]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/syscall.c
Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[mirror_qemu.git] / linux-user / syscall.c
1 /*
2 * Linux syscalls
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include "qemu/memfd.h"
24 #include "qemu/queue.h"
25 #include <elf.h>
26 #include <endian.h>
27 #include <grp.h>
28 #include <sys/ipc.h>
29 #include <sys/msg.h>
30 #include <sys/wait.h>
31 #include <sys/mount.h>
32 #include <sys/file.h>
33 #include <sys/fsuid.h>
34 #include <sys/personality.h>
35 #include <sys/prctl.h>
36 #include <sys/resource.h>
37 #include <sys/swap.h>
38 #include <linux/capability.h>
39 #include <sched.h>
40 #include <sys/timex.h>
41 #include <sys/socket.h>
42 #include <linux/sockios.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/in.h>
55 #include <netinet/ip.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <linux/wireless.h>
59 #include <linux/icmp.h>
60 #include <linux/icmpv6.h>
61 #include <linux/if_tun.h>
62 #include <linux/in6.h>
63 #include <linux/errqueue.h>
64 #include <linux/random.h>
65 #ifdef CONFIG_TIMERFD
66 #include <sys/timerfd.h>
67 #endif
68 #ifdef CONFIG_EVENTFD
69 #include <sys/eventfd.h>
70 #endif
71 #ifdef CONFIG_EPOLL
72 #include <sys/epoll.h>
73 #endif
74 #ifdef CONFIG_ATTR
75 #include "qemu/xattr.h"
76 #endif
77 #ifdef CONFIG_SENDFILE
78 #include <sys/sendfile.h>
79 #endif
80 #ifdef HAVE_SYS_KCOV_H
81 #include <sys/kcov.h>
82 #endif
83
84 #define termios host_termios
85 #define winsize host_winsize
86 #define termio host_termio
87 #define sgttyb host_sgttyb /* same as target */
88 #define tchars host_tchars /* same as target */
89 #define ltchars host_ltchars /* same as target */
90
91 #include <linux/termios.h>
92 #include <linux/unistd.h>
93 #include <linux/cdrom.h>
94 #include <linux/hdreg.h>
95 #include <linux/soundcard.h>
96 #include <linux/kd.h>
97 #include <linux/mtio.h>
98 #include <linux/fs.h>
99 #include <linux/fd.h>
100 #if defined(CONFIG_FIEMAP)
101 #include <linux/fiemap.h>
102 #endif
103 #include <linux/fb.h>
104 #if defined(CONFIG_USBFS)
105 #include <linux/usbdevice_fs.h>
106 #include <linux/usb/ch9.h>
107 #endif
108 #include <linux/vt.h>
109 #include <linux/dm-ioctl.h>
110 #include <linux/reboot.h>
111 #include <linux/route.h>
112 #include <linux/filter.h>
113 #include <linux/blkpg.h>
114 #include <netpacket/packet.h>
115 #include <linux/netlink.h>
116 #include <linux/if_alg.h>
117 #include <linux/rtc.h>
118 #include <sound/asound.h>
119 #ifdef HAVE_BTRFS_H
120 #include <linux/btrfs.h>
121 #endif
122 #ifdef HAVE_DRM_H
123 #include <libdrm/drm.h>
124 #include <libdrm/i915_drm.h>
125 #endif
126 #include "linux_loop.h"
127 #include "uname.h"
128
129 #include "qemu.h"
130 #include "user-internals.h"
131 #include "strace.h"
132 #include "signal-common.h"
133 #include "loader.h"
134 #include "user-mmap.h"
135 #include "safe-syscall.h"
136 #include "qemu/guest-random.h"
137 #include "qemu/selfmap.h"
138 #include "user/syscall-trace.h"
139 #include "qapi/error.h"
140 #include "fd-trans.h"
141 #include "tcg/tcg.h"
142
143 #ifndef CLONE_IO
144 #define CLONE_IO 0x80000000 /* Clone io context */
145 #endif
146
147 /* We can't directly call the host clone syscall, because this will
148 * badly confuse libc (breaking mutexes, for example). So we must
149 * divide clone flags into:
150 * * flag combinations that look like pthread_create()
151 * * flag combinations that look like fork()
152 * * flags we can implement within QEMU itself
153 * * flags we can't support and will return an error for
154 */
155 /* For thread creation, all these flags must be present; for
156 * fork, none must be present.
157 */
158 #define CLONE_THREAD_FLAGS \
159 (CLONE_VM | CLONE_FS | CLONE_FILES | \
160 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
161
162 /* These flags are ignored:
163 * CLONE_DETACHED is now ignored by the kernel;
164 * CLONE_IO is just an optimisation hint to the I/O scheduler
165 */
166 #define CLONE_IGNORED_FLAGS \
167 (CLONE_DETACHED | CLONE_IO)
168
169 /* Flags for fork which we can implement within QEMU itself */
170 #define CLONE_OPTIONAL_FORK_FLAGS \
171 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
172 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
173
174 /* Flags for thread creation which we can implement within QEMU itself */
175 #define CLONE_OPTIONAL_THREAD_FLAGS \
176 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
177 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
178
179 #define CLONE_INVALID_FORK_FLAGS \
180 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
181
182 #define CLONE_INVALID_THREAD_FLAGS \
183 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
184 CLONE_IGNORED_FLAGS))
185
186 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
187 * have almost all been allocated. We cannot support any of
188 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
189 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
190 * The checks against the invalid thread masks above will catch these.
191 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
192 */
193
194 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
195 * once. This exercises the codepaths for restart.
196 */
197 //#define DEBUG_ERESTARTSYS
198
199 //#include <linux/msdos_fs.h>
200 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
201 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
202
203 #undef _syscall0
204 #undef _syscall1
205 #undef _syscall2
206 #undef _syscall3
207 #undef _syscall4
208 #undef _syscall5
209 #undef _syscall6
210
211 #define _syscall0(type,name) \
212 static type name (void) \
213 { \
214 return syscall(__NR_##name); \
215 }
216
217 #define _syscall1(type,name,type1,arg1) \
218 static type name (type1 arg1) \
219 { \
220 return syscall(__NR_##name, arg1); \
221 }
222
223 #define _syscall2(type,name,type1,arg1,type2,arg2) \
224 static type name (type1 arg1,type2 arg2) \
225 { \
226 return syscall(__NR_##name, arg1, arg2); \
227 }
228
229 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
230 static type name (type1 arg1,type2 arg2,type3 arg3) \
231 { \
232 return syscall(__NR_##name, arg1, arg2, arg3); \
233 }
234
235 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
236 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
237 { \
238 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
239 }
240
241 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
242 type5,arg5) \
243 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
244 { \
245 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
246 }
247
248
249 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
250 type5,arg5,type6,arg6) \
251 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
252 type6 arg6) \
253 { \
254 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
255 }
256
257
258 #define __NR_sys_uname __NR_uname
259 #define __NR_sys_getcwd1 __NR_getcwd
260 #define __NR_sys_getdents __NR_getdents
261 #define __NR_sys_getdents64 __NR_getdents64
262 #define __NR_sys_getpriority __NR_getpriority
263 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
264 #define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
265 #define __NR_sys_syslog __NR_syslog
266 #if defined(__NR_futex)
267 # define __NR_sys_futex __NR_futex
268 #endif
269 #if defined(__NR_futex_time64)
270 # define __NR_sys_futex_time64 __NR_futex_time64
271 #endif
272 #define __NR_sys_inotify_init __NR_inotify_init
273 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
274 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
275 #define __NR_sys_statx __NR_statx
276
277 #if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
278 #define __NR__llseek __NR_lseek
279 #endif
280
281 /* Newer kernel ports have llseek() instead of _llseek() */
282 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
283 #define TARGET_NR__llseek TARGET_NR_llseek
284 #endif
285
286 /* some platforms need to mask more bits than just TARGET_O_NONBLOCK */
287 #ifndef TARGET_O_NONBLOCK_MASK
288 #define TARGET_O_NONBLOCK_MASK TARGET_O_NONBLOCK
289 #endif
290
291 #define __NR_sys_gettid __NR_gettid
292 _syscall0(int, sys_gettid)
293
294 /* For the 64-bit guest on 32-bit host case we must emulate
295 * getdents using getdents64, because otherwise the host
296 * might hand us back more dirent records than we can fit
297 * into the guest buffer after structure format conversion.
298 * Otherwise we emulate getdents with getdents if the host has it.
299 */
300 #if defined(__NR_getdents) && HOST_LONG_BITS >= TARGET_ABI_BITS
301 #define EMULATE_GETDENTS_WITH_GETDENTS
302 #endif
303
304 #if defined(TARGET_NR_getdents) && defined(EMULATE_GETDENTS_WITH_GETDENTS)
305 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
306 #endif
307 #if (defined(TARGET_NR_getdents) && \
308 !defined(EMULATE_GETDENTS_WITH_GETDENTS)) || \
309 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
310 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
311 #endif
312 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
313 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
314 loff_t *, res, uint, wh);
315 #endif
316 _syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
317 _syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
318 siginfo_t *, uinfo)
319 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
320 #ifdef __NR_exit_group
321 _syscall1(int,exit_group,int,error_code)
322 #endif
323 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
324 _syscall1(int,set_tid_address,int *,tidptr)
325 #endif
326 #if defined(__NR_futex)
327 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
328 const struct timespec *,timeout,int *,uaddr2,int,val3)
329 #endif
330 #if defined(__NR_futex_time64)
331 _syscall6(int,sys_futex_time64,int *,uaddr,int,op,int,val,
332 const struct timespec *,timeout,int *,uaddr2,int,val3)
333 #endif
334 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
335 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
336 unsigned long *, user_mask_ptr);
337 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
338 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
339 unsigned long *, user_mask_ptr);
340 #define __NR_sys_getcpu __NR_getcpu
341 _syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
342 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
343 void *, arg);
344 _syscall2(int, capget, struct __user_cap_header_struct *, header,
345 struct __user_cap_data_struct *, data);
346 _syscall2(int, capset, struct __user_cap_header_struct *, header,
347 struct __user_cap_data_struct *, data);
348 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
349 _syscall2(int, ioprio_get, int, which, int, who)
350 #endif
351 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
352 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
353 #endif
354 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
355 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
356 #endif
357
358 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
359 _syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
360 unsigned long, idx1, unsigned long, idx2)
361 #endif
362
363 /*
364 * It is assumed that struct statx is architecture independent.
365 */
366 #if defined(TARGET_NR_statx) && defined(__NR_statx)
367 _syscall5(int, sys_statx, int, dirfd, const char *, pathname, int, flags,
368 unsigned int, mask, struct target_statx *, statxbuf)
369 #endif
370 #if defined(TARGET_NR_membarrier) && defined(__NR_membarrier)
371 _syscall2(int, membarrier, int, cmd, int, flags)
372 #endif
373
374 static const bitmask_transtbl fcntl_flags_tbl[] = {
375 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
376 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
377 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
378 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
379 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
380 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
381 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
382 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
383 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
384 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
385 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
386 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
387 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
388 #if defined(O_DIRECT)
389 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
390 #endif
391 #if defined(O_NOATIME)
392 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
393 #endif
394 #if defined(O_CLOEXEC)
395 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
396 #endif
397 #if defined(O_PATH)
398 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
399 #endif
400 #if defined(O_TMPFILE)
401 { TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
402 #endif
403 /* Don't terminate the list prematurely on 64-bit host+guest. */
404 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
405 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
406 #endif
407 { 0, 0, 0, 0 }
408 };
409
410 _syscall2(int, sys_getcwd1, char *, buf, size_t, size)
411
412 #if defined(TARGET_NR_utimensat) || defined(TARGET_NR_utimensat_time64)
413 #if defined(__NR_utimensat)
414 #define __NR_sys_utimensat __NR_utimensat
415 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
416 const struct timespec *,tsp,int,flags)
417 #else
418 static int sys_utimensat(int dirfd, const char *pathname,
419 const struct timespec times[2], int flags)
420 {
421 errno = ENOSYS;
422 return -1;
423 }
424 #endif
425 #endif /* TARGET_NR_utimensat */
426
427 #ifdef TARGET_NR_renameat2
428 #if defined(__NR_renameat2)
429 #define __NR_sys_renameat2 __NR_renameat2
430 _syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
431 const char *, new, unsigned int, flags)
432 #else
433 static int sys_renameat2(int oldfd, const char *old,
434 int newfd, const char *new, int flags)
435 {
436 if (flags == 0) {
437 return renameat(oldfd, old, newfd, new);
438 }
439 errno = ENOSYS;
440 return -1;
441 }
442 #endif
443 #endif /* TARGET_NR_renameat2 */
444
445 #ifdef CONFIG_INOTIFY
446 #include <sys/inotify.h>
447
448 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
449 static int sys_inotify_init(void)
450 {
451 return (inotify_init());
452 }
453 #endif
454 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
455 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
456 {
457 return (inotify_add_watch(fd, pathname, mask));
458 }
459 #endif
460 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
461 static int sys_inotify_rm_watch(int fd, int32_t wd)
462 {
463 return (inotify_rm_watch(fd, wd));
464 }
465 #endif
466 #ifdef CONFIG_INOTIFY1
467 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
468 static int sys_inotify_init1(int flags)
469 {
470 return (inotify_init1(flags));
471 }
472 #endif
473 #endif
474 #else
475 /* Userspace can usually survive runtime without inotify */
476 #undef TARGET_NR_inotify_init
477 #undef TARGET_NR_inotify_init1
478 #undef TARGET_NR_inotify_add_watch
479 #undef TARGET_NR_inotify_rm_watch
480 #endif /* CONFIG_INOTIFY */
481
482 #if defined(TARGET_NR_prlimit64)
483 #ifndef __NR_prlimit64
484 # define __NR_prlimit64 -1
485 #endif
486 #define __NR_sys_prlimit64 __NR_prlimit64
487 /* The glibc rlimit structure may not be that used by the underlying syscall */
488 struct host_rlimit64 {
489 uint64_t rlim_cur;
490 uint64_t rlim_max;
491 };
492 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
493 const struct host_rlimit64 *, new_limit,
494 struct host_rlimit64 *, old_limit)
495 #endif
496
497
498 #if defined(TARGET_NR_timer_create)
499 /* Maximum of 32 active POSIX timers allowed at any one time. */
500 static timer_t g_posix_timers[32] = { 0, } ;
501
502 static inline int next_free_host_timer(void)
503 {
504 int k ;
505 /* FIXME: Does finding the next free slot require a lock? */
506 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
507 if (g_posix_timers[k] == 0) {
508 g_posix_timers[k] = (timer_t) 1;
509 return k;
510 }
511 }
512 return -1;
513 }
514 #endif
515
516 static inline int host_to_target_errno(int host_errno)
517 {
518 switch (host_errno) {
519 #define E(X) case X: return TARGET_##X;
520 #include "errnos.c.inc"
521 #undef E
522 default:
523 return host_errno;
524 }
525 }
526
527 static inline int target_to_host_errno(int target_errno)
528 {
529 switch (target_errno) {
530 #define E(X) case TARGET_##X: return X;
531 #include "errnos.c.inc"
532 #undef E
533 default:
534 return target_errno;
535 }
536 }
537
538 static inline abi_long get_errno(abi_long ret)
539 {
540 if (ret == -1)
541 return -host_to_target_errno(errno);
542 else
543 return ret;
544 }
545
546 const char *target_strerror(int err)
547 {
548 if (err == TARGET_ERESTARTSYS) {
549 return "To be restarted";
550 }
551 if (err == TARGET_QEMU_ESIGRETURN) {
552 return "Successful exit from sigreturn";
553 }
554
555 return strerror(target_to_host_errno(err));
556 }
557
558 #define safe_syscall0(type, name) \
559 static type safe_##name(void) \
560 { \
561 return safe_syscall(__NR_##name); \
562 }
563
564 #define safe_syscall1(type, name, type1, arg1) \
565 static type safe_##name(type1 arg1) \
566 { \
567 return safe_syscall(__NR_##name, arg1); \
568 }
569
570 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
571 static type safe_##name(type1 arg1, type2 arg2) \
572 { \
573 return safe_syscall(__NR_##name, arg1, arg2); \
574 }
575
576 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
577 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
578 { \
579 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
580 }
581
582 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
583 type4, arg4) \
584 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
585 { \
586 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
587 }
588
589 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
590 type4, arg4, type5, arg5) \
591 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
592 type5 arg5) \
593 { \
594 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
595 }
596
597 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
598 type4, arg4, type5, arg5, type6, arg6) \
599 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
600 type5 arg5, type6 arg6) \
601 { \
602 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
603 }
604
605 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
606 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
607 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
608 int, flags, mode_t, mode)
609 #if defined(TARGET_NR_wait4) || defined(TARGET_NR_waitpid)
610 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
611 struct rusage *, rusage)
612 #endif
613 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
614 int, options, struct rusage *, rusage)
615 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
616 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
617 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
618 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
619 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
620 #endif
621 #if defined(TARGET_NR_ppoll) || defined(TARGET_NR_ppoll_time64)
622 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
623 struct timespec *, tsp, const sigset_t *, sigmask,
624 size_t, sigsetsize)
625 #endif
626 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
627 int, maxevents, int, timeout, const sigset_t *, sigmask,
628 size_t, sigsetsize)
629 #if defined(__NR_futex)
630 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
631 const struct timespec *,timeout,int *,uaddr2,int,val3)
632 #endif
633 #if defined(__NR_futex_time64)
634 safe_syscall6(int,futex_time64,int *,uaddr,int,op,int,val, \
635 const struct timespec *,timeout,int *,uaddr2,int,val3)
636 #endif
637 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
638 safe_syscall2(int, kill, pid_t, pid, int, sig)
639 safe_syscall2(int, tkill, int, tid, int, sig)
640 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
641 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
642 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
643 safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
644 unsigned long, pos_l, unsigned long, pos_h)
645 safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
646 unsigned long, pos_l, unsigned long, pos_h)
647 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
648 socklen_t, addrlen)
649 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
650 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
651 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
652 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
653 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
654 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
655 safe_syscall2(int, flock, int, fd, int, operation)
656 #if defined(TARGET_NR_rt_sigtimedwait) || defined(TARGET_NR_rt_sigtimedwait_time64)
657 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
658 const struct timespec *, uts, size_t, sigsetsize)
659 #endif
660 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
661 int, flags)
662 #if defined(TARGET_NR_nanosleep)
663 safe_syscall2(int, nanosleep, const struct timespec *, req,
664 struct timespec *, rem)
665 #endif
666 #if defined(TARGET_NR_clock_nanosleep) || \
667 defined(TARGET_NR_clock_nanosleep_time64)
668 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
669 const struct timespec *, req, struct timespec *, rem)
670 #endif
671 #ifdef __NR_ipc
672 #ifdef __s390x__
673 safe_syscall5(int, ipc, int, call, long, first, long, second, long, third,
674 void *, ptr)
675 #else
676 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
677 void *, ptr, long, fifth)
678 #endif
679 #endif
680 #ifdef __NR_msgsnd
681 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
682 int, flags)
683 #endif
684 #ifdef __NR_msgrcv
685 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
686 long, msgtype, int, flags)
687 #endif
688 #ifdef __NR_semtimedop
689 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
690 unsigned, nsops, const struct timespec *, timeout)
691 #endif
692 #if defined(TARGET_NR_mq_timedsend) || \
693 defined(TARGET_NR_mq_timedsend_time64)
694 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
695 size_t, len, unsigned, prio, const struct timespec *, timeout)
696 #endif
697 #if defined(TARGET_NR_mq_timedreceive) || \
698 defined(TARGET_NR_mq_timedreceive_time64)
699 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
700 size_t, len, unsigned *, prio, const struct timespec *, timeout)
701 #endif
702 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
703 safe_syscall6(ssize_t, copy_file_range, int, infd, loff_t *, pinoff,
704 int, outfd, loff_t *, poutoff, size_t, length,
705 unsigned int, flags)
706 #endif
707
708 /* We do ioctl like this rather than via safe_syscall3 to preserve the
709 * "third argument might be integer or pointer or not present" behaviour of
710 * the libc function.
711 */
712 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
713 /* Similarly for fcntl. Note that callers must always:
714 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
715 * use the flock64 struct rather than unsuffixed flock
716 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
717 */
718 #ifdef __NR_fcntl64
719 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
720 #else
721 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
722 #endif
723
724 static inline int host_to_target_sock_type(int host_type)
725 {
726 int target_type;
727
728 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
729 case SOCK_DGRAM:
730 target_type = TARGET_SOCK_DGRAM;
731 break;
732 case SOCK_STREAM:
733 target_type = TARGET_SOCK_STREAM;
734 break;
735 default:
736 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
737 break;
738 }
739
740 #if defined(SOCK_CLOEXEC)
741 if (host_type & SOCK_CLOEXEC) {
742 target_type |= TARGET_SOCK_CLOEXEC;
743 }
744 #endif
745
746 #if defined(SOCK_NONBLOCK)
747 if (host_type & SOCK_NONBLOCK) {
748 target_type |= TARGET_SOCK_NONBLOCK;
749 }
750 #endif
751
752 return target_type;
753 }
754
755 static abi_ulong target_brk;
756 static abi_ulong target_original_brk;
757 static abi_ulong brk_page;
758
759 void target_set_brk(abi_ulong new_brk)
760 {
761 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
762 brk_page = HOST_PAGE_ALIGN(target_brk);
763 }
764
765 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
766 #define DEBUGF_BRK(message, args...)
767
768 /* do_brk() must return target values and target errnos. */
769 abi_long do_brk(abi_ulong new_brk)
770 {
771 abi_long mapped_addr;
772 abi_ulong new_alloc_size;
773
774 /* brk pointers are always untagged */
775
776 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
777
778 if (!new_brk) {
779 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
780 return target_brk;
781 }
782 if (new_brk < target_original_brk) {
783 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
784 target_brk);
785 return target_brk;
786 }
787
788 /* If the new brk is less than the highest page reserved to the
789 * target heap allocation, set it and we're almost done... */
790 if (new_brk <= brk_page) {
791 /* Heap contents are initialized to zero, as for anonymous
792 * mapped pages. */
793 if (new_brk > target_brk) {
794 memset(g2h_untagged(target_brk), 0, new_brk - target_brk);
795 }
796 target_brk = new_brk;
797 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
798 return target_brk;
799 }
800
801 /* We need to allocate more memory after the brk... Note that
802 * we don't use MAP_FIXED because that will map over the top of
803 * any existing mapping (like the one with the host libc or qemu
804 * itself); instead we treat "mapped but at wrong address" as
805 * a failure and unmap again.
806 */
807 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
808 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
809 PROT_READ|PROT_WRITE,
810 MAP_ANON|MAP_PRIVATE, 0, 0));
811
812 if (mapped_addr == brk_page) {
813 /* Heap contents are initialized to zero, as for anonymous
814 * mapped pages. Technically the new pages are already
815 * initialized to zero since they *are* anonymous mapped
816 * pages, however we have to take care with the contents that
817 * come from the remaining part of the previous page: it may
818 * contains garbage data due to a previous heap usage (grown
819 * then shrunken). */
820 memset(g2h_untagged(target_brk), 0, brk_page - target_brk);
821
822 target_brk = new_brk;
823 brk_page = HOST_PAGE_ALIGN(target_brk);
824 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
825 target_brk);
826 return target_brk;
827 } else if (mapped_addr != -1) {
828 /* Mapped but at wrong address, meaning there wasn't actually
829 * enough space for this brk.
830 */
831 target_munmap(mapped_addr, new_alloc_size);
832 mapped_addr = -1;
833 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
834 }
835 else {
836 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
837 }
838
839 #if defined(TARGET_ALPHA)
840 /* We (partially) emulate OSF/1 on Alpha, which requires we
841 return a proper errno, not an unchanged brk value. */
842 return -TARGET_ENOMEM;
843 #endif
844 /* For everything else, return the previous break. */
845 return target_brk;
846 }
847
848 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect) || \
849 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
850 static inline abi_long copy_from_user_fdset(fd_set *fds,
851 abi_ulong target_fds_addr,
852 int n)
853 {
854 int i, nw, j, k;
855 abi_ulong b, *target_fds;
856
857 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
858 if (!(target_fds = lock_user(VERIFY_READ,
859 target_fds_addr,
860 sizeof(abi_ulong) * nw,
861 1)))
862 return -TARGET_EFAULT;
863
864 FD_ZERO(fds);
865 k = 0;
866 for (i = 0; i < nw; i++) {
867 /* grab the abi_ulong */
868 __get_user(b, &target_fds[i]);
869 for (j = 0; j < TARGET_ABI_BITS; j++) {
870 /* check the bit inside the abi_ulong */
871 if ((b >> j) & 1)
872 FD_SET(k, fds);
873 k++;
874 }
875 }
876
877 unlock_user(target_fds, target_fds_addr, 0);
878
879 return 0;
880 }
881
882 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
883 abi_ulong target_fds_addr,
884 int n)
885 {
886 if (target_fds_addr) {
887 if (copy_from_user_fdset(fds, target_fds_addr, n))
888 return -TARGET_EFAULT;
889 *fds_ptr = fds;
890 } else {
891 *fds_ptr = NULL;
892 }
893 return 0;
894 }
895
896 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
897 const fd_set *fds,
898 int n)
899 {
900 int i, nw, j, k;
901 abi_long v;
902 abi_ulong *target_fds;
903
904 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
905 if (!(target_fds = lock_user(VERIFY_WRITE,
906 target_fds_addr,
907 sizeof(abi_ulong) * nw,
908 0)))
909 return -TARGET_EFAULT;
910
911 k = 0;
912 for (i = 0; i < nw; i++) {
913 v = 0;
914 for (j = 0; j < TARGET_ABI_BITS; j++) {
915 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
916 k++;
917 }
918 __put_user(v, &target_fds[i]);
919 }
920
921 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
922
923 return 0;
924 }
925 #endif
926
927 #if defined(__alpha__)
928 #define HOST_HZ 1024
929 #else
930 #define HOST_HZ 100
931 #endif
932
933 static inline abi_long host_to_target_clock_t(long ticks)
934 {
935 #if HOST_HZ == TARGET_HZ
936 return ticks;
937 #else
938 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
939 #endif
940 }
941
942 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
943 const struct rusage *rusage)
944 {
945 struct target_rusage *target_rusage;
946
947 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
948 return -TARGET_EFAULT;
949 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
950 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
951 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
952 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
953 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
954 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
955 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
956 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
957 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
958 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
959 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
960 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
961 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
962 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
963 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
964 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
965 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
966 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
967 unlock_user_struct(target_rusage, target_addr, 1);
968
969 return 0;
970 }
971
972 #ifdef TARGET_NR_setrlimit
973 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
974 {
975 abi_ulong target_rlim_swap;
976 rlim_t result;
977
978 target_rlim_swap = tswapal(target_rlim);
979 if (target_rlim_swap == TARGET_RLIM_INFINITY)
980 return RLIM_INFINITY;
981
982 result = target_rlim_swap;
983 if (target_rlim_swap != (rlim_t)result)
984 return RLIM_INFINITY;
985
986 return result;
987 }
988 #endif
989
990 #if defined(TARGET_NR_getrlimit) || defined(TARGET_NR_ugetrlimit)
991 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
992 {
993 abi_ulong target_rlim_swap;
994 abi_ulong result;
995
996 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
997 target_rlim_swap = TARGET_RLIM_INFINITY;
998 else
999 target_rlim_swap = rlim;
1000 result = tswapal(target_rlim_swap);
1001
1002 return result;
1003 }
1004 #endif
1005
1006 static inline int target_to_host_resource(int code)
1007 {
1008 switch (code) {
1009 case TARGET_RLIMIT_AS:
1010 return RLIMIT_AS;
1011 case TARGET_RLIMIT_CORE:
1012 return RLIMIT_CORE;
1013 case TARGET_RLIMIT_CPU:
1014 return RLIMIT_CPU;
1015 case TARGET_RLIMIT_DATA:
1016 return RLIMIT_DATA;
1017 case TARGET_RLIMIT_FSIZE:
1018 return RLIMIT_FSIZE;
1019 case TARGET_RLIMIT_LOCKS:
1020 return RLIMIT_LOCKS;
1021 case TARGET_RLIMIT_MEMLOCK:
1022 return RLIMIT_MEMLOCK;
1023 case TARGET_RLIMIT_MSGQUEUE:
1024 return RLIMIT_MSGQUEUE;
1025 case TARGET_RLIMIT_NICE:
1026 return RLIMIT_NICE;
1027 case TARGET_RLIMIT_NOFILE:
1028 return RLIMIT_NOFILE;
1029 case TARGET_RLIMIT_NPROC:
1030 return RLIMIT_NPROC;
1031 case TARGET_RLIMIT_RSS:
1032 return RLIMIT_RSS;
1033 case TARGET_RLIMIT_RTPRIO:
1034 return RLIMIT_RTPRIO;
1035 case TARGET_RLIMIT_SIGPENDING:
1036 return RLIMIT_SIGPENDING;
1037 case TARGET_RLIMIT_STACK:
1038 return RLIMIT_STACK;
1039 default:
1040 return code;
1041 }
1042 }
1043
1044 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1045 abi_ulong target_tv_addr)
1046 {
1047 struct target_timeval *target_tv;
1048
1049 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1050 return -TARGET_EFAULT;
1051 }
1052
1053 __get_user(tv->tv_sec, &target_tv->tv_sec);
1054 __get_user(tv->tv_usec, &target_tv->tv_usec);
1055
1056 unlock_user_struct(target_tv, target_tv_addr, 0);
1057
1058 return 0;
1059 }
1060
1061 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1062 const struct timeval *tv)
1063 {
1064 struct target_timeval *target_tv;
1065
1066 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1067 return -TARGET_EFAULT;
1068 }
1069
1070 __put_user(tv->tv_sec, &target_tv->tv_sec);
1071 __put_user(tv->tv_usec, &target_tv->tv_usec);
1072
1073 unlock_user_struct(target_tv, target_tv_addr, 1);
1074
1075 return 0;
1076 }
1077
1078 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
1079 static inline abi_long copy_from_user_timeval64(struct timeval *tv,
1080 abi_ulong target_tv_addr)
1081 {
1082 struct target__kernel_sock_timeval *target_tv;
1083
1084 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1)) {
1085 return -TARGET_EFAULT;
1086 }
1087
1088 __get_user(tv->tv_sec, &target_tv->tv_sec);
1089 __get_user(tv->tv_usec, &target_tv->tv_usec);
1090
1091 unlock_user_struct(target_tv, target_tv_addr, 0);
1092
1093 return 0;
1094 }
1095 #endif
1096
1097 static inline abi_long copy_to_user_timeval64(abi_ulong target_tv_addr,
1098 const struct timeval *tv)
1099 {
1100 struct target__kernel_sock_timeval *target_tv;
1101
1102 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0)) {
1103 return -TARGET_EFAULT;
1104 }
1105
1106 __put_user(tv->tv_sec, &target_tv->tv_sec);
1107 __put_user(tv->tv_usec, &target_tv->tv_usec);
1108
1109 unlock_user_struct(target_tv, target_tv_addr, 1);
1110
1111 return 0;
1112 }
1113
1114 #if defined(TARGET_NR_futex) || \
1115 defined(TARGET_NR_rt_sigtimedwait) || \
1116 defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6) || \
1117 defined(TARGET_NR_nanosleep) || defined(TARGET_NR_clock_settime) || \
1118 defined(TARGET_NR_utimensat) || defined(TARGET_NR_mq_timedsend) || \
1119 defined(TARGET_NR_mq_timedreceive) || defined(TARGET_NR_ipc) || \
1120 defined(TARGET_NR_semop) || defined(TARGET_NR_semtimedop) || \
1121 defined(TARGET_NR_timer_settime) || \
1122 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
1123 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
1124 abi_ulong target_addr)
1125 {
1126 struct target_timespec *target_ts;
1127
1128 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1129 return -TARGET_EFAULT;
1130 }
1131 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1132 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1133 unlock_user_struct(target_ts, target_addr, 0);
1134 return 0;
1135 }
1136 #endif
1137
1138 #if defined(TARGET_NR_clock_settime64) || defined(TARGET_NR_futex_time64) || \
1139 defined(TARGET_NR_timer_settime64) || \
1140 defined(TARGET_NR_mq_timedsend_time64) || \
1141 defined(TARGET_NR_mq_timedreceive_time64) || \
1142 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)) || \
1143 defined(TARGET_NR_clock_nanosleep_time64) || \
1144 defined(TARGET_NR_rt_sigtimedwait_time64) || \
1145 defined(TARGET_NR_utimensat) || \
1146 defined(TARGET_NR_utimensat_time64) || \
1147 defined(TARGET_NR_semtimedop_time64) || \
1148 defined(TARGET_NR_pselect6_time64) || defined(TARGET_NR_ppoll_time64)
1149 static inline abi_long target_to_host_timespec64(struct timespec *host_ts,
1150 abi_ulong target_addr)
1151 {
1152 struct target__kernel_timespec *target_ts;
1153
1154 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1)) {
1155 return -TARGET_EFAULT;
1156 }
1157 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
1158 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1159 /* in 32bit mode, this drops the padding */
1160 host_ts->tv_nsec = (long)(abi_long)host_ts->tv_nsec;
1161 unlock_user_struct(target_ts, target_addr, 0);
1162 return 0;
1163 }
1164 #endif
1165
1166 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
1167 struct timespec *host_ts)
1168 {
1169 struct target_timespec *target_ts;
1170
1171 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1172 return -TARGET_EFAULT;
1173 }
1174 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1175 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1176 unlock_user_struct(target_ts, target_addr, 1);
1177 return 0;
1178 }
1179
1180 static inline abi_long host_to_target_timespec64(abi_ulong target_addr,
1181 struct timespec *host_ts)
1182 {
1183 struct target__kernel_timespec *target_ts;
1184
1185 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0)) {
1186 return -TARGET_EFAULT;
1187 }
1188 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
1189 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
1190 unlock_user_struct(target_ts, target_addr, 1);
1191 return 0;
1192 }
1193
1194 #if defined(TARGET_NR_gettimeofday)
1195 static inline abi_long copy_to_user_timezone(abi_ulong target_tz_addr,
1196 struct timezone *tz)
1197 {
1198 struct target_timezone *target_tz;
1199
1200 if (!lock_user_struct(VERIFY_WRITE, target_tz, target_tz_addr, 1)) {
1201 return -TARGET_EFAULT;
1202 }
1203
1204 __put_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1205 __put_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1206
1207 unlock_user_struct(target_tz, target_tz_addr, 1);
1208
1209 return 0;
1210 }
1211 #endif
1212
1213 #if defined(TARGET_NR_settimeofday)
1214 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1215 abi_ulong target_tz_addr)
1216 {
1217 struct target_timezone *target_tz;
1218
1219 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1220 return -TARGET_EFAULT;
1221 }
1222
1223 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1224 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1225
1226 unlock_user_struct(target_tz, target_tz_addr, 0);
1227
1228 return 0;
1229 }
1230 #endif
1231
1232 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1233 #include <mqueue.h>
1234
1235 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1236 abi_ulong target_mq_attr_addr)
1237 {
1238 struct target_mq_attr *target_mq_attr;
1239
1240 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1241 target_mq_attr_addr, 1))
1242 return -TARGET_EFAULT;
1243
1244 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1245 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1246 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1247 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1248
1249 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1250
1251 return 0;
1252 }
1253
1254 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1255 const struct mq_attr *attr)
1256 {
1257 struct target_mq_attr *target_mq_attr;
1258
1259 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1260 target_mq_attr_addr, 0))
1261 return -TARGET_EFAULT;
1262
1263 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1264 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1265 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1266 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1267
1268 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1269
1270 return 0;
1271 }
1272 #endif
1273
1274 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1275 /* do_select() must return target values and target errnos. */
1276 static abi_long do_select(int n,
1277 abi_ulong rfd_addr, abi_ulong wfd_addr,
1278 abi_ulong efd_addr, abi_ulong target_tv_addr)
1279 {
1280 fd_set rfds, wfds, efds;
1281 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1282 struct timeval tv;
1283 struct timespec ts, *ts_ptr;
1284 abi_long ret;
1285
1286 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1287 if (ret) {
1288 return ret;
1289 }
1290 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1291 if (ret) {
1292 return ret;
1293 }
1294 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1295 if (ret) {
1296 return ret;
1297 }
1298
1299 if (target_tv_addr) {
1300 if (copy_from_user_timeval(&tv, target_tv_addr))
1301 return -TARGET_EFAULT;
1302 ts.tv_sec = tv.tv_sec;
1303 ts.tv_nsec = tv.tv_usec * 1000;
1304 ts_ptr = &ts;
1305 } else {
1306 ts_ptr = NULL;
1307 }
1308
1309 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1310 ts_ptr, NULL));
1311
1312 if (!is_error(ret)) {
1313 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1314 return -TARGET_EFAULT;
1315 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1316 return -TARGET_EFAULT;
1317 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1318 return -TARGET_EFAULT;
1319
1320 if (target_tv_addr) {
1321 tv.tv_sec = ts.tv_sec;
1322 tv.tv_usec = ts.tv_nsec / 1000;
1323 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1324 return -TARGET_EFAULT;
1325 }
1326 }
1327 }
1328
1329 return ret;
1330 }
1331
1332 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1333 static abi_long do_old_select(abi_ulong arg1)
1334 {
1335 struct target_sel_arg_struct *sel;
1336 abi_ulong inp, outp, exp, tvp;
1337 long nsel;
1338
1339 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1340 return -TARGET_EFAULT;
1341 }
1342
1343 nsel = tswapal(sel->n);
1344 inp = tswapal(sel->inp);
1345 outp = tswapal(sel->outp);
1346 exp = tswapal(sel->exp);
1347 tvp = tswapal(sel->tvp);
1348
1349 unlock_user_struct(sel, arg1, 0);
1350
1351 return do_select(nsel, inp, outp, exp, tvp);
1352 }
1353 #endif
1354 #endif
1355
1356 #if defined(TARGET_NR_pselect6) || defined(TARGET_NR_pselect6_time64)
1357 static abi_long do_pselect6(abi_long arg1, abi_long arg2, abi_long arg3,
1358 abi_long arg4, abi_long arg5, abi_long arg6,
1359 bool time64)
1360 {
1361 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
1362 fd_set rfds, wfds, efds;
1363 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1364 struct timespec ts, *ts_ptr;
1365 abi_long ret;
1366
1367 /*
1368 * The 6th arg is actually two args smashed together,
1369 * so we cannot use the C library.
1370 */
1371 sigset_t set;
1372 struct {
1373 sigset_t *set;
1374 size_t size;
1375 } sig, *sig_ptr;
1376
1377 abi_ulong arg_sigset, arg_sigsize, *arg7;
1378 target_sigset_t *target_sigset;
1379
1380 n = arg1;
1381 rfd_addr = arg2;
1382 wfd_addr = arg3;
1383 efd_addr = arg4;
1384 ts_addr = arg5;
1385
1386 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1387 if (ret) {
1388 return ret;
1389 }
1390 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1391 if (ret) {
1392 return ret;
1393 }
1394 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1395 if (ret) {
1396 return ret;
1397 }
1398
1399 /*
1400 * This takes a timespec, and not a timeval, so we cannot
1401 * use the do_select() helper ...
1402 */
1403 if (ts_addr) {
1404 if (time64) {
1405 if (target_to_host_timespec64(&ts, ts_addr)) {
1406 return -TARGET_EFAULT;
1407 }
1408 } else {
1409 if (target_to_host_timespec(&ts, ts_addr)) {
1410 return -TARGET_EFAULT;
1411 }
1412 }
1413 ts_ptr = &ts;
1414 } else {
1415 ts_ptr = NULL;
1416 }
1417
1418 /* Extract the two packed args for the sigset */
1419 if (arg6) {
1420 sig_ptr = &sig;
1421 sig.size = SIGSET_T_SIZE;
1422
1423 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
1424 if (!arg7) {
1425 return -TARGET_EFAULT;
1426 }
1427 arg_sigset = tswapal(arg7[0]);
1428 arg_sigsize = tswapal(arg7[1]);
1429 unlock_user(arg7, arg6, 0);
1430
1431 if (arg_sigset) {
1432 sig.set = &set;
1433 if (arg_sigsize != sizeof(*target_sigset)) {
1434 /* Like the kernel, we enforce correct size sigsets */
1435 return -TARGET_EINVAL;
1436 }
1437 target_sigset = lock_user(VERIFY_READ, arg_sigset,
1438 sizeof(*target_sigset), 1);
1439 if (!target_sigset) {
1440 return -TARGET_EFAULT;
1441 }
1442 target_to_host_sigset(&set, target_sigset);
1443 unlock_user(target_sigset, arg_sigset, 0);
1444 } else {
1445 sig.set = NULL;
1446 }
1447 } else {
1448 sig_ptr = NULL;
1449 }
1450
1451 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1452 ts_ptr, sig_ptr));
1453
1454 if (!is_error(ret)) {
1455 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n)) {
1456 return -TARGET_EFAULT;
1457 }
1458 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n)) {
1459 return -TARGET_EFAULT;
1460 }
1461 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n)) {
1462 return -TARGET_EFAULT;
1463 }
1464 if (time64) {
1465 if (ts_addr && host_to_target_timespec64(ts_addr, &ts)) {
1466 return -TARGET_EFAULT;
1467 }
1468 } else {
1469 if (ts_addr && host_to_target_timespec(ts_addr, &ts)) {
1470 return -TARGET_EFAULT;
1471 }
1472 }
1473 }
1474 return ret;
1475 }
1476 #endif
1477
1478 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll) || \
1479 defined(TARGET_NR_ppoll_time64)
1480 static abi_long do_ppoll(abi_long arg1, abi_long arg2, abi_long arg3,
1481 abi_long arg4, abi_long arg5, bool ppoll, bool time64)
1482 {
1483 struct target_pollfd *target_pfd;
1484 unsigned int nfds = arg2;
1485 struct pollfd *pfd;
1486 unsigned int i;
1487 abi_long ret;
1488
1489 pfd = NULL;
1490 target_pfd = NULL;
1491 if (nfds) {
1492 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
1493 return -TARGET_EINVAL;
1494 }
1495 target_pfd = lock_user(VERIFY_WRITE, arg1,
1496 sizeof(struct target_pollfd) * nfds, 1);
1497 if (!target_pfd) {
1498 return -TARGET_EFAULT;
1499 }
1500
1501 pfd = alloca(sizeof(struct pollfd) * nfds);
1502 for (i = 0; i < nfds; i++) {
1503 pfd[i].fd = tswap32(target_pfd[i].fd);
1504 pfd[i].events = tswap16(target_pfd[i].events);
1505 }
1506 }
1507 if (ppoll) {
1508 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
1509 target_sigset_t *target_set;
1510 sigset_t _set, *set = &_set;
1511
1512 if (arg3) {
1513 if (time64) {
1514 if (target_to_host_timespec64(timeout_ts, arg3)) {
1515 unlock_user(target_pfd, arg1, 0);
1516 return -TARGET_EFAULT;
1517 }
1518 } else {
1519 if (target_to_host_timespec(timeout_ts, arg3)) {
1520 unlock_user(target_pfd, arg1, 0);
1521 return -TARGET_EFAULT;
1522 }
1523 }
1524 } else {
1525 timeout_ts = NULL;
1526 }
1527
1528 if (arg4) {
1529 if (arg5 != sizeof(target_sigset_t)) {
1530 unlock_user(target_pfd, arg1, 0);
1531 return -TARGET_EINVAL;
1532 }
1533
1534 target_set = lock_user(VERIFY_READ, arg4,
1535 sizeof(target_sigset_t), 1);
1536 if (!target_set) {
1537 unlock_user(target_pfd, arg1, 0);
1538 return -TARGET_EFAULT;
1539 }
1540 target_to_host_sigset(set, target_set);
1541 } else {
1542 set = NULL;
1543 }
1544
1545 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
1546 set, SIGSET_T_SIZE));
1547
1548 if (!is_error(ret) && arg3) {
1549 if (time64) {
1550 if (host_to_target_timespec64(arg3, timeout_ts)) {
1551 return -TARGET_EFAULT;
1552 }
1553 } else {
1554 if (host_to_target_timespec(arg3, timeout_ts)) {
1555 return -TARGET_EFAULT;
1556 }
1557 }
1558 }
1559 if (arg4) {
1560 unlock_user(target_set, arg4, 0);
1561 }
1562 } else {
1563 struct timespec ts, *pts;
1564
1565 if (arg3 >= 0) {
1566 /* Convert ms to secs, ns */
1567 ts.tv_sec = arg3 / 1000;
1568 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
1569 pts = &ts;
1570 } else {
1571 /* -ve poll() timeout means "infinite" */
1572 pts = NULL;
1573 }
1574 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
1575 }
1576
1577 if (!is_error(ret)) {
1578 for (i = 0; i < nfds; i++) {
1579 target_pfd[i].revents = tswap16(pfd[i].revents);
1580 }
1581 }
1582 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
1583 return ret;
1584 }
1585 #endif
1586
1587 static abi_long do_pipe2(int host_pipe[], int flags)
1588 {
1589 #ifdef CONFIG_PIPE2
1590 return pipe2(host_pipe, flags);
1591 #else
1592 return -ENOSYS;
1593 #endif
1594 }
1595
1596 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1597 int flags, int is_pipe2)
1598 {
1599 int host_pipe[2];
1600 abi_long ret;
1601 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1602
1603 if (is_error(ret))
1604 return get_errno(ret);
1605
1606 /* Several targets have special calling conventions for the original
1607 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1608 if (!is_pipe2) {
1609 #if defined(TARGET_ALPHA)
1610 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1611 return host_pipe[0];
1612 #elif defined(TARGET_MIPS)
1613 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1614 return host_pipe[0];
1615 #elif defined(TARGET_SH4)
1616 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1617 return host_pipe[0];
1618 #elif defined(TARGET_SPARC)
1619 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1620 return host_pipe[0];
1621 #endif
1622 }
1623
1624 if (put_user_s32(host_pipe[0], pipedes)
1625 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1626 return -TARGET_EFAULT;
1627 return get_errno(ret);
1628 }
1629
1630 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1631 abi_ulong target_addr,
1632 socklen_t len)
1633 {
1634 struct target_ip_mreqn *target_smreqn;
1635
1636 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1637 if (!target_smreqn)
1638 return -TARGET_EFAULT;
1639 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1640 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1641 if (len == sizeof(struct target_ip_mreqn))
1642 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1643 unlock_user(target_smreqn, target_addr, 0);
1644
1645 return 0;
1646 }
1647
1648 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1649 abi_ulong target_addr,
1650 socklen_t len)
1651 {
1652 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1653 sa_family_t sa_family;
1654 struct target_sockaddr *target_saddr;
1655
1656 if (fd_trans_target_to_host_addr(fd)) {
1657 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1658 }
1659
1660 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1661 if (!target_saddr)
1662 return -TARGET_EFAULT;
1663
1664 sa_family = tswap16(target_saddr->sa_family);
1665
1666 /* Oops. The caller might send a incomplete sun_path; sun_path
1667 * must be terminated by \0 (see the manual page), but
1668 * unfortunately it is quite common to specify sockaddr_un
1669 * length as "strlen(x->sun_path)" while it should be
1670 * "strlen(...) + 1". We'll fix that here if needed.
1671 * Linux kernel has a similar feature.
1672 */
1673
1674 if (sa_family == AF_UNIX) {
1675 if (len < unix_maxlen && len > 0) {
1676 char *cp = (char*)target_saddr;
1677
1678 if ( cp[len-1] && !cp[len] )
1679 len++;
1680 }
1681 if (len > unix_maxlen)
1682 len = unix_maxlen;
1683 }
1684
1685 memcpy(addr, target_saddr, len);
1686 addr->sa_family = sa_family;
1687 if (sa_family == AF_NETLINK) {
1688 struct sockaddr_nl *nladdr;
1689
1690 nladdr = (struct sockaddr_nl *)addr;
1691 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1692 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1693 } else if (sa_family == AF_PACKET) {
1694 struct target_sockaddr_ll *lladdr;
1695
1696 lladdr = (struct target_sockaddr_ll *)addr;
1697 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1698 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1699 }
1700 unlock_user(target_saddr, target_addr, 0);
1701
1702 return 0;
1703 }
1704
1705 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1706 struct sockaddr *addr,
1707 socklen_t len)
1708 {
1709 struct target_sockaddr *target_saddr;
1710
1711 if (len == 0) {
1712 return 0;
1713 }
1714 assert(addr);
1715
1716 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1717 if (!target_saddr)
1718 return -TARGET_EFAULT;
1719 memcpy(target_saddr, addr, len);
1720 if (len >= offsetof(struct target_sockaddr, sa_family) +
1721 sizeof(target_saddr->sa_family)) {
1722 target_saddr->sa_family = tswap16(addr->sa_family);
1723 }
1724 if (addr->sa_family == AF_NETLINK &&
1725 len >= sizeof(struct target_sockaddr_nl)) {
1726 struct target_sockaddr_nl *target_nl =
1727 (struct target_sockaddr_nl *)target_saddr;
1728 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1729 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1730 } else if (addr->sa_family == AF_PACKET) {
1731 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1732 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1733 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1734 } else if (addr->sa_family == AF_INET6 &&
1735 len >= sizeof(struct target_sockaddr_in6)) {
1736 struct target_sockaddr_in6 *target_in6 =
1737 (struct target_sockaddr_in6 *)target_saddr;
1738 target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
1739 }
1740 unlock_user(target_saddr, target_addr, len);
1741
1742 return 0;
1743 }
1744
1745 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1746 struct target_msghdr *target_msgh)
1747 {
1748 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1749 abi_long msg_controllen;
1750 abi_ulong target_cmsg_addr;
1751 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1752 socklen_t space = 0;
1753
1754 msg_controllen = tswapal(target_msgh->msg_controllen);
1755 if (msg_controllen < sizeof (struct target_cmsghdr))
1756 goto the_end;
1757 target_cmsg_addr = tswapal(target_msgh->msg_control);
1758 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1759 target_cmsg_start = target_cmsg;
1760 if (!target_cmsg)
1761 return -TARGET_EFAULT;
1762
1763 while (cmsg && target_cmsg) {
1764 void *data = CMSG_DATA(cmsg);
1765 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1766
1767 int len = tswapal(target_cmsg->cmsg_len)
1768 - sizeof(struct target_cmsghdr);
1769
1770 space += CMSG_SPACE(len);
1771 if (space > msgh->msg_controllen) {
1772 space -= CMSG_SPACE(len);
1773 /* This is a QEMU bug, since we allocated the payload
1774 * area ourselves (unlike overflow in host-to-target
1775 * conversion, which is just the guest giving us a buffer
1776 * that's too small). It can't happen for the payload types
1777 * we currently support; if it becomes an issue in future
1778 * we would need to improve our allocation strategy to
1779 * something more intelligent than "twice the size of the
1780 * target buffer we're reading from".
1781 */
1782 qemu_log_mask(LOG_UNIMP,
1783 ("Unsupported ancillary data %d/%d: "
1784 "unhandled msg size\n"),
1785 tswap32(target_cmsg->cmsg_level),
1786 tswap32(target_cmsg->cmsg_type));
1787 break;
1788 }
1789
1790 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1791 cmsg->cmsg_level = SOL_SOCKET;
1792 } else {
1793 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1794 }
1795 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1796 cmsg->cmsg_len = CMSG_LEN(len);
1797
1798 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1799 int *fd = (int *)data;
1800 int *target_fd = (int *)target_data;
1801 int i, numfds = len / sizeof(int);
1802
1803 for (i = 0; i < numfds; i++) {
1804 __get_user(fd[i], target_fd + i);
1805 }
1806 } else if (cmsg->cmsg_level == SOL_SOCKET
1807 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1808 struct ucred *cred = (struct ucred *)data;
1809 struct target_ucred *target_cred =
1810 (struct target_ucred *)target_data;
1811
1812 __get_user(cred->pid, &target_cred->pid);
1813 __get_user(cred->uid, &target_cred->uid);
1814 __get_user(cred->gid, &target_cred->gid);
1815 } else {
1816 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
1817 cmsg->cmsg_level, cmsg->cmsg_type);
1818 memcpy(data, target_data, len);
1819 }
1820
1821 cmsg = CMSG_NXTHDR(msgh, cmsg);
1822 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1823 target_cmsg_start);
1824 }
1825 unlock_user(target_cmsg, target_cmsg_addr, 0);
1826 the_end:
1827 msgh->msg_controllen = space;
1828 return 0;
1829 }
1830
1831 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1832 struct msghdr *msgh)
1833 {
1834 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1835 abi_long msg_controllen;
1836 abi_ulong target_cmsg_addr;
1837 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1838 socklen_t space = 0;
1839
1840 msg_controllen = tswapal(target_msgh->msg_controllen);
1841 if (msg_controllen < sizeof (struct target_cmsghdr))
1842 goto the_end;
1843 target_cmsg_addr = tswapal(target_msgh->msg_control);
1844 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1845 target_cmsg_start = target_cmsg;
1846 if (!target_cmsg)
1847 return -TARGET_EFAULT;
1848
1849 while (cmsg && target_cmsg) {
1850 void *data = CMSG_DATA(cmsg);
1851 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1852
1853 int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
1854 int tgt_len, tgt_space;
1855
1856 /* We never copy a half-header but may copy half-data;
1857 * this is Linux's behaviour in put_cmsg(). Note that
1858 * truncation here is a guest problem (which we report
1859 * to the guest via the CTRUNC bit), unlike truncation
1860 * in target_to_host_cmsg, which is a QEMU bug.
1861 */
1862 if (msg_controllen < sizeof(struct target_cmsghdr)) {
1863 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1864 break;
1865 }
1866
1867 if (cmsg->cmsg_level == SOL_SOCKET) {
1868 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1869 } else {
1870 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1871 }
1872 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1873
1874 /* Payload types which need a different size of payload on
1875 * the target must adjust tgt_len here.
1876 */
1877 tgt_len = len;
1878 switch (cmsg->cmsg_level) {
1879 case SOL_SOCKET:
1880 switch (cmsg->cmsg_type) {
1881 case SO_TIMESTAMP:
1882 tgt_len = sizeof(struct target_timeval);
1883 break;
1884 default:
1885 break;
1886 }
1887 break;
1888 default:
1889 break;
1890 }
1891
1892 if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
1893 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1894 tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
1895 }
1896
1897 /* We must now copy-and-convert len bytes of payload
1898 * into tgt_len bytes of destination space. Bear in mind
1899 * that in both source and destination we may be dealing
1900 * with a truncated value!
1901 */
1902 switch (cmsg->cmsg_level) {
1903 case SOL_SOCKET:
1904 switch (cmsg->cmsg_type) {
1905 case SCM_RIGHTS:
1906 {
1907 int *fd = (int *)data;
1908 int *target_fd = (int *)target_data;
1909 int i, numfds = tgt_len / sizeof(int);
1910
1911 for (i = 0; i < numfds; i++) {
1912 __put_user(fd[i], target_fd + i);
1913 }
1914 break;
1915 }
1916 case SO_TIMESTAMP:
1917 {
1918 struct timeval *tv = (struct timeval *)data;
1919 struct target_timeval *target_tv =
1920 (struct target_timeval *)target_data;
1921
1922 if (len != sizeof(struct timeval) ||
1923 tgt_len != sizeof(struct target_timeval)) {
1924 goto unimplemented;
1925 }
1926
1927 /* copy struct timeval to target */
1928 __put_user(tv->tv_sec, &target_tv->tv_sec);
1929 __put_user(tv->tv_usec, &target_tv->tv_usec);
1930 break;
1931 }
1932 case SCM_CREDENTIALS:
1933 {
1934 struct ucred *cred = (struct ucred *)data;
1935 struct target_ucred *target_cred =
1936 (struct target_ucred *)target_data;
1937
1938 __put_user(cred->pid, &target_cred->pid);
1939 __put_user(cred->uid, &target_cred->uid);
1940 __put_user(cred->gid, &target_cred->gid);
1941 break;
1942 }
1943 default:
1944 goto unimplemented;
1945 }
1946 break;
1947
1948 case SOL_IP:
1949 switch (cmsg->cmsg_type) {
1950 case IP_TTL:
1951 {
1952 uint32_t *v = (uint32_t *)data;
1953 uint32_t *t_int = (uint32_t *)target_data;
1954
1955 if (len != sizeof(uint32_t) ||
1956 tgt_len != sizeof(uint32_t)) {
1957 goto unimplemented;
1958 }
1959 __put_user(*v, t_int);
1960 break;
1961 }
1962 case IP_RECVERR:
1963 {
1964 struct errhdr_t {
1965 struct sock_extended_err ee;
1966 struct sockaddr_in offender;
1967 };
1968 struct errhdr_t *errh = (struct errhdr_t *)data;
1969 struct errhdr_t *target_errh =
1970 (struct errhdr_t *)target_data;
1971
1972 if (len != sizeof(struct errhdr_t) ||
1973 tgt_len != sizeof(struct errhdr_t)) {
1974 goto unimplemented;
1975 }
1976 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
1977 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
1978 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
1979 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
1980 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
1981 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
1982 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
1983 host_to_target_sockaddr((unsigned long) &target_errh->offender,
1984 (void *) &errh->offender, sizeof(errh->offender));
1985 break;
1986 }
1987 default:
1988 goto unimplemented;
1989 }
1990 break;
1991
1992 case SOL_IPV6:
1993 switch (cmsg->cmsg_type) {
1994 case IPV6_HOPLIMIT:
1995 {
1996 uint32_t *v = (uint32_t *)data;
1997 uint32_t *t_int = (uint32_t *)target_data;
1998
1999 if (len != sizeof(uint32_t) ||
2000 tgt_len != sizeof(uint32_t)) {
2001 goto unimplemented;
2002 }
2003 __put_user(*v, t_int);
2004 break;
2005 }
2006 case IPV6_RECVERR:
2007 {
2008 struct errhdr6_t {
2009 struct sock_extended_err ee;
2010 struct sockaddr_in6 offender;
2011 };
2012 struct errhdr6_t *errh = (struct errhdr6_t *)data;
2013 struct errhdr6_t *target_errh =
2014 (struct errhdr6_t *)target_data;
2015
2016 if (len != sizeof(struct errhdr6_t) ||
2017 tgt_len != sizeof(struct errhdr6_t)) {
2018 goto unimplemented;
2019 }
2020 __put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
2021 __put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
2022 __put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
2023 __put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
2024 __put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
2025 __put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
2026 __put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
2027 host_to_target_sockaddr((unsigned long) &target_errh->offender,
2028 (void *) &errh->offender, sizeof(errh->offender));
2029 break;
2030 }
2031 default:
2032 goto unimplemented;
2033 }
2034 break;
2035
2036 default:
2037 unimplemented:
2038 qemu_log_mask(LOG_UNIMP, "Unsupported ancillary data: %d/%d\n",
2039 cmsg->cmsg_level, cmsg->cmsg_type);
2040 memcpy(target_data, data, MIN(len, tgt_len));
2041 if (tgt_len > len) {
2042 memset(target_data + len, 0, tgt_len - len);
2043 }
2044 }
2045
2046 target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
2047 tgt_space = TARGET_CMSG_SPACE(tgt_len);
2048 if (msg_controllen < tgt_space) {
2049 tgt_space = msg_controllen;
2050 }
2051 msg_controllen -= tgt_space;
2052 space += tgt_space;
2053 cmsg = CMSG_NXTHDR(msgh, cmsg);
2054 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
2055 target_cmsg_start);
2056 }
2057 unlock_user(target_cmsg, target_cmsg_addr, space);
2058 the_end:
2059 target_msgh->msg_controllen = tswapal(space);
2060 return 0;
2061 }
2062
2063 /* do_setsockopt() Must return target values and target errnos. */
2064 static abi_long do_setsockopt(int sockfd, int level, int optname,
2065 abi_ulong optval_addr, socklen_t optlen)
2066 {
2067 abi_long ret;
2068 int val;
2069 struct ip_mreqn *ip_mreq;
2070 struct ip_mreq_source *ip_mreq_source;
2071
2072 switch(level) {
2073 case SOL_TCP:
2074 case SOL_UDP:
2075 /* TCP and UDP options all take an 'int' value. */
2076 if (optlen < sizeof(uint32_t))
2077 return -TARGET_EINVAL;
2078
2079 if (get_user_u32(val, optval_addr))
2080 return -TARGET_EFAULT;
2081 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2082 break;
2083 case SOL_IP:
2084 switch(optname) {
2085 case IP_TOS:
2086 case IP_TTL:
2087 case IP_HDRINCL:
2088 case IP_ROUTER_ALERT:
2089 case IP_RECVOPTS:
2090 case IP_RETOPTS:
2091 case IP_PKTINFO:
2092 case IP_MTU_DISCOVER:
2093 case IP_RECVERR:
2094 case IP_RECVTTL:
2095 case IP_RECVTOS:
2096 #ifdef IP_FREEBIND
2097 case IP_FREEBIND:
2098 #endif
2099 case IP_MULTICAST_TTL:
2100 case IP_MULTICAST_LOOP:
2101 val = 0;
2102 if (optlen >= sizeof(uint32_t)) {
2103 if (get_user_u32(val, optval_addr))
2104 return -TARGET_EFAULT;
2105 } else if (optlen >= 1) {
2106 if (get_user_u8(val, optval_addr))
2107 return -TARGET_EFAULT;
2108 }
2109 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2110 break;
2111 case IP_ADD_MEMBERSHIP:
2112 case IP_DROP_MEMBERSHIP:
2113 if (optlen < sizeof (struct target_ip_mreq) ||
2114 optlen > sizeof (struct target_ip_mreqn))
2115 return -TARGET_EINVAL;
2116
2117 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2118 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2119 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2120 break;
2121
2122 case IP_BLOCK_SOURCE:
2123 case IP_UNBLOCK_SOURCE:
2124 case IP_ADD_SOURCE_MEMBERSHIP:
2125 case IP_DROP_SOURCE_MEMBERSHIP:
2126 if (optlen != sizeof (struct target_ip_mreq_source))
2127 return -TARGET_EINVAL;
2128
2129 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2130 if (!ip_mreq_source) {
2131 return -TARGET_EFAULT;
2132 }
2133 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2134 unlock_user (ip_mreq_source, optval_addr, 0);
2135 break;
2136
2137 default:
2138 goto unimplemented;
2139 }
2140 break;
2141 case SOL_IPV6:
2142 switch (optname) {
2143 case IPV6_MTU_DISCOVER:
2144 case IPV6_MTU:
2145 case IPV6_V6ONLY:
2146 case IPV6_RECVPKTINFO:
2147 case IPV6_UNICAST_HOPS:
2148 case IPV6_MULTICAST_HOPS:
2149 case IPV6_MULTICAST_LOOP:
2150 case IPV6_RECVERR:
2151 case IPV6_RECVHOPLIMIT:
2152 case IPV6_2292HOPLIMIT:
2153 case IPV6_CHECKSUM:
2154 case IPV6_ADDRFORM:
2155 case IPV6_2292PKTINFO:
2156 case IPV6_RECVTCLASS:
2157 case IPV6_RECVRTHDR:
2158 case IPV6_2292RTHDR:
2159 case IPV6_RECVHOPOPTS:
2160 case IPV6_2292HOPOPTS:
2161 case IPV6_RECVDSTOPTS:
2162 case IPV6_2292DSTOPTS:
2163 case IPV6_TCLASS:
2164 case IPV6_ADDR_PREFERENCES:
2165 #ifdef IPV6_RECVPATHMTU
2166 case IPV6_RECVPATHMTU:
2167 #endif
2168 #ifdef IPV6_TRANSPARENT
2169 case IPV6_TRANSPARENT:
2170 #endif
2171 #ifdef IPV6_FREEBIND
2172 case IPV6_FREEBIND:
2173 #endif
2174 #ifdef IPV6_RECVORIGDSTADDR
2175 case IPV6_RECVORIGDSTADDR:
2176 #endif
2177 val = 0;
2178 if (optlen < sizeof(uint32_t)) {
2179 return -TARGET_EINVAL;
2180 }
2181 if (get_user_u32(val, optval_addr)) {
2182 return -TARGET_EFAULT;
2183 }
2184 ret = get_errno(setsockopt(sockfd, level, optname,
2185 &val, sizeof(val)));
2186 break;
2187 case IPV6_PKTINFO:
2188 {
2189 struct in6_pktinfo pki;
2190
2191 if (optlen < sizeof(pki)) {
2192 return -TARGET_EINVAL;
2193 }
2194
2195 if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
2196 return -TARGET_EFAULT;
2197 }
2198
2199 pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
2200
2201 ret = get_errno(setsockopt(sockfd, level, optname,
2202 &pki, sizeof(pki)));
2203 break;
2204 }
2205 case IPV6_ADD_MEMBERSHIP:
2206 case IPV6_DROP_MEMBERSHIP:
2207 {
2208 struct ipv6_mreq ipv6mreq;
2209
2210 if (optlen < sizeof(ipv6mreq)) {
2211 return -TARGET_EINVAL;
2212 }
2213
2214 if (copy_from_user(&ipv6mreq, optval_addr, sizeof(ipv6mreq))) {
2215 return -TARGET_EFAULT;
2216 }
2217
2218 ipv6mreq.ipv6mr_interface = tswap32(ipv6mreq.ipv6mr_interface);
2219
2220 ret = get_errno(setsockopt(sockfd, level, optname,
2221 &ipv6mreq, sizeof(ipv6mreq)));
2222 break;
2223 }
2224 default:
2225 goto unimplemented;
2226 }
2227 break;
2228 case SOL_ICMPV6:
2229 switch (optname) {
2230 case ICMPV6_FILTER:
2231 {
2232 struct icmp6_filter icmp6f;
2233
2234 if (optlen > sizeof(icmp6f)) {
2235 optlen = sizeof(icmp6f);
2236 }
2237
2238 if (copy_from_user(&icmp6f, optval_addr, optlen)) {
2239 return -TARGET_EFAULT;
2240 }
2241
2242 for (val = 0; val < 8; val++) {
2243 icmp6f.data[val] = tswap32(icmp6f.data[val]);
2244 }
2245
2246 ret = get_errno(setsockopt(sockfd, level, optname,
2247 &icmp6f, optlen));
2248 break;
2249 }
2250 default:
2251 goto unimplemented;
2252 }
2253 break;
2254 case SOL_RAW:
2255 switch (optname) {
2256 case ICMP_FILTER:
2257 case IPV6_CHECKSUM:
2258 /* those take an u32 value */
2259 if (optlen < sizeof(uint32_t)) {
2260 return -TARGET_EINVAL;
2261 }
2262
2263 if (get_user_u32(val, optval_addr)) {
2264 return -TARGET_EFAULT;
2265 }
2266 ret = get_errno(setsockopt(sockfd, level, optname,
2267 &val, sizeof(val)));
2268 break;
2269
2270 default:
2271 goto unimplemented;
2272 }
2273 break;
2274 #if defined(SOL_ALG) && defined(ALG_SET_KEY) && defined(ALG_SET_AEAD_AUTHSIZE)
2275 case SOL_ALG:
2276 switch (optname) {
2277 case ALG_SET_KEY:
2278 {
2279 char *alg_key = g_malloc(optlen);
2280
2281 if (!alg_key) {
2282 return -TARGET_ENOMEM;
2283 }
2284 if (copy_from_user(alg_key, optval_addr, optlen)) {
2285 g_free(alg_key);
2286 return -TARGET_EFAULT;
2287 }
2288 ret = get_errno(setsockopt(sockfd, level, optname,
2289 alg_key, optlen));
2290 g_free(alg_key);
2291 break;
2292 }
2293 case ALG_SET_AEAD_AUTHSIZE:
2294 {
2295 ret = get_errno(setsockopt(sockfd, level, optname,
2296 NULL, optlen));
2297 break;
2298 }
2299 default:
2300 goto unimplemented;
2301 }
2302 break;
2303 #endif
2304 case TARGET_SOL_SOCKET:
2305 switch (optname) {
2306 case TARGET_SO_RCVTIMEO:
2307 {
2308 struct timeval tv;
2309
2310 optname = SO_RCVTIMEO;
2311
2312 set_timeout:
2313 if (optlen != sizeof(struct target_timeval)) {
2314 return -TARGET_EINVAL;
2315 }
2316
2317 if (copy_from_user_timeval(&tv, optval_addr)) {
2318 return -TARGET_EFAULT;
2319 }
2320
2321 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2322 &tv, sizeof(tv)));
2323 return ret;
2324 }
2325 case TARGET_SO_SNDTIMEO:
2326 optname = SO_SNDTIMEO;
2327 goto set_timeout;
2328 case TARGET_SO_ATTACH_FILTER:
2329 {
2330 struct target_sock_fprog *tfprog;
2331 struct target_sock_filter *tfilter;
2332 struct sock_fprog fprog;
2333 struct sock_filter *filter;
2334 int i;
2335
2336 if (optlen != sizeof(*tfprog)) {
2337 return -TARGET_EINVAL;
2338 }
2339 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2340 return -TARGET_EFAULT;
2341 }
2342 if (!lock_user_struct(VERIFY_READ, tfilter,
2343 tswapal(tfprog->filter), 0)) {
2344 unlock_user_struct(tfprog, optval_addr, 1);
2345 return -TARGET_EFAULT;
2346 }
2347
2348 fprog.len = tswap16(tfprog->len);
2349 filter = g_try_new(struct sock_filter, fprog.len);
2350 if (filter == NULL) {
2351 unlock_user_struct(tfilter, tfprog->filter, 1);
2352 unlock_user_struct(tfprog, optval_addr, 1);
2353 return -TARGET_ENOMEM;
2354 }
2355 for (i = 0; i < fprog.len; i++) {
2356 filter[i].code = tswap16(tfilter[i].code);
2357 filter[i].jt = tfilter[i].jt;
2358 filter[i].jf = tfilter[i].jf;
2359 filter[i].k = tswap32(tfilter[i].k);
2360 }
2361 fprog.filter = filter;
2362
2363 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2364 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2365 g_free(filter);
2366
2367 unlock_user_struct(tfilter, tfprog->filter, 1);
2368 unlock_user_struct(tfprog, optval_addr, 1);
2369 return ret;
2370 }
2371 case TARGET_SO_BINDTODEVICE:
2372 {
2373 char *dev_ifname, *addr_ifname;
2374
2375 if (optlen > IFNAMSIZ - 1) {
2376 optlen = IFNAMSIZ - 1;
2377 }
2378 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2379 if (!dev_ifname) {
2380 return -TARGET_EFAULT;
2381 }
2382 optname = SO_BINDTODEVICE;
2383 addr_ifname = alloca(IFNAMSIZ);
2384 memcpy(addr_ifname, dev_ifname, optlen);
2385 addr_ifname[optlen] = 0;
2386 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2387 addr_ifname, optlen));
2388 unlock_user (dev_ifname, optval_addr, 0);
2389 return ret;
2390 }
2391 case TARGET_SO_LINGER:
2392 {
2393 struct linger lg;
2394 struct target_linger *tlg;
2395
2396 if (optlen != sizeof(struct target_linger)) {
2397 return -TARGET_EINVAL;
2398 }
2399 if (!lock_user_struct(VERIFY_READ, tlg, optval_addr, 1)) {
2400 return -TARGET_EFAULT;
2401 }
2402 __get_user(lg.l_onoff, &tlg->l_onoff);
2403 __get_user(lg.l_linger, &tlg->l_linger);
2404 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, SO_LINGER,
2405 &lg, sizeof(lg)));
2406 unlock_user_struct(tlg, optval_addr, 0);
2407 return ret;
2408 }
2409 /* Options with 'int' argument. */
2410 case TARGET_SO_DEBUG:
2411 optname = SO_DEBUG;
2412 break;
2413 case TARGET_SO_REUSEADDR:
2414 optname = SO_REUSEADDR;
2415 break;
2416 #ifdef SO_REUSEPORT
2417 case TARGET_SO_REUSEPORT:
2418 optname = SO_REUSEPORT;
2419 break;
2420 #endif
2421 case TARGET_SO_TYPE:
2422 optname = SO_TYPE;
2423 break;
2424 case TARGET_SO_ERROR:
2425 optname = SO_ERROR;
2426 break;
2427 case TARGET_SO_DONTROUTE:
2428 optname = SO_DONTROUTE;
2429 break;
2430 case TARGET_SO_BROADCAST:
2431 optname = SO_BROADCAST;
2432 break;
2433 case TARGET_SO_SNDBUF:
2434 optname = SO_SNDBUF;
2435 break;
2436 case TARGET_SO_SNDBUFFORCE:
2437 optname = SO_SNDBUFFORCE;
2438 break;
2439 case TARGET_SO_RCVBUF:
2440 optname = SO_RCVBUF;
2441 break;
2442 case TARGET_SO_RCVBUFFORCE:
2443 optname = SO_RCVBUFFORCE;
2444 break;
2445 case TARGET_SO_KEEPALIVE:
2446 optname = SO_KEEPALIVE;
2447 break;
2448 case TARGET_SO_OOBINLINE:
2449 optname = SO_OOBINLINE;
2450 break;
2451 case TARGET_SO_NO_CHECK:
2452 optname = SO_NO_CHECK;
2453 break;
2454 case TARGET_SO_PRIORITY:
2455 optname = SO_PRIORITY;
2456 break;
2457 #ifdef SO_BSDCOMPAT
2458 case TARGET_SO_BSDCOMPAT:
2459 optname = SO_BSDCOMPAT;
2460 break;
2461 #endif
2462 case TARGET_SO_PASSCRED:
2463 optname = SO_PASSCRED;
2464 break;
2465 case TARGET_SO_PASSSEC:
2466 optname = SO_PASSSEC;
2467 break;
2468 case TARGET_SO_TIMESTAMP:
2469 optname = SO_TIMESTAMP;
2470 break;
2471 case TARGET_SO_RCVLOWAT:
2472 optname = SO_RCVLOWAT;
2473 break;
2474 default:
2475 goto unimplemented;
2476 }
2477 if (optlen < sizeof(uint32_t))
2478 return -TARGET_EINVAL;
2479
2480 if (get_user_u32(val, optval_addr))
2481 return -TARGET_EFAULT;
2482 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2483 break;
2484 #ifdef SOL_NETLINK
2485 case SOL_NETLINK:
2486 switch (optname) {
2487 case NETLINK_PKTINFO:
2488 case NETLINK_ADD_MEMBERSHIP:
2489 case NETLINK_DROP_MEMBERSHIP:
2490 case NETLINK_BROADCAST_ERROR:
2491 case NETLINK_NO_ENOBUFS:
2492 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2493 case NETLINK_LISTEN_ALL_NSID:
2494 case NETLINK_CAP_ACK:
2495 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2496 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2497 case NETLINK_EXT_ACK:
2498 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2499 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2500 case NETLINK_GET_STRICT_CHK:
2501 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2502 break;
2503 default:
2504 goto unimplemented;
2505 }
2506 val = 0;
2507 if (optlen < sizeof(uint32_t)) {
2508 return -TARGET_EINVAL;
2509 }
2510 if (get_user_u32(val, optval_addr)) {
2511 return -TARGET_EFAULT;
2512 }
2513 ret = get_errno(setsockopt(sockfd, SOL_NETLINK, optname, &val,
2514 sizeof(val)));
2515 break;
2516 #endif /* SOL_NETLINK */
2517 default:
2518 unimplemented:
2519 qemu_log_mask(LOG_UNIMP, "Unsupported setsockopt level=%d optname=%d\n",
2520 level, optname);
2521 ret = -TARGET_ENOPROTOOPT;
2522 }
2523 return ret;
2524 }
2525
2526 /* do_getsockopt() Must return target values and target errnos. */
2527 static abi_long do_getsockopt(int sockfd, int level, int optname,
2528 abi_ulong optval_addr, abi_ulong optlen)
2529 {
2530 abi_long ret;
2531 int len, val;
2532 socklen_t lv;
2533
2534 switch(level) {
2535 case TARGET_SOL_SOCKET:
2536 level = SOL_SOCKET;
2537 switch (optname) {
2538 /* These don't just return a single integer */
2539 case TARGET_SO_PEERNAME:
2540 goto unimplemented;
2541 case TARGET_SO_RCVTIMEO: {
2542 struct timeval tv;
2543 socklen_t tvlen;
2544
2545 optname = SO_RCVTIMEO;
2546
2547 get_timeout:
2548 if (get_user_u32(len, optlen)) {
2549 return -TARGET_EFAULT;
2550 }
2551 if (len < 0) {
2552 return -TARGET_EINVAL;
2553 }
2554
2555 tvlen = sizeof(tv);
2556 ret = get_errno(getsockopt(sockfd, level, optname,
2557 &tv, &tvlen));
2558 if (ret < 0) {
2559 return ret;
2560 }
2561 if (len > sizeof(struct target_timeval)) {
2562 len = sizeof(struct target_timeval);
2563 }
2564 if (copy_to_user_timeval(optval_addr, &tv)) {
2565 return -TARGET_EFAULT;
2566 }
2567 if (put_user_u32(len, optlen)) {
2568 return -TARGET_EFAULT;
2569 }
2570 break;
2571 }
2572 case TARGET_SO_SNDTIMEO:
2573 optname = SO_SNDTIMEO;
2574 goto get_timeout;
2575 case TARGET_SO_PEERCRED: {
2576 struct ucred cr;
2577 socklen_t crlen;
2578 struct target_ucred *tcr;
2579
2580 if (get_user_u32(len, optlen)) {
2581 return -TARGET_EFAULT;
2582 }
2583 if (len < 0) {
2584 return -TARGET_EINVAL;
2585 }
2586
2587 crlen = sizeof(cr);
2588 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2589 &cr, &crlen));
2590 if (ret < 0) {
2591 return ret;
2592 }
2593 if (len > crlen) {
2594 len = crlen;
2595 }
2596 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2597 return -TARGET_EFAULT;
2598 }
2599 __put_user(cr.pid, &tcr->pid);
2600 __put_user(cr.uid, &tcr->uid);
2601 __put_user(cr.gid, &tcr->gid);
2602 unlock_user_struct(tcr, optval_addr, 1);
2603 if (put_user_u32(len, optlen)) {
2604 return -TARGET_EFAULT;
2605 }
2606 break;
2607 }
2608 case TARGET_SO_PEERSEC: {
2609 char *name;
2610
2611 if (get_user_u32(len, optlen)) {
2612 return -TARGET_EFAULT;
2613 }
2614 if (len < 0) {
2615 return -TARGET_EINVAL;
2616 }
2617 name = lock_user(VERIFY_WRITE, optval_addr, len, 0);
2618 if (!name) {
2619 return -TARGET_EFAULT;
2620 }
2621 lv = len;
2622 ret = get_errno(getsockopt(sockfd, level, SO_PEERSEC,
2623 name, &lv));
2624 if (put_user_u32(lv, optlen)) {
2625 ret = -TARGET_EFAULT;
2626 }
2627 unlock_user(name, optval_addr, lv);
2628 break;
2629 }
2630 case TARGET_SO_LINGER:
2631 {
2632 struct linger lg;
2633 socklen_t lglen;
2634 struct target_linger *tlg;
2635
2636 if (get_user_u32(len, optlen)) {
2637 return -TARGET_EFAULT;
2638 }
2639 if (len < 0) {
2640 return -TARGET_EINVAL;
2641 }
2642
2643 lglen = sizeof(lg);
2644 ret = get_errno(getsockopt(sockfd, level, SO_LINGER,
2645 &lg, &lglen));
2646 if (ret < 0) {
2647 return ret;
2648 }
2649 if (len > lglen) {
2650 len = lglen;
2651 }
2652 if (!lock_user_struct(VERIFY_WRITE, tlg, optval_addr, 0)) {
2653 return -TARGET_EFAULT;
2654 }
2655 __put_user(lg.l_onoff, &tlg->l_onoff);
2656 __put_user(lg.l_linger, &tlg->l_linger);
2657 unlock_user_struct(tlg, optval_addr, 1);
2658 if (put_user_u32(len, optlen)) {
2659 return -TARGET_EFAULT;
2660 }
2661 break;
2662 }
2663 /* Options with 'int' argument. */
2664 case TARGET_SO_DEBUG:
2665 optname = SO_DEBUG;
2666 goto int_case;
2667 case TARGET_SO_REUSEADDR:
2668 optname = SO_REUSEADDR;
2669 goto int_case;
2670 #ifdef SO_REUSEPORT
2671 case TARGET_SO_REUSEPORT:
2672 optname = SO_REUSEPORT;
2673 goto int_case;
2674 #endif
2675 case TARGET_SO_TYPE:
2676 optname = SO_TYPE;
2677 goto int_case;
2678 case TARGET_SO_ERROR:
2679 optname = SO_ERROR;
2680 goto int_case;
2681 case TARGET_SO_DONTROUTE:
2682 optname = SO_DONTROUTE;
2683 goto int_case;
2684 case TARGET_SO_BROADCAST:
2685 optname = SO_BROADCAST;
2686 goto int_case;
2687 case TARGET_SO_SNDBUF:
2688 optname = SO_SNDBUF;
2689 goto int_case;
2690 case TARGET_SO_RCVBUF:
2691 optname = SO_RCVBUF;
2692 goto int_case;
2693 case TARGET_SO_KEEPALIVE:
2694 optname = SO_KEEPALIVE;
2695 goto int_case;
2696 case TARGET_SO_OOBINLINE:
2697 optname = SO_OOBINLINE;
2698 goto int_case;
2699 case TARGET_SO_NO_CHECK:
2700 optname = SO_NO_CHECK;
2701 goto int_case;
2702 case TARGET_SO_PRIORITY:
2703 optname = SO_PRIORITY;
2704 goto int_case;
2705 #ifdef SO_BSDCOMPAT
2706 case TARGET_SO_BSDCOMPAT:
2707 optname = SO_BSDCOMPAT;
2708 goto int_case;
2709 #endif
2710 case TARGET_SO_PASSCRED:
2711 optname = SO_PASSCRED;
2712 goto int_case;
2713 case TARGET_SO_TIMESTAMP:
2714 optname = SO_TIMESTAMP;
2715 goto int_case;
2716 case TARGET_SO_RCVLOWAT:
2717 optname = SO_RCVLOWAT;
2718 goto int_case;
2719 case TARGET_SO_ACCEPTCONN:
2720 optname = SO_ACCEPTCONN;
2721 goto int_case;
2722 case TARGET_SO_PROTOCOL:
2723 optname = SO_PROTOCOL;
2724 goto int_case;
2725 case TARGET_SO_DOMAIN:
2726 optname = SO_DOMAIN;
2727 goto int_case;
2728 default:
2729 goto int_case;
2730 }
2731 break;
2732 case SOL_TCP:
2733 case SOL_UDP:
2734 /* TCP and UDP options all take an 'int' value. */
2735 int_case:
2736 if (get_user_u32(len, optlen))
2737 return -TARGET_EFAULT;
2738 if (len < 0)
2739 return -TARGET_EINVAL;
2740 lv = sizeof(lv);
2741 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2742 if (ret < 0)
2743 return ret;
2744 if (optname == SO_TYPE) {
2745 val = host_to_target_sock_type(val);
2746 }
2747 if (len > lv)
2748 len = lv;
2749 if (len == 4) {
2750 if (put_user_u32(val, optval_addr))
2751 return -TARGET_EFAULT;
2752 } else {
2753 if (put_user_u8(val, optval_addr))
2754 return -TARGET_EFAULT;
2755 }
2756 if (put_user_u32(len, optlen))
2757 return -TARGET_EFAULT;
2758 break;
2759 case SOL_IP:
2760 switch(optname) {
2761 case IP_TOS:
2762 case IP_TTL:
2763 case IP_HDRINCL:
2764 case IP_ROUTER_ALERT:
2765 case IP_RECVOPTS:
2766 case IP_RETOPTS:
2767 case IP_PKTINFO:
2768 case IP_MTU_DISCOVER:
2769 case IP_RECVERR:
2770 case IP_RECVTOS:
2771 #ifdef IP_FREEBIND
2772 case IP_FREEBIND:
2773 #endif
2774 case IP_MULTICAST_TTL:
2775 case IP_MULTICAST_LOOP:
2776 if (get_user_u32(len, optlen))
2777 return -TARGET_EFAULT;
2778 if (len < 0)
2779 return -TARGET_EINVAL;
2780 lv = sizeof(lv);
2781 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2782 if (ret < 0)
2783 return ret;
2784 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2785 len = 1;
2786 if (put_user_u32(len, optlen)
2787 || put_user_u8(val, optval_addr))
2788 return -TARGET_EFAULT;
2789 } else {
2790 if (len > sizeof(int))
2791 len = sizeof(int);
2792 if (put_user_u32(len, optlen)
2793 || put_user_u32(val, optval_addr))
2794 return -TARGET_EFAULT;
2795 }
2796 break;
2797 default:
2798 ret = -TARGET_ENOPROTOOPT;
2799 break;
2800 }
2801 break;
2802 case SOL_IPV6:
2803 switch (optname) {
2804 case IPV6_MTU_DISCOVER:
2805 case IPV6_MTU:
2806 case IPV6_V6ONLY:
2807 case IPV6_RECVPKTINFO:
2808 case IPV6_UNICAST_HOPS:
2809 case IPV6_MULTICAST_HOPS:
2810 case IPV6_MULTICAST_LOOP:
2811 case IPV6_RECVERR:
2812 case IPV6_RECVHOPLIMIT:
2813 case IPV6_2292HOPLIMIT:
2814 case IPV6_CHECKSUM:
2815 case IPV6_ADDRFORM:
2816 case IPV6_2292PKTINFO:
2817 case IPV6_RECVTCLASS:
2818 case IPV6_RECVRTHDR:
2819 case IPV6_2292RTHDR:
2820 case IPV6_RECVHOPOPTS:
2821 case IPV6_2292HOPOPTS:
2822 case IPV6_RECVDSTOPTS:
2823 case IPV6_2292DSTOPTS:
2824 case IPV6_TCLASS:
2825 case IPV6_ADDR_PREFERENCES:
2826 #ifdef IPV6_RECVPATHMTU
2827 case IPV6_RECVPATHMTU:
2828 #endif
2829 #ifdef IPV6_TRANSPARENT
2830 case IPV6_TRANSPARENT:
2831 #endif
2832 #ifdef IPV6_FREEBIND
2833 case IPV6_FREEBIND:
2834 #endif
2835 #ifdef IPV6_RECVORIGDSTADDR
2836 case IPV6_RECVORIGDSTADDR:
2837 #endif
2838 if (get_user_u32(len, optlen))
2839 return -TARGET_EFAULT;
2840 if (len < 0)
2841 return -TARGET_EINVAL;
2842 lv = sizeof(lv);
2843 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2844 if (ret < 0)
2845 return ret;
2846 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2847 len = 1;
2848 if (put_user_u32(len, optlen)
2849 || put_user_u8(val, optval_addr))
2850 return -TARGET_EFAULT;
2851 } else {
2852 if (len > sizeof(int))
2853 len = sizeof(int);
2854 if (put_user_u32(len, optlen)
2855 || put_user_u32(val, optval_addr))
2856 return -TARGET_EFAULT;
2857 }
2858 break;
2859 default:
2860 ret = -TARGET_ENOPROTOOPT;
2861 break;
2862 }
2863 break;
2864 #ifdef SOL_NETLINK
2865 case SOL_NETLINK:
2866 switch (optname) {
2867 case NETLINK_PKTINFO:
2868 case NETLINK_BROADCAST_ERROR:
2869 case NETLINK_NO_ENOBUFS:
2870 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2871 case NETLINK_LISTEN_ALL_NSID:
2872 case NETLINK_CAP_ACK:
2873 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2874 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
2875 case NETLINK_EXT_ACK:
2876 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2877 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 20, 0)
2878 case NETLINK_GET_STRICT_CHK:
2879 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0) */
2880 if (get_user_u32(len, optlen)) {
2881 return -TARGET_EFAULT;
2882 }
2883 if (len != sizeof(val)) {
2884 return -TARGET_EINVAL;
2885 }
2886 lv = len;
2887 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2888 if (ret < 0) {
2889 return ret;
2890 }
2891 if (put_user_u32(lv, optlen)
2892 || put_user_u32(val, optval_addr)) {
2893 return -TARGET_EFAULT;
2894 }
2895 break;
2896 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
2897 case NETLINK_LIST_MEMBERSHIPS:
2898 {
2899 uint32_t *results;
2900 int i;
2901 if (get_user_u32(len, optlen)) {
2902 return -TARGET_EFAULT;
2903 }
2904 if (len < 0) {
2905 return -TARGET_EINVAL;
2906 }
2907 results = lock_user(VERIFY_WRITE, optval_addr, len, 1);
2908 if (!results && len > 0) {
2909 return -TARGET_EFAULT;
2910 }
2911 lv = len;
2912 ret = get_errno(getsockopt(sockfd, level, optname, results, &lv));
2913 if (ret < 0) {
2914 unlock_user(results, optval_addr, 0);
2915 return ret;
2916 }
2917 /* swap host endianess to target endianess. */
2918 for (i = 0; i < (len / sizeof(uint32_t)); i++) {
2919 results[i] = tswap32(results[i]);
2920 }
2921 if (put_user_u32(lv, optlen)) {
2922 return -TARGET_EFAULT;
2923 }
2924 unlock_user(results, optval_addr, 0);
2925 break;
2926 }
2927 #endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0) */
2928 default:
2929 goto unimplemented;
2930 }
2931 break;
2932 #endif /* SOL_NETLINK */
2933 default:
2934 unimplemented:
2935 qemu_log_mask(LOG_UNIMP,
2936 "getsockopt level=%d optname=%d not yet supported\n",
2937 level, optname);
2938 ret = -TARGET_EOPNOTSUPP;
2939 break;
2940 }
2941 return ret;
2942 }
2943
2944 /* Convert target low/high pair representing file offset into the host
2945 * low/high pair. This function doesn't handle offsets bigger than 64 bits
2946 * as the kernel doesn't handle them either.
2947 */
2948 static void target_to_host_low_high(abi_ulong tlow,
2949 abi_ulong thigh,
2950 unsigned long *hlow,
2951 unsigned long *hhigh)
2952 {
2953 uint64_t off = tlow |
2954 ((unsigned long long)thigh << TARGET_LONG_BITS / 2) <<
2955 TARGET_LONG_BITS / 2;
2956
2957 *hlow = off;
2958 *hhigh = (off >> HOST_LONG_BITS / 2) >> HOST_LONG_BITS / 2;
2959 }
2960
2961 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2962 abi_ulong count, int copy)
2963 {
2964 struct target_iovec *target_vec;
2965 struct iovec *vec;
2966 abi_ulong total_len, max_len;
2967 int i;
2968 int err = 0;
2969 bool bad_address = false;
2970
2971 if (count == 0) {
2972 errno = 0;
2973 return NULL;
2974 }
2975 if (count > IOV_MAX) {
2976 errno = EINVAL;
2977 return NULL;
2978 }
2979
2980 vec = g_try_new0(struct iovec, count);
2981 if (vec == NULL) {
2982 errno = ENOMEM;
2983 return NULL;
2984 }
2985
2986 target_vec = lock_user(VERIFY_READ, target_addr,
2987 count * sizeof(struct target_iovec), 1);
2988 if (target_vec == NULL) {
2989 err = EFAULT;
2990 goto fail2;
2991 }
2992
2993 /* ??? If host page size > target page size, this will result in a
2994 value larger than what we can actually support. */
2995 max_len = 0x7fffffff & TARGET_PAGE_MASK;
2996 total_len = 0;
2997
2998 for (i = 0; i < count; i++) {
2999 abi_ulong base = tswapal(target_vec[i].iov_base);
3000 abi_long len = tswapal(target_vec[i].iov_len);
3001
3002 if (len < 0) {
3003 err = EINVAL;
3004 goto fail;
3005 } else if (len == 0) {
3006 /* Zero length pointer is ignored. */
3007 vec[i].iov_base = 0;
3008 } else {
3009 vec[i].iov_base = lock_user(type, base, len, copy);
3010 /* If the first buffer pointer is bad, this is a fault. But
3011 * subsequent bad buffers will result in a partial write; this
3012 * is realized by filling the vector with null pointers and
3013 * zero lengths. */
3014 if (!vec[i].iov_base) {
3015 if (i == 0) {
3016 err = EFAULT;
3017 goto fail;
3018 } else {
3019 bad_address = true;
3020 }
3021 }
3022 if (bad_address) {
3023 len = 0;
3024 }
3025 if (len > max_len - total_len) {
3026 len = max_len - total_len;
3027 }
3028 }
3029 vec[i].iov_len = len;
3030 total_len += len;
3031 }
3032
3033 unlock_user(target_vec, target_addr, 0);
3034 return vec;
3035
3036 fail:
3037 while (--i >= 0) {
3038 if (tswapal(target_vec[i].iov_len) > 0) {
3039 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3040 }
3041 }
3042 unlock_user(target_vec, target_addr, 0);
3043 fail2:
3044 g_free(vec);
3045 errno = err;
3046 return NULL;
3047 }
3048
3049 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3050 abi_ulong count, int copy)
3051 {
3052 struct target_iovec *target_vec;
3053 int i;
3054
3055 target_vec = lock_user(VERIFY_READ, target_addr,
3056 count * sizeof(struct target_iovec), 1);
3057 if (target_vec) {
3058 for (i = 0; i < count; i++) {
3059 abi_ulong base = tswapal(target_vec[i].iov_base);
3060 abi_long len = tswapal(target_vec[i].iov_len);
3061 if (len < 0) {
3062 break;
3063 }
3064 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3065 }
3066 unlock_user(target_vec, target_addr, 0);
3067 }
3068
3069 g_free(vec);
3070 }
3071
3072 static inline int target_to_host_sock_type(int *type)
3073 {
3074 int host_type = 0;
3075 int target_type = *type;
3076
3077 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3078 case TARGET_SOCK_DGRAM:
3079 host_type = SOCK_DGRAM;
3080 break;
3081 case TARGET_SOCK_STREAM:
3082 host_type = SOCK_STREAM;
3083 break;
3084 default:
3085 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3086 break;
3087 }
3088 if (target_type & TARGET_SOCK_CLOEXEC) {
3089 #if defined(SOCK_CLOEXEC)
3090 host_type |= SOCK_CLOEXEC;
3091 #else
3092 return -TARGET_EINVAL;
3093 #endif
3094 }
3095 if (target_type & TARGET_SOCK_NONBLOCK) {
3096 #if defined(SOCK_NONBLOCK)
3097 host_type |= SOCK_NONBLOCK;
3098 #elif !defined(O_NONBLOCK)
3099 return -TARGET_EINVAL;
3100 #endif
3101 }
3102 *type = host_type;
3103 return 0;
3104 }
3105
3106 /* Try to emulate socket type flags after socket creation. */
3107 static int sock_flags_fixup(int fd, int target_type)
3108 {
3109 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3110 if (target_type & TARGET_SOCK_NONBLOCK) {
3111 int flags = fcntl(fd, F_GETFL);
3112 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3113 close(fd);
3114 return -TARGET_EINVAL;
3115 }
3116 }
3117 #endif
3118 return fd;
3119 }
3120
3121 /* do_socket() Must return target values and target errnos. */
3122 static abi_long do_socket(int domain, int type, int protocol)
3123 {
3124 int target_type = type;
3125 int ret;
3126
3127 ret = target_to_host_sock_type(&type);
3128 if (ret) {
3129 return ret;
3130 }
3131
3132 if (domain == PF_NETLINK && !(
3133 #ifdef CONFIG_RTNETLINK
3134 protocol == NETLINK_ROUTE ||
3135 #endif
3136 protocol == NETLINK_KOBJECT_UEVENT ||
3137 protocol == NETLINK_AUDIT)) {
3138 return -TARGET_EPROTONOSUPPORT;
3139 }
3140
3141 if (domain == AF_PACKET ||
3142 (domain == AF_INET && type == SOCK_PACKET)) {
3143 protocol = tswap16(protocol);
3144 }
3145
3146 ret = get_errno(socket(domain, type, protocol));
3147 if (ret >= 0) {
3148 ret = sock_flags_fixup(ret, target_type);
3149 if (type == SOCK_PACKET) {
3150 /* Manage an obsolete case :
3151 * if socket type is SOCK_PACKET, bind by name
3152 */
3153 fd_trans_register(ret, &target_packet_trans);
3154 } else if (domain == PF_NETLINK) {
3155 switch (protocol) {
3156 #ifdef CONFIG_RTNETLINK
3157 case NETLINK_ROUTE:
3158 fd_trans_register(ret, &target_netlink_route_trans);
3159 break;
3160 #endif
3161 case NETLINK_KOBJECT_UEVENT:
3162 /* nothing to do: messages are strings */
3163 break;
3164 case NETLINK_AUDIT:
3165 fd_trans_register(ret, &target_netlink_audit_trans);
3166 break;
3167 default:
3168 g_assert_not_reached();
3169 }
3170 }
3171 }
3172 return ret;
3173 }
3174
3175 /* do_bind() Must return target values and target errnos. */
3176 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3177 socklen_t addrlen)
3178 {
3179 void *addr;
3180 abi_long ret;
3181
3182 if ((int)addrlen < 0) {
3183 return -TARGET_EINVAL;
3184 }
3185
3186 addr = alloca(addrlen+1);
3187
3188 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3189 if (ret)
3190 return ret;
3191
3192 return get_errno(bind(sockfd, addr, addrlen));
3193 }
3194
3195 /* do_connect() Must return target values and target errnos. */
3196 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3197 socklen_t addrlen)
3198 {
3199 void *addr;
3200 abi_long ret;
3201
3202 if ((int)addrlen < 0) {
3203 return -TARGET_EINVAL;
3204 }
3205
3206 addr = alloca(addrlen+1);
3207
3208 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3209 if (ret)
3210 return ret;
3211
3212 return get_errno(safe_connect(sockfd, addr, addrlen));
3213 }
3214
3215 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3216 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3217 int flags, int send)
3218 {
3219 abi_long ret, len;
3220 struct msghdr msg;
3221 abi_ulong count;
3222 struct iovec *vec;
3223 abi_ulong target_vec;
3224
3225 if (msgp->msg_name) {
3226 msg.msg_namelen = tswap32(msgp->msg_namelen);
3227 msg.msg_name = alloca(msg.msg_namelen+1);
3228 ret = target_to_host_sockaddr(fd, msg.msg_name,
3229 tswapal(msgp->msg_name),
3230 msg.msg_namelen);
3231 if (ret == -TARGET_EFAULT) {
3232 /* For connected sockets msg_name and msg_namelen must
3233 * be ignored, so returning EFAULT immediately is wrong.
3234 * Instead, pass a bad msg_name to the host kernel, and
3235 * let it decide whether to return EFAULT or not.
3236 */
3237 msg.msg_name = (void *)-1;
3238 } else if (ret) {
3239 goto out2;
3240 }
3241 } else {
3242 msg.msg_name = NULL;
3243 msg.msg_namelen = 0;
3244 }
3245 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3246 msg.msg_control = alloca(msg.msg_controllen);
3247 memset(msg.msg_control, 0, msg.msg_controllen);
3248
3249 msg.msg_flags = tswap32(msgp->msg_flags);
3250
3251 count = tswapal(msgp->msg_iovlen);
3252 target_vec = tswapal(msgp->msg_iov);
3253
3254 if (count > IOV_MAX) {
3255 /* sendrcvmsg returns a different errno for this condition than
3256 * readv/writev, so we must catch it here before lock_iovec() does.
3257 */
3258 ret = -TARGET_EMSGSIZE;
3259 goto out2;
3260 }
3261
3262 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3263 target_vec, count, send);
3264 if (vec == NULL) {
3265 ret = -host_to_target_errno(errno);
3266 goto out2;
3267 }
3268 msg.msg_iovlen = count;
3269 msg.msg_iov = vec;
3270
3271 if (send) {
3272 if (fd_trans_target_to_host_data(fd)) {
3273 void *host_msg;
3274
3275 host_msg = g_malloc(msg.msg_iov->iov_len);
3276 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3277 ret = fd_trans_target_to_host_data(fd)(host_msg,
3278 msg.msg_iov->iov_len);
3279 if (ret >= 0) {
3280 msg.msg_iov->iov_base = host_msg;
3281 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3282 }
3283 g_free(host_msg);
3284 } else {
3285 ret = target_to_host_cmsg(&msg, msgp);
3286 if (ret == 0) {
3287 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3288 }
3289 }
3290 } else {
3291 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3292 if (!is_error(ret)) {
3293 len = ret;
3294 if (fd_trans_host_to_target_data(fd)) {
3295 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3296 MIN(msg.msg_iov->iov_len, len));
3297 } else {
3298 ret = host_to_target_cmsg(msgp, &msg);
3299 }
3300 if (!is_error(ret)) {
3301 msgp->msg_namelen = tswap32(msg.msg_namelen);
3302 msgp->msg_flags = tswap32(msg.msg_flags);
3303 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3304 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3305 msg.msg_name, msg.msg_namelen);
3306 if (ret) {
3307 goto out;
3308 }
3309 }
3310
3311 ret = len;
3312 }
3313 }
3314 }
3315
3316 out:
3317 unlock_iovec(vec, target_vec, count, !send);
3318 out2:
3319 return ret;
3320 }
3321
3322 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3323 int flags, int send)
3324 {
3325 abi_long ret;
3326 struct target_msghdr *msgp;
3327
3328 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3329 msgp,
3330 target_msg,
3331 send ? 1 : 0)) {
3332 return -TARGET_EFAULT;
3333 }
3334 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3335 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3336 return ret;
3337 }
3338
3339 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3340 * so it might not have this *mmsg-specific flag either.
3341 */
3342 #ifndef MSG_WAITFORONE
3343 #define MSG_WAITFORONE 0x10000
3344 #endif
3345
3346 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3347 unsigned int vlen, unsigned int flags,
3348 int send)
3349 {
3350 struct target_mmsghdr *mmsgp;
3351 abi_long ret = 0;
3352 int i;
3353
3354 if (vlen > UIO_MAXIOV) {
3355 vlen = UIO_MAXIOV;
3356 }
3357
3358 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3359 if (!mmsgp) {
3360 return -TARGET_EFAULT;
3361 }
3362
3363 for (i = 0; i < vlen; i++) {
3364 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3365 if (is_error(ret)) {
3366 break;
3367 }
3368 mmsgp[i].msg_len = tswap32(ret);
3369 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3370 if (flags & MSG_WAITFORONE) {
3371 flags |= MSG_DONTWAIT;
3372 }
3373 }
3374
3375 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3376
3377 /* Return number of datagrams sent if we sent any at all;
3378 * otherwise return the error.
3379 */
3380 if (i) {
3381 return i;
3382 }
3383 return ret;
3384 }
3385
3386 /* do_accept4() Must return target values and target errnos. */
3387 static abi_long do_accept4(int fd, abi_ulong target_addr,
3388 abi_ulong target_addrlen_addr, int flags)
3389 {
3390 socklen_t addrlen, ret_addrlen;
3391 void *addr;
3392 abi_long ret;
3393 int host_flags;
3394
3395 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3396
3397 if (target_addr == 0) {
3398 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3399 }
3400
3401 /* linux returns EFAULT if addrlen pointer is invalid */
3402 if (get_user_u32(addrlen, target_addrlen_addr))
3403 return -TARGET_EFAULT;
3404
3405 if ((int)addrlen < 0) {
3406 return -TARGET_EINVAL;
3407 }
3408
3409 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3410 return -TARGET_EFAULT;
3411 }
3412
3413 addr = alloca(addrlen);
3414
3415 ret_addrlen = addrlen;
3416 ret = get_errno(safe_accept4(fd, addr, &ret_addrlen, host_flags));
3417 if (!is_error(ret)) {
3418 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3419 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3420 ret = -TARGET_EFAULT;
3421 }
3422 }
3423 return ret;
3424 }
3425
3426 /* do_getpeername() Must return target values and target errnos. */
3427 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3428 abi_ulong target_addrlen_addr)
3429 {
3430 socklen_t addrlen, ret_addrlen;
3431 void *addr;
3432 abi_long ret;
3433
3434 if (get_user_u32(addrlen, target_addrlen_addr))
3435 return -TARGET_EFAULT;
3436
3437 if ((int)addrlen < 0) {
3438 return -TARGET_EINVAL;
3439 }
3440
3441 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3442 return -TARGET_EFAULT;
3443 }
3444
3445 addr = alloca(addrlen);
3446
3447 ret_addrlen = addrlen;
3448 ret = get_errno(getpeername(fd, addr, &ret_addrlen));
3449 if (!is_error(ret)) {
3450 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3451 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3452 ret = -TARGET_EFAULT;
3453 }
3454 }
3455 return ret;
3456 }
3457
3458 /* do_getsockname() Must return target values and target errnos. */
3459 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3460 abi_ulong target_addrlen_addr)
3461 {
3462 socklen_t addrlen, ret_addrlen;
3463 void *addr;
3464 abi_long ret;
3465
3466 if (get_user_u32(addrlen, target_addrlen_addr))
3467 return -TARGET_EFAULT;
3468
3469 if ((int)addrlen < 0) {
3470 return -TARGET_EINVAL;
3471 }
3472
3473 if (!access_ok(thread_cpu, VERIFY_WRITE, target_addr, addrlen)) {
3474 return -TARGET_EFAULT;
3475 }
3476
3477 addr = alloca(addrlen);
3478
3479 ret_addrlen = addrlen;
3480 ret = get_errno(getsockname(fd, addr, &ret_addrlen));
3481 if (!is_error(ret)) {
3482 host_to_target_sockaddr(target_addr, addr, MIN(addrlen, ret_addrlen));
3483 if (put_user_u32(ret_addrlen, target_addrlen_addr)) {
3484 ret = -TARGET_EFAULT;
3485 }
3486 }
3487 return ret;
3488 }
3489
3490 /* do_socketpair() Must return target values and target errnos. */
3491 static abi_long do_socketpair(int domain, int type, int protocol,
3492 abi_ulong target_tab_addr)
3493 {
3494 int tab[2];
3495 abi_long ret;
3496
3497 target_to_host_sock_type(&type);
3498
3499 ret = get_errno(socketpair(domain, type, protocol, tab));
3500 if (!is_error(ret)) {
3501 if (put_user_s32(tab[0], target_tab_addr)
3502 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3503 ret = -TARGET_EFAULT;
3504 }
3505 return ret;
3506 }
3507
3508 /* do_sendto() Must return target values and target errnos. */
3509 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3510 abi_ulong target_addr, socklen_t addrlen)
3511 {
3512 void *addr;
3513 void *host_msg;
3514 void *copy_msg = NULL;
3515 abi_long ret;
3516
3517 if ((int)addrlen < 0) {
3518 return -TARGET_EINVAL;
3519 }
3520
3521 host_msg = lock_user(VERIFY_READ, msg, len, 1);
3522 if (!host_msg)
3523 return -TARGET_EFAULT;
3524 if (fd_trans_target_to_host_data(fd)) {
3525 copy_msg = host_msg;
3526 host_msg = g_malloc(len);
3527 memcpy(host_msg, copy_msg, len);
3528 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3529 if (ret < 0) {
3530 goto fail;
3531 }
3532 }
3533 if (target_addr) {
3534 addr = alloca(addrlen+1);
3535 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3536 if (ret) {
3537 goto fail;
3538 }
3539 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3540 } else {
3541 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3542 }
3543 fail:
3544 if (copy_msg) {
3545 g_free(host_msg);
3546 host_msg = copy_msg;
3547 }
3548 unlock_user(host_msg, msg, 0);
3549 return ret;
3550 }
3551
3552 /* do_recvfrom() Must return target values and target errnos. */
3553 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3554 abi_ulong target_addr,
3555 abi_ulong target_addrlen)
3556 {
3557 socklen_t addrlen, ret_addrlen;
3558 void *addr;
3559 void *host_msg;
3560 abi_long ret;
3561
3562 if (!msg) {
3563 host_msg = NULL;
3564 } else {
3565 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3566 if (!host_msg) {
3567 return -TARGET_EFAULT;
3568 }
3569 }
3570 if (target_addr) {
3571 if (get_user_u32(addrlen, target_addrlen)) {
3572 ret = -TARGET_EFAULT;
3573 goto fail;
3574 }
3575 if ((int)addrlen < 0) {
3576 ret = -TARGET_EINVAL;
3577 goto fail;
3578 }
3579 addr = alloca(addrlen);
3580 ret_addrlen = addrlen;
3581 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3582 addr, &ret_addrlen));
3583 } else {
3584 addr = NULL; /* To keep compiler quiet. */
3585 addrlen = 0; /* To keep compiler quiet. */
3586 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3587 }
3588 if (!is_error(ret)) {
3589 if (fd_trans_host_to_target_data(fd)) {
3590 abi_long trans;
3591 trans = fd_trans_host_to_target_data(fd)(host_msg, MIN(ret, len));
3592 if (is_error(trans)) {
3593 ret = trans;
3594 goto fail;
3595 }
3596 }
3597 if (target_addr) {
3598 host_to_target_sockaddr(target_addr, addr,
3599 MIN(addrlen, ret_addrlen));
3600 if (put_user_u32(ret_addrlen, target_addrlen)) {
3601 ret = -TARGET_EFAULT;
3602 goto fail;
3603 }
3604 }
3605 unlock_user(host_msg, msg, len);
3606 } else {
3607 fail:
3608 unlock_user(host_msg, msg, 0);
3609 }
3610 return ret;
3611 }
3612
3613 #ifdef TARGET_NR_socketcall
3614 /* do_socketcall() must return target values and target errnos. */
3615 static abi_long do_socketcall(int num, abi_ulong vptr)
3616 {
3617 static const unsigned nargs[] = { /* number of arguments per operation */
3618 [TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
3619 [TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
3620 [TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
3621 [TARGET_SYS_LISTEN] = 2, /* fd, backlog */
3622 [TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
3623 [TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
3624 [TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
3625 [TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */
3626 [TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */
3627 [TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */
3628 [TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */
3629 [TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */
3630 [TARGET_SYS_SHUTDOWN] = 2, /* fd, how */
3631 [TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3632 [TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
3633 [TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */
3634 [TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */
3635 [TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */
3636 [TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */
3637 [TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */
3638 };
3639 abi_long a[6]; /* max 6 args */
3640 unsigned i;
3641
3642 /* check the range of the first argument num */
3643 /* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
3644 if (num < 1 || num > TARGET_SYS_SENDMMSG) {
3645 return -TARGET_EINVAL;
3646 }
3647 /* ensure we have space for args */
3648 if (nargs[num] > ARRAY_SIZE(a)) {
3649 return -TARGET_EINVAL;
3650 }
3651 /* collect the arguments in a[] according to nargs[] */
3652 for (i = 0; i < nargs[num]; ++i) {
3653 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3654 return -TARGET_EFAULT;
3655 }
3656 }
3657 /* now when we have the args, invoke the appropriate underlying function */
3658 switch (num) {
3659 case TARGET_SYS_SOCKET: /* domain, type, protocol */
3660 return do_socket(a[0], a[1], a[2]);
3661 case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
3662 return do_bind(a[0], a[1], a[2]);
3663 case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
3664 return do_connect(a[0], a[1], a[2]);
3665 case TARGET_SYS_LISTEN: /* sockfd, backlog */
3666 return get_errno(listen(a[0], a[1]));
3667 case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
3668 return do_accept4(a[0], a[1], a[2], 0);
3669 case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
3670 return do_getsockname(a[0], a[1], a[2]);
3671 case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
3672 return do_getpeername(a[0], a[1], a[2]);
3673 case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
3674 return do_socketpair(a[0], a[1], a[2], a[3]);
3675 case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
3676 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3677 case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
3678 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3679 case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
3680 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3681 case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
3682 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3683 case TARGET_SYS_SHUTDOWN: /* sockfd, how */
3684 return get_errno(shutdown(a[0], a[1]));
3685 case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3686 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3687 case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
3688 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3689 case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
3690 return do_sendrecvmsg(a[0], a[1], a[2], 1);
3691 case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
3692 return do_sendrecvmsg(a[0], a[1], a[2], 0);
3693 case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
3694 return do_accept4(a[0], a[1], a[2], a[3]);
3695 case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
3696 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3697 case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
3698 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3699 default:
3700 qemu_log_mask(LOG_UNIMP, "Unsupported socketcall: %d\n", num);
3701 return -TARGET_EINVAL;
3702 }
3703 }
3704 #endif
3705
3706 #define N_SHM_REGIONS 32
3707
3708 static struct shm_region {
3709 abi_ulong start;
3710 abi_ulong size;
3711 bool in_use;
3712 } shm_regions[N_SHM_REGIONS];
3713
3714 #ifndef TARGET_SEMID64_DS
3715 /* asm-generic version of this struct */
3716 struct target_semid64_ds
3717 {
3718 struct target_ipc_perm sem_perm;
3719 abi_ulong sem_otime;
3720 #if TARGET_ABI_BITS == 32
3721 abi_ulong __unused1;
3722 #endif
3723 abi_ulong sem_ctime;
3724 #if TARGET_ABI_BITS == 32
3725 abi_ulong __unused2;
3726 #endif
3727 abi_ulong sem_nsems;
3728 abi_ulong __unused3;
3729 abi_ulong __unused4;
3730 };
3731 #endif
3732
3733 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3734 abi_ulong target_addr)
3735 {
3736 struct target_ipc_perm *target_ip;
3737 struct target_semid64_ds *target_sd;
3738
3739 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3740 return -TARGET_EFAULT;
3741 target_ip = &(target_sd->sem_perm);
3742 host_ip->__key = tswap32(target_ip->__key);
3743 host_ip->uid = tswap32(target_ip->uid);
3744 host_ip->gid = tswap32(target_ip->gid);
3745 host_ip->cuid = tswap32(target_ip->cuid);
3746 host_ip->cgid = tswap32(target_ip->cgid);
3747 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3748 host_ip->mode = tswap32(target_ip->mode);
3749 #else
3750 host_ip->mode = tswap16(target_ip->mode);
3751 #endif
3752 #if defined(TARGET_PPC)
3753 host_ip->__seq = tswap32(target_ip->__seq);
3754 #else
3755 host_ip->__seq = tswap16(target_ip->__seq);
3756 #endif
3757 unlock_user_struct(target_sd, target_addr, 0);
3758 return 0;
3759 }
3760
3761 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3762 struct ipc_perm *host_ip)
3763 {
3764 struct target_ipc_perm *target_ip;
3765 struct target_semid64_ds *target_sd;
3766
3767 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3768 return -TARGET_EFAULT;
3769 target_ip = &(target_sd->sem_perm);
3770 target_ip->__key = tswap32(host_ip->__key);
3771 target_ip->uid = tswap32(host_ip->uid);
3772 target_ip->gid = tswap32(host_ip->gid);
3773 target_ip->cuid = tswap32(host_ip->cuid);
3774 target_ip->cgid = tswap32(host_ip->cgid);
3775 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3776 target_ip->mode = tswap32(host_ip->mode);
3777 #else
3778 target_ip->mode = tswap16(host_ip->mode);
3779 #endif
3780 #if defined(TARGET_PPC)
3781 target_ip->__seq = tswap32(host_ip->__seq);
3782 #else
3783 target_ip->__seq = tswap16(host_ip->__seq);
3784 #endif
3785 unlock_user_struct(target_sd, target_addr, 1);
3786 return 0;
3787 }
3788
3789 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3790 abi_ulong target_addr)
3791 {
3792 struct target_semid64_ds *target_sd;
3793
3794 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3795 return -TARGET_EFAULT;
3796 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3797 return -TARGET_EFAULT;
3798 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3799 host_sd->sem_otime = tswapal(target_sd->sem_otime);
3800 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3801 unlock_user_struct(target_sd, target_addr, 0);
3802 return 0;
3803 }
3804
3805 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3806 struct semid_ds *host_sd)
3807 {
3808 struct target_semid64_ds *target_sd;
3809
3810 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3811 return -TARGET_EFAULT;
3812 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3813 return -TARGET_EFAULT;
3814 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3815 target_sd->sem_otime = tswapal(host_sd->sem_otime);
3816 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3817 unlock_user_struct(target_sd, target_addr, 1);
3818 return 0;
3819 }
3820
3821 struct target_seminfo {
3822 int semmap;
3823 int semmni;
3824 int semmns;
3825 int semmnu;
3826 int semmsl;
3827 int semopm;
3828 int semume;
3829 int semusz;
3830 int semvmx;
3831 int semaem;
3832 };
3833
3834 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3835 struct seminfo *host_seminfo)
3836 {
3837 struct target_seminfo *target_seminfo;
3838 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3839 return -TARGET_EFAULT;
3840 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3841 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3842 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3843 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3844 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3845 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3846 __put_user(host_seminfo->semume, &target_seminfo->semume);
3847 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3848 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3849 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3850 unlock_user_struct(target_seminfo, target_addr, 1);
3851 return 0;
3852 }
3853
3854 union semun {
3855 int val;
3856 struct semid_ds *buf;
3857 unsigned short *array;
3858 struct seminfo *__buf;
3859 };
3860
3861 union target_semun {
3862 int val;
3863 abi_ulong buf;
3864 abi_ulong array;
3865 abi_ulong __buf;
3866 };
3867
3868 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3869 abi_ulong target_addr)
3870 {
3871 int nsems;
3872 unsigned short *array;
3873 union semun semun;
3874 struct semid_ds semid_ds;
3875 int i, ret;
3876
3877 semun.buf = &semid_ds;
3878
3879 ret = semctl(semid, 0, IPC_STAT, semun);
3880 if (ret == -1)
3881 return get_errno(ret);
3882
3883 nsems = semid_ds.sem_nsems;
3884
3885 *host_array = g_try_new(unsigned short, nsems);
3886 if (!*host_array) {
3887 return -TARGET_ENOMEM;
3888 }
3889 array = lock_user(VERIFY_READ, target_addr,
3890 nsems*sizeof(unsigned short), 1);
3891 if (!array) {
3892 g_free(*host_array);
3893 return -TARGET_EFAULT;
3894 }
3895
3896 for(i=0; i<nsems; i++) {
3897 __get_user((*host_array)[i], &array[i]);
3898 }
3899 unlock_user(array, target_addr, 0);
3900
3901 return 0;
3902 }
3903
3904 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3905 unsigned short **host_array)
3906 {
3907 int nsems;
3908 unsigned short *array;
3909 union semun semun;
3910 struct semid_ds semid_ds;
3911 int i, ret;
3912
3913 semun.buf = &semid_ds;
3914
3915 ret = semctl(semid, 0, IPC_STAT, semun);
3916 if (ret == -1)
3917 return get_errno(ret);
3918
3919 nsems = semid_ds.sem_nsems;
3920
3921 array = lock_user(VERIFY_WRITE, target_addr,
3922 nsems*sizeof(unsigned short), 0);
3923 if (!array)
3924 return -TARGET_EFAULT;
3925
3926 for(i=0; i<nsems; i++) {
3927 __put_user((*host_array)[i], &array[i]);
3928 }
3929 g_free(*host_array);
3930 unlock_user(array, target_addr, 1);
3931
3932 return 0;
3933 }
3934
3935 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3936 abi_ulong target_arg)
3937 {
3938 union target_semun target_su = { .buf = target_arg };
3939 union semun arg;
3940 struct semid_ds dsarg;
3941 unsigned short *array = NULL;
3942 struct seminfo seminfo;
3943 abi_long ret = -TARGET_EINVAL;
3944 abi_long err;
3945 cmd &= 0xff;
3946
3947 switch( cmd ) {
3948 case GETVAL:
3949 case SETVAL:
3950 /* In 64 bit cross-endian situations, we will erroneously pick up
3951 * the wrong half of the union for the "val" element. To rectify
3952 * this, the entire 8-byte structure is byteswapped, followed by
3953 * a swap of the 4 byte val field. In other cases, the data is
3954 * already in proper host byte order. */
3955 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3956 target_su.buf = tswapal(target_su.buf);
3957 arg.val = tswap32(target_su.val);
3958 } else {
3959 arg.val = target_su.val;
3960 }
3961 ret = get_errno(semctl(semid, semnum, cmd, arg));
3962 break;
3963 case GETALL:
3964 case SETALL:
3965 err = target_to_host_semarray(semid, &array, target_su.array);
3966 if (err)
3967 return err;
3968 arg.array = array;
3969 ret = get_errno(semctl(semid, semnum, cmd, arg));
3970 err = host_to_target_semarray(semid, target_su.array, &array);
3971 if (err)
3972 return err;
3973 break;
3974 case IPC_STAT:
3975 case IPC_SET:
3976 case SEM_STAT:
3977 err = target_to_host_semid_ds(&dsarg, target_su.buf);
3978 if (err)
3979 return err;
3980 arg.buf = &dsarg;
3981 ret = get_errno(semctl(semid, semnum, cmd, arg));
3982 err = host_to_target_semid_ds(target_su.buf, &dsarg);
3983 if (err)
3984 return err;
3985 break;
3986 case IPC_INFO:
3987 case SEM_INFO:
3988 arg.__buf = &seminfo;
3989 ret = get_errno(semctl(semid, semnum, cmd, arg));
3990 err = host_to_target_seminfo(target_su.__buf, &seminfo);
3991 if (err)
3992 return err;
3993 break;
3994 case IPC_RMID:
3995 case GETPID:
3996 case GETNCNT:
3997 case GETZCNT:
3998 ret = get_errno(semctl(semid, semnum, cmd, NULL));
3999 break;
4000 }
4001
4002 return ret;
4003 }
4004
4005 struct target_sembuf {
4006 unsigned short sem_num;
4007 short sem_op;
4008 short sem_flg;
4009 };
4010
4011 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4012 abi_ulong target_addr,
4013 unsigned nsops)
4014 {
4015 struct target_sembuf *target_sembuf;
4016 int i;
4017
4018 target_sembuf = lock_user(VERIFY_READ, target_addr,
4019 nsops*sizeof(struct target_sembuf), 1);
4020 if (!target_sembuf)
4021 return -TARGET_EFAULT;
4022
4023 for(i=0; i<nsops; i++) {
4024 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4025 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4026 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4027 }
4028
4029 unlock_user(target_sembuf, target_addr, 0);
4030
4031 return 0;
4032 }
4033
4034 #if defined(TARGET_NR_ipc) || defined(TARGET_NR_semop) || \
4035 defined(TARGET_NR_semtimedop) || defined(TARGET_NR_semtimedop_time64)
4036
4037 /*
4038 * This macro is required to handle the s390 variants, which passes the
4039 * arguments in a different order than default.
4040 */
4041 #ifdef __s390x__
4042 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4043 (__nsops), (__timeout), (__sops)
4044 #else
4045 #define SEMTIMEDOP_IPC_ARGS(__nsops, __sops, __timeout) \
4046 (__nsops), 0, (__sops), (__timeout)
4047 #endif
4048
4049 static inline abi_long do_semtimedop(int semid,
4050 abi_long ptr,
4051 unsigned nsops,
4052 abi_long timeout, bool time64)
4053 {
4054 struct sembuf *sops;
4055 struct timespec ts, *pts = NULL;
4056 abi_long ret;
4057
4058 if (timeout) {
4059 pts = &ts;
4060 if (time64) {
4061 if (target_to_host_timespec64(pts, timeout)) {
4062 return -TARGET_EFAULT;
4063 }
4064 } else {
4065 if (target_to_host_timespec(pts, timeout)) {
4066 return -TARGET_EFAULT;
4067 }
4068 }
4069 }
4070
4071 if (nsops > TARGET_SEMOPM) {
4072 return -TARGET_E2BIG;
4073 }
4074
4075 sops = g_new(struct sembuf, nsops);
4076
4077 if (target_to_host_sembuf(sops, ptr, nsops)) {
4078 g_free(sops);
4079 return -TARGET_EFAULT;
4080 }
4081
4082 ret = -TARGET_ENOSYS;
4083 #ifdef __NR_semtimedop
4084 ret = get_errno(safe_semtimedop(semid, sops, nsops, pts));
4085 #endif
4086 #ifdef __NR_ipc
4087 if (ret == -TARGET_ENOSYS) {
4088 ret = get_errno(safe_ipc(IPCOP_semtimedop, semid,
4089 SEMTIMEDOP_IPC_ARGS(nsops, sops, (long)pts)));
4090 }
4091 #endif
4092 g_free(sops);
4093 return ret;
4094 }
4095 #endif
4096
4097 struct target_msqid_ds
4098 {
4099 struct target_ipc_perm msg_perm;
4100 abi_ulong msg_stime;
4101 #if TARGET_ABI_BITS == 32
4102 abi_ulong __unused1;
4103 #endif
4104 abi_ulong msg_rtime;
4105 #if TARGET_ABI_BITS == 32
4106 abi_ulong __unused2;
4107 #endif
4108 abi_ulong msg_ctime;
4109 #if TARGET_ABI_BITS == 32
4110 abi_ulong __unused3;
4111 #endif
4112 abi_ulong __msg_cbytes;
4113 abi_ulong msg_qnum;
4114 abi_ulong msg_qbytes;
4115 abi_ulong msg_lspid;
4116 abi_ulong msg_lrpid;
4117 abi_ulong __unused4;
4118 abi_ulong __unused5;
4119 };
4120
4121 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4122 abi_ulong target_addr)
4123 {
4124 struct target_msqid_ds *target_md;
4125
4126 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4127 return -TARGET_EFAULT;
4128 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4129 return -TARGET_EFAULT;
4130 host_md->msg_stime = tswapal(target_md->msg_stime);
4131 host_md->msg_rtime = tswapal(target_md->msg_rtime);
4132 host_md->msg_ctime = tswapal(target_md->msg_ctime);
4133 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4134 host_md->msg_qnum = tswapal(target_md->msg_qnum);
4135 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4136 host_md->msg_lspid = tswapal(target_md->msg_lspid);
4137 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4138 unlock_user_struct(target_md, target_addr, 0);
4139 return 0;
4140 }
4141
4142 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4143 struct msqid_ds *host_md)
4144 {
4145 struct target_msqid_ds *target_md;
4146
4147 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4148 return -TARGET_EFAULT;
4149 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4150 return -TARGET_EFAULT;
4151 target_md->msg_stime = tswapal(host_md->msg_stime);
4152 target_md->msg_rtime = tswapal(host_md->msg_rtime);
4153 target_md->msg_ctime = tswapal(host_md->msg_ctime);
4154 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4155 target_md->msg_qnum = tswapal(host_md->msg_qnum);
4156 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4157 target_md->msg_lspid = tswapal(host_md->msg_lspid);
4158 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4159 unlock_user_struct(target_md, target_addr, 1);
4160 return 0;
4161 }
4162
4163 struct target_msginfo {
4164 int msgpool;
4165 int msgmap;
4166 int msgmax;
4167 int msgmnb;
4168 int msgmni;
4169 int msgssz;
4170 int msgtql;
4171 unsigned short int msgseg;
4172 };
4173
4174 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4175 struct msginfo *host_msginfo)
4176 {
4177 struct target_msginfo *target_msginfo;
4178 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4179 return -TARGET_EFAULT;
4180 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4181 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4182 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4183 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4184 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4185 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4186 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4187 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4188 unlock_user_struct(target_msginfo, target_addr, 1);
4189 return 0;
4190 }
4191
4192 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4193 {
4194 struct msqid_ds dsarg;
4195 struct msginfo msginfo;
4196 abi_long ret = -TARGET_EINVAL;
4197
4198 cmd &= 0xff;
4199
4200 switch (cmd) {
4201 case IPC_STAT:
4202 case IPC_SET:
4203 case MSG_STAT:
4204 if (target_to_host_msqid_ds(&dsarg,ptr))
4205 return -TARGET_EFAULT;
4206 ret = get_errno(msgctl(msgid, cmd, &dsarg));
4207 if (host_to_target_msqid_ds(ptr,&dsarg))
4208 return -TARGET_EFAULT;
4209 break;
4210 case IPC_RMID:
4211 ret = get_errno(msgctl(msgid, cmd, NULL));
4212 break;
4213 case IPC_INFO:
4214 case MSG_INFO:
4215 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4216 if (host_to_target_msginfo(ptr, &msginfo))
4217 return -TARGET_EFAULT;
4218 break;
4219 }
4220
4221 return ret;
4222 }
4223
4224 struct target_msgbuf {
4225 abi_long mtype;
4226 char mtext[1];
4227 };
4228
4229 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4230 ssize_t msgsz, int msgflg)
4231 {
4232 struct target_msgbuf *target_mb;
4233 struct msgbuf *host_mb;
4234 abi_long ret = 0;
4235
4236 if (msgsz < 0) {
4237 return -TARGET_EINVAL;
4238 }
4239
4240 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4241 return -TARGET_EFAULT;
4242 host_mb = g_try_malloc(msgsz + sizeof(long));
4243 if (!host_mb) {
4244 unlock_user_struct(target_mb, msgp, 0);
4245 return -TARGET_ENOMEM;
4246 }
4247 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4248 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4249 ret = -TARGET_ENOSYS;
4250 #ifdef __NR_msgsnd
4251 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4252 #endif
4253 #ifdef __NR_ipc
4254 if (ret == -TARGET_ENOSYS) {
4255 #ifdef __s390x__
4256 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4257 host_mb));
4258 #else
4259 ret = get_errno(safe_ipc(IPCOP_msgsnd, msqid, msgsz, msgflg,
4260 host_mb, 0));
4261 #endif
4262 }
4263 #endif
4264 g_free(host_mb);
4265 unlock_user_struct(target_mb, msgp, 0);
4266
4267 return ret;
4268 }
4269
4270 #ifdef __NR_ipc
4271 #if defined(__sparc__)
4272 /* SPARC for msgrcv it does not use the kludge on final 2 arguments. */
4273 #define MSGRCV_ARGS(__msgp, __msgtyp) __msgp, __msgtyp
4274 #elif defined(__s390x__)
4275 /* The s390 sys_ipc variant has only five parameters. */
4276 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4277 ((long int[]){(long int)__msgp, __msgtyp})
4278 #else
4279 #define MSGRCV_ARGS(__msgp, __msgtyp) \
4280 ((long int[]){(long int)__msgp, __msgtyp}), 0
4281 #endif
4282 #endif
4283
4284 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4285 ssize_t msgsz, abi_long msgtyp,
4286 int msgflg)
4287 {
4288 struct target_msgbuf *target_mb;
4289 char *target_mtext;
4290 struct msgbuf *host_mb;
4291 abi_long ret = 0;
4292
4293 if (msgsz < 0) {
4294 return -TARGET_EINVAL;
4295 }
4296
4297 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4298 return -TARGET_EFAULT;
4299
4300 host_mb = g_try_malloc(msgsz + sizeof(long));
4301 if (!host_mb) {
4302 ret = -TARGET_ENOMEM;
4303 goto end;
4304 }
4305 ret = -TARGET_ENOSYS;
4306 #ifdef __NR_msgrcv
4307 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4308 #endif
4309 #ifdef __NR_ipc
4310 if (ret == -TARGET_ENOSYS) {
4311 ret = get_errno(safe_ipc(IPCOP_CALL(1, IPCOP_msgrcv), msqid, msgsz,
4312 msgflg, MSGRCV_ARGS(host_mb, msgtyp)));
4313 }
4314 #endif
4315
4316 if (ret > 0) {
4317 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4318 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4319 if (!target_mtext) {
4320 ret = -TARGET_EFAULT;
4321 goto end;
4322 }
4323 memcpy(target_mb->mtext, host_mb->mtext, ret);
4324 unlock_user(target_mtext, target_mtext_addr, ret);
4325 }
4326
4327 target_mb->mtype = tswapal(host_mb->mtype);
4328
4329 end:
4330 if (target_mb)
4331 unlock_user_struct(target_mb, msgp, 1);
4332 g_free(host_mb);
4333 return ret;
4334 }
4335
4336 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4337 abi_ulong target_addr)
4338 {
4339 struct target_shmid_ds *target_sd;
4340
4341 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4342 return -TARGET_EFAULT;
4343 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4344 return -TARGET_EFAULT;
4345 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4346 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4347 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4348 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4349 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4350 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4351 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4352 unlock_user_struct(target_sd, target_addr, 0);
4353 return 0;
4354 }
4355
4356 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4357 struct shmid_ds *host_sd)
4358 {
4359 struct target_shmid_ds *target_sd;
4360
4361 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4362 return -TARGET_EFAULT;
4363 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4364 return -TARGET_EFAULT;
4365 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4366 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4367 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4368 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4369 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4370 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4371 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4372 unlock_user_struct(target_sd, target_addr, 1);
4373 return 0;
4374 }
4375
4376 struct target_shminfo {
4377 abi_ulong shmmax;
4378 abi_ulong shmmin;
4379 abi_ulong shmmni;
4380 abi_ulong shmseg;
4381 abi_ulong shmall;
4382 };
4383
4384 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4385 struct shminfo *host_shminfo)
4386 {
4387 struct target_shminfo *target_shminfo;
4388 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4389 return -TARGET_EFAULT;
4390 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4391 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4392 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4393 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4394 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4395 unlock_user_struct(target_shminfo, target_addr, 1);
4396 return 0;
4397 }
4398
4399 struct target_shm_info {
4400 int used_ids;
4401 abi_ulong shm_tot;
4402 abi_ulong shm_rss;
4403 abi_ulong shm_swp;
4404 abi_ulong swap_attempts;
4405 abi_ulong swap_successes;
4406 };
4407
4408 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4409 struct shm_info *host_shm_info)
4410 {
4411 struct target_shm_info *target_shm_info;
4412 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4413 return -TARGET_EFAULT;
4414 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4415 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4416 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4417 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4418 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4419 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4420 unlock_user_struct(target_shm_info, target_addr, 1);
4421 return 0;
4422 }
4423
4424 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4425 {
4426 struct shmid_ds dsarg;
4427 struct shminfo shminfo;
4428 struct shm_info shm_info;
4429 abi_long ret = -TARGET_EINVAL;
4430
4431 cmd &= 0xff;
4432
4433 switch(cmd) {
4434 case IPC_STAT:
4435 case IPC_SET:
4436 case SHM_STAT:
4437 if (target_to_host_shmid_ds(&dsarg, buf))
4438 return -TARGET_EFAULT;
4439 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4440 if (host_to_target_shmid_ds(buf, &dsarg))
4441 return -TARGET_EFAULT;
4442 break;
4443 case IPC_INFO:
4444 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4445 if (host_to_target_shminfo(buf, &shminfo))
4446 return -TARGET_EFAULT;
4447 break;
4448 case SHM_INFO:
4449 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4450 if (host_to_target_shm_info(buf, &shm_info))
4451 return -TARGET_EFAULT;
4452 break;
4453 case IPC_RMID:
4454 case SHM_LOCK:
4455 case SHM_UNLOCK:
4456 ret = get_errno(shmctl(shmid, cmd, NULL));
4457 break;
4458 }
4459
4460 return ret;
4461 }
4462
4463 #ifndef TARGET_FORCE_SHMLBA
4464 /* For most architectures, SHMLBA is the same as the page size;
4465 * some architectures have larger values, in which case they should
4466 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4467 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4468 * and defining its own value for SHMLBA.
4469 *
4470 * The kernel also permits SHMLBA to be set by the architecture to a
4471 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4472 * this means that addresses are rounded to the large size if
4473 * SHM_RND is set but addresses not aligned to that size are not rejected
4474 * as long as they are at least page-aligned. Since the only architecture
4475 * which uses this is ia64 this code doesn't provide for that oddity.
4476 */
4477 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4478 {
4479 return TARGET_PAGE_SIZE;
4480 }
4481 #endif
4482
4483 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4484 int shmid, abi_ulong shmaddr, int shmflg)
4485 {
4486 CPUState *cpu = env_cpu(cpu_env);
4487 abi_long raddr;
4488 void *host_raddr;
4489 struct shmid_ds shm_info;
4490 int i,ret;
4491 abi_ulong shmlba;
4492
4493 /* shmat pointers are always untagged */
4494
4495 /* find out the length of the shared memory segment */
4496 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4497 if (is_error(ret)) {
4498 /* can't get length, bail out */
4499 return ret;
4500 }
4501
4502 shmlba = target_shmlba(cpu_env);
4503
4504 if (shmaddr & (shmlba - 1)) {
4505 if (shmflg & SHM_RND) {
4506 shmaddr &= ~(shmlba - 1);
4507 } else {
4508 return -TARGET_EINVAL;
4509 }
4510 }
4511 if (!guest_range_valid_untagged(shmaddr, shm_info.shm_segsz)) {
4512 return -TARGET_EINVAL;
4513 }
4514
4515 mmap_lock();
4516
4517 /*
4518 * We're mapping shared memory, so ensure we generate code for parallel
4519 * execution and flush old translations. This will work up to the level
4520 * supported by the host -- anything that requires EXCP_ATOMIC will not
4521 * be atomic with respect to an external process.
4522 */
4523 if (!(cpu->tcg_cflags & CF_PARALLEL)) {
4524 cpu->tcg_cflags |= CF_PARALLEL;
4525 tb_flush(cpu);
4526 }
4527
4528 if (shmaddr)
4529 host_raddr = shmat(shmid, (void *)g2h_untagged(shmaddr), shmflg);
4530 else {
4531 abi_ulong mmap_start;
4532
4533 /* In order to use the host shmat, we need to honor host SHMLBA. */
4534 mmap_start = mmap_find_vma(0, shm_info.shm_segsz, MAX(SHMLBA, shmlba));
4535
4536 if (mmap_start == -1) {
4537 errno = ENOMEM;
4538 host_raddr = (void *)-1;
4539 } else
4540 host_raddr = shmat(shmid, g2h_untagged(mmap_start),
4541 shmflg | SHM_REMAP);
4542 }
4543
4544 if (host_raddr == (void *)-1) {
4545 mmap_unlock();
4546 return get_errno((long)host_raddr);
4547 }
4548 raddr=h2g((unsigned long)host_raddr);
4549
4550 page_set_flags(raddr, raddr + shm_info.shm_segsz,
4551 PAGE_VALID | PAGE_RESET | PAGE_READ |
4552 (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE));
4553
4554 for (i = 0; i < N_SHM_REGIONS; i++) {
4555 if (!shm_regions[i].in_use) {
4556 shm_regions[i].in_use = true;
4557 shm_regions[i].start = raddr;
4558 shm_regions[i].size = shm_info.shm_segsz;
4559 break;
4560 }
4561 }
4562
4563 mmap_unlock();
4564 return raddr;
4565
4566 }
4567
4568 static inline abi_long do_shmdt(abi_ulong shmaddr)
4569 {
4570 int i;
4571 abi_long rv;
4572
4573 /* shmdt pointers are always untagged */
4574
4575 mmap_lock();
4576
4577 for (i = 0; i < N_SHM_REGIONS; ++i) {
4578 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4579 shm_regions[i].in_use = false;
4580 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4581 break;
4582 }
4583 }
4584 rv = get_errno(shmdt(g2h_untagged(shmaddr)));
4585
4586 mmap_unlock();
4587
4588 return rv;
4589 }
4590
4591 #ifdef TARGET_NR_ipc
4592 /* ??? This only works with linear mappings. */
4593 /* do_ipc() must return target values and target errnos. */
4594 static abi_long do_ipc(CPUArchState *cpu_env,
4595 unsigned int call, abi_long first,
4596 abi_long second, abi_long third,
4597 abi_long ptr, abi_long fifth)
4598 {
4599 int version;
4600 abi_long ret = 0;
4601
4602 version = call >> 16;
4603 call &= 0xffff;
4604
4605 switch (call) {
4606 case IPCOP_semop:
4607 ret = do_semtimedop(first, ptr, second, 0, false);
4608 break;
4609 case IPCOP_semtimedop:
4610 /*
4611 * The s390 sys_ipc variant has only five parameters instead of six
4612 * (as for default variant) and the only difference is the handling of
4613 * SEMTIMEDOP where on s390 the third parameter is used as a pointer
4614 * to a struct timespec where the generic variant uses fifth parameter.
4615 */
4616 #if defined(TARGET_S390X)
4617 ret = do_semtimedop(first, ptr, second, third, TARGET_ABI_BITS == 64);
4618 #else
4619 ret = do_semtimedop(first, ptr, second, fifth, TARGET_ABI_BITS == 64);
4620 #endif
4621 break;
4622
4623 case IPCOP_semget:
4624 ret = get_errno(semget(first, second, third));
4625 break;
4626
4627 case IPCOP_semctl: {
4628 /* The semun argument to semctl is passed by value, so dereference the
4629 * ptr argument. */
4630 abi_ulong atptr;
4631 get_user_ual(atptr, ptr);
4632 ret = do_semctl(first, second, third, atptr);
4633 break;
4634 }
4635
4636 case IPCOP_msgget:
4637 ret = get_errno(msgget(first, second));
4638 break;
4639
4640 case IPCOP_msgsnd:
4641 ret = do_msgsnd(first, ptr, second, third);
4642 break;
4643
4644 case IPCOP_msgctl:
4645 ret = do_msgctl(first, second, ptr);
4646 break;
4647
4648 case IPCOP_msgrcv:
4649 switch (version) {
4650 case 0:
4651 {
4652 struct target_ipc_kludge {
4653 abi_long msgp;
4654 abi_long msgtyp;
4655 } *tmp;
4656
4657 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4658 ret = -TARGET_EFAULT;
4659 break;
4660 }
4661
4662 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4663
4664 unlock_user_struct(tmp, ptr, 0);
4665 break;
4666 }
4667 default:
4668 ret = do_msgrcv(first, ptr, second, fifth, third);
4669 }
4670 break;
4671
4672 case IPCOP_shmat:
4673 switch (version) {
4674 default:
4675 {
4676 abi_ulong raddr;
4677 raddr = do_shmat(cpu_env, first, ptr, second);
4678 if (is_error(raddr))
4679 return get_errno(raddr);
4680 if (put_user_ual(raddr, third))
4681 return -TARGET_EFAULT;
4682 break;
4683 }
4684 case 1:
4685 ret = -TARGET_EINVAL;
4686 break;
4687 }
4688 break;
4689 case IPCOP_shmdt:
4690 ret = do_shmdt(ptr);
4691 break;
4692
4693 case IPCOP_shmget:
4694 /* IPC_* flag values are the same on all linux platforms */
4695 ret = get_errno(shmget(first, second, third));
4696 break;
4697
4698 /* IPC_* and SHM_* command values are the same on all linux platforms */
4699 case IPCOP_shmctl:
4700 ret = do_shmctl(first, second, ptr);
4701 break;
4702 default:
4703 qemu_log_mask(LOG_UNIMP, "Unsupported ipc call: %d (version %d)\n",
4704 call, version);
4705 ret = -TARGET_ENOSYS;
4706 break;
4707 }
4708 return ret;
4709 }
4710 #endif
4711
4712 /* kernel structure types definitions */
4713
4714 #define STRUCT(name, ...) STRUCT_ ## name,
4715 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4716 enum {
4717 #include "syscall_types.h"
4718 STRUCT_MAX
4719 };
4720 #undef STRUCT
4721 #undef STRUCT_SPECIAL
4722
4723 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4724 #define STRUCT_SPECIAL(name)
4725 #include "syscall_types.h"
4726 #undef STRUCT
4727 #undef STRUCT_SPECIAL
4728
4729 #define MAX_STRUCT_SIZE 4096
4730
4731 #ifdef CONFIG_FIEMAP
4732 /* So fiemap access checks don't overflow on 32 bit systems.
4733 * This is very slightly smaller than the limit imposed by
4734 * the underlying kernel.
4735 */
4736 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4737 / sizeof(struct fiemap_extent))
4738
4739 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4740 int fd, int cmd, abi_long arg)
4741 {
4742 /* The parameter for this ioctl is a struct fiemap followed
4743 * by an array of struct fiemap_extent whose size is set
4744 * in fiemap->fm_extent_count. The array is filled in by the
4745 * ioctl.
4746 */
4747 int target_size_in, target_size_out;
4748 struct fiemap *fm;
4749 const argtype *arg_type = ie->arg_type;
4750 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4751 void *argptr, *p;
4752 abi_long ret;
4753 int i, extent_size = thunk_type_size(extent_arg_type, 0);
4754 uint32_t outbufsz;
4755 int free_fm = 0;
4756
4757 assert(arg_type[0] == TYPE_PTR);
4758 assert(ie->access == IOC_RW);
4759 arg_type++;
4760 target_size_in = thunk_type_size(arg_type, 0);
4761 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4762 if (!argptr) {
4763 return -TARGET_EFAULT;
4764 }
4765 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4766 unlock_user(argptr, arg, 0);
4767 fm = (struct fiemap *)buf_temp;
4768 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4769 return -TARGET_EINVAL;
4770 }
4771
4772 outbufsz = sizeof (*fm) +
4773 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4774
4775 if (outbufsz > MAX_STRUCT_SIZE) {
4776 /* We can't fit all the extents into the fixed size buffer.
4777 * Allocate one that is large enough and use it instead.
4778 */
4779 fm = g_try_malloc(outbufsz);
4780 if (!fm) {
4781 return -TARGET_ENOMEM;
4782 }
4783 memcpy(fm, buf_temp, sizeof(struct fiemap));
4784 free_fm = 1;
4785 }
4786 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4787 if (!is_error(ret)) {
4788 target_size_out = target_size_in;
4789 /* An extent_count of 0 means we were only counting the extents
4790 * so there are no structs to copy
4791 */
4792 if (fm->fm_extent_count != 0) {
4793 target_size_out += fm->fm_mapped_extents * extent_size;
4794 }
4795 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4796 if (!argptr) {
4797 ret = -TARGET_EFAULT;
4798 } else {
4799 /* Convert the struct fiemap */
4800 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4801 if (fm->fm_extent_count != 0) {
4802 p = argptr + target_size_in;
4803 /* ...and then all the struct fiemap_extents */
4804 for (i = 0; i < fm->fm_mapped_extents; i++) {
4805 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4806 THUNK_TARGET);
4807 p += extent_size;
4808 }
4809 }
4810 unlock_user(argptr, arg, target_size_out);
4811 }
4812 }
4813 if (free_fm) {
4814 g_free(fm);
4815 }
4816 return ret;
4817 }
4818 #endif
4819
4820 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4821 int fd, int cmd, abi_long arg)
4822 {
4823 const argtype *arg_type = ie->arg_type;
4824 int target_size;
4825 void *argptr;
4826 int ret;
4827 struct ifconf *host_ifconf;
4828 uint32_t outbufsz;
4829 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4830 const argtype ifreq_max_type[] = { MK_STRUCT(STRUCT_ifmap_ifreq) };
4831 int target_ifreq_size;
4832 int nb_ifreq;
4833 int free_buf = 0;
4834 int i;
4835 int target_ifc_len;
4836 abi_long target_ifc_buf;
4837 int host_ifc_len;
4838 char *host_ifc_buf;
4839
4840 assert(arg_type[0] == TYPE_PTR);
4841 assert(ie->access == IOC_RW);
4842
4843 arg_type++;
4844 target_size = thunk_type_size(arg_type, 0);
4845
4846 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4847 if (!argptr)
4848 return -TARGET_EFAULT;
4849 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4850 unlock_user(argptr, arg, 0);
4851
4852 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4853 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4854 target_ifreq_size = thunk_type_size(ifreq_max_type, 0);
4855
4856 if (target_ifc_buf != 0) {
4857 target_ifc_len = host_ifconf->ifc_len;
4858 nb_ifreq = target_ifc_len / target_ifreq_size;
4859 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4860
4861 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4862 if (outbufsz > MAX_STRUCT_SIZE) {
4863 /*
4864 * We can't fit all the extents into the fixed size buffer.
4865 * Allocate one that is large enough and use it instead.
4866 */
4867 host_ifconf = malloc(outbufsz);
4868 if (!host_ifconf) {
4869 return -TARGET_ENOMEM;
4870 }
4871 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4872 free_buf = 1;
4873 }
4874 host_ifc_buf = (char *)host_ifconf + sizeof(*host_ifconf);
4875
4876 host_ifconf->ifc_len = host_ifc_len;
4877 } else {
4878 host_ifc_buf = NULL;
4879 }
4880 host_ifconf->ifc_buf = host_ifc_buf;
4881
4882 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4883 if (!is_error(ret)) {
4884 /* convert host ifc_len to target ifc_len */
4885
4886 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4887 target_ifc_len = nb_ifreq * target_ifreq_size;
4888 host_ifconf->ifc_len = target_ifc_len;
4889
4890 /* restore target ifc_buf */
4891
4892 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4893
4894 /* copy struct ifconf to target user */
4895
4896 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4897 if (!argptr)
4898 return -TARGET_EFAULT;
4899 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4900 unlock_user(argptr, arg, target_size);
4901
4902 if (target_ifc_buf != 0) {
4903 /* copy ifreq[] to target user */
4904 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4905 for (i = 0; i < nb_ifreq ; i++) {
4906 thunk_convert(argptr + i * target_ifreq_size,
4907 host_ifc_buf + i * sizeof(struct ifreq),
4908 ifreq_arg_type, THUNK_TARGET);
4909 }
4910 unlock_user(argptr, target_ifc_buf, target_ifc_len);
4911 }
4912 }
4913
4914 if (free_buf) {
4915 free(host_ifconf);
4916 }
4917
4918 return ret;
4919 }
4920
4921 #if defined(CONFIG_USBFS)
4922 #if HOST_LONG_BITS > 64
4923 #error USBDEVFS thunks do not support >64 bit hosts yet.
4924 #endif
4925 struct live_urb {
4926 uint64_t target_urb_adr;
4927 uint64_t target_buf_adr;
4928 char *target_buf_ptr;
4929 struct usbdevfs_urb host_urb;
4930 };
4931
4932 static GHashTable *usbdevfs_urb_hashtable(void)
4933 {
4934 static GHashTable *urb_hashtable;
4935
4936 if (!urb_hashtable) {
4937 urb_hashtable = g_hash_table_new(g_int64_hash, g_int64_equal);
4938 }
4939 return urb_hashtable;
4940 }
4941
4942 static void urb_hashtable_insert(struct live_urb *urb)
4943 {
4944 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4945 g_hash_table_insert(urb_hashtable, urb, urb);
4946 }
4947
4948 static struct live_urb *urb_hashtable_lookup(uint64_t target_urb_adr)
4949 {
4950 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4951 return g_hash_table_lookup(urb_hashtable, &target_urb_adr);
4952 }
4953
4954 static void urb_hashtable_remove(struct live_urb *urb)
4955 {
4956 GHashTable *urb_hashtable = usbdevfs_urb_hashtable();
4957 g_hash_table_remove(urb_hashtable, urb);
4958 }
4959
4960 static abi_long
4961 do_ioctl_usbdevfs_reapurb(const IOCTLEntry *ie, uint8_t *buf_temp,
4962 int fd, int cmd, abi_long arg)
4963 {
4964 const argtype usbfsurb_arg_type[] = { MK_STRUCT(STRUCT_usbdevfs_urb) };
4965 const argtype ptrvoid_arg_type[] = { TYPE_PTRVOID, 0, 0 };
4966 struct live_urb *lurb;
4967 void *argptr;
4968 uint64_t hurb;
4969 int target_size;
4970 uintptr_t target_urb_adr;
4971 abi_long ret;
4972
4973 target_size = thunk_type_size(usbfsurb_arg_type, THUNK_TARGET);
4974
4975 memset(buf_temp, 0, sizeof(uint64_t));
4976 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4977 if (is_error(ret)) {
4978 return ret;
4979 }
4980
4981 memcpy(&hurb, buf_temp, sizeof(uint64_t));
4982 lurb = (void *)((uintptr_t)hurb - offsetof(struct live_urb, host_urb));
4983 if (!lurb->target_urb_adr) {
4984 return -TARGET_EFAULT;
4985 }
4986 urb_hashtable_remove(lurb);
4987 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr,
4988 lurb->host_urb.buffer_length);
4989 lurb->target_buf_ptr = NULL;
4990
4991 /* restore the guest buffer pointer */
4992 lurb->host_urb.buffer = (void *)(uintptr_t)lurb->target_buf_adr;
4993
4994 /* update the guest urb struct */
4995 argptr = lock_user(VERIFY_WRITE, lurb->target_urb_adr, target_size, 0);
4996 if (!argptr) {
4997 g_free(lurb);
4998 return -TARGET_EFAULT;
4999 }
5000 thunk_convert(argptr, &lurb->host_urb, usbfsurb_arg_type, THUNK_TARGET);
5001 unlock_user(argptr, lurb->target_urb_adr, target_size);
5002
5003 target_size = thunk_type_size(ptrvoid_arg_type, THUNK_TARGET);
5004 /* write back the urb handle */
5005 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5006 if (!argptr) {
5007 g_free(lurb);
5008 return -TARGET_EFAULT;
5009 }
5010
5011 /* GHashTable uses 64-bit keys but thunk_convert expects uintptr_t */
5012 target_urb_adr = lurb->target_urb_adr;
5013 thunk_convert(argptr, &target_urb_adr, ptrvoid_arg_type, THUNK_TARGET);
5014 unlock_user(argptr, arg, target_size);
5015
5016 g_free(lurb);
5017 return ret;
5018 }
5019
5020 static abi_long
5021 do_ioctl_usbdevfs_discardurb(const IOCTLEntry *ie,
5022 uint8_t *buf_temp __attribute__((unused)),
5023 int fd, int cmd, abi_long arg)
5024 {
5025 struct live_urb *lurb;
5026
5027 /* map target address back to host URB with metadata. */
5028 lurb = urb_hashtable_lookup(arg);
5029 if (!lurb) {
5030 return -TARGET_EFAULT;
5031 }
5032 return get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5033 }
5034
5035 static abi_long
5036 do_ioctl_usbdevfs_submiturb(const IOCTLEntry *ie, uint8_t *buf_temp,
5037 int fd, int cmd, abi_long arg)
5038 {
5039 const argtype *arg_type = ie->arg_type;
5040 int target_size;
5041 abi_long ret;
5042 void *argptr;
5043 int rw_dir;
5044 struct live_urb *lurb;
5045
5046 /*
5047 * each submitted URB needs to map to a unique ID for the
5048 * kernel, and that unique ID needs to be a pointer to
5049 * host memory. hence, we need to malloc for each URB.
5050 * isochronous transfers have a variable length struct.
5051 */
5052 arg_type++;
5053 target_size = thunk_type_size(arg_type, THUNK_TARGET);
5054
5055 /* construct host copy of urb and metadata */
5056 lurb = g_try_malloc0(sizeof(struct live_urb));
5057 if (!lurb) {
5058 return -TARGET_ENOMEM;
5059 }
5060
5061 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5062 if (!argptr) {
5063 g_free(lurb);
5064 return -TARGET_EFAULT;
5065 }
5066 thunk_convert(&lurb->host_urb, argptr, arg_type, THUNK_HOST);
5067 unlock_user(argptr, arg, 0);
5068
5069 lurb->target_urb_adr = arg;
5070 lurb->target_buf_adr = (uintptr_t)lurb->host_urb.buffer;
5071
5072 /* buffer space used depends on endpoint type so lock the entire buffer */
5073 /* control type urbs should check the buffer contents for true direction */
5074 rw_dir = lurb->host_urb.endpoint & USB_DIR_IN ? VERIFY_WRITE : VERIFY_READ;
5075 lurb->target_buf_ptr = lock_user(rw_dir, lurb->target_buf_adr,
5076 lurb->host_urb.buffer_length, 1);
5077 if (lurb->target_buf_ptr == NULL) {
5078 g_free(lurb);
5079 return -TARGET_EFAULT;
5080 }
5081
5082 /* update buffer pointer in host copy */
5083 lurb->host_urb.buffer = lurb->target_buf_ptr;
5084
5085 ret = get_errno(safe_ioctl(fd, ie->host_cmd, &lurb->host_urb));
5086 if (is_error(ret)) {
5087 unlock_user(lurb->target_buf_ptr, lurb->target_buf_adr, 0);
5088 g_free(lurb);
5089 } else {
5090 urb_hashtable_insert(lurb);
5091 }
5092
5093 return ret;
5094 }
5095 #endif /* CONFIG_USBFS */
5096
5097 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5098 int cmd, abi_long arg)
5099 {
5100 void *argptr;
5101 struct dm_ioctl *host_dm;
5102 abi_long guest_data;
5103 uint32_t guest_data_size;
5104 int target_size;
5105 const argtype *arg_type = ie->arg_type;
5106 abi_long ret;
5107 void *big_buf = NULL;
5108 char *host_data;
5109
5110 arg_type++;
5111 target_size = thunk_type_size(arg_type, 0);
5112 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5113 if (!argptr) {
5114 ret = -TARGET_EFAULT;
5115 goto out;
5116 }
5117 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5118 unlock_user(argptr, arg, 0);
5119
5120 /* buf_temp is too small, so fetch things into a bigger buffer */
5121 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5122 memcpy(big_buf, buf_temp, target_size);
5123 buf_temp = big_buf;
5124 host_dm = big_buf;
5125
5126 guest_data = arg + host_dm->data_start;
5127 if ((guest_data - arg) < 0) {
5128 ret = -TARGET_EINVAL;
5129 goto out;
5130 }
5131 guest_data_size = host_dm->data_size - host_dm->data_start;
5132 host_data = (char*)host_dm + host_dm->data_start;
5133
5134 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5135 if (!argptr) {
5136 ret = -TARGET_EFAULT;
5137 goto out;
5138 }
5139
5140 switch (ie->host_cmd) {
5141 case DM_REMOVE_ALL:
5142 case DM_LIST_DEVICES:
5143 case DM_DEV_CREATE:
5144 case DM_DEV_REMOVE:
5145 case DM_DEV_SUSPEND:
5146 case DM_DEV_STATUS:
5147 case DM_DEV_WAIT:
5148 case DM_TABLE_STATUS:
5149 case DM_TABLE_CLEAR:
5150 case DM_TABLE_DEPS:
5151 case DM_LIST_VERSIONS:
5152 /* no input data */
5153 break;
5154 case DM_DEV_RENAME:
5155 case DM_DEV_SET_GEOMETRY:
5156 /* data contains only strings */
5157 memcpy(host_data, argptr, guest_data_size);
5158 break;
5159 case DM_TARGET_MSG:
5160 memcpy(host_data, argptr, guest_data_size);
5161 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5162 break;
5163 case DM_TABLE_LOAD:
5164 {
5165 void *gspec = argptr;
5166 void *cur_data = host_data;
5167 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5168 int spec_size = thunk_type_size(arg_type, 0);
5169 int i;
5170
5171 for (i = 0; i < host_dm->target_count; i++) {
5172 struct dm_target_spec *spec = cur_data;
5173 uint32_t next;
5174 int slen;
5175
5176 thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5177 slen = strlen((char*)gspec + spec_size) + 1;
5178 next = spec->next;
5179 spec->next = sizeof(*spec) + slen;
5180 strcpy((char*)&spec[1], gspec + spec_size);
5181 gspec += next;
5182 cur_data += spec->next;
5183 }
5184 break;
5185 }
5186 default:
5187 ret = -TARGET_EINVAL;
5188 unlock_user(argptr, guest_data, 0);
5189 goto out;
5190 }
5191 unlock_user(argptr, guest_data, 0);
5192
5193 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5194 if (!is_error(ret)) {
5195 guest_data = arg + host_dm->data_start;
5196 guest_data_size = host_dm->data_size - host_dm->data_start;
5197 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5198 switch (ie->host_cmd) {
5199 case DM_REMOVE_ALL:
5200 case DM_DEV_CREATE:
5201 case DM_DEV_REMOVE:
5202 case DM_DEV_RENAME:
5203 case DM_DEV_SUSPEND:
5204 case DM_DEV_STATUS:
5205 case DM_TABLE_LOAD:
5206 case DM_TABLE_CLEAR:
5207 case DM_TARGET_MSG:
5208 case DM_DEV_SET_GEOMETRY:
5209 /* no return data */
5210 break;
5211 case DM_LIST_DEVICES:
5212 {
5213 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5214 uint32_t remaining_data = guest_data_size;
5215 void *cur_data = argptr;
5216 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5217 int nl_size = 12; /* can't use thunk_size due to alignment */
5218
5219 while (1) {
5220 uint32_t next = nl->next;
5221 if (next) {
5222 nl->next = nl_size + (strlen(nl->name) + 1);
5223 }
5224 if (remaining_data < nl->next) {
5225 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5226 break;
5227 }
5228 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5229 strcpy(cur_data + nl_size, nl->name);
5230 cur_data += nl->next;
5231 remaining_data -= nl->next;
5232 if (!next) {
5233 break;
5234 }
5235 nl = (void*)nl + next;
5236 }
5237 break;
5238 }
5239 case DM_DEV_WAIT:
5240 case DM_TABLE_STATUS:
5241 {
5242 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5243 void *cur_data = argptr;
5244 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5245 int spec_size = thunk_type_size(arg_type, 0);
5246 int i;
5247
5248 for (i = 0; i < host_dm->target_count; i++) {
5249 uint32_t next = spec->next;
5250 int slen = strlen((char*)&spec[1]) + 1;
5251 spec->next = (cur_data - argptr) + spec_size + slen;
5252 if (guest_data_size < spec->next) {
5253 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5254 break;
5255 }
5256 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5257 strcpy(cur_data + spec_size, (char*)&spec[1]);
5258 cur_data = argptr + spec->next;
5259 spec = (void*)host_dm + host_dm->data_start + next;
5260 }
5261 break;
5262 }
5263 case DM_TABLE_DEPS:
5264 {
5265 void *hdata = (void*)host_dm + host_dm->data_start;
5266 int count = *(uint32_t*)hdata;
5267 uint64_t *hdev = hdata + 8;
5268 uint64_t *gdev = argptr + 8;
5269 int i;
5270
5271 *(uint32_t*)argptr = tswap32(count);
5272 for (i = 0; i < count; i++) {
5273 *gdev = tswap64(*hdev);
5274 gdev++;
5275 hdev++;
5276 }
5277 break;
5278 }
5279 case DM_LIST_VERSIONS:
5280 {
5281 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5282 uint32_t remaining_data = guest_data_size;
5283 void *cur_data = argptr;
5284 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5285 int vers_size = thunk_type_size(arg_type, 0);
5286
5287 while (1) {
5288 uint32_t next = vers->next;
5289 if (next) {
5290 vers->next = vers_size + (strlen(vers->name) + 1);
5291 }
5292 if (remaining_data < vers->next) {
5293 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5294 break;
5295 }
5296 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5297 strcpy(cur_data + vers_size, vers->name);
5298 cur_data += vers->next;
5299 remaining_data -= vers->next;
5300 if (!next) {
5301 break;
5302 }
5303 vers = (void*)vers + next;
5304 }
5305 break;
5306 }
5307 default:
5308 unlock_user(argptr, guest_data, 0);
5309 ret = -TARGET_EINVAL;
5310 goto out;
5311 }
5312 unlock_user(argptr, guest_data, guest_data_size);
5313
5314 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5315 if (!argptr) {
5316 ret = -TARGET_EFAULT;
5317 goto out;
5318 }
5319 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5320 unlock_user(argptr, arg, target_size);
5321 }
5322 out:
5323 g_free(big_buf);
5324 return ret;
5325 }
5326
5327 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5328 int cmd, abi_long arg)
5329 {
5330 void *argptr;
5331 int target_size;
5332 const argtype *arg_type = ie->arg_type;
5333 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5334 abi_long ret;
5335
5336 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5337 struct blkpg_partition host_part;
5338
5339 /* Read and convert blkpg */
5340 arg_type++;
5341 target_size = thunk_type_size(arg_type, 0);
5342 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5343 if (!argptr) {
5344 ret = -TARGET_EFAULT;
5345 goto out;
5346 }
5347 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5348 unlock_user(argptr, arg, 0);
5349
5350 switch (host_blkpg->op) {
5351 case BLKPG_ADD_PARTITION:
5352 case BLKPG_DEL_PARTITION:
5353 /* payload is struct blkpg_partition */
5354 break;
5355 default:
5356 /* Unknown opcode */
5357 ret = -TARGET_EINVAL;
5358 goto out;
5359 }
5360
5361 /* Read and convert blkpg->data */
5362 arg = (abi_long)(uintptr_t)host_blkpg->data;
5363 target_size = thunk_type_size(part_arg_type, 0);
5364 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5365 if (!argptr) {
5366 ret = -TARGET_EFAULT;
5367 goto out;
5368 }
5369 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5370 unlock_user(argptr, arg, 0);
5371
5372 /* Swizzle the data pointer to our local copy and call! */
5373 host_blkpg->data = &host_part;
5374 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5375
5376 out:
5377 return ret;
5378 }
5379
5380 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5381 int fd, int cmd, abi_long arg)
5382 {
5383 const argtype *arg_type = ie->arg_type;
5384 const StructEntry *se;
5385 const argtype *field_types;
5386 const int *dst_offsets, *src_offsets;
5387 int target_size;
5388 void *argptr;
5389 abi_ulong *target_rt_dev_ptr = NULL;
5390 unsigned long *host_rt_dev_ptr = NULL;
5391 abi_long ret;
5392 int i;
5393
5394 assert(ie->access == IOC_W);
5395 assert(*arg_type == TYPE_PTR);
5396 arg_type++;
5397 assert(*arg_type == TYPE_STRUCT);
5398 target_size = thunk_type_size(arg_type, 0);
5399 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5400 if (!argptr) {
5401 return -TARGET_EFAULT;
5402 }
5403 arg_type++;
5404 assert(*arg_type == (int)STRUCT_rtentry);
5405 se = struct_entries + *arg_type++;
5406 assert(se->convert[0] == NULL);
5407 /* convert struct here to be able to catch rt_dev string */
5408 field_types = se->field_types;
5409 dst_offsets = se->field_offsets[THUNK_HOST];
5410 src_offsets = se->field_offsets[THUNK_TARGET];
5411 for (i = 0; i < se->nb_fields; i++) {
5412 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5413 assert(*field_types == TYPE_PTRVOID);
5414 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5415 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5416 if (*target_rt_dev_ptr != 0) {
5417 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5418 tswapal(*target_rt_dev_ptr));
5419 if (!*host_rt_dev_ptr) {
5420 unlock_user(argptr, arg, 0);
5421 return -TARGET_EFAULT;
5422 }
5423 } else {
5424 *host_rt_dev_ptr = 0;
5425 }
5426 field_types++;
5427 continue;
5428 }
5429 field_types = thunk_convert(buf_temp + dst_offsets[i],
5430 argptr + src_offsets[i],
5431 field_types, THUNK_HOST);
5432 }
5433 unlock_user(argptr, arg, 0);
5434
5435 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5436
5437 assert(host_rt_dev_ptr != NULL);
5438 assert(target_rt_dev_ptr != NULL);
5439 if (*host_rt_dev_ptr != 0) {
5440 unlock_user((void *)*host_rt_dev_ptr,
5441 *target_rt_dev_ptr, 0);
5442 }
5443 return ret;
5444 }
5445
5446 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5447 int fd, int cmd, abi_long arg)
5448 {
5449 int sig = target_to_host_signal(arg);
5450 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5451 }
5452
5453 static abi_long do_ioctl_SIOCGSTAMP(const IOCTLEntry *ie, uint8_t *buf_temp,
5454 int fd, int cmd, abi_long arg)
5455 {
5456 struct timeval tv;
5457 abi_long ret;
5458
5459 ret = get_errno(safe_ioctl(fd, SIOCGSTAMP, &tv));
5460 if (is_error(ret)) {
5461 return ret;
5462 }
5463
5464 if (cmd == (int)TARGET_SIOCGSTAMP_OLD) {
5465 if (copy_to_user_timeval(arg, &tv)) {
5466 return -TARGET_EFAULT;
5467 }
5468 } else {
5469 if (copy_to_user_timeval64(arg, &tv)) {
5470 return -TARGET_EFAULT;
5471 }
5472 }
5473
5474 return ret;
5475 }
5476
5477 static abi_long do_ioctl_SIOCGSTAMPNS(const IOCTLEntry *ie, uint8_t *buf_temp,
5478 int fd, int cmd, abi_long arg)
5479 {
5480 struct timespec ts;
5481 abi_long ret;
5482
5483 ret = get_errno(safe_ioctl(fd, SIOCGSTAMPNS, &ts));
5484 if (is_error(ret)) {
5485 return ret;
5486 }
5487
5488 if (cmd == (int)TARGET_SIOCGSTAMPNS_OLD) {
5489 if (host_to_target_timespec(arg, &ts)) {
5490 return -TARGET_EFAULT;
5491 }
5492 } else{
5493 if (host_to_target_timespec64(arg, &ts)) {
5494 return -TARGET_EFAULT;
5495 }
5496 }
5497
5498 return ret;
5499 }
5500
5501 #ifdef TIOCGPTPEER
5502 static abi_long do_ioctl_tiocgptpeer(const IOCTLEntry *ie, uint8_t *buf_temp,
5503 int fd, int cmd, abi_long arg)
5504 {
5505 int flags = target_to_host_bitmask(arg, fcntl_flags_tbl);
5506 return get_errno(safe_ioctl(fd, ie->host_cmd, flags));
5507 }
5508 #endif
5509
5510 #ifdef HAVE_DRM_H
5511
5512 static void unlock_drm_version(struct drm_version *host_ver,
5513 struct target_drm_version *target_ver,
5514 bool copy)
5515 {
5516 unlock_user(host_ver->name, target_ver->name,
5517 copy ? host_ver->name_len : 0);
5518 unlock_user(host_ver->date, target_ver->date,
5519 copy ? host_ver->date_len : 0);
5520 unlock_user(host_ver->desc, target_ver->desc,
5521 copy ? host_ver->desc_len : 0);
5522 }
5523
5524 static inline abi_long target_to_host_drmversion(struct drm_version *host_ver,
5525 struct target_drm_version *target_ver)
5526 {
5527 memset(host_ver, 0, sizeof(*host_ver));
5528
5529 __get_user(host_ver->name_len, &target_ver->name_len);
5530 if (host_ver->name_len) {
5531 host_ver->name = lock_user(VERIFY_WRITE, target_ver->name,
5532 target_ver->name_len, 0);
5533 if (!host_ver->name) {
5534 return -EFAULT;
5535 }
5536 }
5537
5538 __get_user(host_ver->date_len, &target_ver->date_len);
5539 if (host_ver->date_len) {
5540 host_ver->date = lock_user(VERIFY_WRITE, target_ver->date,
5541 target_ver->date_len, 0);
5542 if (!host_ver->date) {
5543 goto err;
5544 }
5545 }
5546
5547 __get_user(host_ver->desc_len, &target_ver->desc_len);
5548 if (host_ver->desc_len) {
5549 host_ver->desc = lock_user(VERIFY_WRITE, target_ver->desc,
5550 target_ver->desc_len, 0);
5551 if (!host_ver->desc) {
5552 goto err;
5553 }
5554 }
5555
5556 return 0;
5557 err:
5558 unlock_drm_version(host_ver, target_ver, false);
5559 return -EFAULT;
5560 }
5561
5562 static inline void host_to_target_drmversion(
5563 struct target_drm_version *target_ver,
5564 struct drm_version *host_ver)
5565 {
5566 __put_user(host_ver->version_major, &target_ver->version_major);
5567 __put_user(host_ver->version_minor, &target_ver->version_minor);
5568 __put_user(host_ver->version_patchlevel, &target_ver->version_patchlevel);
5569 __put_user(host_ver->name_len, &target_ver->name_len);
5570 __put_user(host_ver->date_len, &target_ver->date_len);
5571 __put_user(host_ver->desc_len, &target_ver->desc_len);
5572 unlock_drm_version(host_ver, target_ver, true);
5573 }
5574
5575 static abi_long do_ioctl_drm(const IOCTLEntry *ie, uint8_t *buf_temp,
5576 int fd, int cmd, abi_long arg)
5577 {
5578 struct drm_version *ver;
5579 struct target_drm_version *target_ver;
5580 abi_long ret;
5581
5582 switch (ie->host_cmd) {
5583 case DRM_IOCTL_VERSION:
5584 if (!lock_user_struct(VERIFY_WRITE, target_ver, arg, 0)) {
5585 return -TARGET_EFAULT;
5586 }
5587 ver = (struct drm_version *)buf_temp;
5588 ret = target_to_host_drmversion(ver, target_ver);
5589 if (!is_error(ret)) {
5590 ret = get_errno(safe_ioctl(fd, ie->host_cmd, ver));
5591 if (is_error(ret)) {
5592 unlock_drm_version(ver, target_ver, false);
5593 } else {
5594 host_to_target_drmversion(target_ver, ver);
5595 }
5596 }
5597 unlock_user_struct(target_ver, arg, 0);
5598 return ret;
5599 }
5600 return -TARGET_ENOSYS;
5601 }
5602
5603 static abi_long do_ioctl_drm_i915_getparam(const IOCTLEntry *ie,
5604 struct drm_i915_getparam *gparam,
5605 int fd, abi_long arg)
5606 {
5607 abi_long ret;
5608 int value;
5609 struct target_drm_i915_getparam *target_gparam;
5610
5611 if (!lock_user_struct(VERIFY_READ, target_gparam, arg, 0)) {
5612 return -TARGET_EFAULT;
5613 }
5614
5615 __get_user(gparam->param, &target_gparam->param);
5616 gparam->value = &value;
5617 ret = get_errno(safe_ioctl(fd, ie->host_cmd, gparam));
5618 put_user_s32(value, target_gparam->value);
5619
5620 unlock_user_struct(target_gparam, arg, 0);
5621 return ret;
5622 }
5623
5624 static abi_long do_ioctl_drm_i915(const IOCTLEntry *ie, uint8_t *buf_temp,
5625 int fd, int cmd, abi_long arg)
5626 {
5627 switch (ie->host_cmd) {
5628 case DRM_IOCTL_I915_GETPARAM:
5629 return do_ioctl_drm_i915_getparam(ie,
5630 (struct drm_i915_getparam *)buf_temp,
5631 fd, arg);
5632 default:
5633 return -TARGET_ENOSYS;
5634 }
5635 }
5636
5637 #endif
5638
5639 static abi_long do_ioctl_TUNSETTXFILTER(const IOCTLEntry *ie, uint8_t *buf_temp,
5640 int fd, int cmd, abi_long arg)
5641 {
5642 struct tun_filter *filter = (struct tun_filter *)buf_temp;
5643 struct tun_filter *target_filter;
5644 char *target_addr;
5645
5646 assert(ie->access == IOC_W);
5647
5648 target_filter = lock_user(VERIFY_READ, arg, sizeof(*target_filter), 1);
5649 if (!target_filter) {
5650 return -TARGET_EFAULT;
5651 }
5652 filter->flags = tswap16(target_filter->flags);
5653 filter->count = tswap16(target_filter->count);
5654 unlock_user(target_filter, arg, 0);
5655
5656 if (filter->count) {
5657 if (offsetof(struct tun_filter, addr) + filter->count * ETH_ALEN >
5658 MAX_STRUCT_SIZE) {
5659 return -TARGET_EFAULT;
5660 }
5661
5662 target_addr = lock_user(VERIFY_READ,
5663 arg + offsetof(struct tun_filter, addr),
5664 filter->count * ETH_ALEN, 1);
5665 if (!target_addr) {
5666 return -TARGET_EFAULT;
5667 }
5668 memcpy(filter->addr, target_addr, filter->count * ETH_ALEN);
5669 unlock_user(target_addr, arg + offsetof(struct tun_filter, addr), 0);
5670 }
5671
5672 return get_errno(safe_ioctl(fd, ie->host_cmd, filter));
5673 }
5674
5675 IOCTLEntry ioctl_entries[] = {
5676 #define IOCTL(cmd, access, ...) \
5677 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5678 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5679 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5680 #define IOCTL_IGNORE(cmd) \
5681 { TARGET_ ## cmd, 0, #cmd },
5682 #include "ioctls.h"
5683 { 0, 0, },
5684 };
5685
5686 /* ??? Implement proper locking for ioctls. */
5687 /* do_ioctl() Must return target values and target errnos. */
5688 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5689 {
5690 const IOCTLEntry *ie;
5691 const argtype *arg_type;
5692 abi_long ret;
5693 uint8_t buf_temp[MAX_STRUCT_SIZE];
5694 int target_size;
5695 void *argptr;
5696
5697 ie = ioctl_entries;
5698 for(;;) {
5699 if (ie->target_cmd == 0) {
5700 qemu_log_mask(
5701 LOG_UNIMP, "Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5702 return -TARGET_ENOSYS;
5703 }
5704 if (ie->target_cmd == cmd)
5705 break;
5706 ie++;
5707 }
5708 arg_type = ie->arg_type;
5709 if (ie->do_ioctl) {
5710 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5711 } else if (!ie->host_cmd) {
5712 /* Some architectures define BSD ioctls in their headers
5713 that are not implemented in Linux. */
5714 return -TARGET_ENOSYS;
5715 }
5716
5717 switch(arg_type[0]) {
5718 case TYPE_NULL:
5719 /* no argument */
5720 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5721 break;
5722 case TYPE_PTRVOID:
5723 case TYPE_INT:
5724 case TYPE_LONG:
5725 case TYPE_ULONG:
5726 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5727 break;
5728 case TYPE_PTR:
5729 arg_type++;
5730 target_size = thunk_type_size(arg_type, 0);
5731 switch(ie->access) {
5732 case IOC_R:
5733 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5734 if (!is_error(ret)) {
5735 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5736 if (!argptr)
5737 return -TARGET_EFAULT;
5738 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5739 unlock_user(argptr, arg, target_size);
5740 }
5741 break;
5742 case IOC_W:
5743 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5744 if (!argptr)
5745 return -TARGET_EFAULT;
5746 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5747 unlock_user(argptr, arg, 0);
5748 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5749 break;
5750 default:
5751 case IOC_RW:
5752 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5753 if (!argptr)
5754 return -TARGET_EFAULT;
5755 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5756 unlock_user(argptr, arg, 0);
5757 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5758 if (!is_error(ret)) {
5759 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5760 if (!argptr)
5761 return -TARGET_EFAULT;
5762 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5763 unlock_user(argptr, arg, target_size);
5764 }
5765 break;
5766 }
5767 break;
5768 default:
5769 qemu_log_mask(LOG_UNIMP,
5770 "Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5771 (long)cmd, arg_type[0]);
5772 ret = -TARGET_ENOSYS;
5773 break;
5774 }
5775 return ret;
5776 }
5777
5778 static const bitmask_transtbl iflag_tbl[] = {
5779 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5780 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5781 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5782 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5783 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5784 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5785 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5786 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5787 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5788 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5789 { TARGET_IXON, TARGET_IXON, IXON, IXON },
5790 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5791 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5792 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5793 { TARGET_IUTF8, TARGET_IUTF8, IUTF8, IUTF8},
5794 { 0, 0, 0, 0 }
5795 };
5796
5797 static const bitmask_transtbl oflag_tbl[] = {
5798 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5799 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5800 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5801 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5802 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5803 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5804 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5805 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5806 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5807 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5808 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5809 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5810 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5811 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5812 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5813 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5814 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5815 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5816 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5817 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5818 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5819 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5820 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5821 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5822 { 0, 0, 0, 0 }
5823 };
5824
5825 static const bitmask_transtbl cflag_tbl[] = {
5826 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5827 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5828 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5829 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5830 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5831 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5832 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5833 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5834 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5835 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5836 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5837 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5838 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5839 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5840 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5841 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5842 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5843 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5844 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5845 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5846 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5847 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5848 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5849 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5850 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5851 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5852 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5853 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5854 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5855 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5856 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5857 { 0, 0, 0, 0 }
5858 };
5859
5860 static const bitmask_transtbl lflag_tbl[] = {
5861 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5862 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5863 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5864 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5865 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5866 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5867 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5868 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5869 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5870 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5871 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5872 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5873 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5874 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5875 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5876 { TARGET_EXTPROC, TARGET_EXTPROC, EXTPROC, EXTPROC},
5877 { 0, 0, 0, 0 }
5878 };
5879
5880 static void target_to_host_termios (void *dst, const void *src)
5881 {
5882 struct host_termios *host = dst;
5883 const struct target_termios *target = src;
5884
5885 host->c_iflag =
5886 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5887 host->c_oflag =
5888 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5889 host->c_cflag =
5890 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5891 host->c_lflag =
5892 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5893 host->c_line = target->c_line;
5894
5895 memset(host->c_cc, 0, sizeof(host->c_cc));
5896 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5897 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5898 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5899 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5900 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5901 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5902 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5903 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5904 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5905 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5906 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5907 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5908 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5909 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5910 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5911 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5912 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5913 }
5914
5915 static void host_to_target_termios (void *dst, const void *src)
5916 {
5917 struct target_termios *target = dst;
5918 const struct host_termios *host = src;
5919
5920 target->c_iflag =
5921 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5922 target->c_oflag =
5923 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5924 target->c_cflag =
5925 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5926 target->c_lflag =
5927 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5928 target->c_line = host->c_line;
5929
5930 memset(target->c_cc, 0, sizeof(target->c_cc));
5931 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5932 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5933 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5934 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5935 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5936 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5937 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5938 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5939 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5940 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5941 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5942 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5943 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5944 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5945 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5946 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5947 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5948 }
5949
5950 static const StructEntry struct_termios_def = {
5951 .convert = { host_to_target_termios, target_to_host_termios },
5952 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5953 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5954 .print = print_termios,
5955 };
5956
5957 static const bitmask_transtbl mmap_flags_tbl[] = {
5958 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
5959 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
5960 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5961 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
5962 MAP_ANONYMOUS, MAP_ANONYMOUS },
5963 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
5964 MAP_GROWSDOWN, MAP_GROWSDOWN },
5965 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
5966 MAP_DENYWRITE, MAP_DENYWRITE },
5967 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
5968 MAP_EXECUTABLE, MAP_EXECUTABLE },
5969 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5970 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
5971 MAP_NORESERVE, MAP_NORESERVE },
5972 { TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
5973 /* MAP_STACK had been ignored by the kernel for quite some time.
5974 Recognize it for the target insofar as we do not want to pass
5975 it through to the host. */
5976 { TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
5977 { 0, 0, 0, 0 }
5978 };
5979
5980 /*
5981 * NOTE: TARGET_ABI32 is defined for TARGET_I386 (but not for TARGET_X86_64)
5982 * TARGET_I386 is defined if TARGET_X86_64 is defined
5983 */
5984 #if defined(TARGET_I386)
5985
5986 /* NOTE: there is really one LDT for all the threads */
5987 static uint8_t *ldt_table;
5988
5989 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5990 {
5991 int size;
5992 void *p;
5993
5994 if (!ldt_table)
5995 return 0;
5996 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5997 if (size > bytecount)
5998 size = bytecount;
5999 p = lock_user(VERIFY_WRITE, ptr, size, 0);
6000 if (!p)
6001 return -TARGET_EFAULT;
6002 /* ??? Should this by byteswapped? */
6003 memcpy(p, ldt_table, size);
6004 unlock_user(p, ptr, size);
6005 return size;
6006 }
6007
6008 /* XXX: add locking support */
6009 static abi_long write_ldt(CPUX86State *env,
6010 abi_ulong ptr, unsigned long bytecount, int oldmode)
6011 {
6012 struct target_modify_ldt_ldt_s ldt_info;
6013 struct target_modify_ldt_ldt_s *target_ldt_info;
6014 int seg_32bit, contents, read_exec_only, limit_in_pages;
6015 int seg_not_present, useable, lm;
6016 uint32_t *lp, entry_1, entry_2;
6017
6018 if (bytecount != sizeof(ldt_info))
6019 return -TARGET_EINVAL;
6020 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
6021 return -TARGET_EFAULT;
6022 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6023 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6024 ldt_info.limit = tswap32(target_ldt_info->limit);
6025 ldt_info.flags = tswap32(target_ldt_info->flags);
6026 unlock_user_struct(target_ldt_info, ptr, 0);
6027
6028 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
6029 return -TARGET_EINVAL;
6030 seg_32bit = ldt_info.flags & 1;
6031 contents = (ldt_info.flags >> 1) & 3;
6032 read_exec_only = (ldt_info.flags >> 3) & 1;
6033 limit_in_pages = (ldt_info.flags >> 4) & 1;
6034 seg_not_present = (ldt_info.flags >> 5) & 1;
6035 useable = (ldt_info.flags >> 6) & 1;
6036 #ifdef TARGET_ABI32
6037 lm = 0;
6038 #else
6039 lm = (ldt_info.flags >> 7) & 1;
6040 #endif
6041 if (contents == 3) {
6042 if (oldmode)
6043 return -TARGET_EINVAL;
6044 if (seg_not_present == 0)
6045 return -TARGET_EINVAL;
6046 }
6047 /* allocate the LDT */
6048 if (!ldt_table) {
6049 env->ldt.base = target_mmap(0,
6050 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
6051 PROT_READ|PROT_WRITE,
6052 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
6053 if (env->ldt.base == -1)
6054 return -TARGET_ENOMEM;
6055 memset(g2h_untagged(env->ldt.base), 0,
6056 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
6057 env->ldt.limit = 0xffff;
6058 ldt_table = g2h_untagged(env->ldt.base);
6059 }
6060
6061 /* NOTE: same code as Linux kernel */
6062 /* Allow LDTs to be cleared by the user. */
6063 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6064 if (oldmode ||
6065 (contents == 0 &&
6066 read_exec_only == 1 &&
6067 seg_32bit == 0 &&
6068 limit_in_pages == 0 &&
6069 seg_not_present == 1 &&
6070 useable == 0 )) {
6071 entry_1 = 0;
6072 entry_2 = 0;
6073 goto install;
6074 }
6075 }
6076
6077 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6078 (ldt_info.limit & 0x0ffff);
6079 entry_2 = (ldt_info.base_addr & 0xff000000) |
6080 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6081 (ldt_info.limit & 0xf0000) |
6082 ((read_exec_only ^ 1) << 9) |
6083 (contents << 10) |
6084 ((seg_not_present ^ 1) << 15) |
6085 (seg_32bit << 22) |
6086 (limit_in_pages << 23) |
6087 (lm << 21) |
6088 0x7000;
6089 if (!oldmode)
6090 entry_2 |= (useable << 20);
6091
6092 /* Install the new entry ... */
6093 install:
6094 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
6095 lp[0] = tswap32(entry_1);
6096 lp[1] = tswap32(entry_2);
6097 return 0;
6098 }
6099
6100 /* specific and weird i386 syscalls */
6101 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
6102 unsigned long bytecount)
6103 {
6104 abi_long ret;
6105
6106 switch (func) {
6107 case 0:
6108 ret = read_ldt(ptr, bytecount);
6109 break;
6110 case 1:
6111 ret = write_ldt(env, ptr, bytecount, 1);
6112 break;
6113 case 0x11:
6114 ret = write_ldt(env, ptr, bytecount, 0);
6115 break;
6116 default:
6117 ret = -TARGET_ENOSYS;
6118 break;
6119 }
6120 return ret;
6121 }
6122
6123 #if defined(TARGET_ABI32)
6124 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
6125 {
6126 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6127 struct target_modify_ldt_ldt_s ldt_info;
6128 struct target_modify_ldt_ldt_s *target_ldt_info;
6129 int seg_32bit, contents, read_exec_only, limit_in_pages;
6130 int seg_not_present, useable, lm;
6131 uint32_t *lp, entry_1, entry_2;
6132 int i;
6133
6134 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6135 if (!target_ldt_info)
6136 return -TARGET_EFAULT;
6137 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
6138 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
6139 ldt_info.limit = tswap32(target_ldt_info->limit);
6140 ldt_info.flags = tswap32(target_ldt_info->flags);
6141 if (ldt_info.entry_number == -1) {
6142 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
6143 if (gdt_table[i] == 0) {
6144 ldt_info.entry_number = i;
6145 target_ldt_info->entry_number = tswap32(i);
6146 break;
6147 }
6148 }
6149 }
6150 unlock_user_struct(target_ldt_info, ptr, 1);
6151
6152 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
6153 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
6154 return -TARGET_EINVAL;
6155 seg_32bit = ldt_info.flags & 1;
6156 contents = (ldt_info.flags >> 1) & 3;
6157 read_exec_only = (ldt_info.flags >> 3) & 1;
6158 limit_in_pages = (ldt_info.flags >> 4) & 1;
6159 seg_not_present = (ldt_info.flags >> 5) & 1;
6160 useable = (ldt_info.flags >> 6) & 1;
6161 #ifdef TARGET_ABI32
6162 lm = 0;
6163 #else
6164 lm = (ldt_info.flags >> 7) & 1;
6165 #endif
6166
6167 if (contents == 3) {
6168 if (seg_not_present == 0)
6169 return -TARGET_EINVAL;
6170 }
6171
6172 /* NOTE: same code as Linux kernel */
6173 /* Allow LDTs to be cleared by the user. */
6174 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
6175 if ((contents == 0 &&
6176 read_exec_only == 1 &&
6177 seg_32bit == 0 &&
6178 limit_in_pages == 0 &&
6179 seg_not_present == 1 &&
6180 useable == 0 )) {
6181 entry_1 = 0;
6182 entry_2 = 0;
6183 goto install;
6184 }
6185 }
6186
6187 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
6188 (ldt_info.limit & 0x0ffff);
6189 entry_2 = (ldt_info.base_addr & 0xff000000) |
6190 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
6191 (ldt_info.limit & 0xf0000) |
6192 ((read_exec_only ^ 1) << 9) |
6193 (contents << 10) |
6194 ((seg_not_present ^ 1) << 15) |
6195 (seg_32bit << 22) |
6196 (limit_in_pages << 23) |
6197 (useable << 20) |
6198 (lm << 21) |
6199 0x7000;
6200
6201 /* Install the new entry ... */
6202 install:
6203 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
6204 lp[0] = tswap32(entry_1);
6205 lp[1] = tswap32(entry_2);
6206 return 0;
6207 }
6208
6209 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
6210 {
6211 struct target_modify_ldt_ldt_s *target_ldt_info;
6212 uint64_t *gdt_table = g2h_untagged(env->gdt.base);
6213 uint32_t base_addr, limit, flags;
6214 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
6215 int seg_not_present, useable, lm;
6216 uint32_t *lp, entry_1, entry_2;
6217
6218 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
6219 if (!target_ldt_info)
6220 return -TARGET_EFAULT;
6221 idx = tswap32(target_ldt_info->entry_number);
6222 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
6223 idx > TARGET_GDT_ENTRY_TLS_MAX) {
6224 unlock_user_struct(target_ldt_info, ptr, 1);
6225 return -TARGET_EINVAL;
6226 }
6227 lp = (uint32_t *)(gdt_table + idx);
6228 entry_1 = tswap32(lp[0]);
6229 entry_2 = tswap32(lp[1]);
6230
6231 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
6232 contents = (entry_2 >> 10) & 3;
6233 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
6234 seg_32bit = (entry_2 >> 22) & 1;
6235 limit_in_pages = (entry_2 >> 23) & 1;
6236 useable = (entry_2 >> 20) & 1;
6237 #ifdef TARGET_ABI32
6238 lm = 0;
6239 #else
6240 lm = (entry_2 >> 21) & 1;
6241 #endif
6242 flags = (seg_32bit << 0) | (contents << 1) |
6243 (read_exec_only << 3) | (limit_in_pages << 4) |
6244 (seg_not_present << 5) | (useable << 6) | (lm << 7);
6245 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
6246 base_addr = (entry_1 >> 16) |
6247 (entry_2 & 0xff000000) |
6248 ((entry_2 & 0xff) << 16);
6249 target_ldt_info->base_addr = tswapal(base_addr);
6250 target_ldt_info->limit = tswap32(limit);
6251 target_ldt_info->flags = tswap32(flags);
6252 unlock_user_struct(target_ldt_info, ptr, 1);
6253 return 0;
6254 }
6255
6256 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6257 {
6258 return -TARGET_ENOSYS;
6259 }
6260 #else
6261 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
6262 {
6263 abi_long ret = 0;
6264 abi_ulong val;
6265 int idx;
6266
6267 switch(code) {
6268 case TARGET_ARCH_SET_GS:
6269 case TARGET_ARCH_SET_FS:
6270 if (code == TARGET_ARCH_SET_GS)
6271 idx = R_GS;
6272 else
6273 idx = R_FS;
6274 cpu_x86_load_seg(env, idx, 0);
6275 env->segs[idx].base = addr;
6276 break;
6277 case TARGET_ARCH_GET_GS:
6278 case TARGET_ARCH_GET_FS:
6279 if (code == TARGET_ARCH_GET_GS)
6280 idx = R_GS;
6281 else
6282 idx = R_FS;
6283 val = env->segs[idx].base;
6284 if (put_user(val, addr, abi_ulong))
6285 ret = -TARGET_EFAULT;
6286 break;
6287 default:
6288 ret = -TARGET_EINVAL;
6289 break;
6290 }
6291 return ret;
6292 }
6293 #endif /* defined(TARGET_ABI32 */
6294
6295 #endif /* defined(TARGET_I386) */
6296
6297 #define NEW_STACK_SIZE 0x40000
6298
6299
6300 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6301 typedef struct {
6302 CPUArchState *env;
6303 pthread_mutex_t mutex;
6304 pthread_cond_t cond;
6305 pthread_t thread;
6306 uint32_t tid;
6307 abi_ulong child_tidptr;
6308 abi_ulong parent_tidptr;
6309 sigset_t sigmask;
6310 } new_thread_info;
6311
6312 static void *clone_func(void *arg)
6313 {
6314 new_thread_info *info = arg;
6315 CPUArchState *env;
6316 CPUState *cpu;
6317 TaskState *ts;
6318
6319 rcu_register_thread();
6320 tcg_register_thread();
6321 env = info->env;
6322 cpu = env_cpu(env);
6323 thread_cpu = cpu;
6324 ts = (TaskState *)cpu->opaque;
6325 info->tid = sys_gettid();
6326 task_settid(ts);
6327 if (info->child_tidptr)
6328 put_user_u32(info->tid, info->child_tidptr);
6329 if (info->parent_tidptr)
6330 put_user_u32(info->tid, info->parent_tidptr);
6331 qemu_guest_random_seed_thread_part2(cpu->random_seed);
6332 /* Enable signals. */
6333 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6334 /* Signal to the parent that we're ready. */
6335 pthread_mutex_lock(&info->mutex);
6336 pthread_cond_broadcast(&info->cond);
6337 pthread_mutex_unlock(&info->mutex);
6338 /* Wait until the parent has finished initializing the tls state. */
6339 pthread_mutex_lock(&clone_lock);
6340 pthread_mutex_unlock(&clone_lock);
6341 cpu_loop(env);
6342 /* never exits */
6343 return NULL;
6344 }
6345
6346 /* do_fork() Must return host values and target errnos (unlike most
6347 do_*() functions). */
6348 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6349 abi_ulong parent_tidptr, target_ulong newtls,
6350 abi_ulong child_tidptr)
6351 {
6352 CPUState *cpu = env_cpu(env);
6353 int ret;
6354 TaskState *ts;
6355 CPUState *new_cpu;
6356 CPUArchState *new_env;
6357 sigset_t sigmask;
6358
6359 flags &= ~CLONE_IGNORED_FLAGS;
6360
6361 /* Emulate vfork() with fork() */
6362 if (flags & CLONE_VFORK)
6363 flags &= ~(CLONE_VFORK | CLONE_VM);
6364
6365 if (flags & CLONE_VM) {
6366 TaskState *parent_ts = (TaskState *)cpu->opaque;
6367 new_thread_info info;
6368 pthread_attr_t attr;
6369
6370 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6371 (flags & CLONE_INVALID_THREAD_FLAGS)) {
6372 return -TARGET_EINVAL;
6373 }
6374
6375 ts = g_new0(TaskState, 1);
6376 init_task_state(ts);
6377
6378 /* Grab a mutex so that thread setup appears atomic. */
6379 pthread_mutex_lock(&clone_lock);
6380
6381 /*
6382 * If this is our first additional thread, we need to ensure we
6383 * generate code for parallel execution and flush old translations.
6384 * Do this now so that the copy gets CF_PARALLEL too.
6385 */
6386 if (!(cpu->tcg_cflags & CF_PARALLEL)) {
6387 cpu->tcg_cflags |= CF_PARALLEL;
6388 tb_flush(cpu);
6389 }
6390
6391 /* we create a new CPU instance. */
6392 new_env = cpu_copy(env);
6393 /* Init regs that differ from the parent. */
6394 cpu_clone_regs_child(new_env, newsp, flags);
6395 cpu_clone_regs_parent(env, flags);
6396 new_cpu = env_cpu(new_env);
6397 new_cpu->opaque = ts;
6398 ts->bprm = parent_ts->bprm;
6399 ts->info = parent_ts->info;
6400 ts->signal_mask = parent_ts->signal_mask;
6401
6402 if (flags & CLONE_CHILD_CLEARTID) {
6403 ts->child_tidptr = child_tidptr;
6404 }
6405
6406 if (flags & CLONE_SETTLS) {
6407 cpu_set_tls (new_env, newtls);
6408 }
6409
6410 memset(&info, 0, sizeof(info));
6411 pthread_mutex_init(&info.mutex, NULL);
6412 pthread_mutex_lock(&info.mutex);
6413 pthread_cond_init(&info.cond, NULL);
6414 info.env = new_env;
6415 if (flags & CLONE_CHILD_SETTID) {
6416 info.child_tidptr = child_tidptr;
6417 }
6418 if (flags & CLONE_PARENT_SETTID) {
6419 info.parent_tidptr = parent_tidptr;
6420 }
6421
6422 ret = pthread_attr_init(&attr);
6423 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6424 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6425 /* It is not safe to deliver signals until the child has finished
6426 initializing, so temporarily block all signals. */
6427 sigfillset(&sigmask);
6428 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6429 cpu->random_seed = qemu_guest_random_seed_thread_part1();
6430
6431 ret = pthread_create(&info.thread, &attr, clone_func, &info);
6432 /* TODO: Free new CPU state if thread creation failed. */
6433
6434 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6435 pthread_attr_destroy(&attr);
6436 if (ret == 0) {
6437 /* Wait for the child to initialize. */
6438 pthread_cond_wait(&info.cond, &info.mutex);
6439 ret = info.tid;
6440 } else {
6441 ret = -1;
6442 }
6443 pthread_mutex_unlock(&info.mutex);
6444 pthread_cond_destroy(&info.cond);
6445 pthread_mutex_destroy(&info.mutex);
6446 pthread_mutex_unlock(&clone_lock);
6447 } else {
6448 /* if no CLONE_VM, we consider it is a fork */
6449 if (flags & CLONE_INVALID_FORK_FLAGS) {
6450 return -TARGET_EINVAL;
6451 }
6452
6453 /* We can't support custom termination signals */
6454 if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6455 return -TARGET_EINVAL;
6456 }
6457
6458 if (block_signals()) {
6459 return -TARGET_ERESTARTSYS;
6460 }
6461
6462 fork_start();
6463 ret = fork();
6464 if (ret == 0) {
6465 /* Child Process. */
6466 cpu_clone_regs_child(env, newsp, flags);
6467 fork_end(1);
6468 /* There is a race condition here. The parent process could
6469 theoretically read the TID in the child process before the child
6470 tid is set. This would require using either ptrace
6471 (not implemented) or having *_tidptr to point at a shared memory
6472 mapping. We can't repeat the spinlock hack used above because
6473 the child process gets its own copy of the lock. */
6474 if (flags & CLONE_CHILD_SETTID)
6475 put_user_u32(sys_gettid(), child_tidptr);
6476 if (flags & CLONE_PARENT_SETTID)
6477 put_user_u32(sys_gettid(), parent_tidptr);
6478 ts = (TaskState *)cpu->opaque;
6479 if (flags & CLONE_SETTLS)
6480 cpu_set_tls (env, newtls);
6481 if (flags & CLONE_CHILD_CLEARTID)
6482 ts->child_tidptr = child_tidptr;
6483 } else {
6484 cpu_clone_regs_parent(env, flags);
6485 fork_end(0);
6486 }
6487 }
6488 return ret;
6489 }
6490
6491 /* warning : doesn't handle linux specific flags... */
6492 static int target_to_host_fcntl_cmd(int cmd)
6493 {
6494 int ret;
6495
6496 switch(cmd) {
6497 case TARGET_F_DUPFD:
6498 case TARGET_F_GETFD:
6499 case TARGET_F_SETFD:
6500 case TARGET_F_GETFL:
6501 case TARGET_F_SETFL:
6502 case TARGET_F_OFD_GETLK:
6503 case TARGET_F_OFD_SETLK:
6504 case TARGET_F_OFD_SETLKW:
6505 ret = cmd;
6506 break;
6507 case TARGET_F_GETLK:
6508 ret = F_GETLK64;
6509 break;
6510 case TARGET_F_SETLK:
6511 ret = F_SETLK64;
6512 break;
6513 case TARGET_F_SETLKW:
6514 ret = F_SETLKW64;
6515 break;
6516 case TARGET_F_GETOWN:
6517 ret = F_GETOWN;
6518 break;
6519 case TARGET_F_SETOWN:
6520 ret = F_SETOWN;
6521 break;
6522 case TARGET_F_GETSIG:
6523 ret = F_GETSIG;
6524 break;
6525 case TARGET_F_SETSIG:
6526 ret = F_SETSIG;
6527 break;
6528 #if TARGET_ABI_BITS == 32
6529 case TARGET_F_GETLK64:
6530 ret = F_GETLK64;
6531 break;
6532 case TARGET_F_SETLK64:
6533 ret = F_SETLK64;
6534 break;
6535 case TARGET_F_SETLKW64:
6536 ret = F_SETLKW64;
6537 break;
6538 #endif
6539 case TARGET_F_SETLEASE:
6540 ret = F_SETLEASE;
6541 break;
6542 case TARGET_F_GETLEASE:
6543 ret = F_GETLEASE;
6544 break;
6545 #ifdef F_DUPFD_CLOEXEC
6546 case TARGET_F_DUPFD_CLOEXEC:
6547 ret = F_DUPFD_CLOEXEC;
6548 break;
6549 #endif
6550 case TARGET_F_NOTIFY:
6551 ret = F_NOTIFY;
6552 break;
6553 #ifdef F_GETOWN_EX
6554 case TARGET_F_GETOWN_EX:
6555 ret = F_GETOWN_EX;
6556 break;
6557 #endif
6558 #ifdef F_SETOWN_EX
6559 case TARGET_F_SETOWN_EX:
6560 ret = F_SETOWN_EX;
6561 break;
6562 #endif
6563 #ifdef F_SETPIPE_SZ
6564 case TARGET_F_SETPIPE_SZ:
6565 ret = F_SETPIPE_SZ;
6566 break;
6567 case TARGET_F_GETPIPE_SZ:
6568 ret = F_GETPIPE_SZ;
6569 break;
6570 #endif
6571 #ifdef F_ADD_SEALS
6572 case TARGET_F_ADD_SEALS:
6573 ret = F_ADD_SEALS;
6574 break;
6575 case TARGET_F_GET_SEALS:
6576 ret = F_GET_SEALS;
6577 break;
6578 #endif
6579 default:
6580 ret = -TARGET_EINVAL;
6581 break;
6582 }
6583
6584 #if defined(__powerpc64__)
6585 /* On PPC64, glibc headers has the F_*LK* defined to 12, 13 and 14 and
6586 * is not supported by kernel. The glibc fcntl call actually adjusts
6587 * them to 5, 6 and 7 before making the syscall(). Since we make the
6588 * syscall directly, adjust to what is supported by the kernel.
6589 */
6590 if (ret >= F_GETLK64 && ret <= F_SETLKW64) {
6591 ret -= F_GETLK64 - 5;
6592 }
6593 #endif
6594
6595 return ret;
6596 }
6597
6598 #define FLOCK_TRANSTBL \
6599 switch (type) { \
6600 TRANSTBL_CONVERT(F_RDLCK); \
6601 TRANSTBL_CONVERT(F_WRLCK); \
6602 TRANSTBL_CONVERT(F_UNLCK); \
6603 }
6604
6605 static int target_to_host_flock(int type)
6606 {
6607 #define TRANSTBL_CONVERT(a) case TARGET_##a: return a
6608 FLOCK_TRANSTBL
6609 #undef TRANSTBL_CONVERT
6610 return -TARGET_EINVAL;
6611 }
6612
6613 static int host_to_target_flock(int type)
6614 {
6615 #define TRANSTBL_CONVERT(a) case a: return TARGET_##a
6616 FLOCK_TRANSTBL
6617 #undef TRANSTBL_CONVERT
6618 /* if we don't know how to convert the value coming
6619 * from the host we copy to the target field as-is
6620 */
6621 return type;
6622 }
6623
6624 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6625 abi_ulong target_flock_addr)
6626 {
6627 struct target_flock *target_fl;
6628 int l_type;
6629
6630 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6631 return -TARGET_EFAULT;
6632 }
6633
6634 __get_user(l_type, &target_fl->l_type);
6635 l_type = target_to_host_flock(l_type);
6636 if (l_type < 0) {
6637 return l_type;
6638 }
6639 fl->l_type = l_type;
6640 __get_user(fl->l_whence, &target_fl->l_whence);
6641 __get_user(fl->l_start, &target_fl->l_start);
6642 __get_user(fl->l_len, &target_fl->l_len);
6643 __get_user(fl->l_pid, &target_fl->l_pid);
6644 unlock_user_struct(target_fl, target_flock_addr, 0);
6645 return 0;
6646 }
6647
6648 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6649 const struct flock64 *fl)
6650 {
6651 struct target_flock *target_fl;
6652 short l_type;
6653
6654 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6655 return -TARGET_EFAULT;
6656 }
6657
6658 l_type = host_to_target_flock(fl->l_type);
6659 __put_user(l_type, &target_fl->l_type);
6660 __put_user(fl->l_whence, &target_fl->l_whence);
6661 __put_user(fl->l_start, &target_fl->l_start);
6662 __put_user(fl->l_len, &target_fl->l_len);
6663 __put_user(fl->l_pid, &target_fl->l_pid);
6664 unlock_user_struct(target_fl, target_flock_addr, 1);
6665 return 0;
6666 }
6667
6668 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6669 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6670
6671 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6672 static inline abi_long copy_from_user_oabi_flock64(struct flock64 *fl,
6673 abi_ulong target_flock_addr)
6674 {
6675 struct target_oabi_flock64 *target_fl;
6676 int l_type;
6677
6678 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6679 return -TARGET_EFAULT;
6680 }
6681
6682 __get_user(l_type, &target_fl->l_type);
6683 l_type = target_to_host_flock(l_type);
6684 if (l_type < 0) {
6685 return l_type;
6686 }
6687 fl->l_type = l_type;
6688 __get_user(fl->l_whence, &target_fl->l_whence);
6689 __get_user(fl->l_start, &target_fl->l_start);
6690 __get_user(fl->l_len, &target_fl->l_len);
6691 __get_user(fl->l_pid, &target_fl->l_pid);
6692 unlock_user_struct(target_fl, target_flock_addr, 0);
6693 return 0;
6694 }
6695
6696 static inline abi_long copy_to_user_oabi_flock64(abi_ulong target_flock_addr,
6697 const struct flock64 *fl)
6698 {
6699 struct target_oabi_flock64 *target_fl;
6700 short l_type;
6701
6702 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6703 return -TARGET_EFAULT;
6704 }
6705
6706 l_type = host_to_target_flock(fl->l_type);
6707 __put_user(l_type, &target_fl->l_type);
6708 __put_user(fl->l_whence, &target_fl->l_whence);
6709 __put_user(fl->l_start, &target_fl->l_start);
6710 __put_user(fl->l_len, &target_fl->l_len);
6711 __put_user(fl->l_pid, &target_fl->l_pid);
6712 unlock_user_struct(target_fl, target_flock_addr, 1);
6713 return 0;
6714 }
6715 #endif
6716
6717 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6718 abi_ulong target_flock_addr)
6719 {
6720 struct target_flock64 *target_fl;
6721 int l_type;
6722
6723 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6724 return -TARGET_EFAULT;
6725 }
6726
6727 __get_user(l_type, &target_fl->l_type);
6728 l_type = target_to_host_flock(l_type);
6729 if (l_type < 0) {
6730 return l_type;
6731 }
6732 fl->l_type = l_type;
6733 __get_user(fl->l_whence, &target_fl->l_whence);
6734 __get_user(fl->l_start, &target_fl->l_start);
6735 __get_user(fl->l_len, &target_fl->l_len);
6736 __get_user(fl->l_pid, &target_fl->l_pid);
6737 unlock_user_struct(target_fl, target_flock_addr, 0);
6738 return 0;
6739 }
6740
6741 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6742 const struct flock64 *fl)
6743 {
6744 struct target_flock64 *target_fl;
6745 short l_type;
6746
6747 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6748 return -TARGET_EFAULT;
6749 }
6750
6751 l_type = host_to_target_flock(fl->l_type);
6752 __put_user(l_type, &target_fl->l_type);
6753 __put_user(fl->l_whence, &target_fl->l_whence);
6754 __put_user(fl->l_start, &target_fl->l_start);
6755 __put_user(fl->l_len, &target_fl->l_len);
6756 __put_user(fl->l_pid, &target_fl->l_pid);
6757 unlock_user_struct(target_fl, target_flock_addr, 1);
6758 return 0;
6759 }
6760
6761 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6762 {
6763 struct flock64 fl64;
6764 #ifdef F_GETOWN_EX
6765 struct f_owner_ex fox;
6766 struct target_f_owner_ex *target_fox;
6767 #endif
6768 abi_long ret;
6769 int host_cmd = target_to_host_fcntl_cmd(cmd);
6770
6771 if (host_cmd == -TARGET_EINVAL)
6772 return host_cmd;
6773
6774 switch(cmd) {
6775 case TARGET_F_GETLK:
6776 ret = copy_from_user_flock(&fl64, arg);
6777 if (ret) {
6778 return ret;
6779 }
6780 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6781 if (ret == 0) {
6782 ret = copy_to_user_flock(arg, &fl64);
6783 }
6784 break;
6785
6786 case TARGET_F_SETLK:
6787 case TARGET_F_SETLKW:
6788 ret = copy_from_user_flock(&fl64, arg);
6789 if (ret) {
6790 return ret;
6791 }
6792 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6793 break;
6794
6795 case TARGET_F_GETLK64:
6796 case TARGET_F_OFD_GETLK:
6797 ret = copy_from_user_flock64(&fl64, arg);
6798 if (ret) {
6799 return ret;
6800 }
6801 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6802 if (ret == 0) {
6803 ret = copy_to_user_flock64(arg, &fl64);
6804 }
6805 break;
6806 case TARGET_F_SETLK64:
6807 case TARGET_F_SETLKW64:
6808 case TARGET_F_OFD_SETLK:
6809 case TARGET_F_OFD_SETLKW:
6810 ret = copy_from_user_flock64(&fl64, arg);
6811 if (ret) {
6812 return ret;
6813 }
6814 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6815 break;
6816
6817 case TARGET_F_GETFL:
6818 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6819 if (ret >= 0) {
6820 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
6821 }
6822 break;
6823
6824 case TARGET_F_SETFL:
6825 ret = get_errno(safe_fcntl(fd, host_cmd,
6826 target_to_host_bitmask(arg,
6827 fcntl_flags_tbl)));
6828 break;
6829
6830 #ifdef F_GETOWN_EX
6831 case TARGET_F_GETOWN_EX:
6832 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6833 if (ret >= 0) {
6834 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
6835 return -TARGET_EFAULT;
6836 target_fox->type = tswap32(fox.type);
6837 target_fox->pid = tswap32(fox.pid);
6838 unlock_user_struct(target_fox, arg, 1);
6839 }
6840 break;
6841 #endif
6842
6843 #ifdef F_SETOWN_EX
6844 case TARGET_F_SETOWN_EX:
6845 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
6846 return -TARGET_EFAULT;
6847 fox.type = tswap32(target_fox->type);
6848 fox.pid = tswap32(target_fox->pid);
6849 unlock_user_struct(target_fox, arg, 0);
6850 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6851 break;
6852 #endif
6853
6854 case TARGET_F_SETSIG:
6855 ret = get_errno(safe_fcntl(fd, host_cmd, target_to_host_signal(arg)));
6856 break;
6857
6858 case TARGET_F_GETSIG:
6859 ret = host_to_target_signal(get_errno(safe_fcntl(fd, host_cmd, arg)));
6860 break;
6861
6862 case TARGET_F_SETOWN:
6863 case TARGET_F_GETOWN:
6864 case TARGET_F_SETLEASE:
6865 case TARGET_F_GETLEASE:
6866 case TARGET_F_SETPIPE_SZ:
6867 case TARGET_F_GETPIPE_SZ:
6868 case TARGET_F_ADD_SEALS:
6869 case TARGET_F_GET_SEALS:
6870 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6871 break;
6872
6873 default:
6874 ret = get_errno(safe_fcntl(fd, cmd, arg));
6875 break;
6876 }
6877 return ret;
6878 }
6879
6880 #ifdef USE_UID16
6881
6882 static inline int high2lowuid(int uid)
6883 {
6884 if (uid > 65535)
6885 return 65534;
6886 else
6887 return uid;
6888 }
6889
6890 static inline int high2lowgid(int gid)
6891 {
6892 if (gid > 65535)
6893 return 65534;
6894 else
6895 return gid;
6896 }
6897
6898 static inline int low2highuid(int uid)
6899 {
6900 if ((int16_t)uid == -1)
6901 return -1;
6902 else
6903 return uid;
6904 }
6905
6906 static inline int low2highgid(int gid)
6907 {
6908 if ((int16_t)gid == -1)
6909 return -1;
6910 else
6911 return gid;
6912 }
6913 static inline int tswapid(int id)
6914 {
6915 return tswap16(id);
6916 }
6917
6918 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6919
6920 #else /* !USE_UID16 */
6921 static inline int high2lowuid(int uid)
6922 {
6923 return uid;
6924 }
6925 static inline int high2lowgid(int gid)
6926 {
6927 return gid;
6928 }
6929 static inline int low2highuid(int uid)
6930 {
6931 return uid;
6932 }
6933 static inline int low2highgid(int gid)
6934 {
6935 return gid;
6936 }
6937 static inline int tswapid(int id)
6938 {
6939 return tswap32(id);
6940 }
6941
6942 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6943
6944 #endif /* USE_UID16 */
6945
6946 /* We must do direct syscalls for setting UID/GID, because we want to
6947 * implement the Linux system call semantics of "change only for this thread",
6948 * not the libc/POSIX semantics of "change for all threads in process".
6949 * (See http://ewontfix.com/17/ for more details.)
6950 * We use the 32-bit version of the syscalls if present; if it is not
6951 * then either the host architecture supports 32-bit UIDs natively with
6952 * the standard syscall, or the 16-bit UID is the best we can do.
6953 */
6954 #ifdef __NR_setuid32
6955 #define __NR_sys_setuid __NR_setuid32
6956 #else
6957 #define __NR_sys_setuid __NR_setuid
6958 #endif
6959 #ifdef __NR_setgid32
6960 #define __NR_sys_setgid __NR_setgid32
6961 #else
6962 #define __NR_sys_setgid __NR_setgid
6963 #endif
6964 #ifdef __NR_setresuid32
6965 #define __NR_sys_setresuid __NR_setresuid32
6966 #else
6967 #define __NR_sys_setresuid __NR_setresuid
6968 #endif
6969 #ifdef __NR_setresgid32
6970 #define __NR_sys_setresgid __NR_setresgid32
6971 #else
6972 #define __NR_sys_setresgid __NR_setresgid
6973 #endif
6974
6975 _syscall1(int, sys_setuid, uid_t, uid)
6976 _syscall1(int, sys_setgid, gid_t, gid)
6977 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
6978 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
6979
6980 void syscall_init(void)
6981 {
6982 IOCTLEntry *ie;
6983 const argtype *arg_type;
6984 int size;
6985
6986 thunk_init(STRUCT_MAX);
6987
6988 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6989 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6990 #include "syscall_types.h"
6991 #undef STRUCT
6992 #undef STRUCT_SPECIAL
6993
6994 /* we patch the ioctl size if necessary. We rely on the fact that
6995 no ioctl has all the bits at '1' in the size field */
6996 ie = ioctl_entries;
6997 while (ie->target_cmd != 0) {
6998 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
6999 TARGET_IOC_SIZEMASK) {
7000 arg_type = ie->arg_type;
7001 if (arg_type[0] != TYPE_PTR) {
7002 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
7003 ie->target_cmd);
7004 exit(1);
7005 }
7006 arg_type++;
7007 size = thunk_type_size(arg_type, 0);
7008 ie->target_cmd = (ie->target_cmd &
7009 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
7010 (size << TARGET_IOC_SIZESHIFT);
7011 }
7012
7013 /* automatic consistency check if same arch */
7014 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
7015 (defined(__x86_64__) && defined(TARGET_X86_64))
7016 if (unlikely(ie->target_cmd != ie->host_cmd)) {
7017 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
7018 ie->name, ie->target_cmd, ie->host_cmd);
7019 }
7020 #endif
7021 ie++;
7022 }
7023 }
7024
7025 #ifdef TARGET_NR_truncate64
7026 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
7027 abi_long arg2,
7028 abi_long arg3,
7029 abi_long arg4)
7030 {
7031 if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
7032 arg2 = arg3;
7033 arg3 = arg4;
7034 }
7035 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
7036 }
7037 #endif
7038
7039 #ifdef TARGET_NR_ftruncate64
7040 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
7041 abi_long arg2,
7042 abi_long arg3,
7043 abi_long arg4)
7044 {
7045 if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
7046 arg2 = arg3;
7047 arg3 = arg4;
7048 }
7049 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
7050 }
7051 #endif
7052
7053 #if defined(TARGET_NR_timer_settime) || \
7054 (defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD))
7055 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_its,
7056 abi_ulong target_addr)
7057 {
7058 if (target_to_host_timespec(&host_its->it_interval, target_addr +
7059 offsetof(struct target_itimerspec,
7060 it_interval)) ||
7061 target_to_host_timespec(&host_its->it_value, target_addr +
7062 offsetof(struct target_itimerspec,
7063 it_value))) {
7064 return -TARGET_EFAULT;
7065 }
7066
7067 return 0;
7068 }
7069 #endif
7070
7071 #if defined(TARGET_NR_timer_settime64) || \
7072 (defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD))
7073 static inline abi_long target_to_host_itimerspec64(struct itimerspec *host_its,
7074 abi_ulong target_addr)
7075 {
7076 if (target_to_host_timespec64(&host_its->it_interval, target_addr +
7077 offsetof(struct target__kernel_itimerspec,
7078 it_interval)) ||
7079 target_to_host_timespec64(&host_its->it_value, target_addr +
7080 offsetof(struct target__kernel_itimerspec,
7081 it_value))) {
7082 return -TARGET_EFAULT;
7083 }
7084
7085 return 0;
7086 }
7087 #endif
7088
7089 #if ((defined(TARGET_NR_timerfd_gettime) || \
7090 defined(TARGET_NR_timerfd_settime)) && defined(CONFIG_TIMERFD)) || \
7091 defined(TARGET_NR_timer_gettime) || defined(TARGET_NR_timer_settime)
7092 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
7093 struct itimerspec *host_its)
7094 {
7095 if (host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7096 it_interval),
7097 &host_its->it_interval) ||
7098 host_to_target_timespec(target_addr + offsetof(struct target_itimerspec,
7099 it_value),
7100 &host_its->it_value)) {
7101 return -TARGET_EFAULT;
7102 }
7103 return 0;
7104 }
7105 #endif
7106
7107 #if ((defined(TARGET_NR_timerfd_gettime64) || \
7108 defined(TARGET_NR_timerfd_settime64)) && defined(CONFIG_TIMERFD)) || \
7109 defined(TARGET_NR_timer_gettime64) || defined(TARGET_NR_timer_settime64)
7110 static inline abi_long host_to_target_itimerspec64(abi_ulong target_addr,
7111 struct itimerspec *host_its)
7112 {
7113 if (host_to_target_timespec64(target_addr +
7114 offsetof(struct target__kernel_itimerspec,
7115 it_interval),
7116 &host_its->it_interval) ||
7117 host_to_target_timespec64(target_addr +
7118 offsetof(struct target__kernel_itimerspec,
7119 it_value),
7120 &host_its->it_value)) {
7121 return -TARGET_EFAULT;
7122 }
7123 return 0;
7124 }
7125 #endif
7126
7127 #if defined(TARGET_NR_adjtimex) || \
7128 (defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME))
7129 static inline abi_long target_to_host_timex(struct timex *host_tx,
7130 abi_long target_addr)
7131 {
7132 struct target_timex *target_tx;
7133
7134 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7135 return -TARGET_EFAULT;
7136 }
7137
7138 __get_user(host_tx->modes, &target_tx->modes);
7139 __get_user(host_tx->offset, &target_tx->offset);
7140 __get_user(host_tx->freq, &target_tx->freq);
7141 __get_user(host_tx->maxerror, &target_tx->maxerror);
7142 __get_user(host_tx->esterror, &target_tx->esterror);
7143 __get_user(host_tx->status, &target_tx->status);
7144 __get_user(host_tx->constant, &target_tx->constant);
7145 __get_user(host_tx->precision, &target_tx->precision);
7146 __get_user(host_tx->tolerance, &target_tx->tolerance);
7147 __get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7148 __get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7149 __get_user(host_tx->tick, &target_tx->tick);
7150 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7151 __get_user(host_tx->jitter, &target_tx->jitter);
7152 __get_user(host_tx->shift, &target_tx->shift);
7153 __get_user(host_tx->stabil, &target_tx->stabil);
7154 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7155 __get_user(host_tx->calcnt, &target_tx->calcnt);
7156 __get_user(host_tx->errcnt, &target_tx->errcnt);
7157 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7158 __get_user(host_tx->tai, &target_tx->tai);
7159
7160 unlock_user_struct(target_tx, target_addr, 0);
7161 return 0;
7162 }
7163
7164 static inline abi_long host_to_target_timex(abi_long target_addr,
7165 struct timex *host_tx)
7166 {
7167 struct target_timex *target_tx;
7168
7169 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7170 return -TARGET_EFAULT;
7171 }
7172
7173 __put_user(host_tx->modes, &target_tx->modes);
7174 __put_user(host_tx->offset, &target_tx->offset);
7175 __put_user(host_tx->freq, &target_tx->freq);
7176 __put_user(host_tx->maxerror, &target_tx->maxerror);
7177 __put_user(host_tx->esterror, &target_tx->esterror);
7178 __put_user(host_tx->status, &target_tx->status);
7179 __put_user(host_tx->constant, &target_tx->constant);
7180 __put_user(host_tx->precision, &target_tx->precision);
7181 __put_user(host_tx->tolerance, &target_tx->tolerance);
7182 __put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
7183 __put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
7184 __put_user(host_tx->tick, &target_tx->tick);
7185 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7186 __put_user(host_tx->jitter, &target_tx->jitter);
7187 __put_user(host_tx->shift, &target_tx->shift);
7188 __put_user(host_tx->stabil, &target_tx->stabil);
7189 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7190 __put_user(host_tx->calcnt, &target_tx->calcnt);
7191 __put_user(host_tx->errcnt, &target_tx->errcnt);
7192 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7193 __put_user(host_tx->tai, &target_tx->tai);
7194
7195 unlock_user_struct(target_tx, target_addr, 1);
7196 return 0;
7197 }
7198 #endif
7199
7200
7201 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
7202 static inline abi_long target_to_host_timex64(struct timex *host_tx,
7203 abi_long target_addr)
7204 {
7205 struct target__kernel_timex *target_tx;
7206
7207 if (copy_from_user_timeval64(&host_tx->time, target_addr +
7208 offsetof(struct target__kernel_timex,
7209 time))) {
7210 return -TARGET_EFAULT;
7211 }
7212
7213 if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
7214 return -TARGET_EFAULT;
7215 }
7216
7217 __get_user(host_tx->modes, &target_tx->modes);
7218 __get_user(host_tx->offset, &target_tx->offset);
7219 __get_user(host_tx->freq, &target_tx->freq);
7220 __get_user(host_tx->maxerror, &target_tx->maxerror);
7221 __get_user(host_tx->esterror, &target_tx->esterror);
7222 __get_user(host_tx->status, &target_tx->status);
7223 __get_user(host_tx->constant, &target_tx->constant);
7224 __get_user(host_tx->precision, &target_tx->precision);
7225 __get_user(host_tx->tolerance, &target_tx->tolerance);
7226 __get_user(host_tx->tick, &target_tx->tick);
7227 __get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7228 __get_user(host_tx->jitter, &target_tx->jitter);
7229 __get_user(host_tx->shift, &target_tx->shift);
7230 __get_user(host_tx->stabil, &target_tx->stabil);
7231 __get_user(host_tx->jitcnt, &target_tx->jitcnt);
7232 __get_user(host_tx->calcnt, &target_tx->calcnt);
7233 __get_user(host_tx->errcnt, &target_tx->errcnt);
7234 __get_user(host_tx->stbcnt, &target_tx->stbcnt);
7235 __get_user(host_tx->tai, &target_tx->tai);
7236
7237 unlock_user_struct(target_tx, target_addr, 0);
7238 return 0;
7239 }
7240
7241 static inline abi_long host_to_target_timex64(abi_long target_addr,
7242 struct timex *host_tx)
7243 {
7244 struct target__kernel_timex *target_tx;
7245
7246 if (copy_to_user_timeval64(target_addr +
7247 offsetof(struct target__kernel_timex, time),
7248 &host_tx->time)) {
7249 return -TARGET_EFAULT;
7250 }
7251
7252 if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
7253 return -TARGET_EFAULT;
7254 }
7255
7256 __put_user(host_tx->modes, &target_tx->modes);
7257 __put_user(host_tx->offset, &target_tx->offset);
7258 __put_user(host_tx->freq, &target_tx->freq);
7259 __put_user(host_tx->maxerror, &target_tx->maxerror);
7260 __put_user(host_tx->esterror, &target_tx->esterror);
7261 __put_user(host_tx->status, &target_tx->status);
7262 __put_user(host_tx->constant, &target_tx->constant);
7263 __put_user(host_tx->precision, &target_tx->precision);
7264 __put_user(host_tx->tolerance, &target_tx->tolerance);
7265 __put_user(host_tx->tick, &target_tx->tick);
7266 __put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
7267 __put_user(host_tx->jitter, &target_tx->jitter);
7268 __put_user(host_tx->shift, &target_tx->shift);
7269 __put_user(host_tx->stabil, &target_tx->stabil);
7270 __put_user(host_tx->jitcnt, &target_tx->jitcnt);
7271 __put_user(host_tx->calcnt, &target_tx->calcnt);
7272 __put_user(host_tx->errcnt, &target_tx->errcnt);
7273 __put_user(host_tx->stbcnt, &target_tx->stbcnt);
7274 __put_user(host_tx->tai, &target_tx->tai);
7275
7276 unlock_user_struct(target_tx, target_addr, 1);
7277 return 0;
7278 }
7279 #endif
7280
7281 #ifndef HAVE_SIGEV_NOTIFY_THREAD_ID
7282 #define sigev_notify_thread_id _sigev_un._tid
7283 #endif
7284
7285 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
7286 abi_ulong target_addr)
7287 {
7288 struct target_sigevent *target_sevp;
7289
7290 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
7291 return -TARGET_EFAULT;
7292 }
7293
7294 /* This union is awkward on 64 bit systems because it has a 32 bit
7295 * integer and a pointer in it; we follow the conversion approach
7296 * used for handling sigval types in signal.c so the guest should get
7297 * the correct value back even if we did a 64 bit byteswap and it's
7298 * using the 32 bit integer.
7299 */
7300 host_sevp->sigev_value.sival_ptr =
7301 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
7302 host_sevp->sigev_signo =
7303 target_to_host_signal(tswap32(target_sevp->sigev_signo));
7304 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
7305 host_sevp->sigev_notify_thread_id = tswap32(target_sevp->_sigev_un._tid);
7306
7307 unlock_user_struct(target_sevp, target_addr, 1);
7308 return 0;
7309 }
7310
7311 #if defined(TARGET_NR_mlockall)
7312 static inline int target_to_host_mlockall_arg(int arg)
7313 {
7314 int result = 0;
7315
7316 if (arg & TARGET_MCL_CURRENT) {
7317 result |= MCL_CURRENT;
7318 }
7319 if (arg & TARGET_MCL_FUTURE) {
7320 result |= MCL_FUTURE;
7321 }
7322 #ifdef MCL_ONFAULT
7323 if (arg & TARGET_MCL_ONFAULT) {
7324 result |= MCL_ONFAULT;
7325 }
7326 #endif
7327
7328 return result;
7329 }
7330 #endif
7331
7332 #if (defined(TARGET_NR_stat64) || defined(TARGET_NR_lstat64) || \
7333 defined(TARGET_NR_fstat64) || defined(TARGET_NR_fstatat64) || \
7334 defined(TARGET_NR_newfstatat))
7335 static inline abi_long host_to_target_stat64(void *cpu_env,
7336 abi_ulong target_addr,
7337 struct stat *host_st)
7338 {
7339 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
7340 if (((CPUARMState *)cpu_env)->eabi) {
7341 struct target_eabi_stat64 *target_st;
7342
7343 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7344 return -TARGET_EFAULT;
7345 memset(target_st, 0, sizeof(struct target_eabi_stat64));
7346 __put_user(host_st->st_dev, &target_st->st_dev);
7347 __put_user(host_st->st_ino, &target_st->st_ino);
7348 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7349 __put_user(host_st->st_ino, &target_st->__st_ino);
7350 #endif
7351 __put_user(host_st->st_mode, &target_st->st_mode);
7352 __put_user(host_st->st_nlink, &target_st->st_nlink);
7353 __put_user(host_st->st_uid, &target_st->st_uid);
7354 __put_user(host_st->st_gid, &target_st->st_gid);
7355 __put_user(host_st->st_rdev, &target_st->st_rdev);
7356 __put_user(host_st->st_size, &target_st->st_size);
7357 __put_user(host_st->st_blksize, &target_st->st_blksize);
7358 __put_user(host_st->st_blocks, &target_st->st_blocks);
7359 __put_user(host_st->st_atime, &target_st->target_st_atime);
7360 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7361 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7362 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7363 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7364 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7365 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7366 #endif
7367 unlock_user_struct(target_st, target_addr, 1);
7368 } else
7369 #endif
7370 {
7371 #if defined(TARGET_HAS_STRUCT_STAT64)
7372 struct target_stat64 *target_st;
7373 #else
7374 struct target_stat *target_st;
7375 #endif
7376
7377 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
7378 return -TARGET_EFAULT;
7379 memset(target_st, 0, sizeof(*target_st));
7380 __put_user(host_st->st_dev, &target_st->st_dev);
7381 __put_user(host_st->st_ino, &target_st->st_ino);
7382 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
7383 __put_user(host_st->st_ino, &target_st->__st_ino);
7384 #endif
7385 __put_user(host_st->st_mode, &target_st->st_mode);
7386 __put_user(host_st->st_nlink, &target_st->st_nlink);
7387 __put_user(host_st->st_uid, &target_st->st_uid);
7388 __put_user(host_st->st_gid, &target_st->st_gid);
7389 __put_user(host_st->st_rdev, &target_st->st_rdev);
7390 /* XXX: better use of kernel struct */
7391 __put_user(host_st->st_size, &target_st->st_size);
7392 __put_user(host_st->st_blksize, &target_st->st_blksize);
7393 __put_user(host_st->st_blocks, &target_st->st_blocks);
7394 __put_user(host_st->st_atime, &target_st->target_st_atime);
7395 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
7396 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
7397 #ifdef HAVE_STRUCT_STAT_ST_ATIM
7398 __put_user(host_st->st_atim.tv_nsec, &target_st->target_st_atime_nsec);
7399 __put_user(host_st->st_mtim.tv_nsec, &target_st->target_st_mtime_nsec);
7400 __put_user(host_st->st_ctim.tv_nsec, &target_st->target_st_ctime_nsec);
7401 #endif
7402 unlock_user_struct(target_st, target_addr, 1);
7403 }
7404
7405 return 0;
7406 }
7407 #endif
7408
7409 #if defined(TARGET_NR_statx) && defined(__NR_statx)
7410 static inline abi_long host_to_target_statx(struct target_statx *host_stx,
7411 abi_ulong target_addr)
7412 {
7413 struct target_statx *target_stx;
7414
7415 if (!lock_user_struct(VERIFY_WRITE, target_stx, target_addr, 0)) {
7416 return -TARGET_EFAULT;
7417 }
7418 memset(target_stx, 0, sizeof(*target_stx));
7419
7420 __put_user(host_stx->stx_mask, &target_stx->stx_mask);
7421 __put_user(host_stx->stx_blksize, &target_stx->stx_blksize);
7422 __put_user(host_stx->stx_attributes, &target_stx->stx_attributes);
7423 __put_user(host_stx->stx_nlink, &target_stx->stx_nlink);
7424 __put_user(host_stx->stx_uid, &target_stx->stx_uid);
7425 __put_user(host_stx->stx_gid, &target_stx->stx_gid);
7426 __put_user(host_stx->stx_mode, &target_stx->stx_mode);
7427 __put_user(host_stx->stx_ino, &target_stx->stx_ino);
7428 __put_user(host_stx->stx_size, &target_stx->stx_size);
7429 __put_user(host_stx->stx_blocks, &target_stx->stx_blocks);
7430 __put_user(host_stx->stx_attributes_mask, &target_stx->stx_attributes_mask);
7431 __put_user(host_stx->stx_atime.tv_sec, &target_stx->stx_atime.tv_sec);
7432 __put_user(host_stx->stx_atime.tv_nsec, &target_stx->stx_atime.tv_nsec);
7433 __put_user(host_stx->stx_btime.tv_sec, &target_stx->stx_btime.tv_sec);
7434 __put_user(host_stx->stx_btime.tv_nsec, &target_stx->stx_btime.tv_nsec);
7435 __put_user(host_stx->stx_ctime.tv_sec, &target_stx->stx_ctime.tv_sec);
7436 __put_user(host_stx->stx_ctime.tv_nsec, &target_stx->stx_ctime.tv_nsec);
7437 __put_user(host_stx->stx_mtime.tv_sec, &target_stx->stx_mtime.tv_sec);
7438 __put_user(host_stx->stx_mtime.tv_nsec, &target_stx->stx_mtime.tv_nsec);
7439 __put_user(host_stx->stx_rdev_major, &target_stx->stx_rdev_major);
7440 __put_user(host_stx->stx_rdev_minor, &target_stx->stx_rdev_minor);
7441 __put_user(host_stx->stx_dev_major, &target_stx->stx_dev_major);
7442 __put_user(host_stx->stx_dev_minor, &target_stx->stx_dev_minor);
7443
7444 unlock_user_struct(target_stx, target_addr, 1);
7445
7446 return 0;
7447 }
7448 #endif
7449
7450 static int do_sys_futex(int *uaddr, int op, int val,
7451 const struct timespec *timeout, int *uaddr2,
7452 int val3)
7453 {
7454 #if HOST_LONG_BITS == 64
7455 #if defined(__NR_futex)
7456 /* always a 64-bit time_t, it doesn't define _time64 version */
7457 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7458
7459 #endif
7460 #else /* HOST_LONG_BITS == 64 */
7461 #if defined(__NR_futex_time64)
7462 if (sizeof(timeout->tv_sec) == 8) {
7463 /* _time64 function on 32bit arch */
7464 return sys_futex_time64(uaddr, op, val, timeout, uaddr2, val3);
7465 }
7466 #endif
7467 #if defined(__NR_futex)
7468 /* old function on 32bit arch */
7469 return sys_futex(uaddr, op, val, timeout, uaddr2, val3);
7470 #endif
7471 #endif /* HOST_LONG_BITS == 64 */
7472 g_assert_not_reached();
7473 }
7474
7475 static int do_safe_futex(int *uaddr, int op, int val,
7476 const struct timespec *timeout, int *uaddr2,
7477 int val3)
7478 {
7479 #if HOST_LONG_BITS == 64
7480 #if defined(__NR_futex)
7481 /* always a 64-bit time_t, it doesn't define _time64 version */
7482 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7483 #endif
7484 #else /* HOST_LONG_BITS == 64 */
7485 #if defined(__NR_futex_time64)
7486 if (sizeof(timeout->tv_sec) == 8) {
7487 /* _time64 function on 32bit arch */
7488 return get_errno(safe_futex_time64(uaddr, op, val, timeout, uaddr2,
7489 val3));
7490 }
7491 #endif
7492 #if defined(__NR_futex)
7493 /* old function on 32bit arch */
7494 return get_errno(safe_futex(uaddr, op, val, timeout, uaddr2, val3));
7495 #endif
7496 #endif /* HOST_LONG_BITS == 64 */
7497 return -TARGET_ENOSYS;
7498 }
7499
7500 /* ??? Using host futex calls even when target atomic operations
7501 are not really atomic probably breaks things. However implementing
7502 futexes locally would make futexes shared between multiple processes
7503 tricky. However they're probably useless because guest atomic
7504 operations won't work either. */
7505 #if defined(TARGET_NR_futex)
7506 static int do_futex(CPUState *cpu, target_ulong uaddr, int op, int val,
7507 target_ulong timeout, target_ulong uaddr2, int val3)
7508 {
7509 struct timespec ts, *pts;
7510 int base_op;
7511
7512 /* ??? We assume FUTEX_* constants are the same on both host
7513 and target. */
7514 #ifdef FUTEX_CMD_MASK
7515 base_op = op & FUTEX_CMD_MASK;
7516 #else
7517 base_op = op;
7518 #endif
7519 switch (base_op) {
7520 case FUTEX_WAIT:
7521 case FUTEX_WAIT_BITSET:
7522 if (timeout) {
7523 pts = &ts;
7524 target_to_host_timespec(pts, timeout);
7525 } else {
7526 pts = NULL;
7527 }
7528 return do_safe_futex(g2h(cpu, uaddr),
7529 op, tswap32(val), pts, NULL, val3);
7530 case FUTEX_WAKE:
7531 return do_safe_futex(g2h(cpu, uaddr),
7532 op, val, NULL, NULL, 0);
7533 case FUTEX_FD:
7534 return do_safe_futex(g2h(cpu, uaddr),
7535 op, val, NULL, NULL, 0);
7536 case FUTEX_REQUEUE:
7537 case FUTEX_CMP_REQUEUE:
7538 case FUTEX_WAKE_OP:
7539 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7540 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7541 But the prototype takes a `struct timespec *'; insert casts
7542 to satisfy the compiler. We do not need to tswap TIMEOUT
7543 since it's not compared to guest memory. */
7544 pts = (struct timespec *)(uintptr_t) timeout;
7545 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2),
7546 (base_op == FUTEX_CMP_REQUEUE
7547 ? tswap32(val3) : val3));
7548 default:
7549 return -TARGET_ENOSYS;
7550 }
7551 }
7552 #endif
7553
7554 #if defined(TARGET_NR_futex_time64)
7555 static int do_futex_time64(CPUState *cpu, target_ulong uaddr, int op,
7556 int val, target_ulong timeout,
7557 target_ulong uaddr2, int val3)
7558 {
7559 struct timespec ts, *pts;
7560 int base_op;
7561
7562 /* ??? We assume FUTEX_* constants are the same on both host
7563 and target. */
7564 #ifdef FUTEX_CMD_MASK
7565 base_op = op & FUTEX_CMD_MASK;
7566 #else
7567 base_op = op;
7568 #endif
7569 switch (base_op) {
7570 case FUTEX_WAIT:
7571 case FUTEX_WAIT_BITSET:
7572 if (timeout) {
7573 pts = &ts;
7574 if (target_to_host_timespec64(pts, timeout)) {
7575 return -TARGET_EFAULT;
7576 }
7577 } else {
7578 pts = NULL;
7579 }
7580 return do_safe_futex(g2h(cpu, uaddr), op,
7581 tswap32(val), pts, NULL, val3);
7582 case FUTEX_WAKE:
7583 return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0);
7584 case FUTEX_FD:
7585 return do_safe_futex(g2h(cpu, uaddr), op, val, NULL, NULL, 0);
7586 case FUTEX_REQUEUE:
7587 case FUTEX_CMP_REQUEUE:
7588 case FUTEX_WAKE_OP:
7589 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
7590 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
7591 But the prototype takes a `struct timespec *'; insert casts
7592 to satisfy the compiler. We do not need to tswap TIMEOUT
7593 since it's not compared to guest memory. */
7594 pts = (struct timespec *)(uintptr_t) timeout;
7595 return do_safe_futex(g2h(cpu, uaddr), op, val, pts, g2h(cpu, uaddr2),
7596 (base_op == FUTEX_CMP_REQUEUE
7597 ? tswap32(val3) : val3));
7598 default:
7599 return -TARGET_ENOSYS;
7600 }
7601 }
7602 #endif
7603
7604 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7605 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
7606 abi_long handle, abi_long mount_id,
7607 abi_long flags)
7608 {
7609 struct file_handle *target_fh;
7610 struct file_handle *fh;
7611 int mid = 0;
7612 abi_long ret;
7613 char *name;
7614 unsigned int size, total_size;
7615
7616 if (get_user_s32(size, handle)) {
7617 return -TARGET_EFAULT;
7618 }
7619
7620 name = lock_user_string(pathname);
7621 if (!name) {
7622 return -TARGET_EFAULT;
7623 }
7624
7625 total_size = sizeof(struct file_handle) + size;
7626 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
7627 if (!target_fh) {
7628 unlock_user(name, pathname, 0);
7629 return -TARGET_EFAULT;
7630 }
7631
7632 fh = g_malloc0(total_size);
7633 fh->handle_bytes = size;
7634
7635 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
7636 unlock_user(name, pathname, 0);
7637
7638 /* man name_to_handle_at(2):
7639 * Other than the use of the handle_bytes field, the caller should treat
7640 * the file_handle structure as an opaque data type
7641 */
7642
7643 memcpy(target_fh, fh, total_size);
7644 target_fh->handle_bytes = tswap32(fh->handle_bytes);
7645 target_fh->handle_type = tswap32(fh->handle_type);
7646 g_free(fh);
7647 unlock_user(target_fh, handle, total_size);
7648
7649 if (put_user_s32(mid, mount_id)) {
7650 return -TARGET_EFAULT;
7651 }
7652
7653 return ret;
7654
7655 }
7656 #endif
7657
7658 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7659 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
7660 abi_long flags)
7661 {
7662 struct file_handle *target_fh;
7663 struct file_handle *fh;
7664 unsigned int size, total_size;
7665 abi_long ret;
7666
7667 if (get_user_s32(size, handle)) {
7668 return -TARGET_EFAULT;
7669 }
7670
7671 total_size = sizeof(struct file_handle) + size;
7672 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
7673 if (!target_fh) {
7674 return -TARGET_EFAULT;
7675 }
7676
7677 fh = g_memdup(target_fh, total_size);
7678 fh->handle_bytes = size;
7679 fh->handle_type = tswap32(target_fh->handle_type);
7680
7681 ret = get_errno(open_by_handle_at(mount_fd, fh,
7682 target_to_host_bitmask(flags, fcntl_flags_tbl)));
7683
7684 g_free(fh);
7685
7686 unlock_user(target_fh, handle, total_size);
7687
7688 return ret;
7689 }
7690 #endif
7691
7692 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7693
7694 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7695 {
7696 int host_flags;
7697 target_sigset_t *target_mask;
7698 sigset_t host_mask;
7699 abi_long ret;
7700
7701 if (flags & ~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC)) {
7702 return -TARGET_EINVAL;
7703 }
7704 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7705 return -TARGET_EFAULT;
7706 }
7707
7708 target_to_host_sigset(&host_mask, target_mask);
7709
7710 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7711
7712 ret = get_errno(signalfd(fd, &host_mask, host_flags));
7713 if (ret >= 0) {
7714 fd_trans_register(ret, &target_signalfd_trans);
7715 }
7716
7717 unlock_user_struct(target_mask, mask, 0);
7718
7719 return ret;
7720 }
7721 #endif
7722
7723 /* Map host to target signal numbers for the wait family of syscalls.
7724 Assume all other status bits are the same. */
7725 int host_to_target_waitstatus(int status)
7726 {
7727 if (WIFSIGNALED(status)) {
7728 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7729 }
7730 if (WIFSTOPPED(status)) {
7731 return (host_to_target_signal(WSTOPSIG(status)) << 8)
7732 | (status & 0xff);
7733 }
7734 return status;
7735 }
7736
7737 static int open_self_cmdline(void *cpu_env, int fd)
7738 {
7739 CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7740 struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
7741 int i;
7742
7743 for (i = 0; i < bprm->argc; i++) {
7744 size_t len = strlen(bprm->argv[i]) + 1;
7745
7746 if (write(fd, bprm->argv[i], len) != len) {
7747 return -1;
7748 }
7749 }
7750
7751 return 0;
7752 }
7753
7754 static int open_self_maps(void *cpu_env, int fd)
7755 {
7756 CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7757 TaskState *ts = cpu->opaque;
7758 GSList *map_info = read_self_maps();
7759 GSList *s;
7760 int count;
7761
7762 for (s = map_info; s; s = g_slist_next(s)) {
7763 MapInfo *e = (MapInfo *) s->data;
7764
7765 if (h2g_valid(e->start)) {
7766 unsigned long min = e->start;
7767 unsigned long max = e->end;
7768 int flags = page_get_flags(h2g(min));
7769 const char *path;
7770
7771 max = h2g_valid(max - 1) ?
7772 max : (uintptr_t) g2h_untagged(GUEST_ADDR_MAX) + 1;
7773
7774 if (page_check_range(h2g(min), max - min, flags) == -1) {
7775 continue;
7776 }
7777
7778 if (h2g(min) == ts->info->stack_limit) {
7779 path = "[stack]";
7780 } else {
7781 path = e->path;
7782 }
7783
7784 count = dprintf(fd, TARGET_ABI_FMT_ptr "-" TARGET_ABI_FMT_ptr
7785 " %c%c%c%c %08" PRIx64 " %s %"PRId64,
7786 h2g(min), h2g(max - 1) + 1,
7787 (flags & PAGE_READ) ? 'r' : '-',
7788 (flags & PAGE_WRITE_ORG) ? 'w' : '-',
7789 (flags & PAGE_EXEC) ? 'x' : '-',
7790 e->is_priv ? 'p' : '-',
7791 (uint64_t) e->offset, e->dev, e->inode);
7792 if (path) {
7793 dprintf(fd, "%*s%s\n", 73 - count, "", path);
7794 } else {
7795 dprintf(fd, "\n");
7796 }
7797 }
7798 }
7799
7800 free_self_maps(map_info);
7801
7802 #ifdef TARGET_VSYSCALL_PAGE
7803 /*
7804 * We only support execution from the vsyscall page.
7805 * This is as if CONFIG_LEGACY_VSYSCALL_XONLY=y from v5.3.
7806 */
7807 count = dprintf(fd, TARGET_FMT_lx "-" TARGET_FMT_lx
7808 " --xp 00000000 00:00 0",
7809 TARGET_VSYSCALL_PAGE, TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE);
7810 dprintf(fd, "%*s%s\n", 73 - count, "", "[vsyscall]");
7811 #endif
7812
7813 return 0;
7814 }
7815
7816 static int open_self_stat(void *cpu_env, int fd)
7817 {
7818 CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7819 TaskState *ts = cpu->opaque;
7820 g_autoptr(GString) buf = g_string_new(NULL);
7821 int i;
7822
7823 for (i = 0; i < 44; i++) {
7824 if (i == 0) {
7825 /* pid */
7826 g_string_printf(buf, FMT_pid " ", getpid());
7827 } else if (i == 1) {
7828 /* app name */
7829 gchar *bin = g_strrstr(ts->bprm->argv[0], "/");
7830 bin = bin ? bin + 1 : ts->bprm->argv[0];
7831 g_string_printf(buf, "(%.15s) ", bin);
7832 } else if (i == 3) {
7833 /* ppid */
7834 g_string_printf(buf, FMT_pid " ", getppid());
7835 } else if (i == 27) {
7836 /* stack bottom */
7837 g_string_printf(buf, TARGET_ABI_FMT_ld " ", ts->info->start_stack);
7838 } else {
7839 /* for the rest, there is MasterCard */
7840 g_string_printf(buf, "0%c", i == 43 ? '\n' : ' ');
7841 }
7842
7843 if (write(fd, buf->str, buf->len) != buf->len) {
7844 return -1;
7845 }
7846 }
7847
7848 return 0;
7849 }
7850
7851 static int open_self_auxv(void *cpu_env, int fd)
7852 {
7853 CPUState *cpu = env_cpu((CPUArchState *)cpu_env);
7854 TaskState *ts = cpu->opaque;
7855 abi_ulong auxv = ts->info->saved_auxv;
7856 abi_ulong len = ts->info->auxv_len;
7857 char *ptr;
7858
7859 /*
7860 * Auxiliary vector is stored in target process stack.
7861 * read in whole auxv vector and copy it to file
7862 */
7863 ptr = lock_user(VERIFY_READ, auxv, len, 0);
7864 if (ptr != NULL) {
7865 while (len > 0) {
7866 ssize_t r;
7867 r = write(fd, ptr, len);
7868 if (r <= 0) {
7869 break;
7870 }
7871 len -= r;
7872 ptr += r;
7873 }
7874 lseek(fd, 0, SEEK_SET);
7875 unlock_user(ptr, auxv, len);
7876 }
7877
7878 return 0;
7879 }
7880
7881 static int is_proc_myself(const char *filename, const char *entry)
7882 {
7883 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
7884 filename += strlen("/proc/");
7885 if (!strncmp(filename, "self/", strlen("self/"))) {
7886 filename += strlen("self/");
7887 } else if (*filename >= '1' && *filename <= '9') {
7888 char myself[80];
7889 snprintf(myself, sizeof(myself), "%d/", getpid());
7890 if (!strncmp(filename, myself, strlen(myself))) {
7891 filename += strlen(myself);
7892 } else {
7893 return 0;
7894 }
7895 } else {
7896 return 0;
7897 }
7898 if (!strcmp(filename, entry)) {
7899 return 1;
7900 }
7901 }
7902 return 0;
7903 }
7904
7905 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) || \
7906 defined(TARGET_SPARC) || defined(TARGET_M68K) || defined(TARGET_HPPA)
7907 static int is_proc(const char *filename, const char *entry)
7908 {
7909 return strcmp(filename, entry) == 0;
7910 }
7911 #endif
7912
7913 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7914 static int open_net_route(void *cpu_env, int fd)
7915 {
7916 FILE *fp;
7917 char *line = NULL;
7918 size_t len = 0;
7919 ssize_t read;
7920
7921 fp = fopen("/proc/net/route", "r");
7922 if (fp == NULL) {
7923 return -1;
7924 }
7925
7926 /* read header */
7927
7928 read = getline(&line, &len, fp);
7929 dprintf(fd, "%s", line);
7930
7931 /* read routes */
7932
7933 while ((read = getline(&line, &len, fp)) != -1) {
7934 char iface[16];
7935 uint32_t dest, gw, mask;
7936 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
7937 int fields;
7938
7939 fields = sscanf(line,
7940 "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7941 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
7942 &mask, &mtu, &window, &irtt);
7943 if (fields != 11) {
7944 continue;
7945 }
7946 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7947 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
7948 metric, tswap32(mask), mtu, window, irtt);
7949 }
7950
7951 free(line);
7952 fclose(fp);
7953
7954 return 0;
7955 }
7956 #endif
7957
7958 #if defined(TARGET_SPARC)
7959 static int open_cpuinfo(void *cpu_env, int fd)
7960 {
7961 dprintf(fd, "type\t\t: sun4u\n");
7962 return 0;
7963 }
7964 #endif
7965
7966 #if defined(TARGET_HPPA)
7967 static int open_cpuinfo(void *cpu_env, int fd)
7968 {
7969 dprintf(fd, "cpu family\t: PA-RISC 1.1e\n");
7970 dprintf(fd, "cpu\t\t: PA7300LC (PCX-L2)\n");
7971 dprintf(fd, "capabilities\t: os32\n");
7972 dprintf(fd, "model\t\t: 9000/778/B160L\n");
7973 dprintf(fd, "model name\t: Merlin L2 160 QEMU (9000/778/B160L)\n");
7974 return 0;
7975 }
7976 #endif
7977
7978 #if defined(TARGET_M68K)
7979 static int open_hardware(void *cpu_env, int fd)
7980 {
7981 dprintf(fd, "Model:\t\tqemu-m68k\n");
7982 return 0;
7983 }
7984 #endif
7985
7986 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
7987 {
7988 struct fake_open {
7989 const char *filename;
7990 int (*fill)(void *cpu_env, int fd);
7991 int (*cmp)(const char *s1, const char *s2);
7992 };
7993 const struct fake_open *fake_open;
7994 static const struct fake_open fakes[] = {
7995 { "maps", open_self_maps, is_proc_myself },
7996 { "stat", open_self_stat, is_proc_myself },
7997 { "auxv", open_self_auxv, is_proc_myself },
7998 { "cmdline", open_self_cmdline, is_proc_myself },
7999 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
8000 { "/proc/net/route", open_net_route, is_proc },
8001 #endif
8002 #if defined(TARGET_SPARC) || defined(TARGET_HPPA)
8003 { "/proc/cpuinfo", open_cpuinfo, is_proc },
8004 #endif
8005 #if defined(TARGET_M68K)
8006 { "/proc/hardware", open_hardware, is_proc },
8007 #endif
8008 { NULL, NULL, NULL }
8009 };
8010
8011 if (is_proc_myself(pathname, "exe")) {
8012 int execfd = qemu_getauxval(AT_EXECFD);
8013 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
8014 }
8015
8016 for (fake_open = fakes; fake_open->filename; fake_open++) {
8017 if (fake_open->cmp(pathname, fake_open->filename)) {
8018 break;
8019 }
8020 }
8021
8022 if (fake_open->filename) {
8023 const char *tmpdir;
8024 char filename[PATH_MAX];
8025 int fd, r;
8026
8027 /* create temporary file to map stat to */
8028 tmpdir = getenv("TMPDIR");
8029 if (!tmpdir)
8030 tmpdir = "/tmp";
8031 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
8032 fd = mkstemp(filename);
8033 if (fd < 0) {
8034 return fd;
8035 }
8036 unlink(filename);
8037
8038 if ((r = fake_open->fill(cpu_env, fd))) {
8039 int e = errno;
8040 close(fd);
8041 errno = e;
8042 return r;
8043 }
8044 lseek(fd, 0, SEEK_SET);
8045
8046 return fd;
8047 }
8048
8049 return safe_openat(dirfd, path(pathname), flags, mode);
8050 }
8051
8052 #define TIMER_MAGIC 0x0caf0000
8053 #define TIMER_MAGIC_MASK 0xffff0000
8054
8055 /* Convert QEMU provided timer ID back to internal 16bit index format */
8056 static target_timer_t get_timer_id(abi_long arg)
8057 {
8058 target_timer_t timerid = arg;
8059
8060 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
8061 return -TARGET_EINVAL;
8062 }
8063
8064 timerid &= 0xffff;
8065
8066 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
8067 return -TARGET_EINVAL;
8068 }
8069
8070 return timerid;
8071 }
8072
8073 static int target_to_host_cpu_mask(unsigned long *host_mask,
8074 size_t host_size,
8075 abi_ulong target_addr,
8076 size_t target_size)
8077 {
8078 unsigned target_bits = sizeof(abi_ulong) * 8;
8079 unsigned host_bits = sizeof(*host_mask) * 8;
8080 abi_ulong *target_mask;
8081 unsigned i, j;
8082
8083 assert(host_size >= target_size);
8084
8085 target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
8086 if (!target_mask) {
8087 return -TARGET_EFAULT;
8088 }
8089 memset(host_mask, 0, host_size);
8090
8091 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8092 unsigned bit = i * target_bits;
8093 abi_ulong val;
8094
8095 __get_user(val, &target_mask[i]);
8096 for (j = 0; j < target_bits; j++, bit++) {
8097 if (val & (1UL << j)) {
8098 host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
8099 }
8100 }
8101 }
8102
8103 unlock_user(target_mask, target_addr, 0);
8104 return 0;
8105 }
8106
8107 static int host_to_target_cpu_mask(const unsigned long *host_mask,
8108 size_t host_size,
8109 abi_ulong target_addr,
8110 size_t target_size)
8111 {
8112 unsigned target_bits = sizeof(abi_ulong) * 8;
8113 unsigned host_bits = sizeof(*host_mask) * 8;
8114 abi_ulong *target_mask;
8115 unsigned i, j;
8116
8117 assert(host_size >= target_size);
8118
8119 target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
8120 if (!target_mask) {
8121 return -TARGET_EFAULT;
8122 }
8123
8124 for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
8125 unsigned bit = i * target_bits;
8126 abi_ulong val = 0;
8127
8128 for (j = 0; j < target_bits; j++, bit++) {
8129 if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
8130 val |= 1UL << j;
8131 }
8132 }
8133 __put_user(val, &target_mask[i]);
8134 }
8135
8136 unlock_user(target_mask, target_addr, target_size);
8137 return 0;
8138 }
8139
8140 #if defined(TARGET_NR_pivot_root) && defined(__NR_pivot_root)
8141 _syscall2(int, pivot_root, const char *, new_root, const char *, put_old)
8142 #endif
8143
8144 /* This is an internal helper for do_syscall so that it is easier
8145 * to have a single return point, so that actions, such as logging
8146 * of syscall results, can be performed.
8147 * All errnos that do_syscall() returns must be -TARGET_<errcode>.
8148 */
8149 static abi_long do_syscall1(void *cpu_env, int num, abi_long arg1,
8150 abi_long arg2, abi_long arg3, abi_long arg4,
8151 abi_long arg5, abi_long arg6, abi_long arg7,
8152 abi_long arg8)
8153 {
8154 CPUState *cpu = env_cpu(cpu_env);
8155 abi_long ret;
8156 #if defined(TARGET_NR_stat) || defined(TARGET_NR_stat64) \
8157 || defined(TARGET_NR_lstat) || defined(TARGET_NR_lstat64) \
8158 || defined(TARGET_NR_fstat) || defined(TARGET_NR_fstat64) \
8159 || defined(TARGET_NR_statx)
8160 struct stat st;
8161 #endif
8162 #if defined(TARGET_NR_statfs) || defined(TARGET_NR_statfs64) \
8163 || defined(TARGET_NR_fstatfs)
8164 struct statfs stfs;
8165 #endif
8166 void *p;
8167
8168 switch(num) {
8169 case TARGET_NR_exit:
8170 /* In old applications this may be used to implement _exit(2).
8171 However in threaded applications it is used for thread termination,
8172 and _exit_group is used for application termination.
8173 Do thread termination if we have more then one thread. */
8174
8175 if (block_signals()) {
8176 return -TARGET_ERESTARTSYS;
8177 }
8178
8179 pthread_mutex_lock(&clone_lock);
8180
8181 if (CPU_NEXT(first_cpu)) {
8182 TaskState *ts = cpu->opaque;
8183
8184 object_property_set_bool(OBJECT(cpu), "realized", false, NULL);
8185 object_unref(OBJECT(cpu));
8186 /*
8187 * At this point the CPU should be unrealized and removed
8188 * from cpu lists. We can clean-up the rest of the thread
8189 * data without the lock held.
8190 */
8191
8192 pthread_mutex_unlock(&clone_lock);
8193
8194 if (ts->child_tidptr) {
8195 put_user_u32(0, ts->child_tidptr);
8196 do_sys_futex(g2h(cpu, ts->child_tidptr),
8197 FUTEX_WAKE, INT_MAX, NULL, NULL, 0);
8198 }
8199 thread_cpu = NULL;
8200 g_free(ts);
8201 rcu_unregister_thread();
8202 pthread_exit(NULL);
8203 }
8204
8205 pthread_mutex_unlock(&clone_lock);
8206 preexit_cleanup(cpu_env, arg1);
8207 _exit(arg1);
8208 return 0; /* avoid warning */
8209 case TARGET_NR_read:
8210 if (arg2 == 0 && arg3 == 0) {
8211 return get_errno(safe_read(arg1, 0, 0));
8212 } else {
8213 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
8214 return -TARGET_EFAULT;
8215 ret = get_errno(safe_read(arg1, p, arg3));
8216 if (ret >= 0 &&
8217 fd_trans_host_to_target_data(arg1)) {
8218 ret = fd_trans_host_to_target_data(arg1)(p, ret);
8219 }
8220 unlock_user(p, arg2, ret);
8221 }
8222 return ret;
8223 case TARGET_NR_write:
8224 if (arg2 == 0 && arg3 == 0) {
8225 return get_errno(safe_write(arg1, 0, 0));
8226 }
8227 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
8228 return -TARGET_EFAULT;
8229 if (fd_trans_target_to_host_data(arg1)) {
8230 void *copy = g_malloc(arg3);
8231 memcpy(copy, p, arg3);
8232 ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
8233 if (ret >= 0) {
8234 ret = get_errno(safe_write(arg1, copy, ret));
8235 }
8236 g_free(copy);
8237 } else {
8238 ret = get_errno(safe_write(arg1, p, arg3));
8239 }
8240 unlock_user(p, arg2, 0);
8241 return ret;
8242
8243 #ifdef TARGET_NR_open
8244 case TARGET_NR_open:
8245 if (!(p = lock_user_string(arg1)))
8246 return -TARGET_EFAULT;
8247 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
8248 target_to_host_bitmask(arg2, fcntl_flags_tbl),
8249 arg3));
8250 fd_trans_unregister(ret);
8251 unlock_user(p, arg1, 0);
8252 return ret;
8253 #endif
8254 case TARGET_NR_openat:
8255 if (!(p = lock_user_string(arg2)))
8256 return -TARGET_EFAULT;
8257 ret = get_errno(do_openat(cpu_env, arg1, p,
8258 target_to_host_bitmask(arg3, fcntl_flags_tbl),
8259 arg4));
8260 fd_trans_unregister(ret);
8261 unlock_user(p, arg2, 0);
8262 return ret;
8263 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8264 case TARGET_NR_name_to_handle_at:
8265 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
8266 return ret;
8267 #endif
8268 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
8269 case TARGET_NR_open_by_handle_at:
8270 ret = do_open_by_handle_at(arg1, arg2, arg3);
8271 fd_trans_unregister(ret);
8272 return ret;
8273 #endif
8274 case TARGET_NR_close:
8275 fd_trans_unregister(arg1);
8276 return get_errno(close(arg1));
8277
8278 case TARGET_NR_brk:
8279 return do_brk(arg1);
8280 #ifdef TARGET_NR_fork
8281 case TARGET_NR_fork:
8282 return get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
8283 #endif
8284 #ifdef TARGET_NR_waitpid
8285 case TARGET_NR_waitpid:
8286 {
8287 int status;
8288 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
8289 if (!is_error(ret) && arg2 && ret
8290 && put_user_s32(host_to_target_waitstatus(status), arg2))
8291 return -TARGET_EFAULT;
8292 }
8293 return ret;
8294 #endif
8295 #ifdef TARGET_NR_waitid
8296 case TARGET_NR_waitid:
8297 {
8298 siginfo_t info;
8299 info.si_pid = 0;
8300 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
8301 if (!is_error(ret) && arg3 && info.si_pid != 0) {
8302 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
8303 return -TARGET_EFAULT;
8304 host_to_target_siginfo(p, &info);
8305 unlock_user(p, arg3, sizeof(target_siginfo_t));
8306 }
8307 }
8308 return ret;
8309 #endif
8310 #ifdef TARGET_NR_creat /* not on alpha */
8311 case TARGET_NR_creat:
8312 if (!(p = lock_user_string(arg1)))
8313 return -TARGET_EFAULT;
8314 ret = get_errno(creat(p, arg2));
8315 fd_trans_unregister(ret);
8316 unlock_user(p, arg1, 0);
8317 return ret;
8318 #endif
8319 #ifdef TARGET_NR_link
8320 case TARGET_NR_link:
8321 {
8322 void * p2;
8323 p = lock_user_string(arg1);
8324 p2 = lock_user_string(arg2);
8325 if (!p || !p2)
8326 ret = -TARGET_EFAULT;
8327 else
8328 ret = get_errno(link(p, p2));
8329 unlock_user(p2, arg2, 0);
8330 unlock_user(p, arg1, 0);
8331 }
8332 return ret;
8333 #endif
8334 #if defined(TARGET_NR_linkat)
8335 case TARGET_NR_linkat:
8336 {
8337 void * p2 = NULL;
8338 if (!arg2 || !arg4)
8339 return -TARGET_EFAULT;
8340 p = lock_user_string(arg2);
8341 p2 = lock_user_string(arg4);
8342 if (!p || !p2)
8343 ret = -TARGET_EFAULT;
8344 else
8345 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
8346 unlock_user(p, arg2, 0);
8347 unlock_user(p2, arg4, 0);
8348 }
8349 return ret;
8350 #endif
8351 #ifdef TARGET_NR_unlink
8352 case TARGET_NR_unlink:
8353 if (!(p = lock_user_string(arg1)))
8354 return -TARGET_EFAULT;
8355 ret = get_errno(unlink(p));
8356 unlock_user(p, arg1, 0);
8357 return ret;
8358 #endif
8359 #if defined(TARGET_NR_unlinkat)
8360 case TARGET_NR_unlinkat:
8361 if (!(p = lock_user_string(arg2)))
8362 return -TARGET_EFAULT;
8363 ret = get_errno(unlinkat(arg1, p, arg3));
8364 unlock_user(p, arg2, 0);
8365 return ret;
8366 #endif
8367 case TARGET_NR_execve:
8368 {
8369 char **argp, **envp;
8370 int argc, envc;
8371 abi_ulong gp;
8372 abi_ulong guest_argp;
8373 abi_ulong guest_envp;
8374 abi_ulong addr;
8375 char **q;
8376
8377 argc = 0;
8378 guest_argp = arg2;
8379 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
8380 if (get_user_ual(addr, gp))
8381 return -TARGET_EFAULT;
8382 if (!addr)
8383 break;
8384 argc++;
8385 }
8386 envc = 0;
8387 guest_envp = arg3;
8388 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
8389 if (get_user_ual(addr, gp))
8390 return -TARGET_EFAULT;
8391 if (!addr)
8392 break;
8393 envc++;
8394 }
8395
8396 argp = g_new0(char *, argc + 1);
8397 envp = g_new0(char *, envc + 1);
8398
8399 for (gp = guest_argp, q = argp; gp;
8400 gp += sizeof(abi_ulong), q++) {
8401 if (get_user_ual(addr, gp))
8402 goto execve_efault;
8403 if (!addr)
8404 break;
8405 if (!(*q = lock_user_string(addr)))
8406 goto execve_efault;
8407 }
8408 *q = NULL;
8409
8410 for (gp = guest_envp, q = envp; gp;
8411 gp += sizeof(abi_ulong), q++) {
8412 if (get_user_ual(addr, gp))
8413 goto execve_efault;
8414 if (!addr)
8415 break;
8416 if (!(*q = lock_user_string(addr)))
8417 goto execve_efault;
8418 }
8419 *q = NULL;
8420
8421 if (!(p = lock_user_string(arg1)))
8422 goto execve_efault;
8423 /* Although execve() is not an interruptible syscall it is
8424 * a special case where we must use the safe_syscall wrapper:
8425 * if we allow a signal to happen before we make the host
8426 * syscall then we will 'lose' it, because at the point of
8427 * execve the process leaves QEMU's control. So we use the
8428 * safe syscall wrapper to ensure that we either take the
8429 * signal as a guest signal, or else it does not happen
8430 * before the execve completes and makes it the other
8431 * program's problem.
8432 */
8433 ret = get_errno(safe_execve(p, argp, envp));
8434 unlock_user(p, arg1, 0);
8435
8436 goto execve_end;
8437
8438 execve_efault:
8439 ret = -TARGET_EFAULT;
8440
8441 execve_end:
8442 for (gp = guest_argp, q = argp; *q;
8443 gp += sizeof(abi_ulong), q++) {
8444 if (get_user_ual(addr, gp)
8445 || !addr)
8446 break;
8447 unlock_user(*q, addr, 0);
8448 }
8449 for (gp = guest_envp, q = envp; *q;
8450 gp += sizeof(abi_ulong), q++) {
8451 if (get_user_ual(addr, gp)
8452 || !addr)
8453 break;
8454 unlock_user(*q, addr, 0);
8455 }
8456
8457 g_free(argp);
8458 g_free(envp);
8459 }
8460 return ret;
8461 case TARGET_NR_chdir:
8462 if (!(p = lock_user_string(arg1)))
8463 return -TARGET_EFAULT;
8464 ret = get_errno(chdir(p));
8465 unlock_user(p, arg1, 0);
8466 return ret;
8467 #ifdef TARGET_NR_time
8468 case TARGET_NR_time:
8469 {
8470 time_t host_time;
8471 ret = get_errno(time(&host_time));
8472 if (!is_error(ret)
8473 && arg1
8474 && put_user_sal(host_time, arg1))
8475 return -TARGET_EFAULT;
8476 }
8477 return ret;
8478 #endif
8479 #ifdef TARGET_NR_mknod
8480 case TARGET_NR_mknod:
8481 if (!(p = lock_user_string(arg1)))
8482 return -TARGET_EFAULT;
8483 ret = get_errno(mknod(p, arg2, arg3));
8484 unlock_user(p, arg1, 0);
8485 return ret;
8486 #endif
8487 #if defined(TARGET_NR_mknodat)
8488 case TARGET_NR_mknodat:
8489 if (!(p = lock_user_string(arg2)))
8490 return -TARGET_EFAULT;
8491 ret = get_errno(mknodat(arg1, p, arg3, arg4));
8492 unlock_user(p, arg2, 0);
8493 return ret;
8494 #endif
8495 #ifdef TARGET_NR_chmod
8496 case TARGET_NR_chmod:
8497 if (!(p = lock_user_string(arg1)))
8498 return -TARGET_EFAULT;
8499 ret = get_errno(chmod(p, arg2));
8500 unlock_user(p, arg1, 0);
8501 return ret;
8502 #endif
8503 #ifdef TARGET_NR_lseek
8504 case TARGET_NR_lseek:
8505 return get_errno(lseek(arg1, arg2, arg3));
8506 #endif
8507 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
8508 /* Alpha specific */
8509 case TARGET_NR_getxpid:
8510 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
8511 return get_errno(getpid());
8512 #endif
8513 #ifdef TARGET_NR_getpid
8514 case TARGET_NR_getpid:
8515 return get_errno(getpid());
8516 #endif
8517 case TARGET_NR_mount:
8518 {
8519 /* need to look at the data field */
8520 void *p2, *p3;
8521
8522 if (arg1) {
8523 p = lock_user_string(arg1);
8524 if (!p) {
8525 return -TARGET_EFAULT;
8526 }
8527 } else {
8528 p = NULL;
8529 }
8530
8531 p2 = lock_user_string(arg2);
8532 if (!p2) {
8533 if (arg1) {
8534 unlock_user(p, arg1, 0);
8535 }
8536 return -TARGET_EFAULT;
8537 }
8538
8539 if (arg3) {
8540 p3 = lock_user_string(arg3);
8541 if (!p3) {
8542 if (arg1) {
8543 unlock_user(p, arg1, 0);
8544 }
8545 unlock_user(p2, arg2, 0);
8546 return -TARGET_EFAULT;
8547 }
8548 } else {
8549 p3 = NULL;
8550 }
8551
8552 /* FIXME - arg5 should be locked, but it isn't clear how to
8553 * do that since it's not guaranteed to be a NULL-terminated
8554 * string.
8555 */
8556 if (!arg5) {
8557 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
8558 } else {
8559 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(cpu, arg5));
8560 }
8561 ret = get_errno(ret);
8562
8563 if (arg1) {
8564 unlock_user(p, arg1, 0);
8565 }
8566 unlock_user(p2, arg2, 0);
8567 if (arg3) {
8568 unlock_user(p3, arg3, 0);
8569 }
8570 }
8571 return ret;
8572 #if defined(TARGET_NR_umount) || defined(TARGET_NR_oldumount)
8573 #if defined(TARGET_NR_umount)
8574 case TARGET_NR_umount:
8575 #endif
8576 #if defined(TARGET_NR_oldumount)
8577 case TARGET_NR_oldumount:
8578 #endif
8579 if (!(p = lock_user_string(arg1)))
8580 return -TARGET_EFAULT;
8581 ret = get_errno(umount(p));
8582 unlock_user(p, arg1, 0);
8583 return ret;
8584 #endif
8585 #ifdef TARGET_NR_stime /* not on alpha */
8586 case TARGET_NR_stime:
8587 {
8588 struct timespec ts;
8589 ts.tv_nsec = 0;
8590 if (get_user_sal(ts.tv_sec, arg1)) {
8591 return -TARGET_EFAULT;
8592 }
8593 return get_errno(clock_settime(CLOCK_REALTIME, &ts));
8594 }
8595 #endif
8596 #ifdef TARGET_NR_alarm /* not on alpha */
8597 case TARGET_NR_alarm:
8598 return alarm(arg1);
8599 #endif
8600 #ifdef TARGET_NR_pause /* not on alpha */
8601 case TARGET_NR_pause:
8602 if (!block_signals()) {
8603 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
8604 }
8605 return -TARGET_EINTR;
8606 #endif
8607 #ifdef TARGET_NR_utime
8608 case TARGET_NR_utime:
8609 {
8610 struct utimbuf tbuf, *host_tbuf;
8611 struct target_utimbuf *target_tbuf;
8612 if (arg2) {
8613 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
8614 return -TARGET_EFAULT;
8615 tbuf.actime = tswapal(target_tbuf->actime);
8616 tbuf.modtime = tswapal(target_tbuf->modtime);
8617 unlock_user_struct(target_tbuf, arg2, 0);
8618 host_tbuf = &tbuf;
8619 } else {
8620 host_tbuf = NULL;
8621 }
8622 if (!(p = lock_user_string(arg1)))
8623 return -TARGET_EFAULT;
8624 ret = get_errno(utime(p, host_tbuf));
8625 unlock_user(p, arg1, 0);
8626 }
8627 return ret;
8628 #endif
8629 #ifdef TARGET_NR_utimes
8630 case TARGET_NR_utimes:
8631 {
8632 struct timeval *tvp, tv[2];
8633 if (arg2) {
8634 if (copy_from_user_timeval(&tv[0], arg2)
8635 || copy_from_user_timeval(&tv[1],
8636 arg2 + sizeof(struct target_timeval)))
8637 return -TARGET_EFAULT;
8638 tvp = tv;
8639 } else {
8640 tvp = NULL;
8641 }
8642 if (!(p = lock_user_string(arg1)))
8643 return -TARGET_EFAULT;
8644 ret = get_errno(utimes(p, tvp));
8645 unlock_user(p, arg1, 0);
8646 }
8647 return ret;
8648 #endif
8649 #if defined(TARGET_NR_futimesat)
8650 case TARGET_NR_futimesat:
8651 {
8652 struct timeval *tvp, tv[2];
8653 if (arg3) {
8654 if (copy_from_user_timeval(&tv[0], arg3)
8655 || copy_from_user_timeval(&tv[1],
8656 arg3 + sizeof(struct target_timeval)))
8657 return -TARGET_EFAULT;
8658 tvp = tv;
8659 } else {
8660 tvp = NULL;
8661 }
8662 if (!(p = lock_user_string(arg2))) {
8663 return -TARGET_EFAULT;
8664 }
8665 ret = get_errno(futimesat(arg1, path(p), tvp));
8666 unlock_user(p, arg2, 0);
8667 }
8668 return ret;
8669 #endif
8670 #ifdef TARGET_NR_access
8671 case TARGET_NR_access:
8672 if (!(p = lock_user_string(arg1))) {
8673 return -TARGET_EFAULT;
8674 }
8675 ret = get_errno(access(path(p), arg2));
8676 unlock_user(p, arg1, 0);
8677 return ret;
8678 #endif
8679 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
8680 case TARGET_NR_faccessat:
8681 if (!(p = lock_user_string(arg2))) {
8682 return -TARGET_EFAULT;
8683 }
8684 ret = get_errno(faccessat(arg1, p, arg3, 0));
8685 unlock_user(p, arg2, 0);
8686 return ret;
8687 #endif
8688 #ifdef TARGET_NR_nice /* not on alpha */
8689 case TARGET_NR_nice:
8690 return get_errno(nice(arg1));
8691 #endif
8692 case TARGET_NR_sync:
8693 sync();
8694 return 0;
8695 #if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
8696 case TARGET_NR_syncfs:
8697 return get_errno(syncfs(arg1));
8698 #endif
8699 case TARGET_NR_kill:
8700 return get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
8701 #ifdef TARGET_NR_rename
8702 case TARGET_NR_rename:
8703 {
8704 void *p2;
8705 p = lock_user_string(arg1);
8706 p2 = lock_user_string(arg2);
8707 if (!p || !p2)
8708 ret = -TARGET_EFAULT;
8709 else
8710 ret = get_errno(rename(p, p2));
8711 unlock_user(p2, arg2, 0);
8712 unlock_user(p, arg1, 0);
8713 }
8714 return ret;
8715 #endif
8716 #if defined(TARGET_NR_renameat)
8717 case TARGET_NR_renameat:
8718 {
8719 void *p2;
8720 p = lock_user_string(arg2);
8721 p2 = lock_user_string(arg4);
8722 if (!p || !p2)
8723 ret = -TARGET_EFAULT;
8724 else
8725 ret = get_errno(renameat(arg1, p, arg3, p2));
8726 unlock_user(p2, arg4, 0);
8727 unlock_user(p, arg2, 0);
8728 }
8729 return ret;
8730 #endif
8731 #if defined(TARGET_NR_renameat2)
8732 case TARGET_NR_renameat2:
8733 {
8734 void *p2;
8735 p = lock_user_string(arg2);
8736 p2 = lock_user_string(arg4);
8737 if (!p || !p2) {
8738 ret = -TARGET_EFAULT;
8739 } else {
8740 ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
8741 }
8742 unlock_user(p2, arg4, 0);
8743 unlock_user(p, arg2, 0);
8744 }
8745 return ret;
8746 #endif
8747 #ifdef TARGET_NR_mkdir
8748 case TARGET_NR_mkdir:
8749 if (!(p = lock_user_string(arg1)))
8750 return -TARGET_EFAULT;
8751 ret = get_errno(mkdir(p, arg2));
8752 unlock_user(p, arg1, 0);
8753 return ret;
8754 #endif
8755 #if defined(TARGET_NR_mkdirat)
8756 case TARGET_NR_mkdirat:
8757 if (!(p = lock_user_string(arg2)))
8758 return -TARGET_EFAULT;
8759 ret = get_errno(mkdirat(arg1, p, arg3));
8760 unlock_user(p, arg2, 0);
8761 return ret;
8762 #endif
8763 #ifdef TARGET_NR_rmdir
8764 case TARGET_NR_rmdir:
8765 if (!(p = lock_user_string(arg1)))
8766 return -TARGET_EFAULT;
8767 ret = get_errno(rmdir(p));
8768 unlock_user(p, arg1, 0);
8769 return ret;
8770 #endif
8771 case TARGET_NR_dup:
8772 ret = get_errno(dup(arg1));
8773 if (ret >= 0) {
8774 fd_trans_dup(arg1, ret);
8775 }
8776 return ret;
8777 #ifdef TARGET_NR_pipe
8778 case TARGET_NR_pipe:
8779 return do_pipe(cpu_env, arg1, 0, 0);
8780 #endif
8781 #ifdef TARGET_NR_pipe2
8782 case TARGET_NR_pipe2:
8783 return do_pipe(cpu_env, arg1,
8784 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
8785 #endif
8786 case TARGET_NR_times:
8787 {
8788 struct target_tms *tmsp;
8789 struct tms tms;
8790 ret = get_errno(times(&tms));
8791 if (arg1) {
8792 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
8793 if (!tmsp)
8794 return -TARGET_EFAULT;
8795 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
8796 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
8797 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
8798 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
8799 }
8800 if (!is_error(ret))
8801 ret = host_to_target_clock_t(ret);
8802 }
8803 return ret;
8804 case TARGET_NR_acct:
8805 if (arg1 == 0) {
8806 ret = get_errno(acct(NULL));
8807 } else {
8808 if (!(p = lock_user_string(arg1))) {
8809 return -TARGET_EFAULT;
8810 }
8811 ret = get_errno(acct(path(p)));
8812 unlock_user(p, arg1, 0);
8813 }
8814 return ret;
8815 #ifdef TARGET_NR_umount2
8816 case TARGET_NR_umount2:
8817 if (!(p = lock_user_string(arg1)))
8818 return -TARGET_EFAULT;
8819 ret = get_errno(umount2(p, arg2));
8820 unlock_user(p, arg1, 0);
8821 return ret;
8822 #endif
8823 case TARGET_NR_ioctl:
8824 return do_ioctl(arg1, arg2, arg3);
8825 #ifdef TARGET_NR_fcntl
8826 case TARGET_NR_fcntl:
8827 return do_fcntl(arg1, arg2, arg3);
8828 #endif
8829 case TARGET_NR_setpgid:
8830 return get_errno(setpgid(arg1, arg2));
8831 case TARGET_NR_umask:
8832 return get_errno(umask(arg1));
8833 case TARGET_NR_chroot:
8834 if (!(p = lock_user_string(arg1)))
8835 return -TARGET_EFAULT;
8836 ret = get_errno(chroot(p));
8837 unlock_user(p, arg1, 0);
8838 return ret;
8839 #ifdef TARGET_NR_dup2
8840 case TARGET_NR_dup2:
8841 ret = get_errno(dup2(arg1, arg2));
8842 if (ret >= 0) {
8843 fd_trans_dup(arg1, arg2);
8844 }
8845 return ret;
8846 #endif
8847 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8848 case TARGET_NR_dup3:
8849 {
8850 int host_flags;
8851
8852 if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
8853 return -EINVAL;
8854 }
8855 host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
8856 ret = get_errno(dup3(arg1, arg2, host_flags));
8857 if (ret >= 0) {
8858 fd_trans_dup(arg1, arg2);
8859 }
8860 return ret;
8861 }
8862 #endif
8863 #ifdef TARGET_NR_getppid /* not on alpha */
8864 case TARGET_NR_getppid:
8865 return get_errno(getppid());
8866 #endif
8867 #ifdef TARGET_NR_getpgrp
8868 case TARGET_NR_getpgrp:
8869 return get_errno(getpgrp());
8870 #endif
8871 case TARGET_NR_setsid:
8872 return get_errno(setsid());
8873 #ifdef TARGET_NR_sigaction
8874 case TARGET_NR_sigaction:
8875 {
8876 #if defined(TARGET_MIPS)
8877 struct target_sigaction act, oact, *pact, *old_act;
8878
8879 if (arg2) {
8880 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8881 return -TARGET_EFAULT;
8882 act._sa_handler = old_act->_sa_handler;
8883 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
8884 act.sa_flags = old_act->sa_flags;
8885 unlock_user_struct(old_act, arg2, 0);
8886 pact = &act;
8887 } else {
8888 pact = NULL;
8889 }
8890
8891 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
8892
8893 if (!is_error(ret) && arg3) {
8894 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8895 return -TARGET_EFAULT;
8896 old_act->_sa_handler = oact._sa_handler;
8897 old_act->sa_flags = oact.sa_flags;
8898 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
8899 old_act->sa_mask.sig[1] = 0;
8900 old_act->sa_mask.sig[2] = 0;
8901 old_act->sa_mask.sig[3] = 0;
8902 unlock_user_struct(old_act, arg3, 1);
8903 }
8904 #else
8905 struct target_old_sigaction *old_act;
8906 struct target_sigaction act, oact, *pact;
8907 if (arg2) {
8908 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8909 return -TARGET_EFAULT;
8910 act._sa_handler = old_act->_sa_handler;
8911 target_siginitset(&act.sa_mask, old_act->sa_mask);
8912 act.sa_flags = old_act->sa_flags;
8913 #ifdef TARGET_ARCH_HAS_SA_RESTORER
8914 act.sa_restorer = old_act->sa_restorer;
8915 #endif
8916 unlock_user_struct(old_act, arg2, 0);
8917 pact = &act;
8918 } else {
8919 pact = NULL;
8920 }
8921 ret = get_errno(do_sigaction(arg1, pact, &oact, 0));
8922 if (!is_error(ret) && arg3) {
8923 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8924 return -TARGET_EFAULT;
8925 old_act->_sa_handler = oact._sa_handler;
8926 old_act->sa_mask = oact.sa_mask.sig[0];
8927 old_act->sa_flags = oact.sa_flags;
8928 #ifdef TARGET_ARCH_HAS_SA_RESTORER
8929 old_act->sa_restorer = oact.sa_restorer;
8930 #endif
8931 unlock_user_struct(old_act, arg3, 1);
8932 }
8933 #endif
8934 }
8935 return ret;
8936 #endif
8937 case TARGET_NR_rt_sigaction:
8938 {
8939 /*
8940 * For Alpha and SPARC this is a 5 argument syscall, with
8941 * a 'restorer' parameter which must be copied into the
8942 * sa_restorer field of the sigaction struct.
8943 * For Alpha that 'restorer' is arg5; for SPARC it is arg4,
8944 * and arg5 is the sigsetsize.
8945 */
8946 #if defined(TARGET_ALPHA)
8947 target_ulong sigsetsize = arg4;
8948 target_ulong restorer = arg5;
8949 #elif defined(TARGET_SPARC)
8950 target_ulong restorer = arg4;
8951 target_ulong sigsetsize = arg5;
8952 #else
8953 target_ulong sigsetsize = arg4;
8954 target_ulong restorer = 0;
8955 #endif
8956 struct target_sigaction *act = NULL;
8957 struct target_sigaction *oact = NULL;
8958
8959 if (sigsetsize != sizeof(target_sigset_t)) {
8960 return -TARGET_EINVAL;
8961 }
8962 if (arg2 && !lock_user_struct(VERIFY_READ, act, arg2, 1)) {
8963 return -TARGET_EFAULT;
8964 }
8965 if (arg3 && !lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
8966 ret = -TARGET_EFAULT;
8967 } else {
8968 ret = get_errno(do_sigaction(arg1, act, oact, restorer));
8969 if (oact) {
8970 unlock_user_struct(oact, arg3, 1);
8971 }
8972 }
8973 if (act) {
8974 unlock_user_struct(act, arg2, 0);
8975 }
8976 }
8977 return ret;
8978 #ifdef TARGET_NR_sgetmask /* not on alpha */
8979 case TARGET_NR_sgetmask:
8980 {
8981 sigset_t cur_set;
8982 abi_ulong target_set;
8983 ret = do_sigprocmask(0, NULL, &cur_set);
8984 if (!ret) {
8985 host_to_target_old_sigset(&target_set, &cur_set);
8986 ret = target_set;
8987 }
8988 }
8989 return ret;
8990 #endif
8991 #ifdef TARGET_NR_ssetmask /* not on alpha */
8992 case TARGET_NR_ssetmask:
8993 {
8994 sigset_t set, oset;
8995 abi_ulong target_set = arg1;
8996 target_to_host_old_sigset(&set, &target_set);
8997 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
8998 if (!ret) {
8999 host_to_target_old_sigset(&target_set, &oset);
9000 ret = target_set;
9001 }
9002 }
9003 return ret;
9004 #endif
9005 #ifdef TARGET_NR_sigprocmask
9006 case TARGET_NR_sigprocmask:
9007 {
9008 #if defined(TARGET_ALPHA)
9009 sigset_t set, oldset;
9010 abi_ulong mask;
9011 int how;
9012
9013 switch (arg1) {
9014 case TARGET_SIG_BLOCK:
9015 how = SIG_BLOCK;
9016 break;
9017 case TARGET_SIG_UNBLOCK:
9018 how = SIG_UNBLOCK;
9019 break;
9020 case TARGET_SIG_SETMASK:
9021 how = SIG_SETMASK;
9022 break;
9023 default:
9024 return -TARGET_EINVAL;
9025 }
9026 mask = arg2;
9027 target_to_host_old_sigset(&set, &mask);
9028
9029 ret = do_sigprocmask(how, &set, &oldset);
9030 if (!is_error(ret)) {
9031 host_to_target_old_sigset(&mask, &oldset);
9032 ret = mask;
9033 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
9034 }
9035 #else
9036 sigset_t set, oldset, *set_ptr;
9037 int how;
9038
9039 if (arg2) {
9040 switch (arg1) {
9041 case TARGET_SIG_BLOCK:
9042 how = SIG_BLOCK;
9043 break;
9044 case TARGET_SIG_UNBLOCK:
9045 how = SIG_UNBLOCK;
9046 break;
9047 case TARGET_SIG_SETMASK:
9048 how = SIG_SETMASK;
9049 break;
9050 default:
9051 return -TARGET_EINVAL;
9052 }
9053 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9054 return -TARGET_EFAULT;
9055 target_to_host_old_sigset(&set, p);
9056 unlock_user(p, arg2, 0);
9057 set_ptr = &set;
9058 } else {
9059 how = 0;
9060 set_ptr = NULL;
9061 }
9062 ret = do_sigprocmask(how, set_ptr, &oldset);
9063 if (!is_error(ret) && arg3) {
9064 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9065 return -TARGET_EFAULT;
9066 host_to_target_old_sigset(p, &oldset);
9067 unlock_user(p, arg3, sizeof(target_sigset_t));
9068 }
9069 #endif
9070 }
9071 return ret;
9072 #endif
9073 case TARGET_NR_rt_sigprocmask:
9074 {
9075 int how = arg1;
9076 sigset_t set, oldset, *set_ptr;
9077
9078 if (arg4 != sizeof(target_sigset_t)) {
9079 return -TARGET_EINVAL;
9080 }
9081
9082 if (arg2) {
9083 switch(how) {
9084 case TARGET_SIG_BLOCK:
9085 how = SIG_BLOCK;
9086 break;
9087 case TARGET_SIG_UNBLOCK:
9088 how = SIG_UNBLOCK;
9089 break;
9090 case TARGET_SIG_SETMASK:
9091 how = SIG_SETMASK;
9092 break;
9093 default:
9094 return -TARGET_EINVAL;
9095 }
9096 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
9097 return -TARGET_EFAULT;
9098 target_to_host_sigset(&set, p);
9099 unlock_user(p, arg2, 0);
9100 set_ptr = &set;
9101 } else {
9102 how = 0;
9103 set_ptr = NULL;
9104 }
9105 ret = do_sigprocmask(how, set_ptr, &oldset);
9106 if (!is_error(ret) && arg3) {
9107 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
9108 return -TARGET_EFAULT;
9109 host_to_target_sigset(p, &oldset);
9110 unlock_user(p, arg3, sizeof(target_sigset_t));
9111 }
9112 }
9113 return ret;
9114 #ifdef TARGET_NR_sigpending
9115 case TARGET_NR_sigpending:
9116 {
9117 sigset_t set;
9118 ret = get_errno(sigpending(&set));
9119 if (!is_error(ret)) {
9120 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9121 return -TARGET_EFAULT;
9122 host_to_target_old_sigset(p, &set);
9123 unlock_user(p, arg1, sizeof(target_sigset_t));
9124 }
9125 }
9126 return ret;
9127 #endif
9128 case TARGET_NR_rt_sigpending:
9129 {
9130 sigset_t set;
9131
9132 /* Yes, this check is >, not != like most. We follow the kernel's
9133 * logic and it does it like this because it implements
9134 * NR_sigpending through the same code path, and in that case
9135 * the old_sigset_t is smaller in size.
9136 */
9137 if (arg2 > sizeof(target_sigset_t)) {
9138 return -TARGET_EINVAL;
9139 }
9140
9141 ret = get_errno(sigpending(&set));
9142 if (!is_error(ret)) {
9143 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
9144 return -TARGET_EFAULT;
9145 host_to_target_sigset(p, &set);
9146 unlock_user(p, arg1, sizeof(target_sigset_t));
9147 }
9148 }
9149 return ret;
9150 #ifdef TARGET_NR_sigsuspend
9151 case TARGET_NR_sigsuspend:
9152 {
9153 TaskState *ts = cpu->opaque;
9154 #if defined(TARGET_ALPHA)
9155 abi_ulong mask = arg1;
9156 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
9157 #else
9158 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9159 return -TARGET_EFAULT;
9160 target_to_host_old_sigset(&ts->sigsuspend_mask, p);
9161 unlock_user(p, arg1, 0);
9162 #endif
9163 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9164 SIGSET_T_SIZE));
9165 if (ret != -TARGET_ERESTARTSYS) {
9166 ts->in_sigsuspend = 1;
9167 }
9168 }
9169 return ret;
9170 #endif
9171 case TARGET_NR_rt_sigsuspend:
9172 {
9173 TaskState *ts = cpu->opaque;
9174
9175 if (arg2 != sizeof(target_sigset_t)) {
9176 return -TARGET_EINVAL;
9177 }
9178 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9179 return -TARGET_EFAULT;
9180 target_to_host_sigset(&ts->sigsuspend_mask, p);
9181 unlock_user(p, arg1, 0);
9182 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
9183 SIGSET_T_SIZE));
9184 if (ret != -TARGET_ERESTARTSYS) {
9185 ts->in_sigsuspend = 1;
9186 }
9187 }
9188 return ret;
9189 #ifdef TARGET_NR_rt_sigtimedwait
9190 case TARGET_NR_rt_sigtimedwait:
9191 {
9192 sigset_t set;
9193 struct timespec uts, *puts;
9194 siginfo_t uinfo;
9195
9196 if (arg4 != sizeof(target_sigset_t)) {
9197 return -TARGET_EINVAL;
9198 }
9199
9200 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
9201 return -TARGET_EFAULT;
9202 target_to_host_sigset(&set, p);
9203 unlock_user(p, arg1, 0);
9204 if (arg3) {
9205 puts = &uts;
9206 if (target_to_host_timespec(puts, arg3)) {
9207 return -TARGET_EFAULT;
9208 }
9209 } else {
9210 puts = NULL;
9211 }
9212 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9213 SIGSET_T_SIZE));
9214 if (!is_error(ret)) {
9215 if (arg2) {
9216 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
9217 0);
9218 if (!p) {
9219 return -TARGET_EFAULT;
9220 }
9221 host_to_target_siginfo(p, &uinfo);
9222 unlock_user(p, arg2, sizeof(target_siginfo_t));
9223 }
9224 ret = host_to_target_signal(ret);
9225 }
9226 }
9227 return ret;
9228 #endif
9229 #ifdef TARGET_NR_rt_sigtimedwait_time64
9230 case TARGET_NR_rt_sigtimedwait_time64:
9231 {
9232 sigset_t set;
9233 struct timespec uts, *puts;
9234 siginfo_t uinfo;
9235
9236 if (arg4 != sizeof(target_sigset_t)) {
9237 return -TARGET_EINVAL;
9238 }
9239
9240 p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1);
9241 if (!p) {
9242 return -TARGET_EFAULT;
9243 }
9244 target_to_host_sigset(&set, p);
9245 unlock_user(p, arg1, 0);
9246 if (arg3) {
9247 puts = &uts;
9248 if (target_to_host_timespec64(puts, arg3)) {
9249 return -TARGET_EFAULT;
9250 }
9251 } else {
9252 puts = NULL;
9253 }
9254 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
9255 SIGSET_T_SIZE));
9256 if (!is_error(ret)) {
9257 if (arg2) {
9258 p = lock_user(VERIFY_WRITE, arg2,
9259 sizeof(target_siginfo_t), 0);
9260 if (!p) {
9261 return -TARGET_EFAULT;
9262 }
9263 host_to_target_siginfo(p, &uinfo);
9264 unlock_user(p, arg2, sizeof(target_siginfo_t));
9265 }
9266 ret = host_to_target_signal(ret);
9267 }
9268 }
9269 return ret;
9270 #endif
9271 case TARGET_NR_rt_sigqueueinfo:
9272 {
9273 siginfo_t uinfo;
9274
9275 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
9276 if (!p) {
9277 return -TARGET_EFAULT;
9278 }
9279 target_to_host_siginfo(&uinfo, p);
9280 unlock_user(p, arg3, 0);
9281 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
9282 }
9283 return ret;
9284 case TARGET_NR_rt_tgsigqueueinfo:
9285 {
9286 siginfo_t uinfo;
9287
9288 p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
9289 if (!p) {
9290 return -TARGET_EFAULT;
9291 }
9292 target_to_host_siginfo(&uinfo, p);
9293 unlock_user(p, arg4, 0);
9294 ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
9295 }
9296 return ret;
9297 #ifdef TARGET_NR_sigreturn
9298 case TARGET_NR_sigreturn:
9299 if (block_signals()) {
9300 return -TARGET_ERESTARTSYS;
9301 }
9302 return do_sigreturn(cpu_env);
9303 #endif
9304 case TARGET_NR_rt_sigreturn:
9305 if (block_signals()) {
9306 return -TARGET_ERESTARTSYS;
9307 }
9308 return do_rt_sigreturn(cpu_env);
9309 case TARGET_NR_sethostname:
9310 if (!(p = lock_user_string(arg1)))
9311 return -TARGET_EFAULT;
9312 ret = get_errno(sethostname(p, arg2));
9313 unlock_user(p, arg1, 0);
9314 return ret;
9315 #ifdef TARGET_NR_setrlimit
9316 case TARGET_NR_setrlimit:
9317 {
9318 int resource = target_to_host_resource(arg1);
9319 struct target_rlimit *target_rlim;
9320 struct rlimit rlim;
9321 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
9322 return -TARGET_EFAULT;
9323 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
9324 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
9325 unlock_user_struct(target_rlim, arg2, 0);
9326 /*
9327 * If we just passed through resource limit settings for memory then
9328 * they would also apply to QEMU's own allocations, and QEMU will
9329 * crash or hang or die if its allocations fail. Ideally we would
9330 * track the guest allocations in QEMU and apply the limits ourselves.
9331 * For now, just tell the guest the call succeeded but don't actually
9332 * limit anything.
9333 */
9334 if (resource != RLIMIT_AS &&
9335 resource != RLIMIT_DATA &&
9336 resource != RLIMIT_STACK) {
9337 return get_errno(setrlimit(resource, &rlim));
9338 } else {
9339 return 0;
9340 }
9341 }
9342 #endif
9343 #ifdef TARGET_NR_getrlimit
9344 case TARGET_NR_getrlimit:
9345 {
9346 int resource = target_to_host_resource(arg1);
9347 struct target_rlimit *target_rlim;
9348 struct rlimit rlim;
9349
9350 ret = get_errno(getrlimit(resource, &rlim));
9351 if (!is_error(ret)) {
9352 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9353 return -TARGET_EFAULT;
9354 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9355 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9356 unlock_user_struct(target_rlim, arg2, 1);
9357 }
9358 }
9359 return ret;
9360 #endif
9361 case TARGET_NR_getrusage:
9362 {
9363 struct rusage rusage;
9364 ret = get_errno(getrusage(arg1, &rusage));
9365 if (!is_error(ret)) {
9366 ret = host_to_target_rusage(arg2, &rusage);
9367 }
9368 }
9369 return ret;
9370 #if defined(TARGET_NR_gettimeofday)
9371 case TARGET_NR_gettimeofday:
9372 {
9373 struct timeval tv;
9374 struct timezone tz;
9375
9376 ret = get_errno(gettimeofday(&tv, &tz));
9377 if (!is_error(ret)) {
9378 if (arg1 && copy_to_user_timeval(arg1, &tv)) {
9379 return -TARGET_EFAULT;
9380 }
9381 if (arg2 && copy_to_user_timezone(arg2, &tz)) {
9382 return -TARGET_EFAULT;
9383 }
9384 }
9385 }
9386 return ret;
9387 #endif
9388 #if defined(TARGET_NR_settimeofday)
9389 case TARGET_NR_settimeofday:
9390 {
9391 struct timeval tv, *ptv = NULL;
9392 struct timezone tz, *ptz = NULL;
9393
9394 if (arg1) {
9395 if (copy_from_user_timeval(&tv, arg1)) {
9396 return -TARGET_EFAULT;
9397 }
9398 ptv = &tv;
9399 }
9400
9401 if (arg2) {
9402 if (copy_from_user_timezone(&tz, arg2)) {
9403 return -TARGET_EFAULT;
9404 }
9405 ptz = &tz;
9406 }
9407
9408 return get_errno(settimeofday(ptv, ptz));
9409 }
9410 #endif
9411 #if defined(TARGET_NR_select)
9412 case TARGET_NR_select:
9413 #if defined(TARGET_WANT_NI_OLD_SELECT)
9414 /* some architectures used to have old_select here
9415 * but now ENOSYS it.
9416 */
9417 ret = -TARGET_ENOSYS;
9418 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
9419 ret = do_old_select(arg1);
9420 #else
9421 ret = do_select(arg1, arg2, arg3, arg4, arg5);
9422 #endif
9423 return ret;
9424 #endif
9425 #ifdef TARGET_NR_pselect6
9426 case TARGET_NR_pselect6:
9427 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, false);
9428 #endif
9429 #ifdef TARGET_NR_pselect6_time64
9430 case TARGET_NR_pselect6_time64:
9431 return do_pselect6(arg1, arg2, arg3, arg4, arg5, arg6, true);
9432 #endif
9433 #ifdef TARGET_NR_symlink
9434 case TARGET_NR_symlink:
9435 {
9436 void *p2;
9437 p = lock_user_string(arg1);
9438 p2 = lock_user_string(arg2);
9439 if (!p || !p2)
9440 ret = -TARGET_EFAULT;
9441 else
9442 ret = get_errno(symlink(p, p2));
9443 unlock_user(p2, arg2, 0);
9444 unlock_user(p, arg1, 0);
9445 }
9446 return ret;
9447 #endif
9448 #if defined(TARGET_NR_symlinkat)
9449 case TARGET_NR_symlinkat:
9450 {
9451 void *p2;
9452 p = lock_user_string(arg1);
9453 p2 = lock_user_string(arg3);
9454 if (!p || !p2)
9455 ret = -TARGET_EFAULT;
9456 else
9457 ret = get_errno(symlinkat(p, arg2, p2));
9458 unlock_user(p2, arg3, 0);
9459 unlock_user(p, arg1, 0);
9460 }
9461 return ret;
9462 #endif
9463 #ifdef TARGET_NR_readlink
9464 case TARGET_NR_readlink:
9465 {
9466 void *p2;
9467 p = lock_user_string(arg1);
9468 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9469 if (!p || !p2) {
9470 ret = -TARGET_EFAULT;
9471 } else if (!arg3) {
9472 /* Short circuit this for the magic exe check. */
9473 ret = -TARGET_EINVAL;
9474 } else if (is_proc_myself((const char *)p, "exe")) {
9475 char real[PATH_MAX], *temp;
9476 temp = realpath(exec_path, real);
9477 /* Return value is # of bytes that we wrote to the buffer. */
9478 if (temp == NULL) {
9479 ret = get_errno(-1);
9480 } else {
9481 /* Don't worry about sign mismatch as earlier mapping
9482 * logic would have thrown a bad address error. */
9483 ret = MIN(strlen(real), arg3);
9484 /* We cannot NUL terminate the string. */
9485 memcpy(p2, real, ret);
9486 }
9487 } else {
9488 ret = get_errno(readlink(path(p), p2, arg3));
9489 }
9490 unlock_user(p2, arg2, ret);
9491 unlock_user(p, arg1, 0);
9492 }
9493 return ret;
9494 #endif
9495 #if defined(TARGET_NR_readlinkat)
9496 case TARGET_NR_readlinkat:
9497 {
9498 void *p2;
9499 p = lock_user_string(arg2);
9500 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
9501 if (!p || !p2) {
9502 ret = -TARGET_EFAULT;
9503 } else if (is_proc_myself((const char *)p, "exe")) {
9504 char real[PATH_MAX], *temp;
9505 temp = realpath(exec_path, real);
9506 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
9507 snprintf((char *)p2, arg4, "%s", real);
9508 } else {
9509 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
9510 }
9511 unlock_user(p2, arg3, ret);
9512 unlock_user(p, arg2, 0);
9513 }
9514 return ret;
9515 #endif
9516 #ifdef TARGET_NR_swapon
9517 case TARGET_NR_swapon:
9518 if (!(p = lock_user_string(arg1)))
9519 return -TARGET_EFAULT;
9520 ret = get_errno(swapon(p, arg2));
9521 unlock_user(p, arg1, 0);
9522 return ret;
9523 #endif
9524 case TARGET_NR_reboot:
9525 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
9526 /* arg4 must be ignored in all other cases */
9527 p = lock_user_string(arg4);
9528 if (!p) {
9529 return -TARGET_EFAULT;
9530 }
9531 ret = get_errno(reboot(arg1, arg2, arg3, p));
9532 unlock_user(p, arg4, 0);
9533 } else {
9534 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
9535 }
9536 return ret;
9537 #ifdef TARGET_NR_mmap
9538 case TARGET_NR_mmap:
9539 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
9540 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
9541 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
9542 || defined(TARGET_S390X)
9543 {
9544 abi_ulong *v;
9545 abi_ulong v1, v2, v3, v4, v5, v6;
9546 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
9547 return -TARGET_EFAULT;
9548 v1 = tswapal(v[0]);
9549 v2 = tswapal(v[1]);
9550 v3 = tswapal(v[2]);
9551 v4 = tswapal(v[3]);
9552 v5 = tswapal(v[4]);
9553 v6 = tswapal(v[5]);
9554 unlock_user(v, arg1, 0);
9555 ret = get_errno(target_mmap(v1, v2, v3,
9556 target_to_host_bitmask(v4, mmap_flags_tbl),
9557 v5, v6));
9558 }
9559 #else
9560 /* mmap pointers are always untagged */
9561 ret = get_errno(target_mmap(arg1, arg2, arg3,
9562 target_to_host_bitmask(arg4, mmap_flags_tbl),
9563 arg5,
9564 arg6));
9565 #endif
9566 return ret;
9567 #endif
9568 #ifdef TARGET_NR_mmap2
9569 case TARGET_NR_mmap2:
9570 #ifndef MMAP_SHIFT
9571 #define MMAP_SHIFT 12
9572 #endif
9573 ret = target_mmap(arg1, arg2, arg3,
9574 target_to_host_bitmask(arg4, mmap_flags_tbl),
9575 arg5, arg6 << MMAP_SHIFT);
9576 return get_errno(ret);
9577 #endif
9578 case TARGET_NR_munmap:
9579 arg1 = cpu_untagged_addr(cpu, arg1);
9580 return get_errno(target_munmap(arg1, arg2));
9581 case TARGET_NR_mprotect:
9582 arg1 = cpu_untagged_addr(cpu, arg1);
9583 {
9584 TaskState *ts = cpu->opaque;
9585 /* Special hack to detect libc making the stack executable. */
9586 if ((arg3 & PROT_GROWSDOWN)
9587 && arg1 >= ts->info->stack_limit
9588 && arg1 <= ts->info->start_stack) {
9589 arg3 &= ~PROT_GROWSDOWN;
9590 arg2 = arg2 + arg1 - ts->info->stack_limit;
9591 arg1 = ts->info->stack_limit;
9592 }
9593 }
9594 return get_errno(target_mprotect(arg1, arg2, arg3));
9595 #ifdef TARGET_NR_mremap
9596 case TARGET_NR_mremap:
9597 arg1 = cpu_untagged_addr(cpu, arg1);
9598 /* mremap new_addr (arg5) is always untagged */
9599 return get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
9600 #endif
9601 /* ??? msync/mlock/munlock are broken for softmmu. */
9602 #ifdef TARGET_NR_msync
9603 case TARGET_NR_msync:
9604 return get_errno(msync(g2h(cpu, arg1), arg2, arg3));
9605 #endif
9606 #ifdef TARGET_NR_mlock
9607 case TARGET_NR_mlock:
9608 return get_errno(mlock(g2h(cpu, arg1), arg2));
9609 #endif
9610 #ifdef TARGET_NR_munlock
9611 case TARGET_NR_munlock:
9612 return get_errno(munlock(g2h(cpu, arg1), arg2));
9613 #endif
9614 #ifdef TARGET_NR_mlockall
9615 case TARGET_NR_mlockall:
9616 return get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
9617 #endif
9618 #ifdef TARGET_NR_munlockall
9619 case TARGET_NR_munlockall:
9620 return get_errno(munlockall());
9621 #endif
9622 #ifdef TARGET_NR_truncate
9623 case TARGET_NR_truncate:
9624 if (!(p = lock_user_string(arg1)))
9625 return -TARGET_EFAULT;
9626 ret = get_errno(truncate(p, arg2));
9627 unlock_user(p, arg1, 0);
9628 return ret;
9629 #endif
9630 #ifdef TARGET_NR_ftruncate
9631 case TARGET_NR_ftruncate:
9632 return get_errno(ftruncate(arg1, arg2));
9633 #endif
9634 case TARGET_NR_fchmod:
9635 return get_errno(fchmod(arg1, arg2));
9636 #if defined(TARGET_NR_fchmodat)
9637 case TARGET_NR_fchmodat:
9638 if (!(p = lock_user_string(arg2)))
9639 return -TARGET_EFAULT;
9640 ret = get_errno(fchmodat(arg1, p, arg3, 0));
9641 unlock_user(p, arg2, 0);
9642 return ret;
9643 #endif
9644 case TARGET_NR_getpriority:
9645 /* Note that negative values are valid for getpriority, so we must
9646 differentiate based on errno settings. */
9647 errno = 0;
9648 ret = getpriority(arg1, arg2);
9649 if (ret == -1 && errno != 0) {
9650 return -host_to_target_errno(errno);
9651 }
9652 #ifdef TARGET_ALPHA
9653 /* Return value is the unbiased priority. Signal no error. */
9654 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
9655 #else
9656 /* Return value is a biased priority to avoid negative numbers. */
9657 ret = 20 - ret;
9658 #endif
9659 return ret;
9660 case TARGET_NR_setpriority:
9661 return get_errno(setpriority(arg1, arg2, arg3));
9662 #ifdef TARGET_NR_statfs
9663 case TARGET_NR_statfs:
9664 if (!(p = lock_user_string(arg1))) {
9665 return -TARGET_EFAULT;
9666 }
9667 ret = get_errno(statfs(path(p), &stfs));
9668 unlock_user(p, arg1, 0);
9669 convert_statfs:
9670 if (!is_error(ret)) {
9671 struct target_statfs *target_stfs;
9672
9673 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
9674 return -TARGET_EFAULT;
9675 __put_user(stfs.f_type, &target_stfs->f_type);
9676 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9677 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9678 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9679 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9680 __put_user(stfs.f_files, &target_stfs->f_files);
9681 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9682 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9683 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9684 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9685 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9686 #ifdef _STATFS_F_FLAGS
9687 __put_user(stfs.f_flags, &target_stfs->f_flags);
9688 #else
9689 __put_user(0, &target_stfs->f_flags);
9690 #endif
9691 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9692 unlock_user_struct(target_stfs, arg2, 1);
9693 }
9694 return ret;
9695 #endif
9696 #ifdef TARGET_NR_fstatfs
9697 case TARGET_NR_fstatfs:
9698 ret = get_errno(fstatfs(arg1, &stfs));
9699 goto convert_statfs;
9700 #endif
9701 #ifdef TARGET_NR_statfs64
9702 case TARGET_NR_statfs64:
9703 if (!(p = lock_user_string(arg1))) {
9704 return -TARGET_EFAULT;
9705 }
9706 ret = get_errno(statfs(path(p), &stfs));
9707 unlock_user(p, arg1, 0);
9708 convert_statfs64:
9709 if (!is_error(ret)) {
9710 struct target_statfs64 *target_stfs;
9711
9712 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
9713 return -TARGET_EFAULT;
9714 __put_user(stfs.f_type, &target_stfs->f_type);
9715 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9716 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9717 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9718 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9719 __put_user(stfs.f_files, &target_stfs->f_files);
9720 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9721 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9722 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9723 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9724 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9725 #ifdef _STATFS_F_FLAGS
9726 __put_user(stfs.f_flags, &target_stfs->f_flags);
9727 #else
9728 __put_user(0, &target_stfs->f_flags);
9729 #endif
9730 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9731 unlock_user_struct(target_stfs, arg3, 1);
9732 }
9733 return ret;
9734 case TARGET_NR_fstatfs64:
9735 ret = get_errno(fstatfs(arg1, &stfs));
9736 goto convert_statfs64;
9737 #endif
9738 #ifdef TARGET_NR_socketcall
9739 case TARGET_NR_socketcall:
9740 return do_socketcall(arg1, arg2);
9741 #endif
9742 #ifdef TARGET_NR_accept
9743 case TARGET_NR_accept:
9744 return do_accept4(arg1, arg2, arg3, 0);
9745 #endif
9746 #ifdef TARGET_NR_accept4
9747 case TARGET_NR_accept4:
9748 return do_accept4(arg1, arg2, arg3, arg4);
9749 #endif
9750 #ifdef TARGET_NR_bind
9751 case TARGET_NR_bind:
9752 return do_bind(arg1, arg2, arg3);
9753 #endif
9754 #ifdef TARGET_NR_connect
9755 case TARGET_NR_connect:
9756 return do_connect(arg1, arg2, arg3);
9757 #endif
9758 #ifdef TARGET_NR_getpeername
9759 case TARGET_NR_getpeername:
9760 return do_getpeername(arg1, arg2, arg3);
9761 #endif
9762 #ifdef TARGET_NR_getsockname
9763 case TARGET_NR_getsockname:
9764 return do_getsockname(arg1, arg2, arg3);
9765 #endif
9766 #ifdef TARGET_NR_getsockopt
9767 case TARGET_NR_getsockopt:
9768 return do_getsockopt(arg1, arg2, arg3, arg4, arg5);
9769 #endif
9770 #ifdef TARGET_NR_listen
9771 case TARGET_NR_listen:
9772 return get_errno(listen(arg1, arg2));
9773 #endif
9774 #ifdef TARGET_NR_recv
9775 case TARGET_NR_recv:
9776 return do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
9777 #endif
9778 #ifdef TARGET_NR_recvfrom
9779 case TARGET_NR_recvfrom:
9780 return do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
9781 #endif
9782 #ifdef TARGET_NR_recvmsg
9783 case TARGET_NR_recvmsg:
9784 return do_sendrecvmsg(arg1, arg2, arg3, 0);
9785 #endif
9786 #ifdef TARGET_NR_send
9787 case TARGET_NR_send:
9788 return do_sendto(arg1, arg2, arg3, arg4, 0, 0);
9789 #endif
9790 #ifdef TARGET_NR_sendmsg
9791 case TARGET_NR_sendmsg:
9792 return do_sendrecvmsg(arg1, arg2, arg3, 1);
9793 #endif
9794 #ifdef TARGET_NR_sendmmsg
9795 case TARGET_NR_sendmmsg:
9796 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
9797 #endif
9798 #ifdef TARGET_NR_recvmmsg
9799 case TARGET_NR_recvmmsg:
9800 return do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
9801 #endif
9802 #ifdef TARGET_NR_sendto
9803 case TARGET_NR_sendto:
9804 return do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
9805 #endif
9806 #ifdef TARGET_NR_shutdown
9807 case TARGET_NR_shutdown:
9808 return get_errno(shutdown(arg1, arg2));
9809 #endif
9810 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9811 case TARGET_NR_getrandom:
9812 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9813 if (!p) {
9814 return -TARGET_EFAULT;
9815 }
9816 ret = get_errno(getrandom(p, arg2, arg3));
9817 unlock_user(p, arg1, ret);
9818 return ret;
9819 #endif
9820 #ifdef TARGET_NR_socket
9821 case TARGET_NR_socket:
9822 return do_socket(arg1, arg2, arg3);
9823 #endif
9824 #ifdef TARGET_NR_socketpair
9825 case TARGET_NR_socketpair:
9826 return do_socketpair(arg1, arg2, arg3, arg4);
9827 #endif
9828 #ifdef TARGET_NR_setsockopt
9829 case TARGET_NR_setsockopt:
9830 return do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
9831 #endif
9832 #if defined(TARGET_NR_syslog)
9833 case TARGET_NR_syslog:
9834 {
9835 int len = arg2;
9836
9837 switch (arg1) {
9838 case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */
9839 case TARGET_SYSLOG_ACTION_OPEN: /* Open log */
9840 case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
9841 case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */
9842 case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */
9843 case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
9844 case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */
9845 case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */
9846 return get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
9847 case TARGET_SYSLOG_ACTION_READ: /* Read from log */
9848 case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */
9849 case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */
9850 {
9851 if (len < 0) {
9852 return -TARGET_EINVAL;
9853 }
9854 if (len == 0) {
9855 return 0;
9856 }
9857 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
9858 if (!p) {
9859 return -TARGET_EFAULT;
9860 }
9861 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
9862 unlock_user(p, arg2, arg3);
9863 }
9864 return ret;
9865 default:
9866 return -TARGET_EINVAL;
9867 }
9868 }
9869 break;
9870 #endif
9871 case TARGET_NR_setitimer:
9872 {
9873 struct itimerval value, ovalue, *pvalue;
9874
9875 if (arg2) {
9876 pvalue = &value;
9877 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
9878 || copy_from_user_timeval(&pvalue->it_value,
9879 arg2 + sizeof(struct target_timeval)))
9880 return -TARGET_EFAULT;
9881 } else {
9882 pvalue = NULL;
9883 }
9884 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
9885 if (!is_error(ret) && arg3) {
9886 if (copy_to_user_timeval(arg3,
9887 &ovalue.it_interval)
9888 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
9889 &ovalue.it_value))
9890 return -TARGET_EFAULT;
9891 }
9892 }
9893 return ret;
9894 case TARGET_NR_getitimer:
9895 {
9896 struct itimerval value;
9897
9898 ret = get_errno(getitimer(arg1, &value));
9899 if (!is_error(ret) && arg2) {
9900 if (copy_to_user_timeval(arg2,
9901 &value.it_interval)
9902 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
9903 &value.it_value))
9904 return -TARGET_EFAULT;
9905 }
9906 }
9907 return ret;
9908 #ifdef TARGET_NR_stat
9909 case TARGET_NR_stat:
9910 if (!(p = lock_user_string(arg1))) {
9911 return -TARGET_EFAULT;
9912 }
9913 ret = get_errno(stat(path(p), &st));
9914 unlock_user(p, arg1, 0);
9915 goto do_stat;
9916 #endif
9917 #ifdef TARGET_NR_lstat
9918 case TARGET_NR_lstat:
9919 if (!(p = lock_user_string(arg1))) {
9920 return -TARGET_EFAULT;
9921 }
9922 ret = get_errno(lstat(path(p), &st));
9923 unlock_user(p, arg1, 0);
9924 goto do_stat;
9925 #endif
9926 #ifdef TARGET_NR_fstat
9927 case TARGET_NR_fstat:
9928 {
9929 ret = get_errno(fstat(arg1, &st));
9930 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9931 do_stat:
9932 #endif
9933 if (!is_error(ret)) {
9934 struct target_stat *target_st;
9935
9936 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
9937 return -TARGET_EFAULT;
9938 memset(target_st, 0, sizeof(*target_st));
9939 __put_user(st.st_dev, &target_st->st_dev);
9940 __put_user(st.st_ino, &target_st->st_ino);
9941 __put_user(st.st_mode, &target_st->st_mode);
9942 __put_user(st.st_uid, &target_st->st_uid);
9943 __put_user(st.st_gid, &target_st->st_gid);
9944 __put_user(st.st_nlink, &target_st->st_nlink);
9945 __put_user(st.st_rdev, &target_st->st_rdev);
9946 __put_user(st.st_size, &target_st->st_size);
9947 __put_user(st.st_blksize, &target_st->st_blksize);
9948 __put_user(st.st_blocks, &target_st->st_blocks);
9949 __put_user(st.st_atime, &target_st->target_st_atime);
9950 __put_user(st.st_mtime, &target_st->target_st_mtime);
9951 __put_user(st.st_ctime, &target_st->target_st_ctime);
9952 #if defined(HAVE_STRUCT_STAT_ST_ATIM) && defined(TARGET_STAT_HAVE_NSEC)
9953 __put_user(st.st_atim.tv_nsec,
9954 &target_st->target_st_atime_nsec);
9955 __put_user(st.st_mtim.tv_nsec,
9956 &target_st->target_st_mtime_nsec);
9957 __put_user(st.st_ctim.tv_nsec,
9958 &target_st->target_st_ctime_nsec);
9959 #endif
9960 unlock_user_struct(target_st, arg2, 1);
9961 }
9962 }
9963 return ret;
9964 #endif
9965 case TARGET_NR_vhangup:
9966 return get_errno(vhangup());
9967 #ifdef TARGET_NR_syscall
9968 case TARGET_NR_syscall:
9969 return do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
9970 arg6, arg7, arg8, 0);
9971 #endif
9972 #if defined(TARGET_NR_wait4)
9973 case TARGET_NR_wait4:
9974 {
9975 int status;
9976 abi_long status_ptr = arg2;
9977 struct rusage rusage, *rusage_ptr;
9978 abi_ulong target_rusage = arg4;
9979 abi_long rusage_err;
9980 if (target_rusage)
9981 rusage_ptr = &rusage;
9982 else
9983 rusage_ptr = NULL;
9984 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
9985 if (!is_error(ret)) {
9986 if (status_ptr && ret) {
9987 status = host_to_target_waitstatus(status);
9988 if (put_user_s32(status, status_ptr))
9989 return -TARGET_EFAULT;
9990 }
9991 if (target_rusage) {
9992 rusage_err = host_to_target_rusage(target_rusage, &rusage);
9993 if (rusage_err) {
9994 ret = rusage_err;
9995 }
9996 }
9997 }
9998 }
9999 return ret;
10000 #endif
10001 #ifdef TARGET_NR_swapoff
10002 case TARGET_NR_swapoff:
10003 if (!(p = lock_user_string(arg1)))
10004 return -TARGET_EFAULT;
10005 ret = get_errno(swapoff(p));
10006 unlock_user(p, arg1, 0);
10007 return ret;
10008 #endif
10009 case TARGET_NR_sysinfo:
10010 {
10011 struct target_sysinfo *target_value;
10012 struct sysinfo value;
10013 ret = get_errno(sysinfo(&value));
10014 if (!is_error(ret) && arg1)
10015 {
10016 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
10017 return -TARGET_EFAULT;
10018 __put_user(value.uptime, &target_value->uptime);
10019 __put_user(value.loads[0], &target_value->loads[0]);
10020 __put_user(value.loads[1], &target_value->loads[1]);
10021 __put_user(value.loads[2], &target_value->loads[2]);
10022 __put_user(value.totalram, &target_value->totalram);
10023 __put_user(value.freeram, &target_value->freeram);
10024 __put_user(value.sharedram, &target_value->sharedram);
10025 __put_user(value.bufferram, &target_value->bufferram);
10026 __put_user(value.totalswap, &target_value->totalswap);
10027 __put_user(value.freeswap, &target_value->freeswap);
10028 __put_user(value.procs, &target_value->procs);
10029 __put_user(value.totalhigh, &target_value->totalhigh);
10030 __put_user(value.freehigh, &target_value->freehigh);
10031 __put_user(value.mem_unit, &target_value->mem_unit);
10032 unlock_user_struct(target_value, arg1, 1);
10033 }
10034 }
10035 return ret;
10036 #ifdef TARGET_NR_ipc
10037 case TARGET_NR_ipc:
10038 return do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
10039 #endif
10040 #ifdef TARGET_NR_semget
10041 case TARGET_NR_semget:
10042 return get_errno(semget(arg1, arg2, arg3));
10043 #endif
10044 #ifdef TARGET_NR_semop
10045 case TARGET_NR_semop:
10046 return do_semtimedop(arg1, arg2, arg3, 0, false);
10047 #endif
10048 #ifdef TARGET_NR_semtimedop
10049 case TARGET_NR_semtimedop:
10050 return do_semtimedop(arg1, arg2, arg3, arg4, false);
10051 #endif
10052 #ifdef TARGET_NR_semtimedop_time64
10053 case TARGET_NR_semtimedop_time64:
10054 return do_semtimedop(arg1, arg2, arg3, arg4, true);
10055 #endif
10056 #ifdef TARGET_NR_semctl
10057 case TARGET_NR_semctl:
10058 return do_semctl(arg1, arg2, arg3, arg4);
10059 #endif
10060 #ifdef TARGET_NR_msgctl
10061 case TARGET_NR_msgctl:
10062 return do_msgctl(arg1, arg2, arg3);
10063 #endif
10064 #ifdef TARGET_NR_msgget
10065 case TARGET_NR_msgget:
10066 return get_errno(msgget(arg1, arg2));
10067 #endif
10068 #ifdef TARGET_NR_msgrcv
10069 case TARGET_NR_msgrcv:
10070 return do_msgrcv(arg1, arg2, arg3, arg4, arg5);
10071 #endif
10072 #ifdef TARGET_NR_msgsnd
10073 case TARGET_NR_msgsnd:
10074 return do_msgsnd(arg1, arg2, arg3, arg4);
10075 #endif
10076 #ifdef TARGET_NR_shmget
10077 case TARGET_NR_shmget:
10078 return get_errno(shmget(arg1, arg2, arg3));
10079 #endif
10080 #ifdef TARGET_NR_shmctl
10081 case TARGET_NR_shmctl:
10082 return do_shmctl(arg1, arg2, arg3);
10083 #endif
10084 #ifdef TARGET_NR_shmat
10085 case TARGET_NR_shmat:
10086 return do_shmat(cpu_env, arg1, arg2, arg3);
10087 #endif
10088 #ifdef TARGET_NR_shmdt
10089 case TARGET_NR_shmdt:
10090 return do_shmdt(arg1);
10091 #endif
10092 case TARGET_NR_fsync:
10093 return get_errno(fsync(arg1));
10094 case TARGET_NR_clone:
10095 /* Linux manages to have three different orderings for its
10096 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
10097 * match the kernel's CONFIG_CLONE_* settings.
10098 * Microblaze is further special in that it uses a sixth
10099 * implicit argument to clone for the TLS pointer.
10100 */
10101 #if defined(TARGET_MICROBLAZE)
10102 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
10103 #elif defined(TARGET_CLONE_BACKWARDS)
10104 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
10105 #elif defined(TARGET_CLONE_BACKWARDS2)
10106 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
10107 #else
10108 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
10109 #endif
10110 return ret;
10111 #ifdef __NR_exit_group
10112 /* new thread calls */
10113 case TARGET_NR_exit_group:
10114 preexit_cleanup(cpu_env, arg1);
10115 return get_errno(exit_group(arg1));
10116 #endif
10117 case TARGET_NR_setdomainname:
10118 if (!(p = lock_user_string(arg1)))
10119 return -TARGET_EFAULT;
10120 ret = get_errno(setdomainname(p, arg2));
10121 unlock_user(p, arg1, 0);
10122 return ret;
10123 case TARGET_NR_uname:
10124 /* no need to transcode because we use the linux syscall */
10125 {
10126 struct new_utsname * buf;
10127
10128 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
10129 return -TARGET_EFAULT;
10130 ret = get_errno(sys_uname(buf));
10131 if (!is_error(ret)) {
10132 /* Overwrite the native machine name with whatever is being
10133 emulated. */
10134 g_strlcpy(buf->machine, cpu_to_uname_machine(cpu_env),
10135 sizeof(buf->machine));
10136 /* Allow the user to override the reported release. */
10137 if (qemu_uname_release && *qemu_uname_release) {
10138 g_strlcpy(buf->release, qemu_uname_release,
10139 sizeof(buf->release));
10140 }
10141 }
10142 unlock_user_struct(buf, arg1, 1);
10143 }
10144 return ret;
10145 #ifdef TARGET_I386
10146 case TARGET_NR_modify_ldt:
10147 return do_modify_ldt(cpu_env, arg1, arg2, arg3);
10148 #if !defined(TARGET_X86_64)
10149 case TARGET_NR_vm86:
10150 return do_vm86(cpu_env, arg1, arg2);
10151 #endif
10152 #endif
10153 #if defined(TARGET_NR_adjtimex)
10154 case TARGET_NR_adjtimex:
10155 {
10156 struct timex host_buf;
10157
10158 if (target_to_host_timex(&host_buf, arg1) != 0) {
10159 return -TARGET_EFAULT;
10160 }
10161 ret = get_errno(adjtimex(&host_buf));
10162 if (!is_error(ret)) {
10163 if (host_to_target_timex(arg1, &host_buf) != 0) {
10164 return -TARGET_EFAULT;
10165 }
10166 }
10167 }
10168 return ret;
10169 #endif
10170 #if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
10171 case TARGET_NR_clock_adjtime:
10172 {
10173 struct timex htx, *phtx = &htx;
10174
10175 if (target_to_host_timex(phtx, arg2) != 0) {
10176 return -TARGET_EFAULT;
10177 }
10178 ret = get_errno(clock_adjtime(arg1, phtx));
10179 if (!is_error(ret) && phtx) {
10180 if (host_to_target_timex(arg2, phtx) != 0) {
10181 return -TARGET_EFAULT;
10182 }
10183 }
10184 }
10185 return ret;
10186 #endif
10187 #if defined(TARGET_NR_clock_adjtime64) && defined(CONFIG_CLOCK_ADJTIME)
10188 case TARGET_NR_clock_adjtime64:
10189 {
10190 struct timex htx;
10191
10192 if (target_to_host_timex64(&htx, arg2) != 0) {
10193 return -TARGET_EFAULT;
10194 }
10195 ret = get_errno(clock_adjtime(arg1, &htx));
10196 if (!is_error(ret) && host_to_target_timex64(arg2, &htx)) {
10197 return -TARGET_EFAULT;
10198 }
10199 }
10200 return ret;
10201 #endif
10202 case TARGET_NR_getpgid:
10203 return get_errno(getpgid(arg1));
10204 case TARGET_NR_fchdir:
10205 return get_errno(fchdir(arg1));
10206 case TARGET_NR_personality:
10207 return get_errno(personality(arg1));
10208 #ifdef TARGET_NR__llseek /* Not on alpha */
10209 case TARGET_NR__llseek:
10210 {
10211 int64_t res;
10212 #if !defined(__NR_llseek)
10213 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
10214 if (res == -1) {
10215 ret = get_errno(res);
10216 } else {
10217 ret = 0;
10218 }
10219 #else
10220 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
10221 #endif
10222 if ((ret == 0) && put_user_s64(res, arg4)) {
10223 return -TARGET_EFAULT;
10224 }
10225 }
10226 return ret;
10227 #endif
10228 #ifdef TARGET_NR_getdents
10229 case TARGET_NR_getdents:
10230 #ifdef EMULATE_GETDENTS_WITH_GETDENTS
10231 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
10232 {
10233 struct target_dirent *target_dirp;
10234 struct linux_dirent *dirp;
10235 abi_long count = arg3;
10236
10237 dirp = g_try_malloc(count);
10238 if (!dirp) {
10239 return -TARGET_ENOMEM;
10240 }
10241
10242 ret = get_errno(sys_getdents(arg1, dirp, count));
10243 if (!is_error(ret)) {
10244 struct linux_dirent *de;
10245 struct target_dirent *tde;
10246 int len = ret;
10247 int reclen, treclen;
10248 int count1, tnamelen;
10249
10250 count1 = 0;
10251 de = dirp;
10252 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10253 return -TARGET_EFAULT;
10254 tde = target_dirp;
10255 while (len > 0) {
10256 reclen = de->d_reclen;
10257 tnamelen = reclen - offsetof(struct linux_dirent, d_name);
10258 assert(tnamelen >= 0);
10259 treclen = tnamelen + offsetof(struct target_dirent, d_name);
10260 assert(count1 + treclen <= count);
10261 tde->d_reclen = tswap16(treclen);
10262 tde->d_ino = tswapal(de->d_ino);
10263 tde->d_off = tswapal(de->d_off);
10264 memcpy(tde->d_name, de->d_name, tnamelen);
10265 de = (struct linux_dirent *)((char *)de + reclen);
10266 len -= reclen;
10267 tde = (struct target_dirent *)((char *)tde + treclen);
10268 count1 += treclen;
10269 }
10270 ret = count1;
10271 unlock_user(target_dirp, arg2, ret);
10272 }
10273 g_free(dirp);
10274 }
10275 #else
10276 {
10277 struct linux_dirent *dirp;
10278 abi_long count = arg3;
10279
10280 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10281 return -TARGET_EFAULT;
10282 ret = get_errno(sys_getdents(arg1, dirp, count));
10283 if (!is_error(ret)) {
10284 struct linux_dirent *de;
10285 int len = ret;
10286 int reclen;
10287 de = dirp;
10288 while (len > 0) {
10289 reclen = de->d_reclen;
10290 if (reclen > len)
10291 break;
10292 de->d_reclen = tswap16(reclen);
10293 tswapls(&de->d_ino);
10294 tswapls(&de->d_off);
10295 de = (struct linux_dirent *)((char *)de + reclen);
10296 len -= reclen;
10297 }
10298 }
10299 unlock_user(dirp, arg2, ret);
10300 }
10301 #endif
10302 #else
10303 /* Implement getdents in terms of getdents64 */
10304 {
10305 struct linux_dirent64 *dirp;
10306 abi_long count = arg3;
10307
10308 dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
10309 if (!dirp) {
10310 return -TARGET_EFAULT;
10311 }
10312 ret = get_errno(sys_getdents64(arg1, dirp, count));
10313 if (!is_error(ret)) {
10314 /* Convert the dirent64 structs to target dirent. We do this
10315 * in-place, since we can guarantee that a target_dirent is no
10316 * larger than a dirent64; however this means we have to be
10317 * careful to read everything before writing in the new format.
10318 */
10319 struct linux_dirent64 *de;
10320 struct target_dirent *tde;
10321 int len = ret;
10322 int tlen = 0;
10323
10324 de = dirp;
10325 tde = (struct target_dirent *)dirp;
10326 while (len > 0) {
10327 int namelen, treclen;
10328 int reclen = de->d_reclen;
10329 uint64_t ino = de->d_ino;
10330 int64_t off = de->d_off;
10331 uint8_t type = de->d_type;
10332
10333 namelen = strlen(de->d_name);
10334 treclen = offsetof(struct target_dirent, d_name)
10335 + namelen + 2;
10336 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
10337
10338 memmove(tde->d_name, de->d_name, namelen + 1);
10339 tde->d_ino = tswapal(ino);
10340 tde->d_off = tswapal(off);
10341 tde->d_reclen = tswap16(treclen);
10342 /* The target_dirent type is in what was formerly a padding
10343 * byte at the end of the structure:
10344 */
10345 *(((char *)tde) + treclen - 1) = type;
10346
10347 de = (struct linux_dirent64 *)((char *)de + reclen);
10348 tde = (struct target_dirent *)((char *)tde + treclen);
10349 len -= reclen;
10350 tlen += treclen;
10351 }
10352 ret = tlen;
10353 }
10354 unlock_user(dirp, arg2, ret);
10355 }
10356 #endif
10357 return ret;
10358 #endif /* TARGET_NR_getdents */
10359 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
10360 case TARGET_NR_getdents64:
10361 {
10362 struct linux_dirent64 *dirp;
10363 abi_long count = arg3;
10364 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
10365 return -TARGET_EFAULT;
10366 ret = get_errno(sys_getdents64(arg1, dirp, count));
10367 if (!is_error(ret)) {
10368 struct linux_dirent64 *de;
10369 int len = ret;
10370 int reclen;
10371 de = dirp;
10372 while (len > 0) {
10373 reclen = de->d_reclen;
10374 if (reclen > len)
10375 break;
10376 de->d_reclen = tswap16(reclen);
10377 tswap64s((uint64_t *)&de->d_ino);
10378 tswap64s((uint64_t *)&de->d_off);
10379 de = (struct linux_dirent64 *)((char *)de + reclen);
10380 len -= reclen;
10381 }
10382 }
10383 unlock_user(dirp, arg2, ret);
10384 }
10385 return ret;
10386 #endif /* TARGET_NR_getdents64 */
10387 #if defined(TARGET_NR__newselect)
10388 case TARGET_NR__newselect:
10389 return do_select(arg1, arg2, arg3, arg4, arg5);
10390 #endif
10391 #ifdef TARGET_NR_poll
10392 case TARGET_NR_poll:
10393 return do_ppoll(arg1, arg2, arg3, arg4, arg5, false, false);
10394 #endif
10395 #ifdef TARGET_NR_ppoll
10396 case TARGET_NR_ppoll:
10397 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, false);
10398 #endif
10399 #ifdef TARGET_NR_ppoll_time64
10400 case TARGET_NR_ppoll_time64:
10401 return do_ppoll(arg1, arg2, arg3, arg4, arg5, true, true);
10402 #endif
10403 case TARGET_NR_flock:
10404 /* NOTE: the flock constant seems to be the same for every
10405 Linux platform */
10406 return get_errno(safe_flock(arg1, arg2));
10407 case TARGET_NR_readv:
10408 {
10409 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10410 if (vec != NULL) {
10411 ret = get_errno(safe_readv(arg1, vec, arg3));
10412 unlock_iovec(vec, arg2, arg3, 1);
10413 } else {
10414 ret = -host_to_target_errno(errno);
10415 }
10416 }
10417 return ret;
10418 case TARGET_NR_writev:
10419 {
10420 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10421 if (vec != NULL) {
10422 ret = get_errno(safe_writev(arg1, vec, arg3));
10423 unlock_iovec(vec, arg2, arg3, 0);
10424 } else {
10425 ret = -host_to_target_errno(errno);
10426 }
10427 }
10428 return ret;
10429 #if defined(TARGET_NR_preadv)
10430 case TARGET_NR_preadv:
10431 {
10432 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
10433 if (vec != NULL) {
10434 unsigned long low, high;
10435
10436 target_to_host_low_high(arg4, arg5, &low, &high);
10437 ret = get_errno(safe_preadv(arg1, vec, arg3, low, high));
10438 unlock_iovec(vec, arg2, arg3, 1);
10439 } else {
10440 ret = -host_to_target_errno(errno);
10441 }
10442 }
10443 return ret;
10444 #endif
10445 #if defined(TARGET_NR_pwritev)
10446 case TARGET_NR_pwritev:
10447 {
10448 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10449 if (vec != NULL) {
10450 unsigned long low, high;
10451
10452 target_to_host_low_high(arg4, arg5, &low, &high);
10453 ret = get_errno(safe_pwritev(arg1, vec, arg3, low, high));
10454 unlock_iovec(vec, arg2, arg3, 0);
10455 } else {
10456 ret = -host_to_target_errno(errno);
10457 }
10458 }
10459 return ret;
10460 #endif
10461 case TARGET_NR_getsid:
10462 return get_errno(getsid(arg1));
10463 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
10464 case TARGET_NR_fdatasync:
10465 return get_errno(fdatasync(arg1));
10466 #endif
10467 case TARGET_NR_sched_getaffinity:
10468 {
10469 unsigned int mask_size;
10470 unsigned long *mask;
10471
10472 /*
10473 * sched_getaffinity needs multiples of ulong, so need to take
10474 * care of mismatches between target ulong and host ulong sizes.
10475 */
10476 if (arg2 & (sizeof(abi_ulong) - 1)) {
10477 return -TARGET_EINVAL;
10478 }
10479 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10480
10481 mask = alloca(mask_size);
10482 memset(mask, 0, mask_size);
10483 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
10484
10485 if (!is_error(ret)) {
10486 if (ret > arg2) {
10487 /* More data returned than the caller's buffer will fit.
10488 * This only happens if sizeof(abi_long) < sizeof(long)
10489 * and the caller passed us a buffer holding an odd number
10490 * of abi_longs. If the host kernel is actually using the
10491 * extra 4 bytes then fail EINVAL; otherwise we can just
10492 * ignore them and only copy the interesting part.
10493 */
10494 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
10495 if (numcpus > arg2 * 8) {
10496 return -TARGET_EINVAL;
10497 }
10498 ret = arg2;
10499 }
10500
10501 if (host_to_target_cpu_mask(mask, mask_size, arg3, ret)) {
10502 return -TARGET_EFAULT;
10503 }
10504 }
10505 }
10506 return ret;
10507 case TARGET_NR_sched_setaffinity:
10508 {
10509 unsigned int mask_size;
10510 unsigned long *mask;
10511
10512 /*
10513 * sched_setaffinity needs multiples of ulong, so need to take
10514 * care of mismatches between target ulong and host ulong sizes.
10515 */
10516 if (arg2 & (sizeof(abi_ulong) - 1)) {
10517 return -TARGET_EINVAL;
10518 }
10519 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
10520 mask = alloca(mask_size);
10521
10522 ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
10523 if (ret) {
10524 return ret;
10525 }
10526
10527 return get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
10528 }
10529 case TARGET_NR_getcpu:
10530 {
10531 unsigned cpu, node;
10532 ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
10533 arg2 ? &node : NULL,
10534 NULL));
10535 if (is_error(ret)) {
10536 return ret;
10537 }
10538 if (arg1 && put_user_u32(cpu, arg1)) {
10539 return -TARGET_EFAULT;
10540 }
10541 if (arg2 && put_user_u32(node, arg2)) {
10542 return -TARGET_EFAULT;
10543 }
10544 }
10545 return ret;
10546 case TARGET_NR_sched_setparam:
10547 {
10548 struct sched_param *target_schp;
10549 struct sched_param schp;
10550
10551 if (arg2 == 0) {
10552 return -TARGET_EINVAL;
10553 }
10554 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
10555 return -TARGET_EFAULT;
10556 schp.sched_priority = tswap32(target_schp->sched_priority);
10557 unlock_user_struct(target_schp, arg2, 0);
10558 return get_errno(sched_setparam(arg1, &schp));
10559 }
10560 case TARGET_NR_sched_getparam:
10561 {
10562 struct sched_param *target_schp;
10563 struct sched_param schp;
10564
10565 if (arg2 == 0) {
10566 return -TARGET_EINVAL;
10567 }
10568 ret = get_errno(sched_getparam(arg1, &schp));
10569 if (!is_error(ret)) {
10570 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
10571 return -TARGET_EFAULT;
10572 target_schp->sched_priority = tswap32(schp.sched_priority);
10573 unlock_user_struct(target_schp, arg2, 1);
10574 }
10575 }
10576 return ret;
10577 case TARGET_NR_sched_setscheduler:
10578 {
10579 struct sched_param *target_schp;
10580 struct sched_param schp;
10581 if (arg3 == 0) {
10582 return -TARGET_EINVAL;
10583 }
10584 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
10585 return -TARGET_EFAULT;
10586 schp.sched_priority = tswap32(target_schp->sched_priority);
10587 unlock_user_struct(target_schp, arg3, 0);
10588 return get_errno(sched_setscheduler(arg1, arg2, &schp));
10589 }
10590 case TARGET_NR_sched_getscheduler:
10591 return get_errno(sched_getscheduler(arg1));
10592 case TARGET_NR_sched_yield:
10593 return get_errno(sched_yield());
10594 case TARGET_NR_sched_get_priority_max:
10595 return get_errno(sched_get_priority_max(arg1));
10596 case TARGET_NR_sched_get_priority_min:
10597 return get_errno(sched_get_priority_min(arg1));
10598 #ifdef TARGET_NR_sched_rr_get_interval
10599 case TARGET_NR_sched_rr_get_interval:
10600 {
10601 struct timespec ts;
10602 ret = get_errno(sched_rr_get_interval(arg1, &ts));
10603 if (!is_error(ret)) {
10604 ret = host_to_target_timespec(arg2, &ts);
10605 }
10606 }
10607 return ret;
10608 #endif
10609 #ifdef TARGET_NR_sched_rr_get_interval_time64
10610 case TARGET_NR_sched_rr_get_interval_time64:
10611 {
10612 struct timespec ts;
10613 ret = get_errno(sched_rr_get_interval(arg1, &ts));
10614 if (!is_error(ret)) {
10615 ret = host_to_target_timespec64(arg2, &ts);
10616 }
10617 }
10618 return ret;
10619 #endif
10620 #if defined(TARGET_NR_nanosleep)
10621 case TARGET_NR_nanosleep:
10622 {
10623 struct timespec req, rem;
10624 target_to_host_timespec(&req, arg1);
10625 ret = get_errno(safe_nanosleep(&req, &rem));
10626 if (is_error(ret) && arg2) {
10627 host_to_target_timespec(arg2, &rem);
10628 }
10629 }
10630 return ret;
10631 #endif
10632 case TARGET_NR_prctl:
10633 switch (arg1) {
10634 case PR_GET_PDEATHSIG:
10635 {
10636 int deathsig;
10637 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
10638 if (!is_error(ret) && arg2
10639 && put_user_s32(deathsig, arg2)) {
10640 return -TARGET_EFAULT;
10641 }
10642 return ret;
10643 }
10644 #ifdef PR_GET_NAME
10645 case PR_GET_NAME:
10646 {
10647 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
10648 if (!name) {
10649 return -TARGET_EFAULT;
10650 }
10651 ret = get_errno(prctl(arg1, (unsigned long)name,
10652 arg3, arg4, arg5));
10653 unlock_user(name, arg2, 16);
10654 return ret;
10655 }
10656 case PR_SET_NAME:
10657 {
10658 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
10659 if (!name) {
10660 return -TARGET_EFAULT;
10661 }
10662 ret = get_errno(prctl(arg1, (unsigned long)name,
10663 arg3, arg4, arg5));
10664 unlock_user(name, arg2, 0);
10665 return ret;
10666 }
10667 #endif
10668 #ifdef TARGET_MIPS
10669 case TARGET_PR_GET_FP_MODE:
10670 {
10671 CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10672 ret = 0;
10673 if (env->CP0_Status & (1 << CP0St_FR)) {
10674 ret |= TARGET_PR_FP_MODE_FR;
10675 }
10676 if (env->CP0_Config5 & (1 << CP0C5_FRE)) {
10677 ret |= TARGET_PR_FP_MODE_FRE;
10678 }
10679 return ret;
10680 }
10681 case TARGET_PR_SET_FP_MODE:
10682 {
10683 CPUMIPSState *env = ((CPUMIPSState *)cpu_env);
10684 bool old_fr = env->CP0_Status & (1 << CP0St_FR);
10685 bool old_fre = env->CP0_Config5 & (1 << CP0C5_FRE);
10686 bool new_fr = arg2 & TARGET_PR_FP_MODE_FR;
10687 bool new_fre = arg2 & TARGET_PR_FP_MODE_FRE;
10688
10689 const unsigned int known_bits = TARGET_PR_FP_MODE_FR |
10690 TARGET_PR_FP_MODE_FRE;
10691
10692 /* If nothing to change, return right away, successfully. */
10693 if (old_fr == new_fr && old_fre == new_fre) {
10694 return 0;
10695 }
10696 /* Check the value is valid */
10697 if (arg2 & ~known_bits) {
10698 return -TARGET_EOPNOTSUPP;
10699 }
10700 /* Setting FRE without FR is not supported. */
10701 if (new_fre && !new_fr) {
10702 return -TARGET_EOPNOTSUPP;
10703 }
10704 if (new_fr && !(env->active_fpu.fcr0 & (1 << FCR0_F64))) {
10705 /* FR1 is not supported */
10706 return -TARGET_EOPNOTSUPP;
10707 }
10708 if (!new_fr && (env->active_fpu.fcr0 & (1 << FCR0_F64))
10709 && !(env->CP0_Status_rw_bitmask & (1 << CP0St_FR))) {
10710 /* cannot set FR=0 */
10711 return -TARGET_EOPNOTSUPP;
10712 }
10713 if (new_fre && !(env->active_fpu.fcr0 & (1 << FCR0_FREP))) {
10714 /* Cannot set FRE=1 */
10715 return -TARGET_EOPNOTSUPP;
10716 }
10717
10718 int i;
10719 fpr_t *fpr = env->active_fpu.fpr;
10720 for (i = 0; i < 32 ; i += 2) {
10721 if (!old_fr && new_fr) {
10722 fpr[i].w[!FP_ENDIAN_IDX] = fpr[i + 1].w[FP_ENDIAN_IDX];
10723 } else if (old_fr && !new_fr) {
10724 fpr[i + 1].w[FP_ENDIAN_IDX] = fpr[i].w[!FP_ENDIAN_IDX];
10725 }
10726 }
10727
10728 if (new_fr) {
10729 env->CP0_Status |= (1 << CP0St_FR);
10730 env->hflags |= MIPS_HFLAG_F64;
10731 } else {
10732 env->CP0_Status &= ~(1 << CP0St_FR);
10733 env->hflags &= ~MIPS_HFLAG_F64;
10734 }
10735 if (new_fre) {
10736 env->CP0_Config5 |= (1 << CP0C5_FRE);
10737 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
10738 env->hflags |= MIPS_HFLAG_FRE;
10739 }
10740 } else {
10741 env->CP0_Config5 &= ~(1 << CP0C5_FRE);
10742 env->hflags &= ~MIPS_HFLAG_FRE;
10743 }
10744
10745 return 0;
10746 }
10747 #endif /* MIPS */
10748 #ifdef TARGET_AARCH64
10749 case TARGET_PR_SVE_SET_VL:
10750 /*
10751 * We cannot support either PR_SVE_SET_VL_ONEXEC or
10752 * PR_SVE_VL_INHERIT. Note the kernel definition
10753 * of sve_vl_valid allows for VQ=512, i.e. VL=8192,
10754 * even though the current architectural maximum is VQ=16.
10755 */
10756 ret = -TARGET_EINVAL;
10757 if (cpu_isar_feature(aa64_sve, env_archcpu(cpu_env))
10758 && arg2 >= 0 && arg2 <= 512 * 16 && !(arg2 & 15)) {
10759 CPUARMState *env = cpu_env;
10760 ARMCPU *cpu = env_archcpu(env);
10761 uint32_t vq, old_vq;
10762
10763 old_vq = (env->vfp.zcr_el[1] & 0xf) + 1;
10764 vq = MAX(arg2 / 16, 1);
10765 vq = MIN(vq, cpu->sve_max_vq);
10766
10767 if (vq < old_vq) {
10768 aarch64_sve_narrow_vq(env, vq);
10769 }
10770 env->vfp.zcr_el[1] = vq - 1;
10771 arm_rebuild_hflags(env);
10772 ret = vq * 16;
10773 }
10774 return ret;
10775 case TARGET_PR_SVE_GET_VL:
10776 ret = -TARGET_EINVAL;
10777 {
10778 ARMCPU *cpu = env_archcpu(cpu_env);
10779 if (cpu_isar_feature(aa64_sve, cpu)) {
10780 ret = ((cpu->env.vfp.zcr_el[1] & 0xf) + 1) * 16;
10781 }
10782 }
10783 return ret;
10784 case TARGET_PR_PAC_RESET_KEYS:
10785 {
10786 CPUARMState *env = cpu_env;
10787 ARMCPU *cpu = env_archcpu(env);
10788
10789 if (arg3 || arg4 || arg5) {
10790 return -TARGET_EINVAL;
10791 }
10792 if (cpu_isar_feature(aa64_pauth, cpu)) {
10793 int all = (TARGET_PR_PAC_APIAKEY | TARGET_PR_PAC_APIBKEY |
10794 TARGET_PR_PAC_APDAKEY | TARGET_PR_PAC_APDBKEY |
10795 TARGET_PR_PAC_APGAKEY);
10796 int ret = 0;
10797 Error *err = NULL;
10798
10799 if (arg2 == 0) {
10800 arg2 = all;
10801 } else if (arg2 & ~all) {
10802 return -TARGET_EINVAL;
10803 }
10804 if (arg2 & TARGET_PR_PAC_APIAKEY) {
10805 ret |= qemu_guest_getrandom(&env->keys.apia,
10806 sizeof(ARMPACKey), &err);
10807 }
10808 if (arg2 & TARGET_PR_PAC_APIBKEY) {
10809 ret |= qemu_guest_getrandom(&env->keys.apib,
10810 sizeof(ARMPACKey), &err);
10811 }
10812 if (arg2 & TARGET_PR_PAC_APDAKEY) {
10813 ret |= qemu_guest_getrandom(&env->keys.apda,
10814 sizeof(ARMPACKey), &err);
10815 }
10816 if (arg2 & TARGET_PR_PAC_APDBKEY) {
10817 ret |= qemu_guest_getrandom(&env->keys.apdb,
10818 sizeof(ARMPACKey), &err);
10819 }
10820 if (arg2 & TARGET_PR_PAC_APGAKEY) {
10821 ret |= qemu_guest_getrandom(&env->keys.apga,
10822 sizeof(ARMPACKey), &err);
10823 }
10824 if (ret != 0) {
10825 /*
10826 * Some unknown failure in the crypto. The best
10827 * we can do is log it and fail the syscall.
10828 * The real syscall cannot fail this way.
10829 */
10830 qemu_log_mask(LOG_UNIMP,
10831 "PR_PAC_RESET_KEYS: Crypto failure: %s",
10832 error_get_pretty(err));
10833 error_free(err);
10834 return -TARGET_EIO;
10835 }
10836 return 0;
10837 }
10838 }
10839 return -TARGET_EINVAL;
10840 case TARGET_PR_SET_TAGGED_ADDR_CTRL:
10841 {
10842 abi_ulong valid_mask = TARGET_PR_TAGGED_ADDR_ENABLE;
10843 CPUARMState *env = cpu_env;
10844 ARMCPU *cpu = env_archcpu(env);
10845
10846 if (cpu_isar_feature(aa64_mte, cpu)) {
10847 valid_mask |= TARGET_PR_MTE_TCF_MASK;
10848 valid_mask |= TARGET_PR_MTE_TAG_MASK;
10849 }
10850
10851 if ((arg2 & ~valid_mask) || arg3 || arg4 || arg5) {
10852 return -TARGET_EINVAL;
10853 }
10854 env->tagged_addr_enable = arg2 & TARGET_PR_TAGGED_ADDR_ENABLE;
10855
10856 if (cpu_isar_feature(aa64_mte, cpu)) {
10857 switch (arg2 & TARGET_PR_MTE_TCF_MASK) {
10858 case TARGET_PR_MTE_TCF_NONE:
10859 case TARGET_PR_MTE_TCF_SYNC:
10860 case TARGET_PR_MTE_TCF_ASYNC:
10861 break;
10862 default:
10863 return -EINVAL;
10864 }
10865
10866 /*
10867 * Write PR_MTE_TCF to SCTLR_EL1[TCF0].
10868 * Note that the syscall values are consistent with hw.
10869 */
10870 env->cp15.sctlr_el[1] =
10871 deposit64(env->cp15.sctlr_el[1], 38, 2,
10872 arg2 >> TARGET_PR_MTE_TCF_SHIFT);
10873
10874 /*
10875 * Write PR_MTE_TAG to GCR_EL1[Exclude].
10876 * Note that the syscall uses an include mask,
10877 * and hardware uses an exclude mask -- invert.
10878 */
10879 env->cp15.gcr_el1 =
10880 deposit64(env->cp15.gcr_el1, 0, 16,
10881 ~arg2 >> TARGET_PR_MTE_TAG_SHIFT);
10882 arm_rebuild_hflags(env);
10883 }
10884 return 0;
10885 }
10886 case TARGET_PR_GET_TAGGED_ADDR_CTRL:
10887 {
10888 abi_long ret = 0;
10889 CPUARMState *env = cpu_env;
10890 ARMCPU *cpu = env_archcpu(env);
10891
10892 if (arg2 || arg3 || arg4 || arg5) {
10893 return -TARGET_EINVAL;
10894 }
10895 if (env->tagged_addr_enable) {
10896 ret |= TARGET_PR_TAGGED_ADDR_ENABLE;
10897 }
10898 if (cpu_isar_feature(aa64_mte, cpu)) {
10899 /* See above. */
10900 ret |= (extract64(env->cp15.sctlr_el[1], 38, 2)
10901 << TARGET_PR_MTE_TCF_SHIFT);
10902 ret = deposit64(ret, TARGET_PR_MTE_TAG_SHIFT, 16,
10903 ~env->cp15.gcr_el1);
10904 }
10905 return ret;
10906 }
10907 #endif /* AARCH64 */
10908 case PR_GET_SECCOMP:
10909 case PR_SET_SECCOMP:
10910 /* Disable seccomp to prevent the target disabling syscalls we
10911 * need. */
10912 return -TARGET_EINVAL;
10913 default:
10914 /* Most prctl options have no pointer arguments */
10915 return get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
10916 }
10917 break;
10918 #ifdef TARGET_NR_arch_prctl
10919 case TARGET_NR_arch_prctl:
10920 return do_arch_prctl(cpu_env, arg1, arg2);
10921 #endif
10922 #ifdef TARGET_NR_pread64
10923 case TARGET_NR_pread64:
10924 if (regpairs_aligned(cpu_env, num)) {
10925 arg4 = arg5;
10926 arg5 = arg6;
10927 }
10928 if (arg2 == 0 && arg3 == 0) {
10929 /* Special-case NULL buffer and zero length, which should succeed */
10930 p = 0;
10931 } else {
10932 p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10933 if (!p) {
10934 return -TARGET_EFAULT;
10935 }
10936 }
10937 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
10938 unlock_user(p, arg2, ret);
10939 return ret;
10940 case TARGET_NR_pwrite64:
10941 if (regpairs_aligned(cpu_env, num)) {
10942 arg4 = arg5;
10943 arg5 = arg6;
10944 }
10945 if (arg2 == 0 && arg3 == 0) {
10946 /* Special-case NULL buffer and zero length, which should succeed */
10947 p = 0;
10948 } else {
10949 p = lock_user(VERIFY_READ, arg2, arg3, 1);
10950 if (!p) {
10951 return -TARGET_EFAULT;
10952 }
10953 }
10954 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
10955 unlock_user(p, arg2, 0);
10956 return ret;
10957 #endif
10958 case TARGET_NR_getcwd:
10959 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
10960 return -TARGET_EFAULT;
10961 ret = get_errno(sys_getcwd1(p, arg2));
10962 unlock_user(p, arg1, ret);
10963 return ret;
10964 case TARGET_NR_capget:
10965 case TARGET_NR_capset:
10966 {
10967 struct target_user_cap_header *target_header;
10968 struct target_user_cap_data *target_data = NULL;
10969 struct __user_cap_header_struct header;
10970 struct __user_cap_data_struct data[2];
10971 struct __user_cap_data_struct *dataptr = NULL;
10972 int i, target_datalen;
10973 int data_items = 1;
10974
10975 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
10976 return -TARGET_EFAULT;
10977 }
10978 header.version = tswap32(target_header->version);
10979 header.pid = tswap32(target_header->pid);
10980
10981 if (header.version != _LINUX_CAPABILITY_VERSION) {
10982 /* Version 2 and up takes pointer to two user_data structs */
10983 data_items = 2;
10984 }
10985
10986 target_datalen = sizeof(*target_data) * data_items;
10987
10988 if (arg2) {
10989 if (num == TARGET_NR_capget) {
10990 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
10991 } else {
10992 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
10993 }
10994 if (!target_data) {
10995 unlock_user_struct(target_header, arg1, 0);
10996 return -TARGET_EFAULT;
10997 }
10998
10999 if (num == TARGET_NR_capset) {
11000 for (i = 0; i < data_items; i++) {
11001 data[i].effective = tswap32(target_data[i].effective);
11002 data[i].permitted = tswap32(target_data[i].permitted);
11003 data[i].inheritable = tswap32(target_data[i].inheritable);
11004 }
11005 }
11006
11007 dataptr = data;
11008 }
11009
11010 if (num == TARGET_NR_capget) {
11011 ret = get_errno(capget(&header, dataptr));
11012 } else {
11013 ret = get_errno(capset(&header, dataptr));
11014 }
11015
11016 /* The kernel always updates version for both capget and capset */
11017 target_header->version = tswap32(header.version);
11018 unlock_user_struct(target_header, arg1, 1);
11019
11020 if (arg2) {
11021 if (num == TARGET_NR_capget) {
11022 for (i = 0; i < data_items; i++) {
11023 target_data[i].effective = tswap32(data[i].effective);
11024 target_data[i].permitted = tswap32(data[i].permitted);
11025 target_data[i].inheritable = tswap32(data[i].inheritable);
11026 }
11027 unlock_user(target_data, arg2, target_datalen);
11028 } else {
11029 unlock_user(target_data, arg2, 0);
11030 }
11031 }
11032 return ret;
11033 }
11034 case TARGET_NR_sigaltstack:
11035 return do_sigaltstack(arg1, arg2, cpu_env);
11036
11037 #ifdef CONFIG_SENDFILE
11038 #ifdef TARGET_NR_sendfile
11039 case TARGET_NR_sendfile:
11040 {
11041 off_t *offp = NULL;
11042 off_t off;
11043 if (arg3) {
11044 ret = get_user_sal(off, arg3);
11045 if (is_error(ret)) {
11046 return ret;
11047 }
11048 offp = &off;
11049 }
11050 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11051 if (!is_error(ret) && arg3) {
11052 abi_long ret2 = put_user_sal(off, arg3);
11053 if (is_error(ret2)) {
11054 ret = ret2;
11055 }
11056 }
11057 return ret;
11058 }
11059 #endif
11060 #ifdef TARGET_NR_sendfile64
11061 case TARGET_NR_sendfile64:
11062 {
11063 off_t *offp = NULL;
11064 off_t off;
11065 if (arg3) {
11066 ret = get_user_s64(off, arg3);
11067 if (is_error(ret)) {
11068 return ret;
11069 }
11070 offp = &off;
11071 }
11072 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
11073 if (!is_error(ret) && arg3) {
11074 abi_long ret2 = put_user_s64(off, arg3);
11075 if (is_error(ret2)) {
11076 ret = ret2;
11077 }
11078 }
11079 return ret;
11080 }
11081 #endif
11082 #endif
11083 #ifdef TARGET_NR_vfork
11084 case TARGET_NR_vfork:
11085 return get_errno(do_fork(cpu_env,
11086 CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
11087 0, 0, 0, 0));
11088 #endif
11089 #ifdef TARGET_NR_ugetrlimit
11090 case TARGET_NR_ugetrlimit:
11091 {
11092 struct rlimit rlim;
11093 int resource = target_to_host_resource(arg1);
11094 ret = get_errno(getrlimit(resource, &rlim));
11095 if (!is_error(ret)) {
11096 struct target_rlimit *target_rlim;
11097 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
11098 return -TARGET_EFAULT;
11099 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
11100 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
11101 unlock_user_struct(target_rlim, arg2, 1);
11102 }
11103 return ret;
11104 }
11105 #endif
11106 #ifdef TARGET_NR_truncate64
11107 case TARGET_NR_truncate64:
11108 if (!(p = lock_user_string(arg1)))
11109 return -TARGET_EFAULT;
11110 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
11111 unlock_user(p, arg1, 0);
11112 return ret;
11113 #endif
11114 #ifdef TARGET_NR_ftruncate64
11115 case TARGET_NR_ftruncate64:
11116 return target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
11117 #endif
11118 #ifdef TARGET_NR_stat64
11119 case TARGET_NR_stat64:
11120 if (!(p = lock_user_string(arg1))) {
11121 return -TARGET_EFAULT;
11122 }
11123 ret = get_errno(stat(path(p), &st));
11124 unlock_user(p, arg1, 0);
11125 if (!is_error(ret))
11126 ret = host_to_target_stat64(cpu_env, arg2, &st);
11127 return ret;
11128 #endif
11129 #ifdef TARGET_NR_lstat64
11130 case TARGET_NR_lstat64:
11131 if (!(p = lock_user_string(arg1))) {
11132 return -TARGET_EFAULT;
11133 }
11134 ret = get_errno(lstat(path(p), &st));
11135 unlock_user(p, arg1, 0);
11136 if (!is_error(ret))
11137 ret = host_to_target_stat64(cpu_env, arg2, &st);
11138 return ret;
11139 #endif
11140 #ifdef TARGET_NR_fstat64
11141 case TARGET_NR_fstat64:
11142 ret = get_errno(fstat(arg1, &st));
11143 if (!is_error(ret))
11144 ret = host_to_target_stat64(cpu_env, arg2, &st);
11145 return ret;
11146 #endif
11147 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
11148 #ifdef TARGET_NR_fstatat64
11149 case TARGET_NR_fstatat64:
11150 #endif
11151 #ifdef TARGET_NR_newfstatat
11152 case TARGET_NR_newfstatat:
11153 #endif
11154 if (!(p = lock_user_string(arg2))) {
11155 return -TARGET_EFAULT;
11156 }
11157 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
11158 unlock_user(p, arg2, 0);
11159 if (!is_error(ret))
11160 ret = host_to_target_stat64(cpu_env, arg3, &st);
11161 return ret;
11162 #endif
11163 #if defined(TARGET_NR_statx)
11164 case TARGET_NR_statx:
11165 {
11166 struct target_statx *target_stx;
11167 int dirfd = arg1;
11168 int flags = arg3;
11169
11170 p = lock_user_string(arg2);
11171 if (p == NULL) {
11172 return -TARGET_EFAULT;
11173 }
11174 #if defined(__NR_statx)
11175 {
11176 /*
11177 * It is assumed that struct statx is architecture independent.
11178 */
11179 struct target_statx host_stx;
11180 int mask = arg4;
11181
11182 ret = get_errno(sys_statx(dirfd, p, flags, mask, &host_stx));
11183 if (!is_error(ret)) {
11184 if (host_to_target_statx(&host_stx, arg5) != 0) {
11185 unlock_user(p, arg2, 0);
11186 return -TARGET_EFAULT;
11187 }
11188 }
11189
11190 if (ret != -TARGET_ENOSYS) {
11191 unlock_user(p, arg2, 0);
11192 return ret;
11193 }
11194 }
11195 #endif
11196 ret = get_errno(fstatat(dirfd, path(p), &st, flags));
11197 unlock_user(p, arg2, 0);
11198
11199 if (!is_error(ret)) {
11200 if (!lock_user_struct(VERIFY_WRITE, target_stx, arg5, 0)) {
11201 return -TARGET_EFAULT;
11202 }
11203 memset(target_stx, 0, sizeof(*target_stx));
11204 __put_user(major(st.st_dev), &target_stx->stx_dev_major);
11205 __put_user(minor(st.st_dev), &target_stx->stx_dev_minor);
11206 __put_user(st.st_ino, &target_stx->stx_ino);
11207 __put_user(st.st_mode, &target_stx->stx_mode);
11208 __put_user(st.st_uid, &target_stx->stx_uid);
11209 __put_user(st.st_gid, &target_stx->stx_gid);
11210 __put_user(st.st_nlink, &target_stx->stx_nlink);
11211 __put_user(major(st.st_rdev), &target_stx->stx_rdev_major);
11212 __put_user(minor(st.st_rdev), &target_stx->stx_rdev_minor);
11213 __put_user(st.st_size, &target_stx->stx_size);
11214 __put_user(st.st_blksize, &target_stx->stx_blksize);
11215 __put_user(st.st_blocks, &target_stx->stx_blocks);
11216 __put_user(st.st_atime, &target_stx->stx_atime.tv_sec);
11217 __put_user(st.st_mtime, &target_stx->stx_mtime.tv_sec);
11218 __put_user(st.st_ctime, &target_stx->stx_ctime.tv_sec);
11219 unlock_user_struct(target_stx, arg5, 1);
11220 }
11221 }
11222 return ret;
11223 #endif
11224 #ifdef TARGET_NR_lchown
11225 case TARGET_NR_lchown:
11226 if (!(p = lock_user_string(arg1)))
11227 return -TARGET_EFAULT;
11228 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
11229 unlock_user(p, arg1, 0);
11230 return ret;
11231 #endif
11232 #ifdef TARGET_NR_getuid
11233 case TARGET_NR_getuid:
11234 return get_errno(high2lowuid(getuid()));
11235 #endif
11236 #ifdef TARGET_NR_getgid
11237 case TARGET_NR_getgid:
11238 return get_errno(high2lowgid(getgid()));
11239 #endif
11240 #ifdef TARGET_NR_geteuid
11241 case TARGET_NR_geteuid:
11242 return get_errno(high2lowuid(geteuid()));
11243 #endif
11244 #ifdef TARGET_NR_getegid
11245 case TARGET_NR_getegid:
11246 return get_errno(high2lowgid(getegid()));
11247 #endif
11248 case TARGET_NR_setreuid:
11249 return get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
11250 case TARGET_NR_setregid:
11251 return get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
11252 case TARGET_NR_getgroups:
11253 {
11254 int gidsetsize = arg1;
11255 target_id *target_grouplist;
11256 gid_t *grouplist;
11257 int i;
11258
11259 grouplist = alloca(gidsetsize * sizeof(gid_t));
11260 ret = get_errno(getgroups(gidsetsize, grouplist));
11261 if (gidsetsize == 0)
11262 return ret;
11263 if (!is_error(ret)) {
11264 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
11265 if (!target_grouplist)
11266 return -TARGET_EFAULT;
11267 for(i = 0;i < ret; i++)
11268 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
11269 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
11270 }
11271 }
11272 return ret;
11273 case TARGET_NR_setgroups:
11274 {
11275 int gidsetsize = arg1;
11276 target_id *target_grouplist;
11277 gid_t *grouplist = NULL;
11278 int i;
11279 if (gidsetsize) {
11280 grouplist = alloca(gidsetsize * sizeof(gid_t));
11281 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
11282 if (!target_grouplist) {
11283 return -TARGET_EFAULT;
11284 }
11285 for (i = 0; i < gidsetsize; i++) {
11286 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
11287 }
11288 unlock_user(target_grouplist, arg2, 0);
11289 }
11290 return get_errno(setgroups(gidsetsize, grouplist));
11291 }
11292 case TARGET_NR_fchown:
11293 return get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
11294 #if defined(TARGET_NR_fchownat)
11295 case TARGET_NR_fchownat:
11296 if (!(p = lock_user_string(arg2)))
11297 return -TARGET_EFAULT;
11298 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
11299 low2highgid(arg4), arg5));
11300 unlock_user(p, arg2, 0);
11301 return ret;
11302 #endif
11303 #ifdef TARGET_NR_setresuid
11304 case TARGET_NR_setresuid:
11305 return get_errno(sys_setresuid(low2highuid(arg1),
11306 low2highuid(arg2),
11307 low2highuid(arg3)));
11308 #endif
11309 #ifdef TARGET_NR_getresuid
11310 case TARGET_NR_getresuid:
11311 {
11312 uid_t ruid, euid, suid;
11313 ret = get_errno(getresuid(&ruid, &euid, &suid));
11314 if (!is_error(ret)) {
11315 if (put_user_id(high2lowuid(ruid), arg1)
11316 || put_user_id(high2lowuid(euid), arg2)
11317 || put_user_id(high2lowuid(suid), arg3))
11318 return -TARGET_EFAULT;
11319 }
11320 }
11321 return ret;
11322 #endif
11323 #ifdef TARGET_NR_getresgid
11324 case TARGET_NR_setresgid:
11325 return get_errno(sys_setresgid(low2highgid(arg1),
11326 low2highgid(arg2),
11327 low2highgid(arg3)));
11328 #endif
11329 #ifdef TARGET_NR_getresgid
11330 case TARGET_NR_getresgid:
11331 {
11332 gid_t rgid, egid, sgid;
11333 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11334 if (!is_error(ret)) {
11335 if (put_user_id(high2lowgid(rgid), arg1)
11336 || put_user_id(high2lowgid(egid), arg2)
11337 || put_user_id(high2lowgid(sgid), arg3))
11338 return -TARGET_EFAULT;
11339 }
11340 }
11341 return ret;
11342 #endif
11343 #ifdef TARGET_NR_chown
11344 case TARGET_NR_chown:
11345 if (!(p = lock_user_string(arg1)))
11346 return -TARGET_EFAULT;
11347 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
11348 unlock_user(p, arg1, 0);
11349 return ret;
11350 #endif
11351 case TARGET_NR_setuid:
11352 return get_errno(sys_setuid(low2highuid(arg1)));
11353 case TARGET_NR_setgid:
11354 return get_errno(sys_setgid(low2highgid(arg1)));
11355 case TARGET_NR_setfsuid:
11356 return get_errno(setfsuid(arg1));
11357 case TARGET_NR_setfsgid:
11358 return get_errno(setfsgid(arg1));
11359
11360 #ifdef TARGET_NR_lchown32
11361 case TARGET_NR_lchown32:
11362 if (!(p = lock_user_string(arg1)))
11363 return -TARGET_EFAULT;
11364 ret = get_errno(lchown(p, arg2, arg3));
11365 unlock_user(p, arg1, 0);
11366 return ret;
11367 #endif
11368 #ifdef TARGET_NR_getuid32
11369 case TARGET_NR_getuid32:
11370 return get_errno(getuid());
11371 #endif
11372
11373 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
11374 /* Alpha specific */
11375 case TARGET_NR_getxuid:
11376 {
11377 uid_t euid;
11378 euid=geteuid();
11379 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
11380 }
11381 return get_errno(getuid());
11382 #endif
11383 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
11384 /* Alpha specific */
11385 case TARGET_NR_getxgid:
11386 {
11387 uid_t egid;
11388 egid=getegid();
11389 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
11390 }
11391 return get_errno(getgid());
11392 #endif
11393 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
11394 /* Alpha specific */
11395 case TARGET_NR_osf_getsysinfo:
11396 ret = -TARGET_EOPNOTSUPP;
11397 switch (arg1) {
11398 case TARGET_GSI_IEEE_FP_CONTROL:
11399 {
11400 uint64_t fpcr = cpu_alpha_load_fpcr(cpu_env);
11401 uint64_t swcr = ((CPUAlphaState *)cpu_env)->swcr;
11402
11403 swcr &= ~SWCR_STATUS_MASK;
11404 swcr |= (fpcr >> 35) & SWCR_STATUS_MASK;
11405
11406 if (put_user_u64 (swcr, arg2))
11407 return -TARGET_EFAULT;
11408 ret = 0;
11409 }
11410 break;
11411
11412 /* case GSI_IEEE_STATE_AT_SIGNAL:
11413 -- Not implemented in linux kernel.
11414 case GSI_UACPROC:
11415 -- Retrieves current unaligned access state; not much used.
11416 case GSI_PROC_TYPE:
11417 -- Retrieves implver information; surely not used.
11418 case GSI_GET_HWRPB:
11419 -- Grabs a copy of the HWRPB; surely not used.
11420 */
11421 }
11422 return ret;
11423 #endif
11424 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
11425 /* Alpha specific */
11426 case TARGET_NR_osf_setsysinfo:
11427 ret = -TARGET_EOPNOTSUPP;
11428 switch (arg1) {
11429 case TARGET_SSI_IEEE_FP_CONTROL:
11430 {
11431 uint64_t swcr, fpcr;
11432
11433 if (get_user_u64 (swcr, arg2)) {
11434 return -TARGET_EFAULT;
11435 }
11436
11437 /*
11438 * The kernel calls swcr_update_status to update the
11439 * status bits from the fpcr at every point that it
11440 * could be queried. Therefore, we store the status
11441 * bits only in FPCR.
11442 */
11443 ((CPUAlphaState *)cpu_env)->swcr
11444 = swcr & (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK);
11445
11446 fpcr = cpu_alpha_load_fpcr(cpu_env);
11447 fpcr &= ((uint64_t)FPCR_DYN_MASK << 32);
11448 fpcr |= alpha_ieee_swcr_to_fpcr(swcr);
11449 cpu_alpha_store_fpcr(cpu_env, fpcr);
11450 ret = 0;
11451 }
11452 break;
11453
11454 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
11455 {
11456 uint64_t exc, fpcr, fex;
11457
11458 if (get_user_u64(exc, arg2)) {
11459 return -TARGET_EFAULT;
11460 }
11461 exc &= SWCR_STATUS_MASK;
11462 fpcr = cpu_alpha_load_fpcr(cpu_env);
11463
11464 /* Old exceptions are not signaled. */
11465 fex = alpha_ieee_fpcr_to_swcr(fpcr);
11466 fex = exc & ~fex;
11467 fex >>= SWCR_STATUS_TO_EXCSUM_SHIFT;
11468 fex &= ((CPUArchState *)cpu_env)->swcr;
11469
11470 /* Update the hardware fpcr. */
11471 fpcr |= alpha_ieee_swcr_to_fpcr(exc);
11472 cpu_alpha_store_fpcr(cpu_env, fpcr);
11473
11474 if (fex) {
11475 int si_code = TARGET_FPE_FLTUNK;
11476 target_siginfo_t info;
11477
11478 if (fex & SWCR_TRAP_ENABLE_DNO) {
11479 si_code = TARGET_FPE_FLTUND;
11480 }
11481 if (fex & SWCR_TRAP_ENABLE_INE) {
11482 si_code = TARGET_FPE_FLTRES;
11483 }
11484 if (fex & SWCR_TRAP_ENABLE_UNF) {
11485 si_code = TARGET_FPE_FLTUND;
11486 }
11487 if (fex & SWCR_TRAP_ENABLE_OVF) {
11488 si_code = TARGET_FPE_FLTOVF;
11489 }
11490 if (fex & SWCR_TRAP_ENABLE_DZE) {
11491 si_code = TARGET_FPE_FLTDIV;
11492 }
11493 if (fex & SWCR_TRAP_ENABLE_INV) {
11494 si_code = TARGET_FPE_FLTINV;
11495 }
11496
11497 info.si_signo = SIGFPE;
11498 info.si_errno = 0;
11499 info.si_code = si_code;
11500 info._sifields._sigfault._addr
11501 = ((CPUArchState *)cpu_env)->pc;
11502 queue_signal((CPUArchState *)cpu_env, info.si_signo,
11503 QEMU_SI_FAULT, &info);
11504 }
11505 ret = 0;
11506 }
11507 break;
11508
11509 /* case SSI_NVPAIRS:
11510 -- Used with SSIN_UACPROC to enable unaligned accesses.
11511 case SSI_IEEE_STATE_AT_SIGNAL:
11512 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
11513 -- Not implemented in linux kernel
11514 */
11515 }
11516 return ret;
11517 #endif
11518 #ifdef TARGET_NR_osf_sigprocmask
11519 /* Alpha specific. */
11520 case TARGET_NR_osf_sigprocmask:
11521 {
11522 abi_ulong mask;
11523 int how;
11524 sigset_t set, oldset;
11525
11526 switch(arg1) {
11527 case TARGET_SIG_BLOCK:
11528 how = SIG_BLOCK;
11529 break;
11530 case TARGET_SIG_UNBLOCK:
11531 how = SIG_UNBLOCK;
11532 break;
11533 case TARGET_SIG_SETMASK:
11534 how = SIG_SETMASK;
11535 break;
11536 default:
11537 return -TARGET_EINVAL;
11538 }
11539 mask = arg2;
11540 target_to_host_old_sigset(&set, &mask);
11541 ret = do_sigprocmask(how, &set, &oldset);
11542 if (!ret) {
11543 host_to_target_old_sigset(&mask, &oldset);
11544 ret = mask;
11545 }
11546 }
11547 return ret;
11548 #endif
11549
11550 #ifdef TARGET_NR_getgid32
11551 case TARGET_NR_getgid32:
11552 return get_errno(getgid());
11553 #endif
11554 #ifdef TARGET_NR_geteuid32
11555 case TARGET_NR_geteuid32:
11556 return get_errno(geteuid());
11557 #endif
11558 #ifdef TARGET_NR_getegid32
11559 case TARGET_NR_getegid32:
11560 return get_errno(getegid());
11561 #endif
11562 #ifdef TARGET_NR_setreuid32
11563 case TARGET_NR_setreuid32:
11564 return get_errno(setreuid(arg1, arg2));
11565 #endif
11566 #ifdef TARGET_NR_setregid32
11567 case TARGET_NR_setregid32:
11568 return get_errno(setregid(arg1, arg2));
11569 #endif
11570 #ifdef TARGET_NR_getgroups32
11571 case TARGET_NR_getgroups32:
11572 {
11573 int gidsetsize = arg1;
11574 uint32_t *target_grouplist;
11575 gid_t *grouplist;
11576 int i;
11577
11578 grouplist = alloca(gidsetsize * sizeof(gid_t));
11579 ret = get_errno(getgroups(gidsetsize, grouplist));
11580 if (gidsetsize == 0)
11581 return ret;
11582 if (!is_error(ret)) {
11583 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
11584 if (!target_grouplist) {
11585 return -TARGET_EFAULT;
11586 }
11587 for(i = 0;i < ret; i++)
11588 target_grouplist[i] = tswap32(grouplist[i]);
11589 unlock_user(target_grouplist, arg2, gidsetsize * 4);
11590 }
11591 }
11592 return ret;
11593 #endif
11594 #ifdef TARGET_NR_setgroups32
11595 case TARGET_NR_setgroups32:
11596 {
11597 int gidsetsize = arg1;
11598 uint32_t *target_grouplist;
11599 gid_t *grouplist;
11600 int i;
11601
11602 grouplist = alloca(gidsetsize * sizeof(gid_t));
11603 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
11604 if (!target_grouplist) {
11605 return -TARGET_EFAULT;
11606 }
11607 for(i = 0;i < gidsetsize; i++)
11608 grouplist[i] = tswap32(target_grouplist[i]);
11609 unlock_user(target_grouplist, arg2, 0);
11610 return get_errno(setgroups(gidsetsize, grouplist));
11611 }
11612 #endif
11613 #ifdef TARGET_NR_fchown32
11614 case TARGET_NR_fchown32:
11615 return get_errno(fchown(arg1, arg2, arg3));
11616 #endif
11617 #ifdef TARGET_NR_setresuid32
11618 case TARGET_NR_setresuid32:
11619 return get_errno(sys_setresuid(arg1, arg2, arg3));
11620 #endif
11621 #ifdef TARGET_NR_getresuid32
11622 case TARGET_NR_getresuid32:
11623 {
11624 uid_t ruid, euid, suid;
11625 ret = get_errno(getresuid(&ruid, &euid, &suid));
11626 if (!is_error(ret)) {
11627 if (put_user_u32(ruid, arg1)
11628 || put_user_u32(euid, arg2)
11629 || put_user_u32(suid, arg3))
11630 return -TARGET_EFAULT;
11631 }
11632 }
11633 return ret;
11634 #endif
11635 #ifdef TARGET_NR_setresgid32
11636 case TARGET_NR_setresgid32:
11637 return get_errno(sys_setresgid(arg1, arg2, arg3));
11638 #endif
11639 #ifdef TARGET_NR_getresgid32
11640 case TARGET_NR_getresgid32:
11641 {
11642 gid_t rgid, egid, sgid;
11643 ret = get_errno(getresgid(&rgid, &egid, &sgid));
11644 if (!is_error(ret)) {
11645 if (put_user_u32(rgid, arg1)
11646 || put_user_u32(egid, arg2)
11647 || put_user_u32(sgid, arg3))
11648 return -TARGET_EFAULT;
11649 }
11650 }
11651 return ret;
11652 #endif
11653 #ifdef TARGET_NR_chown32
11654 case TARGET_NR_chown32:
11655 if (!(p = lock_user_string(arg1)))
11656 return -TARGET_EFAULT;
11657 ret = get_errno(chown(p, arg2, arg3));
11658 unlock_user(p, arg1, 0);
11659 return ret;
11660 #endif
11661 #ifdef TARGET_NR_setuid32
11662 case TARGET_NR_setuid32:
11663 return get_errno(sys_setuid(arg1));
11664 #endif
11665 #ifdef TARGET_NR_setgid32
11666 case TARGET_NR_setgid32:
11667 return get_errno(sys_setgid(arg1));
11668 #endif
11669 #ifdef TARGET_NR_setfsuid32
11670 case TARGET_NR_setfsuid32:
11671 return get_errno(setfsuid(arg1));
11672 #endif
11673 #ifdef TARGET_NR_setfsgid32
11674 case TARGET_NR_setfsgid32:
11675 return get_errno(setfsgid(arg1));
11676 #endif
11677 #ifdef TARGET_NR_mincore
11678 case TARGET_NR_mincore:
11679 {
11680 void *a = lock_user(VERIFY_READ, arg1, arg2, 0);
11681 if (!a) {
11682 return -TARGET_ENOMEM;
11683 }
11684 p = lock_user_string(arg3);
11685 if (!p) {
11686 ret = -TARGET_EFAULT;
11687 } else {
11688 ret = get_errno(mincore(a, arg2, p));
11689 unlock_user(p, arg3, ret);
11690 }
11691 unlock_user(a, arg1, 0);
11692 }
11693 return ret;
11694 #endif
11695 #ifdef TARGET_NR_arm_fadvise64_64
11696 case TARGET_NR_arm_fadvise64_64:
11697 /* arm_fadvise64_64 looks like fadvise64_64 but
11698 * with different argument order: fd, advice, offset, len
11699 * rather than the usual fd, offset, len, advice.
11700 * Note that offset and len are both 64-bit so appear as
11701 * pairs of 32-bit registers.
11702 */
11703 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
11704 target_offset64(arg5, arg6), arg2);
11705 return -host_to_target_errno(ret);
11706 #endif
11707
11708 #if TARGET_ABI_BITS == 32
11709
11710 #ifdef TARGET_NR_fadvise64_64
11711 case TARGET_NR_fadvise64_64:
11712 #if defined(TARGET_PPC) || defined(TARGET_XTENSA)
11713 /* 6 args: fd, advice, offset (high, low), len (high, low) */
11714 ret = arg2;
11715 arg2 = arg3;
11716 arg3 = arg4;
11717 arg4 = arg5;
11718 arg5 = arg6;
11719 arg6 = ret;
11720 #else
11721 /* 6 args: fd, offset (high, low), len (high, low), advice */
11722 if (regpairs_aligned(cpu_env, num)) {
11723 /* offset is in (3,4), len in (5,6) and advice in 7 */
11724 arg2 = arg3;
11725 arg3 = arg4;
11726 arg4 = arg5;
11727 arg5 = arg6;
11728 arg6 = arg7;
11729 }
11730 #endif
11731 ret = posix_fadvise(arg1, target_offset64(arg2, arg3),
11732 target_offset64(arg4, arg5), arg6);
11733 return -host_to_target_errno(ret);
11734 #endif
11735
11736 #ifdef TARGET_NR_fadvise64
11737 case TARGET_NR_fadvise64:
11738 /* 5 args: fd, offset (high, low), len, advice */
11739 if (regpairs_aligned(cpu_env, num)) {
11740 /* offset is in (3,4), len in 5 and advice in 6 */
11741 arg2 = arg3;
11742 arg3 = arg4;
11743 arg4 = arg5;
11744 arg5 = arg6;
11745 }
11746 ret = posix_fadvise(arg1, target_offset64(arg2, arg3), arg4, arg5);
11747 return -host_to_target_errno(ret);
11748 #endif
11749
11750 #else /* not a 32-bit ABI */
11751 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
11752 #ifdef TARGET_NR_fadvise64_64
11753 case TARGET_NR_fadvise64_64:
11754 #endif
11755 #ifdef TARGET_NR_fadvise64
11756 case TARGET_NR_fadvise64:
11757 #endif
11758 #ifdef TARGET_S390X
11759 switch (arg4) {
11760 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
11761 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
11762 case 6: arg4 = POSIX_FADV_DONTNEED; break;
11763 case 7: arg4 = POSIX_FADV_NOREUSE; break;
11764 default: break;
11765 }
11766 #endif
11767 return -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
11768 #endif
11769 #endif /* end of 64-bit ABI fadvise handling */
11770
11771 #ifdef TARGET_NR_madvise
11772 case TARGET_NR_madvise:
11773 /* A straight passthrough may not be safe because qemu sometimes
11774 turns private file-backed mappings into anonymous mappings.
11775 This will break MADV_DONTNEED.
11776 This is a hint, so ignoring and returning success is ok. */
11777 return 0;
11778 #endif
11779 #ifdef TARGET_NR_fcntl64
11780 case TARGET_NR_fcntl64:
11781 {
11782 int cmd;
11783 struct flock64 fl;
11784 from_flock64_fn *copyfrom = copy_from_user_flock64;
11785 to_flock64_fn *copyto = copy_to_user_flock64;
11786
11787 #ifdef TARGET_ARM
11788 if (!((CPUARMState *)cpu_env)->eabi) {
11789 copyfrom = copy_from_user_oabi_flock64;
11790 copyto = copy_to_user_oabi_flock64;
11791 }
11792 #endif
11793
11794 cmd = target_to_host_fcntl_cmd(arg2);
11795 if (cmd == -TARGET_EINVAL) {
11796 return cmd;
11797 }
11798
11799 switch(arg2) {
11800 case TARGET_F_GETLK64:
11801 ret = copyfrom(&fl, arg3);
11802 if (ret) {
11803 break;
11804 }
11805 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11806 if (ret == 0) {
11807 ret = copyto(arg3, &fl);
11808 }
11809 break;
11810
11811 case TARGET_F_SETLK64:
11812 case TARGET_F_SETLKW64:
11813 ret = copyfrom(&fl, arg3);
11814 if (ret) {
11815 break;
11816 }
11817 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
11818 break;
11819 default:
11820 ret = do_fcntl(arg1, arg2, arg3);
11821 break;
11822 }
11823 return ret;
11824 }
11825 #endif
11826 #ifdef TARGET_NR_cacheflush
11827 case TARGET_NR_cacheflush:
11828 /* self-modifying code is handled automatically, so nothing needed */
11829 return 0;
11830 #endif
11831 #ifdef TARGET_NR_getpagesize
11832 case TARGET_NR_getpagesize:
11833 return TARGET_PAGE_SIZE;
11834 #endif
11835 case TARGET_NR_gettid:
11836 return get_errno(sys_gettid());
11837 #ifdef TARGET_NR_readahead
11838 case TARGET_NR_readahead:
11839 #if TARGET_ABI_BITS == 32
11840 if (regpairs_aligned(cpu_env, num)) {
11841 arg2 = arg3;
11842 arg3 = arg4;
11843 arg4 = arg5;
11844 }
11845 ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
11846 #else
11847 ret = get_errno(readahead(arg1, arg2, arg3));
11848 #endif
11849 return ret;
11850 #endif
11851 #ifdef CONFIG_ATTR
11852 #ifdef TARGET_NR_setxattr
11853 case TARGET_NR_listxattr:
11854 case TARGET_NR_llistxattr:
11855 {
11856 void *p, *b = 0;
11857 if (arg2) {
11858 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11859 if (!b) {
11860 return -TARGET_EFAULT;
11861 }
11862 }
11863 p = lock_user_string(arg1);
11864 if (p) {
11865 if (num == TARGET_NR_listxattr) {
11866 ret = get_errno(listxattr(p, b, arg3));
11867 } else {
11868 ret = get_errno(llistxattr(p, b, arg3));
11869 }
11870 } else {
11871 ret = -TARGET_EFAULT;
11872 }
11873 unlock_user(p, arg1, 0);
11874 unlock_user(b, arg2, arg3);
11875 return ret;
11876 }
11877 case TARGET_NR_flistxattr:
11878 {
11879 void *b = 0;
11880 if (arg2) {
11881 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11882 if (!b) {
11883 return -TARGET_EFAULT;
11884 }
11885 }
11886 ret = get_errno(flistxattr(arg1, b, arg3));
11887 unlock_user(b, arg2, arg3);
11888 return ret;
11889 }
11890 case TARGET_NR_setxattr:
11891 case TARGET_NR_lsetxattr:
11892 {
11893 void *p, *n, *v = 0;
11894 if (arg3) {
11895 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11896 if (!v) {
11897 return -TARGET_EFAULT;
11898 }
11899 }
11900 p = lock_user_string(arg1);
11901 n = lock_user_string(arg2);
11902 if (p && n) {
11903 if (num == TARGET_NR_setxattr) {
11904 ret = get_errno(setxattr(p, n, v, arg4, arg5));
11905 } else {
11906 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11907 }
11908 } else {
11909 ret = -TARGET_EFAULT;
11910 }
11911 unlock_user(p, arg1, 0);
11912 unlock_user(n, arg2, 0);
11913 unlock_user(v, arg3, 0);
11914 }
11915 return ret;
11916 case TARGET_NR_fsetxattr:
11917 {
11918 void *n, *v = 0;
11919 if (arg3) {
11920 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11921 if (!v) {
11922 return -TARGET_EFAULT;
11923 }
11924 }
11925 n = lock_user_string(arg2);
11926 if (n) {
11927 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
11928 } else {
11929 ret = -TARGET_EFAULT;
11930 }
11931 unlock_user(n, arg2, 0);
11932 unlock_user(v, arg3, 0);
11933 }
11934 return ret;
11935 case TARGET_NR_getxattr:
11936 case TARGET_NR_lgetxattr:
11937 {
11938 void *p, *n, *v = 0;
11939 if (arg3) {
11940 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11941 if (!v) {
11942 return -TARGET_EFAULT;
11943 }
11944 }
11945 p = lock_user_string(arg1);
11946 n = lock_user_string(arg2);
11947 if (p && n) {
11948 if (num == TARGET_NR_getxattr) {
11949 ret = get_errno(getxattr(p, n, v, arg4));
11950 } else {
11951 ret = get_errno(lgetxattr(p, n, v, arg4));
11952 }
11953 } else {
11954 ret = -TARGET_EFAULT;
11955 }
11956 unlock_user(p, arg1, 0);
11957 unlock_user(n, arg2, 0);
11958 unlock_user(v, arg3, arg4);
11959 }
11960 return ret;
11961 case TARGET_NR_fgetxattr:
11962 {
11963 void *n, *v = 0;
11964 if (arg3) {
11965 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11966 if (!v) {
11967 return -TARGET_EFAULT;
11968 }
11969 }
11970 n = lock_user_string(arg2);
11971 if (n) {
11972 ret = get_errno(fgetxattr(arg1, n, v, arg4));
11973 } else {
11974 ret = -TARGET_EFAULT;
11975 }
11976 unlock_user(n, arg2, 0);
11977 unlock_user(v, arg3, arg4);
11978 }
11979 return ret;
11980 case TARGET_NR_removexattr:
11981 case TARGET_NR_lremovexattr:
11982 {
11983 void *p, *n;
11984 p = lock_user_string(arg1);
11985 n = lock_user_string(arg2);
11986 if (p && n) {
11987 if (num == TARGET_NR_removexattr) {
11988 ret = get_errno(removexattr(p, n));
11989 } else {
11990 ret = get_errno(lremovexattr(p, n));
11991 }
11992 } else {
11993 ret = -TARGET_EFAULT;
11994 }
11995 unlock_user(p, arg1, 0);
11996 unlock_user(n, arg2, 0);
11997 }
11998 return ret;
11999 case TARGET_NR_fremovexattr:
12000 {
12001 void *n;
12002 n = lock_user_string(arg2);
12003 if (n) {
12004 ret = get_errno(fremovexattr(arg1, n));
12005 } else {
12006 ret = -TARGET_EFAULT;
12007 }
12008 unlock_user(n, arg2, 0);
12009 }
12010 return ret;
12011 #endif
12012 #endif /* CONFIG_ATTR */
12013 #ifdef TARGET_NR_set_thread_area
12014 case TARGET_NR_set_thread_area:
12015 #if defined(TARGET_MIPS)
12016 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
12017 return 0;
12018 #elif defined(TARGET_CRIS)
12019 if (arg1 & 0xff)
12020 ret = -TARGET_EINVAL;
12021 else {
12022 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
12023 ret = 0;
12024 }
12025 return ret;
12026 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
12027 return do_set_thread_area(cpu_env, arg1);
12028 #elif defined(TARGET_M68K)
12029 {
12030 TaskState *ts = cpu->opaque;
12031 ts->tp_value = arg1;
12032 return 0;
12033 }
12034 #else
12035 return -TARGET_ENOSYS;
12036 #endif
12037 #endif
12038 #ifdef TARGET_NR_get_thread_area
12039 case TARGET_NR_get_thread_area:
12040 #if defined(TARGET_I386) && defined(TARGET_ABI32)
12041 return do_get_thread_area(cpu_env, arg1);
12042 #elif defined(TARGET_M68K)
12043 {
12044 TaskState *ts = cpu->opaque;
12045 return ts->tp_value;
12046 }
12047 #else
12048 return -TARGET_ENOSYS;
12049 #endif
12050 #endif
12051 #ifdef TARGET_NR_getdomainname
12052 case TARGET_NR_getdomainname:
12053 return -TARGET_ENOSYS;
12054 #endif
12055
12056 #ifdef TARGET_NR_clock_settime
12057 case TARGET_NR_clock_settime:
12058 {
12059 struct timespec ts;
12060
12061 ret = target_to_host_timespec(&ts, arg2);
12062 if (!is_error(ret)) {
12063 ret = get_errno(clock_settime(arg1, &ts));
12064 }
12065 return ret;
12066 }
12067 #endif
12068 #ifdef TARGET_NR_clock_settime64
12069 case TARGET_NR_clock_settime64:
12070 {
12071 struct timespec ts;
12072
12073 ret = target_to_host_timespec64(&ts, arg2);
12074 if (!is_error(ret)) {
12075 ret = get_errno(clock_settime(arg1, &ts));
12076 }
12077 return ret;
12078 }
12079 #endif
12080 #ifdef TARGET_NR_clock_gettime
12081 case TARGET_NR_clock_gettime:
12082 {
12083 struct timespec ts;
12084 ret = get_errno(clock_gettime(arg1, &ts));
12085 if (!is_error(ret)) {
12086 ret = host_to_target_timespec(arg2, &ts);
12087 }
12088 return ret;
12089 }
12090 #endif
12091 #ifdef TARGET_NR_clock_gettime64
12092 case TARGET_NR_clock_gettime64:
12093 {
12094 struct timespec ts;
12095 ret = get_errno(clock_gettime(arg1, &ts));
12096 if (!is_error(ret)) {
12097 ret = host_to_target_timespec64(arg2, &ts);
12098 }
12099 return ret;
12100 }
12101 #endif
12102 #ifdef TARGET_NR_clock_getres
12103 case TARGET_NR_clock_getres:
12104 {
12105 struct timespec ts;
12106 ret = get_errno(clock_getres(arg1, &ts));
12107 if (!is_error(ret)) {
12108 host_to_target_timespec(arg2, &ts);
12109 }
12110 return ret;
12111 }
12112 #endif
12113 #ifdef TARGET_NR_clock_getres_time64
12114 case TARGET_NR_clock_getres_time64:
12115 {
12116 struct timespec ts;
12117 ret = get_errno(clock_getres(arg1, &ts));
12118 if (!is_error(ret)) {
12119 host_to_target_timespec64(arg2, &ts);
12120 }
12121 return ret;
12122 }
12123 #endif
12124 #ifdef TARGET_NR_clock_nanosleep
12125 case TARGET_NR_clock_nanosleep:
12126 {
12127 struct timespec ts;
12128 if (target_to_host_timespec(&ts, arg3)) {
12129 return -TARGET_EFAULT;
12130 }
12131 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12132 &ts, arg4 ? &ts : NULL));
12133 /*
12134 * if the call is interrupted by a signal handler, it fails
12135 * with error -TARGET_EINTR and if arg4 is not NULL and arg2 is not
12136 * TIMER_ABSTIME, it returns the remaining unslept time in arg4.
12137 */
12138 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12139 host_to_target_timespec(arg4, &ts)) {
12140 return -TARGET_EFAULT;
12141 }
12142
12143 return ret;
12144 }
12145 #endif
12146 #ifdef TARGET_NR_clock_nanosleep_time64
12147 case TARGET_NR_clock_nanosleep_time64:
12148 {
12149 struct timespec ts;
12150
12151 if (target_to_host_timespec64(&ts, arg3)) {
12152 return -TARGET_EFAULT;
12153 }
12154
12155 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
12156 &ts, arg4 ? &ts : NULL));
12157
12158 if (ret == -TARGET_EINTR && arg4 && arg2 != TIMER_ABSTIME &&
12159 host_to_target_timespec64(arg4, &ts)) {
12160 return -TARGET_EFAULT;
12161 }
12162 return ret;
12163 }
12164 #endif
12165
12166 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
12167 case TARGET_NR_set_tid_address:
12168 return get_errno(set_tid_address((int *)g2h(cpu, arg1)));
12169 #endif
12170
12171 case TARGET_NR_tkill:
12172 return get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
12173
12174 case TARGET_NR_tgkill:
12175 return get_errno(safe_tgkill((int)arg1, (int)arg2,
12176 target_to_host_signal(arg3)));
12177
12178 #ifdef TARGET_NR_set_robust_list
12179 case TARGET_NR_set_robust_list:
12180 case TARGET_NR_get_robust_list:
12181 /* The ABI for supporting robust futexes has userspace pass
12182 * the kernel a pointer to a linked list which is updated by
12183 * userspace after the syscall; the list is walked by the kernel
12184 * when the thread exits. Since the linked list in QEMU guest
12185 * memory isn't a valid linked list for the host and we have
12186 * no way to reliably intercept the thread-death event, we can't
12187 * support these. Silently return ENOSYS so that guest userspace
12188 * falls back to a non-robust futex implementation (which should
12189 * be OK except in the corner case of the guest crashing while
12190 * holding a mutex that is shared with another process via
12191 * shared memory).
12192 */
12193 return -TARGET_ENOSYS;
12194 #endif
12195
12196 #if defined(TARGET_NR_utimensat)
12197 case TARGET_NR_utimensat:
12198 {
12199 struct timespec *tsp, ts[2];
12200 if (!arg3) {
12201 tsp = NULL;
12202 } else {
12203 if (target_to_host_timespec(ts, arg3)) {
12204 return -TARGET_EFAULT;
12205 }
12206 if (target_to_host_timespec(ts + 1, arg3 +
12207 sizeof(struct target_timespec))) {
12208 return -TARGET_EFAULT;
12209 }
12210 tsp = ts;
12211 }
12212 if (!arg2)
12213 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12214 else {
12215 if (!(p = lock_user_string(arg2))) {
12216 return -TARGET_EFAULT;
12217 }
12218 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12219 unlock_user(p, arg2, 0);
12220 }
12221 }
12222 return ret;
12223 #endif
12224 #ifdef TARGET_NR_utimensat_time64
12225 case TARGET_NR_utimensat_time64:
12226 {
12227 struct timespec *tsp, ts[2];
12228 if (!arg3) {
12229 tsp = NULL;
12230 } else {
12231 if (target_to_host_timespec64(ts, arg3)) {
12232 return -TARGET_EFAULT;
12233 }
12234 if (target_to_host_timespec64(ts + 1, arg3 +
12235 sizeof(struct target__kernel_timespec))) {
12236 return -TARGET_EFAULT;
12237 }
12238 tsp = ts;
12239 }
12240 if (!arg2)
12241 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
12242 else {
12243 p = lock_user_string(arg2);
12244 if (!p) {
12245 return -TARGET_EFAULT;
12246 }
12247 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
12248 unlock_user(p, arg2, 0);
12249 }
12250 }
12251 return ret;
12252 #endif
12253 #ifdef TARGET_NR_futex
12254 case TARGET_NR_futex:
12255 return do_futex(cpu, arg1, arg2, arg3, arg4, arg5, arg6);
12256 #endif
12257 #ifdef TARGET_NR_futex_time64
12258 case TARGET_NR_futex_time64:
12259 return do_futex_time64(cpu, arg1, arg2, arg3, arg4, arg5, arg6);
12260 #endif
12261 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
12262 case TARGET_NR_inotify_init:
12263 ret = get_errno(sys_inotify_init());
12264 if (ret >= 0) {
12265 fd_trans_register(ret, &target_inotify_trans);
12266 }
12267 return ret;
12268 #endif
12269 #ifdef CONFIG_INOTIFY1
12270 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
12271 case TARGET_NR_inotify_init1:
12272 ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
12273 fcntl_flags_tbl)));
12274 if (ret >= 0) {
12275 fd_trans_register(ret, &target_inotify_trans);
12276 }
12277 return ret;
12278 #endif
12279 #endif
12280 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
12281 case TARGET_NR_inotify_add_watch:
12282 p = lock_user_string(arg2);
12283 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
12284 unlock_user(p, arg2, 0);
12285 return ret;
12286 #endif
12287 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
12288 case TARGET_NR_inotify_rm_watch:
12289 return get_errno(sys_inotify_rm_watch(arg1, arg2));
12290 #endif
12291
12292 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
12293 case TARGET_NR_mq_open:
12294 {
12295 struct mq_attr posix_mq_attr;
12296 struct mq_attr *pposix_mq_attr;
12297 int host_flags;
12298
12299 host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
12300 pposix_mq_attr = NULL;
12301 if (arg4) {
12302 if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
12303 return -TARGET_EFAULT;
12304 }
12305 pposix_mq_attr = &posix_mq_attr;
12306 }
12307 p = lock_user_string(arg1 - 1);
12308 if (!p) {
12309 return -TARGET_EFAULT;
12310 }
12311 ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
12312 unlock_user (p, arg1, 0);
12313 }
12314 return ret;
12315
12316 case TARGET_NR_mq_unlink:
12317 p = lock_user_string(arg1 - 1);
12318 if (!p) {
12319 return -TARGET_EFAULT;
12320 }
12321 ret = get_errno(mq_unlink(p));
12322 unlock_user (p, arg1, 0);
12323 return ret;
12324
12325 #ifdef TARGET_NR_mq_timedsend
12326 case TARGET_NR_mq_timedsend:
12327 {
12328 struct timespec ts;
12329
12330 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12331 if (arg5 != 0) {
12332 if (target_to_host_timespec(&ts, arg5)) {
12333 return -TARGET_EFAULT;
12334 }
12335 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12336 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12337 return -TARGET_EFAULT;
12338 }
12339 } else {
12340 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12341 }
12342 unlock_user (p, arg2, arg3);
12343 }
12344 return ret;
12345 #endif
12346 #ifdef TARGET_NR_mq_timedsend_time64
12347 case TARGET_NR_mq_timedsend_time64:
12348 {
12349 struct timespec ts;
12350
12351 p = lock_user(VERIFY_READ, arg2, arg3, 1);
12352 if (arg5 != 0) {
12353 if (target_to_host_timespec64(&ts, arg5)) {
12354 return -TARGET_EFAULT;
12355 }
12356 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
12357 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12358 return -TARGET_EFAULT;
12359 }
12360 } else {
12361 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
12362 }
12363 unlock_user(p, arg2, arg3);
12364 }
12365 return ret;
12366 #endif
12367
12368 #ifdef TARGET_NR_mq_timedreceive
12369 case TARGET_NR_mq_timedreceive:
12370 {
12371 struct timespec ts;
12372 unsigned int prio;
12373
12374 p = lock_user (VERIFY_READ, arg2, arg3, 1);
12375 if (arg5 != 0) {
12376 if (target_to_host_timespec(&ts, arg5)) {
12377 return -TARGET_EFAULT;
12378 }
12379 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12380 &prio, &ts));
12381 if (!is_error(ret) && host_to_target_timespec(arg5, &ts)) {
12382 return -TARGET_EFAULT;
12383 }
12384 } else {
12385 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12386 &prio, NULL));
12387 }
12388 unlock_user (p, arg2, arg3);
12389 if (arg4 != 0)
12390 put_user_u32(prio, arg4);
12391 }
12392 return ret;
12393 #endif
12394 #ifdef TARGET_NR_mq_timedreceive_time64
12395 case TARGET_NR_mq_timedreceive_time64:
12396 {
12397 struct timespec ts;
12398 unsigned int prio;
12399
12400 p = lock_user(VERIFY_READ, arg2, arg3, 1);
12401 if (arg5 != 0) {
12402 if (target_to_host_timespec64(&ts, arg5)) {
12403 return -TARGET_EFAULT;
12404 }
12405 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12406 &prio, &ts));
12407 if (!is_error(ret) && host_to_target_timespec64(arg5, &ts)) {
12408 return -TARGET_EFAULT;
12409 }
12410 } else {
12411 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
12412 &prio, NULL));
12413 }
12414 unlock_user(p, arg2, arg3);
12415 if (arg4 != 0) {
12416 put_user_u32(prio, arg4);
12417 }
12418 }
12419 return ret;
12420 #endif
12421
12422 /* Not implemented for now... */
12423 /* case TARGET_NR_mq_notify: */
12424 /* break; */
12425
12426 case TARGET_NR_mq_getsetattr:
12427 {
12428 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
12429 ret = 0;
12430 if (arg2 != 0) {
12431 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
12432 ret = get_errno(mq_setattr(arg1, &posix_mq_attr_in,
12433 &posix_mq_attr_out));
12434 } else if (arg3 != 0) {
12435 ret = get_errno(mq_getattr(arg1, &posix_mq_attr_out));
12436 }
12437 if (ret == 0 && arg3 != 0) {
12438 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
12439 }
12440 }
12441 return ret;
12442 #endif
12443
12444 #ifdef CONFIG_SPLICE
12445 #ifdef TARGET_NR_tee
12446 case TARGET_NR_tee:
12447 {
12448 ret = get_errno(tee(arg1,arg2,arg3,arg4));
12449 }
12450 return ret;
12451 #endif
12452 #ifdef TARGET_NR_splice
12453 case TARGET_NR_splice:
12454 {
12455 loff_t loff_in, loff_out;
12456 loff_t *ploff_in = NULL, *ploff_out = NULL;
12457 if (arg2) {
12458 if (get_user_u64(loff_in, arg2)) {
12459 return -TARGET_EFAULT;
12460 }
12461 ploff_in = &loff_in;
12462 }
12463 if (arg4) {
12464 if (get_user_u64(loff_out, arg4)) {
12465 return -TARGET_EFAULT;
12466 }
12467 ploff_out = &loff_out;
12468 }
12469 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
12470 if (arg2) {
12471 if (put_user_u64(loff_in, arg2)) {
12472 return -TARGET_EFAULT;
12473 }
12474 }
12475 if (arg4) {
12476 if (put_user_u64(loff_out, arg4)) {
12477 return -TARGET_EFAULT;
12478 }
12479 }
12480 }
12481 return ret;
12482 #endif
12483 #ifdef TARGET_NR_vmsplice
12484 case TARGET_NR_vmsplice:
12485 {
12486 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
12487 if (vec != NULL) {
12488 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
12489 unlock_iovec(vec, arg2, arg3, 0);
12490 } else {
12491 ret = -host_to_target_errno(errno);
12492 }
12493 }
12494 return ret;
12495 #endif
12496 #endif /* CONFIG_SPLICE */
12497 #ifdef CONFIG_EVENTFD
12498 #if defined(TARGET_NR_eventfd)
12499 case TARGET_NR_eventfd:
12500 ret = get_errno(eventfd(arg1, 0));
12501 if (ret >= 0) {
12502 fd_trans_register(ret, &target_eventfd_trans);
12503 }
12504 return ret;
12505 #endif
12506 #if defined(TARGET_NR_eventfd2)
12507 case TARGET_NR_eventfd2:
12508 {
12509 int host_flags = arg2 & (~(TARGET_O_NONBLOCK_MASK | TARGET_O_CLOEXEC));
12510 if (arg2 & TARGET_O_NONBLOCK) {
12511 host_flags |= O_NONBLOCK;
12512 }
12513 if (arg2 & TARGET_O_CLOEXEC) {
12514 host_flags |= O_CLOEXEC;
12515 }
12516 ret = get_errno(eventfd(arg1, host_flags));
12517 if (ret >= 0) {
12518 fd_trans_register(ret, &target_eventfd_trans);
12519 }
12520 return ret;
12521 }
12522 #endif
12523 #endif /* CONFIG_EVENTFD */
12524 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
12525 case TARGET_NR_fallocate:
12526 #if TARGET_ABI_BITS == 32
12527 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
12528 target_offset64(arg5, arg6)));
12529 #else
12530 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
12531 #endif
12532 return ret;
12533 #endif
12534 #if defined(CONFIG_SYNC_FILE_RANGE)
12535 #if defined(TARGET_NR_sync_file_range)
12536 case TARGET_NR_sync_file_range:
12537 #if TARGET_ABI_BITS == 32
12538 #if defined(TARGET_MIPS)
12539 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12540 target_offset64(arg5, arg6), arg7));
12541 #else
12542 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
12543 target_offset64(arg4, arg5), arg6));
12544 #endif /* !TARGET_MIPS */
12545 #else
12546 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
12547 #endif
12548 return ret;
12549 #endif
12550 #if defined(TARGET_NR_sync_file_range2) || \
12551 defined(TARGET_NR_arm_sync_file_range)
12552 #if defined(TARGET_NR_sync_file_range2)
12553 case TARGET_NR_sync_file_range2:
12554 #endif
12555 #if defined(TARGET_NR_arm_sync_file_range)
12556 case TARGET_NR_arm_sync_file_range:
12557 #endif
12558 /* This is like sync_file_range but the arguments are reordered */
12559 #if TARGET_ABI_BITS == 32
12560 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
12561 target_offset64(arg5, arg6), arg2));
12562 #else
12563 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
12564 #endif
12565 return ret;
12566 #endif
12567 #endif
12568 #if defined(TARGET_NR_signalfd4)
12569 case TARGET_NR_signalfd4:
12570 return do_signalfd4(arg1, arg2, arg4);
12571 #endif
12572 #if defined(TARGET_NR_signalfd)
12573 case TARGET_NR_signalfd:
12574 return do_signalfd4(arg1, arg2, 0);
12575 #endif
12576 #if defined(CONFIG_EPOLL)
12577 #if defined(TARGET_NR_epoll_create)
12578 case TARGET_NR_epoll_create:
12579 return get_errno(epoll_create(arg1));
12580 #endif
12581 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
12582 case TARGET_NR_epoll_create1:
12583 return get_errno(epoll_create1(target_to_host_bitmask(arg1, fcntl_flags_tbl)));
12584 #endif
12585 #if defined(TARGET_NR_epoll_ctl)
12586 case TARGET_NR_epoll_ctl:
12587 {
12588 struct epoll_event ep;
12589 struct epoll_event *epp = 0;
12590 if (arg4) {
12591 if (arg2 != EPOLL_CTL_DEL) {
12592 struct target_epoll_event *target_ep;
12593 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
12594 return -TARGET_EFAULT;
12595 }
12596 ep.events = tswap32(target_ep->events);
12597 /*
12598 * The epoll_data_t union is just opaque data to the kernel,
12599 * so we transfer all 64 bits across and need not worry what
12600 * actual data type it is.
12601 */
12602 ep.data.u64 = tswap64(target_ep->data.u64);
12603 unlock_user_struct(target_ep, arg4, 0);
12604 }
12605 /*
12606 * before kernel 2.6.9, EPOLL_CTL_DEL operation required a
12607 * non-null pointer, even though this argument is ignored.
12608 *
12609 */
12610 epp = &ep;
12611 }
12612 return get_errno(epoll_ctl(arg1, arg2, arg3, epp));
12613 }
12614 #endif
12615
12616 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
12617 #if defined(TARGET_NR_epoll_wait)
12618 case TARGET_NR_epoll_wait:
12619 #endif
12620 #if defined(TARGET_NR_epoll_pwait)
12621 case TARGET_NR_epoll_pwait:
12622 #endif
12623 {
12624 struct target_epoll_event *target_ep;
12625 struct epoll_event *ep;
12626 int epfd = arg1;
12627 int maxevents = arg3;
12628 int timeout = arg4;
12629
12630 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
12631 return -TARGET_EINVAL;
12632 }
12633
12634 target_ep = lock_user(VERIFY_WRITE, arg2,
12635 maxevents * sizeof(struct target_epoll_event), 1);
12636 if (!target_ep) {
12637 return -TARGET_EFAULT;
12638 }
12639
12640 ep = g_try_new(struct epoll_event, maxevents);
12641 if (!ep) {
12642 unlock_user(target_ep, arg2, 0);
12643 return -TARGET_ENOMEM;
12644 }
12645
12646 switch (num) {
12647 #if defined(TARGET_NR_epoll_pwait)
12648 case TARGET_NR_epoll_pwait:
12649 {
12650 target_sigset_t *target_set;
12651 sigset_t _set, *set = &_set;
12652
12653 if (arg5) {
12654 if (arg6 != sizeof(target_sigset_t)) {
12655 ret = -TARGET_EINVAL;
12656 break;
12657 }
12658
12659 target_set = lock_user(VERIFY_READ, arg5,
12660 sizeof(target_sigset_t), 1);
12661 if (!target_set) {
12662 ret = -TARGET_EFAULT;
12663 break;
12664 }
12665 target_to_host_sigset(set, target_set);
12666 unlock_user(target_set, arg5, 0);
12667 } else {
12668 set = NULL;
12669 }
12670
12671 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12672 set, SIGSET_T_SIZE));
12673 break;
12674 }
12675 #endif
12676 #if defined(TARGET_NR_epoll_wait)
12677 case TARGET_NR_epoll_wait:
12678 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
12679 NULL, 0));
12680 break;
12681 #endif
12682 default:
12683 ret = -TARGET_ENOSYS;
12684 }
12685 if (!is_error(ret)) {
12686 int i;
12687 for (i = 0; i < ret; i++) {
12688 target_ep[i].events = tswap32(ep[i].events);
12689 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
12690 }
12691 unlock_user(target_ep, arg2,
12692 ret * sizeof(struct target_epoll_event));
12693 } else {
12694 unlock_user(target_ep, arg2, 0);
12695 }
12696 g_free(ep);
12697 return ret;
12698 }
12699 #endif
12700 #endif
12701 #ifdef TARGET_NR_prlimit64
12702 case TARGET_NR_prlimit64:
12703 {
12704 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
12705 struct target_rlimit64 *target_rnew, *target_rold;
12706 struct host_rlimit64 rnew, rold, *rnewp = 0;
12707 int resource = target_to_host_resource(arg2);
12708
12709 if (arg3 && (resource != RLIMIT_AS &&
12710 resource != RLIMIT_DATA &&
12711 resource != RLIMIT_STACK)) {
12712 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
12713 return -TARGET_EFAULT;
12714 }
12715 rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
12716 rnew.rlim_max = tswap64(target_rnew->rlim_max);
12717 unlock_user_struct(target_rnew, arg3, 0);
12718 rnewp = &rnew;
12719 }
12720
12721 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
12722 if (!is_error(ret) && arg4) {
12723 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
12724 return -TARGET_EFAULT;
12725 }
12726 target_rold->rlim_cur = tswap64(rold.rlim_cur);
12727 target_rold->rlim_max = tswap64(rold.rlim_max);
12728 unlock_user_struct(target_rold, arg4, 1);
12729 }
12730 return ret;
12731 }
12732 #endif
12733 #ifdef TARGET_NR_gethostname
12734 case TARGET_NR_gethostname:
12735 {
12736 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
12737 if (name) {
12738 ret = get_errno(gethostname(name, arg2));
12739 unlock_user(name, arg1, arg2);
12740 } else {
12741 ret = -TARGET_EFAULT;
12742 }
12743 return ret;
12744 }
12745 #endif
12746 #ifdef TARGET_NR_atomic_cmpxchg_32
12747 case TARGET_NR_atomic_cmpxchg_32:
12748 {
12749 /* should use start_exclusive from main.c */
12750 abi_ulong mem_value;
12751 if (get_user_u32(mem_value, arg6)) {
12752 target_siginfo_t info;
12753 info.si_signo = SIGSEGV;
12754 info.si_errno = 0;
12755 info.si_code = TARGET_SEGV_MAPERR;
12756 info._sifields._sigfault._addr = arg6;
12757 queue_signal((CPUArchState *)cpu_env, info.si_signo,
12758 QEMU_SI_FAULT, &info);
12759 ret = 0xdeadbeef;
12760
12761 }
12762 if (mem_value == arg2)
12763 put_user_u32(arg1, arg6);
12764 return mem_value;
12765 }
12766 #endif
12767 #ifdef TARGET_NR_atomic_barrier
12768 case TARGET_NR_atomic_barrier:
12769 /* Like the kernel implementation and the
12770 qemu arm barrier, no-op this? */
12771 return 0;
12772 #endif
12773
12774 #ifdef TARGET_NR_timer_create
12775 case TARGET_NR_timer_create:
12776 {
12777 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
12778
12779 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
12780
12781 int clkid = arg1;
12782 int timer_index = next_free_host_timer();
12783
12784 if (timer_index < 0) {
12785 ret = -TARGET_EAGAIN;
12786 } else {
12787 timer_t *phtimer = g_posix_timers + timer_index;
12788
12789 if (arg2) {
12790 phost_sevp = &host_sevp;
12791 ret = target_to_host_sigevent(phost_sevp, arg2);
12792 if (ret != 0) {
12793 return ret;
12794 }
12795 }
12796
12797 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
12798 if (ret) {
12799 phtimer = NULL;
12800 } else {
12801 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
12802 return -TARGET_EFAULT;
12803 }
12804 }
12805 }
12806 return ret;
12807 }
12808 #endif
12809
12810 #ifdef TARGET_NR_timer_settime
12811 case TARGET_NR_timer_settime:
12812 {
12813 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
12814 * struct itimerspec * old_value */
12815 target_timer_t timerid = get_timer_id(arg1);
12816
12817 if (timerid < 0) {
12818 ret = timerid;
12819 } else if (arg3 == 0) {
12820 ret = -TARGET_EINVAL;
12821 } else {
12822 timer_t htimer = g_posix_timers[timerid];
12823 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12824
12825 if (target_to_host_itimerspec(&hspec_new, arg3)) {
12826 return -TARGET_EFAULT;
12827 }
12828 ret = get_errno(
12829 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12830 if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
12831 return -TARGET_EFAULT;
12832 }
12833 }
12834 return ret;
12835 }
12836 #endif
12837
12838 #ifdef TARGET_NR_timer_settime64
12839 case TARGET_NR_timer_settime64:
12840 {
12841 target_timer_t timerid = get_timer_id(arg1);
12842
12843 if (timerid < 0) {
12844 ret = timerid;
12845 } else if (arg3 == 0) {
12846 ret = -TARGET_EINVAL;
12847 } else {
12848 timer_t htimer = g_posix_timers[timerid];
12849 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
12850
12851 if (target_to_host_itimerspec64(&hspec_new, arg3)) {
12852 return -TARGET_EFAULT;
12853 }
12854 ret = get_errno(
12855 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
12856 if (arg4 && host_to_target_itimerspec64(arg4, &hspec_old)) {
12857 return -TARGET_EFAULT;
12858 }
12859 }
12860 return ret;
12861 }
12862 #endif
12863
12864 #ifdef TARGET_NR_timer_gettime
12865 case TARGET_NR_timer_gettime:
12866 {
12867 /* args: timer_t timerid, struct itimerspec *curr_value */
12868 target_timer_t timerid = get_timer_id(arg1);
12869
12870 if (timerid < 0) {
12871 ret = timerid;
12872 } else if (!arg2) {
12873 ret = -TARGET_EFAULT;
12874 } else {
12875 timer_t htimer = g_posix_timers[timerid];
12876 struct itimerspec hspec;
12877 ret = get_errno(timer_gettime(htimer, &hspec));
12878
12879 if (host_to_target_itimerspec(arg2, &hspec)) {
12880 ret = -TARGET_EFAULT;
12881 }
12882 }
12883 return ret;
12884 }
12885 #endif
12886
12887 #ifdef TARGET_NR_timer_gettime64
12888 case TARGET_NR_timer_gettime64:
12889 {
12890 /* args: timer_t timerid, struct itimerspec64 *curr_value */
12891 target_timer_t timerid = get_timer_id(arg1);
12892
12893 if (timerid < 0) {
12894 ret = timerid;
12895 } else if (!arg2) {
12896 ret = -TARGET_EFAULT;
12897 } else {
12898 timer_t htimer = g_posix_timers[timerid];
12899 struct itimerspec hspec;
12900 ret = get_errno(timer_gettime(htimer, &hspec));
12901
12902 if (host_to_target_itimerspec64(arg2, &hspec)) {
12903 ret = -TARGET_EFAULT;
12904 }
12905 }
12906 return ret;
12907 }
12908 #endif
12909
12910 #ifdef TARGET_NR_timer_getoverrun
12911 case TARGET_NR_timer_getoverrun:
12912 {
12913 /* args: timer_t timerid */
12914 target_timer_t timerid = get_timer_id(arg1);
12915
12916 if (timerid < 0) {
12917 ret = timerid;
12918 } else {
12919 timer_t htimer = g_posix_timers[timerid];
12920 ret = get_errno(timer_getoverrun(htimer));
12921 }
12922 return ret;
12923 }
12924 #endif
12925
12926 #ifdef TARGET_NR_timer_delete
12927 case TARGET_NR_timer_delete:
12928 {
12929 /* args: timer_t timerid */
12930 target_timer_t timerid = get_timer_id(arg1);
12931
12932 if (timerid < 0) {
12933 ret = timerid;
12934 } else {
12935 timer_t htimer = g_posix_timers[timerid];
12936 ret = get_errno(timer_delete(htimer));
12937 g_posix_timers[timerid] = 0;
12938 }
12939 return ret;
12940 }
12941 #endif
12942
12943 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
12944 case TARGET_NR_timerfd_create:
12945 return get_errno(timerfd_create(arg1,
12946 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
12947 #endif
12948
12949 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
12950 case TARGET_NR_timerfd_gettime:
12951 {
12952 struct itimerspec its_curr;
12953
12954 ret = get_errno(timerfd_gettime(arg1, &its_curr));
12955
12956 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
12957 return -TARGET_EFAULT;
12958 }
12959 }
12960 return ret;
12961 #endif
12962
12963 #if defined(TARGET_NR_timerfd_gettime64) && defined(CONFIG_TIMERFD)
12964 case TARGET_NR_timerfd_gettime64:
12965 {
12966 struct itimerspec its_curr;
12967
12968 ret = get_errno(timerfd_gettime(arg1, &its_curr));
12969
12970 if (arg2 && host_to_target_itimerspec64(arg2, &its_curr)) {
12971 return -TARGET_EFAULT;
12972 }
12973 }
12974 return ret;
12975 #endif
12976
12977 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
12978 case TARGET_NR_timerfd_settime:
12979 {
12980 struct itimerspec its_new, its_old, *p_new;
12981
12982 if (arg3) {
12983 if (target_to_host_itimerspec(&its_new, arg3)) {
12984 return -TARGET_EFAULT;
12985 }
12986 p_new = &its_new;
12987 } else {
12988 p_new = NULL;
12989 }
12990
12991 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
12992
12993 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
12994 return -TARGET_EFAULT;
12995 }
12996 }
12997 return ret;
12998 #endif
12999
13000 #if defined(TARGET_NR_timerfd_settime64) && defined(CONFIG_TIMERFD)
13001 case TARGET_NR_timerfd_settime64:
13002 {
13003 struct itimerspec its_new, its_old, *p_new;
13004
13005 if (arg3) {
13006 if (target_to_host_itimerspec64(&its_new, arg3)) {
13007 return -TARGET_EFAULT;
13008 }
13009 p_new = &its_new;
13010 } else {
13011 p_new = NULL;
13012 }
13013
13014 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
13015
13016 if (arg4 && host_to_target_itimerspec64(arg4, &its_old)) {
13017 return -TARGET_EFAULT;
13018 }
13019 }
13020 return ret;
13021 #endif
13022
13023 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
13024 case TARGET_NR_ioprio_get:
13025 return get_errno(ioprio_get(arg1, arg2));
13026 #endif
13027
13028 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
13029 case TARGET_NR_ioprio_set:
13030 return get_errno(ioprio_set(arg1, arg2, arg3));
13031 #endif
13032
13033 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
13034 case TARGET_NR_setns:
13035 return get_errno(setns(arg1, arg2));
13036 #endif
13037 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
13038 case TARGET_NR_unshare:
13039 return get_errno(unshare(arg1));
13040 #endif
13041 #if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
13042 case TARGET_NR_kcmp:
13043 return get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
13044 #endif
13045 #ifdef TARGET_NR_swapcontext
13046 case TARGET_NR_swapcontext:
13047 /* PowerPC specific. */
13048 return do_swapcontext(cpu_env, arg1, arg2, arg3);
13049 #endif
13050 #ifdef TARGET_NR_memfd_create
13051 case TARGET_NR_memfd_create:
13052 p = lock_user_string(arg1);
13053 if (!p) {
13054 return -TARGET_EFAULT;
13055 }
13056 ret = get_errno(memfd_create(p, arg2));
13057 fd_trans_unregister(ret);
13058 unlock_user(p, arg1, 0);
13059 return ret;
13060 #endif
13061 #if defined TARGET_NR_membarrier && defined __NR_membarrier
13062 case TARGET_NR_membarrier:
13063 return get_errno(membarrier(arg1, arg2));
13064 #endif
13065
13066 #if defined(TARGET_NR_copy_file_range) && defined(__NR_copy_file_range)
13067 case TARGET_NR_copy_file_range:
13068 {
13069 loff_t inoff, outoff;
13070 loff_t *pinoff = NULL, *poutoff = NULL;
13071
13072 if (arg2) {
13073 if (get_user_u64(inoff, arg2)) {
13074 return -TARGET_EFAULT;
13075 }
13076 pinoff = &inoff;
13077 }
13078 if (arg4) {
13079 if (get_user_u64(outoff, arg4)) {
13080 return -TARGET_EFAULT;
13081 }
13082 poutoff = &outoff;
13083 }
13084 /* Do not sign-extend the count parameter. */
13085 ret = get_errno(safe_copy_file_range(arg1, pinoff, arg3, poutoff,
13086 (abi_ulong)arg5, arg6));
13087 if (!is_error(ret) && ret > 0) {
13088 if (arg2) {
13089 if (put_user_u64(inoff, arg2)) {
13090 return -TARGET_EFAULT;
13091 }
13092 }
13093 if (arg4) {
13094 if (put_user_u64(outoff, arg4)) {
13095 return -TARGET_EFAULT;
13096 }
13097 }
13098 }
13099 }
13100 return ret;
13101 #endif
13102
13103 #if defined(TARGET_NR_pivot_root)
13104 case TARGET_NR_pivot_root:
13105 {
13106 void *p2;
13107 p = lock_user_string(arg1); /* new_root */
13108 p2 = lock_user_string(arg2); /* put_old */
13109 if (!p || !p2) {
13110 ret = -TARGET_EFAULT;
13111 } else {
13112 ret = get_errno(pivot_root(p, p2));
13113 }
13114 unlock_user(p2, arg2, 0);
13115 unlock_user(p, arg1, 0);
13116 }
13117 return ret;
13118 #endif
13119
13120 default:
13121 qemu_log_mask(LOG_UNIMP, "Unsupported syscall: %d\n", num);
13122 return -TARGET_ENOSYS;
13123 }
13124 return ret;
13125 }
13126
13127 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
13128 abi_long arg2, abi_long arg3, abi_long arg4,
13129 abi_long arg5, abi_long arg6, abi_long arg7,
13130 abi_long arg8)
13131 {
13132 CPUState *cpu = env_cpu(cpu_env);
13133 abi_long ret;
13134
13135 #ifdef DEBUG_ERESTARTSYS
13136 /* Debug-only code for exercising the syscall-restart code paths
13137 * in the per-architecture cpu main loops: restart every syscall
13138 * the guest makes once before letting it through.
13139 */
13140 {
13141 static bool flag;
13142 flag = !flag;
13143 if (flag) {
13144 return -TARGET_ERESTARTSYS;
13145 }
13146 }
13147 #endif
13148
13149 record_syscall_start(cpu, num, arg1,
13150 arg2, arg3, arg4, arg5, arg6, arg7, arg8);
13151
13152 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13153 print_syscall(cpu_env, num, arg1, arg2, arg3, arg4, arg5, arg6);
13154 }
13155
13156 ret = do_syscall1(cpu_env, num, arg1, arg2, arg3, arg4,
13157 arg5, arg6, arg7, arg8);
13158
13159 if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
13160 print_syscall_ret(cpu_env, num, ret, arg1, arg2,
13161 arg3, arg4, arg5, arg6);
13162 }
13163
13164 record_syscall_return(cpu, num, ret);
13165 return ret;
13166 }