403 * This takes a timespec, and not a timeval, so we cannot
1404 * use the do_select() helper ...
1408 if (target_to_host_timespec64(&ts
, ts_addr
)) {
1409 return -TARGET_EFAULT
;
1412 if (target_to_host_timespec(&ts
, ts_addr
)) {
1413 return -TARGET_EFAULT
;
1421 /* Extract the two packed args for the sigset */
1424 sig
.size
= SIGSET_T_SIZE
;
1426 arg7
= lock_user(VERIFY_READ
, arg6
, sizeof(*arg7
) * 2, 1);
1428 return -TARGET_EFAULT
;
1430 arg_sigset
= tswapal(arg7
[0]);
1431 arg_sigsize
= tswapal(arg7
[1]);
1432 unlock_user(arg7
, arg6
, 0);
1436 if (arg_sigsize
!= sizeof(*target_sigset
)) {
1437 /* Like the kernel, we enforce correct size sigsets */
1438 return -TARGET_EINVAL
;
1440 target_sigset
= lock_user(VERIFY_READ
, arg_sigset
,
1441 sizeof(*target_sigset
), 1);
1442 if (!target_sigset
) {
1443 return -TARGET_EFAULT
;
1445 target_to_host_sigset(&set
, target_sigset
);
1446 unlock_user(target_sigset
, arg_sigset
, 0);
1454 ret
= get_errno(safe_pselect6(n
, rfds_ptr
, wfds_ptr
, efds_ptr
,
1457 if (!is_error(ret
)) {
1458 if (rfd_addr
&& copy_to_user_fdset(rfd_addr
, &rfds
, n
)) {
1459 return -TARGET_EFAULT
;
1461 if (wfd_addr
&& copy_to_user_fdset(wfd_addr
, &wfds
, n
)) {
1462 return -TARGET_EFAULT
;
1464 if (efd_addr
&& copy_to_user_fdset(efd_addr
, &efds
, n
)) {
1465 return -TARGET_EFAULT
;
1468 if (ts_addr
&& host_to_target_timespec64(ts_addr
, &ts
)) {
1469 return -TARGET_EFAULT
;
1472 if (ts_addr
&& host_to_target_timespec(ts_addr
, &ts
)) {
1473 return -TARGET_EFAULT
;
1481 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1482 defined(TARGET_NR_ppoll_time64)
1483 static abi_long
do_ppoll(abi_long arg1
, abi_long arg2
, abi_long arg3
,
1484 abi_long arg4
, abi_long arg5
, bool ppoll
, bool time64
)
1486 struct target_pollfd
*target_pfd
;
1487 unsigned int nfds
= arg2
;
1495 if (nfds
> (INT_MAX
/ sizeof(struct target_pollfd
))) {
1496 return -TARGET_EINVAL
;
1498 target_pfd
= lock_user(VERIFY_WRITE
, arg1
,
1499 sizeof(struct target_pollfd
) * nfds
, 1);
1501 return -TARGET_EFAULT
;
1504 pfd
= alloca(sizeof(struct pollfd
) * nfds
);
1505 for (i
= 0; i
< nfds
; i
++) {
1506 pfd
[i
].fd
= tswap32(target_pfd
[i
].fd
);
1507 pfd
[i
].events
= tswap16(target_pfd
[i
].events
);
1511 struct timespec _timeout_ts
, *timeout_ts
= &_timeout_ts
;
1512 target_sigset_t
*target_set
;
1513 sigset_t _set
, *set
= &_set
;
1517 if (target_to_host_timespec64(timeout_ts
, arg3
)) {
1518 unlock_user(target_pfd
, arg1
, 0);
1519 return -TARGET_EFAULT
;
1522 if (target_to_host_timespec(timeout_ts
, arg3
)) {
1523 unlock_user(target_pfd
, arg1
, 0);
1524 return -TARGET_EFAULT
;
1532 if (arg5
!= sizeof(target_sigset_t
)) {
1533 unlock_user(target_pfd
, arg1
, 0);
1534 return -TARGET_EINVAL
;
1537 target_set
= lock_user(VERIFY_READ
, arg4
,
1538 sizeof(target_sigset_t
), 1);
1540 unlock_user(target_pfd
, arg1
, 0);
1541 return -TARGET_EFAULT
;
1543 target_to_host_sigset(set
, target_set
);
1548 ret
= get_errno(safe_ppoll(pfd
, nfds
, timeout_ts
,
1549 set
, SIGSET_T_SIZE
));
1551 if (!is_error(ret
) && arg3
) {
1553 if (host_to_target_timespec64(arg3
, timeout_ts
)) {
1554 return -TARGET_EFAULT
;
1557 if (host_to_target_timespec(arg3
, timeout_ts
)) {
1558 return -TARGET_EFAULT
;
1563 unlock_user(target_set
, arg4
, 0);
1566 struct timespec ts
, *pts
;
1569 /* Convert ms to secs, ns */
1570 ts
.tv_sec
= arg3
/ 1000;
1571 ts
.tv_nsec
= (arg3
% 1000) * 1000000LL;
1574 /* -ve poll() timeout means "infinite" */
1577 ret
= get_errno(safe_ppoll(pfd
, nfds
, pts
, NULL
, 0));
1580 if (!is_error(ret
)) {
1581 for (i
= 0; i
< nfds
; i
++) {
1582 target_pfd
[i
].revents
= tswap16(pfd
[i
].revents
);
1585 unlock_user(target_pfd
, arg1
, sizeof(struct target_pollfd
) * nfds
);
1590 static abi_long
do_pipe2(int host_pipe
[], int flags
)
1593 return pipe2(host_pipe
, flags
);
1599 static abi_long
do_pipe(void *cpu_env
, abi_ulong pipedes
,
1600 int flags
, int is_pipe2
)
1604 ret
= flags
? do_pipe2(host_pipe
, flags
) : pipe(host_pipe
);
1607 return get_errno(ret
);
1609 /* Several targets have special calling conventions for the original
1610 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1612 #if defined(TARGET_ALPHA)
1613 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = host_pipe
[1];
1614 return host_pipe
[0];
1615 #elif defined(TARGET_MIPS)
1616 ((CPUMIPSState
*)cpu_env
)->active_tc
.gpr
[3] = host_pipe
[1];
1617 return host_pipe
[0];
1618 #elif defined(TARGET_SH4)
1619 ((CPUSH4State
*)cpu_env
)->gregs
[1] = host_pipe
[1];
1620 return host_pipe
[0];
1621 #elif defined(TARGET_SPARC)
1622 ((CPUSPARCState
*)cpu_env
)->regwptr
[1] = host_pipe
[1];
1623 return host_pipe
[0];
1627 if (put_user_s32(host_pipe
[0], pipedes
)
1628 || put_user_s32(host_pipe
[1], pipedes
+ sizeof(host_pipe
[0])))
1629 return -TARGET_EFAULT
;
1630 return get_errno(ret
);
1633 static inline abi_long
target_to_host_ip_mreq(struct ip_mreqn
*mreqn
,
1634 abi_ulong target_addr
,
1637 struct target_ip_mreqn
*target_smreqn
;
1639 target_smreqn
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1641 return -TARGET_EFAULT
;
1642 mreqn
->imr_multiaddr
.s_addr
= target_smreqn
->imr_multiaddr
.s_addr
;
1643 mreqn
->imr_address
.s_addr
= target_smreqn
->imr_address
.s_addr
;
1644 if (len
== sizeof(struct target_ip_mreqn
))
1645 mreqn
->imr_ifindex
= tswapal(target_smreqn
->imr_ifindex
);
1646 unlock_user(target_smreqn
, target_addr
, 0);
1651 static inline abi_long
target_to_host_sockaddr(int fd
, struct sockaddr
*addr
,
1652 abi_ulong target_addr
,
1655 const socklen_t unix_maxlen
= sizeof (struct sockaddr_un
);
1656 sa_family_t sa_family
;
1657 struct target_sockaddr
*target_saddr
;
1659 if (fd_trans_target_to_host_addr(fd
)) {
1660 return fd_trans_target_to_host_addr(fd
)(addr
, target_addr
, len
);
1663 target_saddr
= lock_user(VERIFY_READ
, target_addr
, len
, 1);
1665 return -TARGET_EFAULT
;
1667 sa_family
= tswap16(target_saddr
->sa_family
);
1669 /* Oops. The caller might send a incomplete sun_path; sun_path
1670 * must be terminated by \0 (see the manual page), but
1671 * unfortunately it is quite common to specify sockaddr_un
1672 * length as "strlen(x->sun_path)" while it should be
1673 * "strlen(...) + 1". We'll fix that here if needed.
1674 * Linux kernel has a similar feature.
1677 if (sa_family
== AF_UNIX
) {
1678 if (len
< unix_maxlen
&& len
> 0) {
1679 char *cp
= (char*)target_saddr
;
1681 if ( cp
[len
-1] && !cp
[len
] )
1684 if (len
> unix_maxlen
)
1688 memcpy(addr
, target_saddr
, len
);
1689 addr
->sa_family
= sa_family
;
1690 if (sa_family
== AF_NETLINK
) {
1691 struct sockaddr_nl
*nladdr
;
1693 nladdr
= (struct sockaddr_nl
*)addr
;
1694 nladdr
->nl_pid
= tswap32(nladdr
->nl_pid
);
1695 nladdr
->nl_groups
= tswap32(nladdr
->nl_groups
);
1696 } else if (sa_family
== AF_PACKET
) {
1697 struct target_sockaddr_ll
*lladdr
;
1699 lladdr
= (struct target_sockaddr_ll
*)addr
;
1700 lladdr
->sll_ifindex
= tswap32(lladdr
->sll_ifindex
);
1701 lladdr
->sll_hatype
= tswap16(lladdr
->sll_hatype
);
1703 unlock_user(target_saddr
, target_addr
, 0);
1708 static inline abi_long
host_to_target_sockaddr(abi_ulong target_addr
,
1709 struct sockaddr
*addr
,
1712 struct target_sockaddr
*target_saddr
;
1719 target_saddr
= lock_user(VERIFY_WRITE
, target_addr
, len
, 0);
1721 return -TARGET_EFAULT
;
1722 memcpy(target_saddr
, addr
, len
);
1723 if (len
>= offsetof(struct target_sockaddr
, sa_family
) +
1724 sizeof(target_saddr
->sa_family
)) {
1725 target_saddr
->sa_family
= tswap16(addr
->sa_family
);
1727 if (addr
->sa_family
== AF_NETLINK
&&
1728 len
>= sizeof(struct target_sockaddr_nl
)) {
1729 struct target_sockaddr_nl
*target_nl
=
1730 (struct target_sockaddr_nl
*)target_saddr
;
1731 target_nl
->nl_pid
= tswap32(target_nl
->nl_pid
);
1732 target_nl
->nl_groups
= tswap32(target_nl
->nl_groups
);
1733 } else if (addr
->sa_family
== AF_PACKET
) {
1734 struct sockaddr_ll
*target_ll
= (struct sockaddr_ll
*)target_saddr
;
1735 target_ll
->sll_ifindex
= tswap32(target_ll
->sll_ifindex
);
1736 target_ll
->sll_hatype
= tswap16(target_ll
->sll_hatype
);
1737 } else if (addr
->sa_family
== AF_INET6
&&
1738 len
>= sizeof(struct target_sockaddr_in6
)) {
1739 struct target_sockaddr_in6
*target_in6
=
1740 (struct target_sockaddr_in6
*)target_saddr
;
1741 target_in6
->sin6_scope_id
= tswap16(target_in6
->sin6_scope_id
);
1743 unlock_user(target_saddr
, target_addr
, len
);
1748 static inline abi_long
target_to_host_cmsg(struct msghdr
*msgh
,
1749 struct target_msghdr
*target_msgh
)
1751 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1752 abi_long msg_controllen
;
1753 abi_ulong target_cmsg_addr
;
1754 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1755 socklen_t space
= 0;
1757 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1758 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1760 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1761 target_cmsg
= lock_user(VERIFY_READ
, target_cmsg_addr
, msg_controllen
, 1);
1762 target_cmsg_start
= target_cmsg
;
1764 return -TARGET_EFAULT
;
1766 while (cmsg
&& target_cmsg
) {
1767 void *data
= CMSG_DATA(cmsg
);
1768 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1770 int len
= tswapal(target_cmsg
->cmsg_len
)
1771 - sizeof(struct target_cmsghdr
);
1773 space
+= CMSG_SPACE(len
);
1774 if (space
> msgh
->msg_controllen
) {
1775 space
-= CMSG_SPACE(len
);
1776 /* This is a QEMU bug, since we allocated the payload
1777 * area ourselves (unlike overflow in host-to-target
1778 * conversion, which is just the guest giving us a buffer
1779 * that's too small). It can't happen for the payload types
1780 * we currently support; if it becomes an issue in future
1781 * we would need to improve our allocation strategy to
1782 * something more intelligent than "twice the size of the
1783 * target buffer we're reading from".
1785 qemu_log_mask(LOG_UNIMP
,
1786 ("Unsupported ancillary data %d/%d: "
1787 "unhandled msg size\n"),
1788 tswap32(target_cmsg
->cmsg_level
),
1789 tswap32(target_cmsg
->cmsg_type
));
1793 if (tswap32(target_cmsg
->cmsg_level
) == TARGET_SOL_SOCKET
) {
1794 cmsg
->cmsg_level
= SOL_SOCKET
;
1796 cmsg
->cmsg_level
= tswap32(target_cmsg
->cmsg_level
);
1798 cmsg
->cmsg_type
= tswap32(target_cmsg
->cmsg_type
);
1799 cmsg
->cmsg_len
= CMSG_LEN(len
);
1801 if (cmsg
->cmsg_level
== SOL_SOCKET
&& cmsg
->cmsg_type
== SCM_RIGHTS
) {
1802 int *fd
= (int *)data
;
1803 int *target_fd
= (int *)target_data
;
1804 int i
, numfds
= len
/ sizeof(int);
1806 for (i
= 0; i
< numfds
; i
++) {
1807 __get_user(fd
[i
], target_fd
+ i
);
1809 } else if (cmsg
->cmsg_level
== SOL_SOCKET
1810 && cmsg
->cmsg_type
== SCM_CREDENTIALS
) {
1811 struct ucred
*cred
= (struct ucred
*)data
;
1812 struct target_ucred
*target_cred
=
1813 (struct target_ucred
*)target_data
;
1815 __get_user(cred
->pid
, &target_cred
->pid
);
1816 __get_user(cred
->uid
, &target_cred
->uid
);
1817 __get_user(cred
->gid
, &target_cred
->gid
);
1819 qemu_log_mask(LOG_UNIMP
, "Unsupported ancillary data: %d/%d\n",
1820 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
1821 memcpy(data
, target_data
, len
);
1824 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
1825 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
1828 unlock_user(target_cmsg
, target_cmsg_addr
, 0);
1830 msgh
->msg_controllen
= space
;
1834 static inline abi_long
host_to_target_cmsg(struct target_msghdr
*target_msgh
,
1835 struct msghdr
*msgh
)
1837 struct cmsghdr
*cmsg
= CMSG_FIRSTHDR(msgh
);
1838 abi_long msg_controllen
;
1839 abi_ulong target_cmsg_addr
;
1840 struct target_cmsghdr
*target_cmsg
, *target_cmsg_start
;
1841 socklen_t space
= 0;
1843 msg_controllen
= tswapal(target_msgh
->msg_controllen
);
1844 if (msg_controllen
< sizeof (struct target_cmsghdr
))
1846 target_cmsg_addr
= tswapal(target_msgh
->msg_control
);
1847 target_cmsg
= lock_user(VERIFY_WRITE
, target_cmsg_addr
, msg_controllen
, 0);
1848 target_cmsg_start
= target_cmsg
;
1850 return -TARGET_EFAULT
;
1852 while (cmsg
&& target_cmsg
) {
1853 void *data
= CMSG_DATA(cmsg
);
1854 void *target_data
= TARGET_CMSG_DATA(target_cmsg
);
1856 int len
= cmsg
->cmsg_len
- sizeof(struct cmsghdr
);
1857 int tgt_len
, tgt_space
;
1859 /* We never copy a half-header but may copy half-data;
1860 * this is Linux's behaviour in put_cmsg(). Note that
1861 * truncation here is a guest problem (which we report
1862 * to the guest via the CTRUNC bit), unlike truncation
1863 * in target_to_host_cmsg, which is a QEMU bug.
1865 if (msg_controllen
< sizeof(struct target_cmsghdr
)) {
1866 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1870 if (cmsg
->cmsg_level
== SOL_SOCKET
) {
1871 target_cmsg
->cmsg_level
= tswap32(TARGET_SOL_SOCKET
);
1873 target_cmsg
->cmsg_level
= tswap32(cmsg
->cmsg_level
);
1875 target_cmsg
->cmsg_type
= tswap32(cmsg
->cmsg_type
);
1877 /* Payload types which need a different size of payload on
1878 * the target must adjust tgt_len here.
1881 switch (cmsg
->cmsg_level
) {
1883 switch (cmsg
->cmsg_type
) {
1885 tgt_len
= sizeof(struct target_timeval
);
1895 if (msg_controllen
< TARGET_CMSG_LEN(tgt_len
)) {
1896 target_msgh
->msg_flags
|= tswap32(MSG_CTRUNC
);
1897 tgt_len
= msg_controllen
- sizeof(struct target_cmsghdr
);
1900 /* We must now copy-and-convert len bytes of payload
1901 * into tgt_len bytes of destination space. Bear in mind
1902 * that in both source and destination we may be dealing
1903 * with a truncated value!
1905 switch (cmsg
->cmsg_level
) {
1907 switch (cmsg
->cmsg_type
) {
1910 int *fd
= (int *)data
;
1911 int *target_fd
= (int *)target_data
;
1912 int i
, numfds
= tgt_len
/ sizeof(int);
1914 for (i
= 0; i
< numfds
; i
++) {
1915 __put_user(fd
[i
], target_fd
+ i
);
1921 struct timeval
*tv
= (struct timeval
*)data
;
1922 struct target_timeval
*target_tv
=
1923 (struct target_timeval
*)target_data
;
1925 if (len
!= sizeof(struct timeval
) ||
1926 tgt_len
!= sizeof(struct target_timeval
)) {
1930 /* copy struct timeval to target */
1931 __put_user(tv
->tv_sec
, &target_tv
->tv_sec
);
1932 __put_user(tv
->tv_usec
, &target_tv
->tv_usec
);
1935 case SCM_CREDENTIALS
:
1937 struct ucred
*cred
= (struct ucred
*)data
;
1938 struct target_ucred
*target_cred
=
1939 (struct target_ucred
*)target_data
;
1941 __put_user(cred
->pid
, &target_cred
->pid
);
1942 __put_user(cred
->uid
, &target_cred
->uid
);
1943 __put_user(cred
->gid
, &target_cred
->gid
);
1952 switch (cmsg
->cmsg_type
) {
1955 uint32_t *v
= (uint32_t *)data
;
1956 uint32_t *t_int
= (uint32_t *)target_data
;
1958 if (len
!= sizeof(uint32_t) ||
1959 tgt_len
!= sizeof(uint32_t)) {
1962 __put_user(*v
, t_int
);
1968 struct sock_extended_err ee
;
1969 struct sockaddr_in offender
;
1971 struct errhdr_t
*errh
= (struct errhdr_t
*)data
;
1972 struct errhdr_t
*target_errh
=
1973 (struct errhdr_t
*)target_data
;
1975 if (len
!= sizeof(struct errhdr_t
) ||
1976 tgt_len
!= sizeof(struct errhdr_t
)) {
1979 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
1980 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
1981 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
1982 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
1983 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
1984 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
1985 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
1986 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
1987 (void *) &errh
->offender
, sizeof(errh
->offender
));
1996 switch (cmsg
->cmsg_type
) {
1999 uint32_t *v
= (uint32_t *)data
;
2000 uint32_t *t_int
= (uint32_t *)target_data
;
2002 if (len
!= sizeof(uint32_t) ||
2003 tgt_len
!= sizeof(uint32_t)) {
2006 __put_user(*v
, t_int
);
2012 struct sock_extended_err ee
;
2013 struct sockaddr_in6 offender
;
2015 struct errhdr6_t
*errh
= (struct errhdr6_t
*)data
;
2016 struct errhdr6_t
*target_errh
=
2017 (struct errhdr6_t
*)target_data
;
2019 if (len
!= sizeof(struct errhdr6_t
) ||
2020 tgt_len
!= sizeof(struct errhdr6_t
)) {
2023 __put_user(errh
->ee
.ee_errno
, &target_errh
->ee
.ee_errno
);
2024 __put_user(errh
->ee
.ee_origin
, &target_errh
->ee
.ee_origin
);
2025 __put_user(errh
->ee
.ee_type
, &target_errh
->ee
.ee_type
);
2026 __put_user(errh
->ee
.ee_code
, &target_errh
->ee
.ee_code
);
2027 __put_user(errh
->ee
.ee_pad
, &target_errh
->ee
.ee_pad
);
2028 __put_user(errh
->ee
.ee_info
, &target_errh
->ee
.ee_info
);
2029 __put_user(errh
->ee
.ee_data
, &target_errh
->ee
.ee_data
);
2030 host_to_target_sockaddr((unsigned long) &target_errh
->offender
,
2031 (void *) &errh
->offender
, sizeof(errh
->offender
));
2041 qemu_log_mask(LOG_UNIMP
, "Unsupported ancillary data: %d/%d\n",
2042 cmsg
->cmsg_level
, cmsg
->cmsg_type
);
2043 memcpy(target_data
, data
, MIN(len
, tgt_len
));
2044 if (tgt_len
> len
) {
2045 memset(target_data
+ len
, 0, tgt_len
- len
);
2049 target_cmsg
->cmsg_len
= tswapal(TARGET_CMSG_LEN(tgt_len
));
2050 tgt_space
= TARGET_CMSG_SPACE(tgt_len
);
2051 if (msg_controllen
< tgt_space
) {
2052 tgt_space
= msg_controllen
;
2054 msg_controllen
-= tgt_space
;
2056 cmsg
= CMSG_NXTHDR(msgh
, cmsg
);
2057 target_cmsg
= TARGET_CMSG_NXTHDR(target_msgh
, target_cmsg
,
2060 unlock_user(target_cmsg
, target_cmsg_addr
, space
);
2062 target_msgh
->msg_controllen
= tswapal(space
);
2066 /* do_setsockopt() Must return target values and target errnos. */
2067 static abi_long
do_setsockopt(int sockfd
, int level
, int optname
,
2068 abi_ulong optval_addr
, socklen_t optlen
)
2072 struct ip_mreqn
*ip_mreq
;
2073 struct ip_mreq_source
*ip_mreq_source
;
2078 /* TCP and UDP options all take an 'int' value. */
2079 if (optlen
< sizeof(uint32_t))
2080 return -TARGET_EINVAL
;
2082 if (get_user_u32(val
, optval_addr
))
2083 return -TARGET_EFAULT
;
2084 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2091 case IP_ROUTER_ALERT
:
2095 case IP_MTU_DISCOVER
:
2102 case IP_MULTICAST_TTL
:
2103 case IP_MULTICAST_LOOP
:
2105 if (optlen
>= sizeof(uint32_t)) {
2106 if (get_user_u32(val
, optval_addr
))
2107 return -TARGET_EFAULT
;
2108 } else if (optlen
>= 1) {
2109 if (get_user_u8(val
, optval_addr
))
2110 return -TARGET_EFAULT
;
2112 ret
= get_errno(setsockopt(sockfd
, level
, optname
, &val
, sizeof(val
)));
2114 case IP_ADD_MEMBERSHIP
:
2115 case IP_DROP_MEMBERSHIP
:
2116 if (optlen
< sizeof (struct target_ip_mreq
) ||
2117 optlen
> sizeof (struct target_ip_mreqn
))
2118 return -TARGET_EINVAL
;
2120 ip_mreq
= (struct ip_mreqn
*) alloca(optlen
);
2121 target_to_host_ip_mreq(ip_mreq
, optval_addr
, optlen
);
2122 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq
, optlen
));
2125 case IP_BLOCK_SOURCE
:
2126 case IP_UNBLOCK_SOURCE
:
2127 case IP_ADD_SOURCE_MEMBERSHIP
:
2128 case IP_DROP_SOURCE_MEMBERSHIP
:
2129 if (optlen
!= sizeof (struct target_ip_mreq_source
))
2130 return -TARGET_EINVAL
;
2132 ip_mreq_source
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2133 if (!ip_mreq_source
) {
2134 return -TARGET_EFAULT
;
2136 ret
= get_errno(setsockopt(sockfd
, level
, optname
, ip_mreq_source
, optlen
));
2137 unlock_user (ip_mreq_source
, optval_addr
, 0);
2146 case IPV6_MTU_DISCOVER
:
2149 case IPV6_RECVPKTINFO
:
2150 case IPV6_UNICAST_HOPS
:
2151 case IPV6_MULTICAST_HOPS
:
2152 case IPV6_MULTICAST_LOOP
:
2154 case IPV6_RECVHOPLIMIT
:
2155 case IPV6_2292HOPLIMIT
:
2158 case IPV6_2292PKTINFO
:
2159 case IPV6_RECVTCLASS
:
2160 case IPV6_RECVRTHDR
:
2161 case IPV6_2292RTHDR
:
2162 case IPV6_RECVHOPOPTS
:
2163 case IPV6_2292HOPOPTS
:
2164 case IPV6_RECVDSTOPTS
:
2165 case IPV6_2292DSTOPTS
:
2167 case IPV6_ADDR_PREFERENCES
:
2168 #ifdef IPV6_RECVPATHMTU
2169 case IPV6_RECVPATHMTU
:
2171 #ifdef IPV6_TRANSPARENT
2172 case IPV6_TRANSPARENT
:
2174 #ifdef IPV6_FREEBIND
2177 #ifdef IPV6_RECVORIGDSTADDR
2178 case IPV6_RECVORIGDSTADDR
:
2181 if (optlen
< sizeof(uint32_t)) {
2182 return -TARGET_EINVAL
;
2184 if (get_user_u32(val
, optval_addr
)) {
2185 return -TARGET_EFAULT
;
2187 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2188 &val
, sizeof(val
)));
2192 struct in6_pktinfo pki
;
2194 if (optlen
< sizeof(pki
)) {
2195 return -TARGET_EINVAL
;
2198 if (copy_from_user(&pki
, optval_addr
, sizeof(pki
))) {
2199 return -TARGET_EFAULT
;
2202 pki
.ipi6_ifindex
= tswap32(pki
.ipi6_ifindex
);
2204 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2205 &pki
, sizeof(pki
)));
2208 case IPV6_ADD_MEMBERSHIP
:
2209 case IPV6_DROP_MEMBERSHIP
:
2211 struct ipv6_mreq ipv6mreq
;
2213 if (optlen
< sizeof(ipv6mreq
)) {
2214 return -TARGET_EINVAL
;
2217 if (copy_from_user(&ipv6mreq
, optval_addr
, sizeof(ipv6mreq
))) {
2218 return -TARGET_EFAULT
;
2221 ipv6mreq
.ipv6mr_interface
= tswap32(ipv6mreq
.ipv6mr_interface
);
2223 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2224 &ipv6mreq
, sizeof(ipv6mreq
)));
2235 struct icmp6_filter icmp6f
;
2237 if (optlen
> sizeof(icmp6f
)) {
2238 optlen
= sizeof(icmp6f
);
2241 if (copy_from_user(&icmp6f
, optval_addr
, optlen
)) {
2242 return -TARGET_EFAULT
;
2245 for (val
= 0; val
< 8; val
++) {
2246 icmp6f
.data
[val
] = tswap32(icmp6f
.data
[val
]);
2249 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2261 /* those take an u32 value */
2262 if (optlen
< sizeof(uint32_t)) {
2263 return -TARGET_EINVAL
;
2266 if (get_user_u32(val
, optval_addr
)) {
2267 return -TARGET_EFAULT
;
2269 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2270 &val
, sizeof(val
)));
2277 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2282 char *alg_key
= g_malloc(optlen
);
2285 return -TARGET_ENOMEM
;
2287 if (copy_from_user(alg_key
, optval_addr
, optlen
)) {
2289 return -TARGET_EFAULT
;
2291 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2296 case ALG_SET_AEAD_AUTHSIZE
:
2298 ret
= get_errno(setsockopt(sockfd
, level
, optname
,
2307 case TARGET_SOL_SOCKET
:
2309 case TARGET_SO_RCVTIMEO
:
2313 optname
= SO_RCVTIMEO
;
2316 if (optlen
!= sizeof(struct target_timeval
)) {
2317 return -TARGET_EINVAL
;
2320 if (copy_from_user_timeval(&tv
, optval_addr
)) {
2321 return -TARGET_EFAULT
;
2324 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
2328 case TARGET_SO_SNDTIMEO
:
2329 optname
= SO_SNDTIMEO
;
2331 case TARGET_SO_ATTACH_FILTER
:
2333 struct target_sock_fprog
*tfprog
;
2334 struct target_sock_filter
*tfilter
;
2335 struct sock_fprog fprog
;
2336 struct sock_filter
*filter
;
2339 if (optlen
!= sizeof(*tfprog
)) {
2340 return -TARGET_EINVAL
;
2342 if (!lock_user_struct(VERIFY_READ
, tfprog
, optval_addr
, 0)) {
2343 return -TARGET_EFAULT
;
2345 if (!lock_user_struct(VERIFY_READ
, tfilter
,
2346 tswapal(tfprog
->filter
), 0)) {
2347 unlock_user_struct(tfprog
, optval_addr
, 1);
2348 return -TARGET_EFAULT
;
2351 fprog
.len
= tswap16(tfprog
->len
);
2352 filter
= g_try_new(struct sock_filter
, fprog
.len
);
2353 if (filter
== NULL
) {
2354 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
2355 unlock_user_struct(tfprog
, optval_addr
, 1);
2356 return -TARGET_ENOMEM
;
2358 for (i
= 0; i
< fprog
.len
; i
++) {
2359 filter
[i
].code
= tswap16(tfilter
[i
].code
);
2360 filter
[i
].jt
= tfilter
[i
].jt
;
2361 filter
[i
].jf
= tfilter
[i
].jf
;
2362 filter
[i
].k
= tswap32(tfilter
[i
].k
);
2364 fprog
.filter
= filter
;
2366 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
,
2367 SO_ATTACH_FILTER
, &fprog
, sizeof(fprog
)));
2370 unlock_user_struct(tfilter
, tfprog
->filter
, 1);
2371 unlock_user_struct(tfprog
, optval_addr
, 1);
2374 case TARGET_SO_BINDTODEVICE
:
2376 char *dev_ifname
, *addr_ifname
;
2378 if (optlen
> IFNAMSIZ
- 1) {
2379 optlen
= IFNAMSIZ
- 1;
2381 dev_ifname
= lock_user(VERIFY_READ
, optval_addr
, optlen
, 1);
2383 return -TARGET_EFAULT
;
2385 optname
= SO_BINDTODEVICE
;
2386 addr_ifname
= alloca(IFNAMSIZ
);
2387 memcpy(addr_ifname
, dev_ifname
, optlen
);
2388 addr_ifname
[optlen
] = 0;
2389 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
,
2390 addr_ifname
, optlen
));
2391 unlock_user (dev_ifname
, optval_addr
, 0);
2394 case TARGET_SO_LINGER
:
2397 struct target_linger
*tlg
;
2399 if (optlen
!= sizeof(struct target_linger
)) {
2400 return -TARGET_EINVAL
;
2402 if (!lock_user_struct(VERIFY_READ
, tlg
, optval_addr
, 1)) {
2403 return -TARGET_EFAULT
;
2405 __get_user(lg
.l_onoff
, &tlg
->l_onoff
);
2406 __get_user(lg
.l_linger
, &tlg
->l_linger
);
2407 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, SO_LINGER
,
2409 unlock_user_struct(tlg
, optval_addr
, 0);
2412 /* Options with 'int' argument. */
2413 case TARGET_SO_DEBUG
:
2416 case TARGET_SO_REUSEADDR
:
2417 optname
= SO_REUSEADDR
;
2420 case TARGET_SO_REUSEPORT
:
2421 optname
= SO_REUSEPORT
;
2424 case TARGET_SO_TYPE
:
2427 case TARGET_SO_ERROR
:
2430 case TARGET_SO_DONTROUTE
:
2431 optname
= SO_DONTROUTE
;
2433 case TARGET_SO_BROADCAST
:
2434 optname
= SO_BROADCAST
;
2436 case TARGET_SO_SNDBUF
:
2437 optname
= SO_SNDBUF
;
2439 case TARGET_SO_SNDBUFFORCE
:
2440 optname
= SO_SNDBUFFORCE
;
2442 case TARGET_SO_RCVBUF
:
2443 optname
= SO_RCVBUF
;
2445 case TARGET_SO_RCVBUFFORCE
:
2446 optname
= SO_RCVBUFFORCE
;
2448 case TARGET_SO_KEEPALIVE
:
2449 optname
= SO_KEEPALIVE
;
2451 case TARGET_SO_OOBINLINE
:
2452 optname
= SO_OOBINLINE
;
2454 case TARGET_SO_NO_CHECK
:
2455 optname
= SO_NO_CHECK
;
2457 case TARGET_SO_PRIORITY
:
2458 optname
= SO_PRIORITY
;
2461 case TARGET_SO_BSDCOMPAT
:
2462 optname
= SO_BSDCOMPAT
;
2465 case TARGET_SO_PASSCRED
:
2466 optname
= SO_PASSCRED
;
2468 case TARGET_SO_PASSSEC
:
2469 optname
= SO_PASSSEC
;
2471 case TARGET_SO_TIMESTAMP
:
2472 optname
= SO_TIMESTAMP
;
2474 case TARGET_SO_RCVLOWAT
:
2475 optname
= SO_RCVLOWAT
;
2480 if (optlen
< sizeof(uint32_t))
2481 return -TARGET_EINVAL
;
2483 if (get_user_u32(val
, optval_addr
))
2484 return -TARGET_EFAULT
;
2485 ret
= get_errno(setsockopt(sockfd
, SOL_SOCKET
, optname
, &val
, sizeof(val
)));
2490 case NETLINK_PKTINFO
:
2491 case NETLINK_ADD_MEMBERSHIP
:
2492 case NETLINK_DROP_MEMBERSHIP
:
2493 case NETLINK_BROADCAST_ERROR
:
2494 case NETLINK_NO_ENOBUFS
:
2495 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2496 case NETLINK_LISTEN_ALL_NSID
:
2497 case NETLINK_CAP_ACK
:
2498 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2499 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2500 case NETLINK_EXT_ACK
:
2501 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2502 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2503 case NETLINK_GET_STRICT_CHK
:
2504 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2510 if (optlen
< sizeof(uint32_t)) {
2511 return -TARGET_EINVAL
;
2513 if (get_user_u32(val
, optval_addr
)) {
2514 return -TARGET_EFAULT
;
2516 ret
= get_errno(setsockopt(sockfd
, SOL_NETLINK
, optname
, &val
,
2519 #endif /* SOL_NETLINK */
2522 qemu_log_mask(LOG_UNIMP
, "Unsupported setsockopt level=%d optname=%d\n",
2524 ret
= -TARGET_ENOPROTOOPT
;
2529 /* do_getsockopt() Must return target values and target errnos. */
2530 static abi_long
do_getsockopt(int sockfd
, int level
, int optname
,
2531 abi_ulong optval_addr
, abi_ulong optlen
)
2538 case TARGET_SOL_SOCKET
:
2541 /* These don't just return a single integer */
2542 case TARGET_SO_PEERNAME
:
2544 case TARGET_SO_RCVTIMEO
: {
2548 optname
= SO_RCVTIMEO
;
2551 if (get_user_u32(len
, optlen
)) {
2552 return -TARGET_EFAULT
;
2555 return -TARGET_EINVAL
;
2559 ret
= get_errno(getsockopt(sockfd
, level
, optname
,
2564 if (len
> sizeof(struct target_timeval
)) {
2565 len
= sizeof(struct target_timeval
);
2567 if (copy_to_user_timeval(optval_addr
, &tv
)) {
2568 return -TARGET_EFAULT
;
2570 if (put_user_u32(len
, optlen
)) {
2571 return -TARGET_EFAULT
;
2575 case TARGET_SO_SNDTIMEO
:
2576 optname
= SO_SNDTIMEO
;
2578 case TARGET_SO_PEERCRED
: {
2581 struct target_ucred
*tcr
;
2583 if (get_user_u32(len
, optlen
)) {
2584 return -TARGET_EFAULT
;
2587 return -TARGET_EINVAL
;
2591 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERCRED
,
2599 if (!lock_user_struct(VERIFY_WRITE
, tcr
, optval_addr
, 0)) {
2600 return -TARGET_EFAULT
;
2602 __put_user(cr
.pid
, &tcr
->pid
);
2603 __put_user(cr
.uid
, &tcr
->uid
);
2604 __put_user(cr
.gid
, &tcr
->gid
);
2605 unlock_user_struct(tcr
, optval_addr
, 1);
2606 if (put_user_u32(len
, optlen
)) {
2607 return -TARGET_EFAULT
;
2611 case TARGET_SO_PEERSEC
: {
2614 if (get_user_u32(len
, optlen
)) {
2615 return -TARGET_EFAULT
;
2618 return -TARGET_EINVAL
;
2620 name
= lock_user(VERIFY_WRITE
, optval_addr
, len
, 0);
2622 return -TARGET_EFAULT
;
2625 ret
= get_errno(getsockopt(sockfd
, level
, SO_PEERSEC
,
2627 if (put_user_u32(lv
, optlen
)) {
2628 ret
= -TARGET_EFAULT
;
2630 unlock_user(name
, optval_addr
, lv
);
2633 case TARGET_SO_LINGER
:
2637 struct target_linger
*tlg
;
2639 if (get_user_u32(len
, optlen
)) {
2640 return -TARGET_EFAULT
;
2643 return -TARGET_EINVAL
;
2647 ret
= get_errno(getsockopt(sockfd
, level
, SO_LINGER
,
2655 if (!lock_user_struct(VERIFY_WRITE
, tlg
, optval_addr
, 0)) {
2656 return -TARGET_EFAULT
;
2658 __put_user(lg
.l_onoff
, &tlg
->l_onoff
);
2659 __put_user(lg
.l_linger
, &tlg
->l_linger
);
2660 unlock_user_struct(tlg
, optval_addr
, 1);
2661 if (put_user_u32(len
, optlen
)) {
2662 return -TARGET_EFAULT
;
2666 /* Options with 'int' argument. */
2667 case TARGET_SO_DEBUG
:
2670 case TARGET_SO_REUSEADDR
:
2671 optname
= SO_REUSEADDR
;
2674 case TARGET_SO_REUSEPORT
:
2675 optname
= SO_REUSEPORT
;
2678 case TARGET_SO_TYPE
:
2681 case TARGET_SO_ERROR
:
2684 case TARGET_SO_DONTROUTE
:
2685 optname
= SO_DONTROUTE
;
2687 case TARGET_SO_BROADCAST
:
2688 optname
= SO_BROADCAST
;
2690 case TARGET_SO_SNDBUF
:
2691 optname
= SO_SNDBUF
;
2693 case TARGET_SO_RCVBUF
:
2694 optname
= SO_RCVBUF
;
2696 case TARGET_SO_KEEPALIVE
:
2697 optname
= SO_KEEPALIVE
;
2699 case TARGET_SO_OOBINLINE
:
2700 optname
= SO_OOBINLINE
;
2702 case TARGET_SO_NO_CHECK
:
2703 optname
= SO_NO_CHECK
;
2705 case TARGET_SO_PRIORITY
:
2706 optname
= SO_PRIORITY
;
2709 case TARGET_SO_BSDCOMPAT
:
2710 optname
= SO_BSDCOMPAT
;
2713 case TARGET_SO_PASSCRED
:
2714 optname
= SO_PASSCRED
;
2716 case TARGET_SO_TIMESTAMP
:
2717 optname
= SO_TIMESTAMP
;
2719 case TARGET_SO_RCVLOWAT
:
2720 optname
= SO_RCVLOWAT
;
2722 case TARGET_SO_ACCEPTCONN
:
2723 optname
= SO_ACCEPTCONN
;
2725 case TARGET_SO_PROTOCOL
:
2726 optname
= SO_PROTOCOL
;
2728 case TARGET_SO_DOMAIN
:
2729 optname
= SO_DOMAIN
;
2737 /* TCP and UDP options all take an 'int' value. */
2739 if (get_user_u32(len
, optlen
))
2740 return -TARGET_EFAULT
;
2742 return -TARGET_EINVAL
;
2744 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2747 if (optname
== SO_TYPE
) {
2748 val
= host_to_target_sock_type(val
);
2753 if (put_user_u32(val
, optval_addr
))
2754 return -TARGET_EFAULT
;
2756 if (put_user_u8(val
, optval_addr
))
2757 return -TARGET_EFAULT
;
2759 if (put_user_u32(len
, optlen
))
2760 return -TARGET_EFAULT
;
2767 case IP_ROUTER_ALERT
:
2771 case IP_MTU_DISCOVER
:
2777 case IP_MULTICAST_TTL
:
2778 case IP_MULTICAST_LOOP
:
2779 if (get_user_u32(len
, optlen
))
2780 return -TARGET_EFAULT
;
2782 return -TARGET_EINVAL
;
2784 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2787 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
2789 if (put_user_u32(len
, optlen
)
2790 || put_user_u8(val
, optval_addr
))
2791 return -TARGET_EFAULT
;
2793 if (len
> sizeof(int))
2795 if (put_user_u32(len
, optlen
)
2796 || put_user_u32(val
, optval_addr
))
2797 return -TARGET_EFAULT
;
2801 ret
= -TARGET_ENOPROTOOPT
;
2807 case IPV6_MTU_DISCOVER
:
2810 case IPV6_RECVPKTINFO
:
2811 case IPV6_UNICAST_HOPS
:
2812 case IPV6_MULTICAST_HOPS
:
2813 case IPV6_MULTICAST_LOOP
:
2815 case IPV6_RECVHOPLIMIT
:
2816 case IPV6_2292HOPLIMIT
:
2819 case IPV6_2292PKTINFO
:
2820 case IPV6_RECVTCLASS
:
2821 case IPV6_RECVRTHDR
:
2822 case IPV6_2292RTHDR
:
2823 case IPV6_RECVHOPOPTS
:
2824 case IPV6_2292HOPOPTS
:
2825 case IPV6_RECVDSTOPTS
:
2826 case IPV6_2292DSTOPTS
:
2828 case IPV6_ADDR_PREFERENCES
:
2829 #ifdef IPV6_RECVPATHMTU
2830 case IPV6_RECVPATHMTU
:
2832 #ifdef IPV6_TRANSPARENT
2833 case IPV6_TRANSPARENT
:
2835 #ifdef IPV6_FREEBIND
2838 #ifdef IPV6_RECVORIGDSTADDR
2839 case IPV6_RECVORIGDSTADDR
:
2841 if (get_user_u32(len
, optlen
))
2842 return -TARGET_EFAULT
;
2844 return -TARGET_EINVAL
;
2846 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2849 if (len
< sizeof(int) && len
> 0 && val
>= 0 && val
< 255) {
2851 if (put_user_u32(len
, optlen
)
2852 || put_user_u8(val
, optval_addr
))
2853 return -TARGET_EFAULT
;
2855 if (len
> sizeof(int))
2857 if (put_user_u32(len
, optlen
)
2858 || put_user_u32(val
, optval_addr
))
2859 return -TARGET_EFAULT
;
2863 ret
= -TARGET_ENOPROTOOPT
;
2870 case NETLINK_PKTINFO
:
2871 case NETLINK_BROADCAST_ERROR
:
2872 case NETLINK_NO_ENOBUFS
:
2873 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2874 case NETLINK_LISTEN_ALL_NSID
:
2875 case NETLINK_CAP_ACK
:
2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2878 case NETLINK_EXT_ACK
:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2880 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2881 case NETLINK_GET_STRICT_CHK
:
2882 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2883 if (get_user_u32(len
, optlen
)) {
2884 return -TARGET_EFAULT
;
2886 if (len
!= sizeof(val
)) {
2887 return -TARGET_EINVAL
;
2890 ret
= get_errno(getsockopt(sockfd
, level
, optname
, &val
, &lv
));
2894 if (put_user_u32(lv
, optlen
)
2895 || put_user_u32(val
, optval_addr
)) {
2896 return -TARGET_EFAULT
;
2899 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2900 case NETLINK_LIST_MEMBERSHIPS
:
2904 if (get_user_u32(len
, optlen
)) {
2905 return -TARGET_EFAULT
;
2908 return -TARGET_EINVAL
;
2910 results
= lock_user(VERIFY_WRITE
, optval_addr
, len
, 1);
2911 if (!results
&& len
> 0) {
2912 return -TARGET_EFAULT
;
2915 ret
= get_errno(getsockopt(sockfd
, level
, optname
, results
, &lv
));
2917 unlock_user(results
, optval_addr
, 0);
2920 /* swap host endianess to target endianess. */
2921 for (i
= 0; i
< (len
/ sizeof(uint32_t)); i
++) {
2922 results
[i
] = tswap32(results
[i
]);
2924 if (put_user_u32(lv
, optlen
)) {
2925 return -TARGET_EFAULT
;
2927 unlock_user(results
, optval_addr
, 0);
2930 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2935 #endif /* SOL_NETLINK */
2938 qemu_log_mask(LOG_UNIMP
,
2939 "getsockopt level=%d optname=%d not yet supported\n",
2941 ret
= -TARGET_EOPNOTSUPP
;
2947 /* Convert target low/high pair representing file offset into the host
2948 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2949 * as the kernel doesn't handle them either.
2951 static void target_to_host_low_high(abi_ulong tlow
,
2953 unsigned long *hlow
,
2954 unsigned long *hhigh
)
2956 uint64_t off
= tlow
|
2957 ((unsigned long long)thigh
<< TARGET_LONG_BITS
/ 2) <<
2958 TARGET_LONG_BITS
/ 2;
2961 *hhigh
= (off
>> HOST_LONG_BITS
/ 2) >> HOST_LONG_BITS
/ 2;
2964 static struct iovec
*lock_iovec(int type
, abi_ulong target_addr
,
2965 abi_ulong count
, int copy
)
2967 struct target_iovec
*target_vec
;
2969 abi_ulong total_len
, max_len
;
2972 bool bad_address
= false;
2978 if (count
> IOV_MAX
) {
2983 vec
= g_try_new0(struct iovec
, count
);
2989 target_vec
= lock_user(VERIFY_READ
, target_addr
,
2990 count
* sizeof(struct target_iovec
), 1);
2991 if (target_vec
== NULL
) {
2996 /* ??? If host page size > target page size, this will result in a
2997 value larger than what we can actually support. */
2998 max_len
= 0x7fffffff & TARGET_PAGE_MASK
;
3001 for (i
= 0; i
< count
; i
++) {
3002 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3003 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3008 } else if (len
== 0) {
3009 /* Zero length pointer is ignored. */
3010 vec
[i
].iov_base
= 0;
3012 vec
[i
].iov_base
= lock_user(type
, base
, len
, copy
);
3013 /* If the first buffer pointer is bad, this is a fault. But
3014 * subsequent bad buffers will result in a partial write; this
3015 * is realized by filling the vector with null pointers and
3017 if (!vec
[i
].iov_base
) {
3028 if (len
> max_len
- total_len
) {
3029 len
= max_len
- total_len
;
3032 vec
[i
].iov_len
= len
;
3036 unlock_user(target_vec
, target_addr
, 0);
3041 if (tswapal(target_vec
[i
].iov_len
) > 0) {
3042 unlock_user(vec
[i
].iov_base
, tswapal(target_vec
[i
].iov_base
), 0);
3045 unlock_user(target_vec
, target_addr
, 0);
3052 static void unlock_iovec(struct iovec
*vec
, abi_ulong target_addr
,
3053 abi_ulong count
, int copy
)
3055 struct target_iovec
*target_vec
;
3058 target_vec
= lock_user(VERIFY_READ
, target_addr
,
3059 count
* sizeof(struct target_iovec
), 1);
3061 for (i
= 0; i
< count
; i
++) {
3062 abi_ulong base
= tswapal(target_vec
[i
].iov_base
);
3063 abi_long len
= tswapal(target_vec
[i
].iov_len
);
3067 unlock_user(vec
[i
].iov_base
, base
, copy
? vec
[i
].iov_len
: 0);
3069 unlock_user(target_vec
, target_addr
, 0);
3075 static inline int target_to_host_sock_type(int *type
)
3078 int target_type
= *type
;
3080 switch (target_type
& TARGET_SOCK_TYPE_MASK
) {
3081 case TARGET_SOCK_DGRAM
:
3082 host_type
= SOCK_DGRAM
;
3084 case TARGET_SOCK_STREAM
:
3085 host_type
= SOCK_STREAM
;
3088 host_type
= target_type
& TARGET_SOCK_TYPE_MASK
;
3091 if (target_type
& TARGET_SOCK_CLOEXEC
) {
3092 #if defined(SOCK_CLOEXEC)
3093 host_type
|= SOCK_CLOEXEC
;
3095 return -TARGET_EINVAL
;
3098 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3099 #if defined(SOCK_NONBLOCK)
3100 host_type
|= SOCK_NONBLOCK
;
3101 #elif !defined(O_NONBLOCK)
3102 return -TARGET_EINVAL
;
3109 /* Try to emulate socket type flags after socket creation. */
3110 static int sock_flags_fixup(int fd
, int target_type
)
3112 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3113 if (target_type
& TARGET_SOCK_NONBLOCK
) {
3114 int flags
= fcntl(fd
, F_GETFL
);
3115 if (fcntl(fd
, F_SETFL
, O_NONBLOCK
| flags
) == -1) {
3117 return -TARGET_EINVAL
;
3124 /* do_socket() Must return target values and target errnos. */
3125 static abi_long
do_socket(int domain
, int type
, int protocol
)
3127 int target_type
= type
;
3130 ret
= target_to_host_sock_type(&type
);
3135 if (domain
== PF_NETLINK
&& !(
3136 #ifdef CONFIG_RTNETLINK
3137 protocol
== NETLINK_ROUTE
||
3139 protocol
== NETLINK_KOBJECT_UEVENT
||
3140 protocol
== NETLINK_AUDIT
)) {
3141 return -TARGET_EPROTONOSUPPORT
;
3144 if (domain
== AF_PACKET
||
3145 (domain
== AF_INET
&& type
== SOCK_PACKET
)) {
3146 protocol
= tswap16(protocol
);
3149 ret
= get_errno(socket(domain
, type
, protocol
));
3151 ret
= sock_flags_fixup(ret
, target_type
);
3152 if (type
== SOCK_PACKET
) {
3153 /* Manage an obsolete case :
3154 * if socket type is SOCK_PACKET, bind by name
3156 fd_trans_register(ret
, &target_packet_trans
);
3157 } else if (domain
== PF_NETLINK
) {
3159 #ifdef CONFIG_RTNETLINK
3161 fd_trans_register(ret
, &target_netlink_route_trans
);
3164 case NETLINK_KOBJECT_UEVENT
:
3165 /* nothing to do: messages are strings */
3168 fd_trans_register(ret
, &target_netlink_audit_trans
);
3171 g_assert_not_reached();
3178 /* do_bind() Must return target values and target errnos. */
3179 static abi_long
do_bind(int sockfd
, abi_ulong target_addr
,
3185 if ((int)addrlen
< 0) {
3186 return -TARGET_EINVAL
;
3189 addr
= alloca(addrlen
+1);
3191 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3195 return get_errno(bind(sockfd
, addr
, addrlen
));
3198 /* do_connect() Must return target values and target errnos. */
3199 static abi_long
do_connect(int sockfd
, abi_ulong target_addr
,
3205 if ((int)addrlen
< 0) {
3206 return -TARGET_EINVAL
;
3209 addr
= alloca(addrlen
+1);
3211 ret
= target_to_host_sockaddr(sockfd
, addr
, target_addr
, addrlen
);
3215 return get_errno(safe_connect(sockfd
, addr
, addrlen
));
3218 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3219 static abi_long
do_sendrecvmsg_locked(int fd
, struct target_msghdr
*msgp
,
3220 int flags
, int send
)
3226 abi_ulong target_vec
;
3228 if (msgp
->msg_name
) {
3229 msg
.msg_namelen
= tswap32(msgp
->msg_namelen
);
3230 msg
.msg_name
= alloca(msg
.msg_namelen
+1);
3231 ret
= target_to_host_sockaddr(fd
, msg
.msg_name
,
3232 tswapal(msgp
->msg_name
),
3234 if (ret
== -TARGET_EFAULT
) {
3235 /* For connected sockets msg_name and msg_namelen must
3236 * be ignored, so returning EFAULT immediately is wrong.
3237 * Instead, pass a bad msg_name to the host kernel, and
3238 * let it decide whether to return EFAULT or not.
3240 msg
.msg_name
= (void *)-1;
3245 msg
.msg_name
= NULL
;
3246 msg
.msg_namelen
= 0;
3248 msg
.msg_controllen
= 2 * tswapal(msgp
->msg_controllen
);
3249 msg
.msg_control
= alloca(msg
.msg_controllen
);
3250 memset(msg
.msg_control
, 0, msg
.msg_controllen
);
3252 msg
.msg_flags
= tswap32(msgp
->msg_flags
);
3254 count
= tswapal(msgp
->msg_iovlen
);
3255 target_vec
= tswapal(msgp
->msg_iov
);
3257 if (count
> IOV_MAX
) {
3258 /* sendrcvmsg returns a different errno for this condition than
3259 * readv/writev, so we must catch it here before lock_iovec() does.
3261 ret
= -TARGET_EMSGSIZE
;
3265 vec
= lock_iovec(send
? VERIFY_READ
: VERIFY_WRITE
,
3266 target_vec
, count
, send
);
3268 ret
= -host_to_target_errno(errno
);
3271 msg
.msg_iovlen
= count
;
3275 if (fd_trans_target_to_host_data(fd
)) {
3278 host_msg
= g_malloc(msg
.msg_iov
->iov_len
);
3279 memcpy(host_msg
, msg
.msg_iov
->iov_base
, msg
.msg_iov
->iov_len
);
3280 ret
= fd_trans_target_to_host_data(fd
)(host_msg
,
3281 msg
.msg_iov
->iov_len
);
3283 msg
.msg_iov
->iov_base
= host_msg
;
3284 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3288 ret
= target_to_host_cmsg(&msg
, msgp
);
3290 ret
= get_errno(safe_sendmsg(fd
, &msg
, flags
));
3294 ret
= get_errno(safe_recvmsg(fd
, &msg
, flags
));
3295 if (!is_error(ret
)) {
3297 if (fd_trans_host_to_target_data(fd
)) {
3298 ret
= fd_trans_host_to_target_data(fd
)(msg
.msg_iov
->iov_base
,
3299 MIN(msg
.msg_iov
->iov_len
, len
));
3301 ret
= host_to_target_cmsg(msgp
, &msg
);
3303 if (!is_error(ret
)) {
3304 msgp
->msg_namelen
= tswap32(msg
.msg_namelen
);
3305 msgp
->msg_flags
= tswap32(msg
.msg_flags
);
3306 if (msg
.msg_name
!= NULL
&& msg
.msg_name
!= (void *)-1) {
3307 ret
= host_to_target_sockaddr(tswapal(msgp
->msg_name
),
3308 msg
.msg_name
, msg
.msg_namelen
);
3320 unlock_iovec(vec
, target_vec
, count
, !send
);
3325 static abi_long
do_sendrecvmsg(int fd
, abi_ulong target_msg
,
3326 int flags
, int send
)
3329 struct target_msghdr
*msgp
;
3331 if (!lock_user_struct(send
? VERIFY_READ
: VERIFY_WRITE
,
3335 return -TARGET_EFAULT
;
3337 ret
= do_sendrecvmsg_locked(fd
, msgp
, flags
, send
);
3338 unlock_user_struct(msgp
, target_msg
, send
? 0 : 1);
3342 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3343 * so it might not have this *mmsg-specific flag either.
3345 #ifndef MSG_WAITFORONE
3346 #define MSG_WAITFORONE 0x10000
3349 static abi_long
do_sendrecvmmsg(int fd
, abi_ulong target_msgvec
,
3350 unsigned int vlen
, unsigned int flags
,
3353 struct target_mmsghdr
*mmsgp
;
3357 if (vlen
> UIO_MAXIOV
) {
3361 mmsgp
= lock_user(VERIFY_WRITE
, target_msgvec
, sizeof(*mmsgp
) * vlen
, 1);
3363 return -TARGET_EFAULT
;
3366 for (i
= 0; i
< vlen
; i
++) {
3367 ret
= do_sendrecvmsg_locked(fd
, &mmsgp
[i
].msg_hdr
, flags
, send
);
3368 if (is_error(ret
)) {
3371 mmsgp
[i
].msg_len
= tswap32(ret
);
3372 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3373 if (flags
& MSG_WAITFORONE
) {
3374 flags
|= MSG_DONTWAIT
;
3378 unlock_user(mmsgp
, target_msgvec
, sizeof(*mmsgp
) * i
);
3380 /* Return number of datagrams sent if we sent any at all;
3381 * otherwise return the error.
3389 /* do_accept4() Must return target values and target errnos. */
3390 static abi_long
do_accept4(int fd
, abi_ulong target_addr
,
3391 abi_ulong target_addrlen_addr
, int flags
)
3393 socklen_t addrlen
, ret_addrlen
;
3398 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
3400 if (target_addr
== 0) {
3401 return get_errno(safe_accept4(fd
, NULL
, NULL
, host_flags
));
3404 /* linux returns EFAULT if addrlen pointer is invalid */
3405 if (get_user_u32(addrlen
, target_addrlen_addr
))
3406 return -TARGET_EFAULT
;
3408 if ((int)addrlen
< 0) {
3409 return -TARGET_EINVAL
;
3412 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3413 return -TARGET_EFAULT
;
3416 addr
= alloca(addrlen
);
3418 ret_addrlen
= addrlen
;
3419 ret
= get_errno(safe_accept4(fd
, addr
, &ret_addrlen
, host_flags
));
3420 if (!is_error(ret
)) {
3421 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3422 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3423 ret
= -TARGET_EFAULT
;
3429 /* do_getpeername() Must return target values and target errnos. */
3430 static abi_long
do_getpeername(int fd
, abi_ulong target_addr
,
3431 abi_ulong target_addrlen_addr
)
3433 socklen_t addrlen
, ret_addrlen
;
3437 if (get_user_u32(addrlen
, target_addrlen_addr
))
3438 return -TARGET_EFAULT
;
3440 if ((int)addrlen
< 0) {
3441 return -TARGET_EINVAL
;
3444 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3445 return -TARGET_EFAULT
;
3448 addr
= alloca(addrlen
);
3450 ret_addrlen
= addrlen
;
3451 ret
= get_errno(getpeername(fd
, addr
, &ret_addrlen
));
3452 if (!is_error(ret
)) {
3453 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3454 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3455 ret
= -TARGET_EFAULT
;
3461 /* do_getsockname() Must return target values and target errnos. */
3462 static abi_long
do_getsockname(int fd
, abi_ulong target_addr
,
3463 abi_ulong target_addrlen_addr
)
3465 socklen_t addrlen
, ret_addrlen
;
3469 if (get_user_u32(addrlen
, target_addrlen_addr
))
3470 return -TARGET_EFAULT
;
3472 if ((int)addrlen
< 0) {
3473 return -TARGET_EINVAL
;
3476 if (!access_ok(thread_cpu
, VERIFY_WRITE
, target_addr
, addrlen
)) {
3477 return -TARGET_EFAULT
;
3480 addr
= alloca(addrlen
);
3482 ret_addrlen
= addrlen
;
3483 ret
= get_errno(getsockname(fd
, addr
, &ret_addrlen
));
3484 if (!is_error(ret
)) {
3485 host_to_target_sockaddr(target_addr
, addr
, MIN(addrlen
, ret_addrlen
));
3486 if (put_user_u32(ret_addrlen
, target_addrlen_addr
)) {
3487 ret
= -TARGET_EFAULT
;
3493 /* do_socketpair() Must return target values and target errnos. */
3494 static abi_long
do_socketpair(int domain
, int type
, int protocol
,
3495 abi_ulong target_tab_addr
)
3500 target_to_host_sock_type(&type
);
3502 ret
= get_errno(socketpair(domain
, type
, protocol
, tab
));
3503 if (!is_error(ret
)) {
3504 if (put_user_s32(tab
[0], target_tab_addr
)
3505 || put_user_s32(tab
[1], target_tab_addr
+ sizeof(tab
[0])))
3506 ret
= -TARGET_EFAULT
;
3511 /* do_sendto() Must return target values and target errnos. */
3512 static abi_long
do_sendto(int fd
, abi_ulong msg
, size_t len
, int flags
,
3513 abi_ulong target_addr
, socklen_t addrlen
)
3517 void *copy_msg
= NULL
;
3520 if ((int)addrlen
< 0) {
3521 return -TARGET_EINVAL
;
3524 host_msg
= lock_user(VERIFY_READ
, msg
, len
, 1);
3526 return -TARGET_EFAULT
;
3527 if (fd_trans_target_to_host_data(fd
)) {
3528 copy_msg
= host_msg
;
3529 host_msg
= g_malloc(len
);
3530 memcpy(host_msg
, copy_msg
, len
);
3531 ret
= fd_trans_target_to_host_data(fd
)(host_msg
, len
);
3537 addr
= alloca(addrlen
+1);
3538 ret
= target_to_host_sockaddr(fd
, addr
, target_addr
, addrlen
);
3542 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, addr
, addrlen
));
3544 ret
= get_errno(safe_sendto(fd
, host_msg
, len
, flags
, NULL
, 0));
3549 host_msg
= copy_msg
;
3551 unlock_user(host_msg
, msg
, 0);
3555 /* do_recvfrom() Must return target values and target errnos. */
3556 static abi_long
do_recvfrom(int fd
, abi_ulong msg
, size_t len
, int flags
,
3557 abi_ulong target_addr
,
3558 abi_ulong target_addrlen
)
3560 socklen_t addrlen
, ret_addrlen
;
3568 host_msg
= lock_user(VERIFY_WRITE
, msg
, len
, 0);
3570 return -TARGET_EFAULT
;
3574 if (get_user_u32(addrlen
, target_addrlen
)) {
3575 ret
= -TARGET_EFAULT
;
3578 if ((int)addrlen
< 0) {
3579 ret
= -TARGET_EINVAL
;
3582 addr
= alloca(addrlen
);
3583 ret_addrlen
= addrlen
;
3584 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
,
3585 addr
, &ret_addrlen
));
3587 addr
= NULL
; /* To keep compiler quiet. */
3588 addrlen
= 0; /* To keep compiler quiet. */
3589 ret
= get_errno(safe_recvfrom(fd
, host_msg
, len
, flags
, NULL
, 0));
3591 if (!is_error(ret
)) {
3592 if (fd_trans_host_to_target_data(fd
)) {
3594 trans
= fd_trans_host_to_target_data(fd
)(host_msg
, MIN(ret
, len
));
3595 if (is_error(trans
)) {
3601 host_to_target_sockaddr(target_addr
, addr
,
3602 MIN(addrlen
, ret_addrlen
));
3603 if (put_user_u32(ret_addrlen
, target_addrlen
)) {
3604 ret
= -TARGET_EFAULT
;
3608 unlock_user(host_msg
, msg
, len
);
3611 unlock_user(host_msg
, msg
, 0);
3616 #ifdef TARGET_NR_socketcall
3617 /* do_socketcall() must return target values and target errnos. */
3618 static abi_long
do_socketcall(int num
, abi_ulong vptr
)
3620 static const unsigned nargs
[] = { /* number of arguments per operation */
3621 [TARGET_SYS_SOCKET
] = 3, /* domain, type, protocol */
3622 [TARGET_SYS_BIND
] = 3, /* fd, addr, addrlen */
3623 [TARGET_SYS_CONNECT
] = 3, /* fd, addr, addrlen */
3624 [TARGET_SYS_LISTEN
] = 2, /* fd, backlog */
3625 [TARGET_SYS_ACCEPT
] = 3, /* fd, addr, addrlen */
3626 [TARGET_SYS_GETSOCKNAME
] = 3, /* fd, addr, addrlen */
3627 [TARGET_SYS_GETPEERNAME
] = 3, /* fd, addr, addrlen */
3628 [TARGET_SYS_SOCKETPAIR
] = 4, /* domain, type, protocol, tab */
3629 [TARGET_SYS_SEND
] = 4, /* fd, msg, len, flags */
3630 [TARGET_SYS_RECV
] = 4, /* fd, msg, len, flags */
3631 [TARGET_SYS_SENDTO
] = 6, /* fd, msg, len, flags, addr, addrlen */
3632 [TARGET_SYS_RECVFROM
] = 6, /* fd, msg, len, flags, addr, addrlen */
3633 [TARGET_SYS_SHUTDOWN
] = 2, /* fd, how */
3634 [TARGET_SYS_SETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
3635 [TARGET_SYS_GETSOCKOPT
] = 5, /* fd, level, optname, optval, optlen */
3636 [TARGET_SYS_SENDMSG
] = 3, /* fd, msg, flags */
3637 [TARGET_SYS_RECVMSG
] = 3, /* fd, msg, flags */
3638 [TARGET_SYS_ACCEPT4
] = 4, /* fd, addr, addrlen, flags */
3639 [TARGET_SYS_RECVMMSG
] = 4, /* fd, msgvec, vlen, flags */
3640 [TARGET_SYS_SENDMMSG
] = 4, /* fd, msgvec, vlen, flags */
3642 abi_long a
[6]; /* max 6 args */
3645 /* check the range of the first argument num */
3646 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3647 if (num
< 1 || num
> TARGET_SYS_SENDMMSG
) {
3648 return -TARGET_EINVAL
;
3650 /* ensure we have space for args */
3651 if (nargs
[num
] > ARRAY_SIZE(a
)) {
3652 return -TARGET_EINVAL
;
3654 /* collect the arguments in a[] according to nargs[] */
3655 for (i
= 0; i
< nargs
[num
]; ++i
) {
3656 if (get_user_ual(a
[i
], vptr
+ i
* sizeof(abi_long
)) != 0) {
3657 return -TARGET_EFAULT
;
3660 /* now when we have the args, invoke the appropriate underlying function */
3662 case TARGET_SYS_SOCKET
: /* domain, type, protocol */
3663 return do_socket(a
[0], a
[1], a
[2]);
3664 case TARGET_SYS_BIND
: /* sockfd, addr, addrlen */
3665 return do_bind(a
[0], a
[1], a
[2]);
3666 case TARGET_SYS_CONNECT
: /* sockfd, addr, addrlen */
3667 return do_connect(a
[0], a
[1], a
[2]);
3668 case TARGET_SYS_LISTEN
: /* sockfd, backlog */
3669 return get_errno(listen(a
[0], a
[1]));
3670 case TARGET_SYS_ACCEPT
: /* sockfd, addr, addrlen */
3671 return do_accept4(a
[0], a
[1], a
[2], 0);
3672 case TARGET_SYS_GETSOCKNAME
: /* sockfd, addr, addrlen */
3673 return do_getsockname(a
[0], a
[1], a
[2]);
3674 case TARGET_SYS_GETPEERNAME
: /* sockfd, addr, addrlen */
3675 return do_getpeername(a
[0], a
[1], a
[2]);
3676 case TARGET_SYS_SOCKETPAIR
: /* domain, type, protocol, tab */
3677 return do_socketpair(a
[0], a
[1], a
[2], a
[3]);
3678 case TARGET_SYS_SEND
: /* sockfd, msg, len, flags */
3679 return do_sendto(a
[0], a
[1], a
[2], a
[3], 0, 0);
3680 case TARGET_SYS_RECV
: /* sockfd, msg, len, flags */
3681 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], 0, 0);
3682 case TARGET_SYS_SENDTO
: /* sockfd, msg, len, flags, addr, addrlen */
3683 return do_sendto(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
3684 case TARGET_SYS_RECVFROM
: /* sockfd, msg, len, flags, addr, addrlen */
3685 return do_recvfrom(a
[0], a
[1], a
[2], a
[3], a
[4], a
[5]);
3686 case TARGET_SYS_SHUTDOWN
: /* sockfd, how */
3687 return get_errno(shutdown(a
[0], a
[1]));
3688 case TARGET_SYS_SETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
3689 return do_setsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
3690 case TARGET_SYS_GETSOCKOPT
: /* sockfd, level, optname, optval, optlen */
3691 return do_getsockopt(a
[0], a
[1], a
[2], a
[3], a
[4]);
3692 case TARGET_SYS_SENDMSG
: /* sockfd, msg, flags */
3693 return do_sendrecvmsg(a
[0], a
[1], a
[2], 1);
3694 case TARGET_SYS_RECVMSG
: /* sockfd, msg, flags */
3695 return do_sendrecvmsg(a
[0], a
[1], a
[2], 0);
3696 case TARGET_SYS_ACCEPT4
: /* sockfd, addr, addrlen, flags */
3697 return do_accept4(a
[0], a
[1], a
[2], a
[3]);
3698 case TARGET_SYS_RECVMMSG
: /* sockfd, msgvec, vlen, flags */
3699 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 0);
3700 case TARGET_SYS_SENDMMSG
: /* sockfd, msgvec, vlen, flags */
3701 return do_sendrecvmmsg(a
[0], a
[1], a
[2], a
[3], 1);
3703 qemu_log_mask(LOG_UNIMP
, "Unsupported socketcall: %d\n", num
);
3704 return -TARGET_EINVAL
;
3709 #define N_SHM_REGIONS 32
3711 static struct shm_region
{
3715 } shm_regions
[N_SHM_REGIONS
];
3717 #ifndef TARGET_SEMID64_DS
3718 /* asm-generic version of this struct */
3719 struct target_semid64_ds
3721 struct target_ipc_perm sem_perm
;
3722 abi_ulong sem_otime
;
3723 #if TARGET_ABI_BITS == 32
3724 abi_ulong __unused1
;
3726 abi_ulong sem_ctime
;
3727 #if TARGET_ABI_BITS == 32
3728 abi_ulong __unused2
;
3730 abi_ulong sem_nsems
;
3731 abi_ulong __unused3
;
3732 abi_ulong __unused4
;
3736 static inline abi_long
target_to_host_ipc_perm(struct ipc_perm
*host_ip
,
3737 abi_ulong target_addr
)
3739 struct target_ipc_perm
*target_ip
;
3740 struct target_semid64_ds
*target_sd
;
3742 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3743 return -TARGET_EFAULT
;
3744 target_ip
= &(target_sd
->sem_perm
);
3745 host_ip
->__key
= tswap32(target_ip
->__key
);
3746 host_ip
->uid
= tswap32(target_ip
->uid
);
3747 host_ip
->gid
= tswap32(target_ip
->gid
);
3748 host_ip
->cuid
= tswap32(target_ip
->cuid
);
3749 host_ip
->cgid
= tswap32(target_ip
->cgid
);
3750 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3751 host_ip
->mode
= tswap32(target_ip
->mode
);
3753 host_ip
->mode
= tswap16(target_ip
->mode
);
3755 #if defined(TARGET_PPC)
3756 host_ip
->__seq
= tswap32(target_ip
->__seq
);
3758 host_ip
->__seq
= tswap16(target_ip
->__seq
);
3760 unlock_user_struct(target_sd
, target_addr
, 0);
3764 static inline abi_long
host_to_target_ipc_perm(abi_ulong target_addr
,
3765 struct ipc_perm
*host_ip
)
3767 struct target_ipc_perm
*target_ip
;
3768 struct target_semid64_ds
*target_sd
;
3770 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3771 return -TARGET_EFAULT
;
3772 target_ip
= &(target_sd
->sem_perm
);
3773 target_ip
->__key
= tswap32(host_ip
->__key
);
3774 target_ip
->uid
= tswap32(host_ip
->uid
);
3775 target_ip
->gid
= tswap32(host_ip
->gid
);
3776 target_ip
->cuid
= tswap32(host_ip
->cuid
);
3777 target_ip
->cgid
= tswap32(host_ip
->cgid
);
3778 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3779 target_ip
->mode
= tswap32(host_ip
->mode
);
3781 target_ip
->mode
= tswap16(host_ip
->mode
);
3783 #if defined(TARGET_PPC)
3784 target_ip
->__seq
= tswap32(host_ip
->__seq
);
3786 target_ip
->__seq
= tswap16(host_ip
->__seq
);
3788 unlock_user_struct(target_sd
, target_addr
, 1);
3792 static inline abi_long
target_to_host_semid_ds(struct semid_ds
*host_sd
,
3793 abi_ulong target_addr
)
3795 struct target_semid64_ds
*target_sd
;
3797 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
3798 return -TARGET_EFAULT
;
3799 if (target_to_host_ipc_perm(&(host_sd
->sem_perm
),target_addr
))
3800 return -TARGET_EFAULT
;
3801 host_sd
->sem_nsems
= tswapal(target_sd
->sem_nsems
);
3802 host_sd
->sem_otime
= tswapal(target_sd
->sem_otime
);
3803 host_sd
->sem_ctime
= tswapal(target_sd
->sem_ctime
);
3804 unlock_user_struct(target_sd
, target_addr
, 0);
3808 static inline abi_long
host_to_target_semid_ds(abi_ulong target_addr
,
3809 struct semid_ds
*host_sd
)
3811 struct target_semid64_ds
*target_sd
;
3813 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
3814 return -TARGET_EFAULT
;
3815 if (host_to_target_ipc_perm(target_addr
,&(host_sd
->sem_perm
)))
3816 return -TARGET_EFAULT
;
3817 target_sd
->sem_nsems
= tswapal(host_sd
->sem_nsems
);
3818 target_sd
->sem_otime
= tswapal(host_sd
->sem_otime
);
3819 target_sd
->sem_ctime
= tswapal(host_sd
->sem_ctime
);
3820 unlock_user_struct(target_sd
, target_addr
, 1);
3824 struct target_seminfo
{
3837 static inline abi_long
host_to_target_seminfo(abi_ulong target_addr
,
3838 struct seminfo
*host_seminfo
)
3840 struct target_seminfo
*target_seminfo
;
3841 if (!lock_user_struct(VERIFY_WRITE
, target_seminfo
, target_addr
, 0))
3842 return -TARGET_EFAULT
;
3843 __put_user(host_seminfo
->semmap
, &target_seminfo
->semmap
);
3844 __put_user(host_seminfo
->semmni
, &target_seminfo
->semmni
);
3845 __put_user(host_seminfo
->semmns
, &target_seminfo
->semmns
);
3846 __put_user(host_seminfo
->semmnu
, &target_seminfo
->semmnu
);
3847 __put_user(host_seminfo
->semmsl
, &target_seminfo
->semmsl
);
3848 __put_user(host_seminfo
->semopm
, &target_seminfo
->semopm
);
3849 __put_user(host_seminfo
->semume
, &target_seminfo
->semume
);
3850 __put_user(host_seminfo
->semusz
, &target_seminfo
->semusz
);
3851 __put_user(host_seminfo
->semvmx
, &target_seminfo
->semvmx
);
3852 __put_user(host_seminfo
->semaem
, &target_seminfo
->semaem
);
3853 unlock_user_struct(target_seminfo
, target_addr
, 1);
3859 struct semid_ds
*buf
;
3860 unsigned short *array
;
3861 struct seminfo
*__buf
;
3864 union target_semun
{
3871 static inline abi_long
target_to_host_semarray(int semid
, unsigned short **host_array
,
3872 abi_ulong target_addr
)
3875 unsigned short *array
;
3877 struct semid_ds semid_ds
;
3880 semun
.buf
= &semid_ds
;
3882 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
3884 return get_errno(ret
);
3886 nsems
= semid_ds
.sem_nsems
;
3888 *host_array
= g_try_new(unsigned short, nsems
);
3890 return -TARGET_ENOMEM
;
3892 array
= lock_user(VERIFY_READ
, target_addr
,
3893 nsems
*sizeof(unsigned short), 1);
3895 g_free(*host_array
);
3896 return -TARGET_EFAULT
;
3899 for(i
=0; i
<nsems
; i
++) {
3900 __get_user((*host_array
)[i
], &array
[i
]);
3902 unlock_user(array
, target_addr
, 0);
3907 static inline abi_long
host_to_target_semarray(int semid
, abi_ulong target_addr
,
3908 unsigned short **host_array
)
3911 unsigned short *array
;
3913 struct semid_ds semid_ds
;
3916 semun
.buf
= &semid_ds
;
3918 ret
= semctl(semid
, 0, IPC_STAT
, semun
);
3920 return get_errno(ret
);
3922 nsems
= semid_ds
.sem_nsems
;
3924 array
= lock_user(VERIFY_WRITE
, target_addr
,
3925 nsems
*sizeof(unsigned short), 0);
3927 return -TARGET_EFAULT
;
3929 for(i
=0; i
<nsems
; i
++) {
3930 __put_user((*host_array
)[i
], &array
[i
]);
3932 g_free(*host_array
);
3933 unlock_user(array
, target_addr
, 1);
3938 static inline abi_long
do_semctl(int semid
, int semnum
, int cmd
,
3939 abi_ulong target_arg
)
3941 union target_semun target_su
= { .buf
= target_arg
};
3943 struct semid_ds dsarg
;
3944 unsigned short *array
= NULL
;
3945 struct seminfo seminfo
;
3946 abi_long ret
= -TARGET_EINVAL
;
3953 /* In 64 bit cross-endian situations, we will erroneously pick up
3954 * the wrong half of the union for the "val" element. To rectify
3955 * this, the entire 8-byte structure is byteswapped, followed by
3956 * a swap of the 4 byte val field. In other cases, the data is
3957 * already in proper host byte order. */
3958 if (sizeof(target_su
.val
) != (sizeof(target_su
.buf
))) {
3959 target_su
.buf
= tswapal(target_su
.buf
);
3960 arg
.val
= tswap32(target_su
.val
);
3962 arg
.val
= target_su
.val
;
3964 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3968 err
= target_to_host_semarray(semid
, &array
, target_su
.array
);
3972 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3973 err
= host_to_target_semarray(semid
, target_su
.array
, &array
);
3980 err
= target_to_host_semid_ds(&dsarg
, target_su
.buf
);
3984 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3985 err
= host_to_target_semid_ds(target_su
.buf
, &dsarg
);
3991 arg
.__buf
= &seminfo
;
3992 ret
= get_errno(semctl(semid
, semnum
, cmd
, arg
));
3993 err
= host_to_target_seminfo(target_su
.__buf
, &seminfo
);
4001 ret
= get_errno(semctl(semid
, semnum
, cmd
, NULL
));
4008 struct target_sembuf
{
4009 unsigned short sem_num
;
4014 static inline abi_long
target_to_host_sembuf(struct sembuf
*host_sembuf
,
4015 abi_ulong target_addr
,
4018 struct target_sembuf
*target_sembuf
;
4021 target_sembuf
= lock_user(VERIFY_READ
, target_addr
,
4022 nsops
*sizeof(struct target_sembuf
), 1);
4024 return -TARGET_EFAULT
;
4026 for(i
=0; i
<nsops
; i
++) {
4027 __get_user(host_sembuf
[i
].sem_num
, &target_sembuf
[i
].sem_num
);
4028 __get_user(host_sembuf
[i
].sem_op
, &target_sembuf
[i
].sem_op
);
4029 __get_user(host_sembuf
[i
].sem_flg
, &target_sembuf
[i
].sem_flg
);
4032 unlock_user(target_sembuf
, target_addr
, 0);
4037 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4038 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4041 * This macro is required to handle the s390 variants, which passes the
4042 * arguments in a different order than default.
4045 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4046 (__nsops), (__timeout), (__sops)
4048 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4049 (__nsops), 0, (__sops), (__timeout)
4052 static inline abi_long
do_semtimedop(int semid
,
4055 abi_long timeout
, bool time64
)
4057 struct sembuf
*sops
;
4058 struct timespec ts
, *pts
= NULL
;
4064 if (target_to_host_timespec64(pts
, timeout
)) {
4065 return -TARGET_EFAULT
;
4068 if (target_to_host_timespec(pts
, timeout
)) {
4069 return -TARGET_EFAULT
;
4074 if (nsops
> TARGET_SEMOPM
) {
4075 return -TARGET_E2BIG
;
4078 sops
= g_new(struct sembuf
, nsops
);
4080 if (target_to_host_sembuf(sops
, ptr
, nsops
)) {
4082 return -TARGET_EFAULT
;
4085 ret
= -TARGET_ENOSYS
;
4086 #ifdef __NR_semtimedop
4087 ret
= get_errno(safe_semtimedop(semid
, sops
, nsops
, pts
));
4090 if (ret
== -TARGET_ENOSYS
) {
4091 ret
= get_errno(safe_ipc(IPCOP_semtimedop
, semid
,
4092 SEMTIMEDOP_IPC_ARGS(nsops
, sops
, (long)pts
)));
4100 struct target_msqid_ds
4102 struct target_ipc_perm msg_perm
;
4103 abi_ulong msg_stime
;
4104 #if TARGET_ABI_BITS == 32
4105 abi_ulong __unused1
;
4107 abi_ulong msg_rtime
;
4108 #if TARGET_ABI_BITS == 32
4109 abi_ulong __unused2
;
4111 abi_ulong msg_ctime
;
4112 #if TARGET_ABI_BITS == 32
4113 abi_ulong __unused3
;
4115 abi_ulong __msg_cbytes
;
4117 abi_ulong msg_qbytes
;
4118 abi_ulong msg_lspid
;
4119 abi_ulong msg_lrpid
;
4120 abi_ulong __unused4
;
4121 abi_ulong __unused5
;
4124 static inline abi_long
target_to_host_msqid_ds(struct msqid_ds
*host_md
,
4125 abi_ulong target_addr
)
4127 struct target_msqid_ds
*target_md
;
4129 if (!lock_user_struct(VERIFY_READ
, target_md
, target_addr
, 1))
4130 return -TARGET_EFAULT
;
4131 if (target_to_host_ipc_perm(&(host_md
->msg_perm
),target_addr
))
4132 return -TARGET_EFAULT
;
4133 host_md
->msg_stime
= tswapal(target_md
->msg_stime
);
4134 host_md
->msg_rtime
= tswapal(target_md
->msg_rtime
);
4135 host_md
->msg_ctime
= tswapal(target_md
->msg_ctime
);
4136 host_md
->__msg_cbytes
= tswapal(target_md
->__msg_cbytes
);
4137 host_md
->msg_qnum
= tswapal(target_md
->msg_qnum
);
4138 host_md
->msg_qbytes
= tswapal(target_md
->msg_qbytes
);
4139 host_md
->msg_lspid
= tswapal(target_md
->msg_lspid
);
4140 host_md
->msg_lrpid
= tswapal(target_md
->msg_lrpid
);
4141 unlock_user_struct(target_md
, target_addr
, 0);
4145 static inline abi_long
host_to_target_msqid_ds(abi_ulong target_addr
,
4146 struct msqid_ds
*host_md
)
4148 struct target_msqid_ds
*target_md
;
4150 if (!lock_user_struct(VERIFY_WRITE
, target_md
, target_addr
, 0))
4151 return -TARGET_EFAULT
;
4152 if (host_to_target_ipc_perm(target_addr
,&(host_md
->msg_perm
)))
4153 return -TARGET_EFAULT
;
4154 target_md
->msg_stime
= tswapal(host_md
->msg_stime
);
4155 target_md
->msg_rtime
= tswapal(host_md
->msg_rtime
);
4156 target_md
->msg_ctime
= tswapal(host_md
->msg_ctime
);
4157 target_md
->__msg_cbytes
= tswapal(host_md
->__msg_cbytes
);
4158 target_md
->msg_qnum
= tswapal(host_md
->msg_qnum
);
4159 target_md
->msg_qbytes
= tswapal(host_md
->msg_qbytes
);
4160 target_md
->msg_lspid
= tswapal(host_md
->msg_lspid
);
4161 target_md
->msg_lrpid
= tswapal(host_md
->msg_lrpid
);
4162 unlock_user_struct(target_md
, target_addr
, 1);
4166 struct target_msginfo
{
4174 unsigned short int msgseg
;
4177 static inline abi_long
host_to_target_msginfo(abi_ulong target_addr
,
4178 struct msginfo
*host_msginfo
)
4180 struct target_msginfo
*target_msginfo
;
4181 if (!lock_user_struct(VERIFY_WRITE
, target_msginfo
, target_addr
, 0))
4182 return -TARGET_EFAULT
;
4183 __put_user(host_msginfo
->msgpool
, &target_msginfo
->msgpool
);
4184 __put_user(host_msginfo
->msgmap
, &target_msginfo
->msgmap
);
4185 __put_user(host_msginfo
->msgmax
, &target_msginfo
->msgmax
);
4186 __put_user(host_msginfo
->msgmnb
, &target_msginfo
->msgmnb
);
4187 __put_user(host_msginfo
->msgmni
, &target_msginfo
->msgmni
);
4188 __put_user(host_msginfo
->msgssz
, &target_msginfo
->msgssz
);
4189 __put_user(host_msginfo
->msgtql
, &target_msginfo
->msgtql
);
4190 __put_user(host_msginfo
->msgseg
, &target_msginfo
->msgseg
);
4191 unlock_user_struct(target_msginfo
, target_addr
, 1);
4195 static inline abi_long
do_msgctl(int msgid
, int cmd
, abi_long ptr
)
4197 struct msqid_ds dsarg
;
4198 struct msginfo msginfo
;
4199 abi_long ret
= -TARGET_EINVAL
;
4207 if (target_to_host_msqid_ds(&dsarg
,ptr
))
4208 return -TARGET_EFAULT
;
4209 ret
= get_errno(msgctl(msgid
, cmd
, &dsarg
));
4210 if (host_to_target_msqid_ds(ptr
,&dsarg
))
4211 return -TARGET_EFAULT
;
4214 ret
= get_errno(msgctl(msgid
, cmd
, NULL
));
4218 ret
= get_errno(msgctl(msgid
, cmd
, (struct msqid_ds
*)&msginfo
));
4219 if (host_to_target_msginfo(ptr
, &msginfo
))
4220 return -TARGET_EFAULT
;
4227 struct target_msgbuf
{
4232 static inline abi_long
do_msgsnd(int msqid
, abi_long msgp
,
4233 ssize_t msgsz
, int msgflg
)
4235 struct target_msgbuf
*target_mb
;
4236 struct msgbuf
*host_mb
;
4240 return -TARGET_EINVAL
;
4243 if (!lock_user_struct(VERIFY_READ
, target_mb
, msgp
, 0))
4244 return -TARGET_EFAULT
;
4245 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4247 unlock_user_struct(target_mb
, msgp
, 0);
4248 return -TARGET_ENOMEM
;
4250 host_mb
->mtype
= (abi_long
) tswapal(target_mb
->mtype
);
4251 memcpy(host_mb
->mtext
, target_mb
->mtext
, msgsz
);
4252 ret
= -TARGET_ENOSYS
;
4254 ret
= get_errno(safe_msgsnd(msqid
, host_mb
, msgsz
, msgflg
));
4257 if (ret
== -TARGET_ENOSYS
) {
4259 ret
= get_errno(safe_ipc(IPCOP_msgsnd
, msqid
, msgsz
, msgflg
,
4262 ret
= get_errno(safe_ipc(IPCOP_msgsnd
, msqid
, msgsz
, msgflg
,
4268 unlock_user_struct(target_mb
, msgp
, 0);
4274 #if defined(__sparc__)
4275 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */
4276 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4277 #elif defined(__s390x__)
4278 /* The s390 sys_ipc variant has only five parameters. */
4279 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4280 ((long int[]){(long int)__msgp, __msgtyp})
4282 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4283 ((long int[]){(long int)__msgp, __msgtyp}), 0
4287 static inline abi_long
do_msgrcv(int msqid
, abi_long msgp
,
4288 ssize_t msgsz
, abi_long msgtyp
,
4291 struct target_msgbuf
*target_mb
;
4293 struct msgbuf
*host_mb
;
4297 return -TARGET_EINVAL
;
4300 if (!lock_user_struct(VERIFY_WRITE
, target_mb
, msgp
, 0))
4301 return -TARGET_EFAULT
;
4303 host_mb
= g_try_malloc(msgsz
+ sizeof(long));
4305 ret
= -TARGET_ENOMEM
;
4308 ret
= -TARGET_ENOSYS
;
4310 ret
= get_errno(safe_msgrcv(msqid
, host_mb
, msgsz
, msgtyp
, msgflg
));
4313 if (ret
== -TARGET_ENOSYS
) {
4314 ret
= get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv
), msqid
, msgsz
,
4315 msgflg
, MSGRCV_ARGS(host_mb
, msgtyp
)));
4320 abi_ulong target_mtext_addr
= msgp
+ sizeof(abi_ulong
);
4321 target_mtext
= lock_user(VERIFY_WRITE
, target_mtext_addr
, ret
, 0);
4322 if (!target_mtext
) {
4323 ret
= -TARGET_EFAULT
;
4326 memcpy(target_mb
->mtext
, host_mb
->mtext
, ret
);
4327 unlock_user(target_mtext
, target_mtext_addr
, ret
);
4330 target_mb
->mtype
= tswapal(host_mb
->mtype
);
4334 unlock_user_struct(target_mb
, msgp
, 1);
4339 static inline abi_long
target_to_host_shmid_ds(struct shmid_ds
*host_sd
,
4340 abi_ulong target_addr
)
4342 struct target_shmid_ds
*target_sd
;
4344 if (!lock_user_struct(VERIFY_READ
, target_sd
, target_addr
, 1))
4345 return -TARGET_EFAULT
;
4346 if (target_to_host_ipc_perm(&(host_sd
->shm_perm
), target_addr
))
4347 return -TARGET_EFAULT
;
4348 __get_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4349 __get_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4350 __get_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4351 __get_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4352 __get_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4353 __get_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4354 __get_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4355 unlock_user_struct(target_sd
, target_addr
, 0);
4359 static inline abi_long
host_to_target_shmid_ds(abi_ulong target_addr
,
4360 struct shmid_ds
*host_sd
)
4362 struct target_shmid_ds
*target_sd
;
4364 if (!lock_user_struct(VERIFY_WRITE
, target_sd
, target_addr
, 0))
4365 return -TARGET_EFAULT
;
4366 if (host_to_target_ipc_perm(target_addr
, &(host_sd
->shm_perm
)))
4367 return -TARGET_EFAULT
;
4368 __put_user(host_sd
->shm_segsz
, &target_sd
->shm_segsz
);
4369 __put_user(host_sd
->shm_atime
, &target_sd
->shm_atime
);
4370 __put_user(host_sd
->shm_dtime
, &target_sd
->shm_dtime
);
4371 __put_user(host_sd
->shm_ctime
, &target_sd
->shm_ctime
);
4372 __put_user(host_sd
->shm_cpid
, &target_sd
->shm_cpid
);
4373 __put_user(host_sd
->shm_lpid
, &target_sd
->shm_lpid
);
4374 __put_user(host_sd
->shm_nattch
, &target_sd
->shm_nattch
);
4375 unlock_user_struct(target_sd
, target_addr
, 1);
4379 struct target_shminfo
{
4387 static inline abi_long
host_to_target_shminfo(abi_ulong target_addr
,
4388 struct shminfo
*host_shminfo
)
4390 struct target_shminfo
*target_shminfo
;
4391 if (!lock_user_struct(VERIFY_WRITE
, target_shminfo
, target_addr
, 0))
4392 return -TARGET_EFAULT
;
4393 __put_user(host_shminfo
->shmmax
, &target_shminfo
->shmmax
);
4394 __put_user(host_shminfo
->shmmin
, &target_shminfo
->shmmin
);
4395 __put_user(host_shminfo
->shmmni
, &target_shminfo
->shmmni
);
4396 __put_user(host_shminfo
->shmseg
, &target_shminfo
->shmseg
);
4397 __put_user(host_shminfo
->shmall
, &target_shminfo
->shmall
);
4398 unlock_user_struct(target_shminfo
, target_addr
, 1);
4402 struct target_shm_info
{
4407 abi_ulong swap_attempts
;
4408 abi_ulong swap_successes
;
4411 static inline abi_long
host_to_target_shm_info(abi_ulong target_addr
,
4412 struct shm_info
*host_shm_info
)
4414 struct target_shm_info
*target_shm_info
;
4415 if (!lock_user_struct(VERIFY_WRITE
, target_shm_info
, target_addr
, 0))
4416 return -TARGET_EFAULT
;
4417 __put_user(host_shm_info
->used_ids
, &target_shm_info
->used_ids
);
4418 __put_user(host_shm_info
->shm_tot
, &target_shm_info
->shm_tot
);
4419 __put_user(host_shm_info
->shm_rss
, &target_shm_info
->shm_rss
);
4420 __put_user(host_shm_info
->shm_swp
, &target_shm_info
->shm_swp
);
4421 __put_user(host_shm_info
->swap_attempts
, &target_shm_info
->swap_attempts
);
4422 __put_user(host_shm_info
->swap_successes
, &target_shm_info
->swap_successes
);
4423 unlock_user_struct(target_shm_info
, target_addr
, 1);
4427 static inline abi_long
do_shmctl(int shmid
, int cmd
, abi_long buf
)
4429 struct shmid_ds dsarg
;
4430 struct shminfo shminfo
;
4431 struct shm_info shm_info
;
4432 abi_long ret
= -TARGET_EINVAL
;
4440 if (target_to_host_shmid_ds(&dsarg
, buf
))
4441 return -TARGET_EFAULT
;
4442 ret
= get_errno(shmctl(shmid
, cmd
, &dsarg
));
4443 if (host_to_target_shmid_ds(buf
, &dsarg
))
4444 return -TARGET_EFAULT
;
4447 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shminfo
));
4448 if (host_to_target_shminfo(buf
, &shminfo
))
4449 return -TARGET_EFAULT
;
4452 ret
= get_errno(shmctl(shmid
, cmd
, (struct shmid_ds
*)&shm_info
));
4453 if (host_to_target_shm_info(buf
, &shm_info
))
4454 return -TARGET_EFAULT
;
4459 ret
= get_errno(shmctl(shmid
, cmd
, NULL
));
4466 #ifndef TARGET_FORCE_SHMLBA
4467 /* For most architectures, SHMLBA is the same as the page size;
4468 * some architectures have larger values, in which case they should
4469 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4470 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4471 * and defining its own value for SHMLBA.
4473 * The kernel also permits SHMLBA to be set by the architecture to a
4474 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4475 * this means that addresses are rounded to the large size if
4476 * SHM_RND is set but addresses not aligned to that size are not rejected
4477 * as long as they are at least page-aligned. Since the only architecture
4478 * which uses this is ia64 this code doesn't provide for that oddity.
4480 static inline abi_ulong
target_shmlba(CPUArchState
*cpu_env
)
4482 return TARGET_PAGE_SIZE
;
4486 static inline abi_ulong
do_shmat(CPUArchState
*cpu_env
,
4487 int shmid
, abi_ulong shmaddr
, int shmflg
)
4489 CPUState
*cpu
= env_cpu(cpu_env
);
4492 struct shmid_ds shm_info
;
4496 /* shmat pointers are always untagged */
4498 /* find out the length of the shared memory segment */
4499 ret
= get_errno(shmctl(shmid
, IPC_STAT
, &shm_info
));
4500 if (is_error(ret
)) {
4501 /* can't get length, bail out */
4505 shmlba
= target_shmlba(cpu_env
);
4507 if (shmaddr
& (shmlba
- 1)) {
4508 if (shmflg
& SHM_RND
) {
4509 shmaddr
&= ~(shmlba
- 1);
4511 return -TARGET_EINVAL
;
4514 if (!guest_range_valid_untagged(shmaddr
, shm_info
.shm_segsz
)) {
4515 return -TARGET_EINVAL
;
4521 * We're mapping shared memory, so ensure we generate code for parallel
4522 * execution and flush old translations. This will work up to the level
4523 * supported by the host -- anything that requires EXCP_ATOMIC will not
4524 * be atomic with respect to an external process.
4526 if (!(cpu
->tcg_cflags
& CF_PARALLEL
)) {
4527 cpu
->tcg_cflags
|= CF_PARALLEL
;
4532 host_raddr
= shmat(shmid
, (void *)g2h_untagged(shmaddr
), shmflg
);
4534 abi_ulong mmap_start
;
4536 /* In order to use the host shmat, we need to honor host SHMLBA. */
4537 mmap_start
= mmap_find_vma(0, shm_info
.shm_segsz
, MAX(SHMLBA
, shmlba
));
4539 if (mmap_start
== -1) {
4541 host_raddr
= (void *)-1;
4543 host_raddr
= shmat(shmid
, g2h_untagged(mmap_start
),
4544 shmflg
| SHM_REMAP
);
4547 if (host_raddr
== (void *)-1) {
4549 return get_errno((long)host_raddr
);
4551 raddr
=h2g((unsigned long)host_raddr
);
4553 page_set_flags(raddr
, raddr
+ shm_info
.shm_segsz
,
4554 PAGE_VALID
| PAGE_RESET
| PAGE_READ
|
4555 (shmflg
& SHM_RDONLY
? 0 : PAGE_WRITE
));
4557 for (i
= 0; i
< N_SHM_REGIONS
; i
++) {
4558 if (!shm_regions
[i
].in_use
) {
4559 shm_regions
[i
].in_use
= true;
4560 shm_regions
[i
].start
= raddr
;
4561 shm_regions
[i
].size
= shm_info
.shm_segsz
;
4571 static inline abi_long
do_shmdt(abi_ulong shmaddr
)
4576 /* shmdt pointers are always untagged */
4580 for (i
= 0; i
< N_SHM_REGIONS
; ++i
) {
4581 if (shm_regions
[i
].in_use
&& shm_regions
[i
].start
== shmaddr
) {
4582 shm_regions
[i
].in_use
= false;
4583 page_set_flags(shmaddr
, shmaddr
+ shm_regions
[i
].size
, 0);
4587 rv
= get_errno(shmdt(g2h_untagged(shmaddr
)));
4594 #ifdef TARGET_NR_ipc
4595 /* ??? This only works with linear mappings. */
4596 /* do_ipc() must return target values and target errnos. */
4597 static abi_long
do_ipc(CPUArchState
*cpu_env
,
4598 unsigned int call
, abi_long first
,
4599 abi_long second
, abi_long third
,
4600 abi_long ptr
, abi_long fifth
)
4605 version
= call
>> 16;
4610 ret
= do_semtimedop(first
, ptr
, second
, 0, false);
4612 case IPCOP_semtimedop
:
4614 * The s390 sys_ipc variant has only five parameters instead of six
4615 * (as for default variant) and the only difference is the handling of
4616 * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4617 * to a struct timespec where the generic variant uses fifth parameter.
4619 #if defined(TARGET_S390X)
4620 ret
= do_semtimedop(first
, ptr
, second
, third
, TARGET_ABI_BITS
== 64);
4622 ret
= do_semtimedop(first
, ptr
, second
, fifth
, TARGET_ABI_BITS
== 64);
4627 ret
= get_errno(semget(first
, second
, third
));
4630 case IPCOP_semctl
: {
4631 /* The semun argument to semctl is passed by value, so dereference the
4634 get_user_ual(atptr
, ptr
);
4635 ret
= do_semctl(first
, second
, third
, atptr
);
4640 ret
= get_errno(msgget(first
, second
));
4644 ret
= do_msgsnd(first
, ptr
, second
, third
);
4648 ret
= do_msgctl(first
, second
, ptr
);
4655 struct target_ipc_kludge
{
4660 if (!lock_user_struct(VERIFY_READ
, tmp
, ptr
, 1)) {
4661 ret
= -TARGET_EFAULT
;
4665 ret
= do_msgrcv(first
, tswapal(tmp
->msgp
), second
, tswapal(tmp
->msgtyp
), third
);
4667 unlock_user_struct(tmp
, ptr
, 0);
4671 ret
= do_msgrcv(first
, ptr
, second
, fifth
, third
);
4680 raddr
= do_shmat(cpu_env
, first
, ptr
, second
);
4681 if (is_error(raddr
))
4682 return get_errno(raddr
);
4683 if (put_user_ual(raddr
, third
))
4684 return -TARGET_EFAULT
;
4688 ret
= -TARGET_EINVAL
;
4693 ret
= do_shmdt(ptr
);
4697 /* IPC_* flag values are the same on all linux platforms */
4698 ret
= get_errno(shmget(first
, second
, third
));
4701 /* IPC_* and SHM_* command values are the same on all linux platforms */
4703 ret
= do_shmctl(first
, second
, ptr
);
4706 qemu_log_mask(LOG_UNIMP
, "Unsupported ipc call: %d (version %d)\n",
4708 ret
= -TARGET_ENOSYS
;
4715 /* kernel structure types definitions */
4717 #define STRUCT(name, ...) STRUCT_ ## name,
4718 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4720 #include "syscall_types.h"
4724 #undef STRUCT_SPECIAL
4726 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4727 #define STRUCT_SPECIAL(name)
4728 #include "syscall_types.h"
4730 #undef STRUCT_SPECIAL
4732 #define MAX_STRUCT_SIZE 4096
4734 #ifdef CONFIG_FIEMAP
4735 /* So fiemap access checks don't overflow on 32 bit systems.
4736 * This is very slightly smaller than the limit imposed by
4737 * the underlying kernel.
4739 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4740 / sizeof(struct fiemap_extent))
4742 static abi_long
do_ioctl_fs_ioc_fiemap(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4743 int fd
, int cmd
, abi_long arg
)
4745 /* The parameter for this ioctl is a struct fiemap followed
4746 * by an array of struct fiemap_extent whose size is set
4747 * in fiemap->fm_extent_count. The array is filled in by the
4750 int target_size_in
, target_size_out
;
4752 const argtype
*arg_type
= ie
->arg_type
;
4753 const argtype extent_arg_type
[] = { MK_STRUCT(STRUCT_fiemap_extent
) };
4756 int i
, extent_size
= thunk_type_size(extent_arg_type
, 0);
4760 assert(arg_type
[0] == TYPE_PTR
);
4761 assert(ie
->access
== IOC_RW
);
4763 target_size_in
= thunk_type_size(arg_type
, 0);
4764 argptr
= lock_user(VERIFY_READ
, arg
, target_size_in
, 1);
4766 return -TARGET_EFAULT
;
4768 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4769 unlock_user(argptr
, arg
, 0);
4770 fm
= (struct fiemap
*)buf_temp
;
4771 if (fm
->fm_extent_count
> FIEMAP_MAX_EXTENTS
) {
4772 return -TARGET_EINVAL
;
4775 outbufsz
= sizeof (*fm
) +
4776 (sizeof(struct fiemap_extent
) * fm
->fm_extent_count
);
4778 if (outbufsz
> MAX_STRUCT_SIZE
) {
4779 /* We can't fit all the extents into the fixed size buffer.
4780 * Allocate one that is large enough and use it instead.
4782 fm
= g_try_malloc(outbufsz
);
4784 return -TARGET_ENOMEM
;
4786 memcpy(fm
, buf_temp
, sizeof(struct fiemap
));
4789 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, fm
));
4790 if (!is_error(ret
)) {
4791 target_size_out
= target_size_in
;
4792 /* An extent_count of 0 means we were only counting the extents
4793 * so there are no structs to copy
4795 if (fm
->fm_extent_count
!= 0) {
4796 target_size_out
+= fm
->fm_mapped_extents
* extent_size
;
4798 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size_out
, 0);
4800 ret
= -TARGET_EFAULT
;
4802 /* Convert the struct fiemap */
4803 thunk_convert(argptr
, fm
, arg_type
, THUNK_TARGET
);
4804 if (fm
->fm_extent_count
!= 0) {
4805 p
= argptr
+ target_size_in
;
4806 /* ...and then all the struct fiemap_extents */
4807 for (i
= 0; i
< fm
->fm_mapped_extents
; i
++) {
4808 thunk_convert(p
, &fm
->fm_extents
[i
], extent_arg_type
,
4813 unlock_user(argptr
, arg
, target_size_out
);
4823 static abi_long
do_ioctl_ifconf(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4824 int fd
, int cmd
, abi_long arg
)
4826 const argtype
*arg_type
= ie
->arg_type
;
4830 struct ifconf
*host_ifconf
;
4832 const argtype ifreq_arg_type
[] = { MK_STRUCT(STRUCT_sockaddr_ifreq
) };
4833 const argtype ifreq_max_type
[] = { MK_STRUCT(STRUCT_ifmap_ifreq
) };
4834 int target_ifreq_size
;
4839 abi_long target_ifc_buf
;
4843 assert(arg_type
[0] == TYPE_PTR
);
4844 assert(ie
->access
== IOC_RW
);
4847 target_size
= thunk_type_size(arg_type
, 0);
4849 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
4851 return -TARGET_EFAULT
;
4852 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
4853 unlock_user(argptr
, arg
, 0);
4855 host_ifconf
= (struct ifconf
*)(unsigned long)buf_temp
;
4856 target_ifc_buf
= (abi_long
)(unsigned long)host_ifconf
->ifc_buf
;
4857 target_ifreq_size
= thunk_type_size(ifreq_max_type
, 0);
4859 if (target_ifc_buf
!= 0) {
4860 target_ifc_len
= host_ifconf
->ifc_len
;
4861 nb_ifreq
= target_ifc_len
/ target_ifreq_size
;
4862 host_ifc_len
= nb_ifreq
* sizeof(struct ifreq
);
4864 outbufsz
= sizeof(*host_ifconf
) + host_ifc_len
;
4865 if (outbufsz
> MAX_STRUCT_SIZE
) {
4867 * We can't fit all the extents into the fixed size buffer.
4868 * Allocate one that is large enough and use it instead.
4870 host_ifconf
= malloc(outbufsz
);
4872 return -TARGET_ENOMEM
;
4874 memcpy(host_ifconf
, buf_temp
, sizeof(*host_ifconf
));
4877 host_ifc_buf
= (char *)host_ifconf
+ sizeof(*host_ifconf
);
4879 host_ifconf
->ifc_len
= host_ifc_len
;
4881 host_ifc_buf
= NULL
;
4883 host_ifconf
->ifc_buf
= host_ifc_buf
;
4885 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_ifconf
));
4886 if (!is_error(ret
)) {
4887 /* convert host ifc_len to target ifc_len */
4889 nb_ifreq
= host_ifconf
->ifc_len
/ sizeof(struct ifreq
);
4890 target_ifc_len
= nb_ifreq
* target_ifreq_size
;
4891 host_ifconf
->ifc_len
= target_ifc_len
;
4893 /* restore target ifc_buf */
4895 host_ifconf
->ifc_buf
= (char *)(unsigned long)target_ifc_buf
;
4897 /* copy struct ifconf to target user */
4899 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
4901 return -TARGET_EFAULT
;
4902 thunk_convert(argptr
, host_ifconf
, arg_type
, THUNK_TARGET
);
4903 unlock_user(argptr
, arg
, target_size
);
4905 if (target_ifc_buf
!= 0) {
4906 /* copy ifreq[] to target user */
4907 argptr
= lock_user(VERIFY_WRITE
, target_ifc_buf
, target_ifc_len
, 0);
4908 for (i
= 0; i
< nb_ifreq
; i
++) {
4909 thunk_convert(argptr
+ i
* target_ifreq_size
,
4910 host_ifc_buf
+ i
* sizeof(struct ifreq
),
4911 ifreq_arg_type
, THUNK_TARGET
);
4913 unlock_user(argptr
, target_ifc_buf
, target_ifc_len
);
4924 #if defined(CONFIG_USBFS)
4925 #if HOST_LONG_BITS > 64
4926 #error USBDEVFS thunks do not support >64 bit hosts yet.
4929 uint64_t target_urb_adr
;
4930 uint64_t target_buf_adr
;
4931 char *target_buf_ptr
;
4932 struct usbdevfs_urb host_urb
;
4935 static GHashTable
*usbdevfs_urb_hashtable(void)
4937 static GHashTable
*urb_hashtable
;
4939 if (!urb_hashtable
) {
4940 urb_hashtable
= g_hash_table_new(g_int64_hash
, g_int64_equal
);
4942 return urb_hashtable
;
4945 static void urb_hashtable_insert(struct live_urb
*urb
)
4947 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4948 g_hash_table_insert(urb_hashtable
, urb
, urb
);
4951 static struct live_urb
*urb_hashtable_lookup(uint64_t target_urb_adr
)
4953 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4954 return g_hash_table_lookup(urb_hashtable
, &target_urb_adr
);
4957 static void urb_hashtable_remove(struct live_urb
*urb
)
4959 GHashTable
*urb_hashtable
= usbdevfs_urb_hashtable();
4960 g_hash_table_remove(urb_hashtable
, urb
);
4964 do_ioctl_usbdevfs_reapurb(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
4965 int fd
, int cmd
, abi_long arg
)
4967 const argtype usbfsurb_arg_type
[] = { MK_STRUCT(STRUCT_usbdevfs_urb
) };
4968 const argtype ptrvoid_arg_type
[] = { TYPE_PTRVOID
, 0, 0 };
4969 struct live_urb
*lurb
;
4973 uintptr_t target_urb_adr
;
4976 target_size
= thunk_type_size(usbfsurb_arg_type
, THUNK_TARGET
);
4978 memset(buf_temp
, 0, sizeof(uint64_t));
4979 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
4980 if (is_error(ret
)) {
4984 memcpy(&hurb
, buf_temp
, sizeof(uint64_t));
4985 lurb
= (void *)((uintptr_t)hurb
- offsetof(struct live_urb
, host_urb
));
4986 if (!lurb
->target_urb_adr
) {
4987 return -TARGET_EFAULT
;
4989 urb_hashtable_remove(lurb
);
4990 unlock_user(lurb
->target_buf_ptr
, lurb
->target_buf_adr
,
4991 lurb
->host_urb
.buffer_length
);
4992 lurb
->target_buf_ptr
= NULL
;
4994 /* restore the guest buffer pointer */
4995 lurb
->host_urb
.buffer
= (void *)(uintptr_t)lurb
->target_buf_adr
;
4997 /* update the guest urb struct */
4998 argptr
= lock_user(VERIFY_WRITE
, lurb
->target_urb_adr
, target_size
, 0);
5001 return -TARGET_EFAULT
;
5003 thunk_convert(argptr
, &lurb
->host_urb
, usbfsurb_arg_type
, THUNK_TARGET
);
5004 unlock_user(argptr
, lurb
->target_urb_adr
, target_size
);
5006 target_size
= thunk_type_size(ptrvoid_arg_type
, THUNK_TARGET
);
5007 /* write back the urb handle */
5008 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5011 return -TARGET_EFAULT
;
5014 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5015 target_urb_adr
= lurb
->target_urb_adr
;
5016 thunk_convert(argptr
, &target_urb_adr
, ptrvoid_arg_type
, THUNK_TARGET
);
5017 unlock_user(argptr
, arg
, target_size
);
5024 do_ioctl_usbdevfs_discardurb(const IOCTLEntry
*ie
,
5025 uint8_t *buf_temp
__attribute__((unused
)),
5026 int fd
, int cmd
, abi_long arg
)
5028 struct live_urb
*lurb
;
5030 /* map target address back to host URB with metadata. */
5031 lurb
= urb_hashtable_lookup(arg
);
5033 return -TARGET_EFAULT
;
5035 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, &lurb
->host_urb
));
5039 do_ioctl_usbdevfs_submiturb(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5040 int fd
, int cmd
, abi_long arg
)
5042 const argtype
*arg_type
= ie
->arg_type
;
5047 struct live_urb
*lurb
;
5050 * each submitted URB needs to map to a unique ID for the
5051 * kernel, and that unique ID needs to be a pointer to
5052 * host memory. hence, we need to malloc for each URB.
5053 * isochronous transfers have a variable length struct.
5056 target_size
= thunk_type_size(arg_type
, THUNK_TARGET
);
5058 /* construct host copy of urb and metadata */
5059 lurb
= g_try_malloc0(sizeof(struct live_urb
));
5061 return -TARGET_ENOMEM
;
5064 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5067 return -TARGET_EFAULT
;
5069 thunk_convert(&lurb
->host_urb
, argptr
, arg_type
, THUNK_HOST
);
5070 unlock_user(argptr
, arg
, 0);
5072 lurb
->target_urb_adr
= arg
;
5073 lurb
->target_buf_adr
= (uintptr_t)lurb
->host_urb
.buffer
;
5075 /* buffer space used depends on endpoint type so lock the entire buffer */
5076 /* control type urbs should check the buffer contents for true direction */
5077 rw_dir
= lurb
->host_urb
.endpoint
& USB_DIR_IN
? VERIFY_WRITE
: VERIFY_READ
;
5078 lurb
->target_buf_ptr
= lock_user(rw_dir
, lurb
->target_buf_adr
,
5079 lurb
->host_urb
.buffer_length
, 1);
5080 if (lurb
->target_buf_ptr
== NULL
) {
5082 return -TARGET_EFAULT
;
5085 /* update buffer pointer in host copy */
5086 lurb
->host_urb
.buffer
= lurb
->target_buf_ptr
;
5088 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, &lurb
->host_urb
));
5089 if (is_error(ret
)) {
5090 unlock_user(lurb
->target_buf_ptr
, lurb
->target_buf_adr
, 0);
5093 urb_hashtable_insert(lurb
);
5098 #endif /* CONFIG_USBFS */
5100 static abi_long
do_ioctl_dm(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
5101 int cmd
, abi_long arg
)
5104 struct dm_ioctl
*host_dm
;
5105 abi_long guest_data
;
5106 uint32_t guest_data_size
;
5108 const argtype
*arg_type
= ie
->arg_type
;
5110 void *big_buf
= NULL
;
5114 target_size
= thunk_type_size(arg_type
, 0);
5115 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5117 ret
= -TARGET_EFAULT
;
5120 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5121 unlock_user(argptr
, arg
, 0);
5123 /* buf_temp is too small, so fetch things into a bigger buffer */
5124 big_buf
= g_malloc0(((struct dm_ioctl
*)buf_temp
)->data_size
* 2);
5125 memcpy(big_buf
, buf_temp
, target_size
);
5129 guest_data
= arg
+ host_dm
->data_start
;
5130 if ((guest_data
- arg
) < 0) {
5131 ret
= -TARGET_EINVAL
;
5134 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5135 host_data
= (char*)host_dm
+ host_dm
->data_start
;
5137 argptr
= lock_user(VERIFY_READ
, guest_data
, guest_data_size
, 1);
5139 ret
= -TARGET_EFAULT
;
5143 switch (ie
->host_cmd
) {
5145 case DM_LIST_DEVICES
:
5148 case DM_DEV_SUSPEND
:
5151 case DM_TABLE_STATUS
:
5152 case DM_TABLE_CLEAR
:
5154 case DM_LIST_VERSIONS
:
5158 case DM_DEV_SET_GEOMETRY
:
5159 /* data contains only strings */
5160 memcpy(host_data
, argptr
, guest_data_size
);
5163 memcpy(host_data
, argptr
, guest_data_size
);
5164 *(uint64_t*)host_data
= tswap64(*(uint64_t*)argptr
);
5168 void *gspec
= argptr
;
5169 void *cur_data
= host_data
;
5170 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5171 int spec_size
= thunk_type_size(arg_type
, 0);
5174 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5175 struct dm_target_spec
*spec
= cur_data
;
5179 thunk_convert(spec
, gspec
, arg_type
, THUNK_HOST
);
5180 slen
= strlen((char*)gspec
+ spec_size
) + 1;
5182 spec
->next
= sizeof(*spec
) + slen
;
5183 strcpy((char*)&spec
[1], gspec
+ spec_size
);
5185 cur_data
+= spec
->next
;
5190 ret
= -TARGET_EINVAL
;
5191 unlock_user(argptr
, guest_data
, 0);
5194 unlock_user(argptr
, guest_data
, 0);
5196 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5197 if (!is_error(ret
)) {
5198 guest_data
= arg
+ host_dm
->data_start
;
5199 guest_data_size
= host_dm
->data_size
- host_dm
->data_start
;
5200 argptr
= lock_user(VERIFY_WRITE
, guest_data
, guest_data_size
, 0);
5201 switch (ie
->host_cmd
) {
5206 case DM_DEV_SUSPEND
:
5209 case DM_TABLE_CLEAR
:
5211 case DM_DEV_SET_GEOMETRY
:
5212 /* no return data */
5214 case DM_LIST_DEVICES
:
5216 struct dm_name_list
*nl
= (void*)host_dm
+ host_dm
->data_start
;
5217 uint32_t remaining_data
= guest_data_size
;
5218 void *cur_data
= argptr
;
5219 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_name_list
) };
5220 int nl_size
= 12; /* can't use thunk_size due to alignment */
5223 uint32_t next
= nl
->next
;
5225 nl
->next
= nl_size
+ (strlen(nl
->name
) + 1);
5227 if (remaining_data
< nl
->next
) {
5228 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5231 thunk_convert(cur_data
, nl
, arg_type
, THUNK_TARGET
);
5232 strcpy(cur_data
+ nl_size
, nl
->name
);
5233 cur_data
+= nl
->next
;
5234 remaining_data
-= nl
->next
;
5238 nl
= (void*)nl
+ next
;
5243 case DM_TABLE_STATUS
:
5245 struct dm_target_spec
*spec
= (void*)host_dm
+ host_dm
->data_start
;
5246 void *cur_data
= argptr
;
5247 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_spec
) };
5248 int spec_size
= thunk_type_size(arg_type
, 0);
5251 for (i
= 0; i
< host_dm
->target_count
; i
++) {
5252 uint32_t next
= spec
->next
;
5253 int slen
= strlen((char*)&spec
[1]) + 1;
5254 spec
->next
= (cur_data
- argptr
) + spec_size
+ slen
;
5255 if (guest_data_size
< spec
->next
) {
5256 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5259 thunk_convert(cur_data
, spec
, arg_type
, THUNK_TARGET
);
5260 strcpy(cur_data
+ spec_size
, (char*)&spec
[1]);
5261 cur_data
= argptr
+ spec
->next
;
5262 spec
= (void*)host_dm
+ host_dm
->data_start
+ next
;
5268 void *hdata
= (void*)host_dm
+ host_dm
->data_start
;
5269 int count
= *(uint32_t*)hdata
;
5270 uint64_t *hdev
= hdata
+ 8;
5271 uint64_t *gdev
= argptr
+ 8;
5274 *(uint32_t*)argptr
= tswap32(count
);
5275 for (i
= 0; i
< count
; i
++) {
5276 *gdev
= tswap64(*hdev
);
5282 case DM_LIST_VERSIONS
:
5284 struct dm_target_versions
*vers
= (void*)host_dm
+ host_dm
->data_start
;
5285 uint32_t remaining_data
= guest_data_size
;
5286 void *cur_data
= argptr
;
5287 const argtype arg_type
[] = { MK_STRUCT(STRUCT_dm_target_versions
) };
5288 int vers_size
= thunk_type_size(arg_type
, 0);
5291 uint32_t next
= vers
->next
;
5293 vers
->next
= vers_size
+ (strlen(vers
->name
) + 1);
5295 if (remaining_data
< vers
->next
) {
5296 host_dm
->flags
|= DM_BUFFER_FULL_FLAG
;
5299 thunk_convert(cur_data
, vers
, arg_type
, THUNK_TARGET
);
5300 strcpy(cur_data
+ vers_size
, vers
->name
);
5301 cur_data
+= vers
->next
;
5302 remaining_data
-= vers
->next
;
5306 vers
= (void*)vers
+ next
;
5311 unlock_user(argptr
, guest_data
, 0);
5312 ret
= -TARGET_EINVAL
;
5315 unlock_user(argptr
, guest_data
, guest_data_size
);
5317 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5319 ret
= -TARGET_EFAULT
;
5322 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5323 unlock_user(argptr
, arg
, target_size
);
5330 static abi_long
do_ioctl_blkpg(const IOCTLEntry
*ie
, uint8_t *buf_temp
, int fd
,
5331 int cmd
, abi_long arg
)
5335 const argtype
*arg_type
= ie
->arg_type
;
5336 const argtype part_arg_type
[] = { MK_STRUCT(STRUCT_blkpg_partition
) };
5339 struct blkpg_ioctl_arg
*host_blkpg
= (void*)buf_temp
;
5340 struct blkpg_partition host_part
;
5342 /* Read and convert blkpg */
5344 target_size
= thunk_type_size(arg_type
, 0);
5345 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5347 ret
= -TARGET_EFAULT
;
5350 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5351 unlock_user(argptr
, arg
, 0);
5353 switch (host_blkpg
->op
) {
5354 case BLKPG_ADD_PARTITION
:
5355 case BLKPG_DEL_PARTITION
:
5356 /* payload is struct blkpg_partition */
5359 /* Unknown opcode */
5360 ret
= -TARGET_EINVAL
;
5364 /* Read and convert blkpg->data */
5365 arg
= (abi_long
)(uintptr_t)host_blkpg
->data
;
5366 target_size
= thunk_type_size(part_arg_type
, 0);
5367 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5369 ret
= -TARGET_EFAULT
;
5372 thunk_convert(&host_part
, argptr
, part_arg_type
, THUNK_HOST
);
5373 unlock_user(argptr
, arg
, 0);
5375 /* Swizzle the data pointer to our local copy and call! */
5376 host_blkpg
->data
= &host_part
;
5377 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, host_blkpg
));
5383 static abi_long
do_ioctl_rt(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5384 int fd
, int cmd
, abi_long arg
)
5386 const argtype
*arg_type
= ie
->arg_type
;
5387 const StructEntry
*se
;
5388 const argtype
*field_types
;
5389 const int *dst_offsets
, *src_offsets
;
5392 abi_ulong
*target_rt_dev_ptr
= NULL
;
5393 unsigned long *host_rt_dev_ptr
= NULL
;
5397 assert(ie
->access
== IOC_W
);
5398 assert(*arg_type
== TYPE_PTR
);
5400 assert(*arg_type
== TYPE_STRUCT
);
5401 target_size
= thunk_type_size(arg_type
, 0);
5402 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5404 return -TARGET_EFAULT
;
5407 assert(*arg_type
== (int)STRUCT_rtentry
);
5408 se
= struct_entries
+ *arg_type
++;
5409 assert(se
->convert
[0] == NULL
);
5410 /* convert struct here to be able to catch rt_dev string */
5411 field_types
= se
->field_types
;
5412 dst_offsets
= se
->field_offsets
[THUNK_HOST
];
5413 src_offsets
= se
->field_offsets
[THUNK_TARGET
];
5414 for (i
= 0; i
< se
->nb_fields
; i
++) {
5415 if (dst_offsets
[i
] == offsetof(struct rtentry
, rt_dev
)) {
5416 assert(*field_types
== TYPE_PTRVOID
);
5417 target_rt_dev_ptr
= (abi_ulong
*)(argptr
+ src_offsets
[i
]);
5418 host_rt_dev_ptr
= (unsigned long *)(buf_temp
+ dst_offsets
[i
]);
5419 if (*target_rt_dev_ptr
!= 0) {
5420 *host_rt_dev_ptr
= (unsigned long)lock_user_string(
5421 tswapal(*target_rt_dev_ptr
));
5422 if (!*host_rt_dev_ptr
) {
5423 unlock_user(argptr
, arg
, 0);
5424 return -TARGET_EFAULT
;
5427 *host_rt_dev_ptr
= 0;
5432 field_types
= thunk_convert(buf_temp
+ dst_offsets
[i
],
5433 argptr
+ src_offsets
[i
],
5434 field_types
, THUNK_HOST
);
5436 unlock_user(argptr
, arg
, 0);
5438 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5440 assert(host_rt_dev_ptr
!= NULL
);
5441 assert(target_rt_dev_ptr
!= NULL
);
5442 if (*host_rt_dev_ptr
!= 0) {
5443 unlock_user((void *)*host_rt_dev_ptr
,
5444 *target_rt_dev_ptr
, 0);
5449 static abi_long
do_ioctl_kdsigaccept(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5450 int fd
, int cmd
, abi_long arg
)
5452 int sig
= target_to_host_signal(arg
);
5453 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, sig
));
5456 static abi_long
do_ioctl_SIOCGSTAMP(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5457 int fd
, int cmd
, abi_long arg
)
5462 ret
= get_errno(safe_ioctl(fd
, SIOCGSTAMP
, &tv
));
5463 if (is_error(ret
)) {
5467 if (cmd
== (int)TARGET_SIOCGSTAMP_OLD
) {
5468 if (copy_to_user_timeval(arg
, &tv
)) {
5469 return -TARGET_EFAULT
;
5472 if (copy_to_user_timeval64(arg
, &tv
)) {
5473 return -TARGET_EFAULT
;
5480 static abi_long
do_ioctl_SIOCGSTAMPNS(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5481 int fd
, int cmd
, abi_long arg
)
5486 ret
= get_errno(safe_ioctl(fd
, SIOCGSTAMPNS
, &ts
));
5487 if (is_error(ret
)) {
5491 if (cmd
== (int)TARGET_SIOCGSTAMPNS_OLD
) {
5492 if (host_to_target_timespec(arg
, &ts
)) {
5493 return -TARGET_EFAULT
;
5496 if (host_to_target_timespec64(arg
, &ts
)) {
5497 return -TARGET_EFAULT
;
5505 static abi_long
do_ioctl_tiocgptpeer(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5506 int fd
, int cmd
, abi_long arg
)
5508 int flags
= target_to_host_bitmask(arg
, fcntl_flags_tbl
);
5509 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, flags
));
5515 static void unlock_drm_version(struct drm_version
*host_ver
,
5516 struct target_drm_version
*target_ver
,
5519 unlock_user(host_ver
->name
, target_ver
->name
,
5520 copy
? host_ver
->name_len
: 0);
5521 unlock_user(host_ver
->date
, target_ver
->date
,
5522 copy
? host_ver
->date_len
: 0);
5523 unlock_user(host_ver
->desc
, target_ver
->desc
,
5524 copy
? host_ver
->desc_len
: 0);
5527 static inline abi_long
target_to_host_drmversion(struct drm_version
*host_ver
,
5528 struct target_drm_version
*target_ver
)
5530 memset(host_ver
, 0, sizeof(*host_ver
));
5532 __get_user(host_ver
->name_len
, &target_ver
->name_len
);
5533 if (host_ver
->name_len
) {
5534 host_ver
->name
= lock_user(VERIFY_WRITE
, target_ver
->name
,
5535 target_ver
->name_len
, 0);
5536 if (!host_ver
->name
) {
5541 __get_user(host_ver
->date_len
, &target_ver
->date_len
);
5542 if (host_ver
->date_len
) {
5543 host_ver
->date
= lock_user(VERIFY_WRITE
, target_ver
->date
,
5544 target_ver
->date_len
, 0);
5545 if (!host_ver
->date
) {
5550 __get_user(host_ver
->desc_len
, &target_ver
->desc_len
);
5551 if (host_ver
->desc_len
) {
5552 host_ver
->desc
= lock_user(VERIFY_WRITE
, target_ver
->desc
,
5553 target_ver
->desc_len
, 0);
5554 if (!host_ver
->desc
) {
5561 unlock_drm_version(host_ver
, target_ver
, false);
5565 static inline void host_to_target_drmversion(
5566 struct target_drm_version
*target_ver
,
5567 struct drm_version
*host_ver
)
5569 __put_user(host_ver
->version_major
, &target_ver
->version_major
);
5570 __put_user(host_ver
->version_minor
, &target_ver
->version_minor
);
5571 __put_user(host_ver
->version_patchlevel
, &target_ver
->version_patchlevel
);
5572 __put_user(host_ver
->name_len
, &target_ver
->name_len
);
5573 __put_user(host_ver
->date_len
, &target_ver
->date_len
);
5574 __put_user(host_ver
->desc_len
, &target_ver
->desc_len
);
5575 unlock_drm_version(host_ver
, target_ver
, true);
5578 static abi_long
do_ioctl_drm(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5579 int fd
, int cmd
, abi_long arg
)
5581 struct drm_version
*ver
;
5582 struct target_drm_version
*target_ver
;
5585 switch (ie
->host_cmd
) {
5586 case DRM_IOCTL_VERSION
:
5587 if (!lock_user_struct(VERIFY_WRITE
, target_ver
, arg
, 0)) {
5588 return -TARGET_EFAULT
;
5590 ver
= (struct drm_version
*)buf_temp
;
5591 ret
= target_to_host_drmversion(ver
, target_ver
);
5592 if (!is_error(ret
)) {
5593 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, ver
));
5594 if (is_error(ret
)) {
5595 unlock_drm_version(ver
, target_ver
, false);
5597 host_to_target_drmversion(target_ver
, ver
);
5600 unlock_user_struct(target_ver
, arg
, 0);
5603 return -TARGET_ENOSYS
;
5606 static abi_long
do_ioctl_drm_i915_getparam(const IOCTLEntry
*ie
,
5607 struct drm_i915_getparam
*gparam
,
5608 int fd
, abi_long arg
)
5612 struct target_drm_i915_getparam
*target_gparam
;
5614 if (!lock_user_struct(VERIFY_READ
, target_gparam
, arg
, 0)) {
5615 return -TARGET_EFAULT
;
5618 __get_user(gparam
->param
, &target_gparam
->param
);
5619 gparam
->value
= &value
;
5620 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, gparam
));
5621 put_user_s32(value
, target_gparam
->value
);
5623 unlock_user_struct(target_gparam
, arg
, 0);
5627 static abi_long
do_ioctl_drm_i915(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5628 int fd
, int cmd
, abi_long arg
)
5630 switch (ie
->host_cmd
) {
5631 case DRM_IOCTL_I915_GETPARAM
:
5632 return do_ioctl_drm_i915_getparam(ie
,
5633 (struct drm_i915_getparam
*)buf_temp
,
5636 return -TARGET_ENOSYS
;
5642 static abi_long
do_ioctl_TUNSETTXFILTER(const IOCTLEntry
*ie
, uint8_t *buf_temp
,
5643 int fd
, int cmd
, abi_long arg
)
5645 struct tun_filter
*filter
= (struct tun_filter
*)buf_temp
;
5646 struct tun_filter
*target_filter
;
5649 assert(ie
->access
== IOC_W
);
5651 target_filter
= lock_user(VERIFY_READ
, arg
, sizeof(*target_filter
), 1);
5652 if (!target_filter
) {
5653 return -TARGET_EFAULT
;
5655 filter
->flags
= tswap16(target_filter
->flags
);
5656 filter
->count
= tswap16(target_filter
->count
);
5657 unlock_user(target_filter
, arg
, 0);
5659 if (filter
->count
) {
5660 if (offsetof(struct tun_filter
, addr
) + filter
->count
* ETH_ALEN
>
5662 return -TARGET_EFAULT
;
5665 target_addr
= lock_user(VERIFY_READ
,
5666 arg
+ offsetof(struct tun_filter
, addr
),
5667 filter
->count
* ETH_ALEN
, 1);
5669 return -TARGET_EFAULT
;
5671 memcpy(filter
->addr
, target_addr
, filter
->count
* ETH_ALEN
);
5672 unlock_user(target_addr
, arg
+ offsetof(struct tun_filter
, addr
), 0);
5675 return get_errno(safe_ioctl(fd
, ie
->host_cmd
, filter
));
5678 IOCTLEntry ioctl_entries
[] = {
5679 #define IOCTL(cmd, access, ...) \
5680 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5681 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5682 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5683 #define IOCTL_IGNORE(cmd) \
5684 { TARGET_ ## cmd, 0, #cmd },
5689 /* ??? Implement proper locking for ioctls. */
5690 /* do_ioctl() Must return target values and target errnos. */
5691 static abi_long
do_ioctl(int fd
, int cmd
, abi_long arg
)
5693 const IOCTLEntry
*ie
;
5694 const argtype
*arg_type
;
5696 uint8_t buf_temp
[MAX_STRUCT_SIZE
];
5702 if (ie
->target_cmd
== 0) {
5704 LOG_UNIMP
, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd
);
5705 return -TARGET_ENOSYS
;
5707 if (ie
->target_cmd
== cmd
)
5711 arg_type
= ie
->arg_type
;
5713 return ie
->do_ioctl(ie
, buf_temp
, fd
, cmd
, arg
);
5714 } else if (!ie
->host_cmd
) {
5715 /* Some architectures define BSD ioctls in their headers
5716 that are not implemented in Linux. */
5717 return -TARGET_ENOSYS
;
5720 switch(arg_type
[0]) {
5723 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
));
5729 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, arg
));
5733 target_size
= thunk_type_size(arg_type
, 0);
5734 switch(ie
->access
) {
5736 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5737 if (!is_error(ret
)) {
5738 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5740 return -TARGET_EFAULT
;
5741 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5742 unlock_user(argptr
, arg
, target_size
);
5746 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5748 return -TARGET_EFAULT
;
5749 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5750 unlock_user(argptr
, arg
, 0);
5751 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5755 argptr
= lock_user(VERIFY_READ
, arg
, target_size
, 1);
5757 return -TARGET_EFAULT
;
5758 thunk_convert(buf_temp
, argptr
, arg_type
, THUNK_HOST
);
5759 unlock_user(argptr
, arg
, 0);
5760 ret
= get_errno(safe_ioctl(fd
, ie
->host_cmd
, buf_temp
));
5761 if (!is_error(ret
)) {
5762 argptr
= lock_user(VERIFY_WRITE
, arg
, target_size
, 0);
5764 return -TARGET_EFAULT
;
5765 thunk_convert(argptr
, buf_temp
, arg_type
, THUNK_TARGET
);
5766 unlock_user(argptr
, arg
, target_size
);
5772 qemu_log_mask(LOG_UNIMP
,
5773 "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5774 (long)cmd
, arg_type
[0]);
5775 ret
= -TARGET_ENOSYS
;
5781 static const bitmask_transtbl iflag_tbl
[] = {
5782 { TARGET_IGNBRK
, TARGET_IGNBRK
, IGNBRK
, IGNBRK
},
5783 { TARGET_BRKINT
, TARGET_BRKINT
, BRKINT
, BRKINT
},
5784 { TARGET_IGNPAR
, TARGET_IGNPAR
, IGNPAR
, IGNPAR
},
5785 { TARGET_PARMRK
, TARGET_PARMRK
, PARMRK
, PARMRK
},
5786 { TARGET_INPCK
, TARGET_INPCK
, INPCK
, INPCK
},
5787 { TARGET_ISTRIP
, TARGET_ISTRIP
, ISTRIP
, ISTRIP
},
5788 { TARGET_INLCR
, TARGET_INLCR
, INLCR
, INLCR
},
5789 { TARGET_IGNCR
, TARGET_IGNCR
, IGNCR
, IGNCR
},
5790 { TARGET_ICRNL
, TARGET_ICRNL
, ICRNL
, ICRNL
},
5791 { TARGET_IUCLC
, TARGET_IUCLC
, IUCLC
, IUCLC
},
5792 { TARGET_IXON
, TARGET_IXON
, IXON
, IXON
},
5793 { TARGET_IXANY
, TARGET_IXANY
, IXANY
, IXANY
},
5794 { TARGET_IXOFF
, TARGET_IXOFF
, IXOFF
, IXOFF
},
5795 { TARGET_IMAXBEL
, TARGET_IMAXBEL
, IMAXBEL
, IMAXBEL
},
5796 { TARGET_IUTF8
, TARGET_IUTF8
, IUTF8
, IUTF8
},
5800 static const bitmask_transtbl oflag_tbl
[] = {
5801 { TARGET_OPOST
, TARGET_OPOST
, OPOST
, OPOST
},
5802 { TARGET_OLCUC
, TARGET_OLCUC
, OLCUC
, OLCUC
},
5803 { TARGET_ONLCR
, TARGET_ONLCR
, ONLCR
, ONLCR
},
5804 { TARGET_OCRNL
, TARGET_OCRNL
, OCRNL
, OCRNL
},
5805 { TARGET_ONOCR
, TARGET_ONOCR
, ONOCR
, ONOCR
},
5806 { TARGET_ONLRET
, TARGET_ONLRET
, ONLRET
, ONLRET
},
5807 { TARGET_OFILL
, TARGET_OFILL
, OFILL
, OFILL
},
5808 { TARGET_OFDEL
, TARGET_OFDEL
, OFDEL
, OFDEL
},
5809 { TARGET_NLDLY
, TARGET_NL0
, NLDLY
, NL0
},
5810 { TARGET_NLDLY
, TARGET_NL1
, NLDLY
, NL1
},
5811 { TARGET_CRDLY
, TARGET_CR0
, CRDLY
, CR0
},
5812 { TARGET_CRDLY
, TARGET_CR1
, CRDLY
, CR1
},
5813 { TARGET_CRDLY
, TARGET_CR2
, CRDLY
, CR2
},
5814 { TARGET_CRDLY
, TARGET_CR3
, CRDLY
, CR3
},
5815 { TARGET_TABDLY
, TARGET_TAB0
, TABDLY
, TAB0
},
5816 { TARGET_TABDLY
, TARGET_TAB1
, TABDLY
, TAB1
},
5817 { TARGET_TABDLY
, TARGET_TAB2
, TABDLY
, TAB2
},
5818 { TARGET_TABDLY
, TARGET_TAB3
, TABDLY
, TAB3
},
5819 { TARGET_BSDLY
, TARGET_BS0
, BSDLY
, BS0
},
5820 { TARGET_BSDLY
, TARGET_BS1
, BSDLY
, BS1
},
5821 { TARGET_VTDLY
, TARGET_VT0
, VTDLY
, VT0
},
5822 { TARGET_VTDLY
, TARGET_VT1
, VTDLY
, VT1
},
5823 { TARGET_FFDLY
, TARGET_FF0
, FFDLY
, FF0
},
5824 { TARGET_FFDLY
, TARGET_FF1
, FFDLY
, FF1
},
5828 static const bitmask_transtbl cflag_tbl
[] = {
5829 { TARGET_CBAUD
, TARGET_B0
, CBAUD
, B0
},
5830 { TARGET_CBAUD
, TARGET_B50
, CBAUD
, B50
},
5831 { TARGET_CBAUD
, TARGET_B75
, CBAUD
, B75
},
5832 { TARGET_CBAUD
, TARGET_B110
, CBAUD
, B110
},
5833 { TARGET_CBAUD
, TARGET_B134
, CBAUD
, B134
},
5834 { TARGET_CBAUD
, TARGET_B150
, CBAUD
, B150
},
5835 { TARGET_CBAUD
, TARGET_B200
, CBAUD
, B200
},
5836 { TARGET_CBAUD
, TARGET_B300
, CBAUD
, B300
},
5837 { TARGET_CBAUD
, TARGET_B600
, CBAUD
, B600
},
5838 { TARGET_CBAUD
, TARGET_B1200
, CBAUD
, B1200
},
5839 { TARGET_CBAUD
, TARGET_B1800
, CBAUD
, B1800
},
5840 { TARGET_CBAUD
, TARGET_B2400
, CBAUD
, B2400
},
5841 { TARGET_CBAUD
, TARGET_B4800
, CBAUD
, B4800
},
5842 { TARGET_CBAUD
, TARGET_B9600
, CBAUD
, B9600
},
5843 { TARGET_CBAUD
, TARGET_B19200
, CBAUD
, B19200
},
5844 { TARGET_CBAUD
, TARGET_B38400
, CBAUD
, B38400
},
5845 { TARGET_CBAUD
, TARGET_B57600
, CBAUD
, B57600
},
5846 { TARGET_CBAUD
, TARGET_B115200
, CBAUD
, B115200
},
5847 { TARGET_CBAUD
, TARGET_B230400
, CBAUD
, B230400
},
5848 { TARGET_CBAUD
, TARGET_B460800
, CBAUD
, B460800
},
5849 { TARGET_CSIZE
, TARGET_CS5
, CSIZE
, CS5
},
5850 { TARGET_CSIZE
, TARGET_CS6
, CSIZE
, CS6
},
5851 { TARGET_CSIZE
, TARGET_CS7
, CSIZE
, CS7
},
5852 { TARGET_CSIZE
, TARGET_CS8
, CSIZE
, CS8
},
5853 { TARGET_CSTOPB
, TARGET_CSTOPB
, CSTOPB
, CSTOPB
},
5854 { TARGET_CREAD
, TARGET_CREAD
, CREAD
, CREAD
},
5855 { TARGET_PARENB
, TARGET_PARENB
, PARENB
, PARENB
},
5856 { TARGET_PARODD
, TARGET_PARODD
, PARODD
, PARODD
},
5857 { TARGET_HUPCL
, TARGET_HUPCL
, HUPCL
, HUPCL
},
5858 { TARGET_CLOCAL
, TARGET_CLOCAL
, CLOCAL
, CLOCAL
},
5859 { TARGET_CRTSCTS
, TARGET_CRTSCTS
, CRTSCTS
, CRTSCTS
},
5863 static const bitmask_transtbl lflag_tbl
[] = {
5864 { TARGET_ISIG
, TARGET_ISIG
, ISIG
, ISIG
},
5865 { TARGET_ICANON
, TARGET_ICANON
, ICANON
, ICANON
},
5866 { TARGET_XCASE
, TARGET_XCASE
, XCASE
, XCASE
},
5867 { TARGET_ECHO
, TARGET_ECHO
, ECHO
, ECHO
},
5868 { TARGET_ECHOE
, TARGET_ECHOE
, ECHOE
, ECHOE
},
5869 { TARGET_ECHOK
, TARGET_ECHOK
, ECHOK
, ECHOK
},
5870 { TARGET_ECHONL
, TARGET_ECHONL
, ECHONL
, ECHONL
},
5871 { TARGET_NOFLSH
, TARGET_NOFLSH
, NOFLSH
, NOFLSH
},
5872 { TARGET_TOSTOP
, TARGET_TOSTOP
, TOSTOP
, TOSTOP
},
5873 { TARGET_ECHOCTL
, TARGET_ECHOCTL
, ECHOCTL
, ECHOCTL
},
5874 { TARGET_ECHOPRT
, TARGET_ECHOPRT
, ECHOPRT
, ECHOPRT
},
5875 { TARGET_ECHOKE
, TARGET_ECHOKE
, ECHOKE
, ECHOKE
},
5876 { TARGET_FLUSHO
, TARGET_FLUSHO
, FLUSHO
, FLUSHO
},
5877 { TARGET_PENDIN
, TARGET_PENDIN
, PENDIN
, PENDIN
},
5878 { TARGET_IEXTEN
, TARGET_IEXTEN
, IEXTEN
, IEXTEN
},
5879 { TARGET_EXTPROC
, TARGET_EXTPROC
, EXTPROC
, EXTPROC
},
5883 static void target_to_host_termios (void *dst
, const void *src
)
5885 struct host_termios
*host
= dst
;
5886 const struct target_termios
*target
= src
;
5889 target_to_host_bitmask(tswap32(target
->c_iflag
), iflag_tbl
);
5891 target_to_host_bitmask(tswap32(target
->c_oflag
), oflag_tbl
);
5893 target_to_host_bitmask(tswap32(target
->c_cflag
), cflag_tbl
);
5895 target_to_host_bitmask(tswap32(target
->c_lflag
), lflag_tbl
);
5896 host
->c_line
= target
->c_line
;
5898 memset(host
->c_cc
, 0, sizeof(host
->c_cc
));
5899 host
->c_cc
[VINTR
] = target
->c_cc
[TARGET_VINTR
];
5900 host
->c_cc
[VQUIT
] = target
->c_cc
[TARGET_VQUIT
];
5901 host
->c_cc
[VERASE
] = target
->c_cc
[TARGET_VERASE
];
5902 host
->c_cc
[VKILL
] = target
->c_cc
[TARGET_VKILL
];
5903 host
->c_cc
[VEOF
] = target
->c_cc
[TARGET_VEOF
];
5904 host
->c_cc
[VTIME
] = target
->c_cc
[TARGET_VTIME
];
5905 host
->c_cc
[VMIN
] = target
->c_cc
[TARGET_VMIN
];
5906 host
->c_cc
[VSWTC
] = target
->c_cc
[TARGET_VSWTC
];
5907 host
->c_cc
[VSTART
] = target
->c_cc
[TARGET_VSTART
];
5908 host
->c_cc
[VSTOP
] = target
->c_cc
[TARGET_VSTOP
];
5909 host
->c_cc
[VSUSP
] = target
->c_cc
[TARGET_VSUSP
];
5910 host
->c_cc
[VEOL
] = target
->c_cc
[TARGET_VEOL
];
5911 host
->c_cc
[VREPRINT
] = target
->c_cc
[TARGET_VREPRINT
];
5912 host
->c_cc
[VDISCARD
] = target
->c_cc
[TARGET_VDISCARD
];
5913 host
->c_cc
[VWERASE
] = target
->c_cc
[TARGET_VWERASE
];
5914 host
->c_cc
[VLNEXT
] = target
->c_cc
[TARGET_VLNEXT
];
5915 host
->c_cc
[VEOL2
] = target
->c_cc
[TARGET_VEOL2
];
5918 static void host_to_target_termios (void *dst
, const void *src
)
5920 struct target_termios
*target
= dst
;
5921 const struct host_termios
*host
= src
;
5924 tswap32(host_to_target_bitmask(host
->c_iflag
, iflag_tbl
));
5926 tswap32(host_to_target_bitmask(host
->c_oflag
, oflag_tbl
));
5928 tswap32(host_to_target_bitmask(host
->c_cflag
, cflag_tbl
));
5930 tswap32(host_to_target_bitmask(host
->c_lflag
, lflag_tbl
));
5931 target
->c_line
= host
->c_line
;
5933 memset(target
->c_cc
, 0, sizeof(target
->c_cc
));
5934 target
->c_cc
[TARGET_VINTR
] = host
->c_cc
[VINTR
];
5935 target
->c_cc
[TARGET_VQUIT
] = host
->c_cc
[VQUIT
];
5936 target
->c_cc
[TARGET_VERASE
] = host
->c_cc
[VERASE
];
5937 target
->c_cc
[TARGET_VKILL
] = host
->c_cc
[VKILL
];
5938 target
->c_cc
[TARGET_VEOF
] = host
->c_cc
[VEOF
];
5939 target
->c_cc
[TARGET_VTIME
] = host
->c_cc
[VTIME
];
5940 target
->c_cc
[TARGET_VMIN
] = host
->c_cc
[VMIN
];
5941 target
->c_cc
[TARGET_VSWTC
] = host
->c_cc
[VSWTC
];
5942 target
->c_cc
[TARGET_VSTART
] = host
->c_cc
[VSTART
];
5943 target
->c_cc
[TARGET_VSTOP
] = host
->c_cc
[VSTOP
];
5944 target
->c_cc
[TARGET_VSUSP
] = host
->c_cc
[VSUSP
];
5945 target
->c_cc
[TARGET_VEOL
] = host
->c_cc
[VEOL
];
5946 target
->c_cc
[TARGET_VREPRINT
] = host
->c_cc
[VREPRINT
];
5947 target
->c_cc
[TARGET_VDISCARD
] = host
->c_cc
[VDISCARD
];
5948 target
->c_cc
[TARGET_VWERASE
] = host
->c_cc
[VWERASE
];
5949 target
->c_cc
[TARGET_VLNEXT
] = host
->c_cc
[VLNEXT
];
5950 target
->c_cc
[TARGET_VEOL2
] = host
->c_cc
[VEOL2
];
5953 static const StructEntry struct_termios_def
= {
5954 .convert
= { host_to_target_termios
, target_to_host_termios
},
5955 .size
= { sizeof(struct target_termios
), sizeof(struct host_termios
) },
5956 .align
= { __alignof__(struct target_termios
), __alignof__(struct host_termios
) },
5957 .print
= print_termios
,
5960 static const bitmask_transtbl mmap_flags_tbl
[] = {
5961 { TARGET_MAP_SHARED
, TARGET_MAP_SHARED
, MAP_SHARED
, MAP_SHARED
},
5962 { TARGET_MAP_PRIVATE
, TARGET_MAP_PRIVATE
, MAP_PRIVATE
, MAP_PRIVATE
},
5963 { TARGET_MAP_FIXED
, TARGET_MAP_FIXED
, MAP_FIXED
, MAP_FIXED
},
5964 { TARGET_MAP_ANONYMOUS
, TARGET_MAP_ANONYMOUS
,
5965 MAP_ANONYMOUS
, MAP_ANONYMOUS
},
5966 { TARGET_MAP_GROWSDOWN
, TARGET_MAP_GROWSDOWN
,
5967 MAP_GROWSDOWN
, MAP_GROWSDOWN
},
5968 { TARGET_MAP_DENYWRITE
, TARGET_MAP_DENYWRITE
,
5969 MAP_DENYWRITE
, MAP_DENYWRITE
},
5970 { TARGET_MAP_EXECUTABLE
, TARGET_MAP_EXECUTABLE
,
5971 MAP_EXECUTABLE
, MAP_EXECUTABLE
},
5972 { TARGET_MAP_LOCKED
, TARGET_MAP_LOCKED
, MAP_LOCKED
, MAP_LOCKED
},
5973 { TARGET_MAP_NORESERVE
, TARGET_MAP_NORESERVE
,
5974 MAP_NORESERVE
, MAP_NORESERVE
},
5975 { TARGET_MAP_HUGETLB
, TARGET_MAP_HUGETLB
, MAP_HUGETLB
, MAP_HUGETLB
},
5976 /* MAP_STACK had been ignored by the kernel for quite some time.
5977 Recognize it for the target insofar as we do not want to pass
5978 it through to the host. */
5979 { TARGET_MAP_STACK
, TARGET_MAP_STACK
, 0, 0 },
5984 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5985 * TARGET_I386 is defined if TARGET_X86_64 is defined
5987 #if defined(TARGET_I386)
5989 /* NOTE: there is really one LDT for all the threads */
5990 static uint8_t *ldt_table
;
5992 static abi_long
read_ldt(abi_ulong ptr
, unsigned long bytecount
)
5999 size
= TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
;
6000 if (size
> bytecount
)
6002 p
= lock_user(VERIFY_WRITE
, ptr
, size
, 0);
6004 return -TARGET_EFAULT
;
6005 /* ??? Should this by byteswapped? */
6006 memcpy(p
, ldt_table
, size
);
6007 unlock_user(p
, ptr
, size
);
6011 /* XXX: add locking support */
6012 static abi_long
write_ldt(CPUX86State
*env
,
6013 abi_ulong ptr
, unsigned long bytecount
, int oldmode
)
6015 struct target_modify_ldt_ldt_s ldt_info
;
6016 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6017 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
6018 int seg_not_present
, useable
, lm
;
6019 uint32_t *lp
, entry_1
, entry_2
;
6021 if (bytecount
!= sizeof(ldt_info
))
6022 return -TARGET_EINVAL
;
6023 if (!lock_user_struct(VERIFY_READ
, target_ldt_info
, ptr
, 1))
6024 return -TARGET_EFAULT
;
6025 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
6026 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
6027 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
6028 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
6029 unlock_user_struct(target_ldt_info
, ptr
, 0);
6031 if (ldt_info
.entry_number
>= TARGET_LDT_ENTRIES
)
6032 return -TARGET_EINVAL
;
6033 seg_32bit
= ldt_info
.flags
& 1;
6034 contents
= (ldt_info
.flags
>> 1) & 3;
6035 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
6036 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
6037 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
6038 useable
= (ldt_info
.flags
>> 6) & 1;
6042 lm
= (ldt_info
.flags
>> 7) & 1;
6044 if (contents
== 3) {
6046 return -TARGET_EINVAL
;
6047 if (seg_not_present
== 0)
6048 return -TARGET_EINVAL
;
6050 /* allocate the LDT */
6052 env
->ldt
.base
= target_mmap(0,
6053 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
,
6054 PROT_READ
|PROT_WRITE
,
6055 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
6056 if (env
->ldt
.base
== -1)
6057 return -TARGET_ENOMEM
;
6058 memset(g2h_untagged(env
->ldt
.base
), 0,
6059 TARGET_LDT_ENTRIES
* TARGET_LDT_ENTRY_SIZE
);
6060 env
->ldt
.limit
= 0xffff;
6061 ldt_table
= g2h_untagged(env
->ldt
.base
);
6064 /* NOTE: same code as Linux kernel */
6065 /* Allow LDTs to be cleared by the user. */
6066 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6069 read_exec_only
== 1 &&
6071 limit_in_pages
== 0 &&
6072 seg_not_present
== 1 &&
6080 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6081 (ldt_info
.limit
& 0x0ffff);
6082 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6083 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6084 (ldt_info
.limit
& 0xf0000) |
6085 ((read_exec_only
^ 1) << 9) |
6087 ((seg_not_present
^ 1) << 15) |
6089 (limit_in_pages
<< 23) |
6093 entry_2
|= (useable
<< 20);
6095 /* Install the new entry ... */
6097 lp
= (uint32_t *)(ldt_table
+ (ldt_info
.entry_number
<< 3));
6098 lp
[0] = tswap32(entry_1
);
6099 lp
[1] = tswap32(entry_2
);
6103 /* specific and weird i386 syscalls */
6104 static abi_long
do_modify_ldt(CPUX86State
*env
, int func
, abi_ulong ptr
,
6105 unsigned long bytecount
)
6111 ret
= read_ldt(ptr
, bytecount
);
6114 ret
= write_ldt(env
, ptr
, bytecount
, 1);
6117 ret
= write_ldt(env
, ptr
, bytecount
, 0);
6120 ret
= -TARGET_ENOSYS
;
6126 #if defined(TARGET_ABI32)
6127 abi_long
do_set_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6129 uint64_t *gdt_table
= g2h_untagged(env
->gdt
.base
);
6130 struct target_modify_ldt_ldt_s ldt_info
;
6131 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6132 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
;
6133 int seg_not_present
, useable
, lm
;
6134 uint32_t *lp
, entry_1
, entry_2
;
6137 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6138 if (!target_ldt_info
)
6139 return -TARGET_EFAULT
;
6140 ldt_info
.entry_number
= tswap32(target_ldt_info
->entry_number
);
6141 ldt_info
.base_addr
= tswapal(target_ldt_info
->base_addr
);
6142 ldt_info
.limit
= tswap32(target_ldt_info
->limit
);
6143 ldt_info
.flags
= tswap32(target_ldt_info
->flags
);
6144 if (ldt_info
.entry_number
== -1) {
6145 for (i
=TARGET_GDT_ENTRY_TLS_MIN
; i
<=TARGET_GDT_ENTRY_TLS_MAX
; i
++) {
6146 if (gdt_table
[i
] == 0) {
6147 ldt_info
.entry_number
= i
;
6148 target_ldt_info
->entry_number
= tswap32(i
);
6153 unlock_user_struct(target_ldt_info
, ptr
, 1);
6155 if (ldt_info
.entry_number
< TARGET_GDT_ENTRY_TLS_MIN
||
6156 ldt_info
.entry_number
> TARGET_GDT_ENTRY_TLS_MAX
)
6157 return -TARGET_EINVAL
;
6158 seg_32bit
= ldt_info
.flags
& 1;
6159 contents
= (ldt_info
.flags
>> 1) & 3;
6160 read_exec_only
= (ldt_info
.flags
>> 3) & 1;
6161 limit_in_pages
= (ldt_info
.flags
>> 4) & 1;
6162 seg_not_present
= (ldt_info
.flags
>> 5) & 1;
6163 useable
= (ldt_info
.flags
>> 6) & 1;
6167 lm
= (ldt_info
.flags
>> 7) & 1;
6170 if (contents
== 3) {
6171 if (seg_not_present
== 0)
6172 return -TARGET_EINVAL
;
6175 /* NOTE: same code as Linux kernel */
6176 /* Allow LDTs to be cleared by the user. */
6177 if (ldt_info
.base_addr
== 0 && ldt_info
.limit
== 0) {
6178 if ((contents
== 0 &&
6179 read_exec_only
== 1 &&
6181 limit_in_pages
== 0 &&
6182 seg_not_present
== 1 &&
6190 entry_1
= ((ldt_info
.base_addr
& 0x0000ffff) << 16) |
6191 (ldt_info
.limit
& 0x0ffff);
6192 entry_2
= (ldt_info
.base_addr
& 0xff000000) |
6193 ((ldt_info
.base_addr
& 0x00ff0000) >> 16) |
6194 (ldt_info
.limit
& 0xf0000) |
6195 ((read_exec_only
^ 1) << 9) |
6197 ((seg_not_present
^ 1) << 15) |
6199 (limit_in_pages
<< 23) |
6204 /* Install the new entry ... */
6206 lp
= (uint32_t *)(gdt_table
+ ldt_info
.entry_number
);
6207 lp
[0] = tswap32(entry_1
);
6208 lp
[1] = tswap32(entry_2
);
6212 static abi_long
do_get_thread_area(CPUX86State
*env
, abi_ulong ptr
)
6214 struct target_modify_ldt_ldt_s
*target_ldt_info
;
6215 uint64_t *gdt_table
= g2h_untagged(env
->gdt
.base
);
6216 uint32_t base_addr
, limit
, flags
;
6217 int seg_32bit
, contents
, read_exec_only
, limit_in_pages
, idx
;
6218 int seg_not_present
, useable
, lm
;
6219 uint32_t *lp
, entry_1
, entry_2
;
6221 lock_user_struct(VERIFY_WRITE
, target_ldt_info
, ptr
, 1);
6222 if (!target_ldt_info
)
6223 return -TARGET_EFAULT
;
6224 idx
= tswap32(target_ldt_info
->entry_number
);
6225 if (idx
< TARGET_GDT_ENTRY_TLS_MIN
||
6226 idx
> TARGET_GDT_ENTRY_TLS_MAX
) {
6227 unlock_user_struct(target_ldt_info
, ptr
, 1);
6228 return -TARGET_EINVAL
;
6230 lp
= (uint32_t *)(gdt_table
+ idx
);
6231 entry_1
= tswap32(lp
[0]);
6232 entry_2
= tswap32(lp
[1]);
6234 read_exec_only
= ((entry_2
>> 9) & 1) ^ 1;
6235 contents
= (entry_2
>> 10) & 3;
6236 seg_not_present
= ((entry_2
>> 15) & 1) ^ 1;
6237 seg_32bit
= (entry_2
>> 22) & 1;
6238 limit_in_pages
= (entry_2
>> 23) & 1;
6239 useable
= (entry_2
>> 20) & 1;
6243 lm
= (entry_2
>> 21) & 1;
6245 flags
= (seg_32bit
<< 0) | (contents
<< 1) |
6246 (read_exec_only
<< 3) | (limit_in_pages
<< 4) |
6247 (seg_not_present
<< 5) | (useable
<< 6) | (lm
<< 7);
6248 limit
= (entry_1
& 0xffff) | (entry_2
& 0xf0000);
6249 base_addr
= (entry_1
>> 16) |
6250 (entry_2
& 0xff000000) |
6251 ((entry_2
& 0xff) << 16);
6252 target_ldt_info
->base_addr
= tswapal(base_addr
);
6253 target_ldt_info
->limit
= tswap32(limit
);
6254 target_ldt_info
->flags
= tswap32(flags
);
6255 unlock_user_struct(target_ldt_info
, ptr
, 1);
6259 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
6261 return -TARGET_ENOSYS
;
6264 abi_long
do_arch_prctl(CPUX86State
*env
, int code
, abi_ulong addr
)
6271 case TARGET_ARCH_SET_GS
:
6272 case TARGET_ARCH_SET_FS
:
6273 if (code
== TARGET_ARCH_SET_GS
)
6277 cpu_x86_load_seg(env
, idx
, 0);
6278 env
->segs
[idx
].base
= addr
;
6280 case TARGET_ARCH_GET_GS
:
6281 case TARGET_ARCH_GET_FS
:
6282 if (code
== TARGET_ARCH_GET_GS
)
6286 val
= env
->segs
[idx
].base
;
6287 if (put_user(val
, addr
, abi_ulong
))
6288 ret
= -TARGET_EFAULT
;
6291 ret
= -TARGET_EINVAL
;
6296 #endif /* defined(TARGET_ABI32 */
6297 #endif /* defined(TARGET_I386) */
6300 * These constants are generic. Supply any that are missing from the host.
6303 # define PR_SET_NAME 15
6304 # define PR_GET_NAME 16
6306 #ifndef PR_SET_FP_MODE
6307 # define PR_SET_FP_MODE 45
6308 # define PR_GET_FP_MODE 46
6309 # define PR_FP_MODE_FR (1 << 0)
6310 # define PR_FP_MODE_FRE (1 << 1)
6312 #ifndef PR_SVE_SET_VL
6313 # define PR_SVE_SET_VL 50
6314 # define PR_SVE_GET_VL 51
6315 # define PR_SVE_VL_LEN_MASK 0xffff
6316 # define PR_SVE_VL_INHERIT (1 << 17)
6318 #ifndef PR_PAC_RESET_KEYS
6319 # define PR_PAC_RESET_KEYS 54
6320 # define PR_PAC_APIAKEY (1 << 0)
6321 # define PR_PAC_APIBKEY (1 << 1)
6322 # define PR_PAC_APDAKEY (1 << 2)
6323 # define PR_PAC_APDBKEY (1 << 3)
6324 # define PR_PAC_APGAKEY (1 << 4)
6326 #ifndef PR_SET_TAGGED_ADDR_CTRL
6327 # define PR_SET_TAGGED_ADDR_CTRL 55
6328 # define PR_GET_TAGGED_ADDR_CTRL 56
6329 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
6331 #ifndef PR_MTE_TCF_SHIFT
6332 # define PR_MTE_TCF_SHIFT 1
6333 # define PR_MTE_TCF_NONE (0UL << PR_MTE_TCF_SHIFT)
6334 # define PR_MTE_TCF_SYNC (1UL << PR_MTE_TCF_SHIFT)
6335 # define PR_MTE_TCF_ASYNC (2UL << PR_MTE_TCF_SHIFT)
6336 # define PR_MTE_TCF_MASK (3UL << PR_MTE_TCF_SHIFT)
6337 # define PR_MTE_TAG_SHIFT 3
6338 # define PR_MTE_TAG_MASK (0xffffUL << PR_MTE_TAG_SHIFT)
6340 #ifndef PR_SET_IO_FLUSHER
6341 # define PR_SET_IO_FLUSHER 57
6342 # define PR_GET_IO_FLUSHER 58
6344 #ifndef PR_SET_SYSCALL_USER_DISPATCH
6345 # define PR_SET_SYSCALL_USER_DISPATCH 59
6348 #include "target_prctl.h"
6350 static abi_long
do_prctl_inval0(CPUArchState
*env
)
6352 return -TARGET_EINVAL
;
6355 static abi_long
do_prctl_inval1(CPUArchState
*env
, abi_long arg2
)
6357 return -TARGET_EINVAL
;
6360 #ifndef do_prctl_get_fp_mode
6361 #define do_prctl_get_fp_mode do_prctl_inval0
6363 #ifndef do_prctl_set_fp_mode
6364 #define do_prctl_set_fp_mode do_prctl_inval1
6366 #ifndef do_prctl_get_vl
6367 #define do_prctl_get_vl do_prctl_inval0
6369 #ifndef do_prctl_set_vl
6370 #define do_prctl_set_vl do_prctl_inval1
6372 #ifndef do_prctl_reset_keys
6373 #define do_prctl_reset_keys do_prctl_inval1
6375 #ifndef do_prctl_set_tagged_addr_ctrl
6376 #define do_prctl_set_tagged_addr_ctrl do_prctl_inval1
6378 #ifndef do_prctl_get_tagged_addr_ctrl
6379 #define do_prctl_get_tagged_addr_ctrl do_prctl_inval0
6382 static abi_long
do_prctl(CPUArchState
*env
, abi_long option
, abi_long arg2
,
6383 abi_long arg3
, abi_long arg4
, abi_long arg5
)
6388 case PR_GET_PDEATHSIG
:
6391 ret
= get_errno(prctl(PR_GET_PDEATHSIG
, &deathsig
,
6393 if (!is_error(ret
) && arg2
&& put_user_s32(deathsig
, arg2
)) {
6394 return -TARGET_EFAULT
;
6400 void *name
= lock_user(VERIFY_WRITE
, arg2
, 16, 1);
6402 return -TARGET_EFAULT
;
6404 ret
= get_errno(prctl(PR_GET_NAME
, (uintptr_t)name
,
6406 unlock_user(name
, arg2
, 16);
6411 void *name
= lock_user(VERIFY_READ
, arg2
, 16, 1);
6413 return -TARGET_EFAULT
;
6415 ret
= get_errno(prctl(PR_SET_NAME
, (uintptr_t)name
,
6417 unlock_user(name
, arg2
, 0);
6420 case PR_GET_FP_MODE
:
6421 return do_prctl_get_fp_mode(env
);
6422 case PR_SET_FP_MODE
:
6423 return do_prctl_set_fp_mode(env
, arg2
);
6425 return do_prctl_get_vl(env
);
6427 return do_prctl_set_vl(env
, arg2
);
6428 case PR_PAC_RESET_KEYS
:
6429 if (arg3
|| arg4
|| arg5
) {
6430 return -TARGET_EINVAL
;
6432 return do_prctl_reset_keys(env
, arg2
);
6433 case PR_SET_TAGGED_ADDR_CTRL
:
6434 if (arg3
|| arg4
|| arg5
) {
6435 return -TARGET_EINVAL
;
6437 return do_prctl_set_tagged_addr_ctrl(env
, arg2
);
6438 case PR_GET_TAGGED_ADDR_CTRL
:
6439 if (arg2
|| arg3
|| arg4
|| arg5
) {
6440 return -TARGET_EINVAL
;
6442 return do_prctl_get_tagged_addr_ctrl(env
);
6444 case PR_GET_DUMPABLE
:
6445 case PR_SET_DUMPABLE
:
6446 case PR_GET_KEEPCAPS
:
6447 case PR_SET_KEEPCAPS
:
6450 case PR_GET_TIMERSLACK
:
6451 case PR_SET_TIMERSLACK
:
6453 case PR_MCE_KILL_GET
:
6454 case PR_GET_NO_NEW_PRIVS
:
6455 case PR_SET_NO_NEW_PRIVS
:
6456 case PR_GET_IO_FLUSHER
:
6457 case PR_SET_IO_FLUSHER
:
6458 /* Some prctl options have no pointer arguments and we can pass on. */
6459 return get_errno(prctl(option
, arg2
, arg3
, arg4
, arg5
));
6461 case PR_GET_CHILD_SUBREAPER
:
6462 case PR_SET_CHILD_SUBREAPER
:
6463 case PR_GET_SPECULATION_CTRL
:
6464 case PR_SET_SPECULATION_CTRL
:
6465 case PR_GET_TID_ADDRESS
:
6467 return -TARGET_EINVAL
;
6471 /* Was used for SPE on PowerPC. */
6472 return -TARGET_EINVAL
;
6479 case PR_GET_SECCOMP
:
6480 case PR_SET_SECCOMP
:
6481 case PR_SET_SYSCALL_USER_DISPATCH
:
6482 case PR_GET_THP_DISABLE
:
6483 case PR_SET_THP_DISABLE
:
6486 case PR_GET_UNALIGN
:
6487 case PR_SET_UNALIGN
:
6488 /* Disable to prevent the target disabling stuff we need. */
6489 return -TARGET_EINVAL
;
6492 qemu_log_mask(LOG_UNIMP
, "Unsupported prctl: " TARGET_ABI_FMT_ld
"\n",
6494 return -TARGET_EINVAL
;
6498 #define NEW_STACK_SIZE 0x40000
6501 static pthread_mutex_t clone_lock
= PTHREAD_MUTEX_INITIALIZER
;
6504 pthread_mutex_t mutex
;
6505 pthread_cond_t cond
;
6508 abi_ulong child_tidptr
;
6509 abi_ulong parent_tidptr
;
6513 static void *clone_func(void *arg
)
6515 new_thread_info
*info
= arg
;
6520 rcu_register_thread();
6521 tcg_register_thread();
6525 ts
= (TaskState
*)cpu
->opaque
;
6526 info
->tid
= sys_gettid();
6528 if (info
->child_tidptr
)
6529 put_user_u32(info
->tid
, info
->child_tidptr
);
6530 if (info
->parent_tidptr
)
6531 put_user_u32(info
->tid
, info
->parent_tidptr
);
6532 qemu_guest_random_seed_thread_part2(cpu
->random_seed
);
6533 /* Enable signals. */
6534 sigprocmask(SIG_SETMASK
, &info
->sigmask
, NULL
);
6535 /* Signal to the parent that we're ready. */
6536 pthread_mutex_lock(&info
->mutex
);
6537 pthread_cond_broadcast(&info
->cond
);
6538 pthread_mutex_unlock(&info
->mutex
);
6539 /* Wait until the parent has finished initializing the tls state. */
6540 pthread_mutex_lock(&clone_lock
);
6541 pthread_mutex_unlock(&clone_lock
);
6547 /* do_fork() Must return host values and target errnos (unlike most
6548 do_*() functions). */
6549 static int do_fork(CPUArchState
*env
, unsigned int flags
, abi_ulong newsp
,
6550 abi_ulong parent_tidptr
, target_ulong newtls
,
6551 abi_ulong child_tidptr
)
6553 CPUState
*cpu
= env_cpu(env
);
6557 CPUArchState
*new_env
;
6560 flags
&= ~CLONE_IGNORED_FLAGS
;
6562 /* Emulate vfork() with fork() */
6563 if (flags
& CLONE_VFORK
)
6564 flags
&= ~(CLONE_VFORK
| CLONE_VM
);
6566 if (flags
& CLONE_VM
) {
6567 TaskState
*parent_ts
= (TaskState
*)cpu
->opaque
;
6568 new_thread_info info
;
6569 pthread_attr_t attr
;
6571 if (((flags
& CLONE_THREAD_FLAGS
) != CLONE_THREAD_FLAGS
) ||
6572 (flags
& CLONE_INVALID_THREAD_FLAGS
)) {
6573 return -TARGET_EINVAL
;
6576 ts
= g_new0(TaskState
, 1);
6577 init_task_state(ts
);
6579 /* Grab a mutex so that thread setup appears atomic. */
6580 pthread_mutex_lock(&clone_lock
);
6583 * If this is our first additional thread, we need to ensure we
6584 * generate code for parallel execution and flush old translations.
6585 * Do this now so that the copy gets CF_PARALLEL too.
6587 if (!(cpu
->tcg_cflags
& CF_PARALLEL
)) {
6588 cpu
->tcg_cflags
|= CF_PARALLEL
;
6592 /* we create a new CPU instance. */
6593 new_env
= cpu_copy(env
);
6594 /* Init regs that differ from the parent. */
6595 cpu_clone_regs_child(new_env
, newsp
, flags
);
6596 cpu_clone_regs_parent(env
, flags
);
6597 new_cpu
= env_cpu(new_env
);
6598 new_cpu
->opaque
= ts
;
6599 ts
->bprm
= parent_ts
->bprm
;
6600 ts
->info
= parent_ts
->info
;
6601 ts
->signal_mask
= parent_ts
->signal_mask
;
6603 if (flags
& CLONE_CHILD_CLEARTID
) {
6604 ts
->child_tidptr
= child_tidptr
;
6607 if (flags
& CLONE_SETTLS
) {
6608 cpu_set_tls (new_env
, newtls
);
6611 memset(&info
, 0, sizeof(info
));
6612 pthread_mutex_init(&info
.mutex
, NULL
);
6613 pthread_mutex_lock(&info
.mutex
);
6614 pthread_cond_init(&info
.cond
, NULL
);
6616 if (flags
& CLONE_CHILD_SETTID
) {
6617 info
.child_tidptr
= child_tidptr
;
6619 if (flags
& CLONE_PARENT_SETTID
) {
6620 info
.parent_tidptr
= parent_tidptr
;
6623 ret
= pthread_attr_init(&attr
);
6624 ret
= pthread_attr_setstacksize(&attr
, NEW_STACK_SIZE
);
6625 ret
= pthread_attr_setdetachstate(&attr
, PTHREAD_CREATE_DETACHED
);
6626 /* It is not safe to deliver signals until the child has finished
6627 initializing, so temporarily block all signals. */
6628 sigfillset(&sigmask
);
6629 sigprocmask(SIG_BLOCK
, &sigmask
, &info
.sigmask
);
6630 cpu
->random_seed
= qemu_guest_random_seed_thread_part1();
6632 ret
= pthread_create(&info
.thread
, &attr
, clone_func
, &info
);
6633 /* TODO: Free new CPU state if thread creation failed. */
6635 sigprocmask(SIG_SETMASK
, &info
.sigmask
, NULL
);
6636 pthread_attr_destroy(&attr
);
6638 /* Wait for the child to initialize. */
6639 pthread_cond_wait(&info
.cond
, &info
.mutex
);
6644 pthread_mutex_unlock(&info
.mutex
);
6645 pthread_cond_destroy(&info
.cond
);
6646 pthread_mutex_destroy(&info
.mutex
);
6647 pthread_mutex_unlock(&clone_lock
);
6649 /* if no CLONE_VM, we consider it is a fork */
6650 if (flags
& CLONE_INVALID_FORK_FLAGS
) {
6651 return -TARGET_EINVAL
;
6654 /* We can't support custom termination signals */
6655 if ((flags
& CSIGNAL
) != TARGET_SIGCHLD
) {
6656 return -TARGET_EINVAL
;
6659 if (block_signals()) {
6660 return -QEMU_ERESTARTSYS
;
6666 /* Child Process. */
6667 cpu_clone_regs_child(env
, newsp
, flags
);
6669 /* There is a race condition here. The parent process could
6670 theoretically read the TID in the child process before the child
6671 tid is set. This would require using either ptrace
6672 (not implemented) or having *_tidptr to point at a shared memory
6673 mapping. We can't repeat the spinlock hack used above because
6674 the child process gets its own copy of the lock. */
6675 if (flags
& CLONE_CHILD_SETTID
)
6676 put_user_u32(sys_gettid(), child_tidptr
);
6677 if (flags
& CLONE_PARENT_SETTID
)
6678 put_user_u32(sys_gettid(), parent_tidptr
);
6679 ts
= (TaskState
*)cpu
->opaque
;
6680 if (flags
& CLONE_SETTLS
)
6681 cpu_set_tls (env
, newtls
);
6682 if (flags
& CLONE_CHILD_CLEARTID
)
6683 ts
->child_tidptr
= child_tidptr
;
6685 cpu_clone_regs_parent(env
, flags
);
6692 /* warning : doesn't handle linux specific flags... */
6693 static int target_to_host_fcntl_cmd(int cmd
)
6698 case TARGET_F_DUPFD
:
6699 case TARGET_F_GETFD
:
6700 case TARGET_F_SETFD
:
6701 case TARGET_F_GETFL
:
6702 case TARGET_F_SETFL
:
6703 case TARGET_F_OFD_GETLK
:
6704 case TARGET_F_OFD_SETLK
:
6705 case TARGET_F_OFD_SETLKW
:
6708 case TARGET_F_GETLK
:
6711 case TARGET_F_SETLK
:
6714 case TARGET_F_SETLKW
:
6717 case TARGET_F_GETOWN
:
6720 case TARGET_F_SETOWN
:
6723 case TARGET_F_GETSIG
:
6726 case TARGET_F_SETSIG
:
6729 #if TARGET_ABI_BITS == 32
6730 case TARGET_F_GETLK64
:
6733 case TARGET_F_SETLK64
:
6736 case TARGET_F_SETLKW64
:
6740 case TARGET_F_SETLEASE
:
6743 case TARGET_F_GETLEASE
:
6746 #ifdef F_DUPFD_CLOEXEC
6747 case TARGET_F_DUPFD_CLOEXEC
:
6748 ret
= F_DUPFD_CLOEXEC
;
6751 case TARGET_F_NOTIFY
:
6755 case TARGET_F_GETOWN_EX
:
6760 case TARGET_F_SETOWN_EX
:
6765 case TARGET_F_SETPIPE_SZ
:
6768 case TARGET_F_GETPIPE_SZ
:
6773 case TARGET_F_ADD_SEALS
:
6776 case TARGET_F_GET_SEALS
:
6781 ret
= -TARGET_EINVAL
;
6785 #if defined(__powerpc64__)
6786 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6787 * is not supported by kernel. The glibc fcntl call actually adjusts
6788 * them to 5, 6 and 7 before making the syscall(). Since we make the
6789 * syscall directly, adjust to what is supported by the kernel.
6791 if (ret
>= F_GETLK64
&& ret
<= F_SETLKW64
) {
6792 ret
-= F_GETLK64
- 5;
6799 #define FLOCK_TRANSTBL \
6801 TRANSTBL_CONVERT(F_RDLCK); \
6802 TRANSTBL_CONVERT(F_WRLCK); \
6803 TRANSTBL_CONVERT(F_UNLCK); \
6806 static int target_to_host_flock(int type
)
6808 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6810 #undef TRANSTBL_CONVERT
6811 return -TARGET_EINVAL
;
6814 static int host_to_target_flock(int type
)
6816 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6818 #undef TRANSTBL_CONVERT
6819 /* if we don't know how to convert the value coming
6820 * from the host we copy to the target field as-is
6825 static inline abi_long
copy_from_user_flock(struct flock64
*fl
,
6826 abi_ulong target_flock_addr
)
6828 struct target_flock
*target_fl
;
6831 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6832 return -TARGET_EFAULT
;
6835 __get_user(l_type
, &target_fl
->l_type
);
6836 l_type
= target_to_host_flock(l_type
);
6840 fl
->l_type
= l_type
;
6841 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6842 __get_user(fl
->l_start
, &target_fl
->l_start
);
6843 __get_user(fl
->l_len
, &target_fl
->l_len
);
6844 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6845 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6849 static inline abi_long
copy_to_user_flock(abi_ulong target_flock_addr
,
6850 const struct flock64
*fl
)
6852 struct target_flock
*target_fl
;
6855 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6856 return -TARGET_EFAULT
;
6859 l_type
= host_to_target_flock(fl
->l_type
);
6860 __put_user(l_type
, &target_fl
->l_type
);
6861 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6862 __put_user(fl
->l_start
, &target_fl
->l_start
);
6863 __put_user(fl
->l_len
, &target_fl
->l_len
);
6864 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6865 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6869 typedef abi_long
from_flock64_fn(struct flock64
*fl
, abi_ulong target_addr
);
6870 typedef abi_long
to_flock64_fn(abi_ulong target_addr
, const struct flock64
*fl
);
6872 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6873 static inline abi_long
copy_from_user_oabi_flock64(struct flock64
*fl
,
6874 abi_ulong target_flock_addr
)
6876 struct target_oabi_flock64
*target_fl
;
6879 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6880 return -TARGET_EFAULT
;
6883 __get_user(l_type
, &target_fl
->l_type
);
6884 l_type
= target_to_host_flock(l_type
);
6888 fl
->l_type
= l_type
;
6889 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6890 __get_user(fl
->l_start
, &target_fl
->l_start
);
6891 __get_user(fl
->l_len
, &target_fl
->l_len
);
6892 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6893 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6897 static inline abi_long
copy_to_user_oabi_flock64(abi_ulong target_flock_addr
,
6898 const struct flock64
*fl
)
6900 struct target_oabi_flock64
*target_fl
;
6903 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6904 return -TARGET_EFAULT
;
6907 l_type
= host_to_target_flock(fl
->l_type
);
6908 __put_user(l_type
, &target_fl
->l_type
);
6909 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6910 __put_user(fl
->l_start
, &target_fl
->l_start
);
6911 __put_user(fl
->l_len
, &target_fl
->l_len
);
6912 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6913 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6918 static inline abi_long
copy_from_user_flock64(struct flock64
*fl
,
6919 abi_ulong target_flock_addr
)
6921 struct target_flock64
*target_fl
;
6924 if (!lock_user_struct(VERIFY_READ
, target_fl
, target_flock_addr
, 1)) {
6925 return -TARGET_EFAULT
;
6928 __get_user(l_type
, &target_fl
->l_type
);
6929 l_type
= target_to_host_flock(l_type
);
6933 fl
->l_type
= l_type
;
6934 __get_user(fl
->l_whence
, &target_fl
->l_whence
);
6935 __get_user(fl
->l_start
, &target_fl
->l_start
);
6936 __get_user(fl
->l_len
, &target_fl
->l_len
);
6937 __get_user(fl
->l_pid
, &target_fl
->l_pid
);
6938 unlock_user_struct(target_fl
, target_flock_addr
, 0);
6942 static inline abi_long
copy_to_user_flock64(abi_ulong target_flock_addr
,
6943 const struct flock64
*fl
)
6945 struct target_flock64
*target_fl
;
6948 if (!lock_user_struct(VERIFY_WRITE
, target_fl
, target_flock_addr
, 0)) {
6949 return -TARGET_EFAULT
;
6952 l_type
= host_to_target_flock(fl
->l_type
);
6953 __put_user(l_type
, &target_fl
->l_type
);
6954 __put_user(fl
->l_whence
, &target_fl
->l_whence
);
6955 __put_user(fl
->l_start
, &target_fl
->l_start
);
6956 __put_user(fl
->l_len
, &target_fl
->l_len
);
6957 __put_user(fl
->l_pid
, &target_fl
->l_pid
);
6958 unlock_user_struct(target_fl
, target_flock_addr
, 1);
6962 static abi_long
do_fcntl(int fd
, int cmd
, abi_ulong arg
)
6964 struct flock64 fl64
;
6966 struct f_owner_ex fox
;
6967 struct target_f_owner_ex
*target_fox
;
6970 int host_cmd
= target_to_host_fcntl_cmd(cmd
);
6972 if (host_cmd
== -TARGET_EINVAL
)
6976 case TARGET_F_GETLK
:
6977 ret
= copy_from_user_flock(&fl64
, arg
);
6981 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6983 ret
= copy_to_user_flock(arg
, &fl64
);
6987 case TARGET_F_SETLK
:
6988 case TARGET_F_SETLKW
:
6989 ret
= copy_from_user_flock(&fl64
, arg
);
6993 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
6996 case TARGET_F_GETLK64
:
6997 case TARGET_F_OFD_GETLK
:
6998 ret
= copy_from_user_flock64(&fl64
, arg
);
7002 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7004 ret
= copy_to_user_flock64(arg
, &fl64
);
7007 case TARGET_F_SETLK64
:
7008 case TARGET_F_SETLKW64
:
7009 case TARGET_F_OFD_SETLK
:
7010 case TARGET_F_OFD_SETLKW
:
7011 ret
= copy_from_user_flock64(&fl64
, arg
);
7015 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fl64
));
7018 case TARGET_F_GETFL
:
7019 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
7021 ret
= host_to_target_bitmask(ret
, fcntl_flags_tbl
);
7025 case TARGET_F_SETFL
:
7026 ret
= get_errno(safe_fcntl(fd
, host_cmd
,
7027 target_to_host_bitmask(arg
,
7032 case TARGET_F_GETOWN_EX
:
7033 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
7035 if (!lock_user_struct(VERIFY_WRITE
, target_fox
, arg
, 0))
7036 return -TARGET_EFAULT
;
7037 target_fox
->type
= tswap32(fox
.type
);
7038 target_fox
->pid
= tswap32(fox
.pid
);
7039 unlock_user_struct(target_fox
, arg
, 1);
7045 case TARGET_F_SETOWN_EX
:
7046 if (!lock_user_struct(VERIFY_READ
, target_fox
, arg
, 1))
7047 return -TARGET_EFAULT
;
7048 fox
.type
= tswap32(target_fox
->type
);
7049 fox
.pid
= tswap32(target_fox
->pid
);
7050 unlock_user_struct(target_fox
, arg
, 0);
7051 ret
= get_errno(safe_fcntl(fd
, host_cmd
, &fox
));
7055 case TARGET_F_SETSIG
:
7056 ret
= get_errno(safe_fcntl(fd
, host_cmd
, target_to_host_signal(arg
)));
7059 case TARGET_F_GETSIG
:
7060 ret
= host_to_target_signal(get_errno(safe_fcntl(fd
, host_cmd
, arg
)));
7063 case TARGET_F_SETOWN
:
7064 case TARGET_F_GETOWN
:
7065 case TARGET_F_SETLEASE
:
7066 case TARGET_F_GETLEASE
:
7067 case TARGET_F_SETPIPE_SZ
:
7068 case TARGET_F_GETPIPE_SZ
:
7069 case TARGET_F_ADD_SEALS
:
7070 case TARGET_F_GET_SEALS
:
7071 ret
= get_errno(safe_fcntl(fd
, host_cmd
, arg
));
7075 ret
= get_errno(safe_fcntl(fd
, cmd
, arg
));
7083 static inline int high2lowuid(int uid
)
7091 static inline int high2lowgid(int gid
)
7099 static inline int low2highuid(int uid
)
7101 if ((int16_t)uid
== -1)
7107 static inline int low2highgid(int gid
)
7109 if ((int16_t)gid
== -1)
7114 static inline int tswapid(int id
)
7119 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
7121 #else /* !USE_UID16 */
7122 static inline int high2lowuid(int uid
)
7126 static inline int high2lowgid(int gid
)
7130 static inline int low2highuid(int uid
)
7134 static inline int low2highgid(int gid
)
7138 static inline int tswapid(int id
)
7143 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
7145 #endif /* USE_UID16 */
7147 /* We must do direct syscalls for setting UID/GID, because we want to
7148 * implement the Linux system call semantics of "change only for this thread",
7149 * not the libc/POSIX semantics of "change for all threads in process".
7150 * (See http://ewontfix.com/17/ for more details.)
7151 * We use the 32-bit version of the syscalls if present; if it is not
7152 * then either the host architecture supports 32-bit UIDs natively with
7153 * the standard syscall, or the 16-bit UID is the best we can do.
7155 #ifdef __NR_setuid32
7156 #define __NR_sys_setuid __NR_setuid32
7158 #define __NR_sys_setuid __NR_setuid
7160 #ifdef __NR_setgid32
7161 #define __NR_sys_setgid __NR_setgid32
7163 #define __NR_sys_setgid __NR_setgid
7165 #ifdef __NR_setresuid32
7166 #define __NR_sys_setresuid __NR_setresuid32
7168 #define __NR_sys_setresuid __NR_setresuid
7170 #ifdef __NR_setresgid32
7171 #define __NR_sys_setresgid __NR_setresgid32
7173 #define __NR_sys_setresgid __NR_setresgid
7176 _syscall1(int, sys_setuid
, uid_t
, uid
)
7177 _syscall1(int, sys_setgid
, gid_t
, gid
)
7178 _syscall3(int, sys_setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
7179 _syscall3(int, sys_setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
7181 void syscall_init(void)
7184 const argtype
*arg_type
;
7187 thunk_init(STRUCT_MAX
);
7189 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
7190 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
7191 #include "syscall_types.h"
7193 #undef STRUCT_SPECIAL
7195 /* we patch the ioctl size if necessary. We rely on the fact that
7196 no ioctl has all the bits at '1' in the size field */
7198 while (ie
->target_cmd
!= 0) {
7199 if (((ie
->target_cmd
>> TARGET_IOC_SIZESHIFT
) & TARGET_IOC_SIZEMASK
) ==
7200 TARGET_IOC_SIZEMASK
) {
7201 arg_type
= ie
->arg_type
;
7202 if (arg_type
[0] != TYPE_PTR
) {
7203 fprintf(stderr
, "cannot patch size for ioctl 0x%x\n",
7208 size
= thunk_type_size(arg_type
, 0);
7209 ie
->target_cmd
= (ie
->target_cmd
&
7210 ~(TARGET_IOC_SIZEMASK
<< TARGET_IOC_SIZESHIFT
)) |
7211 (size
<< TARGET_IOC_SIZESHIFT
);
7214 /* automatic consistency check if same arch */
7215 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7216 (defined(__x86_64__) && defined(TARGET_X86_64))
7217 if (unlikely(ie
->target_cmd
!= ie
->host_cmd
)) {
7218 fprintf(stderr
, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7219 ie
->name
, ie
->target_cmd
, ie
->host_cmd
);
7226 #ifdef TARGET_NR_truncate64
7227 static inline abi_long
target_truncate64(void *cpu_env
, const char *arg1
,
7232 if (regpairs_aligned(cpu_env
, TARGET_NR_truncate64
)) {
7236 return get_errno(truncate64(arg1
, target_offset64(arg2
, arg3
)));
7240 #ifdef TARGET_NR_ftruncate64
7241 static inline abi_long
target_ftruncate64(void *cpu_env
, abi_long arg1
,
7246 if (regpairs_aligned(cpu_env
, TARGET_NR_ftruncate64
)) {
7250 return get_errno(ftruncate64(arg1
, target_offset64(arg2
, arg3
)));
7254 #if defined(TARGET_NR_timer_settime) || \
7255 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7256 static inline abi_long
target_to_host_itimerspec(struct itimerspec
*host_its
,
7257 abi_ulong target_addr
)
7259 if (target_to_host_timespec(&host_its
->it_interval
, target_addr
+
7260 offsetof(struct target_itimerspec
,
7262 target_to_host_timespec(&host_its
->it_value
, target_addr
+
7263 offsetof(struct target_itimerspec
,
7265 return -TARGET_EFAULT
;
7272 #if defined(TARGET_NR_timer_settime64) || \
7273 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7274 static inline abi_long
target_to_host_itimerspec64(struct itimerspec
*host_its
,
7275 abi_ulong target_addr
)
7277 if (target_to_host_timespec64(&host_its
->it_interval
, target_addr
+
7278 offsetof(struct target__kernel_itimerspec
,
7280 target_to_host_timespec64(&host_its
->it_value
, target_addr
+
7281 offsetof(struct target__kernel_itimerspec
,
7283 return -TARGET_EFAULT
;
7290 #if ((defined(TARGET_NR_timerfd_gettime) || \
7291 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7292 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7293 static inline abi_long
host_to_target_itimerspec(abi_ulong target_addr
,
7294 struct itimerspec
*host_its
)
7296 if (host_to_target_timespec(target_addr
+ offsetof(struct target_itimerspec
,
7298 &host_its
->it_interval
) ||
7299 host_to_target_timespec(target_addr
+ offsetof(struct target_itimerspec
,
7301 &host_its
->it_value
)) {
7302 return -TARGET_EFAULT
;
7308 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7309 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7310 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7311 static inline abi_long
host_to_target_itimerspec64(abi_ulong target_addr
,
7312 struct itimerspec
*host_its
)
7314 if (host_to_target_timespec64(target_addr
+
7315 offsetof(struct target__kernel_itimerspec
,
7317 &host_its
->it_interval
) ||
7318 host_to_target_timespec64(target_addr
+
7319 offsetof(struct target__kernel_itimerspec
,
7321 &host_its
->it_value
)) {
7322 return -TARGET_EFAULT
;
7328 #if defined(TARGET_NR_adjtimex) || \
7329 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7330 static inline abi_long
target_to_host_timex(struct timex
*host_tx
,
7331 abi_long target_addr
)
7333 struct target_timex
*target_tx
;
7335 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
7336 return -TARGET_EFAULT
;
7339 __get_user(host_tx
->modes
, &target_tx
->modes
);
7340 __get_user(host_tx
->offset
, &target_tx
->offset
);
7341 __get_user(host_tx
->freq
, &target_tx
->freq
);
7342 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7343 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
7344 __get_user(host_tx
->status
, &target_tx
->status
);
7345 __get_user(host_tx
->constant
, &target_tx
->constant
);
7346 __get_user(host_tx
->precision
, &target_tx
->precision
);
7347 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7348 __get_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7349 __get_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7350 __get_user(host_tx
->tick
, &target_tx
->tick
);
7351 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7352 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
7353 __get_user(host_tx
->shift
, &target_tx
->shift
);
7354 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
7355 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7356 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7357 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7358 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7359 __get_user(host_tx
->tai
, &target_tx
->tai
);
7361 unlock_user_struct(target_tx
, target_addr
, 0);
7365 static inline abi_long
host_to_target_timex(abi_long target_addr
,
7366 struct timex
*host_tx
)
7368 struct target_timex
*target_tx
;
7370 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
7371 return -TARGET_EFAULT
;
7374 __put_user(host_tx
->modes
, &target_tx
->modes
);
7375 __put_user(host_tx
->offset
, &target_tx
->offset
);
7376 __put_user(host_tx
->freq
, &target_tx
->freq
);
7377 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7378 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
7379 __put_user(host_tx
->status
, &target_tx
->status
);
7380 __put_user(host_tx
->constant
, &target_tx
->constant
);
7381 __put_user(host_tx
->precision
, &target_tx
->precision
);
7382 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7383 __put_user(host_tx
->time
.tv_sec
, &target_tx
->time
.tv_sec
);
7384 __put_user(host_tx
->time
.tv_usec
, &target_tx
->time
.tv_usec
);
7385 __put_user(host_tx
->tick
, &target_tx
->tick
);
7386 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7387 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
7388 __put_user(host_tx
->shift
, &target_tx
->shift
);
7389 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
7390 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7391 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7392 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7393 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7394 __put_user(host_tx
->tai
, &target_tx
->tai
);
7396 unlock_user_struct(target_tx
, target_addr
, 1);
7402 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7403 static inline abi_long
target_to_host_timex64(struct timex
*host_tx
,
7404 abi_long target_addr
)
7406 struct target__kernel_timex
*target_tx
;
7408 if (copy_from_user_timeval64(&host_tx
->time
, target_addr
+
7409 offsetof(struct target__kernel_timex
,
7411 return -TARGET_EFAULT
;
7414 if (!lock_user_struct(VERIFY_READ
, target_tx
, target_addr
, 1)) {
7415 return -TARGET_EFAULT
;
7418 __get_user(host_tx
->modes
, &target_tx
->modes
);
7419 __get_user(host_tx
->offset
, &target_tx
->offset
);
7420 __get_user(host_tx
->freq
, &target_tx
->freq
);
7421 __get_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7422 __get_user(host_tx
->esterror
, &target_tx
->esterror
);
7423 __get_user(host_tx
->status
, &target_tx
->status
);
7424 __get_user(host_tx
->constant
, &target_tx
->constant
);
7425 __get_user(host_tx
->precision
, &target_tx
->precision
);
7426 __get_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7427 __get_user(host_tx
->tick
, &target_tx
->tick
);
7428 __get_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7429 __get_user(host_tx
->jitter
, &target_tx
->jitter
);
7430 __get_user(host_tx
->shift
, &target_tx
->shift
);
7431 __get_user(host_tx
->stabil
, &target_tx
->stabil
);
7432 __get_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7433 __get_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7434 __get_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7435 __get_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7436 __get_user(host_tx
->tai
, &target_tx
->tai
);
7438 unlock_user_struct(target_tx
, target_addr
, 0);
7442 static inline abi_long
host_to_target_timex64(abi_long target_addr
,
7443 struct timex
*host_tx
)
7445 struct target__kernel_timex
*target_tx
;
7447 if (copy_to_user_timeval64(target_addr
+
7448 offsetof(struct target__kernel_timex
, time
),
7450 return -TARGET_EFAULT
;
7453 if (!lock_user_struct(VERIFY_WRITE
, target_tx
, target_addr
, 0)) {
7454 return -TARGET_EFAULT
;
7457 __put_user(host_tx
->modes
, &target_tx
->modes
);
7458 __put_user(host_tx
->offset
, &target_tx
->offset
);
7459 __put_user(host_tx
->freq
, &target_tx
->freq
);
7460 __put_user(host_tx
->maxerror
, &target_tx
->maxerror
);
7461 __put_user(host_tx
->esterror
, &target_tx
->esterror
);
7462 __put_user(host_tx
->status
, &target_tx
->status
);
7463 __put_user(host_tx
->constant
, &target_tx
->constant
);
7464 __put_user(host_tx
->precision
, &target_tx
->precision
);
7465 __put_user(host_tx
->tolerance
, &target_tx
->tolerance
);
7466 __put_user(host_tx
->tick
, &target_tx
->tick
);
7467 __put_user(host_tx
->ppsfreq
, &target_tx
->ppsfreq
);
7468 __put_user(host_tx
->jitter
, &target_tx
->jitter
);
7469 __put_user(host_tx
->shift
, &target_tx
->shift
);
7470 __put_user(host_tx
->stabil
, &target_tx
->stabil
);
7471 __put_user(host_tx
->jitcnt
, &target_tx
->jitcnt
);
7472 __put_user(host_tx
->calcnt
, &target_tx
->calcnt
);
7473 __put_user(host_tx
->errcnt
, &target_tx
->errcnt
);
7474 __put_user(host_tx
->stbcnt
, &target_tx
->stbcnt
);
7475 __put_user(host_tx
->tai
, &target_tx
->tai
);
7477 unlock_user_struct(target_tx
, target_addr
, 1);
7482 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7483 #define sigev_notify_thread_id _sigev_un._tid
7486 static inline abi_long
target_to_host_sigevent(struct sigevent
*host_sevp
,
7487 abi_ulong target_addr
)
7489 struct target_sigevent
*target_sevp
;
7491 if (!lock_user_struct(VERIFY_READ
, target_sevp
, target_addr
, 1)) {
7492 return -TARGET_EFAULT
;
7495 /* This union is awkward on 64 bit systems because it has a 32 bit
7496 * integer and a pointer in it; we follow the conversion approach
7497 * used for handling sigval types in signal.c so the guest should get
7498 * the correct value back even if we did a 64 bit byteswap and it's
7499 * using the 32 bit integer.
7501 host_sevp
->sigev_value
.sival_ptr
=
7502 (void *)(uintptr_t)tswapal(target_sevp
->sigev_value
.sival_ptr
);
7503 host_sevp
->sigev_signo
=
7504 target_to_host_signal(tswap32(target_sevp
->sigev_signo
));
7505 host_sevp
->sigev_notify
= tswap32(target_sevp
->sigev_notify
);
7506 host_sevp
->sigev_notify_thread_id
= tswap32(target_sevp
->_sigev_un
._tid
);
7508 unlock_user_struct(target_sevp
, target_addr
, 1);
7512 #if defined(TARGET_NR_mlockall)
7513 static inline int target_to_host_mlockall_arg(int arg
)
7517 if (arg
& TARGET_MCL_CURRENT
) {
7518 result
|= MCL_CURRENT
;
7520 if (arg
& TARGET_MCL_FUTURE
) {
7521 result
|= MCL_FUTURE
;
7524 if (arg
& TARGET_MCL_ONFAULT
) {
7525 result
|= MCL_ONFAULT
;
7533 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
7534 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
7535 defined(TARGET_NR_newfstatat))
7536 static inline abi_long
host_to_target_stat64(void *cpu_env
,
7537 abi_ulong target_addr
,
7538 struct stat
*host_st
)
7540 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7541 if (((CPUARMState
*)cpu_env
)->eabi
) {
7542 struct target_eabi_stat64
*target_st
;
7544 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7545 return -TARGET_EFAULT
;
7546 memset(target_st
, 0, sizeof(struct target_eabi_stat64
));
7547 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7548 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7549 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7550 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7552 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7553 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7554 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7555 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7556 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7557 __put_user(host_st
->st_size
, &target_st
->st_size
);
7558 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7559 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7560 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7561 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7562 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7563 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7564 __put_user(host_st
->st_atim
.tv_nsec
, &target_st
->target_st_atime_nsec
);
7565 __put_user(host_st
->st_mtim
.tv_nsec
, &target_st
->target_st_mtime_nsec
);
7566 __put_user(host_st
->st_ctim
.tv_nsec
, &target_st
->target_st_ctime_nsec
);
7568 unlock_user_struct(target_st
, target_addr
, 1);
7572 #if defined(TARGET_HAS_STRUCT_STAT64)
7573 struct target_stat64
*target_st
;
7575 struct target_stat
*target_st
;
7578 if (!lock_user_struct(VERIFY_WRITE
, target_st
, target_addr
, 0))
7579 return -TARGET_EFAULT
;
7580 memset(target_st
, 0, sizeof(*target_st
));
7581 __put_user(host_st
->st_dev
, &target_st
->st_dev
);
7582 __put_user(host_st
->st_ino
, &target_st
->st_ino
);
7583 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7584 __put_user(host_st
->st_ino
, &target_st
->__st_ino
);
7586 __put_user(host_st
->st_mode
, &target_st
->st_mode
);
7587 __put_user(host_st
->st_nlink
, &target_st
->st_nlink
);
7588 __put_user(host_st
->st_uid
, &target_st
->st_uid
);
7589 __put_user(host_st
->st_gid
, &target_st
->st_gid
);
7590 __put_user(host_st
->st_rdev
, &target_st
->st_rdev
);
7591 /* XXX: better use of kernel struct */
7592 __put_user(host_st
->st_size
, &target_st
->st_size
);
7593 __put_user(host_st
->st_blksize
, &target_st
->st_blksize
);
7594 __put_user(host_st
->st_blocks
, &target_st
->st_blocks
);
7595 __put_user(host_st
->st_atime
, &target_st
->target_st_atime
);
7596 __put_user(host_st
->st_mtime
, &target_st
->target_st_mtime
);
7597 __put_user(host_st
->st_ctime
, &target_st
->target_st_ctime
);
7598 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7599 __put_user(host_st
->st_atim
.tv_nsec
, &target_st
->target_st_atime_nsec
);
7600 __put_user(host_st
->st_mtim
.tv_nsec
, &target_st
->target_st_mtime_nsec
);
7601 __put_user(host_st
->st_ctim
.tv_nsec
, &target_st
->target_st_ctime_nsec
);
7603 unlock_user_struct(target_st
, target_addr
, 1);
7610 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7611 static inline abi_long
host_to_target_statx(struct target_statx
*host_stx
,
7612 abi_ulong target_addr
)
7614 struct target_statx
*target_stx
;
7616 if (!lock_user_struct(VERIFY_WRITE
, target_stx
, target_addr
, 0)) {
7617 return -TARGET_EFAULT
;
7619 memset(target_stx
, 0, sizeof(*target_stx
));
7621 __put_user(host_stx
->stx_mask
, &target_stx
->stx_mask
);
7622 __put_user(host_stx
->stx_blksize
, &target_stx
->stx_blksize
);
7623 __put_user(host_stx
->stx_attributes
, &target_stx
->stx_attributes
);
7624 __put_user(host_stx
->stx_nlink
, &target_stx
->stx_nlink
);
7625 __put_user(host_stx
->stx_uid
, &target_stx
->stx_uid
);
7626 __put_user(host_stx
->stx_gid
, &target_stx
->stx_gid
);
7627 __put_user(host_stx
->stx_mode
, &target_stx
->stx_mode
);
7628 __put_user(host_stx
->stx_ino
, &target_stx
->stx_ino
);
7629 __put_user(host_stx
->stx_size
, &target_stx
->stx_size
);
7630 __put_user(host_stx
->stx_blocks
, &target_stx
->stx_blocks
);
7631 __put_user(host_stx
->stx_attributes_mask
, &target_stx
->stx_attributes_mask
);
7632 __put_user(host_stx
->stx_atime
.tv_sec
, &target_stx
->stx_atime
.tv_sec
);
7633 __put_user(host_stx
->stx_atime
.tv_nsec
, &target_stx
->stx_atime
.tv_nsec
);
7634 __put_user(host_stx
->stx_btime
.tv_sec
, &target_stx
->stx_btime
.tv_sec
);
7635 __put_user(host_stx
->stx_btime
.tv_nsec
, &target_stx
->stx_btime
.tv_nsec
);
7636 __put_user(host_stx
->stx_ctime
.tv_sec
, &target_stx
->stx_ctime
.tv_sec
);
7637 __put_user(host_stx
->stx_ctime
.tv_nsec
, &target_stx
->stx_ctime
.tv_nsec
);
7638 __put_user(host_stx
->stx_mtime
.tv_sec
, &target_stx
->stx_mtime
.tv_sec
);
7639 __put_user(host_stx
->stx_mtime
.tv_nsec
, &target_stx
->stx_mtime
.tv_nsec
);
7640 __put_user(host_stx
->stx_rdev_major
, &target_stx
->stx_rdev_major
);
7641 __put_user(host_stx
->stx_rdev_minor
, &target_stx
->stx_rdev_minor
);
7642 __put_user(host_stx
->stx_dev_major
, &target_stx
->stx_dev_major
);
7643 __put_user(host_stx
->stx_dev_minor
, &target_stx
->stx_dev_minor
);
7645 unlock_user_struct(target_stx
, target_addr
, 1);
7651 static int do_sys_futex(int *uaddr
, int op
, int val
,
7652 const struct timespec
*timeout
, int *uaddr2
,
7655 #if HOST_LONG_BITS == 64
7656 #if defined(__NR_futex)
7657 /* always a 64-bit time_t, it doesn't define _time64 version */
7658 return sys_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7661 #else /* HOST_LONG_BITS == 64 */
7662 #if defined(__NR_futex_time64)
7663 if (sizeof(timeout
->tv_sec
) == 8) {
7664 /* _time64 function on 32bit arch */
7665 return sys_futex_time64(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7668 #if defined(__NR_futex)
7669 /* old function on 32bit arch */
7670 return sys_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
);
7672 #endif /* HOST_LONG_BITS == 64 */
7673 g_assert_not_reached();
7676 static int do_safe_futex(int *uaddr
, int op
, int val
,
7677 const struct timespec
*timeout
, int *uaddr2
,
7680 #if HOST_LONG_BITS == 64
7681 #if defined(__NR_futex)
7682 /* always a 64-bit time_t, it doesn't define _time64 version */
7683 return get_errno(safe_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
));
7685 #else /* HOST_LONG_BITS == 64 */
7686 #if defined(__NR_futex_time64)
7687 if (sizeof(timeout
->tv_sec
) == 8) {
7688 /* _time64 function on 32bit arch */
7689 return get_errno(safe_futex_time64(uaddr
, op
, val
, timeout
, uaddr2
,
7693 #if defined(__NR_futex)
7694 /* old function on 32bit arch */
7695 return get_errno(safe_futex(uaddr
, op
, val
, timeout
, uaddr2
, val3
));
7697 #endif /* HOST_LONG_BITS == 64 */
7698 return -TARGET_ENOSYS
;
7701 /* ??? Using host futex calls even when target atomic operations
7702 are not really atomic probably breaks things. However implementing
7703 futexes locally would make futexes shared between multiple processes
7704 tricky. However they're probably useless because guest atomic
7705 operations won't work either. */
7706 #if defined(TARGET_NR_futex)
7707 static int do_futex(CPUState
*cpu
, target_ulong uaddr
, int op
, int val
,
7708 target_ulong timeout
, target_ulong uaddr2
, int val3
)
7710 struct timespec ts
, *pts
;
7713 /* ??? We assume FUTEX_* constants are the same on both host
7715 #ifdef FUTEX_CMD_MASK
7716 base_op
= op
& FUTEX_CMD_MASK
;
7722 case FUTEX_WAIT_BITSET
:
7725 target_to_host_timespec(pts
, timeout
);
7729 return do_safe_futex(g2h(cpu
, uaddr
),
7730 op
, tswap32(val
), pts
, NULL
, val3
);
7732 return do_safe_futex(g2h(cpu
, uaddr
),
7733 op
, val
, NULL
, NULL
, 0);
7735 return do_safe_futex(g2h(cpu
, uaddr
),
7736 op
, val
, NULL
, NULL
, 0);
7738 case FUTEX_CMP_REQUEUE
:
7740 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7741 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7742 But the prototype takes a `struct timespec *'; insert casts
7743 to satisfy the compiler. We do not need to tswap TIMEOUT
7744 since it's not compared to guest memory. */
7745 pts
= (struct timespec
*)(uintptr_t) timeout
;
7746 return do_safe_futex(g2h(cpu
, uaddr
), op
, val
, pts
, g2h(cpu
, uaddr2
),
7747 (base_op
== FUTEX_CMP_REQUEUE
7748 ? tswap32(val3
) : val3
));
7750 return -TARGET_ENOSYS
;
7755 #if defined(TARGET_NR_futex_time64)
7756 static int do_futex_time64(CPUState
*cpu
, target_ulong uaddr
, int op
,
7757 int val
, target_ulong timeout
,
7758 target_ulong uaddr2
, int val3
)
7760 struct timespec ts
, *pts
;
7763 /* ??? We assume FUTEX_* constants are the same on both host
7765 #ifdef FUTEX_CMD_MASK
7766 base_op
= op
& FUTEX_CMD_MASK
;
7772 case FUTEX_WAIT_BITSET
:
7775 if (target_to_host_timespec64(pts
, timeout
)) {
7776 return -TARGET_EFAULT
;
7781 return do_safe_futex(g2h(cpu
, uaddr
), op
,
7782 tswap32(val
), pts
, NULL
, val3
);
7784 return do_safe_futex(g2h(cpu
, uaddr
), op
, val
, NULL
, NULL
, 0);
7786 return do_safe_futex(g2h(cpu
, uaddr
), op
, val
, NULL
, NULL
, 0);
7788 case FUTEX_CMP_REQUEUE
:
7790 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7791 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7792 But the prototype takes a `struct timespec *'; insert casts
7793 to satisfy the compiler. We do not need to tswap TIMEOUT
7794 since it's not compared to guest memory. */
7795 pts
= (struct timespec
*)(uintptr_t) timeout
;
7796 return do_safe_futex(g2h(cpu
, uaddr
), op
, val
, pts
, g2h(cpu
, uaddr2
),
7797 (base_op
== FUTEX_CMP_REQUEUE
7798 ? tswap32(val3
) : val3
));
7800 return -TARGET_ENOSYS
;
7805 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7806 static abi_long
do_name_to_handle_at(abi_long dirfd
, abi_long pathname
,
7807 abi_long handle
, abi_long mount_id
,
7810 struct file_handle
*target_fh
;
7811 struct file_handle
*fh
;
7815 unsigned int size
, total_size
;
7817 if (get_user_s32(size
, handle
)) {
7818 return -TARGET_EFAULT
;
7821 name
= lock_user_string(pathname
);
7823 return -TARGET_EFAULT
;
7826 total_size
= sizeof(struct file_handle
) + size
;
7827 target_fh
= lock_user(VERIFY_WRITE
, handle
, total_size
, 0);
7829 unlock_user(name
, pathname
, 0);
7830 return -TARGET_EFAULT
;
7833 fh
= g_malloc0(total_size
);
7834 fh
->handle_bytes
= size
;
7836 ret
= get_errno(name_to_handle_at(dirfd
, path(name
), fh
, &mid
, flags
));
7837 unlock_user(name
, pathname
, 0);
7839 /* man name_to_handle_at(2):
7840 * Other than the use of the handle_bytes field, the caller should treat
7841 * the file_handle structure as an opaque data type
7844 memcpy(target_fh
, fh
, total_size
);
7845 target_fh
->handle_bytes
= tswap32(fh
->handle_bytes
);
7846 target_fh
->handle_type
= tswap32(fh
->handle_type
);
7848 unlock_user(target_fh
, handle
, total_size
);
7850 if (put_user_s32(mid
, mount_id
)) {
7851 return -TARGET_EFAULT
;
7859 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7860 static abi_long
do_open_by_handle_at(abi_long mount_fd
, abi_long handle
,
7863 struct file_handle
*target_fh
;
7864 struct file_handle
*fh
;
7865 unsigned int size
, total_size
;
7868 if (get_user_s32(size
, handle
)) {
7869 return -TARGET_EFAULT
;
7872 total_size
= sizeof(struct file_handle
) + size
;
7873 target_fh
= lock_user(VERIFY_READ
, handle
, total_size
, 1);
7875 return -TARGET_EFAULT
;
7878 fh
= g_memdup(target_fh
, total_size
);
7879 fh
->handle_bytes
= size
;
7880 fh
->handle_type
= tswap32(target_fh
->handle_type
);
7882 ret
= get_errno(open_by_handle_at(mount_fd
, fh
,
7883 target_to_host_bitmask(flags
, fcntl_flags_tbl
)));
7887 unlock_user(target_fh
, handle
, total_size
);
7893 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7895 static abi_long
do_signalfd4(int fd
, abi_long mask
, int flags
)
7898 target_sigset_t
*target_mask
;
7902 if (flags
& ~(TARGET_O_NONBLOCK_MASK
| TARGET_O_CLOEXEC
)) {
7903 return -TARGET_EINVAL
;
7905 if (!lock_user_struct(VERIFY_READ
, target_mask
, mask
, 1)) {
7906 return -TARGET_EFAULT
;
7909 target_to_host_sigset(&host_mask
, target_mask
);
7911 host_flags
= target_to_host_bitmask(flags
, fcntl_flags_tbl
);
7913 ret
= get_errno(signalfd(fd
, &host_mask
, host_flags
));
7915 fd_trans_register(ret
, &target_signalfd_trans
);
7918 unlock_user_struct(target_mask
, mask
, 0);
7924 /* Map host to target signal numbers for the wait family of syscalls.
7925 Assume all other status bits are the same. */
7926 int host_to_target_waitstatus(int status
)
7928 if (WIFSIGNALED(status
)) {
7929 return host_to_target_signal(WTERMSIG(status
)) | (status
& ~0x7f);
7931 if (WIFSTOPPED(status
)) {
7932 return (host_to_target_signal(WSTOPSIG(status
)) << 8)
7938 static int open_self_cmdline(void *cpu_env
, int fd
)
7940 CPUState
*cpu
= env_cpu((CPUArchState
*)cpu_env
);
7941 struct linux_binprm
*bprm
= ((TaskState
*)cpu
->opaque
)->bprm
;
7944 for (i
= 0; i
< bprm
->argc
; i
++) {
7945 size_t len
= strlen(bprm
->argv
[i
]) + 1;
7947 if (write(fd
, bprm
->argv
[i
], len
) != len
) {
7955 static int open_self_maps(void *cpu_env
, int fd
)
7957 CPUState
*cpu
= env_cpu((CPUArchState
*)cpu_env
);
7958 TaskState
*ts
= cpu
->opaque
;
7959 GSList
*map_info
= read_self_maps();
7963 for (s
= map_info
; s
; s
= g_slist_next(s
)) {
7964 MapInfo
*e
= (MapInfo
*) s
->data
;
7966 if (h2g_valid(e
->start
)) {
7967 unsigned long min
= e
->start
;
7968 unsigned long max
= e
->end
;
7969 int flags
= page_get_flags(h2g(min
));
7972 max
= h2g_valid(max
- 1) ?
7973 max
: (uintptr_t) g2h_untagged(GUEST_ADDR_MAX
) + 1;
7975 if (page_check_range(h2g(min
), max
- min
, flags
) == -1) {
7979 if (h2g(min
) == ts
->info
->stack_limit
) {
7985 count
= dprintf(fd
, TARGET_ABI_FMT_ptr
"-" TARGET_ABI_FMT_ptr
7986 " %c%c%c%c %08" PRIx64
" %s %"PRId64
,
7987 h2g(min
), h2g(max
- 1) + 1,
7988 (flags
& PAGE_READ
) ? 'r' : '-',
7989 (flags
& PAGE_WRITE_ORG
) ? 'w' : '-',
7990 (flags
& PAGE_EXEC
) ? 'x' : '-',
7991 e
->is_priv
? 'p' : '-',
7992 (uint64_t) e
->offset
, e
->dev
, e
->inode
);
7994 dprintf(fd
, "%*s%s\n", 73 - count
, "", path
);
8001 free_self_maps(map_info
);
8003 #ifdef TARGET_VSYSCALL_PAGE
8005 * We only support execution from the vsyscall page.
8006 * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
8008 count
= dprintf(fd
, TARGET_FMT_lx
"-" TARGET_FMT_lx
8009 " --xp 00000000 00:00 0",
8010 TARGET_VSYSCALL_PAGE
, TARGET_VSYSCALL_PAGE
+ TARGET_PAGE_SIZE
);
8011 dprintf(fd
, "%*s%s\n", 73 - count
, "", "[vsyscall]");
8017 static int open_self_stat(void *cpu_env
, int fd
)
8019 CPUState
*cpu
= env_cpu((CPUArchState
*)cpu_env
);
8020 TaskState
*ts
= cpu
->opaque
;
8021 g_autoptr(GString
) buf
= g_string_new(NULL
);
8024 for (i
= 0; i
< 44; i
++) {
8027 g_string_printf(buf
, FMT_pid
" ", getpid());
8028 } else if (i
== 1) {
8030 gchar
*bin
= g_strrstr(ts
->bprm
->argv
[0], "/");
8031 bin
= bin
? bin
+ 1 : ts
->bprm
->argv
[0];
8032 g_string_printf(buf
, "(%.15s) ", bin
);
8033 } else if (i
== 3) {
8035 g_string_printf(buf
, FMT_pid
" ", getppid());
8036 } else if (i
== 27) {
8038 g_string_printf(buf
, TARGET_ABI_FMT_ld
" ", ts
->info
->start_stack
);
8040 /* for the rest, there is MasterCard */
8041 g_string_printf(buf
, "0%c", i
== 43 ? '\n' : ' ');
8044 if (write(fd
, buf
->str
, buf
->len
) != buf
->len
) {
8052 static int open_self_auxv(void *cpu_env
, int fd
)
8054 CPUState
*cpu
= env_cpu((CPUArchState
*)cpu_env
);
8055 TaskState
*ts
= cpu
->opaque
;
8056 abi_ulong auxv
= ts
->info
->saved_auxv
;
8057 abi_ulong len
= ts
->info
->auxv_len
;
8061 * Auxiliary vector is stored in target process stack.
8062 * read in whole auxv vector and copy it to file
8064 ptr
= lock_user(VERIFY_READ
, auxv
, len
, 0);
8068 r
= write(fd
, ptr
, len
);
8075 lseek(fd
, 0, SEEK_SET
);
8076 unlock_user(ptr
, auxv
, len
);
8082 static int is_proc_myself(const char *filename
, const char *entry
)
8084 if (!strncmp(filename
, "/proc/", strlen("/proc/"))) {
8085 filename
+= strlen("/proc/");
8086 if (!strncmp(filename
, "self/", strlen("self/"))) {
8087 filename
+= strlen("self/");
8088 } else if (*filename
>= '1' && *filename
<= '9') {
8090 snprintf(myself
, sizeof(myself
), "%d/", getpid());
8091 if (!strncmp(filename
, myself
, strlen(myself
))) {
8092 filename
+= strlen(myself
);
8099 if (!strcmp(filename
, entry
)) {
8106 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
8107 defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA)
8108 static int is_proc(const char *filename
, const char *entry
)
8110 return strcmp(filename
, entry
) == 0;
8114 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8115 static int open_net_route(void *cpu_env
, int fd
)
8122 fp
= fopen("/proc/net/route", "r");
8129 read
= getline(&line
, &len
, fp
);
8130 dprintf(fd
, "%s", line
);
8134 while ((read
= getline(&line
, &len
, fp
)) != -1) {
8136 uint32_t dest
, gw
, mask
;
8137 unsigned int flags
, refcnt
, use
, metric
, mtu
, window
, irtt
;
8140 fields
= sscanf(line
,
8141 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8142 iface
, &dest
, &gw
, &flags
, &refcnt
, &use
, &metric
,
8143 &mask
, &mtu
, &window
, &irtt
);
8147 dprintf(fd
, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
8148 iface
, tswap32(dest
), tswap32(gw
), flags
, refcnt
, use
,
8149 metric
, tswap32(mask
), mtu
, window
, irtt
);
8159 #if defined(TARGET_SPARC)
8160 static int open_cpuinfo(void *cpu_env
, int fd
)
8162 dprintf(fd
, "type\t\t: sun4u\n");
8167 #if defined(TARGET_HPPA)
8168 static int open_cpuinfo(void *cpu_env
, int fd
)
8170 dprintf(fd
, "cpu family\t: PA-RISC 1.1e\n");
8171 dprintf(fd
, "cpu\t\t: PA7300LC (PCX-L2)\n");
8172 dprintf(fd
, "capabilities\t: os32\n");
8173 dprintf(fd
, "model\t\t: 9000/778/B160L\n");
8174 dprintf(fd
, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n");
8179 #if defined(TARGET_M68K)
8180 static int open_hardware(void *cpu_env
, int fd
)
8182 dprintf(fd
, "Model:\t\tqemu-m68k\n");
8187 static int do_openat(void *cpu_env
, int dirfd
, const char *pathname
, int flags
, mode_t mode
)
8190 const char *filename
;
8191 int (*fill
)(void *cpu_env
, int fd
);
8192 int (*cmp
)(const char *s1
, const char *s2
);
8194 const struct fake_open
*fake_open
;
8195 static const struct fake_open fakes
[] = {
8196 { "maps", open_self_maps
, is_proc_myself
},
8197 { "stat", open_self_stat
, is_proc_myself
},
8198 { "auxv", open_self_auxv
, is_proc_myself
},
8199 { "cmdline", open_self_cmdline
, is_proc_myself
},
8200 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8201 { "/proc/net/route", open_net_route
, is_proc
},
8203 #if defined(TARGET_SPARC) || defined(TARGET_HPPA)
8204 { "/proc/cpuinfo", open_cpuinfo
, is_proc
},
8206 #if defined(TARGET_M68K)
8207 { "/proc/hardware", open_hardware
, is_proc
},
8209 { NULL
, NULL
, NULL
}
8212 if (is_proc_myself(pathname
, "exe")) {
8213 int execfd
= qemu_getauxval(AT_EXECFD
);
8214 return execfd
? execfd
: safe_openat(dirfd
, exec_path
, flags
, mode
);
8217 for (fake_open
= fakes
; fake_open
->filename
; fake_open
++) {
8218 if (fake_open
->cmp(pathname
, fake_open
->filename
)) {
8223 if (fake_open
->filename
) {
8225 char filename
[PATH_MAX
];
8228 /* create temporary file to map stat to */
8229 tmpdir
= getenv("TMPDIR");
8232 snprintf(filename
, sizeof(filename
), "%s/qemu-open.XXXXXX", tmpdir
);
8233 fd
= mkstemp(filename
);
8239 if ((r
= fake_open
->fill(cpu_env
, fd
))) {
8245 lseek(fd
, 0, SEEK_SET
);
8250 return safe_openat(dirfd
, path(pathname
), flags
, mode
);
8253 #define TIMER_MAGIC 0x0caf0000
8254 #define TIMER_MAGIC_MASK 0xffff0000
8256 /* Convert QEMU provided timer ID back to internal 16bit index format */
8257 static target_timer_t
get_timer_id(abi_long arg
)
8259 target_timer_t timerid
= arg
;
8261 if ((timerid
& TIMER_MAGIC_MASK
) != TIMER_MAGIC
) {
8262 return -TARGET_EINVAL
;
8267 if (timerid
>= ARRAY_SIZE(g_posix_timers
)) {
8268 return -TARGET_EINVAL
;
8274 static int target_to_host_cpu_mask(unsigned long *host_mask
,
8276 abi_ulong target_addr
,
8279 unsigned target_bits
= sizeof(abi_ulong
) * 8;
8280 unsigned host_bits
= sizeof(*host_mask
) * 8;
8281 abi_ulong
*target_mask
;
8284 assert(host_size
>= target_size
);
8286 target_mask
= lock_user(VERIFY_READ
, target_addr
, target_size
, 1);
8288 return -TARGET_EFAULT
;
8290 memset(host_mask
, 0, host_size
);
8292 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
8293 unsigned bit
= i
* target_bits
;
8296 __get_user(val
, &target_mask
[i
]);
8297 for (j
= 0; j
< target_bits
; j
++, bit
++) {
8298 if (val
& (1UL << j
)) {
8299 host_mask
[bit
/ host_bits
] |= 1UL << (bit
% host_bits
);
8304 unlock_user(target_mask
, target_addr
, 0);
8308 static int host_to_target_cpu_mask(const unsigned long *host_mask
,
8310 abi_ulong target_addr
,
8313 unsigned target_bits
= sizeof(abi_ulong
) * 8;
8314 unsigned host_bits
= sizeof(*host_mask
) * 8;
8315 abi_ulong
*target_mask
;
8318 assert(host_size
>= target_size
);
8320 target_mask
= lock_user(VERIFY_WRITE
, target_addr
, target_size
, 0);
8322 return -TARGET_EFAULT
;
8325 for (i
= 0 ; i
< target_size
/ sizeof(abi_ulong
); i
++) {
8326 unsigned bit
= i
* target_bits
;
8329 for (j
= 0; j
< target_bits
; j
++, bit
++) {
8330 if (host_mask
[bit
/ host_bits
] & (1UL << (bit
% host_bits
))) {
8334 __put_user(val
, &target_mask
[i
]);
8337 unlock_user(target_mask
, target_addr
, target_size
);
8341 #ifdef TARGET_NR_getdents
8342 static int do_getdents(abi_long dirfd
, abi_long arg2
, abi_long count
)
8344 g_autofree
void *hdirp
= NULL
;
8346 int hlen
, hoff
, toff
;
8347 int hreclen
, treclen
;
8348 off64_t prev_diroff
= 0;
8350 hdirp
= g_try_malloc(count
);
8352 return -TARGET_ENOMEM
;
8355 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8356 hlen
= sys_getdents(dirfd
, hdirp
, count
);
8358 hlen
= sys_getdents64(dirfd
, hdirp
, count
);
8361 hlen
= get_errno(hlen
);
8362 if (is_error(hlen
)) {
8366 tdirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
8368 return -TARGET_EFAULT
;
8371 for (hoff
= toff
= 0; hoff
< hlen
; hoff
+= hreclen
, toff
+= treclen
) {
8372 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8373 struct linux_dirent
*hde
= hdirp
+ hoff
;
8375 struct linux_dirent64
*hde
= hdirp
+ hoff
;
8377 struct target_dirent
*tde
= tdirp
+ toff
;
8381 namelen
= strlen(hde
->d_name
);
8382 hreclen
= hde
->d_reclen
;
8383 treclen
= offsetof(struct target_dirent
, d_name
) + namelen
+ 2;
8384 treclen
= QEMU_ALIGN_UP(treclen
, __alignof(struct target_dirent
));
8386 if (toff
+ treclen
> count
) {
8388 * If the host struct is smaller than the target struct, or
8389 * requires less alignment and thus packs into less space,
8390 * then the host can return more entries than we can pass
8394 toff
= -TARGET_EINVAL
; /* result buffer is too small */
8398 * Return what we have, resetting the file pointer to the
8399 * location of the first record not returned.
8401 lseek64(dirfd
, prev_diroff
, SEEK_SET
);
8405 prev_diroff
= hde
->d_off
;
8406 tde
->d_ino
= tswapal(hde
->d_ino
);
8407 tde
->d_off
= tswapal(hde
->d_off
);
8408 tde
->d_reclen
= tswap16(treclen
);
8409 memcpy(tde
->d_name
, hde
->d_name
, namelen
+ 1);
8412 * The getdents type is in what was formerly a padding byte at the
8413 * end of the structure.
8415 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
8416 type
= *((uint8_t *)hde
+ hreclen
- 1);
8420 *((uint8_t *)tde
+ treclen
- 1) = type
;
8423 unlock_user(tdirp
, arg2
, toff
);
8426 #endif /* TARGET_NR_getdents */
8428 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
8429 static int do_getdents64(abi_long dirfd
, abi_long arg2
, abi_long count
)
8431 g_autofree
void *hdirp
= NULL
;
8433 int hlen
, hoff
, toff
;
8434 int hreclen
, treclen
;
8435 off64_t prev_diroff
= 0;
8437 hdirp
= g_try_malloc(count
);
8439 return -TARGET_ENOMEM
;
8442 hlen
= get_errno(sys_getdents64(dirfd
, hdirp
, count
));
8443 if (is_error(hlen
)) {
8447 tdirp
= lock_user(VERIFY_WRITE
, arg2
, count
, 0);
8449 return -TARGET_EFAULT
;
8452 for (hoff
= toff
= 0; hoff
< hlen
; hoff
+= hreclen
, toff
+= treclen
) {
8453 struct linux_dirent64
*hde
= hdirp
+ hoff
;
8454 struct target_dirent64
*tde
= tdirp
+ toff
;
8457 namelen
= strlen(hde
->d_name
) + 1;
8458 hreclen
= hde
->d_reclen
;
8459 treclen
= offsetof(struct target_dirent64
, d_name
) + namelen
;
8460 treclen
= QEMU_ALIGN_UP(treclen
, __alignof(struct target_dirent64
));
8462 if (toff
+ treclen
> count
) {
8464 * If the host struct is smaller than the target struct, or
8465 * requires less alignment and thus packs into less space,
8466 * then the host can return more entries than we can pass
8470 toff
= -TARGET_EINVAL
; /* result buffer is too small */
8474 * Return what we have, resetting the file pointer to the
8475 * location of the first record not returned.
8477 lseek64(dirfd
, prev_diroff
, SEEK_SET
);
8481 prev_diroff
= hde
->d_off
;
8482 tde
->d_ino
= tswap64(hde
->d_ino
);
8483 tde
->d_off
= tswap64(hde
->d_off
);
8484 tde
->d_reclen
= tswap16(treclen
);
8485 tde
->d_type
= hde
->d_type
;
8486 memcpy(tde
->d_name
, hde
->d_name
, namelen
);
8489 unlock_user(tdirp
, arg2
, toff
);
8492 #endif /* TARGET_NR_getdents64 */
8494 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8495 _syscall2(int, pivot_root
, const char *, new_root
, const char *, put_old
)
8498 /* This is an internal helper for do_syscall so that it is easier
8499 * to have a single return point, so that actions, such as logging
8500 * of syscall results, can be performed.
8501 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8503 static abi_long
do_syscall1(void *cpu_env
, int num
, abi_long arg1
,
8504 abi_long arg2
, abi_long arg3
, abi_long arg4
,
8505 abi_long arg5
, abi_long arg6
, abi_long arg7
,
8508 CPUState
*cpu
= env_cpu(cpu_env
);
8510 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8511 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8512 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8513 || defined(TARGET_NR_statx)
8516 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8517 || defined(TARGET_NR_fstatfs)
8523 case TARGET_NR_exit
:
8524 /* In old applications this may be used to implement _exit(2).
8525 However in threaded applications it is used for thread termination,
8526 and _exit_group is used for application termination.
8527 Do thread termination if we have more then one thread. */
8529 if (block_signals()) {
8530 return -QEMU_ERESTARTSYS
;
8533 pthread_mutex_lock(&clone_lock
);
8535 if (CPU_NEXT(first_cpu
)) {
8536 TaskState
*ts
= cpu
->opaque
;
8538 object_property_set_bool(OBJECT(cpu
), "realized", false, NULL
);
8539 object_unref(OBJECT(cpu
));
8541 * At this point the CPU should be unrealized and removed
8542 * from cpu lists. We can clean-up the rest of the thread
8543 * data without the lock held.
8546 pthread_mutex_unlock(&clone_lock
);
8548 if (ts
->child_tidptr
) {
8549 put_user_u32(0, ts
->child_tidptr
);
8550 do_sys_futex(g2h(cpu
, ts
->child_tidptr
),
8551 FUTEX_WAKE
, INT_MAX
, NULL
, NULL
, 0);
8555 rcu_unregister_thread();
8559 pthread_mutex_unlock(&clone_lock
);
8560 preexit_cleanup(cpu_env
, arg1
);
8562 return 0; /* avoid warning */
8563 case TARGET_NR_read
:
8564 if (arg2
== 0 && arg3
== 0) {
8565 return get_errno(safe_read(arg1
, 0, 0));
8567 if (!(p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0)))
8568 return -TARGET_EFAULT
;
8569 ret
= get_errno(safe_read(arg1
, p
, arg3
));
8571 fd_trans_host_to_target_data(arg1
)) {
8572 ret
= fd_trans_host_to_target_data(arg1
)(p
, ret
);
8574 unlock_user(p
, arg2
, ret
);
8577 case TARGET_NR_write
:
8578 if (arg2
== 0 && arg3
== 0) {
8579 return get_errno(safe_write(arg1
, 0, 0));
8581 if (!(p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1)))
8582 return -TARGET_EFAULT
;
8583 if (fd_trans_target_to_host_data(arg1
)) {
8584 void *copy
= g_malloc(arg3
);
8585 memcpy(copy
, p
, arg3
);
8586 ret
= fd_trans_target_to_host_data(arg1
)(copy
, arg3
);
8588 ret
= get_errno(safe_write(arg1
, copy
, ret
));
8592 ret
= get_errno(safe_write(arg1
, p
, arg3
));
8594 unlock_user(p
, arg2
, 0);
8597 #ifdef TARGET_NR_open
8598 case TARGET_NR_open
:
8599 if (!(p
= lock_user_string(arg1
)))
8600 return -TARGET_EFAULT
;
8601 ret
= get_errno(do_openat(cpu_env
, AT_FDCWD
, p
,
8602 target_to_host_bitmask(arg2
, fcntl_flags_tbl
),
8604 fd_trans_unregister(ret
);
8605 unlock_user(p
, arg1
, 0);
8608 case TARGET_NR_openat
:
8609 if (!(p
= lock_user_string(arg2
)))
8610 return -TARGET_EFAULT
;
8611 ret
= get_errno(do_openat(cpu_env
, arg1
, p
,
8612 target_to_host_bitmask(arg3
, fcntl_flags_tbl
),
8614 fd_trans_unregister(ret
);
8615 unlock_user(p
, arg2
, 0);
8617 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8618 case TARGET_NR_name_to_handle_at
:
8619 ret
= do_name_to_handle_at(arg1
, arg2
, arg3
, arg4
, arg5
);
8622 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8623 case TARGET_NR_open_by_handle_at
:
8624 ret
= do_open_by_handle_at(arg1
, arg2
, arg3
);
8625 fd_trans_unregister(ret
);
8628 case TARGET_NR_close
:
8629 fd_trans_unregister(arg1
);
8630 return get_errno(close(arg1
));
8633 return do_brk(arg1
);
8634 #ifdef TARGET_NR_fork
8635 case TARGET_NR_fork
:
8636 return get_errno(do_fork(cpu_env
, TARGET_SIGCHLD
, 0, 0, 0, 0));
8638 #ifdef TARGET_NR_waitpid
8639 case TARGET_NR_waitpid
:
8642 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, 0));
8643 if (!is_error(ret
) && arg2
&& ret
8644 && put_user_s32(host_to_target_waitstatus(status
), arg2
))
8645 return -TARGET_EFAULT
;
8649 #ifdef TARGET_NR_waitid
8650 case TARGET_NR_waitid
:
8654 ret
= get_errno(safe_waitid(arg1
, arg2
, &info
, arg4
, NULL
));
8655 if (!is_error(ret
) && arg3
&& info
.si_pid
!= 0) {
8656 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_siginfo_t
), 0)))
8657 return -TARGET_EFAULT
;
8658 host_to_target_siginfo(p
, &info
);
8659 unlock_user(p
, arg3
, sizeof(target_siginfo_t
));
8664 #ifdef TARGET_NR_creat /* not on alpha */
8665 case TARGET_NR_creat
:
8666 if (!(p
= lock_user_string(arg1
)))
8667 return -TARGET_EFAULT
;
8668 ret
= get_errno(creat(p
, arg2
));
8669 fd_trans_unregister(ret
);
8670 unlock_user(p
, arg1
, 0);
8673 #ifdef TARGET_NR_link
8674 case TARGET_NR_link
:
8677 p
= lock_user_string(arg1
);
8678 p2
= lock_user_string(arg2
);
8680 ret
= -TARGET_EFAULT
;
8682 ret
= get_errno(link(p
, p2
));
8683 unlock_user(p2
, arg2
, 0);
8684 unlock_user(p
, arg1
, 0);
8688 #if defined(TARGET_NR_linkat)
8689 case TARGET_NR_linkat
:
8693 return -TARGET_EFAULT
;
8694 p
= lock_user_string(arg2
);
8695 p2
= lock_user_string(arg4
);
8697 ret
= -TARGET_EFAULT
;
8699 ret
= get_errno(linkat(arg1
, p
, arg3
, p2
, arg5
));
8700 unlock_user(p
, arg2
, 0);
8701 unlock_user(p2
, arg4
, 0);
8705 #ifdef TARGET_NR_unlink
8706 case TARGET_NR_unlink
:
8707 if (!(p
= lock_user_string(arg1
)))
8708 return -TARGET_EFAULT
;
8709 ret
= get_errno(unlink(p
));
8710 unlock_user(p
, arg1
, 0);
8713 #if defined(TARGET_NR_unlinkat)
8714 case TARGET_NR_unlinkat
:
8715 if (!(p
= lock_user_string(arg2
)))
8716 return -TARGET_EFAULT
;
8717 ret
= get_errno(unlinkat(arg1
, p
, arg3
));
8718 unlock_user(p
, arg2
, 0);
8721 case TARGET_NR_execve
:
8723 char **argp
, **envp
;
8726 abi_ulong guest_argp
;
8727 abi_ulong guest_envp
;
8733 for (gp
= guest_argp
; gp
; gp
+= sizeof(abi_ulong
)) {
8734 if (get_user_ual(addr
, gp
))
8735 return -TARGET_EFAULT
;
8742 for (gp
= guest_envp
; gp
; gp
+= sizeof(abi_ulong
)) {
8743 if (get_user_ual(addr
, gp
))
8744 return -TARGET_EFAULT
;
8750 argp
= g_new0(char *, argc
+ 1);
8751 envp
= g_new0(char *, envc
+ 1);
8753 for (gp
= guest_argp
, q
= argp
; gp
;
8754 gp
+= sizeof(abi_ulong
), q
++) {
8755 if (get_user_ual(addr
, gp
))
8759 if (!(*q
= lock_user_string(addr
)))
8764 for (gp
= guest_envp
, q
= envp
; gp
;
8765 gp
+= sizeof(abi_ulong
), q
++) {
8766 if (get_user_ual(addr
, gp
))
8770 if (!(*q
= lock_user_string(addr
)))
8775 if (!(p
= lock_user_string(arg1
)))
8777 /* Although execve() is not an interruptible syscall it is
8778 * a special case where we must use the safe_syscall wrapper:
8779 * if we allow a signal to happen before we make the host
8780 * syscall then we will 'lose' it, because at the point of
8781 * execve the process leaves QEMU's control. So we use the
8782 * safe syscall wrapper to ensure that we either take the
8783 * signal as a guest signal, or else it does not happen
8784 * before the execve completes and makes it the other
8785 * program's problem.
8787 ret
= get_errno(safe_execve(p
, argp
, envp
));
8788 unlock_user(p
, arg1
, 0);
8793 ret
= -TARGET_EFAULT
;
8796 for (gp
= guest_argp
, q
= argp
; *q
;
8797 gp
+= sizeof(abi_ulong
), q
++) {
8798 if (get_user_ual(addr
, gp
)
8801 unlock_user(*q
, addr
, 0);
8803 for (gp
= guest_envp
, q
= envp
; *q
;
8804 gp
+= sizeof(abi_ulong
), q
++) {
8805 if (get_user_ual(addr
, gp
)
8808 unlock_user(*q
, addr
, 0);
8815 case TARGET_NR_chdir
:
8816 if (!(p
= lock_user_string(arg1
)))
8817 return -TARGET_EFAULT
;
8818 ret
= get_errno(chdir(p
));
8819 unlock_user(p
, arg1
, 0);
8821 #ifdef TARGET_NR_time
8822 case TARGET_NR_time
:
8825 ret
= get_errno(time(&host_time
));
8828 && put_user_sal(host_time
, arg1
))
8829 return -TARGET_EFAULT
;
8833 #ifdef TARGET_NR_mknod
8834 case TARGET_NR_mknod
:
8835 if (!(p
= lock_user_string(arg1
)))
8836 return -TARGET_EFAULT
;
8837 ret
= get_errno(mknod(p
, arg2
, arg3
));
8838 unlock_user(p
, arg1
, 0);
8841 #if defined(TARGET_NR_mknodat)
8842 case TARGET_NR_mknodat
:
8843 if (!(p
= lock_user_string(arg2
)))
8844 return -TARGET_EFAULT
;
8845 ret
= get_errno(mknodat(arg1
, p
, arg3
, arg4
));
8846 unlock_user(p
, arg2
, 0);
8849 #ifdef TARGET_NR_chmod
8850 case TARGET_NR_chmod
:
8851 if (!(p
= lock_user_string(arg1
)))
8852 return -TARGET_EFAULT
;
8853 ret
= get_errno(chmod(p
, arg2
));
8854 unlock_user(p
, arg1
, 0);
8857 #ifdef TARGET_NR_lseek
8858 case TARGET_NR_lseek
:
8859 return get_errno(lseek(arg1
, arg2
, arg3
));
8861 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8862 /* Alpha specific */
8863 case TARGET_NR_getxpid
:
8864 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
] = getppid();
8865 return get_errno(getpid());
8867 #ifdef TARGET_NR_getpid
8868 case TARGET_NR_getpid
:
8869 return get_errno(getpid());
8871 case TARGET_NR_mount
:
8873 /* need to look at the data field */
8877 p
= lock_user_string(arg1
);
8879 return -TARGET_EFAULT
;
8885 p2
= lock_user_string(arg2
);
8888 unlock_user(p
, arg1
, 0);
8890 return -TARGET_EFAULT
;
8894 p3
= lock_user_string(arg3
);
8897 unlock_user(p
, arg1
, 0);
8899 unlock_user(p2
, arg2
, 0);
8900 return -TARGET_EFAULT
;
8906 /* FIXME - arg5 should be locked, but it isn't clear how to
8907 * do that since it's not guaranteed to be a NULL-terminated
8911 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, NULL
);
8913 ret
= mount(p
, p2
, p3
, (unsigned long)arg4
, g2h(cpu
, arg5
));
8915 ret
= get_errno(ret
);
8918 unlock_user(p
, arg1
, 0);
8920 unlock_user(p2
, arg2
, 0);
8922 unlock_user(p3
, arg3
, 0);
8926 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
8927 #if defined(TARGET_NR_umount)
8928 case TARGET_NR_umount
:
8930 #if defined(TARGET_NR_oldumount)
8931 case TARGET_NR_oldumount
:
8933 if (!(p
= lock_user_string(arg1
)))
8934 return -TARGET_EFAULT
;
8935 ret
= get_errno(umount(p
));
8936 unlock_user(p
, arg1
, 0);
8939 #ifdef TARGET_NR_stime /* not on alpha */
8940 case TARGET_NR_stime
:
8944 if (get_user_sal(ts
.tv_sec
, arg1
)) {
8945 return -TARGET_EFAULT
;
8947 return get_errno(clock_settime(CLOCK_REALTIME
, &ts
));
8950 #ifdef TARGET_NR_alarm /* not on alpha */
8951 case TARGET_NR_alarm
:
8954 #ifdef TARGET_NR_pause /* not on alpha */
8955 case TARGET_NR_pause
:
8956 if (!block_signals()) {
8957 sigsuspend(&((TaskState
*)cpu
->opaque
)->signal_mask
);
8959 return -TARGET_EINTR
;
8961 #ifdef TARGET_NR_utime
8962 case TARGET_NR_utime
:
8964 struct utimbuf tbuf
, *host_tbuf
;
8965 struct target_utimbuf
*target_tbuf
;
8967 if (!lock_user_struct(VERIFY_READ
, target_tbuf
, arg2
, 1))
8968 return -TARGET_EFAULT
;
8969 tbuf
.actime
= tswapal(target_tbuf
->actime
);
8970 tbuf
.modtime
= tswapal(target_tbuf
->modtime
);
8971 unlock_user_struct(target_tbuf
, arg2
, 0);
8976 if (!(p
= lock_user_string(arg1
)))
8977 return -TARGET_EFAULT
;
8978 ret
= get_errno(utime(p
, host_tbuf
));
8979 unlock_user(p
, arg1
, 0);
8983 #ifdef TARGET_NR_utimes
8984 case TARGET_NR_utimes
:
8986 struct timeval
*tvp
, tv
[2];
8988 if (copy_from_user_timeval(&tv
[0], arg2
)
8989 || copy_from_user_timeval(&tv
[1],
8990 arg2
+ sizeof(struct target_timeval
)))
8991 return -TARGET_EFAULT
;
8996 if (!(p
= lock_user_string(arg1
)))
8997 return -TARGET_EFAULT
;
8998 ret
= get_errno(utimes(p
, tvp
));
8999 unlock_user(p
, arg1
, 0);
9003 #if defined(TARGET_NR_futimesat)
9004 case TARGET_NR_futimesat
:
9006 struct timeval
*tvp
, tv
[2];
9008 if (copy_from_user_timeval(&tv
[0], arg3
)
9009 || copy_from_user_timeval(&tv
[1],
9010 arg3
+ sizeof(struct target_timeval
)))
9011 return -TARGET_EFAULT
;
9016 if (!(p
= lock_user_string(arg2
))) {
9017 return -TARGET_EFAULT
;
9019 ret
= get_errno(futimesat(arg1
, path(p
), tvp
));
9020 unlock_user(p
, arg2
, 0);
9024 #ifdef TARGET_NR_access
9025 case TARGET_NR_access
:
9026 if (!(p
= lock_user_string(arg1
))) {
9027 return -TARGET_EFAULT
;
9029 ret
= get_errno(access(path(p
), arg2
));
9030 unlock_user(p
, arg1
, 0);
9033 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
9034 case TARGET_NR_faccessat
:
9035 if (!(p
= lock_user_string(arg2
))) {
9036 return -TARGET_EFAULT
;
9038 ret
= get_errno(faccessat(arg1
, p
, arg3
, 0));
9039 unlock_user(p
, arg2
, 0);
9042 #ifdef TARGET_NR_nice /* not on alpha */
9043 case TARGET_NR_nice
:
9044 return get_errno(nice(arg1
));
9046 case TARGET_NR_sync
:
9049 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
9050 case TARGET_NR_syncfs
:
9051 return get_errno(syncfs(arg1
));
9053 case TARGET_NR_kill
:
9054 return get_errno(safe_kill(arg1
, target_to_host_signal(arg2
)));
9055 #ifdef TARGET_NR_rename
9056 case TARGET_NR_rename
:
9059 p
= lock_user_string(arg1
);
9060 p2
= lock_user_string(arg2
);
9062 ret
= -TARGET_EFAULT
;
9064 ret
= get_errno(rename(p
, p2
));
9065 unlock_user(p2
, arg2
, 0);
9066 unlock_user(p
, arg1
, 0);
9070 #if defined(TARGET_NR_renameat)
9071 case TARGET_NR_renameat
:
9074 p
= lock_user_string(arg2
);
9075 p2
= lock_user_string(arg4
);
9077 ret
= -TARGET_EFAULT
;
9079 ret
= get_errno(renameat(arg1
, p
, arg3
, p2
));
9080 unlock_user(p2
, arg4
, 0);
9081 unlock_user(p
, arg2
, 0);
9085 #if defined(TARGET_NR_renameat2)
9086 case TARGET_NR_renameat2
:
9089 p
= lock_user_string(arg2
);
9090 p2
= lock_user_string(arg4
);
9092 ret
= -TARGET_EFAULT
;
9094 ret
= get_errno(sys_renameat2(arg1
, p
, arg3
, p2
, arg5
));
9096 unlock_user(p2
, arg4
, 0);
9097 unlock_user(p
, arg2
, 0);
9101 #ifdef TARGET_NR_mkdir
9102 case TARGET_NR_mkdir
:
9103 if (!(p
= lock_user_string(arg1
)))
9104 return -TARGET_EFAULT
;
9105 ret
= get_errno(mkdir(p
, arg2
));
9106 unlock_user(p
, arg1
, 0);
9109 #if defined(TARGET_NR_mkdirat)
9110 case TARGET_NR_mkdirat
:
9111 if (!(p
= lock_user_string(arg2
)))
9112 return -TARGET_EFAULT
;
9113 ret
= get_errno(mkdirat(arg1
, p
, arg3
));
9114 unlock_user(p
, arg2
, 0);
9117 #ifdef TARGET_NR_rmdir
9118 case TARGET_NR_rmdir
:
9119 if (!(p
= lock_user_string(arg1
)))
9120 return -TARGET_EFAULT
;
9121 ret
= get_errno(rmdir(p
));
9122 unlock_user(p
, arg1
, 0);
9126 ret
= get_errno(dup(arg1
));
9128 fd_trans_dup(arg1
, ret
);
9131 #ifdef TARGET_NR_pipe
9132 case TARGET_NR_pipe
:
9133 return do_pipe(cpu_env
, arg1
, 0, 0);
9135 #ifdef TARGET_NR_pipe2
9136 case TARGET_NR_pipe2
:
9137 return do_pipe(cpu_env
, arg1
,
9138 target_to_host_bitmask(arg2
, fcntl_flags_tbl
), 1);
9140 case TARGET_NR_times
:
9142 struct target_tms
*tmsp
;
9144 ret
= get_errno(times(&tms
));
9146 tmsp
= lock_user(VERIFY_WRITE
, arg1
, sizeof(struct target_tms
), 0);
9148 return -TARGET_EFAULT
;
9149 tmsp
->tms_utime
= tswapal(host_to_target_clock_t(tms
.tms_utime
));
9150 tmsp
->tms_stime
= tswapal(host_to_target_clock_t(tms
.tms_stime
));
9151 tmsp
->tms_cutime
= tswapal(host_to_target_clock_t(tms
.tms_cutime
));
9152 tmsp
->tms_cstime
= tswapal(host_to_target_clock_t(tms
.tms_cstime
));
9155 ret
= host_to_target_clock_t(ret
);
9158 case TARGET_NR_acct
:
9160 ret
= get_errno(acct(NULL
));
9162 if (!(p
= lock_user_string(arg1
))) {
9163 return -TARGET_EFAULT
;
9165 ret
= get_errno(acct(path(p
)));
9166 unlock_user(p
, arg1
, 0);
9169 #ifdef TARGET_NR_umount2
9170 case TARGET_NR_umount2
:
9171 if (!(p
= lock_user_string(arg1
)))
9172 return -TARGET_EFAULT
;
9173 ret
= get_errno(umount2(p
, arg2
));
9174 unlock_user(p
, arg1
, 0);
9177 case TARGET_NR_ioctl
:
9178 return do_ioctl(arg1
, arg2
, arg3
);
9179 #ifdef TARGET_NR_fcntl
9180 case TARGET_NR_fcntl
:
9181 return do_fcntl(arg1
, arg2
, arg3
);
9183 case TARGET_NR_setpgid
:
9184 return get_errno(setpgid(arg1
, arg2
));
9185 case TARGET_NR_umask
:
9186 return get_errno(umask(arg1
));
9187 case TARGET_NR_chroot
:
9188 if (!(p
= lock_user_string(arg1
)))
9189 return -TARGET_EFAULT
;
9190 ret
= get_errno(chroot(p
));
9191 unlock_user(p
, arg1
, 0);
9193 #ifdef TARGET_NR_dup2
9194 case TARGET_NR_dup2
:
9195 ret
= get_errno(dup2(arg1
, arg2
));
9197 fd_trans_dup(arg1
, arg2
);
9201 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
9202 case TARGET_NR_dup3
:
9206 if ((arg3
& ~TARGET_O_CLOEXEC
) != 0) {
9209 host_flags
= target_to_host_bitmask(arg3
, fcntl_flags_tbl
);
9210 ret
= get_errno(dup3(arg1
, arg2
, host_flags
));
9212 fd_trans_dup(arg1
, arg2
);
9217 #ifdef TARGET_NR_getppid /* not on alpha */
9218 case TARGET_NR_getppid
:
9219 return get_errno(getppid());
9221 #ifdef TARGET_NR_getpgrp
9222 case TARGET_NR_getpgrp
:
9223 return get_errno(getpgrp());
9225 case TARGET_NR_setsid
:
9226 return get_errno(setsid());
9227 #ifdef TARGET_NR_sigaction
9228 case TARGET_NR_sigaction
:
9230 #if defined(TARGET_MIPS)
9231 struct target_sigaction act
, oact
, *pact
, *old_act
;
9234 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
9235 return -TARGET_EFAULT
;
9236 act
._sa_handler
= old_act
->_sa_handler
;
9237 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
.sig
[0]);
9238 act
.sa_flags
= old_act
->sa_flags
;
9239 unlock_user_struct(old_act
, arg2
, 0);
9245 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
, 0));
9247 if (!is_error(ret
) && arg3
) {
9248 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
9249 return -TARGET_EFAULT
;
9250 old_act
->_sa_handler
= oact
._sa_handler
;
9251 old_act
->sa_flags
= oact
.sa_flags
;
9252 old_act
->sa_mask
.sig
[0] = oact
.sa_mask
.sig
[0];
9253 old_act
->sa_mask
.sig
[1] = 0;
9254 old_act
->sa_mask
.sig
[2] = 0;
9255 old_act
->sa_mask
.sig
[3] = 0;
9256 unlock_user_struct(old_act
, arg3
, 1);
9259 struct target_old_sigaction
*old_act
;
9260 struct target_sigaction act
, oact
, *pact
;
9262 if (!lock_user_struct(VERIFY_READ
, old_act
, arg2
, 1))
9263 return -TARGET_EFAULT
;
9264 act
._sa_handler
= old_act
->_sa_handler
;
9265 target_siginitset(&act
.sa_mask
, old_act
->sa_mask
);
9266 act
.sa_flags
= old_act
->sa_flags
;
9267 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9268 act
.sa_restorer
= old_act
->sa_restorer
;
9270 unlock_user_struct(old_act
, arg2
, 0);
9275 ret
= get_errno(do_sigaction(arg1
, pact
, &oact
, 0));
9276 if (!is_error(ret
) && arg3
) {
9277 if (!lock_user_struct(VERIFY_WRITE
, old_act
, arg3
, 0))
9278 return -TARGET_EFAULT
;
9279 old_act
->_sa_handler
= oact
._sa_handler
;
9280 old_act
->sa_mask
= oact
.sa_mask
.sig
[0];
9281 old_act
->sa_flags
= oact
.sa_flags
;
9282 #ifdef TARGET_ARCH_HAS_SA_RESTORER
9283 old_act
->sa_restorer
= oact
.sa_restorer
;
9285 unlock_user_struct(old_act
, arg3
, 1);
9291 case TARGET_NR_rt_sigaction
:
9294 * For Alpha and SPARC this is a 5 argument syscall, with
9295 * a 'restorer' parameter which must be copied into the
9296 * sa_restorer field of the sigaction struct.
9297 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
9298 * and arg5 is the sigsetsize.
9300 #if defined(TARGET_ALPHA)
9301 target_ulong sigsetsize
= arg4
;
9302 target_ulong restorer
= arg5
;
9303 #elif defined(TARGET_SPARC)
9304 target_ulong restorer
= arg4
;
9305 target_ulong sigsetsize
= arg5
;
9307 target_ulong sigsetsize
= arg4
;
9308 target_ulong restorer
= 0;
9310 struct target_sigaction
*act
= NULL
;
9311 struct target_sigaction
*oact
= NULL
;
9313 if (sigsetsize
!= sizeof(target_sigset_t
)) {
9314 return -TARGET_EINVAL
;
9316 if (arg2
&& !lock_user_struct(VERIFY_READ
, act
, arg2
, 1)) {
9317 return -TARGET_EFAULT
;
9319 if (arg3
&& !lock_user_struct(VERIFY_WRITE
, oact
, arg3
, 0)) {
9320 ret
= -TARGET_EFAULT
;
9322 ret
= get_errno(do_sigaction(arg1
, act
, oact
, restorer
));
9324 unlock_user_struct(oact
, arg3
, 1);
9328 unlock_user_struct(act
, arg2
, 0);
9332 #ifdef TARGET_NR_sgetmask /* not on alpha */
9333 case TARGET_NR_sgetmask
:
9336 abi_ulong target_set
;
9337 ret
= do_sigprocmask(0, NULL
, &cur_set
);
9339 host_to_target_old_sigset(&target_set
, &cur_set
);
9345 #ifdef TARGET_NR_ssetmask /* not on alpha */
9346 case TARGET_NR_ssetmask
:
9349 abi_ulong target_set
= arg1
;
9350 target_to_host_old_sigset(&set
, &target_set
);
9351 ret
= do_sigprocmask(SIG_SETMASK
, &set
, &oset
);
9353 host_to_target_old_sigset(&target_set
, &oset
);
9359 #ifdef TARGET_NR_sigprocmask
9360 case TARGET_NR_sigprocmask
:
9362 #if defined(TARGET_ALPHA)
9363 sigset_t set
, oldset
;
9368 case TARGET_SIG_BLOCK
:
9371 case TARGET_SIG_UNBLOCK
:
9374 case TARGET_SIG_SETMASK
:
9378 return -TARGET_EINVAL
;
9381 target_to_host_old_sigset(&set
, &mask
);
9383 ret
= do_sigprocmask(how
, &set
, &oldset
);
9384 if (!is_error(ret
)) {
9385 host_to_target_old_sigset(&mask
, &oldset
);
9387 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0; /* force no error */
9390 sigset_t set
, oldset
, *set_ptr
;
9395 case TARGET_SIG_BLOCK
:
9398 case TARGET_SIG_UNBLOCK
:
9401 case TARGET_SIG_SETMASK
:
9405 return -TARGET_EINVAL
;
9407 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
9408 return -TARGET_EFAULT
;
9409 target_to_host_old_sigset(&set
, p
);
9410 unlock_user(p
, arg2
, 0);
9416 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
9417 if (!is_error(ret
) && arg3
) {
9418 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
9419 return -TARGET_EFAULT
;
9420 host_to_target_old_sigset(p
, &oldset
);
9421 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
9427 case TARGET_NR_rt_sigprocmask
:
9430 sigset_t set
, oldset
, *set_ptr
;
9432 if (arg4
!= sizeof(target_sigset_t
)) {
9433 return -TARGET_EINVAL
;
9438 case TARGET_SIG_BLOCK
:
9441 case TARGET_SIG_UNBLOCK
:
9444 case TARGET_SIG_SETMASK
:
9448 return -TARGET_EINVAL
;
9450 if (!(p
= lock_user(VERIFY_READ
, arg2
, sizeof(target_sigset_t
), 1)))
9451 return -TARGET_EFAULT
;
9452 target_to_host_sigset(&set
, p
);
9453 unlock_user(p
, arg2
, 0);
9459 ret
= do_sigprocmask(how
, set_ptr
, &oldset
);
9460 if (!is_error(ret
) && arg3
) {
9461 if (!(p
= lock_user(VERIFY_WRITE
, arg3
, sizeof(target_sigset_t
), 0)))
9462 return -TARGET_EFAULT
;
9463 host_to_target_sigset(p
, &oldset
);
9464 unlock_user(p
, arg3
, sizeof(target_sigset_t
));
9468 #ifdef TARGET_NR_sigpending
9469 case TARGET_NR_sigpending
:
9472 ret
= get_errno(sigpending(&set
));
9473 if (!is_error(ret
)) {
9474 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
9475 return -TARGET_EFAULT
;
9476 host_to_target_old_sigset(p
, &set
);
9477 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
9482 case TARGET_NR_rt_sigpending
:
9486 /* Yes, this check is >, not != like most. We follow the kernel's
9487 * logic and it does it like this because it implements
9488 * NR_sigpending through the same code path, and in that case
9489 * the old_sigset_t is smaller in size.
9491 if (arg2
> sizeof(target_sigset_t
)) {
9492 return -TARGET_EINVAL
;
9495 ret
= get_errno(sigpending(&set
));
9496 if (!is_error(ret
)) {
9497 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, sizeof(target_sigset_t
), 0)))
9498 return -TARGET_EFAULT
;
9499 host_to_target_sigset(p
, &set
);
9500 unlock_user(p
, arg1
, sizeof(target_sigset_t
));
9504 #ifdef TARGET_NR_sigsuspend
9505 case TARGET_NR_sigsuspend
:
9507 TaskState
*ts
= cpu
->opaque
;
9508 #if defined(TARGET_ALPHA)
9509 abi_ulong mask
= arg1
;
9510 target_to_host_old_sigset(&ts
->sigsuspend_mask
, &mask
);
9512 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
9513 return -TARGET_EFAULT
;
9514 target_to_host_old_sigset(&ts
->sigsuspend_mask
, p
);
9515 unlock_user(p
, arg1
, 0);
9517 ret
= get_errno(safe_rt_sigsuspend(&ts
->sigsuspend_mask
,
9519 if (ret
!= -QEMU_ERESTARTSYS
) {
9520 ts
->in_sigsuspend
= 1;
9525 case TARGET_NR_rt_sigsuspend
:
9527 TaskState
*ts
= cpu
->opaque
;
9529 if (arg2
!= sizeof(target_sigset_t
)) {
9530 return -TARGET_EINVAL
;
9532 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
9533 return -TARGET_EFAULT
;
9534 target_to_host_sigset(&ts
->sigsuspend_mask
, p
);
9535 unlock_user(p
, arg1
, 0);
9536 ret
= get_errno(safe_rt_sigsuspend(&ts
->sigsuspend_mask
,
9538 if (ret
!= -QEMU_ERESTARTSYS
) {
9539 ts
->in_sigsuspend
= 1;
9543 #ifdef TARGET_NR_rt_sigtimedwait
9544 case TARGET_NR_rt_sigtimedwait
:
9547 struct timespec uts
, *puts
;
9550 if (arg4
!= sizeof(target_sigset_t
)) {
9551 return -TARGET_EINVAL
;
9554 if (!(p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1)))
9555 return -TARGET_EFAULT
;
9556 target_to_host_sigset(&set
, p
);
9557 unlock_user(p
, arg1
, 0);
9560 if (target_to_host_timespec(puts
, arg3
)) {
9561 return -TARGET_EFAULT
;
9566 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
9568 if (!is_error(ret
)) {
9570 p
= lock_user(VERIFY_WRITE
, arg2
, sizeof(target_siginfo_t
),
9573 return -TARGET_EFAULT
;
9575 host_to_target_siginfo(p
, &uinfo
);
9576 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
9578 ret
= host_to_target_signal(ret
);
9583 #ifdef TARGET_NR_rt_sigtimedwait_time64
9584 case TARGET_NR_rt_sigtimedwait_time64
:
9587 struct timespec uts
, *puts
;
9590 if (arg4
!= sizeof(target_sigset_t
)) {
9591 return -TARGET_EINVAL
;
9594 p
= lock_user(VERIFY_READ
, arg1
, sizeof(target_sigset_t
), 1);
9596 return -TARGET_EFAULT
;
9598 target_to_host_sigset(&set
, p
);
9599 unlock_user(p
, arg1
, 0);
9602 if (target_to_host_timespec64(puts
, arg3
)) {
9603 return -TARGET_EFAULT
;
9608 ret
= get_errno(safe_rt_sigtimedwait(&set
, &uinfo
, puts
,
9610 if (!is_error(ret
)) {
9612 p
= lock_user(VERIFY_WRITE
, arg2
,
9613 sizeof(target_siginfo_t
), 0);
9615 return -TARGET_EFAULT
;
9617 host_to_target_siginfo(p
, &uinfo
);
9618 unlock_user(p
, arg2
, sizeof(target_siginfo_t
));
9620 ret
= host_to_target_signal(ret
);
9625 case TARGET_NR_rt_sigqueueinfo
:
9629 p
= lock_user(VERIFY_READ
, arg3
, sizeof(target_siginfo_t
), 1);
9631 return -TARGET_EFAULT
;
9633 target_to_host_siginfo(&uinfo
, p
);
9634 unlock_user(p
, arg3
, 0);
9635 ret
= get_errno(sys_rt_sigqueueinfo(arg1
, arg2
, &uinfo
));
9638 case TARGET_NR_rt_tgsigqueueinfo
:
9642 p
= lock_user(VERIFY_READ
, arg4
, sizeof(target_siginfo_t
), 1);
9644 return -TARGET_EFAULT
;
9646 target_to_host_siginfo(&uinfo
, p
);
9647 unlock_user(p
, arg4
, 0);
9648 ret
= get_errno(sys_rt_tgsigqueueinfo(arg1
, arg2
, arg3
, &uinfo
));
9651 #ifdef TARGET_NR_sigreturn
9652 case TARGET_NR_sigreturn
:
9653 if (block_signals()) {
9654 return -QEMU_ERESTARTSYS
;
9656 return do_sigreturn(cpu_env
);
9658 case TARGET_NR_rt_sigreturn
:
9659 if (block_signals()) {
9660 return -QEMU_ERESTARTSYS
;
9662 return do_rt_sigreturn(cpu_env
);
9663 case TARGET_NR_sethostname
:
9664 if (!(p
= lock_user_string(arg1
)))
9665 return -TARGET_EFAULT
;
9666 ret
= get_errno(sethostname(p
, arg2
));
9667 unlock_user(p
, arg1
, 0);
9669 #ifdef TARGET_NR_setrlimit
9670 case TARGET_NR_setrlimit
:
9672 int resource
= target_to_host_resource(arg1
);
9673 struct target_rlimit
*target_rlim
;
9675 if (!lock_user_struct(VERIFY_READ
, target_rlim
, arg2
, 1))
9676 return -TARGET_EFAULT
;
9677 rlim
.rlim_cur
= target_to_host_rlim(target_rlim
->rlim_cur
);
9678 rlim
.rlim_max
= target_to_host_rlim(target_rlim
->rlim_max
);
9679 unlock_user_struct(target_rlim
, arg2
, 0);
9681 * If we just passed through resource limit settings for memory then
9682 * they would also apply to QEMU's own allocations, and QEMU will
9683 * crash or hang or die if its allocations fail. Ideally we would
9684 * track the guest allocations in QEMU and apply the limits ourselves.
9685 * For now, just tell the guest the call succeeded but don't actually
9688 if (resource
!= RLIMIT_AS
&&
9689 resource
!= RLIMIT_DATA
&&
9690 resource
!= RLIMIT_STACK
) {
9691 return get_errno(setrlimit(resource
, &rlim
));
9697 #ifdef TARGET_NR_getrlimit
9698 case TARGET_NR_getrlimit
:
9700 int resource
= target_to_host_resource(arg1
);
9701 struct target_rlimit
*target_rlim
;
9704 ret
= get_errno(getrlimit(resource
, &rlim
));
9705 if (!is_error(ret
)) {
9706 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
9707 return -TARGET_EFAULT
;
9708 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
9709 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
9710 unlock_user_struct(target_rlim
, arg2
, 1);
9715 case TARGET_NR_getrusage
:
9717 struct rusage rusage
;
9718 ret
= get_errno(getrusage(arg1
, &rusage
));
9719 if (!is_error(ret
)) {
9720 ret
= host_to_target_rusage(arg2
, &rusage
);
9724 #if defined(TARGET_NR_gettimeofday)
9725 case TARGET_NR_gettimeofday
:
9730 ret
= get_errno(gettimeofday(&tv
, &tz
));
9731 if (!is_error(ret
)) {
9732 if (arg1
&& copy_to_user_timeval(arg1
, &tv
)) {
9733 return -TARGET_EFAULT
;
9735 if (arg2
&& copy_to_user_timezone(arg2
, &tz
)) {
9736 return -TARGET_EFAULT
;
9742 #if defined(TARGET_NR_settimeofday)
9743 case TARGET_NR_settimeofday
:
9745 struct timeval tv
, *ptv
= NULL
;
9746 struct timezone tz
, *ptz
= NULL
;
9749 if (copy_from_user_timeval(&tv
, arg1
)) {
9750 return -TARGET_EFAULT
;
9756 if (copy_from_user_timezone(&tz
, arg2
)) {
9757 return -TARGET_EFAULT
;
9762 return get_errno(settimeofday(ptv
, ptz
));
9765 #if defined(TARGET_NR_select)
9766 case TARGET_NR_select
:
9767 #if defined(TARGET_WANT_NI_OLD_SELECT)
9768 /* some architectures used to have old_select here
9769 * but now ENOSYS it.
9771 ret
= -TARGET_ENOSYS
;
9772 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9773 ret
= do_old_select(arg1
);
9775 ret
= do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
9779 #ifdef TARGET_NR_pselect6
9780 case TARGET_NR_pselect6
:
9781 return do_pselect6(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
, false);
9783 #ifdef TARGET_NR_pselect6_time64
9784 case TARGET_NR_pselect6_time64
:
9785 return do_pselect6(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
, true);
9787 #ifdef TARGET_NR_symlink
9788 case TARGET_NR_symlink
:
9791 p
= lock_user_string(arg1
);
9792 p2
= lock_user_string(arg2
);
9794 ret
= -TARGET_EFAULT
;
9796 ret
= get_errno(symlink(p
, p2
));
9797 unlock_user(p2
, arg2
, 0);
9798 unlock_user(p
, arg1
, 0);
9802 #if defined(TARGET_NR_symlinkat)
9803 case TARGET_NR_symlinkat
:
9806 p
= lock_user_string(arg1
);
9807 p2
= lock_user_string(arg3
);
9809 ret
= -TARGET_EFAULT
;
9811 ret
= get_errno(symlinkat(p
, arg2
, p2
));
9812 unlock_user(p2
, arg3
, 0);
9813 unlock_user(p
, arg1
, 0);
9817 #ifdef TARGET_NR_readlink
9818 case TARGET_NR_readlink
:
9821 p
= lock_user_string(arg1
);
9822 p2
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
9824 ret
= -TARGET_EFAULT
;
9826 /* Short circuit this for the magic exe check. */
9827 ret
= -TARGET_EINVAL
;
9828 } else if (is_proc_myself((const char *)p
, "exe")) {
9829 char real
[PATH_MAX
], *temp
;
9830 temp
= realpath(exec_path
, real
);
9831 /* Return value is # of bytes that we wrote to the buffer. */
9833 ret
= get_errno(-1);
9835 /* Don't worry about sign mismatch as earlier mapping
9836 * logic would have thrown a bad address error. */
9837 ret
= MIN(strlen(real
), arg3
);
9838 /* We cannot NUL terminate the string. */
9839 memcpy(p2
, real
, ret
);
9842 ret
= get_errno(readlink(path(p
), p2
, arg3
));
9844 unlock_user(p2
, arg2
, ret
);
9845 unlock_user(p
, arg1
, 0);
9849 #if defined(TARGET_NR_readlinkat)
9850 case TARGET_NR_readlinkat
:
9853 p
= lock_user_string(arg2
);
9854 p2
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
9856 ret
= -TARGET_EFAULT
;
9857 } else if (is_proc_myself((const char *)p
, "exe")) {
9858 char real
[PATH_MAX
], *temp
;
9859 temp
= realpath(exec_path
, real
);
9860 ret
= temp
== NULL
? get_errno(-1) : strlen(real
) ;
9861 snprintf((char *)p2
, arg4
, "%s", real
);
9863 ret
= get_errno(readlinkat(arg1
, path(p
), p2
, arg4
));
9865 unlock_user(p2
, arg3
, ret
);
9866 unlock_user(p
, arg2
, 0);
9870 #ifdef TARGET_NR_swapon
9871 case TARGET_NR_swapon
:
9872 if (!(p
= lock_user_string(arg1
)))
9873 return -TARGET_EFAULT
;
9874 ret
= get_errno(swapon(p
, arg2
));
9875 unlock_user(p
, arg1
, 0);
9878 case TARGET_NR_reboot
:
9879 if (arg3
== LINUX_REBOOT_CMD_RESTART2
) {
9880 /* arg4 must be ignored in all other cases */
9881 p
= lock_user_string(arg4
);
9883 return -TARGET_EFAULT
;
9885 ret
= get_errno(reboot(arg1
, arg2
, arg3
, p
));
9886 unlock_user(p
, arg4
, 0);
9888 ret
= get_errno(reboot(arg1
, arg2
, arg3
, NULL
));
9891 #ifdef TARGET_NR_mmap
9892 case TARGET_NR_mmap
:
9893 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9894 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9895 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9896 || defined(TARGET_S390X)
9899 abi_ulong v1
, v2
, v3
, v4
, v5
, v6
;
9900 if (!(v
= lock_user(VERIFY_READ
, arg1
, 6 * sizeof(abi_ulong
), 1)))
9901 return -TARGET_EFAULT
;
9908 unlock_user(v
, arg1
, 0);
9909 ret
= get_errno(target_mmap(v1
, v2
, v3
,
9910 target_to_host_bitmask(v4
, mmap_flags_tbl
),
9914 /* mmap pointers are always untagged */
9915 ret
= get_errno(target_mmap(arg1
, arg2
, arg3
,
9916 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
9922 #ifdef TARGET_NR_mmap2
9923 case TARGET_NR_mmap2
:
9925 #define MMAP_SHIFT 12
9927 ret
= target_mmap(arg1
, arg2
, arg3
,
9928 target_to_host_bitmask(arg4
, mmap_flags_tbl
),
9929 arg5
, arg6
<< MMAP_SHIFT
);
9930 return get_errno(ret
);
9932 case TARGET_NR_munmap
:
9933 arg1
= cpu_untagged_addr(cpu
, arg1
);
9934 return get_errno(target_munmap(arg1
, arg2
));
9935 case TARGET_NR_mprotect
:
9936 arg1
= cpu_untagged_addr(cpu
, arg1
);
9938 TaskState
*ts
= cpu
->opaque
;
9939 /* Special hack to detect libc making the stack executable. */
9940 if ((arg3
& PROT_GROWSDOWN
)
9941 && arg1
>= ts
->info
->stack_limit
9942 && arg1
<= ts
->info
->start_stack
) {
9943 arg3
&= ~PROT_GROWSDOWN
;
9944 arg2
= arg2
+ arg1
- ts
->info
->stack_limit
;
9945 arg1
= ts
->info
->stack_limit
;
9948 return get_errno(target_mprotect(arg1
, arg2
, arg3
));
9949 #ifdef TARGET_NR_mremap
9950 case TARGET_NR_mremap
:
9951 arg1
= cpu_untagged_addr(cpu
, arg1
);
9952 /* mremap new_addr (arg5) is always untagged */
9953 return get_errno(target_mremap(arg1
, arg2
, arg3
, arg4
, arg5
));
9955 /* ??? msync/mlock/munlock are broken for softmmu. */
9956 #ifdef TARGET_NR_msync
9957 case TARGET_NR_msync
:
9958 return get_errno(msync(g2h(cpu
, arg1
), arg2
, arg3
));
9960 #ifdef TARGET_NR_mlock
9961 case TARGET_NR_mlock
:
9962 return get_errno(mlock(g2h(cpu
, arg1
), arg2
));
9964 #ifdef TARGET_NR_munlock
9965 case TARGET_NR_munlock
:
9966 return get_errno(munlock(g2h(cpu
, arg1
), arg2
));
9968 #ifdef TARGET_NR_mlockall
9969 case TARGET_NR_mlockall
:
9970 return get_errno(mlockall(target_to_host_mlockall_arg(arg1
)));
9972 #ifdef TARGET_NR_munlockall
9973 case TARGET_NR_munlockall
:
9974 return get_errno(munlockall());
9976 #ifdef TARGET_NR_truncate
9977 case TARGET_NR_truncate
:
9978 if (!(p
= lock_user_string(arg1
)))
9979 return -TARGET_EFAULT
;
9980 ret
= get_errno(truncate(p
, arg2
));
9981 unlock_user(p
, arg1
, 0);
9984 #ifdef TARGET_NR_ftruncate
9985 case TARGET_NR_ftruncate
:
9986 return get_errno(ftruncate(arg1
, arg2
));
9988 case TARGET_NR_fchmod
:
9989 return get_errno(fchmod(arg1
, arg2
));
9990 #if defined(TARGET_NR_fchmodat)
9991 case TARGET_NR_fchmodat
:
9992 if (!(p
= lock_user_string(arg2
)))
9993 return -TARGET_EFAULT
;
9994 ret
= get_errno(fchmodat(arg1
, p
, arg3
, 0));
9995 unlock_user(p
, arg2
, 0);
9998 case TARGET_NR_getpriority
:
9999 /* Note that negative values are valid for getpriority, so we must
10000 differentiate based on errno settings. */
10002 ret
= getpriority(arg1
, arg2
);
10003 if (ret
== -1 && errno
!= 0) {
10004 return -host_to_target_errno(errno
);
10006 #ifdef TARGET_ALPHA
10007 /* Return value is the unbiased priority. Signal no error. */
10008 ((CPUAlphaState
*)cpu_env
)->ir
[IR_V0
] = 0;
10010 /* Return value is a biased priority to avoid negative numbers. */
10014 case TARGET_NR_setpriority
:
10015 return get_errno(setpriority(arg1
, arg2
, arg3
));
10016 #ifdef TARGET_NR_statfs
10017 case TARGET_NR_statfs
:
10018 if (!(p
= lock_user_string(arg1
))) {
10019 return -TARGET_EFAULT
;
10021 ret
= get_errno(statfs(path(p
), &stfs
));
10022 unlock_user(p
, arg1
, 0);
10024 if (!is_error(ret
)) {
10025 struct target_statfs
*target_stfs
;
10027 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg2
, 0))
10028 return -TARGET_EFAULT
;
10029 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
10030 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
10031 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
10032 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
10033 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
10034 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
10035 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
10036 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
10037 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
10038 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
10039 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
10040 #ifdef _STATFS_F_FLAGS
10041 __put_user(stfs
.f_flags
, &target_stfs
->f_flags
);
10043 __put_user(0, &target_stfs
->f_flags
);
10045 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
10046 unlock_user_struct(target_stfs
, arg2
, 1);
10050 #ifdef TARGET_NR_fstatfs
10051 case TARGET_NR_fstatfs
:
10052 ret
= get_errno(fstatfs(arg1
, &stfs
));
10053 goto convert_statfs
;
10055 #ifdef TARGET_NR_statfs64
10056 case TARGET_NR_statfs64
:
10057 if (!(p
= lock_user_string(arg1
))) {
10058 return -TARGET_EFAULT
;
10060 ret
= get_errno(statfs(path(p
), &stfs
));
10061 unlock_user(p
, arg1
, 0);
10063 if (!is_error(ret
)) {
10064 struct target_statfs64
*target_stfs
;
10066 if (!lock_user_struct(VERIFY_WRITE
, target_stfs
, arg3
, 0))
10067 return -TARGET_EFAULT
;
10068 __put_user(stfs
.f_type
, &target_stfs
->f_type
);
10069 __put_user(stfs
.f_bsize
, &target_stfs
->f_bsize
);
10070 __put_user(stfs
.f_blocks
, &target_stfs
->f_blocks
);
10071 __put_user(stfs
.f_bfree
, &target_stfs
->f_bfree
);
10072 __put_user(stfs
.f_bavail
, &target_stfs
->f_bavail
);
10073 __put_user(stfs
.f_files
, &target_stfs
->f_files
);
10074 __put_user(stfs
.f_ffree
, &target_stfs
->f_ffree
);
10075 __put_user(stfs
.f_fsid
.__val
[0], &target_stfs
->f_fsid
.val
[0]);
10076 __put_user(stfs
.f_fsid
.__val
[1], &target_stfs
->f_fsid
.val
[1]);
10077 __put_user(stfs
.f_namelen
, &target_stfs
->f_namelen
);
10078 __put_user(stfs
.f_frsize
, &target_stfs
->f_frsize
);
10079 #ifdef _STATFS_F_FLAGS
10080 __put_user(stfs
.f_flags
, &target_stfs
->f_flags
);
10082 __put_user(0, &target_stfs
->f_flags
);
10084 memset(target_stfs
->f_spare
, 0, sizeof(target_stfs
->f_spare
));
10085 unlock_user_struct(target_stfs
, arg3
, 1);
10088 case TARGET_NR_fstatfs64
:
10089 ret
= get_errno(fstatfs(arg1
, &stfs
));
10090 goto convert_statfs64
;
10092 #ifdef TARGET_NR_socketcall
10093 case TARGET_NR_socketcall
:
10094 return do_socketcall(arg1
, arg2
);
10096 #ifdef TARGET_NR_accept
10097 case TARGET_NR_accept
:
10098 return do_accept4(arg1
, arg2
, arg3
, 0);
10100 #ifdef TARGET_NR_accept4
10101 case TARGET_NR_accept4
:
10102 return do_accept4(arg1
, arg2
, arg3
, arg4
);
10104 #ifdef TARGET_NR_bind
10105 case TARGET_NR_bind
:
10106 return do_bind(arg1
, arg2
, arg3
);
10108 #ifdef TARGET_NR_connect
10109 case TARGET_NR_connect
:
10110 return do_connect(arg1
, arg2
, arg3
);
10112 #ifdef TARGET_NR_getpeername
10113 case TARGET_NR_getpeername
:
10114 return do_getpeername(arg1
, arg2
, arg3
);
10116 #ifdef TARGET_NR_getsockname
10117 case TARGET_NR_getsockname
:
10118 return do_getsockname(arg1
, arg2
, arg3
);
10120 #ifdef TARGET_NR_getsockopt
10121 case TARGET_NR_getsockopt
:
10122 return do_getsockopt(arg1
, arg2
, arg3
, arg4
, arg5
);
10124 #ifdef TARGET_NR_listen
10125 case TARGET_NR_listen
:
10126 return get_errno(listen(arg1
, arg2
));
10128 #ifdef TARGET_NR_recv
10129 case TARGET_NR_recv
:
10130 return do_recvfrom(arg1
, arg2
, arg3
, arg4
, 0, 0);
10132 #ifdef TARGET_NR_recvfrom
10133 case TARGET_NR_recvfrom
:
10134 return do_recvfrom(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10136 #ifdef TARGET_NR_recvmsg
10137 case TARGET_NR_recvmsg
:
10138 return do_sendrecvmsg(arg1
, arg2
, arg3
, 0);
10140 #ifdef TARGET_NR_send
10141 case TARGET_NR_send
:
10142 return do_sendto(arg1
, arg2
, arg3
, arg4
, 0, 0);
10144 #ifdef TARGET_NR_sendmsg
10145 case TARGET_NR_sendmsg
:
10146 return do_sendrecvmsg(arg1
, arg2
, arg3
, 1);
10148 #ifdef TARGET_NR_sendmmsg
10149 case TARGET_NR_sendmmsg
:
10150 return do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 1);
10152 #ifdef TARGET_NR_recvmmsg
10153 case TARGET_NR_recvmmsg
:
10154 return do_sendrecvmmsg(arg1
, arg2
, arg3
, arg4
, 0);
10156 #ifdef TARGET_NR_sendto
10157 case TARGET_NR_sendto
:
10158 return do_sendto(arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10160 #ifdef TARGET_NR_shutdown
10161 case TARGET_NR_shutdown
:
10162 return get_errno(shutdown(arg1
, arg2
));
10164 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
10165 case TARGET_NR_getrandom
:
10166 p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
10168 return -TARGET_EFAULT
;
10170 ret
= get_errno(getrandom(p
, arg2
, arg3
));
10171 unlock_user(p
, arg1
, ret
);
10174 #ifdef TARGET_NR_socket
10175 case TARGET_NR_socket
:
10176 return do_socket(arg1
, arg2
, arg3
);
10178 #ifdef TARGET_NR_socketpair
10179 case TARGET_NR_socketpair
:
10180 return do_socketpair(arg1
, arg2
, arg3
, arg4
);
10182 #ifdef TARGET_NR_setsockopt
10183 case TARGET_NR_setsockopt
:
10184 return do_setsockopt(arg1
, arg2
, arg3
, arg4
, (socklen_t
) arg5
);
10186 #if defined(TARGET_NR_syslog)
10187 case TARGET_NR_syslog
:
10192 case TARGET_SYSLOG_ACTION_CLOSE
: /* Close log */
10193 case TARGET_SYSLOG_ACTION_OPEN
: /* Open log */
10194 case TARGET_SYSLOG_ACTION_CLEAR
: /* Clear ring buffer */
10195 case TARGET_SYSLOG_ACTION_CONSOLE_OFF
: /* Disable logging */
10196 case TARGET_SYSLOG_ACTION_CONSOLE_ON
: /* Enable logging */
10197 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL
: /* Set messages level */
10198 case TARGET_SYSLOG_ACTION_SIZE_UNREAD
: /* Number of chars */
10199 case TARGET_SYSLOG_ACTION_SIZE_BUFFER
: /* Size of the buffer */
10200 return get_errno(sys_syslog((int)arg1
, NULL
, (int)arg3
));
10201 case TARGET_SYSLOG_ACTION_READ
: /* Read from log */
10202 case TARGET_SYSLOG_ACTION_READ_CLEAR
: /* Read/clear msgs */
10203 case TARGET_SYSLOG_ACTION_READ_ALL
: /* Read last messages */
10206 return -TARGET_EINVAL
;
10211 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
10213 return -TARGET_EFAULT
;
10215 ret
= get_errno(sys_syslog((int)arg1
, p
, (int)arg3
));
10216 unlock_user(p
, arg2
, arg3
);
10220 return -TARGET_EINVAL
;
10225 case TARGET_NR_setitimer
:
10227 struct itimerval value
, ovalue
, *pvalue
;
10231 if (copy_from_user_timeval(&pvalue
->it_interval
, arg2
)
10232 || copy_from_user_timeval(&pvalue
->it_value
,
10233 arg2
+ sizeof(struct target_timeval
)))
10234 return -TARGET_EFAULT
;
10238 ret
= get_errno(setitimer(arg1
, pvalue
, &ovalue
));
10239 if (!is_error(ret
) && arg3
) {
10240 if (copy_to_user_timeval(arg3
,
10241 &ovalue
.it_interval
)
10242 || copy_to_user_timeval(arg3
+ sizeof(struct target_timeval
),
10244 return -TARGET_EFAULT
;
10248 case TARGET_NR_getitimer
:
10250 struct itimerval value
;
10252 ret
= get_errno(getitimer(arg1
, &value
));
10253 if (!is_error(ret
) && arg2
) {
10254 if (copy_to_user_timeval(arg2
,
10255 &value
.it_interval
)
10256 || copy_to_user_timeval(arg2
+ sizeof(struct target_timeval
),
10258 return -TARGET_EFAULT
;
10262 #ifdef TARGET_NR_stat
10263 case TARGET_NR_stat
:
10264 if (!(p
= lock_user_string(arg1
))) {
10265 return -TARGET_EFAULT
;
10267 ret
= get_errno(stat(path(p
), &st
));
10268 unlock_user(p
, arg1
, 0);
10271 #ifdef TARGET_NR_lstat
10272 case TARGET_NR_lstat
:
10273 if (!(p
= lock_user_string(arg1
))) {
10274 return -TARGET_EFAULT
;
10276 ret
= get_errno(lstat(path(p
), &st
));
10277 unlock_user(p
, arg1
, 0);
10280 #ifdef TARGET_NR_fstat
10281 case TARGET_NR_fstat
:
10283 ret
= get_errno(fstat(arg1
, &st
));
10284 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
10287 if (!is_error(ret
)) {
10288 struct target_stat
*target_st
;
10290 if (!lock_user_struct(VERIFY_WRITE
, target_st
, arg2
, 0))
10291 return -TARGET_EFAULT
;
10292 memset(target_st
, 0, sizeof(*target_st
));
10293 __put_user(st
.st_dev
, &target_st
->st_dev
);
10294 __put_user(st
.st_ino
, &target_st
->st_ino
);
10295 __put_user(st
.st_mode
, &target_st
->st_mode
);
10296 __put_user(st
.st_uid
, &target_st
->st_uid
);
10297 __put_user(st
.st_gid
, &target_st
->st_gid
);
10298 __put_user(st
.st_nlink
, &target_st
->st_nlink
);
10299 __put_user(st
.st_rdev
, &target_st
->st_rdev
);
10300 __put_user(st
.st_size
, &target_st
->st_size
);
10301 __put_user(st
.st_blksize
, &target_st
->st_blksize
);
10302 __put_user(st
.st_blocks
, &target_st
->st_blocks
);
10303 __put_user(st
.st_atime
, &target_st
->target_st_atime
);
10304 __put_user(st
.st_mtime
, &target_st
->target_st_mtime
);
10305 __put_user(st
.st_ctime
, &target_st
->target_st_ctime
);
10306 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
10307 __put_user(st
.st_atim
.tv_nsec
,
10308 &target_st
->target_st_atime_nsec
);
10309 __put_user(st
.st_mtim
.tv_nsec
,
10310 &target_st
->target_st_mtime_nsec
);
10311 __put_user(st
.st_ctim
.tv_nsec
,
10312 &target_st
->target_st_ctime_nsec
);
10314 unlock_user_struct(target_st
, arg2
, 1);
10319 case TARGET_NR_vhangup
:
10320 return get_errno(vhangup());
10321 #ifdef TARGET_NR_syscall
10322 case TARGET_NR_syscall
:
10323 return do_syscall(cpu_env
, arg1
& 0xffff, arg2
, arg3
, arg4
, arg5
,
10324 arg6
, arg7
, arg8
, 0);
10326 #if defined(TARGET_NR_wait4)
10327 case TARGET_NR_wait4
:
10330 abi_long status_ptr
= arg2
;
10331 struct rusage rusage
, *rusage_ptr
;
10332 abi_ulong target_rusage
= arg4
;
10333 abi_long rusage_err
;
10335 rusage_ptr
= &rusage
;
10338 ret
= get_errno(safe_wait4(arg1
, &status
, arg3
, rusage_ptr
));
10339 if (!is_error(ret
)) {
10340 if (status_ptr
&& ret
) {
10341 status
= host_to_target_waitstatus(status
);
10342 if (put_user_s32(status
, status_ptr
))
10343 return -TARGET_EFAULT
;
10345 if (target_rusage
) {
10346 rusage_err
= host_to_target_rusage(target_rusage
, &rusage
);
10355 #ifdef TARGET_NR_swapoff
10356 case TARGET_NR_swapoff
:
10357 if (!(p
= lock_user_string(arg1
)))
10358 return -TARGET_EFAULT
;
10359 ret
= get_errno(swapoff(p
));
10360 unlock_user(p
, arg1
, 0);
10363 case TARGET_NR_sysinfo
:
10365 struct target_sysinfo
*target_value
;
10366 struct sysinfo value
;
10367 ret
= get_errno(sysinfo(&value
));
10368 if (!is_error(ret
) && arg1
)
10370 if (!lock_user_struct(VERIFY_WRITE
, target_value
, arg1
, 0))
10371 return -TARGET_EFAULT
;
10372 __put_user(value
.uptime
, &target_value
->uptime
);
10373 __put_user(value
.loads
[0], &target_value
->loads
[0]);
10374 __put_user(value
.loads
[1], &target_value
->loads
[1]);
10375 __put_user(value
.loads
[2], &target_value
->loads
[2]);
10376 __put_user(value
.totalram
, &target_value
->totalram
);
10377 __put_user(value
.freeram
, &target_value
->freeram
);
10378 __put_user(value
.sharedram
, &target_value
->sharedram
);
10379 __put_user(value
.bufferram
, &target_value
->bufferram
);
10380 __put_user(value
.totalswap
, &target_value
->totalswap
);
10381 __put_user(value
.freeswap
, &target_value
->freeswap
);
10382 __put_user(value
.procs
, &target_value
->procs
);
10383 __put_user(value
.totalhigh
, &target_value
->totalhigh
);
10384 __put_user(value
.freehigh
, &target_value
->freehigh
);
10385 __put_user(value
.mem_unit
, &target_value
->mem_unit
);
10386 unlock_user_struct(target_value
, arg1
, 1);
10390 #ifdef TARGET_NR_ipc
10391 case TARGET_NR_ipc
:
10392 return do_ipc(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
10394 #ifdef TARGET_NR_semget
10395 case TARGET_NR_semget
:
10396 return get_errno(semget(arg1
, arg2
, arg3
));
10398 #ifdef TARGET_NR_semop
10399 case TARGET_NR_semop
:
10400 return do_semtimedop(arg1
, arg2
, arg3
, 0, false);
10402 #ifdef TARGET_NR_semtimedop
10403 case TARGET_NR_semtimedop
:
10404 return do_semtimedop(arg1
, arg2
, arg3
, arg4
, false);
10406 #ifdef TARGET_NR_semtimedop_time64
10407 case TARGET_NR_semtimedop_time64
:
10408 return do_semtimedop(arg1
, arg2
, arg3
, arg4
, true);
10410 #ifdef TARGET_NR_semctl
10411 case TARGET_NR_semctl
:
10412 return do_semctl(arg1
, arg2
, arg3
, arg4
);
10414 #ifdef TARGET_NR_msgctl
10415 case TARGET_NR_msgctl
:
10416 return do_msgctl(arg1
, arg2
, arg3
);
10418 #ifdef TARGET_NR_msgget
10419 case TARGET_NR_msgget
:
10420 return get_errno(msgget(arg1
, arg2
));
10422 #ifdef TARGET_NR_msgrcv
10423 case TARGET_NR_msgrcv
:
10424 return do_msgrcv(arg1
, arg2
, arg3
, arg4
, arg5
);
10426 #ifdef TARGET_NR_msgsnd
10427 case TARGET_NR_msgsnd
:
10428 return do_msgsnd(arg1
, arg2
, arg3
, arg4
);
10430 #ifdef TARGET_NR_shmget
10431 case TARGET_NR_shmget
:
10432 return get_errno(shmget(arg1
, arg2
, arg3
));
10434 #ifdef TARGET_NR_shmctl
10435 case TARGET_NR_shmctl
:
10436 return do_shmctl(arg1
, arg2
, arg3
);
10438 #ifdef TARGET_NR_shmat
10439 case TARGET_NR_shmat
:
10440 return do_shmat(cpu_env
, arg1
, arg2
, arg3
);
10442 #ifdef TARGET_NR_shmdt
10443 case TARGET_NR_shmdt
:
10444 return do_shmdt(arg1
);
10446 case TARGET_NR_fsync
:
10447 return get_errno(fsync(arg1
));
10448 case TARGET_NR_clone
:
10449 /* Linux manages to have three different orderings for its
10450 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10451 * match the kernel's CONFIG_CLONE_* settings.
10452 * Microblaze is further special in that it uses a sixth
10453 * implicit argument to clone for the TLS pointer.
10455 #if defined(TARGET_MICROBLAZE)
10456 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg4
, arg6
, arg5
));
10457 #elif defined(TARGET_CLONE_BACKWARDS)
10458 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
));
10459 #elif defined(TARGET_CLONE_BACKWARDS2)
10460 ret
= get_errno(do_fork(cpu_env
, arg2
, arg1
, arg3
, arg5
, arg4
));
10462 ret
= get_errno(do_fork(cpu_env
, arg1
, arg2
, arg3
, arg5
, arg4
));
10465 #ifdef __NR_exit_group
10466 /* new thread calls */
10467 case TARGET_NR_exit_group
:
10468 preexit_cleanup(cpu_env
, arg1
);
10469 return get_errno(exit_group(arg1
));
10471 case TARGET_NR_setdomainname
:
10472 if (!(p
= lock_user_string(arg1
)))
10473 return -TARGET_EFAULT
;
10474 ret
= get_errno(setdomainname(p
, arg2
));
10475 unlock_user(p
, arg1
, 0);
10477 case TARGET_NR_uname
:
10478 /* no need to transcode because we use the linux syscall */
10480 struct new_utsname
* buf
;
10482 if (!lock_user_struct(VERIFY_WRITE
, buf
, arg1
, 0))
10483 return -TARGET_EFAULT
;
10484 ret
= get_errno(sys_uname(buf
));
10485 if (!is_error(ret
)) {
10486 /* Overwrite the native machine name with whatever is being
10488 g_strlcpy(buf
->machine
, cpu_to_uname_machine(cpu_env
),
10489 sizeof(buf
->machine
));
10490 /* Allow the user to override the reported release. */
10491 if (qemu_uname_release
&& *qemu_uname_release
) {
10492 g_strlcpy(buf
->release
, qemu_uname_release
,
10493 sizeof(buf
->release
));
10496 unlock_user_struct(buf
, arg1
, 1);
10500 case TARGET_NR_modify_ldt
:
10501 return do_modify_ldt(cpu_env
, arg1
, arg2
, arg3
);
10502 #if !defined(TARGET_X86_64)
10503 case TARGET_NR_vm86
:
10504 return do_vm86(cpu_env
, arg1
, arg2
);
10507 #if defined(TARGET_NR_adjtimex)
10508 case TARGET_NR_adjtimex
:
10510 struct timex host_buf
;
10512 if (target_to_host_timex(&host_buf
, arg1
) != 0) {
10513 return -TARGET_EFAULT
;
10515 ret
= get_errno(adjtimex(&host_buf
));
10516 if (!is_error(ret
)) {
10517 if (host_to_target_timex(arg1
, &host_buf
) != 0) {
10518 return -TARGET_EFAULT
;
10524 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10525 case TARGET_NR_clock_adjtime
:
10527 struct timex htx
, *phtx
= &htx
;
10529 if (target_to_host_timex(phtx
, arg2
) != 0) {
10530 return -TARGET_EFAULT
;
10532 ret
= get_errno(clock_adjtime(arg1
, phtx
));
10533 if (!is_error(ret
) && phtx
) {
10534 if (host_to_target_timex(arg2
, phtx
) != 0) {
10535 return -TARGET_EFAULT
;
10541 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10542 case TARGET_NR_clock_adjtime64
:
10546 if (target_to_host_timex64(&htx
, arg2
) != 0) {
10547 return -TARGET_EFAULT
;
10549 ret
= get_errno(clock_adjtime(arg1
, &htx
));
10550 if (!is_error(ret
) && host_to_target_timex64(arg2
, &htx
)) {
10551 return -TARGET_EFAULT
;
10556 case TARGET_NR_getpgid
:
10557 return get_errno(getpgid(arg1
));
10558 case TARGET_NR_fchdir
:
10559 return get_errno(fchdir(arg1
));
10560 case TARGET_NR_personality
:
10561 return get_errno(personality(arg1
));
10562 #ifdef TARGET_NR__llseek /* Not on alpha */
10563 case TARGET_NR__llseek
:
10566 #if !defined(__NR_llseek)
10567 res
= lseek(arg1
, ((uint64_t)arg2
<< 32) | (abi_ulong
)arg3
, arg5
);
10569 ret
= get_errno(res
);
10574 ret
= get_errno(_llseek(arg1
, arg2
, arg3
, &res
, arg5
));
10576 if ((ret
== 0) && put_user_s64(res
, arg4
)) {
10577 return -TARGET_EFAULT
;
10582 #ifdef TARGET_NR_getdents
10583 case TARGET_NR_getdents
:
10584 return do_getdents(arg1
, arg2
, arg3
);
10585 #endif /* TARGET_NR_getdents */
10586 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10587 case TARGET_NR_getdents64
:
10588 return do_getdents64(arg1
, arg2
, arg3
);
10589 #endif /* TARGET_NR_getdents64 */
10590 #if defined(TARGET_NR__newselect)
10591 case TARGET_NR__newselect
:
10592 return do_select(arg1
, arg2
, arg3
, arg4
, arg5
);
10594 #ifdef TARGET_NR_poll
10595 case TARGET_NR_poll
:
10596 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, false, false);
10598 #ifdef TARGET_NR_ppoll
10599 case TARGET_NR_ppoll
:
10600 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, true, false);
10602 #ifdef TARGET_NR_ppoll_time64
10603 case TARGET_NR_ppoll_time64
:
10604 return do_ppoll(arg1
, arg2
, arg3
, arg4
, arg5
, true, true);
10606 case TARGET_NR_flock
:
10607 /* NOTE: the flock constant seems to be the same for every
10609 return get_errno(safe_flock(arg1
, arg2
));
10610 case TARGET_NR_readv
:
10612 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
10614 ret
= get_errno(safe_readv(arg1
, vec
, arg3
));
10615 unlock_iovec(vec
, arg2
, arg3
, 1);
10617 ret
= -host_to_target_errno(errno
);
10621 case TARGET_NR_writev
:
10623 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
10625 ret
= get_errno(safe_writev(arg1
, vec
, arg3
));
10626 unlock_iovec(vec
, arg2
, arg3
, 0);
10628 ret
= -host_to_target_errno(errno
);
10632 #if defined(TARGET_NR_preadv)
10633 case TARGET_NR_preadv
:
10635 struct iovec
*vec
= lock_iovec(VERIFY_WRITE
, arg2
, arg3
, 0);
10637 unsigned long low
, high
;
10639 target_to_host_low_high(arg4
, arg5
, &low
, &high
);
10640 ret
= get_errno(safe_preadv(arg1
, vec
, arg3
, low
, high
));
10641 unlock_iovec(vec
, arg2
, arg3
, 1);
10643 ret
= -host_to_target_errno(errno
);
10648 #if defined(TARGET_NR_pwritev)
10649 case TARGET_NR_pwritev
:
10651 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
10653 unsigned long low
, high
;
10655 target_to_host_low_high(arg4
, arg5
, &low
, &high
);
10656 ret
= get_errno(safe_pwritev(arg1
, vec
, arg3
, low
, high
));
10657 unlock_iovec(vec
, arg2
, arg3
, 0);
10659 ret
= -host_to_target_errno(errno
);
10664 case TARGET_NR_getsid
:
10665 return get_errno(getsid(arg1
));
10666 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10667 case TARGET_NR_fdatasync
:
10668 return get_errno(fdatasync(arg1
));
10670 case TARGET_NR_sched_getaffinity
:
10672 unsigned int mask_size
;
10673 unsigned long *mask
;
10676 * sched_getaffinity needs multiples of ulong, so need to take
10677 * care of mismatches between target ulong and host ulong sizes.
10679 if (arg2
& (sizeof(abi_ulong
) - 1)) {
10680 return -TARGET_EINVAL
;
10682 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
10684 mask
= alloca(mask_size
);
10685 memset(mask
, 0, mask_size
);
10686 ret
= get_errno(sys_sched_getaffinity(arg1
, mask_size
, mask
));
10688 if (!is_error(ret
)) {
10690 /* More data returned than the caller's buffer will fit.
10691 * This only happens if sizeof(abi_long) < sizeof(long)
10692 * and the caller passed us a buffer holding an odd number
10693 * of abi_longs. If the host kernel is actually using the
10694 * extra 4 bytes then fail EINVAL; otherwise we can just
10695 * ignore them and only copy the interesting part.
10697 int numcpus
= sysconf(_SC_NPROCESSORS_CONF
);
10698 if (numcpus
> arg2
* 8) {
10699 return -TARGET_EINVAL
;
10704 if (host_to_target_cpu_mask(mask
, mask_size
, arg3
, ret
)) {
10705 return -TARGET_EFAULT
;
10710 case TARGET_NR_sched_setaffinity
:
10712 unsigned int mask_size
;
10713 unsigned long *mask
;
10716 * sched_setaffinity needs multiples of ulong, so need to take
10717 * care of mismatches between target ulong and host ulong sizes.
10719 if (arg2
& (sizeof(abi_ulong
) - 1)) {
10720 return -TARGET_EINVAL
;
10722 mask_size
= (arg2
+ (sizeof(*mask
) - 1)) & ~(sizeof(*mask
) - 1);
10723 mask
= alloca(mask_size
);
10725 ret
= target_to_host_cpu_mask(mask
, mask_size
, arg3
, arg2
);
10730 return get_errno(sys_sched_setaffinity(arg1
, mask_size
, mask
));
10732 case TARGET_NR_getcpu
:
10734 unsigned cpu
, node
;
10735 ret
= get_errno(sys_getcpu(arg1
? &cpu
: NULL
,
10736 arg2
? &node
: NULL
,
10738 if (is_error(ret
)) {
10741 if (arg1
&& put_user_u32(cpu
, arg1
)) {
10742 return -TARGET_EFAULT
;
10744 if (arg2
&& put_user_u32(node
, arg2
)) {
10745 return -TARGET_EFAULT
;
10749 case TARGET_NR_sched_setparam
:
10751 struct sched_param
*target_schp
;
10752 struct sched_param schp
;
10755 return -TARGET_EINVAL
;
10757 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg2
, 1))
10758 return -TARGET_EFAULT
;
10759 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
10760 unlock_user_struct(target_schp
, arg2
, 0);
10761 return get_errno(sched_setparam(arg1
, &schp
));
10763 case TARGET_NR_sched_getparam
:
10765 struct sched_param
*target_schp
;
10766 struct sched_param schp
;
10769 return -TARGET_EINVAL
;
10771 ret
= get_errno(sched_getparam(arg1
, &schp
));
10772 if (!is_error(ret
)) {
10773 if (!lock_user_struct(VERIFY_WRITE
, target_schp
, arg2
, 0))
10774 return -TARGET_EFAULT
;
10775 target_schp
->sched_priority
= tswap32(schp
.sched_priority
);
10776 unlock_user_struct(target_schp
, arg2
, 1);
10780 case TARGET_NR_sched_setscheduler
:
10782 struct sched_param
*target_schp
;
10783 struct sched_param schp
;
10785 return -TARGET_EINVAL
;
10787 if (!lock_user_struct(VERIFY_READ
, target_schp
, arg3
, 1))
10788 return -TARGET_EFAULT
;
10789 schp
.sched_priority
= tswap32(target_schp
->sched_priority
);
10790 unlock_user_struct(target_schp
, arg3
, 0);
10791 return get_errno(sched_setscheduler(arg1
, arg2
, &schp
));
10793 case TARGET_NR_sched_getscheduler
:
10794 return get_errno(sched_getscheduler(arg1
));
10795 case TARGET_NR_sched_yield
:
10796 return get_errno(sched_yield());
10797 case TARGET_NR_sched_get_priority_max
:
10798 return get_errno(sched_get_priority_max(arg1
));
10799 case TARGET_NR_sched_get_priority_min
:
10800 return get_errno(sched_get_priority_min(arg1
));
10801 #ifdef TARGET_NR_sched_rr_get_interval
10802 case TARGET_NR_sched_rr_get_interval
:
10804 struct timespec ts
;
10805 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
10806 if (!is_error(ret
)) {
10807 ret
= host_to_target_timespec(arg2
, &ts
);
10812 #ifdef TARGET_NR_sched_rr_get_interval_time64
10813 case TARGET_NR_sched_rr_get_interval_time64
:
10815 struct timespec ts
;
10816 ret
= get_errno(sched_rr_get_interval(arg1
, &ts
));
10817 if (!is_error(ret
)) {
10818 ret
= host_to_target_timespec64(arg2
, &ts
);
10823 #if defined(TARGET_NR_nanosleep)
10824 case TARGET_NR_nanosleep
:
10826 struct timespec req
, rem
;
10827 target_to_host_timespec(&req
, arg1
);
10828 ret
= get_errno(safe_nanosleep(&req
, &rem
));
10829 if (is_error(ret
) && arg2
) {
10830 host_to_target_timespec(arg2
, &rem
);
10835 case TARGET_NR_prctl
:
10836 return do_prctl(cpu_env
, arg1
, arg2
, arg3
, arg4
, arg5
);
10838 #ifdef TARGET_NR_arch_prctl
10839 case TARGET_NR_arch_prctl
:
10840 return do_arch_prctl(cpu_env
, arg1
, arg2
);
10842 #ifdef TARGET_NR_pread64
10843 case TARGET_NR_pread64
:
10844 if (regpairs_aligned(cpu_env
, num
)) {
10848 if (arg2
== 0 && arg3
== 0) {
10849 /* Special-case NULL buffer and zero length, which should succeed */
10852 p
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
10854 return -TARGET_EFAULT
;
10857 ret
= get_errno(pread64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
10858 unlock_user(p
, arg2
, ret
);
10860 case TARGET_NR_pwrite64
:
10861 if (regpairs_aligned(cpu_env
, num
)) {
10865 if (arg2
== 0 && arg3
== 0) {
10866 /* Special-case NULL buffer and zero length, which should succeed */
10869 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
10871 return -TARGET_EFAULT
;
10874 ret
= get_errno(pwrite64(arg1
, p
, arg3
, target_offset64(arg4
, arg5
)));
10875 unlock_user(p
, arg2
, 0);
10878 case TARGET_NR_getcwd
:
10879 if (!(p
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0)))
10880 return -TARGET_EFAULT
;
10881 ret
= get_errno(sys_getcwd1(p
, arg2
));
10882 unlock_user(p
, arg1
, ret
);
10884 case TARGET_NR_capget
:
10885 case TARGET_NR_capset
:
10887 struct target_user_cap_header
*target_header
;
10888 struct target_user_cap_data
*target_data
= NULL
;
10889 struct __user_cap_header_struct header
;
10890 struct __user_cap_data_struct data
[2];
10891 struct __user_cap_data_struct
*dataptr
= NULL
;
10892 int i
, target_datalen
;
10893 int data_items
= 1;
10895 if (!lock_user_struct(VERIFY_WRITE
, target_header
, arg1
, 1)) {
10896 return -TARGET_EFAULT
;
10898 header
.version
= tswap32(target_header
->version
);
10899 header
.pid
= tswap32(target_header
->pid
);
10901 if (header
.version
!= _LINUX_CAPABILITY_VERSION
) {
10902 /* Version 2 and up takes pointer to two user_data structs */
10906 target_datalen
= sizeof(*target_data
) * data_items
;
10909 if (num
== TARGET_NR_capget
) {
10910 target_data
= lock_user(VERIFY_WRITE
, arg2
, target_datalen
, 0);
10912 target_data
= lock_user(VERIFY_READ
, arg2
, target_datalen
, 1);
10914 if (!target_data
) {
10915 unlock_user_struct(target_header
, arg1
, 0);
10916 return -TARGET_EFAULT
;
10919 if (num
== TARGET_NR_capset
) {
10920 for (i
= 0; i
< data_items
; i
++) {
10921 data
[i
].effective
= tswap32(target_data
[i
].effective
);
10922 data
[i
].permitted
= tswap32(target_data
[i
].permitted
);
10923 data
[i
].inheritable
= tswap32(target_data
[i
].inheritable
);
10930 if (num
== TARGET_NR_capget
) {
10931 ret
= get_errno(capget(&header
, dataptr
));
10933 ret
= get_errno(capset(&header
, dataptr
));
10936 /* The kernel always updates version for both capget and capset */
10937 target_header
->version
= tswap32(header
.version
);
10938 unlock_user_struct(target_header
, arg1
, 1);
10941 if (num
== TARGET_NR_capget
) {
10942 for (i
= 0; i
< data_items
; i
++) {
10943 target_data
[i
].effective
= tswap32(data
[i
].effective
);
10944 target_data
[i
].permitted
= tswap32(data
[i
].permitted
);
10945 target_data
[i
].inheritable
= tswap32(data
[i
].inheritable
);
10947 unlock_user(target_data
, arg2
, target_datalen
);
10949 unlock_user(target_data
, arg2
, 0);
10954 case TARGET_NR_sigaltstack
:
10955 return do_sigaltstack(arg1
, arg2
, cpu_env
);
10957 #ifdef CONFIG_SENDFILE
10958 #ifdef TARGET_NR_sendfile
10959 case TARGET_NR_sendfile
:
10961 off_t
*offp
= NULL
;
10964 ret
= get_user_sal(off
, arg3
);
10965 if (is_error(ret
)) {
10970 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
10971 if (!is_error(ret
) && arg3
) {
10972 abi_long ret2
= put_user_sal(off
, arg3
);
10973 if (is_error(ret2
)) {
10980 #ifdef TARGET_NR_sendfile64
10981 case TARGET_NR_sendfile64
:
10983 off_t
*offp
= NULL
;
10986 ret
= get_user_s64(off
, arg3
);
10987 if (is_error(ret
)) {
10992 ret
= get_errno(sendfile(arg1
, arg2
, offp
, arg4
));
10993 if (!is_error(ret
) && arg3
) {
10994 abi_long ret2
= put_user_s64(off
, arg3
);
10995 if (is_error(ret2
)) {
11003 #ifdef TARGET_NR_vfork
11004 case TARGET_NR_vfork
:
11005 return get_errno(do_fork(cpu_env
,
11006 CLONE_VFORK
| CLONE_VM
| TARGET_SIGCHLD
,
11009 #ifdef TARGET_NR_ugetrlimit
11010 case TARGET_NR_ugetrlimit
:
11012 struct rlimit rlim
;
11013 int resource
= target_to_host_resource(arg1
);
11014 ret
= get_errno(getrlimit(resource
, &rlim
));
11015 if (!is_error(ret
)) {
11016 struct target_rlimit
*target_rlim
;
11017 if (!lock_user_struct(VERIFY_WRITE
, target_rlim
, arg2
, 0))
11018 return -TARGET_EFAULT
;
11019 target_rlim
->rlim_cur
= host_to_target_rlim(rlim
.rlim_cur
);
11020 target_rlim
->rlim_max
= host_to_target_rlim(rlim
.rlim_max
);
11021 unlock_user_struct(target_rlim
, arg2
, 1);
11026 #ifdef TARGET_NR_truncate64
11027 case TARGET_NR_truncate64
:
11028 if (!(p
= lock_user_string(arg1
)))
11029 return -TARGET_EFAULT
;
11030 ret
= target_truncate64(cpu_env
, p
, arg2
, arg3
, arg4
);
11031 unlock_user(p
, arg1
, 0);
11034 #ifdef TARGET_NR_ftruncate64
11035 case TARGET_NR_ftruncate64
:
11036 return target_ftruncate64(cpu_env
, arg1
, arg2
, arg3
, arg4
);
11038 #ifdef TARGET_NR_stat64
11039 case TARGET_NR_stat64
:
11040 if (!(p
= lock_user_string(arg1
))) {
11041 return -TARGET_EFAULT
;
11043 ret
= get_errno(stat(path(p
), &st
));
11044 unlock_user(p
, arg1
, 0);
11045 if (!is_error(ret
))
11046 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11049 #ifdef TARGET_NR_lstat64
11050 case TARGET_NR_lstat64
:
11051 if (!(p
= lock_user_string(arg1
))) {
11052 return -TARGET_EFAULT
;
11054 ret
= get_errno(lstat(path(p
), &st
));
11055 unlock_user(p
, arg1
, 0);
11056 if (!is_error(ret
))
11057 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11060 #ifdef TARGET_NR_fstat64
11061 case TARGET_NR_fstat64
:
11062 ret
= get_errno(fstat(arg1
, &st
));
11063 if (!is_error(ret
))
11064 ret
= host_to_target_stat64(cpu_env
, arg2
, &st
);
11067 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11068 #ifdef TARGET_NR_fstatat64
11069 case TARGET_NR_fstatat64
:
11071 #ifdef TARGET_NR_newfstatat
11072 case TARGET_NR_newfstatat
:
11074 if (!(p
= lock_user_string(arg2
))) {
11075 return -TARGET_EFAULT
;
11077 ret
= get_errno(fstatat(arg1
, path(p
), &st
, arg4
));
11078 unlock_user(p
, arg2
, 0);
11079 if (!is_error(ret
))
11080 ret
= host_to_target_stat64(cpu_env
, arg3
, &st
);
11083 #if defined(TARGET_NR_statx)
11084 case TARGET_NR_statx
:
11086 struct target_statx
*target_stx
;
11090 p
= lock_user_string(arg2
);
11092 return -TARGET_EFAULT
;
11094 #if defined(__NR_statx)
11097 * It is assumed that struct statx is architecture independent.
11099 struct target_statx host_stx
;
11102 ret
= get_errno(sys_statx(dirfd
, p
, flags
, mask
, &host_stx
));
11103 if (!is_error(ret
)) {
11104 if (host_to_target_statx(&host_stx
, arg5
) != 0) {
11105 unlock_user(p
, arg2
, 0);
11106 return -TARGET_EFAULT
;
11110 if (ret
!= -TARGET_ENOSYS
) {
11111 unlock_user(p
, arg2
, 0);
11116 ret
= get_errno(fstatat(dirfd
, path(p
), &st
, flags
));
11117 unlock_user(p
, arg2
, 0);
11119 if (!is_error(ret
)) {
11120 if (!lock_user_struct(VERIFY_WRITE
, target_stx
, arg5
, 0)) {
11121 return -TARGET_EFAULT
;
11123 memset(target_stx
, 0, sizeof(*target_stx
));
11124 __put_user(major(st
.st_dev
), &target_stx
->stx_dev_major
);
11125 __put_user(minor(st
.st_dev
), &target_stx
->stx_dev_minor
);
11126 __put_user(st
.st_ino
, &target_stx
->stx_ino
);
11127 __put_user(st
.st_mode
, &target_stx
->stx_mode
);
11128 __put_user(st
.st_uid
, &target_stx
->stx_uid
);
11129 __put_user(st
.st_gid
, &target_stx
->stx_gid
);
11130 __put_user(st
.st_nlink
, &target_stx
->stx_nlink
);
11131 __put_user(major(st
.st_rdev
), &target_stx
->stx_rdev_major
);
11132 __put_user(minor(st
.st_rdev
), &target_stx
->stx_rdev_minor
);
11133 __put_user(st
.st_size
, &target_stx
->stx_size
);
11134 __put_user(st
.st_blksize
, &target_stx
->stx_blksize
);
11135 __put_user(st
.st_blocks
, &target_stx
->stx_blocks
);
11136 __put_user(st
.st_atime
, &target_stx
->stx_atime
.tv_sec
);
11137 __put_user(st
.st_mtime
, &target_stx
->stx_mtime
.tv_sec
);
11138 __put_user(st
.st_ctime
, &target_stx
->stx_ctime
.tv_sec
);
11139 unlock_user_struct(target_stx
, arg5
, 1);
11144 #ifdef TARGET_NR_lchown
11145 case TARGET_NR_lchown
:
11146 if (!(p
= lock_user_string(arg1
)))
11147 return -TARGET_EFAULT
;
11148 ret
= get_errno(lchown(p
, low2highuid(arg2
), low2highgid(arg3
)));
11149 unlock_user(p
, arg1
, 0);
11152 #ifdef TARGET_NR_getuid
11153 case TARGET_NR_getuid
:
11154 return get_errno(high2lowuid(getuid()));
11156 #ifdef TARGET_NR_getgid
11157 case TARGET_NR_getgid
:
11158 return get_errno(high2lowgid(getgid()));
11160 #ifdef TARGET_NR_geteuid
11161 case TARGET_NR_geteuid
:
11162 return get_errno(high2lowuid(geteuid()));
11164 #ifdef TARGET_NR_getegid
11165 case TARGET_NR_getegid
:
11166 return get_errno(high2lowgid(getegid()));
11168 case TARGET_NR_setreuid
:
11169 return get_errno(setreuid(low2highuid(arg1
), low2highuid(arg2
)));
11170 case TARGET_NR_setregid
:
11171 return get_errno(setregid(low2highgid(arg1
), low2highgid(arg2
)));
11172 case TARGET_NR_getgroups
:
11174 int gidsetsize
= arg1
;
11175 target_id
*target_grouplist
;
11179 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
11180 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
11181 if (gidsetsize
== 0)
11183 if (!is_error(ret
)) {
11184 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* sizeof(target_id
), 0);
11185 if (!target_grouplist
)
11186 return -TARGET_EFAULT
;
11187 for(i
= 0;i
< ret
; i
++)
11188 target_grouplist
[i
] = tswapid(high2lowgid(grouplist
[i
]));
11189 unlock_user(target_grouplist
, arg2
, gidsetsize
* sizeof(target_id
));
11193 case TARGET_NR_setgroups
:
11195 int gidsetsize
= arg1
;
11196 target_id
*target_grouplist
;
11197 gid_t
*grouplist
= NULL
;
11200 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
11201 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* sizeof(target_id
), 1);
11202 if (!target_grouplist
) {
11203 return -TARGET_EFAULT
;
11205 for (i
= 0; i
< gidsetsize
; i
++) {
11206 grouplist
[i
] = low2highgid(tswapid(target_grouplist
[i
]));
11208 unlock_user(target_grouplist
, arg2
, 0);
11210 return get_errno(setgroups(gidsetsize
, grouplist
));
11212 case TARGET_NR_fchown
:
11213 return get_errno(fchown(arg1
, low2highuid(arg2
), low2highgid(arg3
)));
11214 #if defined(TARGET_NR_fchownat)
11215 case TARGET_NR_fchownat
:
11216 if (!(p
= lock_user_string(arg2
)))
11217 return -TARGET_EFAULT
;
11218 ret
= get_errno(fchownat(arg1
, p
, low2highuid(arg3
),
11219 low2highgid(arg4
), arg5
));
11220 unlock_user(p
, arg2
, 0);
11223 #ifdef TARGET_NR_setresuid
11224 case TARGET_NR_setresuid
:
11225 return get_errno(sys_setresuid(low2highuid(arg1
),
11227 low2highuid(arg3
)));
11229 #ifdef TARGET_NR_getresuid
11230 case TARGET_NR_getresuid
:
11232 uid_t ruid
, euid
, suid
;
11233 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
11234 if (!is_error(ret
)) {
11235 if (put_user_id(high2lowuid(ruid
), arg1
)
11236 || put_user_id(high2lowuid(euid
), arg2
)
11237 || put_user_id(high2lowuid(suid
), arg3
))
11238 return -TARGET_EFAULT
;
11243 #ifdef TARGET_NR_getresgid
11244 case TARGET_NR_setresgid
:
11245 return get_errno(sys_setresgid(low2highgid(arg1
),
11247 low2highgid(arg3
)));
11249 #ifdef TARGET_NR_getresgid
11250 case TARGET_NR_getresgid
:
11252 gid_t rgid
, egid
, sgid
;
11253 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
11254 if (!is_error(ret
)) {
11255 if (put_user_id(high2lowgid(rgid
), arg1
)
11256 || put_user_id(high2lowgid(egid
), arg2
)
11257 || put_user_id(high2lowgid(sgid
), arg3
))
11258 return -TARGET_EFAULT
;
11263 #ifdef TARGET_NR_chown
11264 case TARGET_NR_chown
:
11265 if (!(p
= lock_user_string(arg1
)))
11266 return -TARGET_EFAULT
;
11267 ret
= get_errno(chown(p
, low2highuid(arg2
), low2highgid(arg3
)));
11268 unlock_user(p
, arg1
, 0);
11271 case TARGET_NR_setuid
:
11272 return get_errno(sys_setuid(low2highuid(arg1
)));
11273 case TARGET_NR_setgid
:
11274 return get_errno(sys_setgid(low2highgid(arg1
)));
11275 case TARGET_NR_setfsuid
:
11276 return get_errno(setfsuid(arg1
));
11277 case TARGET_NR_setfsgid
:
11278 return get_errno(setfsgid(arg1
));
11280 #ifdef TARGET_NR_lchown32
11281 case TARGET_NR_lchown32
:
11282 if (!(p
= lock_user_string(arg1
)))
11283 return -TARGET_EFAULT
;
11284 ret
= get_errno(lchown(p
, arg2
, arg3
));
11285 unlock_user(p
, arg1
, 0);
11288 #ifdef TARGET_NR_getuid32
11289 case TARGET_NR_getuid32
:
11290 return get_errno(getuid());
11293 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11294 /* Alpha specific */
11295 case TARGET_NR_getxuid
:
11299 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=euid
;
11301 return get_errno(getuid());
11303 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11304 /* Alpha specific */
11305 case TARGET_NR_getxgid
:
11309 ((CPUAlphaState
*)cpu_env
)->ir
[IR_A4
]=egid
;
11311 return get_errno(getgid());
11313 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11314 /* Alpha specific */
11315 case TARGET_NR_osf_getsysinfo
:
11316 ret
= -TARGET_EOPNOTSUPP
;
11318 case TARGET_GSI_IEEE_FP_CONTROL
:
11320 uint64_t fpcr
= cpu_alpha_load_fpcr(cpu_env
);
11321 uint64_t swcr
= ((CPUAlphaState
*)cpu_env
)->swcr
;
11323 swcr
&= ~SWCR_STATUS_MASK
;
11324 swcr
|= (fpcr
>> 35) & SWCR_STATUS_MASK
;
11326 if (put_user_u64 (swcr
, arg2
))
11327 return -TARGET_EFAULT
;
11332 /* case GSI_IEEE_STATE_AT_SIGNAL:
11333 -- Not implemented in linux kernel.
11335 -- Retrieves current unaligned access state; not much used.
11336 case GSI_PROC_TYPE:
11337 -- Retrieves implver information; surely not used.
11338 case GSI_GET_HWRPB:
11339 -- Grabs a copy of the HWRPB; surely not used.
11344 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11345 /* Alpha specific */
11346 case TARGET_NR_osf_setsysinfo
:
11347 ret
= -TARGET_EOPNOTSUPP
;
11349 case TARGET_SSI_IEEE_FP_CONTROL
:
11351 uint64_t swcr
, fpcr
;
11353 if (get_user_u64 (swcr
, arg2
)) {
11354 return -TARGET_EFAULT
;
11358 * The kernel calls swcr_update_status to update the
11359 * status bits from the fpcr at every point that it
11360 * could be queried. Therefore, we store the status
11361 * bits only in FPCR.
11363 ((CPUAlphaState
*)cpu_env
)->swcr
11364 = swcr
& (SWCR_TRAP_ENABLE_MASK
| SWCR_MAP_MASK
);
11366 fpcr
= cpu_alpha_load_fpcr(cpu_env
);
11367 fpcr
&= ((uint64_t)FPCR_DYN_MASK
<< 32);
11368 fpcr
|= alpha_ieee_swcr_to_fpcr(swcr
);
11369 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
11374 case TARGET_SSI_IEEE_RAISE_EXCEPTION
:
11376 uint64_t exc
, fpcr
, fex
;
11378 if (get_user_u64(exc
, arg2
)) {
11379 return -TARGET_EFAULT
;
11381 exc
&= SWCR_STATUS_MASK
;
11382 fpcr
= cpu_alpha_load_fpcr(cpu_env
);
11384 /* Old exceptions are not signaled. */
11385 fex
= alpha_ieee_fpcr_to_swcr(fpcr
);
11387 fex
>>= SWCR_STATUS_TO_EXCSUM_SHIFT
;
11388 fex
&= ((CPUArchState
*)cpu_env
)->swcr
;
11390 /* Update the hardware fpcr. */
11391 fpcr
|= alpha_ieee_swcr_to_fpcr(exc
);
11392 cpu_alpha_store_fpcr(cpu_env
, fpcr
);
11395 int si_code
= TARGET_FPE_FLTUNK
;
11396 target_siginfo_t info
;
11398 if (fex
& SWCR_TRAP_ENABLE_DNO
) {
11399 si_code
= TARGET_FPE_FLTUND
;
11401 if (fex
& SWCR_TRAP_ENABLE_INE
) {
11402 si_code
= TARGET_FPE_FLTRES
;
11404 if (fex
& SWCR_TRAP_ENABLE_UNF
) {
11405 si_code
= TARGET_FPE_FLTUND
;
11407 if (fex
& SWCR_TRAP_ENABLE_OVF
) {
11408 si_code
= TARGET_FPE_FLTOVF
;
11410 if (fex
& SWCR_TRAP_ENABLE_DZE
) {
11411 si_code
= TARGET_FPE_FLTDIV
;
11413 if (fex
& SWCR_TRAP_ENABLE_INV
) {
11414 si_code
= TARGET_FPE_FLTINV
;
11417 info
.si_signo
= SIGFPE
;
11419 info
.si_code
= si_code
;
11420 info
._sifields
._sigfault
._addr
11421 = ((CPUArchState
*)cpu_env
)->pc
;
11422 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
,
11423 QEMU_SI_FAULT
, &info
);
11429 /* case SSI_NVPAIRS:
11430 -- Used with SSIN_UACPROC to enable unaligned accesses.
11431 case SSI_IEEE_STATE_AT_SIGNAL:
11432 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11433 -- Not implemented in linux kernel
11438 #ifdef TARGET_NR_osf_sigprocmask
11439 /* Alpha specific. */
11440 case TARGET_NR_osf_sigprocmask
:
11444 sigset_t set
, oldset
;
11447 case TARGET_SIG_BLOCK
:
11450 case TARGET_SIG_UNBLOCK
:
11453 case TARGET_SIG_SETMASK
:
11457 return -TARGET_EINVAL
;
11460 target_to_host_old_sigset(&set
, &mask
);
11461 ret
= do_sigprocmask(how
, &set
, &oldset
);
11463 host_to_target_old_sigset(&mask
, &oldset
);
11470 #ifdef TARGET_NR_getgid32
11471 case TARGET_NR_getgid32
:
11472 return get_errno(getgid());
11474 #ifdef TARGET_NR_geteuid32
11475 case TARGET_NR_geteuid32
:
11476 return get_errno(geteuid());
11478 #ifdef TARGET_NR_getegid32
11479 case TARGET_NR_getegid32
:
11480 return get_errno(getegid());
11482 #ifdef TARGET_NR_setreuid32
11483 case TARGET_NR_setreuid32
:
11484 return get_errno(setreuid(arg1
, arg2
));
11486 #ifdef TARGET_NR_setregid32
11487 case TARGET_NR_setregid32
:
11488 return get_errno(setregid(arg1
, arg2
));
11490 #ifdef TARGET_NR_getgroups32
11491 case TARGET_NR_getgroups32
:
11493 int gidsetsize
= arg1
;
11494 uint32_t *target_grouplist
;
11498 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
11499 ret
= get_errno(getgroups(gidsetsize
, grouplist
));
11500 if (gidsetsize
== 0)
11502 if (!is_error(ret
)) {
11503 target_grouplist
= lock_user(VERIFY_WRITE
, arg2
, gidsetsize
* 4, 0);
11504 if (!target_grouplist
) {
11505 return -TARGET_EFAULT
;
11507 for(i
= 0;i
< ret
; i
++)
11508 target_grouplist
[i
] = tswap32(grouplist
[i
]);
11509 unlock_user(target_grouplist
, arg2
, gidsetsize
* 4);
11514 #ifdef TARGET_NR_setgroups32
11515 case TARGET_NR_setgroups32
:
11517 int gidsetsize
= arg1
;
11518 uint32_t *target_grouplist
;
11522 grouplist
= alloca(gidsetsize
* sizeof(gid_t
));
11523 target_grouplist
= lock_user(VERIFY_READ
, arg2
, gidsetsize
* 4, 1);
11524 if (!target_grouplist
) {
11525 return -TARGET_EFAULT
;
11527 for(i
= 0;i
< gidsetsize
; i
++)
11528 grouplist
[i
] = tswap32(target_grouplist
[i
]);
11529 unlock_user(target_grouplist
, arg2
, 0);
11530 return get_errno(setgroups(gidsetsize
, grouplist
));
11533 #ifdef TARGET_NR_fchown32
11534 case TARGET_NR_fchown32
:
11535 return get_errno(fchown(arg1
, arg2
, arg3
));
11537 #ifdef TARGET_NR_setresuid32
11538 case TARGET_NR_setresuid32
:
11539 return get_errno(sys_setresuid(arg1
, arg2
, arg3
));
11541 #ifdef TARGET_NR_getresuid32
11542 case TARGET_NR_getresuid32
:
11544 uid_t ruid
, euid
, suid
;
11545 ret
= get_errno(getresuid(&ruid
, &euid
, &suid
));
11546 if (!is_error(ret
)) {
11547 if (put_user_u32(ruid
, arg1
)
11548 || put_user_u32(euid
, arg2
)
11549 || put_user_u32(suid
, arg3
))
11550 return -TARGET_EFAULT
;
11555 #ifdef TARGET_NR_setresgid32
11556 case TARGET_NR_setresgid32
:
11557 return get_errno(sys_setresgid(arg1
, arg2
, arg3
));
11559 #ifdef TARGET_NR_getresgid32
11560 case TARGET_NR_getresgid32
:
11562 gid_t rgid
, egid
, sgid
;
11563 ret
= get_errno(getresgid(&rgid
, &egid
, &sgid
));
11564 if (!is_error(ret
)) {
11565 if (put_user_u32(rgid
, arg1
)
11566 || put_user_u32(egid
, arg2
)
11567 || put_user_u32(sgid
, arg3
))
11568 return -TARGET_EFAULT
;
11573 #ifdef TARGET_NR_chown32
11574 case TARGET_NR_chown32
:
11575 if (!(p
= lock_user_string(arg1
)))
11576 return -TARGET_EFAULT
;
11577 ret
= get_errno(chown(p
, arg2
, arg3
));
11578 unlock_user(p
, arg1
, 0);
11581 #ifdef TARGET_NR_setuid32
11582 case TARGET_NR_setuid32
:
11583 return get_errno(sys_setuid(arg1
));
11585 #ifdef TARGET_NR_setgid32
11586 case TARGET_NR_setgid32
:
11587 return get_errno(sys_setgid(arg1
));
11589 #ifdef TARGET_NR_setfsuid32
11590 case TARGET_NR_setfsuid32
:
11591 return get_errno(setfsuid(arg1
));
11593 #ifdef TARGET_NR_setfsgid32
11594 case TARGET_NR_setfsgid32
:
11595 return get_errno(setfsgid(arg1
));
11597 #ifdef TARGET_NR_mincore
11598 case TARGET_NR_mincore
:
11600 void *a
= lock_user(VERIFY_READ
, arg1
, arg2
, 0);
11602 return -TARGET_ENOMEM
;
11604 p
= lock_user_string(arg3
);
11606 ret
= -TARGET_EFAULT
;
11608 ret
= get_errno(mincore(a
, arg2
, p
));
11609 unlock_user(p
, arg3
, ret
);
11611 unlock_user(a
, arg1
, 0);
11615 #ifdef TARGET_NR_arm_fadvise64_64
11616 case TARGET_NR_arm_fadvise64_64
:
11617 /* arm_fadvise64_64 looks like fadvise64_64 but
11618 * with different argument order: fd, advice, offset, len
11619 * rather than the usual fd, offset, len, advice.
11620 * Note that offset and len are both 64-bit so appear as
11621 * pairs of 32-bit registers.
11623 ret
= posix_fadvise(arg1
, target_offset64(arg3
, arg4
),
11624 target_offset64(arg5
, arg6
), arg2
);
11625 return -host_to_target_errno(ret
);
11628 #if TARGET_ABI_BITS == 32
11630 #ifdef TARGET_NR_fadvise64_64
11631 case TARGET_NR_fadvise64_64
:
11632 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11633 /* 6 args: fd, advice, offset (high, low), len (high, low) */
11641 /* 6 args: fd, offset (high, low), len (high, low), advice */
11642 if (regpairs_aligned(cpu_env
, num
)) {
11643 /* offset is in (3,4), len in (5,6) and advice in 7 */
11651 ret
= posix_fadvise(arg1
, target_offset64(arg2
, arg3
),
11652 target_offset64(arg4
, arg5
), arg6
);
11653 return -host_to_target_errno(ret
);
11656 #ifdef TARGET_NR_fadvise64
11657 case TARGET_NR_fadvise64
:
11658 /* 5 args: fd, offset (high, low), len, advice */
11659 if (regpairs_aligned(cpu_env
, num
)) {
11660 /* offset is in (3,4), len in 5 and advice in 6 */
11666 ret
= posix_fadvise(arg1
, target_offset64(arg2
, arg3
), arg4
, arg5
);
11667 return -host_to_target_errno(ret
);
11670 #else /* not a 32-bit ABI */
11671 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11672 #ifdef TARGET_NR_fadvise64_64
11673 case TARGET_NR_fadvise64_64
:
11675 #ifdef TARGET_NR_fadvise64
11676 case TARGET_NR_fadvise64
:
11678 #ifdef TARGET_S390X
11680 case 4: arg4
= POSIX_FADV_NOREUSE
+ 1; break; /* make sure it's an invalid value */
11681 case 5: arg4
= POSIX_FADV_NOREUSE
+ 2; break; /* ditto */
11682 case 6: arg4
= POSIX_FADV_DONTNEED
; break;
11683 case 7: arg4
= POSIX_FADV_NOREUSE
; break;
11687 return -host_to_target_errno(posix_fadvise(arg1
, arg2
, arg3
, arg4
));
11689 #endif /* end of 64-bit ABI fadvise handling */
11691 #ifdef TARGET_NR_madvise
11692 case TARGET_NR_madvise
:
11693 /* A straight passthrough may not be safe because qemu sometimes
11694 turns private file-backed mappings into anonymous mappings.
11695 This will break MADV_DONTNEED.
11696 This is a hint, so ignoring and returning success is ok. */
11699 #ifdef TARGET_NR_fcntl64
11700 case TARGET_NR_fcntl64
:
11704 from_flock64_fn
*copyfrom
= copy_from_user_flock64
;
11705 to_flock64_fn
*copyto
= copy_to_user_flock64
;
11708 if (!((CPUARMState
*)cpu_env
)->eabi
) {
11709 copyfrom
= copy_from_user_oabi_flock64
;
11710 copyto
= copy_to_user_oabi_flock64
;
11714 cmd
= target_to_host_fcntl_cmd(arg2
);
11715 if (cmd
== -TARGET_EINVAL
) {
11720 case TARGET_F_GETLK64
:
11721 ret
= copyfrom(&fl
, arg3
);
11725 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
11727 ret
= copyto(arg3
, &fl
);
11731 case TARGET_F_SETLK64
:
11732 case TARGET_F_SETLKW64
:
11733 ret
= copyfrom(&fl
, arg3
);
11737 ret
= get_errno(safe_fcntl(arg1
, cmd
, &fl
));
11740 ret
= do_fcntl(arg1
, arg2
, arg3
);
11746 #ifdef TARGET_NR_cacheflush
11747 case TARGET_NR_cacheflush
:
11748 /* self-modifying code is handled automatically, so nothing needed */
11751 #ifdef TARGET_NR_getpagesize
11752 case TARGET_NR_getpagesize
:
11753 return TARGET_PAGE_SIZE
;
11755 case TARGET_NR_gettid
:
11756 return get_errno(sys_gettid());
11757 #ifdef TARGET_NR_readahead
11758 case TARGET_NR_readahead
:
11759 #if TARGET_ABI_BITS == 32
11760 if (regpairs_aligned(cpu_env
, num
)) {
11765 ret
= get_errno(readahead(arg1
, target_offset64(arg2
, arg3
) , arg4
));
11767 ret
= get_errno(readahead(arg1
, arg2
, arg3
));
11772 #ifdef TARGET_NR_setxattr
11773 case TARGET_NR_listxattr
:
11774 case TARGET_NR_llistxattr
:
11778 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11780 return -TARGET_EFAULT
;
11783 p
= lock_user_string(arg1
);
11785 if (num
== TARGET_NR_listxattr
) {
11786 ret
= get_errno(listxattr(p
, b
, arg3
));
11788 ret
= get_errno(llistxattr(p
, b
, arg3
));
11791 ret
= -TARGET_EFAULT
;
11793 unlock_user(p
, arg1
, 0);
11794 unlock_user(b
, arg2
, arg3
);
11797 case TARGET_NR_flistxattr
:
11801 b
= lock_user(VERIFY_WRITE
, arg2
, arg3
, 0);
11803 return -TARGET_EFAULT
;
11806 ret
= get_errno(flistxattr(arg1
, b
, arg3
));
11807 unlock_user(b
, arg2
, arg3
);
11810 case TARGET_NR_setxattr
:
11811 case TARGET_NR_lsetxattr
:
11813 void *p
, *n
, *v
= 0;
11815 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
11817 return -TARGET_EFAULT
;
11820 p
= lock_user_string(arg1
);
11821 n
= lock_user_string(arg2
);
11823 if (num
== TARGET_NR_setxattr
) {
11824 ret
= get_errno(setxattr(p
, n
, v
, arg4
, arg5
));
11826 ret
= get_errno(lsetxattr(p
, n
, v
, arg4
, arg5
));
11829 ret
= -TARGET_EFAULT
;
11831 unlock_user(p
, arg1
, 0);
11832 unlock_user(n
, arg2
, 0);
11833 unlock_user(v
, arg3
, 0);
11836 case TARGET_NR_fsetxattr
:
11840 v
= lock_user(VERIFY_READ
, arg3
, arg4
, 1);
11842 return -TARGET_EFAULT
;
11845 n
= lock_user_string(arg2
);
11847 ret
= get_errno(fsetxattr(arg1
, n
, v
, arg4
, arg5
));
11849 ret
= -TARGET_EFAULT
;
11851 unlock_user(n
, arg2
, 0);
11852 unlock_user(v
, arg3
, 0);
11855 case TARGET_NR_getxattr
:
11856 case TARGET_NR_lgetxattr
:
11858 void *p
, *n
, *v
= 0;
11860 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
11862 return -TARGET_EFAULT
;
11865 p
= lock_user_string(arg1
);
11866 n
= lock_user_string(arg2
);
11868 if (num
== TARGET_NR_getxattr
) {
11869 ret
= get_errno(getxattr(p
, n
, v
, arg4
));
11871 ret
= get_errno(lgetxattr(p
, n
, v
, arg4
));
11874 ret
= -TARGET_EFAULT
;
11876 unlock_user(p
, arg1
, 0);
11877 unlock_user(n
, arg2
, 0);
11878 unlock_user(v
, arg3
, arg4
);
11881 case TARGET_NR_fgetxattr
:
11885 v
= lock_user(VERIFY_WRITE
, arg3
, arg4
, 0);
11887 return -TARGET_EFAULT
;
11890 n
= lock_user_string(arg2
);
11892 ret
= get_errno(fgetxattr(arg1
, n
, v
, arg4
));
11894 ret
= -TARGET_EFAULT
;
11896 unlock_user(n
, arg2
, 0);
11897 unlock_user(v
, arg3
, arg4
);
11900 case TARGET_NR_removexattr
:
11901 case TARGET_NR_lremovexattr
:
11904 p
= lock_user_string(arg1
);
11905 n
= lock_user_string(arg2
);
11907 if (num
== TARGET_NR_removexattr
) {
11908 ret
= get_errno(removexattr(p
, n
));
11910 ret
= get_errno(lremovexattr(p
, n
));
11913 ret
= -TARGET_EFAULT
;
11915 unlock_user(p
, arg1
, 0);
11916 unlock_user(n
, arg2
, 0);
11919 case TARGET_NR_fremovexattr
:
11922 n
= lock_user_string(arg2
);
11924 ret
= get_errno(fremovexattr(arg1
, n
));
11926 ret
= -TARGET_EFAULT
;
11928 unlock_user(n
, arg2
, 0);
11932 #endif /* CONFIG_ATTR */
11933 #ifdef TARGET_NR_set_thread_area
11934 case TARGET_NR_set_thread_area
:
11935 #if defined(TARGET_MIPS)
11936 ((CPUMIPSState
*) cpu_env
)->active_tc
.CP0_UserLocal
= arg1
;
11938 #elif defined(TARGET_CRIS)
11940 ret
= -TARGET_EINVAL
;
11942 ((CPUCRISState
*) cpu_env
)->pregs
[PR_PID
] = arg1
;
11946 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11947 return do_set_thread_area(cpu_env
, arg1
);
11948 #elif defined(TARGET_M68K)
11950 TaskState
*ts
= cpu
->opaque
;
11951 ts
->tp_value
= arg1
;
11955 return -TARGET_ENOSYS
;
11958 #ifdef TARGET_NR_get_thread_area
11959 case TARGET_NR_get_thread_area
:
11960 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11961 return do_get_thread_area(cpu_env
, arg1
);
11962 #elif defined(TARGET_M68K)
11964 TaskState
*ts
= cpu
->opaque
;
11965 return ts
->tp_value
;
11968 return -TARGET_ENOSYS
;
11971 #ifdef TARGET_NR_getdomainname
11972 case TARGET_NR_getdomainname
:
11973 return -TARGET_ENOSYS
;
11976 #ifdef TARGET_NR_clock_settime
11977 case TARGET_NR_clock_settime
:
11979 struct timespec ts
;
11981 ret
= target_to_host_timespec(&ts
, arg2
);
11982 if (!is_error(ret
)) {
11983 ret
= get_errno(clock_settime(arg1
, &ts
));
11988 #ifdef TARGET_NR_clock_settime64
11989 case TARGET_NR_clock_settime64
:
11991 struct timespec ts
;
11993 ret
= target_to_host_timespec64(&ts
, arg2
);
11994 if (!is_error(ret
)) {
11995 ret
= get_errno(clock_settime(arg1
, &ts
));
12000 #ifdef TARGET_NR_clock_gettime
12001 case TARGET_NR_clock_gettime
:
12003 struct timespec ts
;
12004 ret
= get_errno(clock_gettime(arg1
, &ts
));
12005 if (!is_error(ret
)) {
12006 ret
= host_to_target_timespec(arg2
, &ts
);
12011 #ifdef TARGET_NR_clock_gettime64
12012 case TARGET_NR_clock_gettime64
:
12014 struct timespec ts
;
12015 ret
= get_errno(clock_gettime(arg1
, &ts
));
12016 if (!is_error(ret
)) {
12017 ret
= host_to_target_timespec64(arg2
, &ts
);
12022 #ifdef TARGET_NR_clock_getres
12023 case TARGET_NR_clock_getres
:
12025 struct timespec ts
;
12026 ret
= get_errno(clock_getres(arg1
, &ts
));
12027 if (!is_error(ret
)) {
12028 host_to_target_timespec(arg2
, &ts
);
12033 #ifdef TARGET_NR_clock_getres_time64
12034 case TARGET_NR_clock_getres_time64
:
12036 struct timespec ts
;
12037 ret
= get_errno(clock_getres(arg1
, &ts
));
12038 if (!is_error(ret
)) {
12039 host_to_target_timespec64(arg2
, &ts
);
12044 #ifdef TARGET_NR_clock_nanosleep
12045 case TARGET_NR_clock_nanosleep
:
12047 struct timespec ts
;
12048 if (target_to_host_timespec(&ts
, arg3
)) {
12049 return -TARGET_EFAULT
;
12051 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
12052 &ts
, arg4
? &ts
: NULL
));
12054 * if the call is interrupted by a signal handler, it fails
12055 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12056 * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12058 if (ret
== -TARGET_EINTR
&& arg4
&& arg2
!= TIMER_ABSTIME
&&
12059 host_to_target_timespec(arg4
, &ts
)) {
12060 return -TARGET_EFAULT
;
12066 #ifdef TARGET_NR_clock_nanosleep_time64
12067 case TARGET_NR_clock_nanosleep_time64
:
12069 struct timespec ts
;
12071 if (target_to_host_timespec64(&ts
, arg3
)) {
12072 return -TARGET_EFAULT
;
12075 ret
= get_errno(safe_clock_nanosleep(arg1
, arg2
,
12076 &ts
, arg4
? &ts
: NULL
));
12078 if (ret
== -TARGET_EINTR
&& arg4
&& arg2
!= TIMER_ABSTIME
&&
12079 host_to_target_timespec64(arg4
, &ts
)) {
12080 return -TARGET_EFAULT
;
12086 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
12087 case TARGET_NR_set_tid_address
:
12088 return get_errno(set_tid_address((int *)g2h(cpu
, arg1
)));
12091 case TARGET_NR_tkill
:
12092 return get_errno(safe_tkill((int)arg1
, target_to_host_signal(arg2
)));
12094 case TARGET_NR_tgkill
:
12095 return get_errno(safe_tgkill((int)arg1
, (int)arg2
,
12096 target_to_host_signal(arg3
)));
12098 #ifdef TARGET_NR_set_robust_list
12099 case TARGET_NR_set_robust_list
:
12100 case TARGET_NR_get_robust_list
:
12101 /* The ABI for supporting robust futexes has userspace pass
12102 * the kernel a pointer to a linked list which is updated by
12103 * userspace after the syscall; the list is walked by the kernel
12104 * when the thread exits. Since the linked list in QEMU guest
12105 * memory isn't a valid linked list for the host and we have
12106 * no way to reliably intercept the thread-death event, we can't
12107 * support these. Silently return ENOSYS so that guest userspace
12108 * falls back to a non-robust futex implementation (which should
12109 * be OK except in the corner case of the guest crashing while
12110 * holding a mutex that is shared with another process via
12113 return -TARGET_ENOSYS
;
12116 #if defined(TARGET_NR_utimensat)
12117 case TARGET_NR_utimensat
:
12119 struct timespec
*tsp
, ts
[2];
12123 if (target_to_host_timespec(ts
, arg3
)) {
12124 return -TARGET_EFAULT
;
12126 if (target_to_host_timespec(ts
+ 1, arg3
+
12127 sizeof(struct target_timespec
))) {
12128 return -TARGET_EFAULT
;
12133 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
12135 if (!(p
= lock_user_string(arg2
))) {
12136 return -TARGET_EFAULT
;
12138 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
12139 unlock_user(p
, arg2
, 0);
12144 #ifdef TARGET_NR_utimensat_time64
12145 case TARGET_NR_utimensat_time64
:
12147 struct timespec
*tsp
, ts
[2];
12151 if (target_to_host_timespec64(ts
, arg3
)) {
12152 return -TARGET_EFAULT
;
12154 if (target_to_host_timespec64(ts
+ 1, arg3
+
12155 sizeof(struct target__kernel_timespec
))) {
12156 return -TARGET_EFAULT
;
12161 ret
= get_errno(sys_utimensat(arg1
, NULL
, tsp
, arg4
));
12163 p
= lock_user_string(arg2
);
12165 return -TARGET_EFAULT
;
12167 ret
= get_errno(sys_utimensat(arg1
, path(p
), tsp
, arg4
));
12168 unlock_user(p
, arg2
, 0);
12173 #ifdef TARGET_NR_futex
12174 case TARGET_NR_futex
:
12175 return do_futex(cpu
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
12177 #ifdef TARGET_NR_futex_time64
12178 case TARGET_NR_futex_time64
:
12179 return do_futex_time64(cpu
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
12181 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
12182 case TARGET_NR_inotify_init
:
12183 ret
= get_errno(sys_inotify_init());
12185 fd_trans_register(ret
, &target_inotify_trans
);
12189 #ifdef CONFIG_INOTIFY1
12190 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
12191 case TARGET_NR_inotify_init1
:
12192 ret
= get_errno(sys_inotify_init1(target_to_host_bitmask(arg1
,
12193 fcntl_flags_tbl
)));
12195 fd_trans_register(ret
, &target_inotify_trans
);
12200 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
12201 case TARGET_NR_inotify_add_watch
:
12202 p
= lock_user_string(arg2
);
12203 ret
= get_errno(sys_inotify_add_watch(arg1
, path(p
), arg3
));
12204 unlock_user(p
, arg2
, 0);
12207 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
12208 case TARGET_NR_inotify_rm_watch
:
12209 return get_errno(sys_inotify_rm_watch(arg1
, arg2
));
12212 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12213 case TARGET_NR_mq_open
:
12215 struct mq_attr posix_mq_attr
;
12216 struct mq_attr
*pposix_mq_attr
;
12219 host_flags
= target_to_host_bitmask(arg2
, fcntl_flags_tbl
);
12220 pposix_mq_attr
= NULL
;
12222 if (copy_from_user_mq_attr(&posix_mq_attr
, arg4
) != 0) {
12223 return -TARGET_EFAULT
;
12225 pposix_mq_attr
= &posix_mq_attr
;
12227 p
= lock_user_string(arg1
- 1);
12229 return -TARGET_EFAULT
;
12231 ret
= get_errno(mq_open(p
, host_flags
, arg3
, pposix_mq_attr
));
12232 unlock_user (p
, arg1
, 0);
12236 case TARGET_NR_mq_unlink
:
12237 p
= lock_user_string(arg1
- 1);
12239 return -TARGET_EFAULT
;
12241 ret
= get_errno(mq_unlink(p
));
12242 unlock_user (p
, arg1
, 0);
12245 #ifdef TARGET_NR_mq_timedsend
12246 case TARGET_NR_mq_timedsend
:
12248 struct timespec ts
;
12250 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
12252 if (target_to_host_timespec(&ts
, arg5
)) {
12253 return -TARGET_EFAULT
;
12255 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
12256 if (!is_error(ret
) && host_to_target_timespec(arg5
, &ts
)) {
12257 return -TARGET_EFAULT
;
12260 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
12262 unlock_user (p
, arg2
, arg3
);
12266 #ifdef TARGET_NR_mq_timedsend_time64
12267 case TARGET_NR_mq_timedsend_time64
:
12269 struct timespec ts
;
12271 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
12273 if (target_to_host_timespec64(&ts
, arg5
)) {
12274 return -TARGET_EFAULT
;
12276 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, &ts
));
12277 if (!is_error(ret
) && host_to_target_timespec64(arg5
, &ts
)) {
12278 return -TARGET_EFAULT
;
12281 ret
= get_errno(safe_mq_timedsend(arg1
, p
, arg3
, arg4
, NULL
));
12283 unlock_user(p
, arg2
, arg3
);
12288 #ifdef TARGET_NR_mq_timedreceive
12289 case TARGET_NR_mq_timedreceive
:
12291 struct timespec ts
;
12294 p
= lock_user (VERIFY_READ
, arg2
, arg3
, 1);
12296 if (target_to_host_timespec(&ts
, arg5
)) {
12297 return -TARGET_EFAULT
;
12299 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12301 if (!is_error(ret
) && host_to_target_timespec(arg5
, &ts
)) {
12302 return -TARGET_EFAULT
;
12305 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12308 unlock_user (p
, arg2
, arg3
);
12310 put_user_u32(prio
, arg4
);
12314 #ifdef TARGET_NR_mq_timedreceive_time64
12315 case TARGET_NR_mq_timedreceive_time64
:
12317 struct timespec ts
;
12320 p
= lock_user(VERIFY_READ
, arg2
, arg3
, 1);
12322 if (target_to_host_timespec64(&ts
, arg5
)) {
12323 return -TARGET_EFAULT
;
12325 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12327 if (!is_error(ret
) && host_to_target_timespec64(arg5
, &ts
)) {
12328 return -TARGET_EFAULT
;
12331 ret
= get_errno(safe_mq_timedreceive(arg1
, p
, arg3
,
12334 unlock_user(p
, arg2
, arg3
);
12336 put_user_u32(prio
, arg4
);
12342 /* Not implemented for now... */
12343 /* case TARGET_NR_mq_notify: */
12346 case TARGET_NR_mq_getsetattr
:
12348 struct mq_attr posix_mq_attr_in
, posix_mq_attr_out
;
12351 copy_from_user_mq_attr(&posix_mq_attr_in
, arg2
);
12352 ret
= get_errno(mq_setattr(arg1
, &posix_mq_attr_in
,
12353 &posix_mq_attr_out
));
12354 } else if (arg3
!= 0) {
12355 ret
= get_errno(mq_getattr(arg1
, &posix_mq_attr_out
));
12357 if (ret
== 0 && arg3
!= 0) {
12358 copy_to_user_mq_attr(arg3
, &posix_mq_attr_out
);
12364 #ifdef CONFIG_SPLICE
12365 #ifdef TARGET_NR_tee
12366 case TARGET_NR_tee
:
12368 ret
= get_errno(tee(arg1
,arg2
,arg3
,arg4
));
12372 #ifdef TARGET_NR_splice
12373 case TARGET_NR_splice
:
12375 loff_t loff_in
, loff_out
;
12376 loff_t
*ploff_in
= NULL
, *ploff_out
= NULL
;
12378 if (get_user_u64(loff_in
, arg2
)) {
12379 return -TARGET_EFAULT
;
12381 ploff_in
= &loff_in
;
12384 if (get_user_u64(loff_out
, arg4
)) {
12385 return -TARGET_EFAULT
;
12387 ploff_out
= &loff_out
;
12389 ret
= get_errno(splice(arg1
, ploff_in
, arg3
, ploff_out
, arg5
, arg6
));
12391 if (put_user_u64(loff_in
, arg2
)) {
12392 return -TARGET_EFAULT
;
12396 if (put_user_u64(loff_out
, arg4
)) {
12397 return -TARGET_EFAULT
;
12403 #ifdef TARGET_NR_vmsplice
12404 case TARGET_NR_vmsplice
:
12406 struct iovec
*vec
= lock_iovec(VERIFY_READ
, arg2
, arg3
, 1);
12408 ret
= get_errno(vmsplice(arg1
, vec
, arg3
, arg4
));
12409 unlock_iovec(vec
, arg2
, arg3
, 0);
12411 ret
= -host_to_target_errno(errno
);
12416 #endif /* CONFIG_SPLICE */
12417 #ifdef CONFIG_EVENTFD
12418 #if defined(TARGET_NR_eventfd)
12419 case TARGET_NR_eventfd
:
12420 ret
= get_errno(eventfd(arg1
, 0));
12422 fd_trans_register(ret
, &target_eventfd_trans
);
12426 #if defined(TARGET_NR_eventfd2)
12427 case TARGET_NR_eventfd2
:
12429 int host_flags
= arg2
& (~(TARGET_O_NONBLOCK_MASK
| TARGET_O_CLOEXEC
));
12430 if (arg2
& TARGET_O_NONBLOCK
) {
12431 host_flags
|= O_NONBLOCK
;
12433 if (arg2
& TARGET_O_CLOEXEC
) {
12434 host_flags
|= O_CLOEXEC
;
12436 ret
= get_errno(eventfd(arg1
, host_flags
));
12438 fd_trans_register(ret
, &target_eventfd_trans
);
12443 #endif /* CONFIG_EVENTFD */
12444 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12445 case TARGET_NR_fallocate
:
12446 #if TARGET_ABI_BITS == 32
12447 ret
= get_errno(fallocate(arg1
, arg2
, target_offset64(arg3
, arg4
),
12448 target_offset64(arg5
, arg6
)));
12450 ret
= get_errno(fallocate(arg1
, arg2
, arg3
, arg4
));
12454 #if defined(CONFIG_SYNC_FILE_RANGE)
12455 #if defined(TARGET_NR_sync_file_range)
12456 case TARGET_NR_sync_file_range
:
12457 #if TARGET_ABI_BITS == 32
12458 #if defined(TARGET_MIPS)
12459 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
12460 target_offset64(arg5
, arg6
), arg7
));
12462 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg2
, arg3
),
12463 target_offset64(arg4
, arg5
), arg6
));
12464 #endif /* !TARGET_MIPS */
12466 ret
= get_errno(sync_file_range(arg1
, arg2
, arg3
, arg4
));
12470 #if defined(TARGET_NR_sync_file_range2) || \
12471 defined(TARGET_NR_arm_sync_file_range)
12472 #if defined(TARGET_NR_sync_file_range2)
12473 case TARGET_NR_sync_file_range2
:
12475 #if defined(TARGET_NR_arm_sync_file_range)
12476 case TARGET_NR_arm_sync_file_range
:
12478 /* This is like sync_file_range but the arguments are reordered */
12479 #if TARGET_ABI_BITS == 32
12480 ret
= get_errno(sync_file_range(arg1
, target_offset64(arg3
, arg4
),
12481 target_offset64(arg5
, arg6
), arg2
));
12483 ret
= get_errno(sync_file_range(arg1
, arg3
, arg4
, arg2
));
12488 #if defined(TARGET_NR_signalfd4)
12489 case TARGET_NR_signalfd4
:
12490 return do_signalfd4(arg1
, arg2
, arg4
);
12492 #if defined(TARGET_NR_signalfd)
12493 case TARGET_NR_signalfd
:
12494 return do_signalfd4(arg1
, arg2
, 0);
12496 #if defined(CONFIG_EPOLL)
12497 #if defined(TARGET_NR_epoll_create)
12498 case TARGET_NR_epoll_create
:
12499 return get_errno(epoll_create(arg1
));
12501 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12502 case TARGET_NR_epoll_create1
:
12503 return get_errno(epoll_create1(target_to_host_bitmask(arg1
, fcntl_flags_tbl
)));
12505 #if defined(TARGET_NR_epoll_ctl)
12506 case TARGET_NR_epoll_ctl
:
12508 struct epoll_event ep
;
12509 struct epoll_event
*epp
= 0;
12511 if (arg2
!= EPOLL_CTL_DEL
) {
12512 struct target_epoll_event
*target_ep
;
12513 if (!lock_user_struct(VERIFY_READ
, target_ep
, arg4
, 1)) {
12514 return -TARGET_EFAULT
;
12516 ep
.events
= tswap32(target_ep
->events
);
12518 * The epoll_data_t union is just opaque data to the kernel,
12519 * so we transfer all 64 bits across and need not worry what
12520 * actual data type it is.
12522 ep
.data
.u64
= tswap64(target_ep
->data
.u64
);
12523 unlock_user_struct(target_ep
, arg4
, 0);
12526 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
12527 * non-null pointer, even though this argument is ignored.
12532 return get_errno(epoll_ctl(arg1
, arg2
, arg3
, epp
));
12536 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12537 #if defined(TARGET_NR_epoll_wait)
12538 case TARGET_NR_epoll_wait
:
12540 #if defined(TARGET_NR_epoll_pwait)
12541 case TARGET_NR_epoll_pwait
:
12544 struct target_epoll_event
*target_ep
;
12545 struct epoll_event
*ep
;
12547 int maxevents
= arg3
;
12548 int timeout
= arg4
;
12550 if (maxevents
<= 0 || maxevents
> TARGET_EP_MAX_EVENTS
) {
12551 return -TARGET_EINVAL
;
12554 target_ep
= lock_user(VERIFY_WRITE
, arg2
,
12555 maxevents
* sizeof(struct target_epoll_event
), 1);
12557 return -TARGET_EFAULT
;
12560 ep
= g_try_new(struct epoll_event
, maxevents
);
12562 unlock_user(target_ep
, arg2
, 0);
12563 return -TARGET_ENOMEM
;
12567 #if defined(TARGET_NR_epoll_pwait)
12568 case TARGET_NR_epoll_pwait
:
12570 target_sigset_t
*target_set
;
12571 sigset_t _set
, *set
= &_set
;
12574 if (arg6
!= sizeof(target_sigset_t
)) {
12575 ret
= -TARGET_EINVAL
;
12579 target_set
= lock_user(VERIFY_READ
, arg5
,
12580 sizeof(target_sigset_t
), 1);
12582 ret
= -TARGET_EFAULT
;
12585 target_to_host_sigset(set
, target_set
);
12586 unlock_user(target_set
, arg5
, 0);
12591 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
12592 set
, SIGSET_T_SIZE
));
12596 #if defined(TARGET_NR_epoll_wait)
12597 case TARGET_NR_epoll_wait
:
12598 ret
= get_errno(safe_epoll_pwait(epfd
, ep
, maxevents
, timeout
,
12603 ret
= -TARGET_ENOSYS
;
12605 if (!is_error(ret
)) {
12607 for (i
= 0; i
< ret
; i
++) {
12608 target_ep
[i
].events
= tswap32(ep
[i
].events
);
12609 target_ep
[i
].data
.u64
= tswap64(ep
[i
].data
.u64
);
12611 unlock_user(target_ep
, arg2
,
12612 ret
* sizeof(struct target_epoll_event
));
12614 unlock_user(target_ep
, arg2
, 0);
12621 #ifdef TARGET_NR_prlimit64
12622 case TARGET_NR_prlimit64
:
12624 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12625 struct target_rlimit64
*target_rnew
, *target_rold
;
12626 struct host_rlimit64 rnew
, rold
, *rnewp
= 0;
12627 int resource
= target_to_host_resource(arg2
);
12629 if (arg3
&& (resource
!= RLIMIT_AS
&&
12630 resource
!= RLIMIT_DATA
&&
12631 resource
!= RLIMIT_STACK
)) {
12632 if (!lock_user_struct(VERIFY_READ
, target_rnew
, arg3
, 1)) {
12633 return -TARGET_EFAULT
;
12635 rnew
.rlim_cur
= tswap64(target_rnew
->rlim_cur
);
12636 rnew
.rlim_max
= tswap64(target_rnew
->rlim_max
);
12637 unlock_user_struct(target_rnew
, arg3
, 0);
12641 ret
= get_errno(sys_prlimit64(arg1
, resource
, rnewp
, arg4
? &rold
: 0));
12642 if (!is_error(ret
) && arg4
) {
12643 if (!lock_user_struct(VERIFY_WRITE
, target_rold
, arg4
, 1)) {
12644 return -TARGET_EFAULT
;
12646 target_rold
->rlim_cur
= tswap64(rold
.rlim_cur
);
12647 target_rold
->rlim_max
= tswap64(rold
.rlim_max
);
12648 unlock_user_struct(target_rold
, arg4
, 1);
12653 #ifdef TARGET_NR_gethostname
12654 case TARGET_NR_gethostname
:
12656 char *name
= lock_user(VERIFY_WRITE
, arg1
, arg2
, 0);
12658 ret
= get_errno(gethostname(name
, arg2
));
12659 unlock_user(name
, arg1
, arg2
);
12661 ret
= -TARGET_EFAULT
;
12666 #ifdef TARGET_NR_atomic_cmpxchg_32
12667 case TARGET_NR_atomic_cmpxchg_32
:
12669 /* should use start_exclusive from main.c */
12670 abi_ulong mem_value
;
12671 if (get_user_u32(mem_value
, arg6
)) {
12672 target_siginfo_t info
;
12673 info
.si_signo
= SIGSEGV
;
12675 info
.si_code
= TARGET_SEGV_MAPERR
;
12676 info
._sifields
._sigfault
._addr
= arg6
;
12677 queue_signal((CPUArchState
*)cpu_env
, info
.si_signo
,
12678 QEMU_SI_FAULT
, &info
);
12682 if (mem_value
== arg2
)
12683 put_user_u32(arg1
, arg6
);
12687 #ifdef TARGET_NR_atomic_barrier
12688 case TARGET_NR_atomic_barrier
:
12689 /* Like the kernel implementation and the
12690 qemu arm barrier, no-op this? */
12694 #ifdef TARGET_NR_timer_create
12695 case TARGET_NR_timer_create
:
12697 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12699 struct sigevent host_sevp
= { {0}, }, *phost_sevp
= NULL
;
12702 int timer_index
= next_free_host_timer();
12704 if (timer_index
< 0) {
12705 ret
= -TARGET_EAGAIN
;
12707 timer_t
*phtimer
= g_posix_timers
+ timer_index
;
12710 phost_sevp
= &host_sevp
;
12711 ret
= target_to_host_sigevent(phost_sevp
, arg2
);
12717 ret
= get_errno(timer_create(clkid
, phost_sevp
, phtimer
));
12721 if (put_user(TIMER_MAGIC
| timer_index
, arg3
, target_timer_t
)) {
12722 return -TARGET_EFAULT
;
12730 #ifdef TARGET_NR_timer_settime
12731 case TARGET_NR_timer_settime
:
12733 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12734 * struct itimerspec * old_value */
12735 target_timer_t timerid
= get_timer_id(arg1
);
12739 } else if (arg3
== 0) {
12740 ret
= -TARGET_EINVAL
;
12742 timer_t htimer
= g_posix_timers
[timerid
];
12743 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
12745 if (target_to_host_itimerspec(&hspec_new
, arg3
)) {
12746 return -TARGET_EFAULT
;
12749 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
12750 if (arg4
&& host_to_target_itimerspec(arg4
, &hspec_old
)) {
12751 return -TARGET_EFAULT
;
12758 #ifdef TARGET_NR_timer_settime64
12759 case TARGET_NR_timer_settime64
:
12761 target_timer_t timerid
= get_timer_id(arg1
);
12765 } else if (arg3
== 0) {
12766 ret
= -TARGET_EINVAL
;
12768 timer_t htimer
= g_posix_timers
[timerid
];
12769 struct itimerspec hspec_new
= {{0},}, hspec_old
= {{0},};
12771 if (target_to_host_itimerspec64(&hspec_new
, arg3
)) {
12772 return -TARGET_EFAULT
;
12775 timer_settime(htimer
, arg2
, &hspec_new
, &hspec_old
));
12776 if (arg4
&& host_to_target_itimerspec64(arg4
, &hspec_old
)) {
12777 return -TARGET_EFAULT
;
12784 #ifdef TARGET_NR_timer_gettime
12785 case TARGET_NR_timer_gettime
:
12787 /* args: timer_t timerid, struct itimerspec *curr_value */
12788 target_timer_t timerid
= get_timer_id(arg1
);
12792 } else if (!arg2
) {
12793 ret
= -TARGET_EFAULT
;
12795 timer_t htimer
= g_posix_timers
[timerid
];
12796 struct itimerspec hspec
;
12797 ret
= get_errno(timer_gettime(htimer
, &hspec
));
12799 if (host_to_target_itimerspec(arg2
, &hspec
)) {
12800 ret
= -TARGET_EFAULT
;
12807 #ifdef TARGET_NR_timer_gettime64
12808 case TARGET_NR_timer_gettime64
:
12810 /* args: timer_t timerid, struct itimerspec64 *curr_value */
12811 target_timer_t timerid
= get_timer_id(arg1
);
12815 } else if (!arg2
) {
12816 ret
= -TARGET_EFAULT
;
12818 timer_t htimer
= g_posix_timers
[timerid
];
12819 struct itimerspec hspec
;
12820 ret
= get_errno(timer_gettime(htimer
, &hspec
));
12822 if (host_to_target_itimerspec64(arg2
, &hspec
)) {
12823 ret
= -TARGET_EFAULT
;
12830 #ifdef TARGET_NR_timer_getoverrun
12831 case TARGET_NR_timer_getoverrun
:
12833 /* args: timer_t timerid */
12834 target_timer_t timerid
= get_timer_id(arg1
);
12839 timer_t htimer
= g_posix_timers
[timerid
];
12840 ret
= get_errno(timer_getoverrun(htimer
));
12846 #ifdef TARGET_NR_timer_delete
12847 case TARGET_NR_timer_delete
:
12849 /* args: timer_t timerid */
12850 target_timer_t timerid
= get_timer_id(arg1
);
12855 timer_t htimer
= g_posix_timers
[timerid
];
12856 ret
= get_errno(timer_delete(htimer
));
12857 g_posix_timers
[timerid
] = 0;
12863 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12864 case TARGET_NR_timerfd_create
:
12865 return get_errno(timerfd_create(arg1
,
12866 target_to_host_bitmask(arg2
, fcntl_flags_tbl
)));
12869 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12870 case TARGET_NR_timerfd_gettime
:
12872 struct itimerspec its_curr
;
12874 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
12876 if (arg2
&& host_to_target_itimerspec(arg2
, &its_curr
)) {
12877 return -TARGET_EFAULT
;
12883 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
12884 case TARGET_NR_timerfd_gettime64
:
12886 struct itimerspec its_curr
;
12888 ret
= get_errno(timerfd_gettime(arg1
, &its_curr
));
12890 if (arg2
&& host_to_target_itimerspec64(arg2
, &its_curr
)) {
12891 return -TARGET_EFAULT
;
12897 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12898 case TARGET_NR_timerfd_settime
:
12900 struct itimerspec its_new
, its_old
, *p_new
;
12903 if (target_to_host_itimerspec(&its_new
, arg3
)) {
12904 return -TARGET_EFAULT
;
12911 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
12913 if (arg4
&& host_to_target_itimerspec(arg4
, &its_old
)) {
12914 return -TARGET_EFAULT
;
12920 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
12921 case TARGET_NR_timerfd_settime64
:
12923 struct itimerspec its_new
, its_old
, *p_new
;
12926 if (target_to_host_itimerspec64(&its_new
, arg3
)) {
12927 return -TARGET_EFAULT
;
12934 ret
= get_errno(timerfd_settime(arg1
, arg2
, p_new
, &its_old
));
12936 if (arg4
&& host_to_target_itimerspec64(arg4
, &its_old
)) {
12937 return -TARGET_EFAULT
;
12943 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
12944 case TARGET_NR_ioprio_get
:
12945 return get_errno(ioprio_get(arg1
, arg2
));
12948 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
12949 case TARGET_NR_ioprio_set
:
12950 return get_errno(ioprio_set(arg1
, arg2
, arg3
));
12953 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
12954 case TARGET_NR_setns
:
12955 return get_errno(setns(arg1
, arg2
));
12957 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
12958 case TARGET_NR_unshare
:
12959 return get_errno(unshare(arg1
));
12961 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
12962 case TARGET_NR_kcmp
:
12963 return get_errno(kcmp(arg1
, arg2
, arg3
, arg4
, arg5
));
12965 #ifdef TARGET_NR_swapcontext
12966 case TARGET_NR_swapcontext
:
12967 /* PowerPC specific. */
12968 return do_swapcontext(cpu_env
, arg1
, arg2
, arg3
);
12970 #ifdef TARGET_NR_memfd_create
12971 case TARGET_NR_memfd_create
:
12972 p
= lock_user_string(arg1
);
12974 return -TARGET_EFAULT
;
12976 ret
= get_errno(memfd_create(p
, arg2
));
12977 fd_trans_unregister(ret
);
12978 unlock_user(p
, arg1
, 0);
12981 #if defined TARGET_NR_membarrier && defined __NR_membarrier
12982 case TARGET_NR_membarrier
:
12983 return get_errno(membarrier(arg1
, arg2
));
12986 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
12987 case TARGET_NR_copy_file_range
:
12989 loff_t inoff
, outoff
;
12990 loff_t
*pinoff
= NULL
, *poutoff
= NULL
;
12993 if (get_user_u64(inoff
, arg2
)) {
12994 return -TARGET_EFAULT
;
12999 if (get_user_u64(outoff
, arg4
)) {
13000 return -TARGET_EFAULT
;
13004 /* Do not sign-extend the count parameter. */
13005 ret
= get_errno(safe_copy_file_range(arg1
, pinoff
, arg3
, poutoff
,
13006 (abi_ulong
)arg5
, arg6
));
13007 if (!is_error(ret
) && ret
> 0) {
13009 if (put_user_u64(inoff
, arg2
)) {
13010 return -TARGET_EFAULT
;
13014 if (put_user_u64(outoff
, arg4
)) {
13015 return -TARGET_EFAULT
;
13023 #if defined(TARGET_NR_pivot_root)
13024 case TARGET_NR_pivot_root
:
13027 p
= lock_user_string(arg1
); /* new_root */
13028 p2
= lock_user_string(arg2
); /* put_old */
13030 ret
= -TARGET_EFAULT
;
13032 ret
= get_errno(pivot_root(p
, p2
));
13034 unlock_user(p2
, arg2
, 0);
13035 unlock_user(p
, arg1
, 0);
13041 qemu_log_mask(LOG_UNIMP
, "Unsupported syscall: %d\n", num
);
13042 return -TARGET_ENOSYS
;
13047 abi_long
do_syscall(void *cpu_env
, int num
, abi_long arg1
,
13048 abi_long arg2
, abi_long arg3
, abi_long arg4
,
13049 abi_long arg5
, abi_long arg6
, abi_long arg7
,
13052 CPUState
*cpu
= env_cpu(cpu_env
);
13055 #ifdef DEBUG_ERESTARTSYS
13056 /* Debug-only code for exercising the syscall-restart code paths
13057 * in the per-architecture cpu main loops: restart every syscall
13058 * the guest makes once before letting it through.
13064 return -QEMU_ERESTARTSYS
;
13069 record_syscall_start(cpu
, num
, arg1
,
13070 arg2
, arg3
, arg4
, arg5
, arg6
, arg7
, arg8
);
13072 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
13073 print_syscall(cpu_env
, num
, arg1
, arg2
, arg3
, arg4
, arg5
, arg6
);
13076 ret
= do_syscall1(cpu_env
, num
, arg1
, arg2
, arg3
, arg4
,
13077 arg5
, arg6
, arg7
, arg8
);
13079 if (unlikely(qemu_loglevel_mask(LOG_STRACE
))) {
13080 print_syscall_ret(cpu_env
, num
, ret
, arg1
, arg2
,
13081 arg3
, arg4
, arg5
, arg6
);
13084 record_syscall_return(cpu
, num
, ret
);