]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/syscall.c
Merge remote-tracking branch 'remotes/mjt/tags/trivial-patches-fetch' into staging
[mirror_qemu.git] / linux-user / syscall.c
1 /*
2 * Linux syscalls
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include <elf.h>
24 #include <endian.h>
25 #include <grp.h>
26 #include <sys/ipc.h>
27 #include <sys/msg.h>
28 #include <sys/wait.h>
29 #include <sys/mount.h>
30 #include <sys/file.h>
31 #include <sys/fsuid.h>
32 #include <sys/personality.h>
33 #include <sys/prctl.h>
34 #include <sys/resource.h>
35 #include <sys/swap.h>
36 #include <linux/capability.h>
37 #include <sched.h>
38 #ifdef __ia64__
39 int __clone2(int (*fn)(void *), void *child_stack_base,
40 size_t stack_size, int flags, void *arg, ...);
41 #endif
42 #include <sys/socket.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/ip.h>
55 #include <netinet/tcp.h>
56 #include <linux/wireless.h>
57 #include <linux/icmp.h>
58 #include "qemu-common.h"
59 #ifdef CONFIG_TIMERFD
60 #include <sys/timerfd.h>
61 #endif
62 #ifdef TARGET_GPROF
63 #include <sys/gmon.h>
64 #endif
65 #ifdef CONFIG_EVENTFD
66 #include <sys/eventfd.h>
67 #endif
68 #ifdef CONFIG_EPOLL
69 #include <sys/epoll.h>
70 #endif
71 #ifdef CONFIG_ATTR
72 #include "qemu/xattr.h"
73 #endif
74 #ifdef CONFIG_SENDFILE
75 #include <sys/sendfile.h>
76 #endif
77
78 #define termios host_termios
79 #define winsize host_winsize
80 #define termio host_termio
81 #define sgttyb host_sgttyb /* same as target */
82 #define tchars host_tchars /* same as target */
83 #define ltchars host_ltchars /* same as target */
84
85 #include <linux/termios.h>
86 #include <linux/unistd.h>
87 #include <linux/cdrom.h>
88 #include <linux/hdreg.h>
89 #include <linux/soundcard.h>
90 #include <linux/kd.h>
91 #include <linux/mtio.h>
92 #include <linux/fs.h>
93 #if defined(CONFIG_FIEMAP)
94 #include <linux/fiemap.h>
95 #endif
96 #include <linux/fb.h>
97 #include <linux/vt.h>
98 #include <linux/dm-ioctl.h>
99 #include <linux/reboot.h>
100 #include <linux/route.h>
101 #include <linux/filter.h>
102 #include <linux/blkpg.h>
103 #include <netpacket/packet.h>
104 #include <linux/netlink.h>
105 #ifdef CONFIG_RTNETLINK
106 #include <linux/rtnetlink.h>
107 #include <linux/if_bridge.h>
108 #endif
109 #include <linux/audit.h>
110 #include "linux_loop.h"
111 #include "uname.h"
112
113 #include "qemu.h"
114
115 #ifndef CLONE_IO
116 #define CLONE_IO 0x80000000 /* Clone io context */
117 #endif
118
119 /* We can't directly call the host clone syscall, because this will
120 * badly confuse libc (breaking mutexes, for example). So we must
121 * divide clone flags into:
122 * * flag combinations that look like pthread_create()
123 * * flag combinations that look like fork()
124 * * flags we can implement within QEMU itself
125 * * flags we can't support and will return an error for
126 */
127 /* For thread creation, all these flags must be present; for
128 * fork, none must be present.
129 */
130 #define CLONE_THREAD_FLAGS \
131 (CLONE_VM | CLONE_FS | CLONE_FILES | \
132 CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
133
134 /* These flags are ignored:
135 * CLONE_DETACHED is now ignored by the kernel;
136 * CLONE_IO is just an optimisation hint to the I/O scheduler
137 */
138 #define CLONE_IGNORED_FLAGS \
139 (CLONE_DETACHED | CLONE_IO)
140
141 /* Flags for fork which we can implement within QEMU itself */
142 #define CLONE_OPTIONAL_FORK_FLAGS \
143 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
144 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
145
146 /* Flags for thread creation which we can implement within QEMU itself */
147 #define CLONE_OPTIONAL_THREAD_FLAGS \
148 (CLONE_SETTLS | CLONE_PARENT_SETTID | \
149 CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
150
151 #define CLONE_INVALID_FORK_FLAGS \
152 (~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
153
154 #define CLONE_INVALID_THREAD_FLAGS \
155 (~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
156 CLONE_IGNORED_FLAGS))
157
158 /* CLONE_VFORK is special cased early in do_fork(). The other flag bits
159 * have almost all been allocated. We cannot support any of
160 * CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
161 * CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
162 * The checks against the invalid thread masks above will catch these.
163 * (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
164 */
165
166 //#define DEBUG
167 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
168 * once. This exercises the codepaths for restart.
169 */
170 //#define DEBUG_ERESTARTSYS
171
172 //#include <linux/msdos_fs.h>
173 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
174 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
175
176 #undef _syscall0
177 #undef _syscall1
178 #undef _syscall2
179 #undef _syscall3
180 #undef _syscall4
181 #undef _syscall5
182 #undef _syscall6
183
184 #define _syscall0(type,name) \
185 static type name (void) \
186 { \
187 return syscall(__NR_##name); \
188 }
189
190 #define _syscall1(type,name,type1,arg1) \
191 static type name (type1 arg1) \
192 { \
193 return syscall(__NR_##name, arg1); \
194 }
195
196 #define _syscall2(type,name,type1,arg1,type2,arg2) \
197 static type name (type1 arg1,type2 arg2) \
198 { \
199 return syscall(__NR_##name, arg1, arg2); \
200 }
201
202 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
203 static type name (type1 arg1,type2 arg2,type3 arg3) \
204 { \
205 return syscall(__NR_##name, arg1, arg2, arg3); \
206 }
207
208 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
209 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
210 { \
211 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
212 }
213
214 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
215 type5,arg5) \
216 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
217 { \
218 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
219 }
220
221
222 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
223 type5,arg5,type6,arg6) \
224 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
225 type6 arg6) \
226 { \
227 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
228 }
229
230
231 #define __NR_sys_uname __NR_uname
232 #define __NR_sys_getcwd1 __NR_getcwd
233 #define __NR_sys_getdents __NR_getdents
234 #define __NR_sys_getdents64 __NR_getdents64
235 #define __NR_sys_getpriority __NR_getpriority
236 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
237 #define __NR_sys_syslog __NR_syslog
238 #define __NR_sys_futex __NR_futex
239 #define __NR_sys_inotify_init __NR_inotify_init
240 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
241 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
242
243 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \
244 defined(__s390x__)
245 #define __NR__llseek __NR_lseek
246 #endif
247
248 /* Newer kernel ports have llseek() instead of _llseek() */
249 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
250 #define TARGET_NR__llseek TARGET_NR_llseek
251 #endif
252
253 #ifdef __NR_gettid
254 _syscall0(int, gettid)
255 #else
256 /* This is a replacement for the host gettid() and must return a host
257 errno. */
258 static int gettid(void) {
259 return -ENOSYS;
260 }
261 #endif
262 #if defined(TARGET_NR_getdents) && defined(__NR_getdents)
263 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
264 #endif
265 #if !defined(__NR_getdents) || \
266 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
267 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
268 #endif
269 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
270 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
271 loff_t *, res, uint, wh);
272 #endif
273 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo)
274 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
275 #ifdef __NR_exit_group
276 _syscall1(int,exit_group,int,error_code)
277 #endif
278 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
279 _syscall1(int,set_tid_address,int *,tidptr)
280 #endif
281 #if defined(TARGET_NR_futex) && defined(__NR_futex)
282 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
283 const struct timespec *,timeout,int *,uaddr2,int,val3)
284 #endif
285 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
286 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
287 unsigned long *, user_mask_ptr);
288 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
289 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
290 unsigned long *, user_mask_ptr);
291 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
292 void *, arg);
293 _syscall2(int, capget, struct __user_cap_header_struct *, header,
294 struct __user_cap_data_struct *, data);
295 _syscall2(int, capset, struct __user_cap_header_struct *, header,
296 struct __user_cap_data_struct *, data);
297 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
298 _syscall2(int, ioprio_get, int, which, int, who)
299 #endif
300 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
301 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
302 #endif
303 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
304 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
305 #endif
306
307 static bitmask_transtbl fcntl_flags_tbl[] = {
308 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
309 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
310 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
311 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
312 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
313 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
314 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
315 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
316 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
317 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
318 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
319 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
320 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
321 #if defined(O_DIRECT)
322 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
323 #endif
324 #if defined(O_NOATIME)
325 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
326 #endif
327 #if defined(O_CLOEXEC)
328 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
329 #endif
330 #if defined(O_PATH)
331 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
332 #endif
333 /* Don't terminate the list prematurely on 64-bit host+guest. */
334 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
335 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
336 #endif
337 { 0, 0, 0, 0 }
338 };
339
340 enum {
341 QEMU_IFLA_BR_UNSPEC,
342 QEMU_IFLA_BR_FORWARD_DELAY,
343 QEMU_IFLA_BR_HELLO_TIME,
344 QEMU_IFLA_BR_MAX_AGE,
345 QEMU_IFLA_BR_AGEING_TIME,
346 QEMU_IFLA_BR_STP_STATE,
347 QEMU_IFLA_BR_PRIORITY,
348 QEMU_IFLA_BR_VLAN_FILTERING,
349 QEMU_IFLA_BR_VLAN_PROTOCOL,
350 QEMU_IFLA_BR_GROUP_FWD_MASK,
351 QEMU_IFLA_BR_ROOT_ID,
352 QEMU_IFLA_BR_BRIDGE_ID,
353 QEMU_IFLA_BR_ROOT_PORT,
354 QEMU_IFLA_BR_ROOT_PATH_COST,
355 QEMU_IFLA_BR_TOPOLOGY_CHANGE,
356 QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED,
357 QEMU_IFLA_BR_HELLO_TIMER,
358 QEMU_IFLA_BR_TCN_TIMER,
359 QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER,
360 QEMU_IFLA_BR_GC_TIMER,
361 QEMU_IFLA_BR_GROUP_ADDR,
362 QEMU_IFLA_BR_FDB_FLUSH,
363 QEMU_IFLA_BR_MCAST_ROUTER,
364 QEMU_IFLA_BR_MCAST_SNOOPING,
365 QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR,
366 QEMU_IFLA_BR_MCAST_QUERIER,
367 QEMU_IFLA_BR_MCAST_HASH_ELASTICITY,
368 QEMU_IFLA_BR_MCAST_HASH_MAX,
369 QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT,
370 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT,
371 QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL,
372 QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL,
373 QEMU_IFLA_BR_MCAST_QUERIER_INTVL,
374 QEMU_IFLA_BR_MCAST_QUERY_INTVL,
375 QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL,
376 QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL,
377 QEMU_IFLA_BR_NF_CALL_IPTABLES,
378 QEMU_IFLA_BR_NF_CALL_IP6TABLES,
379 QEMU_IFLA_BR_NF_CALL_ARPTABLES,
380 QEMU_IFLA_BR_VLAN_DEFAULT_PVID,
381 QEMU_IFLA_BR_PAD,
382 QEMU_IFLA_BR_VLAN_STATS_ENABLED,
383 QEMU_IFLA_BR_MCAST_STATS_ENABLED,
384 QEMU___IFLA_BR_MAX,
385 };
386
387 enum {
388 QEMU_IFLA_UNSPEC,
389 QEMU_IFLA_ADDRESS,
390 QEMU_IFLA_BROADCAST,
391 QEMU_IFLA_IFNAME,
392 QEMU_IFLA_MTU,
393 QEMU_IFLA_LINK,
394 QEMU_IFLA_QDISC,
395 QEMU_IFLA_STATS,
396 QEMU_IFLA_COST,
397 QEMU_IFLA_PRIORITY,
398 QEMU_IFLA_MASTER,
399 QEMU_IFLA_WIRELESS,
400 QEMU_IFLA_PROTINFO,
401 QEMU_IFLA_TXQLEN,
402 QEMU_IFLA_MAP,
403 QEMU_IFLA_WEIGHT,
404 QEMU_IFLA_OPERSTATE,
405 QEMU_IFLA_LINKMODE,
406 QEMU_IFLA_LINKINFO,
407 QEMU_IFLA_NET_NS_PID,
408 QEMU_IFLA_IFALIAS,
409 QEMU_IFLA_NUM_VF,
410 QEMU_IFLA_VFINFO_LIST,
411 QEMU_IFLA_STATS64,
412 QEMU_IFLA_VF_PORTS,
413 QEMU_IFLA_PORT_SELF,
414 QEMU_IFLA_AF_SPEC,
415 QEMU_IFLA_GROUP,
416 QEMU_IFLA_NET_NS_FD,
417 QEMU_IFLA_EXT_MASK,
418 QEMU_IFLA_PROMISCUITY,
419 QEMU_IFLA_NUM_TX_QUEUES,
420 QEMU_IFLA_NUM_RX_QUEUES,
421 QEMU_IFLA_CARRIER,
422 QEMU_IFLA_PHYS_PORT_ID,
423 QEMU_IFLA_CARRIER_CHANGES,
424 QEMU_IFLA_PHYS_SWITCH_ID,
425 QEMU_IFLA_LINK_NETNSID,
426 QEMU_IFLA_PHYS_PORT_NAME,
427 QEMU_IFLA_PROTO_DOWN,
428 QEMU_IFLA_GSO_MAX_SEGS,
429 QEMU_IFLA_GSO_MAX_SIZE,
430 QEMU_IFLA_PAD,
431 QEMU_IFLA_XDP,
432 QEMU___IFLA_MAX
433 };
434
435 enum {
436 QEMU_IFLA_BRPORT_UNSPEC,
437 QEMU_IFLA_BRPORT_STATE,
438 QEMU_IFLA_BRPORT_PRIORITY,
439 QEMU_IFLA_BRPORT_COST,
440 QEMU_IFLA_BRPORT_MODE,
441 QEMU_IFLA_BRPORT_GUARD,
442 QEMU_IFLA_BRPORT_PROTECT,
443 QEMU_IFLA_BRPORT_FAST_LEAVE,
444 QEMU_IFLA_BRPORT_LEARNING,
445 QEMU_IFLA_BRPORT_UNICAST_FLOOD,
446 QEMU_IFLA_BRPORT_PROXYARP,
447 QEMU_IFLA_BRPORT_LEARNING_SYNC,
448 QEMU_IFLA_BRPORT_PROXYARP_WIFI,
449 QEMU_IFLA_BRPORT_ROOT_ID,
450 QEMU_IFLA_BRPORT_BRIDGE_ID,
451 QEMU_IFLA_BRPORT_DESIGNATED_PORT,
452 QEMU_IFLA_BRPORT_DESIGNATED_COST,
453 QEMU_IFLA_BRPORT_ID,
454 QEMU_IFLA_BRPORT_NO,
455 QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK,
456 QEMU_IFLA_BRPORT_CONFIG_PENDING,
457 QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER,
458 QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER,
459 QEMU_IFLA_BRPORT_HOLD_TIMER,
460 QEMU_IFLA_BRPORT_FLUSH,
461 QEMU_IFLA_BRPORT_MULTICAST_ROUTER,
462 QEMU_IFLA_BRPORT_PAD,
463 QEMU___IFLA_BRPORT_MAX
464 };
465
466 enum {
467 QEMU_IFLA_INFO_UNSPEC,
468 QEMU_IFLA_INFO_KIND,
469 QEMU_IFLA_INFO_DATA,
470 QEMU_IFLA_INFO_XSTATS,
471 QEMU_IFLA_INFO_SLAVE_KIND,
472 QEMU_IFLA_INFO_SLAVE_DATA,
473 QEMU___IFLA_INFO_MAX,
474 };
475
476 enum {
477 QEMU_IFLA_INET_UNSPEC,
478 QEMU_IFLA_INET_CONF,
479 QEMU___IFLA_INET_MAX,
480 };
481
482 enum {
483 QEMU_IFLA_INET6_UNSPEC,
484 QEMU_IFLA_INET6_FLAGS,
485 QEMU_IFLA_INET6_CONF,
486 QEMU_IFLA_INET6_STATS,
487 QEMU_IFLA_INET6_MCAST,
488 QEMU_IFLA_INET6_CACHEINFO,
489 QEMU_IFLA_INET6_ICMP6STATS,
490 QEMU_IFLA_INET6_TOKEN,
491 QEMU_IFLA_INET6_ADDR_GEN_MODE,
492 QEMU___IFLA_INET6_MAX
493 };
494
495 typedef abi_long (*TargetFdDataFunc)(void *, size_t);
496 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t);
497 typedef struct TargetFdTrans {
498 TargetFdDataFunc host_to_target_data;
499 TargetFdDataFunc target_to_host_data;
500 TargetFdAddrFunc target_to_host_addr;
501 } TargetFdTrans;
502
503 static TargetFdTrans **target_fd_trans;
504
505 static unsigned int target_fd_max;
506
507 static TargetFdDataFunc fd_trans_target_to_host_data(int fd)
508 {
509 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
510 return target_fd_trans[fd]->target_to_host_data;
511 }
512 return NULL;
513 }
514
515 static TargetFdDataFunc fd_trans_host_to_target_data(int fd)
516 {
517 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
518 return target_fd_trans[fd]->host_to_target_data;
519 }
520 return NULL;
521 }
522
523 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd)
524 {
525 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
526 return target_fd_trans[fd]->target_to_host_addr;
527 }
528 return NULL;
529 }
530
531 static void fd_trans_register(int fd, TargetFdTrans *trans)
532 {
533 unsigned int oldmax;
534
535 if (fd >= target_fd_max) {
536 oldmax = target_fd_max;
537 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */
538 target_fd_trans = g_renew(TargetFdTrans *,
539 target_fd_trans, target_fd_max);
540 memset((void *)(target_fd_trans + oldmax), 0,
541 (target_fd_max - oldmax) * sizeof(TargetFdTrans *));
542 }
543 target_fd_trans[fd] = trans;
544 }
545
546 static void fd_trans_unregister(int fd)
547 {
548 if (fd >= 0 && fd < target_fd_max) {
549 target_fd_trans[fd] = NULL;
550 }
551 }
552
553 static void fd_trans_dup(int oldfd, int newfd)
554 {
555 fd_trans_unregister(newfd);
556 if (oldfd < target_fd_max && target_fd_trans[oldfd]) {
557 fd_trans_register(newfd, target_fd_trans[oldfd]);
558 }
559 }
560
561 static int sys_getcwd1(char *buf, size_t size)
562 {
563 if (getcwd(buf, size) == NULL) {
564 /* getcwd() sets errno */
565 return (-1);
566 }
567 return strlen(buf)+1;
568 }
569
570 #ifdef TARGET_NR_utimensat
571 #if defined(__NR_utimensat)
572 #define __NR_sys_utimensat __NR_utimensat
573 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
574 const struct timespec *,tsp,int,flags)
575 #else
576 static int sys_utimensat(int dirfd, const char *pathname,
577 const struct timespec times[2], int flags)
578 {
579 errno = ENOSYS;
580 return -1;
581 }
582 #endif
583 #endif /* TARGET_NR_utimensat */
584
585 #ifdef CONFIG_INOTIFY
586 #include <sys/inotify.h>
587
588 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
589 static int sys_inotify_init(void)
590 {
591 return (inotify_init());
592 }
593 #endif
594 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
595 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
596 {
597 return (inotify_add_watch(fd, pathname, mask));
598 }
599 #endif
600 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
601 static int sys_inotify_rm_watch(int fd, int32_t wd)
602 {
603 return (inotify_rm_watch(fd, wd));
604 }
605 #endif
606 #ifdef CONFIG_INOTIFY1
607 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
608 static int sys_inotify_init1(int flags)
609 {
610 return (inotify_init1(flags));
611 }
612 #endif
613 #endif
614 #else
615 /* Userspace can usually survive runtime without inotify */
616 #undef TARGET_NR_inotify_init
617 #undef TARGET_NR_inotify_init1
618 #undef TARGET_NR_inotify_add_watch
619 #undef TARGET_NR_inotify_rm_watch
620 #endif /* CONFIG_INOTIFY */
621
622 #if defined(TARGET_NR_prlimit64)
623 #ifndef __NR_prlimit64
624 # define __NR_prlimit64 -1
625 #endif
626 #define __NR_sys_prlimit64 __NR_prlimit64
627 /* The glibc rlimit structure may not be that used by the underlying syscall */
628 struct host_rlimit64 {
629 uint64_t rlim_cur;
630 uint64_t rlim_max;
631 };
632 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
633 const struct host_rlimit64 *, new_limit,
634 struct host_rlimit64 *, old_limit)
635 #endif
636
637
638 #if defined(TARGET_NR_timer_create)
639 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
640 static timer_t g_posix_timers[32] = { 0, } ;
641
642 static inline int next_free_host_timer(void)
643 {
644 int k ;
645 /* FIXME: Does finding the next free slot require a lock? */
646 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
647 if (g_posix_timers[k] == 0) {
648 g_posix_timers[k] = (timer_t) 1;
649 return k;
650 }
651 }
652 return -1;
653 }
654 #endif
655
656 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
657 #ifdef TARGET_ARM
658 static inline int regpairs_aligned(void *cpu_env) {
659 return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
660 }
661 #elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
662 static inline int regpairs_aligned(void *cpu_env) { return 1; }
663 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
664 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
665 * of registers which translates to the same as ARM/MIPS, because we start with
666 * r3 as arg1 */
667 static inline int regpairs_aligned(void *cpu_env) { return 1; }
668 #else
669 static inline int regpairs_aligned(void *cpu_env) { return 0; }
670 #endif
671
672 #define ERRNO_TABLE_SIZE 1200
673
674 /* target_to_host_errno_table[] is initialized from
675 * host_to_target_errno_table[] in syscall_init(). */
676 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
677 };
678
679 /*
680 * This list is the union of errno values overridden in asm-<arch>/errno.h
681 * minus the errnos that are not actually generic to all archs.
682 */
683 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
684 [EAGAIN] = TARGET_EAGAIN,
685 [EIDRM] = TARGET_EIDRM,
686 [ECHRNG] = TARGET_ECHRNG,
687 [EL2NSYNC] = TARGET_EL2NSYNC,
688 [EL3HLT] = TARGET_EL3HLT,
689 [EL3RST] = TARGET_EL3RST,
690 [ELNRNG] = TARGET_ELNRNG,
691 [EUNATCH] = TARGET_EUNATCH,
692 [ENOCSI] = TARGET_ENOCSI,
693 [EL2HLT] = TARGET_EL2HLT,
694 [EDEADLK] = TARGET_EDEADLK,
695 [ENOLCK] = TARGET_ENOLCK,
696 [EBADE] = TARGET_EBADE,
697 [EBADR] = TARGET_EBADR,
698 [EXFULL] = TARGET_EXFULL,
699 [ENOANO] = TARGET_ENOANO,
700 [EBADRQC] = TARGET_EBADRQC,
701 [EBADSLT] = TARGET_EBADSLT,
702 [EBFONT] = TARGET_EBFONT,
703 [ENOSTR] = TARGET_ENOSTR,
704 [ENODATA] = TARGET_ENODATA,
705 [ETIME] = TARGET_ETIME,
706 [ENOSR] = TARGET_ENOSR,
707 [ENONET] = TARGET_ENONET,
708 [ENOPKG] = TARGET_ENOPKG,
709 [EREMOTE] = TARGET_EREMOTE,
710 [ENOLINK] = TARGET_ENOLINK,
711 [EADV] = TARGET_EADV,
712 [ESRMNT] = TARGET_ESRMNT,
713 [ECOMM] = TARGET_ECOMM,
714 [EPROTO] = TARGET_EPROTO,
715 [EDOTDOT] = TARGET_EDOTDOT,
716 [EMULTIHOP] = TARGET_EMULTIHOP,
717 [EBADMSG] = TARGET_EBADMSG,
718 [ENAMETOOLONG] = TARGET_ENAMETOOLONG,
719 [EOVERFLOW] = TARGET_EOVERFLOW,
720 [ENOTUNIQ] = TARGET_ENOTUNIQ,
721 [EBADFD] = TARGET_EBADFD,
722 [EREMCHG] = TARGET_EREMCHG,
723 [ELIBACC] = TARGET_ELIBACC,
724 [ELIBBAD] = TARGET_ELIBBAD,
725 [ELIBSCN] = TARGET_ELIBSCN,
726 [ELIBMAX] = TARGET_ELIBMAX,
727 [ELIBEXEC] = TARGET_ELIBEXEC,
728 [EILSEQ] = TARGET_EILSEQ,
729 [ENOSYS] = TARGET_ENOSYS,
730 [ELOOP] = TARGET_ELOOP,
731 [ERESTART] = TARGET_ERESTART,
732 [ESTRPIPE] = TARGET_ESTRPIPE,
733 [ENOTEMPTY] = TARGET_ENOTEMPTY,
734 [EUSERS] = TARGET_EUSERS,
735 [ENOTSOCK] = TARGET_ENOTSOCK,
736 [EDESTADDRREQ] = TARGET_EDESTADDRREQ,
737 [EMSGSIZE] = TARGET_EMSGSIZE,
738 [EPROTOTYPE] = TARGET_EPROTOTYPE,
739 [ENOPROTOOPT] = TARGET_ENOPROTOOPT,
740 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT,
741 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT,
742 [EOPNOTSUPP] = TARGET_EOPNOTSUPP,
743 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT,
744 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT,
745 [EADDRINUSE] = TARGET_EADDRINUSE,
746 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL,
747 [ENETDOWN] = TARGET_ENETDOWN,
748 [ENETUNREACH] = TARGET_ENETUNREACH,
749 [ENETRESET] = TARGET_ENETRESET,
750 [ECONNABORTED] = TARGET_ECONNABORTED,
751 [ECONNRESET] = TARGET_ECONNRESET,
752 [ENOBUFS] = TARGET_ENOBUFS,
753 [EISCONN] = TARGET_EISCONN,
754 [ENOTCONN] = TARGET_ENOTCONN,
755 [EUCLEAN] = TARGET_EUCLEAN,
756 [ENOTNAM] = TARGET_ENOTNAM,
757 [ENAVAIL] = TARGET_ENAVAIL,
758 [EISNAM] = TARGET_EISNAM,
759 [EREMOTEIO] = TARGET_EREMOTEIO,
760 [EDQUOT] = TARGET_EDQUOT,
761 [ESHUTDOWN] = TARGET_ESHUTDOWN,
762 [ETOOMANYREFS] = TARGET_ETOOMANYREFS,
763 [ETIMEDOUT] = TARGET_ETIMEDOUT,
764 [ECONNREFUSED] = TARGET_ECONNREFUSED,
765 [EHOSTDOWN] = TARGET_EHOSTDOWN,
766 [EHOSTUNREACH] = TARGET_EHOSTUNREACH,
767 [EALREADY] = TARGET_EALREADY,
768 [EINPROGRESS] = TARGET_EINPROGRESS,
769 [ESTALE] = TARGET_ESTALE,
770 [ECANCELED] = TARGET_ECANCELED,
771 [ENOMEDIUM] = TARGET_ENOMEDIUM,
772 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE,
773 #ifdef ENOKEY
774 [ENOKEY] = TARGET_ENOKEY,
775 #endif
776 #ifdef EKEYEXPIRED
777 [EKEYEXPIRED] = TARGET_EKEYEXPIRED,
778 #endif
779 #ifdef EKEYREVOKED
780 [EKEYREVOKED] = TARGET_EKEYREVOKED,
781 #endif
782 #ifdef EKEYREJECTED
783 [EKEYREJECTED] = TARGET_EKEYREJECTED,
784 #endif
785 #ifdef EOWNERDEAD
786 [EOWNERDEAD] = TARGET_EOWNERDEAD,
787 #endif
788 #ifdef ENOTRECOVERABLE
789 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE,
790 #endif
791 };
792
793 static inline int host_to_target_errno(int err)
794 {
795 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
796 host_to_target_errno_table[err]) {
797 return host_to_target_errno_table[err];
798 }
799 return err;
800 }
801
802 static inline int target_to_host_errno(int err)
803 {
804 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
805 target_to_host_errno_table[err]) {
806 return target_to_host_errno_table[err];
807 }
808 return err;
809 }
810
811 static inline abi_long get_errno(abi_long ret)
812 {
813 if (ret == -1)
814 return -host_to_target_errno(errno);
815 else
816 return ret;
817 }
818
819 static inline int is_error(abi_long ret)
820 {
821 return (abi_ulong)ret >= (abi_ulong)(-4096);
822 }
823
824 const char *target_strerror(int err)
825 {
826 if (err == TARGET_ERESTARTSYS) {
827 return "To be restarted";
828 }
829 if (err == TARGET_QEMU_ESIGRETURN) {
830 return "Successful exit from sigreturn";
831 }
832
833 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
834 return NULL;
835 }
836 return strerror(target_to_host_errno(err));
837 }
838
839 #define safe_syscall0(type, name) \
840 static type safe_##name(void) \
841 { \
842 return safe_syscall(__NR_##name); \
843 }
844
845 #define safe_syscall1(type, name, type1, arg1) \
846 static type safe_##name(type1 arg1) \
847 { \
848 return safe_syscall(__NR_##name, arg1); \
849 }
850
851 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
852 static type safe_##name(type1 arg1, type2 arg2) \
853 { \
854 return safe_syscall(__NR_##name, arg1, arg2); \
855 }
856
857 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
858 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
859 { \
860 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
861 }
862
863 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
864 type4, arg4) \
865 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
866 { \
867 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
868 }
869
870 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
871 type4, arg4, type5, arg5) \
872 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
873 type5 arg5) \
874 { \
875 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
876 }
877
878 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
879 type4, arg4, type5, arg5, type6, arg6) \
880 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
881 type5 arg5, type6 arg6) \
882 { \
883 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
884 }
885
886 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
887 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
888 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
889 int, flags, mode_t, mode)
890 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
891 struct rusage *, rusage)
892 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
893 int, options, struct rusage *, rusage)
894 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
895 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
896 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
897 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
898 struct timespec *, tsp, const sigset_t *, sigmask,
899 size_t, sigsetsize)
900 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
901 int, maxevents, int, timeout, const sigset_t *, sigmask,
902 size_t, sigsetsize)
903 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
904 const struct timespec *,timeout,int *,uaddr2,int,val3)
905 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
906 safe_syscall2(int, kill, pid_t, pid, int, sig)
907 safe_syscall2(int, tkill, int, tid, int, sig)
908 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
909 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
910 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
911 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
912 socklen_t, addrlen)
913 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
914 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
915 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
916 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
917 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
918 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
919 safe_syscall2(int, flock, int, fd, int, operation)
920 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
921 const struct timespec *, uts, size_t, sigsetsize)
922 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
923 int, flags)
924 safe_syscall2(int, nanosleep, const struct timespec *, req,
925 struct timespec *, rem)
926 #ifdef TARGET_NR_clock_nanosleep
927 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
928 const struct timespec *, req, struct timespec *, rem)
929 #endif
930 #ifdef __NR_msgsnd
931 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
932 int, flags)
933 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
934 long, msgtype, int, flags)
935 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
936 unsigned, nsops, const struct timespec *, timeout)
937 #else
938 /* This host kernel architecture uses a single ipc syscall; fake up
939 * wrappers for the sub-operations to hide this implementation detail.
940 * Annoyingly we can't include linux/ipc.h to get the constant definitions
941 * for the call parameter because some structs in there conflict with the
942 * sys/ipc.h ones. So we just define them here, and rely on them being
943 * the same for all host architectures.
944 */
945 #define Q_SEMTIMEDOP 4
946 #define Q_MSGSND 11
947 #define Q_MSGRCV 12
948 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP))
949
950 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
951 void *, ptr, long, fifth)
952 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags)
953 {
954 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0);
955 }
956 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags)
957 {
958 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type);
959 }
960 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops,
961 const struct timespec *timeout)
962 {
963 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops,
964 (long)timeout);
965 }
966 #endif
967 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
968 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
969 size_t, len, unsigned, prio, const struct timespec *, timeout)
970 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
971 size_t, len, unsigned *, prio, const struct timespec *, timeout)
972 #endif
973 /* We do ioctl like this rather than via safe_syscall3 to preserve the
974 * "third argument might be integer or pointer or not present" behaviour of
975 * the libc function.
976 */
977 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
978 /* Similarly for fcntl. Note that callers must always:
979 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
980 * use the flock64 struct rather than unsuffixed flock
981 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
982 */
983 #ifdef __NR_fcntl64
984 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
985 #else
986 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
987 #endif
988
989 static inline int host_to_target_sock_type(int host_type)
990 {
991 int target_type;
992
993 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
994 case SOCK_DGRAM:
995 target_type = TARGET_SOCK_DGRAM;
996 break;
997 case SOCK_STREAM:
998 target_type = TARGET_SOCK_STREAM;
999 break;
1000 default:
1001 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
1002 break;
1003 }
1004
1005 #if defined(SOCK_CLOEXEC)
1006 if (host_type & SOCK_CLOEXEC) {
1007 target_type |= TARGET_SOCK_CLOEXEC;
1008 }
1009 #endif
1010
1011 #if defined(SOCK_NONBLOCK)
1012 if (host_type & SOCK_NONBLOCK) {
1013 target_type |= TARGET_SOCK_NONBLOCK;
1014 }
1015 #endif
1016
1017 return target_type;
1018 }
1019
1020 static abi_ulong target_brk;
1021 static abi_ulong target_original_brk;
1022 static abi_ulong brk_page;
1023
1024 void target_set_brk(abi_ulong new_brk)
1025 {
1026 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
1027 brk_page = HOST_PAGE_ALIGN(target_brk);
1028 }
1029
1030 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
1031 #define DEBUGF_BRK(message, args...)
1032
1033 /* do_brk() must return target values and target errnos. */
1034 abi_long do_brk(abi_ulong new_brk)
1035 {
1036 abi_long mapped_addr;
1037 abi_ulong new_alloc_size;
1038
1039 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
1040
1041 if (!new_brk) {
1042 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
1043 return target_brk;
1044 }
1045 if (new_brk < target_original_brk) {
1046 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
1047 target_brk);
1048 return target_brk;
1049 }
1050
1051 /* If the new brk is less than the highest page reserved to the
1052 * target heap allocation, set it and we're almost done... */
1053 if (new_brk <= brk_page) {
1054 /* Heap contents are initialized to zero, as for anonymous
1055 * mapped pages. */
1056 if (new_brk > target_brk) {
1057 memset(g2h(target_brk), 0, new_brk - target_brk);
1058 }
1059 target_brk = new_brk;
1060 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
1061 return target_brk;
1062 }
1063
1064 /* We need to allocate more memory after the brk... Note that
1065 * we don't use MAP_FIXED because that will map over the top of
1066 * any existing mapping (like the one with the host libc or qemu
1067 * itself); instead we treat "mapped but at wrong address" as
1068 * a failure and unmap again.
1069 */
1070 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
1071 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
1072 PROT_READ|PROT_WRITE,
1073 MAP_ANON|MAP_PRIVATE, 0, 0));
1074
1075 if (mapped_addr == brk_page) {
1076 /* Heap contents are initialized to zero, as for anonymous
1077 * mapped pages. Technically the new pages are already
1078 * initialized to zero since they *are* anonymous mapped
1079 * pages, however we have to take care with the contents that
1080 * come from the remaining part of the previous page: it may
1081 * contains garbage data due to a previous heap usage (grown
1082 * then shrunken). */
1083 memset(g2h(target_brk), 0, brk_page - target_brk);
1084
1085 target_brk = new_brk;
1086 brk_page = HOST_PAGE_ALIGN(target_brk);
1087 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
1088 target_brk);
1089 return target_brk;
1090 } else if (mapped_addr != -1) {
1091 /* Mapped but at wrong address, meaning there wasn't actually
1092 * enough space for this brk.
1093 */
1094 target_munmap(mapped_addr, new_alloc_size);
1095 mapped_addr = -1;
1096 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
1097 }
1098 else {
1099 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
1100 }
1101
1102 #if defined(TARGET_ALPHA)
1103 /* We (partially) emulate OSF/1 on Alpha, which requires we
1104 return a proper errno, not an unchanged brk value. */
1105 return -TARGET_ENOMEM;
1106 #endif
1107 /* For everything else, return the previous break. */
1108 return target_brk;
1109 }
1110
1111 static inline abi_long copy_from_user_fdset(fd_set *fds,
1112 abi_ulong target_fds_addr,
1113 int n)
1114 {
1115 int i, nw, j, k;
1116 abi_ulong b, *target_fds;
1117
1118 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1119 if (!(target_fds = lock_user(VERIFY_READ,
1120 target_fds_addr,
1121 sizeof(abi_ulong) * nw,
1122 1)))
1123 return -TARGET_EFAULT;
1124
1125 FD_ZERO(fds);
1126 k = 0;
1127 for (i = 0; i < nw; i++) {
1128 /* grab the abi_ulong */
1129 __get_user(b, &target_fds[i]);
1130 for (j = 0; j < TARGET_ABI_BITS; j++) {
1131 /* check the bit inside the abi_ulong */
1132 if ((b >> j) & 1)
1133 FD_SET(k, fds);
1134 k++;
1135 }
1136 }
1137
1138 unlock_user(target_fds, target_fds_addr, 0);
1139
1140 return 0;
1141 }
1142
1143 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
1144 abi_ulong target_fds_addr,
1145 int n)
1146 {
1147 if (target_fds_addr) {
1148 if (copy_from_user_fdset(fds, target_fds_addr, n))
1149 return -TARGET_EFAULT;
1150 *fds_ptr = fds;
1151 } else {
1152 *fds_ptr = NULL;
1153 }
1154 return 0;
1155 }
1156
1157 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
1158 const fd_set *fds,
1159 int n)
1160 {
1161 int i, nw, j, k;
1162 abi_long v;
1163 abi_ulong *target_fds;
1164
1165 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
1166 if (!(target_fds = lock_user(VERIFY_WRITE,
1167 target_fds_addr,
1168 sizeof(abi_ulong) * nw,
1169 0)))
1170 return -TARGET_EFAULT;
1171
1172 k = 0;
1173 for (i = 0; i < nw; i++) {
1174 v = 0;
1175 for (j = 0; j < TARGET_ABI_BITS; j++) {
1176 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
1177 k++;
1178 }
1179 __put_user(v, &target_fds[i]);
1180 }
1181
1182 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
1183
1184 return 0;
1185 }
1186
1187 #if defined(__alpha__)
1188 #define HOST_HZ 1024
1189 #else
1190 #define HOST_HZ 100
1191 #endif
1192
1193 static inline abi_long host_to_target_clock_t(long ticks)
1194 {
1195 #if HOST_HZ == TARGET_HZ
1196 return ticks;
1197 #else
1198 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1199 #endif
1200 }
1201
1202 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1203 const struct rusage *rusage)
1204 {
1205 struct target_rusage *target_rusage;
1206
1207 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1208 return -TARGET_EFAULT;
1209 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1210 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1211 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1212 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1213 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1214 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1215 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1216 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1217 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1218 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1219 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1220 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1221 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1222 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1223 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1224 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1225 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1226 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1227 unlock_user_struct(target_rusage, target_addr, 1);
1228
1229 return 0;
1230 }
1231
1232 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1233 {
1234 abi_ulong target_rlim_swap;
1235 rlim_t result;
1236
1237 target_rlim_swap = tswapal(target_rlim);
1238 if (target_rlim_swap == TARGET_RLIM_INFINITY)
1239 return RLIM_INFINITY;
1240
1241 result = target_rlim_swap;
1242 if (target_rlim_swap != (rlim_t)result)
1243 return RLIM_INFINITY;
1244
1245 return result;
1246 }
1247
1248 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1249 {
1250 abi_ulong target_rlim_swap;
1251 abi_ulong result;
1252
1253 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1254 target_rlim_swap = TARGET_RLIM_INFINITY;
1255 else
1256 target_rlim_swap = rlim;
1257 result = tswapal(target_rlim_swap);
1258
1259 return result;
1260 }
1261
1262 static inline int target_to_host_resource(int code)
1263 {
1264 switch (code) {
1265 case TARGET_RLIMIT_AS:
1266 return RLIMIT_AS;
1267 case TARGET_RLIMIT_CORE:
1268 return RLIMIT_CORE;
1269 case TARGET_RLIMIT_CPU:
1270 return RLIMIT_CPU;
1271 case TARGET_RLIMIT_DATA:
1272 return RLIMIT_DATA;
1273 case TARGET_RLIMIT_FSIZE:
1274 return RLIMIT_FSIZE;
1275 case TARGET_RLIMIT_LOCKS:
1276 return RLIMIT_LOCKS;
1277 case TARGET_RLIMIT_MEMLOCK:
1278 return RLIMIT_MEMLOCK;
1279 case TARGET_RLIMIT_MSGQUEUE:
1280 return RLIMIT_MSGQUEUE;
1281 case TARGET_RLIMIT_NICE:
1282 return RLIMIT_NICE;
1283 case TARGET_RLIMIT_NOFILE:
1284 return RLIMIT_NOFILE;
1285 case TARGET_RLIMIT_NPROC:
1286 return RLIMIT_NPROC;
1287 case TARGET_RLIMIT_RSS:
1288 return RLIMIT_RSS;
1289 case TARGET_RLIMIT_RTPRIO:
1290 return RLIMIT_RTPRIO;
1291 case TARGET_RLIMIT_SIGPENDING:
1292 return RLIMIT_SIGPENDING;
1293 case TARGET_RLIMIT_STACK:
1294 return RLIMIT_STACK;
1295 default:
1296 return code;
1297 }
1298 }
1299
1300 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1301 abi_ulong target_tv_addr)
1302 {
1303 struct target_timeval *target_tv;
1304
1305 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1))
1306 return -TARGET_EFAULT;
1307
1308 __get_user(tv->tv_sec, &target_tv->tv_sec);
1309 __get_user(tv->tv_usec, &target_tv->tv_usec);
1310
1311 unlock_user_struct(target_tv, target_tv_addr, 0);
1312
1313 return 0;
1314 }
1315
1316 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1317 const struct timeval *tv)
1318 {
1319 struct target_timeval *target_tv;
1320
1321 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0))
1322 return -TARGET_EFAULT;
1323
1324 __put_user(tv->tv_sec, &target_tv->tv_sec);
1325 __put_user(tv->tv_usec, &target_tv->tv_usec);
1326
1327 unlock_user_struct(target_tv, target_tv_addr, 1);
1328
1329 return 0;
1330 }
1331
1332 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1333 abi_ulong target_tz_addr)
1334 {
1335 struct target_timezone *target_tz;
1336
1337 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1338 return -TARGET_EFAULT;
1339 }
1340
1341 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1342 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1343
1344 unlock_user_struct(target_tz, target_tz_addr, 0);
1345
1346 return 0;
1347 }
1348
1349 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1350 #include <mqueue.h>
1351
1352 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1353 abi_ulong target_mq_attr_addr)
1354 {
1355 struct target_mq_attr *target_mq_attr;
1356
1357 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1358 target_mq_attr_addr, 1))
1359 return -TARGET_EFAULT;
1360
1361 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1362 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1363 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1364 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1365
1366 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1367
1368 return 0;
1369 }
1370
1371 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1372 const struct mq_attr *attr)
1373 {
1374 struct target_mq_attr *target_mq_attr;
1375
1376 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1377 target_mq_attr_addr, 0))
1378 return -TARGET_EFAULT;
1379
1380 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1381 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1382 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1383 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1384
1385 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1386
1387 return 0;
1388 }
1389 #endif
1390
1391 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1392 /* do_select() must return target values and target errnos. */
1393 static abi_long do_select(int n,
1394 abi_ulong rfd_addr, abi_ulong wfd_addr,
1395 abi_ulong efd_addr, abi_ulong target_tv_addr)
1396 {
1397 fd_set rfds, wfds, efds;
1398 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1399 struct timeval tv;
1400 struct timespec ts, *ts_ptr;
1401 abi_long ret;
1402
1403 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1404 if (ret) {
1405 return ret;
1406 }
1407 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1408 if (ret) {
1409 return ret;
1410 }
1411 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1412 if (ret) {
1413 return ret;
1414 }
1415
1416 if (target_tv_addr) {
1417 if (copy_from_user_timeval(&tv, target_tv_addr))
1418 return -TARGET_EFAULT;
1419 ts.tv_sec = tv.tv_sec;
1420 ts.tv_nsec = tv.tv_usec * 1000;
1421 ts_ptr = &ts;
1422 } else {
1423 ts_ptr = NULL;
1424 }
1425
1426 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1427 ts_ptr, NULL));
1428
1429 if (!is_error(ret)) {
1430 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1431 return -TARGET_EFAULT;
1432 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1433 return -TARGET_EFAULT;
1434 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1435 return -TARGET_EFAULT;
1436
1437 if (target_tv_addr) {
1438 tv.tv_sec = ts.tv_sec;
1439 tv.tv_usec = ts.tv_nsec / 1000;
1440 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1441 return -TARGET_EFAULT;
1442 }
1443 }
1444 }
1445
1446 return ret;
1447 }
1448
1449 #if defined(TARGET_WANT_OLD_SYS_SELECT)
1450 static abi_long do_old_select(abi_ulong arg1)
1451 {
1452 struct target_sel_arg_struct *sel;
1453 abi_ulong inp, outp, exp, tvp;
1454 long nsel;
1455
1456 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
1457 return -TARGET_EFAULT;
1458 }
1459
1460 nsel = tswapal(sel->n);
1461 inp = tswapal(sel->inp);
1462 outp = tswapal(sel->outp);
1463 exp = tswapal(sel->exp);
1464 tvp = tswapal(sel->tvp);
1465
1466 unlock_user_struct(sel, arg1, 0);
1467
1468 return do_select(nsel, inp, outp, exp, tvp);
1469 }
1470 #endif
1471 #endif
1472
1473 static abi_long do_pipe2(int host_pipe[], int flags)
1474 {
1475 #ifdef CONFIG_PIPE2
1476 return pipe2(host_pipe, flags);
1477 #else
1478 return -ENOSYS;
1479 #endif
1480 }
1481
1482 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1483 int flags, int is_pipe2)
1484 {
1485 int host_pipe[2];
1486 abi_long ret;
1487 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1488
1489 if (is_error(ret))
1490 return get_errno(ret);
1491
1492 /* Several targets have special calling conventions for the original
1493 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1494 if (!is_pipe2) {
1495 #if defined(TARGET_ALPHA)
1496 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1497 return host_pipe[0];
1498 #elif defined(TARGET_MIPS)
1499 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1500 return host_pipe[0];
1501 #elif defined(TARGET_SH4)
1502 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1503 return host_pipe[0];
1504 #elif defined(TARGET_SPARC)
1505 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1506 return host_pipe[0];
1507 #endif
1508 }
1509
1510 if (put_user_s32(host_pipe[0], pipedes)
1511 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1512 return -TARGET_EFAULT;
1513 return get_errno(ret);
1514 }
1515
1516 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1517 abi_ulong target_addr,
1518 socklen_t len)
1519 {
1520 struct target_ip_mreqn *target_smreqn;
1521
1522 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1523 if (!target_smreqn)
1524 return -TARGET_EFAULT;
1525 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1526 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1527 if (len == sizeof(struct target_ip_mreqn))
1528 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1529 unlock_user(target_smreqn, target_addr, 0);
1530
1531 return 0;
1532 }
1533
1534 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1535 abi_ulong target_addr,
1536 socklen_t len)
1537 {
1538 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1539 sa_family_t sa_family;
1540 struct target_sockaddr *target_saddr;
1541
1542 if (fd_trans_target_to_host_addr(fd)) {
1543 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1544 }
1545
1546 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1547 if (!target_saddr)
1548 return -TARGET_EFAULT;
1549
1550 sa_family = tswap16(target_saddr->sa_family);
1551
1552 /* Oops. The caller might send a incomplete sun_path; sun_path
1553 * must be terminated by \0 (see the manual page), but
1554 * unfortunately it is quite common to specify sockaddr_un
1555 * length as "strlen(x->sun_path)" while it should be
1556 * "strlen(...) + 1". We'll fix that here if needed.
1557 * Linux kernel has a similar feature.
1558 */
1559
1560 if (sa_family == AF_UNIX) {
1561 if (len < unix_maxlen && len > 0) {
1562 char *cp = (char*)target_saddr;
1563
1564 if ( cp[len-1] && !cp[len] )
1565 len++;
1566 }
1567 if (len > unix_maxlen)
1568 len = unix_maxlen;
1569 }
1570
1571 memcpy(addr, target_saddr, len);
1572 addr->sa_family = sa_family;
1573 if (sa_family == AF_NETLINK) {
1574 struct sockaddr_nl *nladdr;
1575
1576 nladdr = (struct sockaddr_nl *)addr;
1577 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1578 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1579 } else if (sa_family == AF_PACKET) {
1580 struct target_sockaddr_ll *lladdr;
1581
1582 lladdr = (struct target_sockaddr_ll *)addr;
1583 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1584 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1585 }
1586 unlock_user(target_saddr, target_addr, 0);
1587
1588 return 0;
1589 }
1590
1591 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1592 struct sockaddr *addr,
1593 socklen_t len)
1594 {
1595 struct target_sockaddr *target_saddr;
1596
1597 if (len == 0) {
1598 return 0;
1599 }
1600
1601 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1602 if (!target_saddr)
1603 return -TARGET_EFAULT;
1604 memcpy(target_saddr, addr, len);
1605 if (len >= offsetof(struct target_sockaddr, sa_family) +
1606 sizeof(target_saddr->sa_family)) {
1607 target_saddr->sa_family = tswap16(addr->sa_family);
1608 }
1609 if (addr->sa_family == AF_NETLINK && len >= sizeof(struct sockaddr_nl)) {
1610 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr;
1611 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1612 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1613 } else if (addr->sa_family == AF_PACKET) {
1614 struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
1615 target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
1616 target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
1617 }
1618 unlock_user(target_saddr, target_addr, len);
1619
1620 return 0;
1621 }
1622
1623 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1624 struct target_msghdr *target_msgh)
1625 {
1626 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1627 abi_long msg_controllen;
1628 abi_ulong target_cmsg_addr;
1629 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1630 socklen_t space = 0;
1631
1632 msg_controllen = tswapal(target_msgh->msg_controllen);
1633 if (msg_controllen < sizeof (struct target_cmsghdr))
1634 goto the_end;
1635 target_cmsg_addr = tswapal(target_msgh->msg_control);
1636 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1637 target_cmsg_start = target_cmsg;
1638 if (!target_cmsg)
1639 return -TARGET_EFAULT;
1640
1641 while (cmsg && target_cmsg) {
1642 void *data = CMSG_DATA(cmsg);
1643 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1644
1645 int len = tswapal(target_cmsg->cmsg_len)
1646 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr));
1647
1648 space += CMSG_SPACE(len);
1649 if (space > msgh->msg_controllen) {
1650 space -= CMSG_SPACE(len);
1651 /* This is a QEMU bug, since we allocated the payload
1652 * area ourselves (unlike overflow in host-to-target
1653 * conversion, which is just the guest giving us a buffer
1654 * that's too small). It can't happen for the payload types
1655 * we currently support; if it becomes an issue in future
1656 * we would need to improve our allocation strategy to
1657 * something more intelligent than "twice the size of the
1658 * target buffer we're reading from".
1659 */
1660 gemu_log("Host cmsg overflow\n");
1661 break;
1662 }
1663
1664 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1665 cmsg->cmsg_level = SOL_SOCKET;
1666 } else {
1667 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1668 }
1669 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1670 cmsg->cmsg_len = CMSG_LEN(len);
1671
1672 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1673 int *fd = (int *)data;
1674 int *target_fd = (int *)target_data;
1675 int i, numfds = len / sizeof(int);
1676
1677 for (i = 0; i < numfds; i++) {
1678 __get_user(fd[i], target_fd + i);
1679 }
1680 } else if (cmsg->cmsg_level == SOL_SOCKET
1681 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1682 struct ucred *cred = (struct ucred *)data;
1683 struct target_ucred *target_cred =
1684 (struct target_ucred *)target_data;
1685
1686 __get_user(cred->pid, &target_cred->pid);
1687 __get_user(cred->uid, &target_cred->uid);
1688 __get_user(cred->gid, &target_cred->gid);
1689 } else {
1690 gemu_log("Unsupported ancillary data: %d/%d\n",
1691 cmsg->cmsg_level, cmsg->cmsg_type);
1692 memcpy(data, target_data, len);
1693 }
1694
1695 cmsg = CMSG_NXTHDR(msgh, cmsg);
1696 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1697 target_cmsg_start);
1698 }
1699 unlock_user(target_cmsg, target_cmsg_addr, 0);
1700 the_end:
1701 msgh->msg_controllen = space;
1702 return 0;
1703 }
1704
1705 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1706 struct msghdr *msgh)
1707 {
1708 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1709 abi_long msg_controllen;
1710 abi_ulong target_cmsg_addr;
1711 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1712 socklen_t space = 0;
1713
1714 msg_controllen = tswapal(target_msgh->msg_controllen);
1715 if (msg_controllen < sizeof (struct target_cmsghdr))
1716 goto the_end;
1717 target_cmsg_addr = tswapal(target_msgh->msg_control);
1718 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1719 target_cmsg_start = target_cmsg;
1720 if (!target_cmsg)
1721 return -TARGET_EFAULT;
1722
1723 while (cmsg && target_cmsg) {
1724 void *data = CMSG_DATA(cmsg);
1725 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1726
1727 int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr));
1728 int tgt_len, tgt_space;
1729
1730 /* We never copy a half-header but may copy half-data;
1731 * this is Linux's behaviour in put_cmsg(). Note that
1732 * truncation here is a guest problem (which we report
1733 * to the guest via the CTRUNC bit), unlike truncation
1734 * in target_to_host_cmsg, which is a QEMU bug.
1735 */
1736 if (msg_controllen < sizeof(struct cmsghdr)) {
1737 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1738 break;
1739 }
1740
1741 if (cmsg->cmsg_level == SOL_SOCKET) {
1742 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1743 } else {
1744 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1745 }
1746 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1747
1748 tgt_len = TARGET_CMSG_LEN(len);
1749
1750 /* Payload types which need a different size of payload on
1751 * the target must adjust tgt_len here.
1752 */
1753 switch (cmsg->cmsg_level) {
1754 case SOL_SOCKET:
1755 switch (cmsg->cmsg_type) {
1756 case SO_TIMESTAMP:
1757 tgt_len = sizeof(struct target_timeval);
1758 break;
1759 default:
1760 break;
1761 }
1762 default:
1763 break;
1764 }
1765
1766 if (msg_controllen < tgt_len) {
1767 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1768 tgt_len = msg_controllen;
1769 }
1770
1771 /* We must now copy-and-convert len bytes of payload
1772 * into tgt_len bytes of destination space. Bear in mind
1773 * that in both source and destination we may be dealing
1774 * with a truncated value!
1775 */
1776 switch (cmsg->cmsg_level) {
1777 case SOL_SOCKET:
1778 switch (cmsg->cmsg_type) {
1779 case SCM_RIGHTS:
1780 {
1781 int *fd = (int *)data;
1782 int *target_fd = (int *)target_data;
1783 int i, numfds = tgt_len / sizeof(int);
1784
1785 for (i = 0; i < numfds; i++) {
1786 __put_user(fd[i], target_fd + i);
1787 }
1788 break;
1789 }
1790 case SO_TIMESTAMP:
1791 {
1792 struct timeval *tv = (struct timeval *)data;
1793 struct target_timeval *target_tv =
1794 (struct target_timeval *)target_data;
1795
1796 if (len != sizeof(struct timeval) ||
1797 tgt_len != sizeof(struct target_timeval)) {
1798 goto unimplemented;
1799 }
1800
1801 /* copy struct timeval to target */
1802 __put_user(tv->tv_sec, &target_tv->tv_sec);
1803 __put_user(tv->tv_usec, &target_tv->tv_usec);
1804 break;
1805 }
1806 case SCM_CREDENTIALS:
1807 {
1808 struct ucred *cred = (struct ucred *)data;
1809 struct target_ucred *target_cred =
1810 (struct target_ucred *)target_data;
1811
1812 __put_user(cred->pid, &target_cred->pid);
1813 __put_user(cred->uid, &target_cred->uid);
1814 __put_user(cred->gid, &target_cred->gid);
1815 break;
1816 }
1817 default:
1818 goto unimplemented;
1819 }
1820 break;
1821
1822 default:
1823 unimplemented:
1824 gemu_log("Unsupported ancillary data: %d/%d\n",
1825 cmsg->cmsg_level, cmsg->cmsg_type);
1826 memcpy(target_data, data, MIN(len, tgt_len));
1827 if (tgt_len > len) {
1828 memset(target_data + len, 0, tgt_len - len);
1829 }
1830 }
1831
1832 target_cmsg->cmsg_len = tswapal(tgt_len);
1833 tgt_space = TARGET_CMSG_SPACE(len);
1834 if (msg_controllen < tgt_space) {
1835 tgt_space = msg_controllen;
1836 }
1837 msg_controllen -= tgt_space;
1838 space += tgt_space;
1839 cmsg = CMSG_NXTHDR(msgh, cmsg);
1840 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1841 target_cmsg_start);
1842 }
1843 unlock_user(target_cmsg, target_cmsg_addr, space);
1844 the_end:
1845 target_msgh->msg_controllen = tswapal(space);
1846 return 0;
1847 }
1848
1849 static void tswap_nlmsghdr(struct nlmsghdr *nlh)
1850 {
1851 nlh->nlmsg_len = tswap32(nlh->nlmsg_len);
1852 nlh->nlmsg_type = tswap16(nlh->nlmsg_type);
1853 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags);
1854 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq);
1855 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid);
1856 }
1857
1858 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh,
1859 size_t len,
1860 abi_long (*host_to_target_nlmsg)
1861 (struct nlmsghdr *))
1862 {
1863 uint32_t nlmsg_len;
1864 abi_long ret;
1865
1866 while (len > sizeof(struct nlmsghdr)) {
1867
1868 nlmsg_len = nlh->nlmsg_len;
1869 if (nlmsg_len < sizeof(struct nlmsghdr) ||
1870 nlmsg_len > len) {
1871 break;
1872 }
1873
1874 switch (nlh->nlmsg_type) {
1875 case NLMSG_DONE:
1876 tswap_nlmsghdr(nlh);
1877 return 0;
1878 case NLMSG_NOOP:
1879 break;
1880 case NLMSG_ERROR:
1881 {
1882 struct nlmsgerr *e = NLMSG_DATA(nlh);
1883 e->error = tswap32(e->error);
1884 tswap_nlmsghdr(&e->msg);
1885 tswap_nlmsghdr(nlh);
1886 return 0;
1887 }
1888 default:
1889 ret = host_to_target_nlmsg(nlh);
1890 if (ret < 0) {
1891 tswap_nlmsghdr(nlh);
1892 return ret;
1893 }
1894 break;
1895 }
1896 tswap_nlmsghdr(nlh);
1897 len -= NLMSG_ALIGN(nlmsg_len);
1898 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len));
1899 }
1900 return 0;
1901 }
1902
1903 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh,
1904 size_t len,
1905 abi_long (*target_to_host_nlmsg)
1906 (struct nlmsghdr *))
1907 {
1908 int ret;
1909
1910 while (len > sizeof(struct nlmsghdr)) {
1911 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) ||
1912 tswap32(nlh->nlmsg_len) > len) {
1913 break;
1914 }
1915 tswap_nlmsghdr(nlh);
1916 switch (nlh->nlmsg_type) {
1917 case NLMSG_DONE:
1918 return 0;
1919 case NLMSG_NOOP:
1920 break;
1921 case NLMSG_ERROR:
1922 {
1923 struct nlmsgerr *e = NLMSG_DATA(nlh);
1924 e->error = tswap32(e->error);
1925 tswap_nlmsghdr(&e->msg);
1926 return 0;
1927 }
1928 default:
1929 ret = target_to_host_nlmsg(nlh);
1930 if (ret < 0) {
1931 return ret;
1932 }
1933 }
1934 len -= NLMSG_ALIGN(nlh->nlmsg_len);
1935 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len));
1936 }
1937 return 0;
1938 }
1939
1940 #ifdef CONFIG_RTNETLINK
1941 static abi_long host_to_target_for_each_nlattr(struct nlattr *nlattr,
1942 size_t len, void *context,
1943 abi_long (*host_to_target_nlattr)
1944 (struct nlattr *,
1945 void *context))
1946 {
1947 unsigned short nla_len;
1948 abi_long ret;
1949
1950 while (len > sizeof(struct nlattr)) {
1951 nla_len = nlattr->nla_len;
1952 if (nla_len < sizeof(struct nlattr) ||
1953 nla_len > len) {
1954 break;
1955 }
1956 ret = host_to_target_nlattr(nlattr, context);
1957 nlattr->nla_len = tswap16(nlattr->nla_len);
1958 nlattr->nla_type = tswap16(nlattr->nla_type);
1959 if (ret < 0) {
1960 return ret;
1961 }
1962 len -= NLA_ALIGN(nla_len);
1963 nlattr = (struct nlattr *)(((char *)nlattr) + NLA_ALIGN(nla_len));
1964 }
1965 return 0;
1966 }
1967
1968 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr,
1969 size_t len,
1970 abi_long (*host_to_target_rtattr)
1971 (struct rtattr *))
1972 {
1973 unsigned short rta_len;
1974 abi_long ret;
1975
1976 while (len > sizeof(struct rtattr)) {
1977 rta_len = rtattr->rta_len;
1978 if (rta_len < sizeof(struct rtattr) ||
1979 rta_len > len) {
1980 break;
1981 }
1982 ret = host_to_target_rtattr(rtattr);
1983 rtattr->rta_len = tswap16(rtattr->rta_len);
1984 rtattr->rta_type = tswap16(rtattr->rta_type);
1985 if (ret < 0) {
1986 return ret;
1987 }
1988 len -= RTA_ALIGN(rta_len);
1989 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len));
1990 }
1991 return 0;
1992 }
1993
1994 #define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN)
1995
1996 static abi_long host_to_target_data_bridge_nlattr(struct nlattr *nlattr,
1997 void *context)
1998 {
1999 uint16_t *u16;
2000 uint32_t *u32;
2001 uint64_t *u64;
2002
2003 switch (nlattr->nla_type) {
2004 /* no data */
2005 case QEMU_IFLA_BR_FDB_FLUSH:
2006 break;
2007 /* binary */
2008 case QEMU_IFLA_BR_GROUP_ADDR:
2009 break;
2010 /* uint8_t */
2011 case QEMU_IFLA_BR_VLAN_FILTERING:
2012 case QEMU_IFLA_BR_TOPOLOGY_CHANGE:
2013 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED:
2014 case QEMU_IFLA_BR_MCAST_ROUTER:
2015 case QEMU_IFLA_BR_MCAST_SNOOPING:
2016 case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR:
2017 case QEMU_IFLA_BR_MCAST_QUERIER:
2018 case QEMU_IFLA_BR_NF_CALL_IPTABLES:
2019 case QEMU_IFLA_BR_NF_CALL_IP6TABLES:
2020 case QEMU_IFLA_BR_NF_CALL_ARPTABLES:
2021 break;
2022 /* uint16_t */
2023 case QEMU_IFLA_BR_PRIORITY:
2024 case QEMU_IFLA_BR_VLAN_PROTOCOL:
2025 case QEMU_IFLA_BR_GROUP_FWD_MASK:
2026 case QEMU_IFLA_BR_ROOT_PORT:
2027 case QEMU_IFLA_BR_VLAN_DEFAULT_PVID:
2028 u16 = NLA_DATA(nlattr);
2029 *u16 = tswap16(*u16);
2030 break;
2031 /* uint32_t */
2032 case QEMU_IFLA_BR_FORWARD_DELAY:
2033 case QEMU_IFLA_BR_HELLO_TIME:
2034 case QEMU_IFLA_BR_MAX_AGE:
2035 case QEMU_IFLA_BR_AGEING_TIME:
2036 case QEMU_IFLA_BR_STP_STATE:
2037 case QEMU_IFLA_BR_ROOT_PATH_COST:
2038 case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY:
2039 case QEMU_IFLA_BR_MCAST_HASH_MAX:
2040 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT:
2041 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT:
2042 u32 = NLA_DATA(nlattr);
2043 *u32 = tswap32(*u32);
2044 break;
2045 /* uint64_t */
2046 case QEMU_IFLA_BR_HELLO_TIMER:
2047 case QEMU_IFLA_BR_TCN_TIMER:
2048 case QEMU_IFLA_BR_GC_TIMER:
2049 case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER:
2050 case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL:
2051 case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL:
2052 case QEMU_IFLA_BR_MCAST_QUERIER_INTVL:
2053 case QEMU_IFLA_BR_MCAST_QUERY_INTVL:
2054 case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL:
2055 case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL:
2056 u64 = NLA_DATA(nlattr);
2057 *u64 = tswap64(*u64);
2058 break;
2059 /* ifla_bridge_id: uin8_t[] */
2060 case QEMU_IFLA_BR_ROOT_ID:
2061 case QEMU_IFLA_BR_BRIDGE_ID:
2062 break;
2063 default:
2064 gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr->nla_type);
2065 break;
2066 }
2067 return 0;
2068 }
2069
2070 static abi_long host_to_target_slave_data_bridge_nlattr(struct nlattr *nlattr,
2071 void *context)
2072 {
2073 uint16_t *u16;
2074 uint32_t *u32;
2075 uint64_t *u64;
2076
2077 switch (nlattr->nla_type) {
2078 /* uint8_t */
2079 case QEMU_IFLA_BRPORT_STATE:
2080 case QEMU_IFLA_BRPORT_MODE:
2081 case QEMU_IFLA_BRPORT_GUARD:
2082 case QEMU_IFLA_BRPORT_PROTECT:
2083 case QEMU_IFLA_BRPORT_FAST_LEAVE:
2084 case QEMU_IFLA_BRPORT_LEARNING:
2085 case QEMU_IFLA_BRPORT_UNICAST_FLOOD:
2086 case QEMU_IFLA_BRPORT_PROXYARP:
2087 case QEMU_IFLA_BRPORT_LEARNING_SYNC:
2088 case QEMU_IFLA_BRPORT_PROXYARP_WIFI:
2089 case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK:
2090 case QEMU_IFLA_BRPORT_CONFIG_PENDING:
2091 case QEMU_IFLA_BRPORT_MULTICAST_ROUTER:
2092 break;
2093 /* uint16_t */
2094 case QEMU_IFLA_BRPORT_PRIORITY:
2095 case QEMU_IFLA_BRPORT_DESIGNATED_PORT:
2096 case QEMU_IFLA_BRPORT_DESIGNATED_COST:
2097 case QEMU_IFLA_BRPORT_ID:
2098 case QEMU_IFLA_BRPORT_NO:
2099 u16 = NLA_DATA(nlattr);
2100 *u16 = tswap16(*u16);
2101 break;
2102 /* uin32_t */
2103 case QEMU_IFLA_BRPORT_COST:
2104 u32 = NLA_DATA(nlattr);
2105 *u32 = tswap32(*u32);
2106 break;
2107 /* uint64_t */
2108 case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER:
2109 case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER:
2110 case QEMU_IFLA_BRPORT_HOLD_TIMER:
2111 u64 = NLA_DATA(nlattr);
2112 *u64 = tswap64(*u64);
2113 break;
2114 /* ifla_bridge_id: uint8_t[] */
2115 case QEMU_IFLA_BRPORT_ROOT_ID:
2116 case QEMU_IFLA_BRPORT_BRIDGE_ID:
2117 break;
2118 default:
2119 gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr->nla_type);
2120 break;
2121 }
2122 return 0;
2123 }
2124
2125 struct linkinfo_context {
2126 int len;
2127 char *name;
2128 int slave_len;
2129 char *slave_name;
2130 };
2131
2132 static abi_long host_to_target_data_linkinfo_nlattr(struct nlattr *nlattr,
2133 void *context)
2134 {
2135 struct linkinfo_context *li_context = context;
2136
2137 switch (nlattr->nla_type) {
2138 /* string */
2139 case QEMU_IFLA_INFO_KIND:
2140 li_context->name = NLA_DATA(nlattr);
2141 li_context->len = nlattr->nla_len - NLA_HDRLEN;
2142 break;
2143 case QEMU_IFLA_INFO_SLAVE_KIND:
2144 li_context->slave_name = NLA_DATA(nlattr);
2145 li_context->slave_len = nlattr->nla_len - NLA_HDRLEN;
2146 break;
2147 /* stats */
2148 case QEMU_IFLA_INFO_XSTATS:
2149 /* FIXME: only used by CAN */
2150 break;
2151 /* nested */
2152 case QEMU_IFLA_INFO_DATA:
2153 if (strncmp(li_context->name, "bridge",
2154 li_context->len) == 0) {
2155 return host_to_target_for_each_nlattr(NLA_DATA(nlattr),
2156 nlattr->nla_len,
2157 NULL,
2158 host_to_target_data_bridge_nlattr);
2159 } else {
2160 gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context->name);
2161 }
2162 break;
2163 case QEMU_IFLA_INFO_SLAVE_DATA:
2164 if (strncmp(li_context->slave_name, "bridge",
2165 li_context->slave_len) == 0) {
2166 return host_to_target_for_each_nlattr(NLA_DATA(nlattr),
2167 nlattr->nla_len,
2168 NULL,
2169 host_to_target_slave_data_bridge_nlattr);
2170 } else {
2171 gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n",
2172 li_context->slave_name);
2173 }
2174 break;
2175 default:
2176 gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr->nla_type);
2177 break;
2178 }
2179
2180 return 0;
2181 }
2182
2183 static abi_long host_to_target_data_inet_nlattr(struct nlattr *nlattr,
2184 void *context)
2185 {
2186 uint32_t *u32;
2187 int i;
2188
2189 switch (nlattr->nla_type) {
2190 case QEMU_IFLA_INET_CONF:
2191 u32 = NLA_DATA(nlattr);
2192 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32);
2193 i++) {
2194 u32[i] = tswap32(u32[i]);
2195 }
2196 break;
2197 default:
2198 gemu_log("Unknown host AF_INET type: %d\n", nlattr->nla_type);
2199 }
2200 return 0;
2201 }
2202
2203 static abi_long host_to_target_data_inet6_nlattr(struct nlattr *nlattr,
2204 void *context)
2205 {
2206 uint32_t *u32;
2207 uint64_t *u64;
2208 struct ifla_cacheinfo *ci;
2209 int i;
2210
2211 switch (nlattr->nla_type) {
2212 /* binaries */
2213 case QEMU_IFLA_INET6_TOKEN:
2214 break;
2215 /* uint8_t */
2216 case QEMU_IFLA_INET6_ADDR_GEN_MODE:
2217 break;
2218 /* uint32_t */
2219 case QEMU_IFLA_INET6_FLAGS:
2220 u32 = NLA_DATA(nlattr);
2221 *u32 = tswap32(*u32);
2222 break;
2223 /* uint32_t[] */
2224 case QEMU_IFLA_INET6_CONF:
2225 u32 = NLA_DATA(nlattr);
2226 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32);
2227 i++) {
2228 u32[i] = tswap32(u32[i]);
2229 }
2230 break;
2231 /* ifla_cacheinfo */
2232 case QEMU_IFLA_INET6_CACHEINFO:
2233 ci = NLA_DATA(nlattr);
2234 ci->max_reasm_len = tswap32(ci->max_reasm_len);
2235 ci->tstamp = tswap32(ci->tstamp);
2236 ci->reachable_time = tswap32(ci->reachable_time);
2237 ci->retrans_time = tswap32(ci->retrans_time);
2238 break;
2239 /* uint64_t[] */
2240 case QEMU_IFLA_INET6_STATS:
2241 case QEMU_IFLA_INET6_ICMP6STATS:
2242 u64 = NLA_DATA(nlattr);
2243 for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u64);
2244 i++) {
2245 u64[i] = tswap64(u64[i]);
2246 }
2247 break;
2248 default:
2249 gemu_log("Unknown host AF_INET6 type: %d\n", nlattr->nla_type);
2250 }
2251 return 0;
2252 }
2253
2254 static abi_long host_to_target_data_spec_nlattr(struct nlattr *nlattr,
2255 void *context)
2256 {
2257 switch (nlattr->nla_type) {
2258 case AF_INET:
2259 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len,
2260 NULL,
2261 host_to_target_data_inet_nlattr);
2262 case AF_INET6:
2263 return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len,
2264 NULL,
2265 host_to_target_data_inet6_nlattr);
2266 default:
2267 gemu_log("Unknown host AF_SPEC type: %d\n", nlattr->nla_type);
2268 break;
2269 }
2270 return 0;
2271 }
2272
2273 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr)
2274 {
2275 uint32_t *u32;
2276 struct rtnl_link_stats *st;
2277 struct rtnl_link_stats64 *st64;
2278 struct rtnl_link_ifmap *map;
2279 struct linkinfo_context li_context;
2280
2281 switch (rtattr->rta_type) {
2282 /* binary stream */
2283 case QEMU_IFLA_ADDRESS:
2284 case QEMU_IFLA_BROADCAST:
2285 /* string */
2286 case QEMU_IFLA_IFNAME:
2287 case QEMU_IFLA_QDISC:
2288 break;
2289 /* uin8_t */
2290 case QEMU_IFLA_OPERSTATE:
2291 case QEMU_IFLA_LINKMODE:
2292 case QEMU_IFLA_CARRIER:
2293 case QEMU_IFLA_PROTO_DOWN:
2294 break;
2295 /* uint32_t */
2296 case QEMU_IFLA_MTU:
2297 case QEMU_IFLA_LINK:
2298 case QEMU_IFLA_WEIGHT:
2299 case QEMU_IFLA_TXQLEN:
2300 case QEMU_IFLA_CARRIER_CHANGES:
2301 case QEMU_IFLA_NUM_RX_QUEUES:
2302 case QEMU_IFLA_NUM_TX_QUEUES:
2303 case QEMU_IFLA_PROMISCUITY:
2304 case QEMU_IFLA_EXT_MASK:
2305 case QEMU_IFLA_LINK_NETNSID:
2306 case QEMU_IFLA_GROUP:
2307 case QEMU_IFLA_MASTER:
2308 case QEMU_IFLA_NUM_VF:
2309 u32 = RTA_DATA(rtattr);
2310 *u32 = tswap32(*u32);
2311 break;
2312 /* struct rtnl_link_stats */
2313 case QEMU_IFLA_STATS:
2314 st = RTA_DATA(rtattr);
2315 st->rx_packets = tswap32(st->rx_packets);
2316 st->tx_packets = tswap32(st->tx_packets);
2317 st->rx_bytes = tswap32(st->rx_bytes);
2318 st->tx_bytes = tswap32(st->tx_bytes);
2319 st->rx_errors = tswap32(st->rx_errors);
2320 st->tx_errors = tswap32(st->tx_errors);
2321 st->rx_dropped = tswap32(st->rx_dropped);
2322 st->tx_dropped = tswap32(st->tx_dropped);
2323 st->multicast = tswap32(st->multicast);
2324 st->collisions = tswap32(st->collisions);
2325
2326 /* detailed rx_errors: */
2327 st->rx_length_errors = tswap32(st->rx_length_errors);
2328 st->rx_over_errors = tswap32(st->rx_over_errors);
2329 st->rx_crc_errors = tswap32(st->rx_crc_errors);
2330 st->rx_frame_errors = tswap32(st->rx_frame_errors);
2331 st->rx_fifo_errors = tswap32(st->rx_fifo_errors);
2332 st->rx_missed_errors = tswap32(st->rx_missed_errors);
2333
2334 /* detailed tx_errors */
2335 st->tx_aborted_errors = tswap32(st->tx_aborted_errors);
2336 st->tx_carrier_errors = tswap32(st->tx_carrier_errors);
2337 st->tx_fifo_errors = tswap32(st->tx_fifo_errors);
2338 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors);
2339 st->tx_window_errors = tswap32(st->tx_window_errors);
2340
2341 /* for cslip etc */
2342 st->rx_compressed = tswap32(st->rx_compressed);
2343 st->tx_compressed = tswap32(st->tx_compressed);
2344 break;
2345 /* struct rtnl_link_stats64 */
2346 case QEMU_IFLA_STATS64:
2347 st64 = RTA_DATA(rtattr);
2348 st64->rx_packets = tswap64(st64->rx_packets);
2349 st64->tx_packets = tswap64(st64->tx_packets);
2350 st64->rx_bytes = tswap64(st64->rx_bytes);
2351 st64->tx_bytes = tswap64(st64->tx_bytes);
2352 st64->rx_errors = tswap64(st64->rx_errors);
2353 st64->tx_errors = tswap64(st64->tx_errors);
2354 st64->rx_dropped = tswap64(st64->rx_dropped);
2355 st64->tx_dropped = tswap64(st64->tx_dropped);
2356 st64->multicast = tswap64(st64->multicast);
2357 st64->collisions = tswap64(st64->collisions);
2358
2359 /* detailed rx_errors: */
2360 st64->rx_length_errors = tswap64(st64->rx_length_errors);
2361 st64->rx_over_errors = tswap64(st64->rx_over_errors);
2362 st64->rx_crc_errors = tswap64(st64->rx_crc_errors);
2363 st64->rx_frame_errors = tswap64(st64->rx_frame_errors);
2364 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors);
2365 st64->rx_missed_errors = tswap64(st64->rx_missed_errors);
2366
2367 /* detailed tx_errors */
2368 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors);
2369 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors);
2370 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors);
2371 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors);
2372 st64->tx_window_errors = tswap64(st64->tx_window_errors);
2373
2374 /* for cslip etc */
2375 st64->rx_compressed = tswap64(st64->rx_compressed);
2376 st64->tx_compressed = tswap64(st64->tx_compressed);
2377 break;
2378 /* struct rtnl_link_ifmap */
2379 case QEMU_IFLA_MAP:
2380 map = RTA_DATA(rtattr);
2381 map->mem_start = tswap64(map->mem_start);
2382 map->mem_end = tswap64(map->mem_end);
2383 map->base_addr = tswap64(map->base_addr);
2384 map->irq = tswap16(map->irq);
2385 break;
2386 /* nested */
2387 case QEMU_IFLA_LINKINFO:
2388 memset(&li_context, 0, sizeof(li_context));
2389 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
2390 &li_context,
2391 host_to_target_data_linkinfo_nlattr);
2392 case QEMU_IFLA_AF_SPEC:
2393 return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
2394 NULL,
2395 host_to_target_data_spec_nlattr);
2396 default:
2397 gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr->rta_type);
2398 break;
2399 }
2400 return 0;
2401 }
2402
2403 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr)
2404 {
2405 uint32_t *u32;
2406 struct ifa_cacheinfo *ci;
2407
2408 switch (rtattr->rta_type) {
2409 /* binary: depends on family type */
2410 case IFA_ADDRESS:
2411 case IFA_LOCAL:
2412 break;
2413 /* string */
2414 case IFA_LABEL:
2415 break;
2416 /* u32 */
2417 case IFA_FLAGS:
2418 case IFA_BROADCAST:
2419 u32 = RTA_DATA(rtattr);
2420 *u32 = tswap32(*u32);
2421 break;
2422 /* struct ifa_cacheinfo */
2423 case IFA_CACHEINFO:
2424 ci = RTA_DATA(rtattr);
2425 ci->ifa_prefered = tswap32(ci->ifa_prefered);
2426 ci->ifa_valid = tswap32(ci->ifa_valid);
2427 ci->cstamp = tswap32(ci->cstamp);
2428 ci->tstamp = tswap32(ci->tstamp);
2429 break;
2430 default:
2431 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type);
2432 break;
2433 }
2434 return 0;
2435 }
2436
2437 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr)
2438 {
2439 uint32_t *u32;
2440 switch (rtattr->rta_type) {
2441 /* binary: depends on family type */
2442 case RTA_GATEWAY:
2443 case RTA_DST:
2444 case RTA_PREFSRC:
2445 break;
2446 /* u32 */
2447 case RTA_PRIORITY:
2448 case RTA_TABLE:
2449 case RTA_OIF:
2450 u32 = RTA_DATA(rtattr);
2451 *u32 = tswap32(*u32);
2452 break;
2453 default:
2454 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type);
2455 break;
2456 }
2457 return 0;
2458 }
2459
2460 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr,
2461 uint32_t rtattr_len)
2462 {
2463 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2464 host_to_target_data_link_rtattr);
2465 }
2466
2467 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr,
2468 uint32_t rtattr_len)
2469 {
2470 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2471 host_to_target_data_addr_rtattr);
2472 }
2473
2474 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr,
2475 uint32_t rtattr_len)
2476 {
2477 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
2478 host_to_target_data_route_rtattr);
2479 }
2480
2481 static abi_long host_to_target_data_route(struct nlmsghdr *nlh)
2482 {
2483 uint32_t nlmsg_len;
2484 struct ifinfomsg *ifi;
2485 struct ifaddrmsg *ifa;
2486 struct rtmsg *rtm;
2487
2488 nlmsg_len = nlh->nlmsg_len;
2489 switch (nlh->nlmsg_type) {
2490 case RTM_NEWLINK:
2491 case RTM_DELLINK:
2492 case RTM_GETLINK:
2493 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
2494 ifi = NLMSG_DATA(nlh);
2495 ifi->ifi_type = tswap16(ifi->ifi_type);
2496 ifi->ifi_index = tswap32(ifi->ifi_index);
2497 ifi->ifi_flags = tswap32(ifi->ifi_flags);
2498 ifi->ifi_change = tswap32(ifi->ifi_change);
2499 host_to_target_link_rtattr(IFLA_RTA(ifi),
2500 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi)));
2501 }
2502 break;
2503 case RTM_NEWADDR:
2504 case RTM_DELADDR:
2505 case RTM_GETADDR:
2506 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
2507 ifa = NLMSG_DATA(nlh);
2508 ifa->ifa_index = tswap32(ifa->ifa_index);
2509 host_to_target_addr_rtattr(IFA_RTA(ifa),
2510 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa)));
2511 }
2512 break;
2513 case RTM_NEWROUTE:
2514 case RTM_DELROUTE:
2515 case RTM_GETROUTE:
2516 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
2517 rtm = NLMSG_DATA(nlh);
2518 rtm->rtm_flags = tswap32(rtm->rtm_flags);
2519 host_to_target_route_rtattr(RTM_RTA(rtm),
2520 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm)));
2521 }
2522 break;
2523 default:
2524 return -TARGET_EINVAL;
2525 }
2526 return 0;
2527 }
2528
2529 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh,
2530 size_t len)
2531 {
2532 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route);
2533 }
2534
2535 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr,
2536 size_t len,
2537 abi_long (*target_to_host_rtattr)
2538 (struct rtattr *))
2539 {
2540 abi_long ret;
2541
2542 while (len >= sizeof(struct rtattr)) {
2543 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) ||
2544 tswap16(rtattr->rta_len) > len) {
2545 break;
2546 }
2547 rtattr->rta_len = tswap16(rtattr->rta_len);
2548 rtattr->rta_type = tswap16(rtattr->rta_type);
2549 ret = target_to_host_rtattr(rtattr);
2550 if (ret < 0) {
2551 return ret;
2552 }
2553 len -= RTA_ALIGN(rtattr->rta_len);
2554 rtattr = (struct rtattr *)(((char *)rtattr) +
2555 RTA_ALIGN(rtattr->rta_len));
2556 }
2557 return 0;
2558 }
2559
2560 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr)
2561 {
2562 switch (rtattr->rta_type) {
2563 default:
2564 gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr->rta_type);
2565 break;
2566 }
2567 return 0;
2568 }
2569
2570 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr)
2571 {
2572 switch (rtattr->rta_type) {
2573 /* binary: depends on family type */
2574 case IFA_LOCAL:
2575 case IFA_ADDRESS:
2576 break;
2577 default:
2578 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type);
2579 break;
2580 }
2581 return 0;
2582 }
2583
2584 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr)
2585 {
2586 uint32_t *u32;
2587 switch (rtattr->rta_type) {
2588 /* binary: depends on family type */
2589 case RTA_DST:
2590 case RTA_SRC:
2591 case RTA_GATEWAY:
2592 break;
2593 /* u32 */
2594 case RTA_OIF:
2595 u32 = RTA_DATA(rtattr);
2596 *u32 = tswap32(*u32);
2597 break;
2598 default:
2599 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type);
2600 break;
2601 }
2602 return 0;
2603 }
2604
2605 static void target_to_host_link_rtattr(struct rtattr *rtattr,
2606 uint32_t rtattr_len)
2607 {
2608 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2609 target_to_host_data_link_rtattr);
2610 }
2611
2612 static void target_to_host_addr_rtattr(struct rtattr *rtattr,
2613 uint32_t rtattr_len)
2614 {
2615 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2616 target_to_host_data_addr_rtattr);
2617 }
2618
2619 static void target_to_host_route_rtattr(struct rtattr *rtattr,
2620 uint32_t rtattr_len)
2621 {
2622 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2623 target_to_host_data_route_rtattr);
2624 }
2625
2626 static abi_long target_to_host_data_route(struct nlmsghdr *nlh)
2627 {
2628 struct ifinfomsg *ifi;
2629 struct ifaddrmsg *ifa;
2630 struct rtmsg *rtm;
2631
2632 switch (nlh->nlmsg_type) {
2633 case RTM_GETLINK:
2634 break;
2635 case RTM_NEWLINK:
2636 case RTM_DELLINK:
2637 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
2638 ifi = NLMSG_DATA(nlh);
2639 ifi->ifi_type = tswap16(ifi->ifi_type);
2640 ifi->ifi_index = tswap32(ifi->ifi_index);
2641 ifi->ifi_flags = tswap32(ifi->ifi_flags);
2642 ifi->ifi_change = tswap32(ifi->ifi_change);
2643 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len -
2644 NLMSG_LENGTH(sizeof(*ifi)));
2645 }
2646 break;
2647 case RTM_GETADDR:
2648 case RTM_NEWADDR:
2649 case RTM_DELADDR:
2650 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
2651 ifa = NLMSG_DATA(nlh);
2652 ifa->ifa_index = tswap32(ifa->ifa_index);
2653 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len -
2654 NLMSG_LENGTH(sizeof(*ifa)));
2655 }
2656 break;
2657 case RTM_GETROUTE:
2658 break;
2659 case RTM_NEWROUTE:
2660 case RTM_DELROUTE:
2661 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
2662 rtm = NLMSG_DATA(nlh);
2663 rtm->rtm_flags = tswap32(rtm->rtm_flags);
2664 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len -
2665 NLMSG_LENGTH(sizeof(*rtm)));
2666 }
2667 break;
2668 default:
2669 return -TARGET_EOPNOTSUPP;
2670 }
2671 return 0;
2672 }
2673
2674 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len)
2675 {
2676 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route);
2677 }
2678 #endif /* CONFIG_RTNETLINK */
2679
2680 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh)
2681 {
2682 switch (nlh->nlmsg_type) {
2683 default:
2684 gemu_log("Unknown host audit message type %d\n",
2685 nlh->nlmsg_type);
2686 return -TARGET_EINVAL;
2687 }
2688 return 0;
2689 }
2690
2691 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh,
2692 size_t len)
2693 {
2694 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit);
2695 }
2696
2697 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh)
2698 {
2699 switch (nlh->nlmsg_type) {
2700 case AUDIT_USER:
2701 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
2702 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
2703 break;
2704 default:
2705 gemu_log("Unknown target audit message type %d\n",
2706 nlh->nlmsg_type);
2707 return -TARGET_EINVAL;
2708 }
2709
2710 return 0;
2711 }
2712
2713 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len)
2714 {
2715 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit);
2716 }
2717
2718 /* do_setsockopt() Must return target values and target errnos. */
2719 static abi_long do_setsockopt(int sockfd, int level, int optname,
2720 abi_ulong optval_addr, socklen_t optlen)
2721 {
2722 abi_long ret;
2723 int val;
2724 struct ip_mreqn *ip_mreq;
2725 struct ip_mreq_source *ip_mreq_source;
2726
2727 switch(level) {
2728 case SOL_TCP:
2729 /* TCP options all take an 'int' value. */
2730 if (optlen < sizeof(uint32_t))
2731 return -TARGET_EINVAL;
2732
2733 if (get_user_u32(val, optval_addr))
2734 return -TARGET_EFAULT;
2735 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2736 break;
2737 case SOL_IP:
2738 switch(optname) {
2739 case IP_TOS:
2740 case IP_TTL:
2741 case IP_HDRINCL:
2742 case IP_ROUTER_ALERT:
2743 case IP_RECVOPTS:
2744 case IP_RETOPTS:
2745 case IP_PKTINFO:
2746 case IP_MTU_DISCOVER:
2747 case IP_RECVERR:
2748 case IP_RECVTOS:
2749 #ifdef IP_FREEBIND
2750 case IP_FREEBIND:
2751 #endif
2752 case IP_MULTICAST_TTL:
2753 case IP_MULTICAST_LOOP:
2754 val = 0;
2755 if (optlen >= sizeof(uint32_t)) {
2756 if (get_user_u32(val, optval_addr))
2757 return -TARGET_EFAULT;
2758 } else if (optlen >= 1) {
2759 if (get_user_u8(val, optval_addr))
2760 return -TARGET_EFAULT;
2761 }
2762 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2763 break;
2764 case IP_ADD_MEMBERSHIP:
2765 case IP_DROP_MEMBERSHIP:
2766 if (optlen < sizeof (struct target_ip_mreq) ||
2767 optlen > sizeof (struct target_ip_mreqn))
2768 return -TARGET_EINVAL;
2769
2770 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2771 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2772 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2773 break;
2774
2775 case IP_BLOCK_SOURCE:
2776 case IP_UNBLOCK_SOURCE:
2777 case IP_ADD_SOURCE_MEMBERSHIP:
2778 case IP_DROP_SOURCE_MEMBERSHIP:
2779 if (optlen != sizeof (struct target_ip_mreq_source))
2780 return -TARGET_EINVAL;
2781
2782 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2783 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2784 unlock_user (ip_mreq_source, optval_addr, 0);
2785 break;
2786
2787 default:
2788 goto unimplemented;
2789 }
2790 break;
2791 case SOL_IPV6:
2792 switch (optname) {
2793 case IPV6_MTU_DISCOVER:
2794 case IPV6_MTU:
2795 case IPV6_V6ONLY:
2796 case IPV6_RECVPKTINFO:
2797 val = 0;
2798 if (optlen < sizeof(uint32_t)) {
2799 return -TARGET_EINVAL;
2800 }
2801 if (get_user_u32(val, optval_addr)) {
2802 return -TARGET_EFAULT;
2803 }
2804 ret = get_errno(setsockopt(sockfd, level, optname,
2805 &val, sizeof(val)));
2806 break;
2807 default:
2808 goto unimplemented;
2809 }
2810 break;
2811 case SOL_RAW:
2812 switch (optname) {
2813 case ICMP_FILTER:
2814 /* struct icmp_filter takes an u32 value */
2815 if (optlen < sizeof(uint32_t)) {
2816 return -TARGET_EINVAL;
2817 }
2818
2819 if (get_user_u32(val, optval_addr)) {
2820 return -TARGET_EFAULT;
2821 }
2822 ret = get_errno(setsockopt(sockfd, level, optname,
2823 &val, sizeof(val)));
2824 break;
2825
2826 default:
2827 goto unimplemented;
2828 }
2829 break;
2830 case TARGET_SOL_SOCKET:
2831 switch (optname) {
2832 case TARGET_SO_RCVTIMEO:
2833 {
2834 struct timeval tv;
2835
2836 optname = SO_RCVTIMEO;
2837
2838 set_timeout:
2839 if (optlen != sizeof(struct target_timeval)) {
2840 return -TARGET_EINVAL;
2841 }
2842
2843 if (copy_from_user_timeval(&tv, optval_addr)) {
2844 return -TARGET_EFAULT;
2845 }
2846
2847 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2848 &tv, sizeof(tv)));
2849 return ret;
2850 }
2851 case TARGET_SO_SNDTIMEO:
2852 optname = SO_SNDTIMEO;
2853 goto set_timeout;
2854 case TARGET_SO_ATTACH_FILTER:
2855 {
2856 struct target_sock_fprog *tfprog;
2857 struct target_sock_filter *tfilter;
2858 struct sock_fprog fprog;
2859 struct sock_filter *filter;
2860 int i;
2861
2862 if (optlen != sizeof(*tfprog)) {
2863 return -TARGET_EINVAL;
2864 }
2865 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2866 return -TARGET_EFAULT;
2867 }
2868 if (!lock_user_struct(VERIFY_READ, tfilter,
2869 tswapal(tfprog->filter), 0)) {
2870 unlock_user_struct(tfprog, optval_addr, 1);
2871 return -TARGET_EFAULT;
2872 }
2873
2874 fprog.len = tswap16(tfprog->len);
2875 filter = g_try_new(struct sock_filter, fprog.len);
2876 if (filter == NULL) {
2877 unlock_user_struct(tfilter, tfprog->filter, 1);
2878 unlock_user_struct(tfprog, optval_addr, 1);
2879 return -TARGET_ENOMEM;
2880 }
2881 for (i = 0; i < fprog.len; i++) {
2882 filter[i].code = tswap16(tfilter[i].code);
2883 filter[i].jt = tfilter[i].jt;
2884 filter[i].jf = tfilter[i].jf;
2885 filter[i].k = tswap32(tfilter[i].k);
2886 }
2887 fprog.filter = filter;
2888
2889 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2890 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2891 g_free(filter);
2892
2893 unlock_user_struct(tfilter, tfprog->filter, 1);
2894 unlock_user_struct(tfprog, optval_addr, 1);
2895 return ret;
2896 }
2897 case TARGET_SO_BINDTODEVICE:
2898 {
2899 char *dev_ifname, *addr_ifname;
2900
2901 if (optlen > IFNAMSIZ - 1) {
2902 optlen = IFNAMSIZ - 1;
2903 }
2904 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2905 if (!dev_ifname) {
2906 return -TARGET_EFAULT;
2907 }
2908 optname = SO_BINDTODEVICE;
2909 addr_ifname = alloca(IFNAMSIZ);
2910 memcpy(addr_ifname, dev_ifname, optlen);
2911 addr_ifname[optlen] = 0;
2912 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2913 addr_ifname, optlen));
2914 unlock_user (dev_ifname, optval_addr, 0);
2915 return ret;
2916 }
2917 /* Options with 'int' argument. */
2918 case TARGET_SO_DEBUG:
2919 optname = SO_DEBUG;
2920 break;
2921 case TARGET_SO_REUSEADDR:
2922 optname = SO_REUSEADDR;
2923 break;
2924 case TARGET_SO_TYPE:
2925 optname = SO_TYPE;
2926 break;
2927 case TARGET_SO_ERROR:
2928 optname = SO_ERROR;
2929 break;
2930 case TARGET_SO_DONTROUTE:
2931 optname = SO_DONTROUTE;
2932 break;
2933 case TARGET_SO_BROADCAST:
2934 optname = SO_BROADCAST;
2935 break;
2936 case TARGET_SO_SNDBUF:
2937 optname = SO_SNDBUF;
2938 break;
2939 case TARGET_SO_SNDBUFFORCE:
2940 optname = SO_SNDBUFFORCE;
2941 break;
2942 case TARGET_SO_RCVBUF:
2943 optname = SO_RCVBUF;
2944 break;
2945 case TARGET_SO_RCVBUFFORCE:
2946 optname = SO_RCVBUFFORCE;
2947 break;
2948 case TARGET_SO_KEEPALIVE:
2949 optname = SO_KEEPALIVE;
2950 break;
2951 case TARGET_SO_OOBINLINE:
2952 optname = SO_OOBINLINE;
2953 break;
2954 case TARGET_SO_NO_CHECK:
2955 optname = SO_NO_CHECK;
2956 break;
2957 case TARGET_SO_PRIORITY:
2958 optname = SO_PRIORITY;
2959 break;
2960 #ifdef SO_BSDCOMPAT
2961 case TARGET_SO_BSDCOMPAT:
2962 optname = SO_BSDCOMPAT;
2963 break;
2964 #endif
2965 case TARGET_SO_PASSCRED:
2966 optname = SO_PASSCRED;
2967 break;
2968 case TARGET_SO_PASSSEC:
2969 optname = SO_PASSSEC;
2970 break;
2971 case TARGET_SO_TIMESTAMP:
2972 optname = SO_TIMESTAMP;
2973 break;
2974 case TARGET_SO_RCVLOWAT:
2975 optname = SO_RCVLOWAT;
2976 break;
2977 break;
2978 default:
2979 goto unimplemented;
2980 }
2981 if (optlen < sizeof(uint32_t))
2982 return -TARGET_EINVAL;
2983
2984 if (get_user_u32(val, optval_addr))
2985 return -TARGET_EFAULT;
2986 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2987 break;
2988 default:
2989 unimplemented:
2990 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname);
2991 ret = -TARGET_ENOPROTOOPT;
2992 }
2993 return ret;
2994 }
2995
2996 /* do_getsockopt() Must return target values and target errnos. */
2997 static abi_long do_getsockopt(int sockfd, int level, int optname,
2998 abi_ulong optval_addr, abi_ulong optlen)
2999 {
3000 abi_long ret;
3001 int len, val;
3002 socklen_t lv;
3003
3004 switch(level) {
3005 case TARGET_SOL_SOCKET:
3006 level = SOL_SOCKET;
3007 switch (optname) {
3008 /* These don't just return a single integer */
3009 case TARGET_SO_LINGER:
3010 case TARGET_SO_RCVTIMEO:
3011 case TARGET_SO_SNDTIMEO:
3012 case TARGET_SO_PEERNAME:
3013 goto unimplemented;
3014 case TARGET_SO_PEERCRED: {
3015 struct ucred cr;
3016 socklen_t crlen;
3017 struct target_ucred *tcr;
3018
3019 if (get_user_u32(len, optlen)) {
3020 return -TARGET_EFAULT;
3021 }
3022 if (len < 0) {
3023 return -TARGET_EINVAL;
3024 }
3025
3026 crlen = sizeof(cr);
3027 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
3028 &cr, &crlen));
3029 if (ret < 0) {
3030 return ret;
3031 }
3032 if (len > crlen) {
3033 len = crlen;
3034 }
3035 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
3036 return -TARGET_EFAULT;
3037 }
3038 __put_user(cr.pid, &tcr->pid);
3039 __put_user(cr.uid, &tcr->uid);
3040 __put_user(cr.gid, &tcr->gid);
3041 unlock_user_struct(tcr, optval_addr, 1);
3042 if (put_user_u32(len, optlen)) {
3043 return -TARGET_EFAULT;
3044 }
3045 break;
3046 }
3047 /* Options with 'int' argument. */
3048 case TARGET_SO_DEBUG:
3049 optname = SO_DEBUG;
3050 goto int_case;
3051 case TARGET_SO_REUSEADDR:
3052 optname = SO_REUSEADDR;
3053 goto int_case;
3054 case TARGET_SO_TYPE:
3055 optname = SO_TYPE;
3056 goto int_case;
3057 case TARGET_SO_ERROR:
3058 optname = SO_ERROR;
3059 goto int_case;
3060 case TARGET_SO_DONTROUTE:
3061 optname = SO_DONTROUTE;
3062 goto int_case;
3063 case TARGET_SO_BROADCAST:
3064 optname = SO_BROADCAST;
3065 goto int_case;
3066 case TARGET_SO_SNDBUF:
3067 optname = SO_SNDBUF;
3068 goto int_case;
3069 case TARGET_SO_RCVBUF:
3070 optname = SO_RCVBUF;
3071 goto int_case;
3072 case TARGET_SO_KEEPALIVE:
3073 optname = SO_KEEPALIVE;
3074 goto int_case;
3075 case TARGET_SO_OOBINLINE:
3076 optname = SO_OOBINLINE;
3077 goto int_case;
3078 case TARGET_SO_NO_CHECK:
3079 optname = SO_NO_CHECK;
3080 goto int_case;
3081 case TARGET_SO_PRIORITY:
3082 optname = SO_PRIORITY;
3083 goto int_case;
3084 #ifdef SO_BSDCOMPAT
3085 case TARGET_SO_BSDCOMPAT:
3086 optname = SO_BSDCOMPAT;
3087 goto int_case;
3088 #endif
3089 case TARGET_SO_PASSCRED:
3090 optname = SO_PASSCRED;
3091 goto int_case;
3092 case TARGET_SO_TIMESTAMP:
3093 optname = SO_TIMESTAMP;
3094 goto int_case;
3095 case TARGET_SO_RCVLOWAT:
3096 optname = SO_RCVLOWAT;
3097 goto int_case;
3098 case TARGET_SO_ACCEPTCONN:
3099 optname = SO_ACCEPTCONN;
3100 goto int_case;
3101 default:
3102 goto int_case;
3103 }
3104 break;
3105 case SOL_TCP:
3106 /* TCP options all take an 'int' value. */
3107 int_case:
3108 if (get_user_u32(len, optlen))
3109 return -TARGET_EFAULT;
3110 if (len < 0)
3111 return -TARGET_EINVAL;
3112 lv = sizeof(lv);
3113 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
3114 if (ret < 0)
3115 return ret;
3116 if (optname == SO_TYPE) {
3117 val = host_to_target_sock_type(val);
3118 }
3119 if (len > lv)
3120 len = lv;
3121 if (len == 4) {
3122 if (put_user_u32(val, optval_addr))
3123 return -TARGET_EFAULT;
3124 } else {
3125 if (put_user_u8(val, optval_addr))
3126 return -TARGET_EFAULT;
3127 }
3128 if (put_user_u32(len, optlen))
3129 return -TARGET_EFAULT;
3130 break;
3131 case SOL_IP:
3132 switch(optname) {
3133 case IP_TOS:
3134 case IP_TTL:
3135 case IP_HDRINCL:
3136 case IP_ROUTER_ALERT:
3137 case IP_RECVOPTS:
3138 case IP_RETOPTS:
3139 case IP_PKTINFO:
3140 case IP_MTU_DISCOVER:
3141 case IP_RECVERR:
3142 case IP_RECVTOS:
3143 #ifdef IP_FREEBIND
3144 case IP_FREEBIND:
3145 #endif
3146 case IP_MULTICAST_TTL:
3147 case IP_MULTICAST_LOOP:
3148 if (get_user_u32(len, optlen))
3149 return -TARGET_EFAULT;
3150 if (len < 0)
3151 return -TARGET_EINVAL;
3152 lv = sizeof(lv);
3153 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
3154 if (ret < 0)
3155 return ret;
3156 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
3157 len = 1;
3158 if (put_user_u32(len, optlen)
3159 || put_user_u8(val, optval_addr))
3160 return -TARGET_EFAULT;
3161 } else {
3162 if (len > sizeof(int))
3163 len = sizeof(int);
3164 if (put_user_u32(len, optlen)
3165 || put_user_u32(val, optval_addr))
3166 return -TARGET_EFAULT;
3167 }
3168 break;
3169 default:
3170 ret = -TARGET_ENOPROTOOPT;
3171 break;
3172 }
3173 break;
3174 default:
3175 unimplemented:
3176 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
3177 level, optname);
3178 ret = -TARGET_EOPNOTSUPP;
3179 break;
3180 }
3181 return ret;
3182 }
3183
3184 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
3185 abi_ulong count, int copy)
3186 {
3187 struct target_iovec *target_vec;
3188 struct iovec *vec;
3189 abi_ulong total_len, max_len;
3190 int i;
3191 int err = 0;
3192 bool bad_address = false;
3193
3194 if (count == 0) {
3195 errno = 0;
3196 return NULL;
3197 }
3198 if (count > IOV_MAX) {
3199 errno = EINVAL;
3200 return NULL;
3201 }
3202
3203 vec = g_try_new0(struct iovec, count);
3204 if (vec == NULL) {
3205 errno = ENOMEM;
3206 return NULL;
3207 }
3208
3209 target_vec = lock_user(VERIFY_READ, target_addr,
3210 count * sizeof(struct target_iovec), 1);
3211 if (target_vec == NULL) {
3212 err = EFAULT;
3213 goto fail2;
3214 }
3215
3216 /* ??? If host page size > target page size, this will result in a
3217 value larger than what we can actually support. */
3218 max_len = 0x7fffffff & TARGET_PAGE_MASK;
3219 total_len = 0;
3220
3221 for (i = 0; i < count; i++) {
3222 abi_ulong base = tswapal(target_vec[i].iov_base);
3223 abi_long len = tswapal(target_vec[i].iov_len);
3224
3225 if (len < 0) {
3226 err = EINVAL;
3227 goto fail;
3228 } else if (len == 0) {
3229 /* Zero length pointer is ignored. */
3230 vec[i].iov_base = 0;
3231 } else {
3232 vec[i].iov_base = lock_user(type, base, len, copy);
3233 /* If the first buffer pointer is bad, this is a fault. But
3234 * subsequent bad buffers will result in a partial write; this
3235 * is realized by filling the vector with null pointers and
3236 * zero lengths. */
3237 if (!vec[i].iov_base) {
3238 if (i == 0) {
3239 err = EFAULT;
3240 goto fail;
3241 } else {
3242 bad_address = true;
3243 }
3244 }
3245 if (bad_address) {
3246 len = 0;
3247 }
3248 if (len > max_len - total_len) {
3249 len = max_len - total_len;
3250 }
3251 }
3252 vec[i].iov_len = len;
3253 total_len += len;
3254 }
3255
3256 unlock_user(target_vec, target_addr, 0);
3257 return vec;
3258
3259 fail:
3260 while (--i >= 0) {
3261 if (tswapal(target_vec[i].iov_len) > 0) {
3262 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
3263 }
3264 }
3265 unlock_user(target_vec, target_addr, 0);
3266 fail2:
3267 g_free(vec);
3268 errno = err;
3269 return NULL;
3270 }
3271
3272 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
3273 abi_ulong count, int copy)
3274 {
3275 struct target_iovec *target_vec;
3276 int i;
3277
3278 target_vec = lock_user(VERIFY_READ, target_addr,
3279 count * sizeof(struct target_iovec), 1);
3280 if (target_vec) {
3281 for (i = 0; i < count; i++) {
3282 abi_ulong base = tswapal(target_vec[i].iov_base);
3283 abi_long len = tswapal(target_vec[i].iov_len);
3284 if (len < 0) {
3285 break;
3286 }
3287 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
3288 }
3289 unlock_user(target_vec, target_addr, 0);
3290 }
3291
3292 g_free(vec);
3293 }
3294
3295 static inline int target_to_host_sock_type(int *type)
3296 {
3297 int host_type = 0;
3298 int target_type = *type;
3299
3300 switch (target_type & TARGET_SOCK_TYPE_MASK) {
3301 case TARGET_SOCK_DGRAM:
3302 host_type = SOCK_DGRAM;
3303 break;
3304 case TARGET_SOCK_STREAM:
3305 host_type = SOCK_STREAM;
3306 break;
3307 default:
3308 host_type = target_type & TARGET_SOCK_TYPE_MASK;
3309 break;
3310 }
3311 if (target_type & TARGET_SOCK_CLOEXEC) {
3312 #if defined(SOCK_CLOEXEC)
3313 host_type |= SOCK_CLOEXEC;
3314 #else
3315 return -TARGET_EINVAL;
3316 #endif
3317 }
3318 if (target_type & TARGET_SOCK_NONBLOCK) {
3319 #if defined(SOCK_NONBLOCK)
3320 host_type |= SOCK_NONBLOCK;
3321 #elif !defined(O_NONBLOCK)
3322 return -TARGET_EINVAL;
3323 #endif
3324 }
3325 *type = host_type;
3326 return 0;
3327 }
3328
3329 /* Try to emulate socket type flags after socket creation. */
3330 static int sock_flags_fixup(int fd, int target_type)
3331 {
3332 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
3333 if (target_type & TARGET_SOCK_NONBLOCK) {
3334 int flags = fcntl(fd, F_GETFL);
3335 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
3336 close(fd);
3337 return -TARGET_EINVAL;
3338 }
3339 }
3340 #endif
3341 return fd;
3342 }
3343
3344 static abi_long packet_target_to_host_sockaddr(void *host_addr,
3345 abi_ulong target_addr,
3346 socklen_t len)
3347 {
3348 struct sockaddr *addr = host_addr;
3349 struct target_sockaddr *target_saddr;
3350
3351 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
3352 if (!target_saddr) {
3353 return -TARGET_EFAULT;
3354 }
3355
3356 memcpy(addr, target_saddr, len);
3357 addr->sa_family = tswap16(target_saddr->sa_family);
3358 /* spkt_protocol is big-endian */
3359
3360 unlock_user(target_saddr, target_addr, 0);
3361 return 0;
3362 }
3363
3364 static TargetFdTrans target_packet_trans = {
3365 .target_to_host_addr = packet_target_to_host_sockaddr,
3366 };
3367
3368 #ifdef CONFIG_RTNETLINK
3369 static abi_long netlink_route_target_to_host(void *buf, size_t len)
3370 {
3371 abi_long ret;
3372
3373 ret = target_to_host_nlmsg_route(buf, len);
3374 if (ret < 0) {
3375 return ret;
3376 }
3377
3378 return len;
3379 }
3380
3381 static abi_long netlink_route_host_to_target(void *buf, size_t len)
3382 {
3383 abi_long ret;
3384
3385 ret = host_to_target_nlmsg_route(buf, len);
3386 if (ret < 0) {
3387 return ret;
3388 }
3389
3390 return len;
3391 }
3392
3393 static TargetFdTrans target_netlink_route_trans = {
3394 .target_to_host_data = netlink_route_target_to_host,
3395 .host_to_target_data = netlink_route_host_to_target,
3396 };
3397 #endif /* CONFIG_RTNETLINK */
3398
3399 static abi_long netlink_audit_target_to_host(void *buf, size_t len)
3400 {
3401 abi_long ret;
3402
3403 ret = target_to_host_nlmsg_audit(buf, len);
3404 if (ret < 0) {
3405 return ret;
3406 }
3407
3408 return len;
3409 }
3410
3411 static abi_long netlink_audit_host_to_target(void *buf, size_t len)
3412 {
3413 abi_long ret;
3414
3415 ret = host_to_target_nlmsg_audit(buf, len);
3416 if (ret < 0) {
3417 return ret;
3418 }
3419
3420 return len;
3421 }
3422
3423 static TargetFdTrans target_netlink_audit_trans = {
3424 .target_to_host_data = netlink_audit_target_to_host,
3425 .host_to_target_data = netlink_audit_host_to_target,
3426 };
3427
3428 /* do_socket() Must return target values and target errnos. */
3429 static abi_long do_socket(int domain, int type, int protocol)
3430 {
3431 int target_type = type;
3432 int ret;
3433
3434 ret = target_to_host_sock_type(&type);
3435 if (ret) {
3436 return ret;
3437 }
3438
3439 if (domain == PF_NETLINK && !(
3440 #ifdef CONFIG_RTNETLINK
3441 protocol == NETLINK_ROUTE ||
3442 #endif
3443 protocol == NETLINK_KOBJECT_UEVENT ||
3444 protocol == NETLINK_AUDIT)) {
3445 return -EPFNOSUPPORT;
3446 }
3447
3448 if (domain == AF_PACKET ||
3449 (domain == AF_INET && type == SOCK_PACKET)) {
3450 protocol = tswap16(protocol);
3451 }
3452
3453 ret = get_errno(socket(domain, type, protocol));
3454 if (ret >= 0) {
3455 ret = sock_flags_fixup(ret, target_type);
3456 if (type == SOCK_PACKET) {
3457 /* Manage an obsolete case :
3458 * if socket type is SOCK_PACKET, bind by name
3459 */
3460 fd_trans_register(ret, &target_packet_trans);
3461 } else if (domain == PF_NETLINK) {
3462 switch (protocol) {
3463 #ifdef CONFIG_RTNETLINK
3464 case NETLINK_ROUTE:
3465 fd_trans_register(ret, &target_netlink_route_trans);
3466 break;
3467 #endif
3468 case NETLINK_KOBJECT_UEVENT:
3469 /* nothing to do: messages are strings */
3470 break;
3471 case NETLINK_AUDIT:
3472 fd_trans_register(ret, &target_netlink_audit_trans);
3473 break;
3474 default:
3475 g_assert_not_reached();
3476 }
3477 }
3478 }
3479 return ret;
3480 }
3481
3482 /* do_bind() Must return target values and target errnos. */
3483 static abi_long do_bind(int sockfd, abi_ulong target_addr,
3484 socklen_t addrlen)
3485 {
3486 void *addr;
3487 abi_long ret;
3488
3489 if ((int)addrlen < 0) {
3490 return -TARGET_EINVAL;
3491 }
3492
3493 addr = alloca(addrlen+1);
3494
3495 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3496 if (ret)
3497 return ret;
3498
3499 return get_errno(bind(sockfd, addr, addrlen));
3500 }
3501
3502 /* do_connect() Must return target values and target errnos. */
3503 static abi_long do_connect(int sockfd, abi_ulong target_addr,
3504 socklen_t addrlen)
3505 {
3506 void *addr;
3507 abi_long ret;
3508
3509 if ((int)addrlen < 0) {
3510 return -TARGET_EINVAL;
3511 }
3512
3513 addr = alloca(addrlen+1);
3514
3515 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
3516 if (ret)
3517 return ret;
3518
3519 return get_errno(safe_connect(sockfd, addr, addrlen));
3520 }
3521
3522 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
3523 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
3524 int flags, int send)
3525 {
3526 abi_long ret, len;
3527 struct msghdr msg;
3528 abi_ulong count;
3529 struct iovec *vec;
3530 abi_ulong target_vec;
3531
3532 if (msgp->msg_name) {
3533 msg.msg_namelen = tswap32(msgp->msg_namelen);
3534 msg.msg_name = alloca(msg.msg_namelen+1);
3535 ret = target_to_host_sockaddr(fd, msg.msg_name,
3536 tswapal(msgp->msg_name),
3537 msg.msg_namelen);
3538 if (ret == -TARGET_EFAULT) {
3539 /* For connected sockets msg_name and msg_namelen must
3540 * be ignored, so returning EFAULT immediately is wrong.
3541 * Instead, pass a bad msg_name to the host kernel, and
3542 * let it decide whether to return EFAULT or not.
3543 */
3544 msg.msg_name = (void *)-1;
3545 } else if (ret) {
3546 goto out2;
3547 }
3548 } else {
3549 msg.msg_name = NULL;
3550 msg.msg_namelen = 0;
3551 }
3552 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
3553 msg.msg_control = alloca(msg.msg_controllen);
3554 msg.msg_flags = tswap32(msgp->msg_flags);
3555
3556 count = tswapal(msgp->msg_iovlen);
3557 target_vec = tswapal(msgp->msg_iov);
3558
3559 if (count > IOV_MAX) {
3560 /* sendrcvmsg returns a different errno for this condition than
3561 * readv/writev, so we must catch it here before lock_iovec() does.
3562 */
3563 ret = -TARGET_EMSGSIZE;
3564 goto out2;
3565 }
3566
3567 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
3568 target_vec, count, send);
3569 if (vec == NULL) {
3570 ret = -host_to_target_errno(errno);
3571 goto out2;
3572 }
3573 msg.msg_iovlen = count;
3574 msg.msg_iov = vec;
3575
3576 if (send) {
3577 if (fd_trans_target_to_host_data(fd)) {
3578 void *host_msg;
3579
3580 host_msg = g_malloc(msg.msg_iov->iov_len);
3581 memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
3582 ret = fd_trans_target_to_host_data(fd)(host_msg,
3583 msg.msg_iov->iov_len);
3584 if (ret >= 0) {
3585 msg.msg_iov->iov_base = host_msg;
3586 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3587 }
3588 g_free(host_msg);
3589 } else {
3590 ret = target_to_host_cmsg(&msg, msgp);
3591 if (ret == 0) {
3592 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3593 }
3594 }
3595 } else {
3596 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3597 if (!is_error(ret)) {
3598 len = ret;
3599 if (fd_trans_host_to_target_data(fd)) {
3600 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3601 len);
3602 } else {
3603 ret = host_to_target_cmsg(msgp, &msg);
3604 }
3605 if (!is_error(ret)) {
3606 msgp->msg_namelen = tswap32(msg.msg_namelen);
3607 if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
3608 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3609 msg.msg_name, msg.msg_namelen);
3610 if (ret) {
3611 goto out;
3612 }
3613 }
3614
3615 ret = len;
3616 }
3617 }
3618 }
3619
3620 out:
3621 unlock_iovec(vec, target_vec, count, !send);
3622 out2:
3623 return ret;
3624 }
3625
3626 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3627 int flags, int send)
3628 {
3629 abi_long ret;
3630 struct target_msghdr *msgp;
3631
3632 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3633 msgp,
3634 target_msg,
3635 send ? 1 : 0)) {
3636 return -TARGET_EFAULT;
3637 }
3638 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3639 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3640 return ret;
3641 }
3642
3643 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3644 * so it might not have this *mmsg-specific flag either.
3645 */
3646 #ifndef MSG_WAITFORONE
3647 #define MSG_WAITFORONE 0x10000
3648 #endif
3649
3650 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3651 unsigned int vlen, unsigned int flags,
3652 int send)
3653 {
3654 struct target_mmsghdr *mmsgp;
3655 abi_long ret = 0;
3656 int i;
3657
3658 if (vlen > UIO_MAXIOV) {
3659 vlen = UIO_MAXIOV;
3660 }
3661
3662 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3663 if (!mmsgp) {
3664 return -TARGET_EFAULT;
3665 }
3666
3667 for (i = 0; i < vlen; i++) {
3668 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3669 if (is_error(ret)) {
3670 break;
3671 }
3672 mmsgp[i].msg_len = tswap32(ret);
3673 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3674 if (flags & MSG_WAITFORONE) {
3675 flags |= MSG_DONTWAIT;
3676 }
3677 }
3678
3679 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3680
3681 /* Return number of datagrams sent if we sent any at all;
3682 * otherwise return the error.
3683 */
3684 if (i) {
3685 return i;
3686 }
3687 return ret;
3688 }
3689
3690 /* do_accept4() Must return target values and target errnos. */
3691 static abi_long do_accept4(int fd, abi_ulong target_addr,
3692 abi_ulong target_addrlen_addr, int flags)
3693 {
3694 socklen_t addrlen;
3695 void *addr;
3696 abi_long ret;
3697 int host_flags;
3698
3699 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3700
3701 if (target_addr == 0) {
3702 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3703 }
3704
3705 /* linux returns EINVAL if addrlen pointer is invalid */
3706 if (get_user_u32(addrlen, target_addrlen_addr))
3707 return -TARGET_EINVAL;
3708
3709 if ((int)addrlen < 0) {
3710 return -TARGET_EINVAL;
3711 }
3712
3713 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3714 return -TARGET_EINVAL;
3715
3716 addr = alloca(addrlen);
3717
3718 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags));
3719 if (!is_error(ret)) {
3720 host_to_target_sockaddr(target_addr, addr, addrlen);
3721 if (put_user_u32(addrlen, target_addrlen_addr))
3722 ret = -TARGET_EFAULT;
3723 }
3724 return ret;
3725 }
3726
3727 /* do_getpeername() Must return target values and target errnos. */
3728 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3729 abi_ulong target_addrlen_addr)
3730 {
3731 socklen_t addrlen;
3732 void *addr;
3733 abi_long ret;
3734
3735 if (get_user_u32(addrlen, target_addrlen_addr))
3736 return -TARGET_EFAULT;
3737
3738 if ((int)addrlen < 0) {
3739 return -TARGET_EINVAL;
3740 }
3741
3742 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3743 return -TARGET_EFAULT;
3744
3745 addr = alloca(addrlen);
3746
3747 ret = get_errno(getpeername(fd, addr, &addrlen));
3748 if (!is_error(ret)) {
3749 host_to_target_sockaddr(target_addr, addr, addrlen);
3750 if (put_user_u32(addrlen, target_addrlen_addr))
3751 ret = -TARGET_EFAULT;
3752 }
3753 return ret;
3754 }
3755
3756 /* do_getsockname() Must return target values and target errnos. */
3757 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3758 abi_ulong target_addrlen_addr)
3759 {
3760 socklen_t addrlen;
3761 void *addr;
3762 abi_long ret;
3763
3764 if (get_user_u32(addrlen, target_addrlen_addr))
3765 return -TARGET_EFAULT;
3766
3767 if ((int)addrlen < 0) {
3768 return -TARGET_EINVAL;
3769 }
3770
3771 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3772 return -TARGET_EFAULT;
3773
3774 addr = alloca(addrlen);
3775
3776 ret = get_errno(getsockname(fd, addr, &addrlen));
3777 if (!is_error(ret)) {
3778 host_to_target_sockaddr(target_addr, addr, addrlen);
3779 if (put_user_u32(addrlen, target_addrlen_addr))
3780 ret = -TARGET_EFAULT;
3781 }
3782 return ret;
3783 }
3784
3785 /* do_socketpair() Must return target values and target errnos. */
3786 static abi_long do_socketpair(int domain, int type, int protocol,
3787 abi_ulong target_tab_addr)
3788 {
3789 int tab[2];
3790 abi_long ret;
3791
3792 target_to_host_sock_type(&type);
3793
3794 ret = get_errno(socketpair(domain, type, protocol, tab));
3795 if (!is_error(ret)) {
3796 if (put_user_s32(tab[0], target_tab_addr)
3797 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3798 ret = -TARGET_EFAULT;
3799 }
3800 return ret;
3801 }
3802
3803 /* do_sendto() Must return target values and target errnos. */
3804 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3805 abi_ulong target_addr, socklen_t addrlen)
3806 {
3807 void *addr;
3808 void *host_msg;
3809 void *copy_msg = NULL;
3810 abi_long ret;
3811
3812 if ((int)addrlen < 0) {
3813 return -TARGET_EINVAL;
3814 }
3815
3816 host_msg = lock_user(VERIFY_READ, msg, len, 1);
3817 if (!host_msg)
3818 return -TARGET_EFAULT;
3819 if (fd_trans_target_to_host_data(fd)) {
3820 copy_msg = host_msg;
3821 host_msg = g_malloc(len);
3822 memcpy(host_msg, copy_msg, len);
3823 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3824 if (ret < 0) {
3825 goto fail;
3826 }
3827 }
3828 if (target_addr) {
3829 addr = alloca(addrlen+1);
3830 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3831 if (ret) {
3832 goto fail;
3833 }
3834 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3835 } else {
3836 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3837 }
3838 fail:
3839 if (copy_msg) {
3840 g_free(host_msg);
3841 host_msg = copy_msg;
3842 }
3843 unlock_user(host_msg, msg, 0);
3844 return ret;
3845 }
3846
3847 /* do_recvfrom() Must return target values and target errnos. */
3848 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3849 abi_ulong target_addr,
3850 abi_ulong target_addrlen)
3851 {
3852 socklen_t addrlen;
3853 void *addr;
3854 void *host_msg;
3855 abi_long ret;
3856
3857 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3858 if (!host_msg)
3859 return -TARGET_EFAULT;
3860 if (target_addr) {
3861 if (get_user_u32(addrlen, target_addrlen)) {
3862 ret = -TARGET_EFAULT;
3863 goto fail;
3864 }
3865 if ((int)addrlen < 0) {
3866 ret = -TARGET_EINVAL;
3867 goto fail;
3868 }
3869 addr = alloca(addrlen);
3870 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3871 addr, &addrlen));
3872 } else {
3873 addr = NULL; /* To keep compiler quiet. */
3874 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3875 }
3876 if (!is_error(ret)) {
3877 if (fd_trans_host_to_target_data(fd)) {
3878 ret = fd_trans_host_to_target_data(fd)(host_msg, ret);
3879 }
3880 if (target_addr) {
3881 host_to_target_sockaddr(target_addr, addr, addrlen);
3882 if (put_user_u32(addrlen, target_addrlen)) {
3883 ret = -TARGET_EFAULT;
3884 goto fail;
3885 }
3886 }
3887 unlock_user(host_msg, msg, len);
3888 } else {
3889 fail:
3890 unlock_user(host_msg, msg, 0);
3891 }
3892 return ret;
3893 }
3894
3895 #ifdef TARGET_NR_socketcall
3896 /* do_socketcall() Must return target values and target errnos. */
3897 static abi_long do_socketcall(int num, abi_ulong vptr)
3898 {
3899 static const unsigned ac[] = { /* number of arguments per call */
3900 [SOCKOP_socket] = 3, /* domain, type, protocol */
3901 [SOCKOP_bind] = 3, /* sockfd, addr, addrlen */
3902 [SOCKOP_connect] = 3, /* sockfd, addr, addrlen */
3903 [SOCKOP_listen] = 2, /* sockfd, backlog */
3904 [SOCKOP_accept] = 3, /* sockfd, addr, addrlen */
3905 [SOCKOP_accept4] = 4, /* sockfd, addr, addrlen, flags */
3906 [SOCKOP_getsockname] = 3, /* sockfd, addr, addrlen */
3907 [SOCKOP_getpeername] = 3, /* sockfd, addr, addrlen */
3908 [SOCKOP_socketpair] = 4, /* domain, type, protocol, tab */
3909 [SOCKOP_send] = 4, /* sockfd, msg, len, flags */
3910 [SOCKOP_recv] = 4, /* sockfd, msg, len, flags */
3911 [SOCKOP_sendto] = 6, /* sockfd, msg, len, flags, addr, addrlen */
3912 [SOCKOP_recvfrom] = 6, /* sockfd, msg, len, flags, addr, addrlen */
3913 [SOCKOP_shutdown] = 2, /* sockfd, how */
3914 [SOCKOP_sendmsg] = 3, /* sockfd, msg, flags */
3915 [SOCKOP_recvmsg] = 3, /* sockfd, msg, flags */
3916 [SOCKOP_sendmmsg] = 4, /* sockfd, msgvec, vlen, flags */
3917 [SOCKOP_recvmmsg] = 4, /* sockfd, msgvec, vlen, flags */
3918 [SOCKOP_setsockopt] = 5, /* sockfd, level, optname, optval, optlen */
3919 [SOCKOP_getsockopt] = 5, /* sockfd, level, optname, optval, optlen */
3920 };
3921 abi_long a[6]; /* max 6 args */
3922
3923 /* first, collect the arguments in a[] according to ac[] */
3924 if (num >= 0 && num < ARRAY_SIZE(ac)) {
3925 unsigned i;
3926 assert(ARRAY_SIZE(a) >= ac[num]); /* ensure we have space for args */
3927 for (i = 0; i < ac[num]; ++i) {
3928 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3929 return -TARGET_EFAULT;
3930 }
3931 }
3932 }
3933
3934 /* now when we have the args, actually handle the call */
3935 switch (num) {
3936 case SOCKOP_socket: /* domain, type, protocol */
3937 return do_socket(a[0], a[1], a[2]);
3938 case SOCKOP_bind: /* sockfd, addr, addrlen */
3939 return do_bind(a[0], a[1], a[2]);
3940 case SOCKOP_connect: /* sockfd, addr, addrlen */
3941 return do_connect(a[0], a[1], a[2]);
3942 case SOCKOP_listen: /* sockfd, backlog */
3943 return get_errno(listen(a[0], a[1]));
3944 case SOCKOP_accept: /* sockfd, addr, addrlen */
3945 return do_accept4(a[0], a[1], a[2], 0);
3946 case SOCKOP_accept4: /* sockfd, addr, addrlen, flags */
3947 return do_accept4(a[0], a[1], a[2], a[3]);
3948 case SOCKOP_getsockname: /* sockfd, addr, addrlen */
3949 return do_getsockname(a[0], a[1], a[2]);
3950 case SOCKOP_getpeername: /* sockfd, addr, addrlen */
3951 return do_getpeername(a[0], a[1], a[2]);
3952 case SOCKOP_socketpair: /* domain, type, protocol, tab */
3953 return do_socketpair(a[0], a[1], a[2], a[3]);
3954 case SOCKOP_send: /* sockfd, msg, len, flags */
3955 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3956 case SOCKOP_recv: /* sockfd, msg, len, flags */
3957 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3958 case SOCKOP_sendto: /* sockfd, msg, len, flags, addr, addrlen */
3959 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3960 case SOCKOP_recvfrom: /* sockfd, msg, len, flags, addr, addrlen */
3961 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3962 case SOCKOP_shutdown: /* sockfd, how */
3963 return get_errno(shutdown(a[0], a[1]));
3964 case SOCKOP_sendmsg: /* sockfd, msg, flags */
3965 return do_sendrecvmsg(a[0], a[1], a[2], 1);
3966 case SOCKOP_recvmsg: /* sockfd, msg, flags */
3967 return do_sendrecvmsg(a[0], a[1], a[2], 0);
3968 case SOCKOP_sendmmsg: /* sockfd, msgvec, vlen, flags */
3969 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3970 case SOCKOP_recvmmsg: /* sockfd, msgvec, vlen, flags */
3971 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3972 case SOCKOP_setsockopt: /* sockfd, level, optname, optval, optlen */
3973 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3974 case SOCKOP_getsockopt: /* sockfd, level, optname, optval, optlen */
3975 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3976 default:
3977 gemu_log("Unsupported socketcall: %d\n", num);
3978 return -TARGET_ENOSYS;
3979 }
3980 }
3981 #endif
3982
3983 #define N_SHM_REGIONS 32
3984
3985 static struct shm_region {
3986 abi_ulong start;
3987 abi_ulong size;
3988 bool in_use;
3989 } shm_regions[N_SHM_REGIONS];
3990
3991 #ifndef TARGET_SEMID64_DS
3992 /* asm-generic version of this struct */
3993 struct target_semid64_ds
3994 {
3995 struct target_ipc_perm sem_perm;
3996 abi_ulong sem_otime;
3997 #if TARGET_ABI_BITS == 32
3998 abi_ulong __unused1;
3999 #endif
4000 abi_ulong sem_ctime;
4001 #if TARGET_ABI_BITS == 32
4002 abi_ulong __unused2;
4003 #endif
4004 abi_ulong sem_nsems;
4005 abi_ulong __unused3;
4006 abi_ulong __unused4;
4007 };
4008 #endif
4009
4010 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
4011 abi_ulong target_addr)
4012 {
4013 struct target_ipc_perm *target_ip;
4014 struct target_semid64_ds *target_sd;
4015
4016 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4017 return -TARGET_EFAULT;
4018 target_ip = &(target_sd->sem_perm);
4019 host_ip->__key = tswap32(target_ip->__key);
4020 host_ip->uid = tswap32(target_ip->uid);
4021 host_ip->gid = tswap32(target_ip->gid);
4022 host_ip->cuid = tswap32(target_ip->cuid);
4023 host_ip->cgid = tswap32(target_ip->cgid);
4024 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4025 host_ip->mode = tswap32(target_ip->mode);
4026 #else
4027 host_ip->mode = tswap16(target_ip->mode);
4028 #endif
4029 #if defined(TARGET_PPC)
4030 host_ip->__seq = tswap32(target_ip->__seq);
4031 #else
4032 host_ip->__seq = tswap16(target_ip->__seq);
4033 #endif
4034 unlock_user_struct(target_sd, target_addr, 0);
4035 return 0;
4036 }
4037
4038 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
4039 struct ipc_perm *host_ip)
4040 {
4041 struct target_ipc_perm *target_ip;
4042 struct target_semid64_ds *target_sd;
4043
4044 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4045 return -TARGET_EFAULT;
4046 target_ip = &(target_sd->sem_perm);
4047 target_ip->__key = tswap32(host_ip->__key);
4048 target_ip->uid = tswap32(host_ip->uid);
4049 target_ip->gid = tswap32(host_ip->gid);
4050 target_ip->cuid = tswap32(host_ip->cuid);
4051 target_ip->cgid = tswap32(host_ip->cgid);
4052 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
4053 target_ip->mode = tswap32(host_ip->mode);
4054 #else
4055 target_ip->mode = tswap16(host_ip->mode);
4056 #endif
4057 #if defined(TARGET_PPC)
4058 target_ip->__seq = tswap32(host_ip->__seq);
4059 #else
4060 target_ip->__seq = tswap16(host_ip->__seq);
4061 #endif
4062 unlock_user_struct(target_sd, target_addr, 1);
4063 return 0;
4064 }
4065
4066 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
4067 abi_ulong target_addr)
4068 {
4069 struct target_semid64_ds *target_sd;
4070
4071 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4072 return -TARGET_EFAULT;
4073 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
4074 return -TARGET_EFAULT;
4075 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
4076 host_sd->sem_otime = tswapal(target_sd->sem_otime);
4077 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
4078 unlock_user_struct(target_sd, target_addr, 0);
4079 return 0;
4080 }
4081
4082 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
4083 struct semid_ds *host_sd)
4084 {
4085 struct target_semid64_ds *target_sd;
4086
4087 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4088 return -TARGET_EFAULT;
4089 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
4090 return -TARGET_EFAULT;
4091 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
4092 target_sd->sem_otime = tswapal(host_sd->sem_otime);
4093 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
4094 unlock_user_struct(target_sd, target_addr, 1);
4095 return 0;
4096 }
4097
4098 struct target_seminfo {
4099 int semmap;
4100 int semmni;
4101 int semmns;
4102 int semmnu;
4103 int semmsl;
4104 int semopm;
4105 int semume;
4106 int semusz;
4107 int semvmx;
4108 int semaem;
4109 };
4110
4111 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
4112 struct seminfo *host_seminfo)
4113 {
4114 struct target_seminfo *target_seminfo;
4115 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
4116 return -TARGET_EFAULT;
4117 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
4118 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
4119 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
4120 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
4121 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
4122 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
4123 __put_user(host_seminfo->semume, &target_seminfo->semume);
4124 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
4125 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
4126 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
4127 unlock_user_struct(target_seminfo, target_addr, 1);
4128 return 0;
4129 }
4130
4131 union semun {
4132 int val;
4133 struct semid_ds *buf;
4134 unsigned short *array;
4135 struct seminfo *__buf;
4136 };
4137
4138 union target_semun {
4139 int val;
4140 abi_ulong buf;
4141 abi_ulong array;
4142 abi_ulong __buf;
4143 };
4144
4145 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
4146 abi_ulong target_addr)
4147 {
4148 int nsems;
4149 unsigned short *array;
4150 union semun semun;
4151 struct semid_ds semid_ds;
4152 int i, ret;
4153
4154 semun.buf = &semid_ds;
4155
4156 ret = semctl(semid, 0, IPC_STAT, semun);
4157 if (ret == -1)
4158 return get_errno(ret);
4159
4160 nsems = semid_ds.sem_nsems;
4161
4162 *host_array = g_try_new(unsigned short, nsems);
4163 if (!*host_array) {
4164 return -TARGET_ENOMEM;
4165 }
4166 array = lock_user(VERIFY_READ, target_addr,
4167 nsems*sizeof(unsigned short), 1);
4168 if (!array) {
4169 g_free(*host_array);
4170 return -TARGET_EFAULT;
4171 }
4172
4173 for(i=0; i<nsems; i++) {
4174 __get_user((*host_array)[i], &array[i]);
4175 }
4176 unlock_user(array, target_addr, 0);
4177
4178 return 0;
4179 }
4180
4181 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
4182 unsigned short **host_array)
4183 {
4184 int nsems;
4185 unsigned short *array;
4186 union semun semun;
4187 struct semid_ds semid_ds;
4188 int i, ret;
4189
4190 semun.buf = &semid_ds;
4191
4192 ret = semctl(semid, 0, IPC_STAT, semun);
4193 if (ret == -1)
4194 return get_errno(ret);
4195
4196 nsems = semid_ds.sem_nsems;
4197
4198 array = lock_user(VERIFY_WRITE, target_addr,
4199 nsems*sizeof(unsigned short), 0);
4200 if (!array)
4201 return -TARGET_EFAULT;
4202
4203 for(i=0; i<nsems; i++) {
4204 __put_user((*host_array)[i], &array[i]);
4205 }
4206 g_free(*host_array);
4207 unlock_user(array, target_addr, 1);
4208
4209 return 0;
4210 }
4211
4212 static inline abi_long do_semctl(int semid, int semnum, int cmd,
4213 abi_ulong target_arg)
4214 {
4215 union target_semun target_su = { .buf = target_arg };
4216 union semun arg;
4217 struct semid_ds dsarg;
4218 unsigned short *array = NULL;
4219 struct seminfo seminfo;
4220 abi_long ret = -TARGET_EINVAL;
4221 abi_long err;
4222 cmd &= 0xff;
4223
4224 switch( cmd ) {
4225 case GETVAL:
4226 case SETVAL:
4227 /* In 64 bit cross-endian situations, we will erroneously pick up
4228 * the wrong half of the union for the "val" element. To rectify
4229 * this, the entire 8-byte structure is byteswapped, followed by
4230 * a swap of the 4 byte val field. In other cases, the data is
4231 * already in proper host byte order. */
4232 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
4233 target_su.buf = tswapal(target_su.buf);
4234 arg.val = tswap32(target_su.val);
4235 } else {
4236 arg.val = target_su.val;
4237 }
4238 ret = get_errno(semctl(semid, semnum, cmd, arg));
4239 break;
4240 case GETALL:
4241 case SETALL:
4242 err = target_to_host_semarray(semid, &array, target_su.array);
4243 if (err)
4244 return err;
4245 arg.array = array;
4246 ret = get_errno(semctl(semid, semnum, cmd, arg));
4247 err = host_to_target_semarray(semid, target_su.array, &array);
4248 if (err)
4249 return err;
4250 break;
4251 case IPC_STAT:
4252 case IPC_SET:
4253 case SEM_STAT:
4254 err = target_to_host_semid_ds(&dsarg, target_su.buf);
4255 if (err)
4256 return err;
4257 arg.buf = &dsarg;
4258 ret = get_errno(semctl(semid, semnum, cmd, arg));
4259 err = host_to_target_semid_ds(target_su.buf, &dsarg);
4260 if (err)
4261 return err;
4262 break;
4263 case IPC_INFO:
4264 case SEM_INFO:
4265 arg.__buf = &seminfo;
4266 ret = get_errno(semctl(semid, semnum, cmd, arg));
4267 err = host_to_target_seminfo(target_su.__buf, &seminfo);
4268 if (err)
4269 return err;
4270 break;
4271 case IPC_RMID:
4272 case GETPID:
4273 case GETNCNT:
4274 case GETZCNT:
4275 ret = get_errno(semctl(semid, semnum, cmd, NULL));
4276 break;
4277 }
4278
4279 return ret;
4280 }
4281
4282 struct target_sembuf {
4283 unsigned short sem_num;
4284 short sem_op;
4285 short sem_flg;
4286 };
4287
4288 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
4289 abi_ulong target_addr,
4290 unsigned nsops)
4291 {
4292 struct target_sembuf *target_sembuf;
4293 int i;
4294
4295 target_sembuf = lock_user(VERIFY_READ, target_addr,
4296 nsops*sizeof(struct target_sembuf), 1);
4297 if (!target_sembuf)
4298 return -TARGET_EFAULT;
4299
4300 for(i=0; i<nsops; i++) {
4301 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
4302 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
4303 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
4304 }
4305
4306 unlock_user(target_sembuf, target_addr, 0);
4307
4308 return 0;
4309 }
4310
4311 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
4312 {
4313 struct sembuf sops[nsops];
4314
4315 if (target_to_host_sembuf(sops, ptr, nsops))
4316 return -TARGET_EFAULT;
4317
4318 return get_errno(safe_semtimedop(semid, sops, nsops, NULL));
4319 }
4320
4321 struct target_msqid_ds
4322 {
4323 struct target_ipc_perm msg_perm;
4324 abi_ulong msg_stime;
4325 #if TARGET_ABI_BITS == 32
4326 abi_ulong __unused1;
4327 #endif
4328 abi_ulong msg_rtime;
4329 #if TARGET_ABI_BITS == 32
4330 abi_ulong __unused2;
4331 #endif
4332 abi_ulong msg_ctime;
4333 #if TARGET_ABI_BITS == 32
4334 abi_ulong __unused3;
4335 #endif
4336 abi_ulong __msg_cbytes;
4337 abi_ulong msg_qnum;
4338 abi_ulong msg_qbytes;
4339 abi_ulong msg_lspid;
4340 abi_ulong msg_lrpid;
4341 abi_ulong __unused4;
4342 abi_ulong __unused5;
4343 };
4344
4345 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
4346 abi_ulong target_addr)
4347 {
4348 struct target_msqid_ds *target_md;
4349
4350 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
4351 return -TARGET_EFAULT;
4352 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
4353 return -TARGET_EFAULT;
4354 host_md->msg_stime = tswapal(target_md->msg_stime);
4355 host_md->msg_rtime = tswapal(target_md->msg_rtime);
4356 host_md->msg_ctime = tswapal(target_md->msg_ctime);
4357 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
4358 host_md->msg_qnum = tswapal(target_md->msg_qnum);
4359 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
4360 host_md->msg_lspid = tswapal(target_md->msg_lspid);
4361 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
4362 unlock_user_struct(target_md, target_addr, 0);
4363 return 0;
4364 }
4365
4366 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
4367 struct msqid_ds *host_md)
4368 {
4369 struct target_msqid_ds *target_md;
4370
4371 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
4372 return -TARGET_EFAULT;
4373 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
4374 return -TARGET_EFAULT;
4375 target_md->msg_stime = tswapal(host_md->msg_stime);
4376 target_md->msg_rtime = tswapal(host_md->msg_rtime);
4377 target_md->msg_ctime = tswapal(host_md->msg_ctime);
4378 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
4379 target_md->msg_qnum = tswapal(host_md->msg_qnum);
4380 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
4381 target_md->msg_lspid = tswapal(host_md->msg_lspid);
4382 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
4383 unlock_user_struct(target_md, target_addr, 1);
4384 return 0;
4385 }
4386
4387 struct target_msginfo {
4388 int msgpool;
4389 int msgmap;
4390 int msgmax;
4391 int msgmnb;
4392 int msgmni;
4393 int msgssz;
4394 int msgtql;
4395 unsigned short int msgseg;
4396 };
4397
4398 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
4399 struct msginfo *host_msginfo)
4400 {
4401 struct target_msginfo *target_msginfo;
4402 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
4403 return -TARGET_EFAULT;
4404 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
4405 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
4406 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
4407 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
4408 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
4409 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
4410 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
4411 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
4412 unlock_user_struct(target_msginfo, target_addr, 1);
4413 return 0;
4414 }
4415
4416 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
4417 {
4418 struct msqid_ds dsarg;
4419 struct msginfo msginfo;
4420 abi_long ret = -TARGET_EINVAL;
4421
4422 cmd &= 0xff;
4423
4424 switch (cmd) {
4425 case IPC_STAT:
4426 case IPC_SET:
4427 case MSG_STAT:
4428 if (target_to_host_msqid_ds(&dsarg,ptr))
4429 return -TARGET_EFAULT;
4430 ret = get_errno(msgctl(msgid, cmd, &dsarg));
4431 if (host_to_target_msqid_ds(ptr,&dsarg))
4432 return -TARGET_EFAULT;
4433 break;
4434 case IPC_RMID:
4435 ret = get_errno(msgctl(msgid, cmd, NULL));
4436 break;
4437 case IPC_INFO:
4438 case MSG_INFO:
4439 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
4440 if (host_to_target_msginfo(ptr, &msginfo))
4441 return -TARGET_EFAULT;
4442 break;
4443 }
4444
4445 return ret;
4446 }
4447
4448 struct target_msgbuf {
4449 abi_long mtype;
4450 char mtext[1];
4451 };
4452
4453 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
4454 ssize_t msgsz, int msgflg)
4455 {
4456 struct target_msgbuf *target_mb;
4457 struct msgbuf *host_mb;
4458 abi_long ret = 0;
4459
4460 if (msgsz < 0) {
4461 return -TARGET_EINVAL;
4462 }
4463
4464 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
4465 return -TARGET_EFAULT;
4466 host_mb = g_try_malloc(msgsz + sizeof(long));
4467 if (!host_mb) {
4468 unlock_user_struct(target_mb, msgp, 0);
4469 return -TARGET_ENOMEM;
4470 }
4471 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
4472 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
4473 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
4474 g_free(host_mb);
4475 unlock_user_struct(target_mb, msgp, 0);
4476
4477 return ret;
4478 }
4479
4480 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
4481 ssize_t msgsz, abi_long msgtyp,
4482 int msgflg)
4483 {
4484 struct target_msgbuf *target_mb;
4485 char *target_mtext;
4486 struct msgbuf *host_mb;
4487 abi_long ret = 0;
4488
4489 if (msgsz < 0) {
4490 return -TARGET_EINVAL;
4491 }
4492
4493 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
4494 return -TARGET_EFAULT;
4495
4496 host_mb = g_try_malloc(msgsz + sizeof(long));
4497 if (!host_mb) {
4498 ret = -TARGET_ENOMEM;
4499 goto end;
4500 }
4501 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
4502
4503 if (ret > 0) {
4504 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
4505 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
4506 if (!target_mtext) {
4507 ret = -TARGET_EFAULT;
4508 goto end;
4509 }
4510 memcpy(target_mb->mtext, host_mb->mtext, ret);
4511 unlock_user(target_mtext, target_mtext_addr, ret);
4512 }
4513
4514 target_mb->mtype = tswapal(host_mb->mtype);
4515
4516 end:
4517 if (target_mb)
4518 unlock_user_struct(target_mb, msgp, 1);
4519 g_free(host_mb);
4520 return ret;
4521 }
4522
4523 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
4524 abi_ulong target_addr)
4525 {
4526 struct target_shmid_ds *target_sd;
4527
4528 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
4529 return -TARGET_EFAULT;
4530 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
4531 return -TARGET_EFAULT;
4532 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4533 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
4534 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4535 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4536 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4537 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4538 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4539 unlock_user_struct(target_sd, target_addr, 0);
4540 return 0;
4541 }
4542
4543 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
4544 struct shmid_ds *host_sd)
4545 {
4546 struct target_shmid_ds *target_sd;
4547
4548 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
4549 return -TARGET_EFAULT;
4550 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
4551 return -TARGET_EFAULT;
4552 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
4553 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
4554 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
4555 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
4556 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
4557 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
4558 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
4559 unlock_user_struct(target_sd, target_addr, 1);
4560 return 0;
4561 }
4562
4563 struct target_shminfo {
4564 abi_ulong shmmax;
4565 abi_ulong shmmin;
4566 abi_ulong shmmni;
4567 abi_ulong shmseg;
4568 abi_ulong shmall;
4569 };
4570
4571 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
4572 struct shminfo *host_shminfo)
4573 {
4574 struct target_shminfo *target_shminfo;
4575 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
4576 return -TARGET_EFAULT;
4577 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
4578 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
4579 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
4580 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
4581 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
4582 unlock_user_struct(target_shminfo, target_addr, 1);
4583 return 0;
4584 }
4585
4586 struct target_shm_info {
4587 int used_ids;
4588 abi_ulong shm_tot;
4589 abi_ulong shm_rss;
4590 abi_ulong shm_swp;
4591 abi_ulong swap_attempts;
4592 abi_ulong swap_successes;
4593 };
4594
4595 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
4596 struct shm_info *host_shm_info)
4597 {
4598 struct target_shm_info *target_shm_info;
4599 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
4600 return -TARGET_EFAULT;
4601 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
4602 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
4603 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
4604 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
4605 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
4606 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
4607 unlock_user_struct(target_shm_info, target_addr, 1);
4608 return 0;
4609 }
4610
4611 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4612 {
4613 struct shmid_ds dsarg;
4614 struct shminfo shminfo;
4615 struct shm_info shm_info;
4616 abi_long ret = -TARGET_EINVAL;
4617
4618 cmd &= 0xff;
4619
4620 switch(cmd) {
4621 case IPC_STAT:
4622 case IPC_SET:
4623 case SHM_STAT:
4624 if (target_to_host_shmid_ds(&dsarg, buf))
4625 return -TARGET_EFAULT;
4626 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4627 if (host_to_target_shmid_ds(buf, &dsarg))
4628 return -TARGET_EFAULT;
4629 break;
4630 case IPC_INFO:
4631 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4632 if (host_to_target_shminfo(buf, &shminfo))
4633 return -TARGET_EFAULT;
4634 break;
4635 case SHM_INFO:
4636 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4637 if (host_to_target_shm_info(buf, &shm_info))
4638 return -TARGET_EFAULT;
4639 break;
4640 case IPC_RMID:
4641 case SHM_LOCK:
4642 case SHM_UNLOCK:
4643 ret = get_errno(shmctl(shmid, cmd, NULL));
4644 break;
4645 }
4646
4647 return ret;
4648 }
4649
4650 #ifndef TARGET_FORCE_SHMLBA
4651 /* For most architectures, SHMLBA is the same as the page size;
4652 * some architectures have larger values, in which case they should
4653 * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
4654 * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
4655 * and defining its own value for SHMLBA.
4656 *
4657 * The kernel also permits SHMLBA to be set by the architecture to a
4658 * value larger than the page size without setting __ARCH_FORCE_SHMLBA;
4659 * this means that addresses are rounded to the large size if
4660 * SHM_RND is set but addresses not aligned to that size are not rejected
4661 * as long as they are at least page-aligned. Since the only architecture
4662 * which uses this is ia64 this code doesn't provide for that oddity.
4663 */
4664 static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
4665 {
4666 return TARGET_PAGE_SIZE;
4667 }
4668 #endif
4669
4670 static inline abi_ulong do_shmat(CPUArchState *cpu_env,
4671 int shmid, abi_ulong shmaddr, int shmflg)
4672 {
4673 abi_long raddr;
4674 void *host_raddr;
4675 struct shmid_ds shm_info;
4676 int i,ret;
4677 abi_ulong shmlba;
4678
4679 /* find out the length of the shared memory segment */
4680 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4681 if (is_error(ret)) {
4682 /* can't get length, bail out */
4683 return ret;
4684 }
4685
4686 shmlba = target_shmlba(cpu_env);
4687
4688 if (shmaddr & (shmlba - 1)) {
4689 if (shmflg & SHM_RND) {
4690 shmaddr &= ~(shmlba - 1);
4691 } else {
4692 return -TARGET_EINVAL;
4693 }
4694 }
4695
4696 mmap_lock();
4697
4698 if (shmaddr)
4699 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
4700 else {
4701 abi_ulong mmap_start;
4702
4703 mmap_start = mmap_find_vma(0, shm_info.shm_segsz);
4704
4705 if (mmap_start == -1) {
4706 errno = ENOMEM;
4707 host_raddr = (void *)-1;
4708 } else
4709 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
4710 }
4711
4712 if (host_raddr == (void *)-1) {
4713 mmap_unlock();
4714 return get_errno((long)host_raddr);
4715 }
4716 raddr=h2g((unsigned long)host_raddr);
4717
4718 page_set_flags(raddr, raddr + shm_info.shm_segsz,
4719 PAGE_VALID | PAGE_READ |
4720 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
4721
4722 for (i = 0; i < N_SHM_REGIONS; i++) {
4723 if (!shm_regions[i].in_use) {
4724 shm_regions[i].in_use = true;
4725 shm_regions[i].start = raddr;
4726 shm_regions[i].size = shm_info.shm_segsz;
4727 break;
4728 }
4729 }
4730
4731 mmap_unlock();
4732 return raddr;
4733
4734 }
4735
4736 static inline abi_long do_shmdt(abi_ulong shmaddr)
4737 {
4738 int i;
4739
4740 for (i = 0; i < N_SHM_REGIONS; ++i) {
4741 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4742 shm_regions[i].in_use = false;
4743 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4744 break;
4745 }
4746 }
4747
4748 return get_errno(shmdt(g2h(shmaddr)));
4749 }
4750
4751 #ifdef TARGET_NR_ipc
4752 /* ??? This only works with linear mappings. */
4753 /* do_ipc() must return target values and target errnos. */
4754 static abi_long do_ipc(CPUArchState *cpu_env,
4755 unsigned int call, abi_long first,
4756 abi_long second, abi_long third,
4757 abi_long ptr, abi_long fifth)
4758 {
4759 int version;
4760 abi_long ret = 0;
4761
4762 version = call >> 16;
4763 call &= 0xffff;
4764
4765 switch (call) {
4766 case IPCOP_semop:
4767 ret = do_semop(first, ptr, second);
4768 break;
4769
4770 case IPCOP_semget:
4771 ret = get_errno(semget(first, second, third));
4772 break;
4773
4774 case IPCOP_semctl: {
4775 /* The semun argument to semctl is passed by value, so dereference the
4776 * ptr argument. */
4777 abi_ulong atptr;
4778 get_user_ual(atptr, ptr);
4779 ret = do_semctl(first, second, third, atptr);
4780 break;
4781 }
4782
4783 case IPCOP_msgget:
4784 ret = get_errno(msgget(first, second));
4785 break;
4786
4787 case IPCOP_msgsnd:
4788 ret = do_msgsnd(first, ptr, second, third);
4789 break;
4790
4791 case IPCOP_msgctl:
4792 ret = do_msgctl(first, second, ptr);
4793 break;
4794
4795 case IPCOP_msgrcv:
4796 switch (version) {
4797 case 0:
4798 {
4799 struct target_ipc_kludge {
4800 abi_long msgp;
4801 abi_long msgtyp;
4802 } *tmp;
4803
4804 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4805 ret = -TARGET_EFAULT;
4806 break;
4807 }
4808
4809 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4810
4811 unlock_user_struct(tmp, ptr, 0);
4812 break;
4813 }
4814 default:
4815 ret = do_msgrcv(first, ptr, second, fifth, third);
4816 }
4817 break;
4818
4819 case IPCOP_shmat:
4820 switch (version) {
4821 default:
4822 {
4823 abi_ulong raddr;
4824 raddr = do_shmat(cpu_env, first, ptr, second);
4825 if (is_error(raddr))
4826 return get_errno(raddr);
4827 if (put_user_ual(raddr, third))
4828 return -TARGET_EFAULT;
4829 break;
4830 }
4831 case 1:
4832 ret = -TARGET_EINVAL;
4833 break;
4834 }
4835 break;
4836 case IPCOP_shmdt:
4837 ret = do_shmdt(ptr);
4838 break;
4839
4840 case IPCOP_shmget:
4841 /* IPC_* flag values are the same on all linux platforms */
4842 ret = get_errno(shmget(first, second, third));
4843 break;
4844
4845 /* IPC_* and SHM_* command values are the same on all linux platforms */
4846 case IPCOP_shmctl:
4847 ret = do_shmctl(first, second, ptr);
4848 break;
4849 default:
4850 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version);
4851 ret = -TARGET_ENOSYS;
4852 break;
4853 }
4854 return ret;
4855 }
4856 #endif
4857
4858 /* kernel structure types definitions */
4859
4860 #define STRUCT(name, ...) STRUCT_ ## name,
4861 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4862 enum {
4863 #include "syscall_types.h"
4864 STRUCT_MAX
4865 };
4866 #undef STRUCT
4867 #undef STRUCT_SPECIAL
4868
4869 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4870 #define STRUCT_SPECIAL(name)
4871 #include "syscall_types.h"
4872 #undef STRUCT
4873 #undef STRUCT_SPECIAL
4874
4875 typedef struct IOCTLEntry IOCTLEntry;
4876
4877 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
4878 int fd, int cmd, abi_long arg);
4879
4880 struct IOCTLEntry {
4881 int target_cmd;
4882 unsigned int host_cmd;
4883 const char *name;
4884 int access;
4885 do_ioctl_fn *do_ioctl;
4886 const argtype arg_type[5];
4887 };
4888
4889 #define IOC_R 0x0001
4890 #define IOC_W 0x0002
4891 #define IOC_RW (IOC_R | IOC_W)
4892
4893 #define MAX_STRUCT_SIZE 4096
4894
4895 #ifdef CONFIG_FIEMAP
4896 /* So fiemap access checks don't overflow on 32 bit systems.
4897 * This is very slightly smaller than the limit imposed by
4898 * the underlying kernel.
4899 */
4900 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4901 / sizeof(struct fiemap_extent))
4902
4903 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4904 int fd, int cmd, abi_long arg)
4905 {
4906 /* The parameter for this ioctl is a struct fiemap followed
4907 * by an array of struct fiemap_extent whose size is set
4908 * in fiemap->fm_extent_count. The array is filled in by the
4909 * ioctl.
4910 */
4911 int target_size_in, target_size_out;
4912 struct fiemap *fm;
4913 const argtype *arg_type = ie->arg_type;
4914 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4915 void *argptr, *p;
4916 abi_long ret;
4917 int i, extent_size = thunk_type_size(extent_arg_type, 0);
4918 uint32_t outbufsz;
4919 int free_fm = 0;
4920
4921 assert(arg_type[0] == TYPE_PTR);
4922 assert(ie->access == IOC_RW);
4923 arg_type++;
4924 target_size_in = thunk_type_size(arg_type, 0);
4925 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4926 if (!argptr) {
4927 return -TARGET_EFAULT;
4928 }
4929 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4930 unlock_user(argptr, arg, 0);
4931 fm = (struct fiemap *)buf_temp;
4932 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4933 return -TARGET_EINVAL;
4934 }
4935
4936 outbufsz = sizeof (*fm) +
4937 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4938
4939 if (outbufsz > MAX_STRUCT_SIZE) {
4940 /* We can't fit all the extents into the fixed size buffer.
4941 * Allocate one that is large enough and use it instead.
4942 */
4943 fm = g_try_malloc(outbufsz);
4944 if (!fm) {
4945 return -TARGET_ENOMEM;
4946 }
4947 memcpy(fm, buf_temp, sizeof(struct fiemap));
4948 free_fm = 1;
4949 }
4950 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4951 if (!is_error(ret)) {
4952 target_size_out = target_size_in;
4953 /* An extent_count of 0 means we were only counting the extents
4954 * so there are no structs to copy
4955 */
4956 if (fm->fm_extent_count != 0) {
4957 target_size_out += fm->fm_mapped_extents * extent_size;
4958 }
4959 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4960 if (!argptr) {
4961 ret = -TARGET_EFAULT;
4962 } else {
4963 /* Convert the struct fiemap */
4964 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4965 if (fm->fm_extent_count != 0) {
4966 p = argptr + target_size_in;
4967 /* ...and then all the struct fiemap_extents */
4968 for (i = 0; i < fm->fm_mapped_extents; i++) {
4969 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4970 THUNK_TARGET);
4971 p += extent_size;
4972 }
4973 }
4974 unlock_user(argptr, arg, target_size_out);
4975 }
4976 }
4977 if (free_fm) {
4978 g_free(fm);
4979 }
4980 return ret;
4981 }
4982 #endif
4983
4984 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4985 int fd, int cmd, abi_long arg)
4986 {
4987 const argtype *arg_type = ie->arg_type;
4988 int target_size;
4989 void *argptr;
4990 int ret;
4991 struct ifconf *host_ifconf;
4992 uint32_t outbufsz;
4993 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4994 int target_ifreq_size;
4995 int nb_ifreq;
4996 int free_buf = 0;
4997 int i;
4998 int target_ifc_len;
4999 abi_long target_ifc_buf;
5000 int host_ifc_len;
5001 char *host_ifc_buf;
5002
5003 assert(arg_type[0] == TYPE_PTR);
5004 assert(ie->access == IOC_RW);
5005
5006 arg_type++;
5007 target_size = thunk_type_size(arg_type, 0);
5008
5009 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5010 if (!argptr)
5011 return -TARGET_EFAULT;
5012 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5013 unlock_user(argptr, arg, 0);
5014
5015 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
5016 target_ifc_len = host_ifconf->ifc_len;
5017 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
5018
5019 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
5020 nb_ifreq = target_ifc_len / target_ifreq_size;
5021 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
5022
5023 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
5024 if (outbufsz > MAX_STRUCT_SIZE) {
5025 /* We can't fit all the extents into the fixed size buffer.
5026 * Allocate one that is large enough and use it instead.
5027 */
5028 host_ifconf = malloc(outbufsz);
5029 if (!host_ifconf) {
5030 return -TARGET_ENOMEM;
5031 }
5032 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
5033 free_buf = 1;
5034 }
5035 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf);
5036
5037 host_ifconf->ifc_len = host_ifc_len;
5038 host_ifconf->ifc_buf = host_ifc_buf;
5039
5040 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
5041 if (!is_error(ret)) {
5042 /* convert host ifc_len to target ifc_len */
5043
5044 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
5045 target_ifc_len = nb_ifreq * target_ifreq_size;
5046 host_ifconf->ifc_len = target_ifc_len;
5047
5048 /* restore target ifc_buf */
5049
5050 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
5051
5052 /* copy struct ifconf to target user */
5053
5054 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5055 if (!argptr)
5056 return -TARGET_EFAULT;
5057 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
5058 unlock_user(argptr, arg, target_size);
5059
5060 /* copy ifreq[] to target user */
5061
5062 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
5063 for (i = 0; i < nb_ifreq ; i++) {
5064 thunk_convert(argptr + i * target_ifreq_size,
5065 host_ifc_buf + i * sizeof(struct ifreq),
5066 ifreq_arg_type, THUNK_TARGET);
5067 }
5068 unlock_user(argptr, target_ifc_buf, target_ifc_len);
5069 }
5070
5071 if (free_buf) {
5072 free(host_ifconf);
5073 }
5074
5075 return ret;
5076 }
5077
5078 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5079 int cmd, abi_long arg)
5080 {
5081 void *argptr;
5082 struct dm_ioctl *host_dm;
5083 abi_long guest_data;
5084 uint32_t guest_data_size;
5085 int target_size;
5086 const argtype *arg_type = ie->arg_type;
5087 abi_long ret;
5088 void *big_buf = NULL;
5089 char *host_data;
5090
5091 arg_type++;
5092 target_size = thunk_type_size(arg_type, 0);
5093 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5094 if (!argptr) {
5095 ret = -TARGET_EFAULT;
5096 goto out;
5097 }
5098 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5099 unlock_user(argptr, arg, 0);
5100
5101 /* buf_temp is too small, so fetch things into a bigger buffer */
5102 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
5103 memcpy(big_buf, buf_temp, target_size);
5104 buf_temp = big_buf;
5105 host_dm = big_buf;
5106
5107 guest_data = arg + host_dm->data_start;
5108 if ((guest_data - arg) < 0) {
5109 ret = -TARGET_EINVAL;
5110 goto out;
5111 }
5112 guest_data_size = host_dm->data_size - host_dm->data_start;
5113 host_data = (char*)host_dm + host_dm->data_start;
5114
5115 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
5116 if (!argptr) {
5117 ret = -TARGET_EFAULT;
5118 goto out;
5119 }
5120
5121 switch (ie->host_cmd) {
5122 case DM_REMOVE_ALL:
5123 case DM_LIST_DEVICES:
5124 case DM_DEV_CREATE:
5125 case DM_DEV_REMOVE:
5126 case DM_DEV_SUSPEND:
5127 case DM_DEV_STATUS:
5128 case DM_DEV_WAIT:
5129 case DM_TABLE_STATUS:
5130 case DM_TABLE_CLEAR:
5131 case DM_TABLE_DEPS:
5132 case DM_LIST_VERSIONS:
5133 /* no input data */
5134 break;
5135 case DM_DEV_RENAME:
5136 case DM_DEV_SET_GEOMETRY:
5137 /* data contains only strings */
5138 memcpy(host_data, argptr, guest_data_size);
5139 break;
5140 case DM_TARGET_MSG:
5141 memcpy(host_data, argptr, guest_data_size);
5142 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
5143 break;
5144 case DM_TABLE_LOAD:
5145 {
5146 void *gspec = argptr;
5147 void *cur_data = host_data;
5148 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5149 int spec_size = thunk_type_size(arg_type, 0);
5150 int i;
5151
5152 for (i = 0; i < host_dm->target_count; i++) {
5153 struct dm_target_spec *spec = cur_data;
5154 uint32_t next;
5155 int slen;
5156
5157 thunk_convert(spec, gspec, arg_type, THUNK_HOST);
5158 slen = strlen((char*)gspec + spec_size) + 1;
5159 next = spec->next;
5160 spec->next = sizeof(*spec) + slen;
5161 strcpy((char*)&spec[1], gspec + spec_size);
5162 gspec += next;
5163 cur_data += spec->next;
5164 }
5165 break;
5166 }
5167 default:
5168 ret = -TARGET_EINVAL;
5169 unlock_user(argptr, guest_data, 0);
5170 goto out;
5171 }
5172 unlock_user(argptr, guest_data, 0);
5173
5174 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5175 if (!is_error(ret)) {
5176 guest_data = arg + host_dm->data_start;
5177 guest_data_size = host_dm->data_size - host_dm->data_start;
5178 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
5179 switch (ie->host_cmd) {
5180 case DM_REMOVE_ALL:
5181 case DM_DEV_CREATE:
5182 case DM_DEV_REMOVE:
5183 case DM_DEV_RENAME:
5184 case DM_DEV_SUSPEND:
5185 case DM_DEV_STATUS:
5186 case DM_TABLE_LOAD:
5187 case DM_TABLE_CLEAR:
5188 case DM_TARGET_MSG:
5189 case DM_DEV_SET_GEOMETRY:
5190 /* no return data */
5191 break;
5192 case DM_LIST_DEVICES:
5193 {
5194 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
5195 uint32_t remaining_data = guest_data_size;
5196 void *cur_data = argptr;
5197 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
5198 int nl_size = 12; /* can't use thunk_size due to alignment */
5199
5200 while (1) {
5201 uint32_t next = nl->next;
5202 if (next) {
5203 nl->next = nl_size + (strlen(nl->name) + 1);
5204 }
5205 if (remaining_data < nl->next) {
5206 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5207 break;
5208 }
5209 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
5210 strcpy(cur_data + nl_size, nl->name);
5211 cur_data += nl->next;
5212 remaining_data -= nl->next;
5213 if (!next) {
5214 break;
5215 }
5216 nl = (void*)nl + next;
5217 }
5218 break;
5219 }
5220 case DM_DEV_WAIT:
5221 case DM_TABLE_STATUS:
5222 {
5223 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
5224 void *cur_data = argptr;
5225 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
5226 int spec_size = thunk_type_size(arg_type, 0);
5227 int i;
5228
5229 for (i = 0; i < host_dm->target_count; i++) {
5230 uint32_t next = spec->next;
5231 int slen = strlen((char*)&spec[1]) + 1;
5232 spec->next = (cur_data - argptr) + spec_size + slen;
5233 if (guest_data_size < spec->next) {
5234 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5235 break;
5236 }
5237 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
5238 strcpy(cur_data + spec_size, (char*)&spec[1]);
5239 cur_data = argptr + spec->next;
5240 spec = (void*)host_dm + host_dm->data_start + next;
5241 }
5242 break;
5243 }
5244 case DM_TABLE_DEPS:
5245 {
5246 void *hdata = (void*)host_dm + host_dm->data_start;
5247 int count = *(uint32_t*)hdata;
5248 uint64_t *hdev = hdata + 8;
5249 uint64_t *gdev = argptr + 8;
5250 int i;
5251
5252 *(uint32_t*)argptr = tswap32(count);
5253 for (i = 0; i < count; i++) {
5254 *gdev = tswap64(*hdev);
5255 gdev++;
5256 hdev++;
5257 }
5258 break;
5259 }
5260 case DM_LIST_VERSIONS:
5261 {
5262 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
5263 uint32_t remaining_data = guest_data_size;
5264 void *cur_data = argptr;
5265 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
5266 int vers_size = thunk_type_size(arg_type, 0);
5267
5268 while (1) {
5269 uint32_t next = vers->next;
5270 if (next) {
5271 vers->next = vers_size + (strlen(vers->name) + 1);
5272 }
5273 if (remaining_data < vers->next) {
5274 host_dm->flags |= DM_BUFFER_FULL_FLAG;
5275 break;
5276 }
5277 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
5278 strcpy(cur_data + vers_size, vers->name);
5279 cur_data += vers->next;
5280 remaining_data -= vers->next;
5281 if (!next) {
5282 break;
5283 }
5284 vers = (void*)vers + next;
5285 }
5286 break;
5287 }
5288 default:
5289 unlock_user(argptr, guest_data, 0);
5290 ret = -TARGET_EINVAL;
5291 goto out;
5292 }
5293 unlock_user(argptr, guest_data, guest_data_size);
5294
5295 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5296 if (!argptr) {
5297 ret = -TARGET_EFAULT;
5298 goto out;
5299 }
5300 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5301 unlock_user(argptr, arg, target_size);
5302 }
5303 out:
5304 g_free(big_buf);
5305 return ret;
5306 }
5307
5308 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
5309 int cmd, abi_long arg)
5310 {
5311 void *argptr;
5312 int target_size;
5313 const argtype *arg_type = ie->arg_type;
5314 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
5315 abi_long ret;
5316
5317 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
5318 struct blkpg_partition host_part;
5319
5320 /* Read and convert blkpg */
5321 arg_type++;
5322 target_size = thunk_type_size(arg_type, 0);
5323 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5324 if (!argptr) {
5325 ret = -TARGET_EFAULT;
5326 goto out;
5327 }
5328 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5329 unlock_user(argptr, arg, 0);
5330
5331 switch (host_blkpg->op) {
5332 case BLKPG_ADD_PARTITION:
5333 case BLKPG_DEL_PARTITION:
5334 /* payload is struct blkpg_partition */
5335 break;
5336 default:
5337 /* Unknown opcode */
5338 ret = -TARGET_EINVAL;
5339 goto out;
5340 }
5341
5342 /* Read and convert blkpg->data */
5343 arg = (abi_long)(uintptr_t)host_blkpg->data;
5344 target_size = thunk_type_size(part_arg_type, 0);
5345 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5346 if (!argptr) {
5347 ret = -TARGET_EFAULT;
5348 goto out;
5349 }
5350 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
5351 unlock_user(argptr, arg, 0);
5352
5353 /* Swizzle the data pointer to our local copy and call! */
5354 host_blkpg->data = &host_part;
5355 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
5356
5357 out:
5358 return ret;
5359 }
5360
5361 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
5362 int fd, int cmd, abi_long arg)
5363 {
5364 const argtype *arg_type = ie->arg_type;
5365 const StructEntry *se;
5366 const argtype *field_types;
5367 const int *dst_offsets, *src_offsets;
5368 int target_size;
5369 void *argptr;
5370 abi_ulong *target_rt_dev_ptr;
5371 unsigned long *host_rt_dev_ptr;
5372 abi_long ret;
5373 int i;
5374
5375 assert(ie->access == IOC_W);
5376 assert(*arg_type == TYPE_PTR);
5377 arg_type++;
5378 assert(*arg_type == TYPE_STRUCT);
5379 target_size = thunk_type_size(arg_type, 0);
5380 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5381 if (!argptr) {
5382 return -TARGET_EFAULT;
5383 }
5384 arg_type++;
5385 assert(*arg_type == (int)STRUCT_rtentry);
5386 se = struct_entries + *arg_type++;
5387 assert(se->convert[0] == NULL);
5388 /* convert struct here to be able to catch rt_dev string */
5389 field_types = se->field_types;
5390 dst_offsets = se->field_offsets[THUNK_HOST];
5391 src_offsets = se->field_offsets[THUNK_TARGET];
5392 for (i = 0; i < se->nb_fields; i++) {
5393 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
5394 assert(*field_types == TYPE_PTRVOID);
5395 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
5396 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
5397 if (*target_rt_dev_ptr != 0) {
5398 *host_rt_dev_ptr = (unsigned long)lock_user_string(
5399 tswapal(*target_rt_dev_ptr));
5400 if (!*host_rt_dev_ptr) {
5401 unlock_user(argptr, arg, 0);
5402 return -TARGET_EFAULT;
5403 }
5404 } else {
5405 *host_rt_dev_ptr = 0;
5406 }
5407 field_types++;
5408 continue;
5409 }
5410 field_types = thunk_convert(buf_temp + dst_offsets[i],
5411 argptr + src_offsets[i],
5412 field_types, THUNK_HOST);
5413 }
5414 unlock_user(argptr, arg, 0);
5415
5416 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5417 if (*host_rt_dev_ptr != 0) {
5418 unlock_user((void *)*host_rt_dev_ptr,
5419 *target_rt_dev_ptr, 0);
5420 }
5421 return ret;
5422 }
5423
5424 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
5425 int fd, int cmd, abi_long arg)
5426 {
5427 int sig = target_to_host_signal(arg);
5428 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
5429 }
5430
5431 static IOCTLEntry ioctl_entries[] = {
5432 #define IOCTL(cmd, access, ...) \
5433 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
5434 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
5435 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
5436 #include "ioctls.h"
5437 { 0, 0, },
5438 };
5439
5440 /* ??? Implement proper locking for ioctls. */
5441 /* do_ioctl() Must return target values and target errnos. */
5442 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
5443 {
5444 const IOCTLEntry *ie;
5445 const argtype *arg_type;
5446 abi_long ret;
5447 uint8_t buf_temp[MAX_STRUCT_SIZE];
5448 int target_size;
5449 void *argptr;
5450
5451 ie = ioctl_entries;
5452 for(;;) {
5453 if (ie->target_cmd == 0) {
5454 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
5455 return -TARGET_ENOSYS;
5456 }
5457 if (ie->target_cmd == cmd)
5458 break;
5459 ie++;
5460 }
5461 arg_type = ie->arg_type;
5462 #if defined(DEBUG)
5463 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name);
5464 #endif
5465 if (ie->do_ioctl) {
5466 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
5467 }
5468
5469 switch(arg_type[0]) {
5470 case TYPE_NULL:
5471 /* no argument */
5472 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
5473 break;
5474 case TYPE_PTRVOID:
5475 case TYPE_INT:
5476 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
5477 break;
5478 case TYPE_PTR:
5479 arg_type++;
5480 target_size = thunk_type_size(arg_type, 0);
5481 switch(ie->access) {
5482 case IOC_R:
5483 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5484 if (!is_error(ret)) {
5485 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5486 if (!argptr)
5487 return -TARGET_EFAULT;
5488 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5489 unlock_user(argptr, arg, target_size);
5490 }
5491 break;
5492 case IOC_W:
5493 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5494 if (!argptr)
5495 return -TARGET_EFAULT;
5496 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5497 unlock_user(argptr, arg, 0);
5498 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5499 break;
5500 default:
5501 case IOC_RW:
5502 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
5503 if (!argptr)
5504 return -TARGET_EFAULT;
5505 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
5506 unlock_user(argptr, arg, 0);
5507 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
5508 if (!is_error(ret)) {
5509 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
5510 if (!argptr)
5511 return -TARGET_EFAULT;
5512 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
5513 unlock_user(argptr, arg, target_size);
5514 }
5515 break;
5516 }
5517 break;
5518 default:
5519 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
5520 (long)cmd, arg_type[0]);
5521 ret = -TARGET_ENOSYS;
5522 break;
5523 }
5524 return ret;
5525 }
5526
5527 static const bitmask_transtbl iflag_tbl[] = {
5528 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
5529 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
5530 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
5531 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
5532 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
5533 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
5534 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
5535 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
5536 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
5537 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
5538 { TARGET_IXON, TARGET_IXON, IXON, IXON },
5539 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
5540 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
5541 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
5542 { 0, 0, 0, 0 }
5543 };
5544
5545 static const bitmask_transtbl oflag_tbl[] = {
5546 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
5547 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
5548 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
5549 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
5550 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
5551 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
5552 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
5553 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
5554 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
5555 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
5556 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
5557 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
5558 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
5559 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
5560 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
5561 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
5562 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
5563 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
5564 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
5565 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
5566 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
5567 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
5568 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
5569 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
5570 { 0, 0, 0, 0 }
5571 };
5572
5573 static const bitmask_transtbl cflag_tbl[] = {
5574 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
5575 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
5576 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
5577 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
5578 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
5579 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
5580 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
5581 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
5582 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
5583 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
5584 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
5585 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
5586 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
5587 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
5588 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
5589 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
5590 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
5591 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
5592 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
5593 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
5594 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
5595 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
5596 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
5597 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
5598 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
5599 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
5600 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
5601 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
5602 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
5603 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
5604 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
5605 { 0, 0, 0, 0 }
5606 };
5607
5608 static const bitmask_transtbl lflag_tbl[] = {
5609 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
5610 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
5611 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
5612 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
5613 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
5614 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
5615 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
5616 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
5617 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
5618 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
5619 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
5620 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
5621 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
5622 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
5623 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
5624 { 0, 0, 0, 0 }
5625 };
5626
5627 static void target_to_host_termios (void *dst, const void *src)
5628 {
5629 struct host_termios *host = dst;
5630 const struct target_termios *target = src;
5631
5632 host->c_iflag =
5633 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
5634 host->c_oflag =
5635 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
5636 host->c_cflag =
5637 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
5638 host->c_lflag =
5639 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
5640 host->c_line = target->c_line;
5641
5642 memset(host->c_cc, 0, sizeof(host->c_cc));
5643 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
5644 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
5645 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5646 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5647 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5648 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5649 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5650 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5651 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5652 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5653 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5654 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5655 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5656 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5657 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5658 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5659 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5660 }
5661
5662 static void host_to_target_termios (void *dst, const void *src)
5663 {
5664 struct target_termios *target = dst;
5665 const struct host_termios *host = src;
5666
5667 target->c_iflag =
5668 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5669 target->c_oflag =
5670 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5671 target->c_cflag =
5672 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5673 target->c_lflag =
5674 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5675 target->c_line = host->c_line;
5676
5677 memset(target->c_cc, 0, sizeof(target->c_cc));
5678 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5679 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5680 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5681 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5682 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5683 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5684 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5685 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5686 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5687 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5688 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5689 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5690 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5691 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5692 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5693 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5694 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5695 }
5696
5697 static const StructEntry struct_termios_def = {
5698 .convert = { host_to_target_termios, target_to_host_termios },
5699 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5700 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5701 };
5702
5703 static bitmask_transtbl mmap_flags_tbl[] = {
5704 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
5705 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
5706 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5707 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS },
5708 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN },
5709 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE },
5710 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE },
5711 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5712 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, MAP_NORESERVE,
5713 MAP_NORESERVE },
5714 { 0, 0, 0, 0 }
5715 };
5716
5717 #if defined(TARGET_I386)
5718
5719 /* NOTE: there is really one LDT for all the threads */
5720 static uint8_t *ldt_table;
5721
5722 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5723 {
5724 int size;
5725 void *p;
5726
5727 if (!ldt_table)
5728 return 0;
5729 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5730 if (size > bytecount)
5731 size = bytecount;
5732 p = lock_user(VERIFY_WRITE, ptr, size, 0);
5733 if (!p)
5734 return -TARGET_EFAULT;
5735 /* ??? Should this by byteswapped? */
5736 memcpy(p, ldt_table, size);
5737 unlock_user(p, ptr, size);
5738 return size;
5739 }
5740
5741 /* XXX: add locking support */
5742 static abi_long write_ldt(CPUX86State *env,
5743 abi_ulong ptr, unsigned long bytecount, int oldmode)
5744 {
5745 struct target_modify_ldt_ldt_s ldt_info;
5746 struct target_modify_ldt_ldt_s *target_ldt_info;
5747 int seg_32bit, contents, read_exec_only, limit_in_pages;
5748 int seg_not_present, useable, lm;
5749 uint32_t *lp, entry_1, entry_2;
5750
5751 if (bytecount != sizeof(ldt_info))
5752 return -TARGET_EINVAL;
5753 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5754 return -TARGET_EFAULT;
5755 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5756 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5757 ldt_info.limit = tswap32(target_ldt_info->limit);
5758 ldt_info.flags = tswap32(target_ldt_info->flags);
5759 unlock_user_struct(target_ldt_info, ptr, 0);
5760
5761 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5762 return -TARGET_EINVAL;
5763 seg_32bit = ldt_info.flags & 1;
5764 contents = (ldt_info.flags >> 1) & 3;
5765 read_exec_only = (ldt_info.flags >> 3) & 1;
5766 limit_in_pages = (ldt_info.flags >> 4) & 1;
5767 seg_not_present = (ldt_info.flags >> 5) & 1;
5768 useable = (ldt_info.flags >> 6) & 1;
5769 #ifdef TARGET_ABI32
5770 lm = 0;
5771 #else
5772 lm = (ldt_info.flags >> 7) & 1;
5773 #endif
5774 if (contents == 3) {
5775 if (oldmode)
5776 return -TARGET_EINVAL;
5777 if (seg_not_present == 0)
5778 return -TARGET_EINVAL;
5779 }
5780 /* allocate the LDT */
5781 if (!ldt_table) {
5782 env->ldt.base = target_mmap(0,
5783 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
5784 PROT_READ|PROT_WRITE,
5785 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
5786 if (env->ldt.base == -1)
5787 return -TARGET_ENOMEM;
5788 memset(g2h(env->ldt.base), 0,
5789 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
5790 env->ldt.limit = 0xffff;
5791 ldt_table = g2h(env->ldt.base);
5792 }
5793
5794 /* NOTE: same code as Linux kernel */
5795 /* Allow LDTs to be cleared by the user. */
5796 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5797 if (oldmode ||
5798 (contents == 0 &&
5799 read_exec_only == 1 &&
5800 seg_32bit == 0 &&
5801 limit_in_pages == 0 &&
5802 seg_not_present == 1 &&
5803 useable == 0 )) {
5804 entry_1 = 0;
5805 entry_2 = 0;
5806 goto install;
5807 }
5808 }
5809
5810 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5811 (ldt_info.limit & 0x0ffff);
5812 entry_2 = (ldt_info.base_addr & 0xff000000) |
5813 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5814 (ldt_info.limit & 0xf0000) |
5815 ((read_exec_only ^ 1) << 9) |
5816 (contents << 10) |
5817 ((seg_not_present ^ 1) << 15) |
5818 (seg_32bit << 22) |
5819 (limit_in_pages << 23) |
5820 (lm << 21) |
5821 0x7000;
5822 if (!oldmode)
5823 entry_2 |= (useable << 20);
5824
5825 /* Install the new entry ... */
5826 install:
5827 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
5828 lp[0] = tswap32(entry_1);
5829 lp[1] = tswap32(entry_2);
5830 return 0;
5831 }
5832
5833 /* specific and weird i386 syscalls */
5834 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
5835 unsigned long bytecount)
5836 {
5837 abi_long ret;
5838
5839 switch (func) {
5840 case 0:
5841 ret = read_ldt(ptr, bytecount);
5842 break;
5843 case 1:
5844 ret = write_ldt(env, ptr, bytecount, 1);
5845 break;
5846 case 0x11:
5847 ret = write_ldt(env, ptr, bytecount, 0);
5848 break;
5849 default:
5850 ret = -TARGET_ENOSYS;
5851 break;
5852 }
5853 return ret;
5854 }
5855
5856 #if defined(TARGET_I386) && defined(TARGET_ABI32)
5857 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
5858 {
5859 uint64_t *gdt_table = g2h(env->gdt.base);
5860 struct target_modify_ldt_ldt_s ldt_info;
5861 struct target_modify_ldt_ldt_s *target_ldt_info;
5862 int seg_32bit, contents, read_exec_only, limit_in_pages;
5863 int seg_not_present, useable, lm;
5864 uint32_t *lp, entry_1, entry_2;
5865 int i;
5866
5867 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5868 if (!target_ldt_info)
5869 return -TARGET_EFAULT;
5870 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5871 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5872 ldt_info.limit = tswap32(target_ldt_info->limit);
5873 ldt_info.flags = tswap32(target_ldt_info->flags);
5874 if (ldt_info.entry_number == -1) {
5875 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
5876 if (gdt_table[i] == 0) {
5877 ldt_info.entry_number = i;
5878 target_ldt_info->entry_number = tswap32(i);
5879 break;
5880 }
5881 }
5882 }
5883 unlock_user_struct(target_ldt_info, ptr, 1);
5884
5885 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
5886 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
5887 return -TARGET_EINVAL;
5888 seg_32bit = ldt_info.flags & 1;
5889 contents = (ldt_info.flags >> 1) & 3;
5890 read_exec_only = (ldt_info.flags >> 3) & 1;
5891 limit_in_pages = (ldt_info.flags >> 4) & 1;
5892 seg_not_present = (ldt_info.flags >> 5) & 1;
5893 useable = (ldt_info.flags >> 6) & 1;
5894 #ifdef TARGET_ABI32
5895 lm = 0;
5896 #else
5897 lm = (ldt_info.flags >> 7) & 1;
5898 #endif
5899
5900 if (contents == 3) {
5901 if (seg_not_present == 0)
5902 return -TARGET_EINVAL;
5903 }
5904
5905 /* NOTE: same code as Linux kernel */
5906 /* Allow LDTs to be cleared by the user. */
5907 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5908 if ((contents == 0 &&
5909 read_exec_only == 1 &&
5910 seg_32bit == 0 &&
5911 limit_in_pages == 0 &&
5912 seg_not_present == 1 &&
5913 useable == 0 )) {
5914 entry_1 = 0;
5915 entry_2 = 0;
5916 goto install;
5917 }
5918 }
5919
5920 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5921 (ldt_info.limit & 0x0ffff);
5922 entry_2 = (ldt_info.base_addr & 0xff000000) |
5923 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5924 (ldt_info.limit & 0xf0000) |
5925 ((read_exec_only ^ 1) << 9) |
5926 (contents << 10) |
5927 ((seg_not_present ^ 1) << 15) |
5928 (seg_32bit << 22) |
5929 (limit_in_pages << 23) |
5930 (useable << 20) |
5931 (lm << 21) |
5932 0x7000;
5933
5934 /* Install the new entry ... */
5935 install:
5936 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
5937 lp[0] = tswap32(entry_1);
5938 lp[1] = tswap32(entry_2);
5939 return 0;
5940 }
5941
5942 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
5943 {
5944 struct target_modify_ldt_ldt_s *target_ldt_info;
5945 uint64_t *gdt_table = g2h(env->gdt.base);
5946 uint32_t base_addr, limit, flags;
5947 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
5948 int seg_not_present, useable, lm;
5949 uint32_t *lp, entry_1, entry_2;
5950
5951 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5952 if (!target_ldt_info)
5953 return -TARGET_EFAULT;
5954 idx = tswap32(target_ldt_info->entry_number);
5955 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
5956 idx > TARGET_GDT_ENTRY_TLS_MAX) {
5957 unlock_user_struct(target_ldt_info, ptr, 1);
5958 return -TARGET_EINVAL;
5959 }
5960 lp = (uint32_t *)(gdt_table + idx);
5961 entry_1 = tswap32(lp[0]);
5962 entry_2 = tswap32(lp[1]);
5963
5964 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
5965 contents = (entry_2 >> 10) & 3;
5966 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
5967 seg_32bit = (entry_2 >> 22) & 1;
5968 limit_in_pages = (entry_2 >> 23) & 1;
5969 useable = (entry_2 >> 20) & 1;
5970 #ifdef TARGET_ABI32
5971 lm = 0;
5972 #else
5973 lm = (entry_2 >> 21) & 1;
5974 #endif
5975 flags = (seg_32bit << 0) | (contents << 1) |
5976 (read_exec_only << 3) | (limit_in_pages << 4) |
5977 (seg_not_present << 5) | (useable << 6) | (lm << 7);
5978 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
5979 base_addr = (entry_1 >> 16) |
5980 (entry_2 & 0xff000000) |
5981 ((entry_2 & 0xff) << 16);
5982 target_ldt_info->base_addr = tswapal(base_addr);
5983 target_ldt_info->limit = tswap32(limit);
5984 target_ldt_info->flags = tswap32(flags);
5985 unlock_user_struct(target_ldt_info, ptr, 1);
5986 return 0;
5987 }
5988 #endif /* TARGET_I386 && TARGET_ABI32 */
5989
5990 #ifndef TARGET_ABI32
5991 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
5992 {
5993 abi_long ret = 0;
5994 abi_ulong val;
5995 int idx;
5996
5997 switch(code) {
5998 case TARGET_ARCH_SET_GS:
5999 case TARGET_ARCH_SET_FS:
6000 if (code == TARGET_ARCH_SET_GS)
6001 idx = R_GS;
6002 else
6003 idx = R_FS;
6004 cpu_x86_load_seg(env, idx, 0);
6005 env->segs[idx].base = addr;
6006 break;
6007 case TARGET_ARCH_GET_GS:
6008 case TARGET_ARCH_GET_FS:
6009 if (code == TARGET_ARCH_GET_GS)
6010 idx = R_GS;
6011 else
6012 idx = R_FS;
6013 val = env->segs[idx].base;
6014 if (put_user(val, addr, abi_ulong))
6015 ret = -TARGET_EFAULT;
6016 break;
6017 default:
6018 ret = -TARGET_EINVAL;
6019 break;
6020 }
6021 return ret;
6022 }
6023 #endif
6024
6025 #endif /* defined(TARGET_I386) */
6026
6027 #define NEW_STACK_SIZE 0x40000
6028
6029
6030 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
6031 typedef struct {
6032 CPUArchState *env;
6033 pthread_mutex_t mutex;
6034 pthread_cond_t cond;
6035 pthread_t thread;
6036 uint32_t tid;
6037 abi_ulong child_tidptr;
6038 abi_ulong parent_tidptr;
6039 sigset_t sigmask;
6040 } new_thread_info;
6041
6042 static void *clone_func(void *arg)
6043 {
6044 new_thread_info *info = arg;
6045 CPUArchState *env;
6046 CPUState *cpu;
6047 TaskState *ts;
6048
6049 rcu_register_thread();
6050 env = info->env;
6051 cpu = ENV_GET_CPU(env);
6052 thread_cpu = cpu;
6053 ts = (TaskState *)cpu->opaque;
6054 info->tid = gettid();
6055 cpu->host_tid = info->tid;
6056 task_settid(ts);
6057 if (info->child_tidptr)
6058 put_user_u32(info->tid, info->child_tidptr);
6059 if (info->parent_tidptr)
6060 put_user_u32(info->tid, info->parent_tidptr);
6061 /* Enable signals. */
6062 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
6063 /* Signal to the parent that we're ready. */
6064 pthread_mutex_lock(&info->mutex);
6065 pthread_cond_broadcast(&info->cond);
6066 pthread_mutex_unlock(&info->mutex);
6067 /* Wait until the parent has finshed initializing the tls state. */
6068 pthread_mutex_lock(&clone_lock);
6069 pthread_mutex_unlock(&clone_lock);
6070 cpu_loop(env);
6071 /* never exits */
6072 return NULL;
6073 }
6074
6075 /* do_fork() Must return host values and target errnos (unlike most
6076 do_*() functions). */
6077 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
6078 abi_ulong parent_tidptr, target_ulong newtls,
6079 abi_ulong child_tidptr)
6080 {
6081 CPUState *cpu = ENV_GET_CPU(env);
6082 int ret;
6083 TaskState *ts;
6084 CPUState *new_cpu;
6085 CPUArchState *new_env;
6086 sigset_t sigmask;
6087
6088 flags &= ~CLONE_IGNORED_FLAGS;
6089
6090 /* Emulate vfork() with fork() */
6091 if (flags & CLONE_VFORK)
6092 flags &= ~(CLONE_VFORK | CLONE_VM);
6093
6094 if (flags & CLONE_VM) {
6095 TaskState *parent_ts = (TaskState *)cpu->opaque;
6096 new_thread_info info;
6097 pthread_attr_t attr;
6098
6099 if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
6100 (flags & CLONE_INVALID_THREAD_FLAGS)) {
6101 return -TARGET_EINVAL;
6102 }
6103
6104 ts = g_new0(TaskState, 1);
6105 init_task_state(ts);
6106 /* we create a new CPU instance. */
6107 new_env = cpu_copy(env);
6108 /* Init regs that differ from the parent. */
6109 cpu_clone_regs(new_env, newsp);
6110 new_cpu = ENV_GET_CPU(new_env);
6111 new_cpu->opaque = ts;
6112 ts->bprm = parent_ts->bprm;
6113 ts->info = parent_ts->info;
6114 ts->signal_mask = parent_ts->signal_mask;
6115
6116 if (flags & CLONE_CHILD_CLEARTID) {
6117 ts->child_tidptr = child_tidptr;
6118 }
6119
6120 if (flags & CLONE_SETTLS) {
6121 cpu_set_tls (new_env, newtls);
6122 }
6123
6124 /* Grab a mutex so that thread setup appears atomic. */
6125 pthread_mutex_lock(&clone_lock);
6126
6127 memset(&info, 0, sizeof(info));
6128 pthread_mutex_init(&info.mutex, NULL);
6129 pthread_mutex_lock(&info.mutex);
6130 pthread_cond_init(&info.cond, NULL);
6131 info.env = new_env;
6132 if (flags & CLONE_CHILD_SETTID) {
6133 info.child_tidptr = child_tidptr;
6134 }
6135 if (flags & CLONE_PARENT_SETTID) {
6136 info.parent_tidptr = parent_tidptr;
6137 }
6138
6139 ret = pthread_attr_init(&attr);
6140 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
6141 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
6142 /* It is not safe to deliver signals until the child has finished
6143 initializing, so temporarily block all signals. */
6144 sigfillset(&sigmask);
6145 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
6146
6147 ret = pthread_create(&info.thread, &attr, clone_func, &info);
6148 /* TODO: Free new CPU state if thread creation failed. */
6149
6150 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
6151 pthread_attr_destroy(&attr);
6152 if (ret == 0) {
6153 /* Wait for the child to initialize. */
6154 pthread_cond_wait(&info.cond, &info.mutex);
6155 ret = info.tid;
6156 } else {
6157 ret = -1;
6158 }
6159 pthread_mutex_unlock(&info.mutex);
6160 pthread_cond_destroy(&info.cond);
6161 pthread_mutex_destroy(&info.mutex);
6162 pthread_mutex_unlock(&clone_lock);
6163 } else {
6164 /* if no CLONE_VM, we consider it is a fork */
6165 if (flags & CLONE_INVALID_FORK_FLAGS) {
6166 return -TARGET_EINVAL;
6167 }
6168
6169 /* We can't support custom termination signals */
6170 if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
6171 return -TARGET_EINVAL;
6172 }
6173
6174 if (block_signals()) {
6175 return -TARGET_ERESTARTSYS;
6176 }
6177
6178 fork_start();
6179 ret = fork();
6180 if (ret == 0) {
6181 /* Child Process. */
6182 rcu_after_fork();
6183 cpu_clone_regs(env, newsp);
6184 fork_end(1);
6185 /* There is a race condition here. The parent process could
6186 theoretically read the TID in the child process before the child
6187 tid is set. This would require using either ptrace
6188 (not implemented) or having *_tidptr to point at a shared memory
6189 mapping. We can't repeat the spinlock hack used above because
6190 the child process gets its own copy of the lock. */
6191 if (flags & CLONE_CHILD_SETTID)
6192 put_user_u32(gettid(), child_tidptr);
6193 if (flags & CLONE_PARENT_SETTID)
6194 put_user_u32(gettid(), parent_tidptr);
6195 ts = (TaskState *)cpu->opaque;
6196 if (flags & CLONE_SETTLS)
6197 cpu_set_tls (env, newtls);
6198 if (flags & CLONE_CHILD_CLEARTID)
6199 ts->child_tidptr = child_tidptr;
6200 } else {
6201 fork_end(0);
6202 }
6203 }
6204 return ret;
6205 }
6206
6207 /* warning : doesn't handle linux specific flags... */
6208 static int target_to_host_fcntl_cmd(int cmd)
6209 {
6210 switch(cmd) {
6211 case TARGET_F_DUPFD:
6212 case TARGET_F_GETFD:
6213 case TARGET_F_SETFD:
6214 case TARGET_F_GETFL:
6215 case TARGET_F_SETFL:
6216 return cmd;
6217 case TARGET_F_GETLK:
6218 return F_GETLK64;
6219 case TARGET_F_SETLK:
6220 return F_SETLK64;
6221 case TARGET_F_SETLKW:
6222 return F_SETLKW64;
6223 case TARGET_F_GETOWN:
6224 return F_GETOWN;
6225 case TARGET_F_SETOWN:
6226 return F_SETOWN;
6227 case TARGET_F_GETSIG:
6228 return F_GETSIG;
6229 case TARGET_F_SETSIG:
6230 return F_SETSIG;
6231 #if TARGET_ABI_BITS == 32
6232 case TARGET_F_GETLK64:
6233 return F_GETLK64;
6234 case TARGET_F_SETLK64:
6235 return F_SETLK64;
6236 case TARGET_F_SETLKW64:
6237 return F_SETLKW64;
6238 #endif
6239 case TARGET_F_SETLEASE:
6240 return F_SETLEASE;
6241 case TARGET_F_GETLEASE:
6242 return F_GETLEASE;
6243 #ifdef F_DUPFD_CLOEXEC
6244 case TARGET_F_DUPFD_CLOEXEC:
6245 return F_DUPFD_CLOEXEC;
6246 #endif
6247 case TARGET_F_NOTIFY:
6248 return F_NOTIFY;
6249 #ifdef F_GETOWN_EX
6250 case TARGET_F_GETOWN_EX:
6251 return F_GETOWN_EX;
6252 #endif
6253 #ifdef F_SETOWN_EX
6254 case TARGET_F_SETOWN_EX:
6255 return F_SETOWN_EX;
6256 #endif
6257 #ifdef F_SETPIPE_SZ
6258 case TARGET_F_SETPIPE_SZ:
6259 return F_SETPIPE_SZ;
6260 case TARGET_F_GETPIPE_SZ:
6261 return F_GETPIPE_SZ;
6262 #endif
6263 default:
6264 return -TARGET_EINVAL;
6265 }
6266 return -TARGET_EINVAL;
6267 }
6268
6269 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
6270 static const bitmask_transtbl flock_tbl[] = {
6271 TRANSTBL_CONVERT(F_RDLCK),
6272 TRANSTBL_CONVERT(F_WRLCK),
6273 TRANSTBL_CONVERT(F_UNLCK),
6274 TRANSTBL_CONVERT(F_EXLCK),
6275 TRANSTBL_CONVERT(F_SHLCK),
6276 { 0, 0, 0, 0 }
6277 };
6278
6279 static inline abi_long copy_from_user_flock(struct flock64 *fl,
6280 abi_ulong target_flock_addr)
6281 {
6282 struct target_flock *target_fl;
6283 short l_type;
6284
6285 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6286 return -TARGET_EFAULT;
6287 }
6288
6289 __get_user(l_type, &target_fl->l_type);
6290 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
6291 __get_user(fl->l_whence, &target_fl->l_whence);
6292 __get_user(fl->l_start, &target_fl->l_start);
6293 __get_user(fl->l_len, &target_fl->l_len);
6294 __get_user(fl->l_pid, &target_fl->l_pid);
6295 unlock_user_struct(target_fl, target_flock_addr, 0);
6296 return 0;
6297 }
6298
6299 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
6300 const struct flock64 *fl)
6301 {
6302 struct target_flock *target_fl;
6303 short l_type;
6304
6305 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6306 return -TARGET_EFAULT;
6307 }
6308
6309 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
6310 __put_user(l_type, &target_fl->l_type);
6311 __put_user(fl->l_whence, &target_fl->l_whence);
6312 __put_user(fl->l_start, &target_fl->l_start);
6313 __put_user(fl->l_len, &target_fl->l_len);
6314 __put_user(fl->l_pid, &target_fl->l_pid);
6315 unlock_user_struct(target_fl, target_flock_addr, 1);
6316 return 0;
6317 }
6318
6319 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
6320 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
6321
6322 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
6323 static inline abi_long copy_from_user_eabi_flock64(struct flock64 *fl,
6324 abi_ulong target_flock_addr)
6325 {
6326 struct target_eabi_flock64 *target_fl;
6327 short l_type;
6328
6329 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6330 return -TARGET_EFAULT;
6331 }
6332
6333 __get_user(l_type, &target_fl->l_type);
6334 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
6335 __get_user(fl->l_whence, &target_fl->l_whence);
6336 __get_user(fl->l_start, &target_fl->l_start);
6337 __get_user(fl->l_len, &target_fl->l_len);
6338 __get_user(fl->l_pid, &target_fl->l_pid);
6339 unlock_user_struct(target_fl, target_flock_addr, 0);
6340 return 0;
6341 }
6342
6343 static inline abi_long copy_to_user_eabi_flock64(abi_ulong target_flock_addr,
6344 const struct flock64 *fl)
6345 {
6346 struct target_eabi_flock64 *target_fl;
6347 short l_type;
6348
6349 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6350 return -TARGET_EFAULT;
6351 }
6352
6353 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
6354 __put_user(l_type, &target_fl->l_type);
6355 __put_user(fl->l_whence, &target_fl->l_whence);
6356 __put_user(fl->l_start, &target_fl->l_start);
6357 __put_user(fl->l_len, &target_fl->l_len);
6358 __put_user(fl->l_pid, &target_fl->l_pid);
6359 unlock_user_struct(target_fl, target_flock_addr, 1);
6360 return 0;
6361 }
6362 #endif
6363
6364 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
6365 abi_ulong target_flock_addr)
6366 {
6367 struct target_flock64 *target_fl;
6368 short l_type;
6369
6370 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
6371 return -TARGET_EFAULT;
6372 }
6373
6374 __get_user(l_type, &target_fl->l_type);
6375 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
6376 __get_user(fl->l_whence, &target_fl->l_whence);
6377 __get_user(fl->l_start, &target_fl->l_start);
6378 __get_user(fl->l_len, &target_fl->l_len);
6379 __get_user(fl->l_pid, &target_fl->l_pid);
6380 unlock_user_struct(target_fl, target_flock_addr, 0);
6381 return 0;
6382 }
6383
6384 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
6385 const struct flock64 *fl)
6386 {
6387 struct target_flock64 *target_fl;
6388 short l_type;
6389
6390 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
6391 return -TARGET_EFAULT;
6392 }
6393
6394 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
6395 __put_user(l_type, &target_fl->l_type);
6396 __put_user(fl->l_whence, &target_fl->l_whence);
6397 __put_user(fl->l_start, &target_fl->l_start);
6398 __put_user(fl->l_len, &target_fl->l_len);
6399 __put_user(fl->l_pid, &target_fl->l_pid);
6400 unlock_user_struct(target_fl, target_flock_addr, 1);
6401 return 0;
6402 }
6403
6404 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
6405 {
6406 struct flock64 fl64;
6407 #ifdef F_GETOWN_EX
6408 struct f_owner_ex fox;
6409 struct target_f_owner_ex *target_fox;
6410 #endif
6411 abi_long ret;
6412 int host_cmd = target_to_host_fcntl_cmd(cmd);
6413
6414 if (host_cmd == -TARGET_EINVAL)
6415 return host_cmd;
6416
6417 switch(cmd) {
6418 case TARGET_F_GETLK:
6419 ret = copy_from_user_flock(&fl64, arg);
6420 if (ret) {
6421 return ret;
6422 }
6423 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6424 if (ret == 0) {
6425 ret = copy_to_user_flock(arg, &fl64);
6426 }
6427 break;
6428
6429 case TARGET_F_SETLK:
6430 case TARGET_F_SETLKW:
6431 ret = copy_from_user_flock(&fl64, arg);
6432 if (ret) {
6433 return ret;
6434 }
6435 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6436 break;
6437
6438 case TARGET_F_GETLK64:
6439 ret = copy_from_user_flock64(&fl64, arg);
6440 if (ret) {
6441 return ret;
6442 }
6443 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6444 if (ret == 0) {
6445 ret = copy_to_user_flock64(arg, &fl64);
6446 }
6447 break;
6448 case TARGET_F_SETLK64:
6449 case TARGET_F_SETLKW64:
6450 ret = copy_from_user_flock64(&fl64, arg);
6451 if (ret) {
6452 return ret;
6453 }
6454 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
6455 break;
6456
6457 case TARGET_F_GETFL:
6458 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6459 if (ret >= 0) {
6460 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
6461 }
6462 break;
6463
6464 case TARGET_F_SETFL:
6465 ret = get_errno(safe_fcntl(fd, host_cmd,
6466 target_to_host_bitmask(arg,
6467 fcntl_flags_tbl)));
6468 break;
6469
6470 #ifdef F_GETOWN_EX
6471 case TARGET_F_GETOWN_EX:
6472 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6473 if (ret >= 0) {
6474 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
6475 return -TARGET_EFAULT;
6476 target_fox->type = tswap32(fox.type);
6477 target_fox->pid = tswap32(fox.pid);
6478 unlock_user_struct(target_fox, arg, 1);
6479 }
6480 break;
6481 #endif
6482
6483 #ifdef F_SETOWN_EX
6484 case TARGET_F_SETOWN_EX:
6485 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
6486 return -TARGET_EFAULT;
6487 fox.type = tswap32(target_fox->type);
6488 fox.pid = tswap32(target_fox->pid);
6489 unlock_user_struct(target_fox, arg, 0);
6490 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
6491 break;
6492 #endif
6493
6494 case TARGET_F_SETOWN:
6495 case TARGET_F_GETOWN:
6496 case TARGET_F_SETSIG:
6497 case TARGET_F_GETSIG:
6498 case TARGET_F_SETLEASE:
6499 case TARGET_F_GETLEASE:
6500 case TARGET_F_SETPIPE_SZ:
6501 case TARGET_F_GETPIPE_SZ:
6502 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
6503 break;
6504
6505 default:
6506 ret = get_errno(safe_fcntl(fd, cmd, arg));
6507 break;
6508 }
6509 return ret;
6510 }
6511
6512 #ifdef USE_UID16
6513
6514 static inline int high2lowuid(int uid)
6515 {
6516 if (uid > 65535)
6517 return 65534;
6518 else
6519 return uid;
6520 }
6521
6522 static inline int high2lowgid(int gid)
6523 {
6524 if (gid > 65535)
6525 return 65534;
6526 else
6527 return gid;
6528 }
6529
6530 static inline int low2highuid(int uid)
6531 {
6532 if ((int16_t)uid == -1)
6533 return -1;
6534 else
6535 return uid;
6536 }
6537
6538 static inline int low2highgid(int gid)
6539 {
6540 if ((int16_t)gid == -1)
6541 return -1;
6542 else
6543 return gid;
6544 }
6545 static inline int tswapid(int id)
6546 {
6547 return tswap16(id);
6548 }
6549
6550 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
6551
6552 #else /* !USE_UID16 */
6553 static inline int high2lowuid(int uid)
6554 {
6555 return uid;
6556 }
6557 static inline int high2lowgid(int gid)
6558 {
6559 return gid;
6560 }
6561 static inline int low2highuid(int uid)
6562 {
6563 return uid;
6564 }
6565 static inline int low2highgid(int gid)
6566 {
6567 return gid;
6568 }
6569 static inline int tswapid(int id)
6570 {
6571 return tswap32(id);
6572 }
6573
6574 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
6575
6576 #endif /* USE_UID16 */
6577
6578 /* We must do direct syscalls for setting UID/GID, because we want to
6579 * implement the Linux system call semantics of "change only for this thread",
6580 * not the libc/POSIX semantics of "change for all threads in process".
6581 * (See http://ewontfix.com/17/ for more details.)
6582 * We use the 32-bit version of the syscalls if present; if it is not
6583 * then either the host architecture supports 32-bit UIDs natively with
6584 * the standard syscall, or the 16-bit UID is the best we can do.
6585 */
6586 #ifdef __NR_setuid32
6587 #define __NR_sys_setuid __NR_setuid32
6588 #else
6589 #define __NR_sys_setuid __NR_setuid
6590 #endif
6591 #ifdef __NR_setgid32
6592 #define __NR_sys_setgid __NR_setgid32
6593 #else
6594 #define __NR_sys_setgid __NR_setgid
6595 #endif
6596 #ifdef __NR_setresuid32
6597 #define __NR_sys_setresuid __NR_setresuid32
6598 #else
6599 #define __NR_sys_setresuid __NR_setresuid
6600 #endif
6601 #ifdef __NR_setresgid32
6602 #define __NR_sys_setresgid __NR_setresgid32
6603 #else
6604 #define __NR_sys_setresgid __NR_setresgid
6605 #endif
6606
6607 _syscall1(int, sys_setuid, uid_t, uid)
6608 _syscall1(int, sys_setgid, gid_t, gid)
6609 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
6610 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
6611
6612 void syscall_init(void)
6613 {
6614 IOCTLEntry *ie;
6615 const argtype *arg_type;
6616 int size;
6617 int i;
6618
6619 thunk_init(STRUCT_MAX);
6620
6621 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
6622 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
6623 #include "syscall_types.h"
6624 #undef STRUCT
6625 #undef STRUCT_SPECIAL
6626
6627 /* Build target_to_host_errno_table[] table from
6628 * host_to_target_errno_table[]. */
6629 for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
6630 target_to_host_errno_table[host_to_target_errno_table[i]] = i;
6631 }
6632
6633 /* we patch the ioctl size if necessary. We rely on the fact that
6634 no ioctl has all the bits at '1' in the size field */
6635 ie = ioctl_entries;
6636 while (ie->target_cmd != 0) {
6637 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
6638 TARGET_IOC_SIZEMASK) {
6639 arg_type = ie->arg_type;
6640 if (arg_type[0] != TYPE_PTR) {
6641 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
6642 ie->target_cmd);
6643 exit(1);
6644 }
6645 arg_type++;
6646 size = thunk_type_size(arg_type, 0);
6647 ie->target_cmd = (ie->target_cmd &
6648 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
6649 (size << TARGET_IOC_SIZESHIFT);
6650 }
6651
6652 /* automatic consistency check if same arch */
6653 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
6654 (defined(__x86_64__) && defined(TARGET_X86_64))
6655 if (unlikely(ie->target_cmd != ie->host_cmd)) {
6656 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
6657 ie->name, ie->target_cmd, ie->host_cmd);
6658 }
6659 #endif
6660 ie++;
6661 }
6662 }
6663
6664 #if TARGET_ABI_BITS == 32
6665 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
6666 {
6667 #ifdef TARGET_WORDS_BIGENDIAN
6668 return ((uint64_t)word0 << 32) | word1;
6669 #else
6670 return ((uint64_t)word1 << 32) | word0;
6671 #endif
6672 }
6673 #else /* TARGET_ABI_BITS == 32 */
6674 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
6675 {
6676 return word0;
6677 }
6678 #endif /* TARGET_ABI_BITS != 32 */
6679
6680 #ifdef TARGET_NR_truncate64
6681 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
6682 abi_long arg2,
6683 abi_long arg3,
6684 abi_long arg4)
6685 {
6686 if (regpairs_aligned(cpu_env)) {
6687 arg2 = arg3;
6688 arg3 = arg4;
6689 }
6690 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
6691 }
6692 #endif
6693
6694 #ifdef TARGET_NR_ftruncate64
6695 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
6696 abi_long arg2,
6697 abi_long arg3,
6698 abi_long arg4)
6699 {
6700 if (regpairs_aligned(cpu_env)) {
6701 arg2 = arg3;
6702 arg3 = arg4;
6703 }
6704 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
6705 }
6706 #endif
6707
6708 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
6709 abi_ulong target_addr)
6710 {
6711 struct target_timespec *target_ts;
6712
6713 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1))
6714 return -TARGET_EFAULT;
6715 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
6716 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
6717 unlock_user_struct(target_ts, target_addr, 0);
6718 return 0;
6719 }
6720
6721 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
6722 struct timespec *host_ts)
6723 {
6724 struct target_timespec *target_ts;
6725
6726 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0))
6727 return -TARGET_EFAULT;
6728 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
6729 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
6730 unlock_user_struct(target_ts, target_addr, 1);
6731 return 0;
6732 }
6733
6734 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
6735 abi_ulong target_addr)
6736 {
6737 struct target_itimerspec *target_itspec;
6738
6739 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
6740 return -TARGET_EFAULT;
6741 }
6742
6743 host_itspec->it_interval.tv_sec =
6744 tswapal(target_itspec->it_interval.tv_sec);
6745 host_itspec->it_interval.tv_nsec =
6746 tswapal(target_itspec->it_interval.tv_nsec);
6747 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
6748 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
6749
6750 unlock_user_struct(target_itspec, target_addr, 1);
6751 return 0;
6752 }
6753
6754 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
6755 struct itimerspec *host_its)
6756 {
6757 struct target_itimerspec *target_itspec;
6758
6759 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
6760 return -TARGET_EFAULT;
6761 }
6762
6763 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
6764 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
6765
6766 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
6767 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
6768
6769 unlock_user_struct(target_itspec, target_addr, 0);
6770 return 0;
6771 }
6772
6773 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
6774 abi_ulong target_addr)
6775 {
6776 struct target_sigevent *target_sevp;
6777
6778 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
6779 return -TARGET_EFAULT;
6780 }
6781
6782 /* This union is awkward on 64 bit systems because it has a 32 bit
6783 * integer and a pointer in it; we follow the conversion approach
6784 * used for handling sigval types in signal.c so the guest should get
6785 * the correct value back even if we did a 64 bit byteswap and it's
6786 * using the 32 bit integer.
6787 */
6788 host_sevp->sigev_value.sival_ptr =
6789 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
6790 host_sevp->sigev_signo =
6791 target_to_host_signal(tswap32(target_sevp->sigev_signo));
6792 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
6793 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
6794
6795 unlock_user_struct(target_sevp, target_addr, 1);
6796 return 0;
6797 }
6798
6799 #if defined(TARGET_NR_mlockall)
6800 static inline int target_to_host_mlockall_arg(int arg)
6801 {
6802 int result = 0;
6803
6804 if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
6805 result |= MCL_CURRENT;
6806 }
6807 if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
6808 result |= MCL_FUTURE;
6809 }
6810 return result;
6811 }
6812 #endif
6813
6814 static inline abi_long host_to_target_stat64(void *cpu_env,
6815 abi_ulong target_addr,
6816 struct stat *host_st)
6817 {
6818 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
6819 if (((CPUARMState *)cpu_env)->eabi) {
6820 struct target_eabi_stat64 *target_st;
6821
6822 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6823 return -TARGET_EFAULT;
6824 memset(target_st, 0, sizeof(struct target_eabi_stat64));
6825 __put_user(host_st->st_dev, &target_st->st_dev);
6826 __put_user(host_st->st_ino, &target_st->st_ino);
6827 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6828 __put_user(host_st->st_ino, &target_st->__st_ino);
6829 #endif
6830 __put_user(host_st->st_mode, &target_st->st_mode);
6831 __put_user(host_st->st_nlink, &target_st->st_nlink);
6832 __put_user(host_st->st_uid, &target_st->st_uid);
6833 __put_user(host_st->st_gid, &target_st->st_gid);
6834 __put_user(host_st->st_rdev, &target_st->st_rdev);
6835 __put_user(host_st->st_size, &target_st->st_size);
6836 __put_user(host_st->st_blksize, &target_st->st_blksize);
6837 __put_user(host_st->st_blocks, &target_st->st_blocks);
6838 __put_user(host_st->st_atime, &target_st->target_st_atime);
6839 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6840 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6841 unlock_user_struct(target_st, target_addr, 1);
6842 } else
6843 #endif
6844 {
6845 #if defined(TARGET_HAS_STRUCT_STAT64)
6846 struct target_stat64 *target_st;
6847 #else
6848 struct target_stat *target_st;
6849 #endif
6850
6851 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6852 return -TARGET_EFAULT;
6853 memset(target_st, 0, sizeof(*target_st));
6854 __put_user(host_st->st_dev, &target_st->st_dev);
6855 __put_user(host_st->st_ino, &target_st->st_ino);
6856 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6857 __put_user(host_st->st_ino, &target_st->__st_ino);
6858 #endif
6859 __put_user(host_st->st_mode, &target_st->st_mode);
6860 __put_user(host_st->st_nlink, &target_st->st_nlink);
6861 __put_user(host_st->st_uid, &target_st->st_uid);
6862 __put_user(host_st->st_gid, &target_st->st_gid);
6863 __put_user(host_st->st_rdev, &target_st->st_rdev);
6864 /* XXX: better use of kernel struct */
6865 __put_user(host_st->st_size, &target_st->st_size);
6866 __put_user(host_st->st_blksize, &target_st->st_blksize);
6867 __put_user(host_st->st_blocks, &target_st->st_blocks);
6868 __put_user(host_st->st_atime, &target_st->target_st_atime);
6869 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6870 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6871 unlock_user_struct(target_st, target_addr, 1);
6872 }
6873
6874 return 0;
6875 }
6876
6877 /* ??? Using host futex calls even when target atomic operations
6878 are not really atomic probably breaks things. However implementing
6879 futexes locally would make futexes shared between multiple processes
6880 tricky. However they're probably useless because guest atomic
6881 operations won't work either. */
6882 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
6883 target_ulong uaddr2, int val3)
6884 {
6885 struct timespec ts, *pts;
6886 int base_op;
6887
6888 /* ??? We assume FUTEX_* constants are the same on both host
6889 and target. */
6890 #ifdef FUTEX_CMD_MASK
6891 base_op = op & FUTEX_CMD_MASK;
6892 #else
6893 base_op = op;
6894 #endif
6895 switch (base_op) {
6896 case FUTEX_WAIT:
6897 case FUTEX_WAIT_BITSET:
6898 if (timeout) {
6899 pts = &ts;
6900 target_to_host_timespec(pts, timeout);
6901 } else {
6902 pts = NULL;
6903 }
6904 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val),
6905 pts, NULL, val3));
6906 case FUTEX_WAKE:
6907 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
6908 case FUTEX_FD:
6909 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
6910 case FUTEX_REQUEUE:
6911 case FUTEX_CMP_REQUEUE:
6912 case FUTEX_WAKE_OP:
6913 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
6914 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
6915 But the prototype takes a `struct timespec *'; insert casts
6916 to satisfy the compiler. We do not need to tswap TIMEOUT
6917 since it's not compared to guest memory. */
6918 pts = (struct timespec *)(uintptr_t) timeout;
6919 return get_errno(safe_futex(g2h(uaddr), op, val, pts,
6920 g2h(uaddr2),
6921 (base_op == FUTEX_CMP_REQUEUE
6922 ? tswap32(val3)
6923 : val3)));
6924 default:
6925 return -TARGET_ENOSYS;
6926 }
6927 }
6928 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
6929 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
6930 abi_long handle, abi_long mount_id,
6931 abi_long flags)
6932 {
6933 struct file_handle *target_fh;
6934 struct file_handle *fh;
6935 int mid = 0;
6936 abi_long ret;
6937 char *name;
6938 unsigned int size, total_size;
6939
6940 if (get_user_s32(size, handle)) {
6941 return -TARGET_EFAULT;
6942 }
6943
6944 name = lock_user_string(pathname);
6945 if (!name) {
6946 return -TARGET_EFAULT;
6947 }
6948
6949 total_size = sizeof(struct file_handle) + size;
6950 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
6951 if (!target_fh) {
6952 unlock_user(name, pathname, 0);
6953 return -TARGET_EFAULT;
6954 }
6955
6956 fh = g_malloc0(total_size);
6957 fh->handle_bytes = size;
6958
6959 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
6960 unlock_user(name, pathname, 0);
6961
6962 /* man name_to_handle_at(2):
6963 * Other than the use of the handle_bytes field, the caller should treat
6964 * the file_handle structure as an opaque data type
6965 */
6966
6967 memcpy(target_fh, fh, total_size);
6968 target_fh->handle_bytes = tswap32(fh->handle_bytes);
6969 target_fh->handle_type = tswap32(fh->handle_type);
6970 g_free(fh);
6971 unlock_user(target_fh, handle, total_size);
6972
6973 if (put_user_s32(mid, mount_id)) {
6974 return -TARGET_EFAULT;
6975 }
6976
6977 return ret;
6978
6979 }
6980 #endif
6981
6982 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
6983 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
6984 abi_long flags)
6985 {
6986 struct file_handle *target_fh;
6987 struct file_handle *fh;
6988 unsigned int size, total_size;
6989 abi_long ret;
6990
6991 if (get_user_s32(size, handle)) {
6992 return -TARGET_EFAULT;
6993 }
6994
6995 total_size = sizeof(struct file_handle) + size;
6996 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
6997 if (!target_fh) {
6998 return -TARGET_EFAULT;
6999 }
7000
7001 fh = g_memdup(target_fh, total_size);
7002 fh->handle_bytes = size;
7003 fh->handle_type = tswap32(target_fh->handle_type);
7004
7005 ret = get_errno(open_by_handle_at(mount_fd, fh,
7006 target_to_host_bitmask(flags, fcntl_flags_tbl)));
7007
7008 g_free(fh);
7009
7010 unlock_user(target_fh, handle, total_size);
7011
7012 return ret;
7013 }
7014 #endif
7015
7016 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
7017
7018 /* signalfd siginfo conversion */
7019
7020 static void
7021 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo,
7022 const struct signalfd_siginfo *info)
7023 {
7024 int sig = host_to_target_signal(info->ssi_signo);
7025
7026 /* linux/signalfd.h defines a ssi_addr_lsb
7027 * not defined in sys/signalfd.h but used by some kernels
7028 */
7029
7030 #ifdef BUS_MCEERR_AO
7031 if (tinfo->ssi_signo == SIGBUS &&
7032 (tinfo->ssi_code == BUS_MCEERR_AR ||
7033 tinfo->ssi_code == BUS_MCEERR_AO)) {
7034 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1);
7035 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1);
7036 *tssi_addr_lsb = tswap16(*ssi_addr_lsb);
7037 }
7038 #endif
7039
7040 tinfo->ssi_signo = tswap32(sig);
7041 tinfo->ssi_errno = tswap32(tinfo->ssi_errno);
7042 tinfo->ssi_code = tswap32(info->ssi_code);
7043 tinfo->ssi_pid = tswap32(info->ssi_pid);
7044 tinfo->ssi_uid = tswap32(info->ssi_uid);
7045 tinfo->ssi_fd = tswap32(info->ssi_fd);
7046 tinfo->ssi_tid = tswap32(info->ssi_tid);
7047 tinfo->ssi_band = tswap32(info->ssi_band);
7048 tinfo->ssi_overrun = tswap32(info->ssi_overrun);
7049 tinfo->ssi_trapno = tswap32(info->ssi_trapno);
7050 tinfo->ssi_status = tswap32(info->ssi_status);
7051 tinfo->ssi_int = tswap32(info->ssi_int);
7052 tinfo->ssi_ptr = tswap64(info->ssi_ptr);
7053 tinfo->ssi_utime = tswap64(info->ssi_utime);
7054 tinfo->ssi_stime = tswap64(info->ssi_stime);
7055 tinfo->ssi_addr = tswap64(info->ssi_addr);
7056 }
7057
7058 static abi_long host_to_target_data_signalfd(void *buf, size_t len)
7059 {
7060 int i;
7061
7062 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) {
7063 host_to_target_signalfd_siginfo(buf + i, buf + i);
7064 }
7065
7066 return len;
7067 }
7068
7069 static TargetFdTrans target_signalfd_trans = {
7070 .host_to_target_data = host_to_target_data_signalfd,
7071 };
7072
7073 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
7074 {
7075 int host_flags;
7076 target_sigset_t *target_mask;
7077 sigset_t host_mask;
7078 abi_long ret;
7079
7080 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) {
7081 return -TARGET_EINVAL;
7082 }
7083 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
7084 return -TARGET_EFAULT;
7085 }
7086
7087 target_to_host_sigset(&host_mask, target_mask);
7088
7089 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
7090
7091 ret = get_errno(signalfd(fd, &host_mask, host_flags));
7092 if (ret >= 0) {
7093 fd_trans_register(ret, &target_signalfd_trans);
7094 }
7095
7096 unlock_user_struct(target_mask, mask, 0);
7097
7098 return ret;
7099 }
7100 #endif
7101
7102 /* Map host to target signal numbers for the wait family of syscalls.
7103 Assume all other status bits are the same. */
7104 int host_to_target_waitstatus(int status)
7105 {
7106 if (WIFSIGNALED(status)) {
7107 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
7108 }
7109 if (WIFSTOPPED(status)) {
7110 return (host_to_target_signal(WSTOPSIG(status)) << 8)
7111 | (status & 0xff);
7112 }
7113 return status;
7114 }
7115
7116 static int open_self_cmdline(void *cpu_env, int fd)
7117 {
7118 int fd_orig = -1;
7119 bool word_skipped = false;
7120
7121 fd_orig = open("/proc/self/cmdline", O_RDONLY);
7122 if (fd_orig < 0) {
7123 return fd_orig;
7124 }
7125
7126 while (true) {
7127 ssize_t nb_read;
7128 char buf[128];
7129 char *cp_buf = buf;
7130
7131 nb_read = read(fd_orig, buf, sizeof(buf));
7132 if (nb_read < 0) {
7133 int e = errno;
7134 fd_orig = close(fd_orig);
7135 errno = e;
7136 return -1;
7137 } else if (nb_read == 0) {
7138 break;
7139 }
7140
7141 if (!word_skipped) {
7142 /* Skip the first string, which is the path to qemu-*-static
7143 instead of the actual command. */
7144 cp_buf = memchr(buf, 0, nb_read);
7145 if (cp_buf) {
7146 /* Null byte found, skip one string */
7147 cp_buf++;
7148 nb_read -= cp_buf - buf;
7149 word_skipped = true;
7150 }
7151 }
7152
7153 if (word_skipped) {
7154 if (write(fd, cp_buf, nb_read) != nb_read) {
7155 int e = errno;
7156 close(fd_orig);
7157 errno = e;
7158 return -1;
7159 }
7160 }
7161 }
7162
7163 return close(fd_orig);
7164 }
7165
7166 static int open_self_maps(void *cpu_env, int fd)
7167 {
7168 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7169 TaskState *ts = cpu->opaque;
7170 FILE *fp;
7171 char *line = NULL;
7172 size_t len = 0;
7173 ssize_t read;
7174
7175 fp = fopen("/proc/self/maps", "r");
7176 if (fp == NULL) {
7177 return -1;
7178 }
7179
7180 while ((read = getline(&line, &len, fp)) != -1) {
7181 int fields, dev_maj, dev_min, inode;
7182 uint64_t min, max, offset;
7183 char flag_r, flag_w, flag_x, flag_p;
7184 char path[512] = "";
7185 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d"
7186 " %512s", &min, &max, &flag_r, &flag_w, &flag_x,
7187 &flag_p, &offset, &dev_maj, &dev_min, &inode, path);
7188
7189 if ((fields < 10) || (fields > 11)) {
7190 continue;
7191 }
7192 if (h2g_valid(min)) {
7193 int flags = page_get_flags(h2g(min));
7194 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX);
7195 if (page_check_range(h2g(min), max - min, flags) == -1) {
7196 continue;
7197 }
7198 if (h2g(min) == ts->info->stack_limit) {
7199 pstrcpy(path, sizeof(path), " [stack]");
7200 }
7201 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx
7202 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n",
7203 h2g(min), h2g(max - 1) + 1, flag_r, flag_w,
7204 flag_x, flag_p, offset, dev_maj, dev_min, inode,
7205 path[0] ? " " : "", path);
7206 }
7207 }
7208
7209 free(line);
7210 fclose(fp);
7211
7212 return 0;
7213 }
7214
7215 static int open_self_stat(void *cpu_env, int fd)
7216 {
7217 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7218 TaskState *ts = cpu->opaque;
7219 abi_ulong start_stack = ts->info->start_stack;
7220 int i;
7221
7222 for (i = 0; i < 44; i++) {
7223 char buf[128];
7224 int len;
7225 uint64_t val = 0;
7226
7227 if (i == 0) {
7228 /* pid */
7229 val = getpid();
7230 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
7231 } else if (i == 1) {
7232 /* app name */
7233 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]);
7234 } else if (i == 27) {
7235 /* stack bottom */
7236 val = start_stack;
7237 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
7238 } else {
7239 /* for the rest, there is MasterCard */
7240 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' ');
7241 }
7242
7243 len = strlen(buf);
7244 if (write(fd, buf, len) != len) {
7245 return -1;
7246 }
7247 }
7248
7249 return 0;
7250 }
7251
7252 static int open_self_auxv(void *cpu_env, int fd)
7253 {
7254 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
7255 TaskState *ts = cpu->opaque;
7256 abi_ulong auxv = ts->info->saved_auxv;
7257 abi_ulong len = ts->info->auxv_len;
7258 char *ptr;
7259
7260 /*
7261 * Auxiliary vector is stored in target process stack.
7262 * read in whole auxv vector and copy it to file
7263 */
7264 ptr = lock_user(VERIFY_READ, auxv, len, 0);
7265 if (ptr != NULL) {
7266 while (len > 0) {
7267 ssize_t r;
7268 r = write(fd, ptr, len);
7269 if (r <= 0) {
7270 break;
7271 }
7272 len -= r;
7273 ptr += r;
7274 }
7275 lseek(fd, 0, SEEK_SET);
7276 unlock_user(ptr, auxv, len);
7277 }
7278
7279 return 0;
7280 }
7281
7282 static int is_proc_myself(const char *filename, const char *entry)
7283 {
7284 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
7285 filename += strlen("/proc/");
7286 if (!strncmp(filename, "self/", strlen("self/"))) {
7287 filename += strlen("self/");
7288 } else if (*filename >= '1' && *filename <= '9') {
7289 char myself[80];
7290 snprintf(myself, sizeof(myself), "%d/", getpid());
7291 if (!strncmp(filename, myself, strlen(myself))) {
7292 filename += strlen(myself);
7293 } else {
7294 return 0;
7295 }
7296 } else {
7297 return 0;
7298 }
7299 if (!strcmp(filename, entry)) {
7300 return 1;
7301 }
7302 }
7303 return 0;
7304 }
7305
7306 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7307 static int is_proc(const char *filename, const char *entry)
7308 {
7309 return strcmp(filename, entry) == 0;
7310 }
7311
7312 static int open_net_route(void *cpu_env, int fd)
7313 {
7314 FILE *fp;
7315 char *line = NULL;
7316 size_t len = 0;
7317 ssize_t read;
7318
7319 fp = fopen("/proc/net/route", "r");
7320 if (fp == NULL) {
7321 return -1;
7322 }
7323
7324 /* read header */
7325
7326 read = getline(&line, &len, fp);
7327 dprintf(fd, "%s", line);
7328
7329 /* read routes */
7330
7331 while ((read = getline(&line, &len, fp)) != -1) {
7332 char iface[16];
7333 uint32_t dest, gw, mask;
7334 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
7335 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7336 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
7337 &mask, &mtu, &window, &irtt);
7338 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
7339 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
7340 metric, tswap32(mask), mtu, window, irtt);
7341 }
7342
7343 free(line);
7344 fclose(fp);
7345
7346 return 0;
7347 }
7348 #endif
7349
7350 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
7351 {
7352 struct fake_open {
7353 const char *filename;
7354 int (*fill)(void *cpu_env, int fd);
7355 int (*cmp)(const char *s1, const char *s2);
7356 };
7357 const struct fake_open *fake_open;
7358 static const struct fake_open fakes[] = {
7359 { "maps", open_self_maps, is_proc_myself },
7360 { "stat", open_self_stat, is_proc_myself },
7361 { "auxv", open_self_auxv, is_proc_myself },
7362 { "cmdline", open_self_cmdline, is_proc_myself },
7363 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
7364 { "/proc/net/route", open_net_route, is_proc },
7365 #endif
7366 { NULL, NULL, NULL }
7367 };
7368
7369 if (is_proc_myself(pathname, "exe")) {
7370 int execfd = qemu_getauxval(AT_EXECFD);
7371 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
7372 }
7373
7374 for (fake_open = fakes; fake_open->filename; fake_open++) {
7375 if (fake_open->cmp(pathname, fake_open->filename)) {
7376 break;
7377 }
7378 }
7379
7380 if (fake_open->filename) {
7381 const char *tmpdir;
7382 char filename[PATH_MAX];
7383 int fd, r;
7384
7385 /* create temporary file to map stat to */
7386 tmpdir = getenv("TMPDIR");
7387 if (!tmpdir)
7388 tmpdir = "/tmp";
7389 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
7390 fd = mkstemp(filename);
7391 if (fd < 0) {
7392 return fd;
7393 }
7394 unlink(filename);
7395
7396 if ((r = fake_open->fill(cpu_env, fd))) {
7397 int e = errno;
7398 close(fd);
7399 errno = e;
7400 return r;
7401 }
7402 lseek(fd, 0, SEEK_SET);
7403
7404 return fd;
7405 }
7406
7407 return safe_openat(dirfd, path(pathname), flags, mode);
7408 }
7409
7410 #define TIMER_MAGIC 0x0caf0000
7411 #define TIMER_MAGIC_MASK 0xffff0000
7412
7413 /* Convert QEMU provided timer ID back to internal 16bit index format */
7414 static target_timer_t get_timer_id(abi_long arg)
7415 {
7416 target_timer_t timerid = arg;
7417
7418 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
7419 return -TARGET_EINVAL;
7420 }
7421
7422 timerid &= 0xffff;
7423
7424 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
7425 return -TARGET_EINVAL;
7426 }
7427
7428 return timerid;
7429 }
7430
7431 /* do_syscall() should always have a single exit point at the end so
7432 that actions, such as logging of syscall results, can be performed.
7433 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
7434 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
7435 abi_long arg2, abi_long arg3, abi_long arg4,
7436 abi_long arg5, abi_long arg6, abi_long arg7,
7437 abi_long arg8)
7438 {
7439 CPUState *cpu = ENV_GET_CPU(cpu_env);
7440 abi_long ret;
7441 struct stat st;
7442 struct statfs stfs;
7443 void *p;
7444
7445 #if defined(DEBUG_ERESTARTSYS)
7446 /* Debug-only code for exercising the syscall-restart code paths
7447 * in the per-architecture cpu main loops: restart every syscall
7448 * the guest makes once before letting it through.
7449 */
7450 {
7451 static int flag;
7452
7453 flag = !flag;
7454 if (flag) {
7455 return -TARGET_ERESTARTSYS;
7456 }
7457 }
7458 #endif
7459
7460 #ifdef DEBUG
7461 gemu_log("syscall %d", num);
7462 #endif
7463 trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
7464 if(do_strace)
7465 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
7466
7467 switch(num) {
7468 case TARGET_NR_exit:
7469 /* In old applications this may be used to implement _exit(2).
7470 However in threaded applictions it is used for thread termination,
7471 and _exit_group is used for application termination.
7472 Do thread termination if we have more then one thread. */
7473
7474 if (block_signals()) {
7475 ret = -TARGET_ERESTARTSYS;
7476 break;
7477 }
7478
7479 cpu_list_lock();
7480
7481 if (CPU_NEXT(first_cpu)) {
7482 TaskState *ts;
7483
7484 /* Remove the CPU from the list. */
7485 QTAILQ_REMOVE(&cpus, cpu, node);
7486
7487 cpu_list_unlock();
7488
7489 ts = cpu->opaque;
7490 if (ts->child_tidptr) {
7491 put_user_u32(0, ts->child_tidptr);
7492 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
7493 NULL, NULL, 0);
7494 }
7495 thread_cpu = NULL;
7496 object_unref(OBJECT(cpu));
7497 g_free(ts);
7498 rcu_unregister_thread();
7499 pthread_exit(NULL);
7500 }
7501
7502 cpu_list_unlock();
7503 #ifdef TARGET_GPROF
7504 _mcleanup();
7505 #endif
7506 gdb_exit(cpu_env, arg1);
7507 _exit(arg1);
7508 ret = 0; /* avoid warning */
7509 break;
7510 case TARGET_NR_read:
7511 if (arg3 == 0)
7512 ret = 0;
7513 else {
7514 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
7515 goto efault;
7516 ret = get_errno(safe_read(arg1, p, arg3));
7517 if (ret >= 0 &&
7518 fd_trans_host_to_target_data(arg1)) {
7519 ret = fd_trans_host_to_target_data(arg1)(p, ret);
7520 }
7521 unlock_user(p, arg2, ret);
7522 }
7523 break;
7524 case TARGET_NR_write:
7525 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
7526 goto efault;
7527 ret = get_errno(safe_write(arg1, p, arg3));
7528 unlock_user(p, arg2, 0);
7529 break;
7530 #ifdef TARGET_NR_open
7531 case TARGET_NR_open:
7532 if (!(p = lock_user_string(arg1)))
7533 goto efault;
7534 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
7535 target_to_host_bitmask(arg2, fcntl_flags_tbl),
7536 arg3));
7537 fd_trans_unregister(ret);
7538 unlock_user(p, arg1, 0);
7539 break;
7540 #endif
7541 case TARGET_NR_openat:
7542 if (!(p = lock_user_string(arg2)))
7543 goto efault;
7544 ret = get_errno(do_openat(cpu_env, arg1, p,
7545 target_to_host_bitmask(arg3, fcntl_flags_tbl),
7546 arg4));
7547 fd_trans_unregister(ret);
7548 unlock_user(p, arg2, 0);
7549 break;
7550 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7551 case TARGET_NR_name_to_handle_at:
7552 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
7553 break;
7554 #endif
7555 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
7556 case TARGET_NR_open_by_handle_at:
7557 ret = do_open_by_handle_at(arg1, arg2, arg3);
7558 fd_trans_unregister(ret);
7559 break;
7560 #endif
7561 case TARGET_NR_close:
7562 fd_trans_unregister(arg1);
7563 ret = get_errno(close(arg1));
7564 break;
7565 case TARGET_NR_brk:
7566 ret = do_brk(arg1);
7567 break;
7568 #ifdef TARGET_NR_fork
7569 case TARGET_NR_fork:
7570 ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0));
7571 break;
7572 #endif
7573 #ifdef TARGET_NR_waitpid
7574 case TARGET_NR_waitpid:
7575 {
7576 int status;
7577 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
7578 if (!is_error(ret) && arg2 && ret
7579 && put_user_s32(host_to_target_waitstatus(status), arg2))
7580 goto efault;
7581 }
7582 break;
7583 #endif
7584 #ifdef TARGET_NR_waitid
7585 case TARGET_NR_waitid:
7586 {
7587 siginfo_t info;
7588 info.si_pid = 0;
7589 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
7590 if (!is_error(ret) && arg3 && info.si_pid != 0) {
7591 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
7592 goto efault;
7593 host_to_target_siginfo(p, &info);
7594 unlock_user(p, arg3, sizeof(target_siginfo_t));
7595 }
7596 }
7597 break;
7598 #endif
7599 #ifdef TARGET_NR_creat /* not on alpha */
7600 case TARGET_NR_creat:
7601 if (!(p = lock_user_string(arg1)))
7602 goto efault;
7603 ret = get_errno(creat(p, arg2));
7604 fd_trans_unregister(ret);
7605 unlock_user(p, arg1, 0);
7606 break;
7607 #endif
7608 #ifdef TARGET_NR_link
7609 case TARGET_NR_link:
7610 {
7611 void * p2;
7612 p = lock_user_string(arg1);
7613 p2 = lock_user_string(arg2);
7614 if (!p || !p2)
7615 ret = -TARGET_EFAULT;
7616 else
7617 ret = get_errno(link(p, p2));
7618 unlock_user(p2, arg2, 0);
7619 unlock_user(p, arg1, 0);
7620 }
7621 break;
7622 #endif
7623 #if defined(TARGET_NR_linkat)
7624 case TARGET_NR_linkat:
7625 {
7626 void * p2 = NULL;
7627 if (!arg2 || !arg4)
7628 goto efault;
7629 p = lock_user_string(arg2);
7630 p2 = lock_user_string(arg4);
7631 if (!p || !p2)
7632 ret = -TARGET_EFAULT;
7633 else
7634 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
7635 unlock_user(p, arg2, 0);
7636 unlock_user(p2, arg4, 0);
7637 }
7638 break;
7639 #endif
7640 #ifdef TARGET_NR_unlink
7641 case TARGET_NR_unlink:
7642 if (!(p = lock_user_string(arg1)))
7643 goto efault;
7644 ret = get_errno(unlink(p));
7645 unlock_user(p, arg1, 0);
7646 break;
7647 #endif
7648 #if defined(TARGET_NR_unlinkat)
7649 case TARGET_NR_unlinkat:
7650 if (!(p = lock_user_string(arg2)))
7651 goto efault;
7652 ret = get_errno(unlinkat(arg1, p, arg3));
7653 unlock_user(p, arg2, 0);
7654 break;
7655 #endif
7656 case TARGET_NR_execve:
7657 {
7658 char **argp, **envp;
7659 int argc, envc;
7660 abi_ulong gp;
7661 abi_ulong guest_argp;
7662 abi_ulong guest_envp;
7663 abi_ulong addr;
7664 char **q;
7665 int total_size = 0;
7666
7667 argc = 0;
7668 guest_argp = arg2;
7669 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
7670 if (get_user_ual(addr, gp))
7671 goto efault;
7672 if (!addr)
7673 break;
7674 argc++;
7675 }
7676 envc = 0;
7677 guest_envp = arg3;
7678 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
7679 if (get_user_ual(addr, gp))
7680 goto efault;
7681 if (!addr)
7682 break;
7683 envc++;
7684 }
7685
7686 argp = alloca((argc + 1) * sizeof(void *));
7687 envp = alloca((envc + 1) * sizeof(void *));
7688
7689 for (gp = guest_argp, q = argp; gp;
7690 gp += sizeof(abi_ulong), q++) {
7691 if (get_user_ual(addr, gp))
7692 goto execve_efault;
7693 if (!addr)
7694 break;
7695 if (!(*q = lock_user_string(addr)))
7696 goto execve_efault;
7697 total_size += strlen(*q) + 1;
7698 }
7699 *q = NULL;
7700
7701 for (gp = guest_envp, q = envp; gp;
7702 gp += sizeof(abi_ulong), q++) {
7703 if (get_user_ual(addr, gp))
7704 goto execve_efault;
7705 if (!addr)
7706 break;
7707 if (!(*q = lock_user_string(addr)))
7708 goto execve_efault;
7709 total_size += strlen(*q) + 1;
7710 }
7711 *q = NULL;
7712
7713 if (!(p = lock_user_string(arg1)))
7714 goto execve_efault;
7715 /* Although execve() is not an interruptible syscall it is
7716 * a special case where we must use the safe_syscall wrapper:
7717 * if we allow a signal to happen before we make the host
7718 * syscall then we will 'lose' it, because at the point of
7719 * execve the process leaves QEMU's control. So we use the
7720 * safe syscall wrapper to ensure that we either take the
7721 * signal as a guest signal, or else it does not happen
7722 * before the execve completes and makes it the other
7723 * program's problem.
7724 */
7725 ret = get_errno(safe_execve(p, argp, envp));
7726 unlock_user(p, arg1, 0);
7727
7728 goto execve_end;
7729
7730 execve_efault:
7731 ret = -TARGET_EFAULT;
7732
7733 execve_end:
7734 for (gp = guest_argp, q = argp; *q;
7735 gp += sizeof(abi_ulong), q++) {
7736 if (get_user_ual(addr, gp)
7737 || !addr)
7738 break;
7739 unlock_user(*q, addr, 0);
7740 }
7741 for (gp = guest_envp, q = envp; *q;
7742 gp += sizeof(abi_ulong), q++) {
7743 if (get_user_ual(addr, gp)
7744 || !addr)
7745 break;
7746 unlock_user(*q, addr, 0);
7747 }
7748 }
7749 break;
7750 case TARGET_NR_chdir:
7751 if (!(p = lock_user_string(arg1)))
7752 goto efault;
7753 ret = get_errno(chdir(p));
7754 unlock_user(p, arg1, 0);
7755 break;
7756 #ifdef TARGET_NR_time
7757 case TARGET_NR_time:
7758 {
7759 time_t host_time;
7760 ret = get_errno(time(&host_time));
7761 if (!is_error(ret)
7762 && arg1
7763 && put_user_sal(host_time, arg1))
7764 goto efault;
7765 }
7766 break;
7767 #endif
7768 #ifdef TARGET_NR_mknod
7769 case TARGET_NR_mknod:
7770 if (!(p = lock_user_string(arg1)))
7771 goto efault;
7772 ret = get_errno(mknod(p, arg2, arg3));
7773 unlock_user(p, arg1, 0);
7774 break;
7775 #endif
7776 #if defined(TARGET_NR_mknodat)
7777 case TARGET_NR_mknodat:
7778 if (!(p = lock_user_string(arg2)))
7779 goto efault;
7780 ret = get_errno(mknodat(arg1, p, arg3, arg4));
7781 unlock_user(p, arg2, 0);
7782 break;
7783 #endif
7784 #ifdef TARGET_NR_chmod
7785 case TARGET_NR_chmod:
7786 if (!(p = lock_user_string(arg1)))
7787 goto efault;
7788 ret = get_errno(chmod(p, arg2));
7789 unlock_user(p, arg1, 0);
7790 break;
7791 #endif
7792 #ifdef TARGET_NR_break
7793 case TARGET_NR_break:
7794 goto unimplemented;
7795 #endif
7796 #ifdef TARGET_NR_oldstat
7797 case TARGET_NR_oldstat:
7798 goto unimplemented;
7799 #endif
7800 case TARGET_NR_lseek:
7801 ret = get_errno(lseek(arg1, arg2, arg3));
7802 break;
7803 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
7804 /* Alpha specific */
7805 case TARGET_NR_getxpid:
7806 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
7807 ret = get_errno(getpid());
7808 break;
7809 #endif
7810 #ifdef TARGET_NR_getpid
7811 case TARGET_NR_getpid:
7812 ret = get_errno(getpid());
7813 break;
7814 #endif
7815 case TARGET_NR_mount:
7816 {
7817 /* need to look at the data field */
7818 void *p2, *p3;
7819
7820 if (arg1) {
7821 p = lock_user_string(arg1);
7822 if (!p) {
7823 goto efault;
7824 }
7825 } else {
7826 p = NULL;
7827 }
7828
7829 p2 = lock_user_string(arg2);
7830 if (!p2) {
7831 if (arg1) {
7832 unlock_user(p, arg1, 0);
7833 }
7834 goto efault;
7835 }
7836
7837 if (arg3) {
7838 p3 = lock_user_string(arg3);
7839 if (!p3) {
7840 if (arg1) {
7841 unlock_user(p, arg1, 0);
7842 }
7843 unlock_user(p2, arg2, 0);
7844 goto efault;
7845 }
7846 } else {
7847 p3 = NULL;
7848 }
7849
7850 /* FIXME - arg5 should be locked, but it isn't clear how to
7851 * do that since it's not guaranteed to be a NULL-terminated
7852 * string.
7853 */
7854 if (!arg5) {
7855 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
7856 } else {
7857 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
7858 }
7859 ret = get_errno(ret);
7860
7861 if (arg1) {
7862 unlock_user(p, arg1, 0);
7863 }
7864 unlock_user(p2, arg2, 0);
7865 if (arg3) {
7866 unlock_user(p3, arg3, 0);
7867 }
7868 }
7869 break;
7870 #ifdef TARGET_NR_umount
7871 case TARGET_NR_umount:
7872 if (!(p = lock_user_string(arg1)))
7873 goto efault;
7874 ret = get_errno(umount(p));
7875 unlock_user(p, arg1, 0);
7876 break;
7877 #endif
7878 #ifdef TARGET_NR_stime /* not on alpha */
7879 case TARGET_NR_stime:
7880 {
7881 time_t host_time;
7882 if (get_user_sal(host_time, arg1))
7883 goto efault;
7884 ret = get_errno(stime(&host_time));
7885 }
7886 break;
7887 #endif
7888 case TARGET_NR_ptrace:
7889 goto unimplemented;
7890 #ifdef TARGET_NR_alarm /* not on alpha */
7891 case TARGET_NR_alarm:
7892 ret = alarm(arg1);
7893 break;
7894 #endif
7895 #ifdef TARGET_NR_oldfstat
7896 case TARGET_NR_oldfstat:
7897 goto unimplemented;
7898 #endif
7899 #ifdef TARGET_NR_pause /* not on alpha */
7900 case TARGET_NR_pause:
7901 if (!block_signals()) {
7902 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
7903 }
7904 ret = -TARGET_EINTR;
7905 break;
7906 #endif
7907 #ifdef TARGET_NR_utime
7908 case TARGET_NR_utime:
7909 {
7910 struct utimbuf tbuf, *host_tbuf;
7911 struct target_utimbuf *target_tbuf;
7912 if (arg2) {
7913 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
7914 goto efault;
7915 tbuf.actime = tswapal(target_tbuf->actime);
7916 tbuf.modtime = tswapal(target_tbuf->modtime);
7917 unlock_user_struct(target_tbuf, arg2, 0);
7918 host_tbuf = &tbuf;
7919 } else {
7920 host_tbuf = NULL;
7921 }
7922 if (!(p = lock_user_string(arg1)))
7923 goto efault;
7924 ret = get_errno(utime(p, host_tbuf));
7925 unlock_user(p, arg1, 0);
7926 }
7927 break;
7928 #endif
7929 #ifdef TARGET_NR_utimes
7930 case TARGET_NR_utimes:
7931 {
7932 struct timeval *tvp, tv[2];
7933 if (arg2) {
7934 if (copy_from_user_timeval(&tv[0], arg2)
7935 || copy_from_user_timeval(&tv[1],
7936 arg2 + sizeof(struct target_timeval)))
7937 goto efault;
7938 tvp = tv;
7939 } else {
7940 tvp = NULL;
7941 }
7942 if (!(p = lock_user_string(arg1)))
7943 goto efault;
7944 ret = get_errno(utimes(p, tvp));
7945 unlock_user(p, arg1, 0);
7946 }
7947 break;
7948 #endif
7949 #if defined(TARGET_NR_futimesat)
7950 case TARGET_NR_futimesat:
7951 {
7952 struct timeval *tvp, tv[2];
7953 if (arg3) {
7954 if (copy_from_user_timeval(&tv[0], arg3)
7955 || copy_from_user_timeval(&tv[1],
7956 arg3 + sizeof(struct target_timeval)))
7957 goto efault;
7958 tvp = tv;
7959 } else {
7960 tvp = NULL;
7961 }
7962 if (!(p = lock_user_string(arg2)))
7963 goto efault;
7964 ret = get_errno(futimesat(arg1, path(p), tvp));
7965 unlock_user(p, arg2, 0);
7966 }
7967 break;
7968 #endif
7969 #ifdef TARGET_NR_stty
7970 case TARGET_NR_stty:
7971 goto unimplemented;
7972 #endif
7973 #ifdef TARGET_NR_gtty
7974 case TARGET_NR_gtty:
7975 goto unimplemented;
7976 #endif
7977 #ifdef TARGET_NR_access
7978 case TARGET_NR_access:
7979 if (!(p = lock_user_string(arg1)))
7980 goto efault;
7981 ret = get_errno(access(path(p), arg2));
7982 unlock_user(p, arg1, 0);
7983 break;
7984 #endif
7985 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
7986 case TARGET_NR_faccessat:
7987 if (!(p = lock_user_string(arg2)))
7988 goto efault;
7989 ret = get_errno(faccessat(arg1, p, arg3, 0));
7990 unlock_user(p, arg2, 0);
7991 break;
7992 #endif
7993 #ifdef TARGET_NR_nice /* not on alpha */
7994 case TARGET_NR_nice:
7995 ret = get_errno(nice(arg1));
7996 break;
7997 #endif
7998 #ifdef TARGET_NR_ftime
7999 case TARGET_NR_ftime:
8000 goto unimplemented;
8001 #endif
8002 case TARGET_NR_sync:
8003 sync();
8004 ret = 0;
8005 break;
8006 case TARGET_NR_kill:
8007 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
8008 break;
8009 #ifdef TARGET_NR_rename
8010 case TARGET_NR_rename:
8011 {
8012 void *p2;
8013 p = lock_user_string(arg1);
8014 p2 = lock_user_string(arg2);
8015 if (!p || !p2)
8016 ret = -TARGET_EFAULT;
8017 else
8018 ret = get_errno(rename(p, p2));
8019 unlock_user(p2, arg2, 0);
8020 unlock_user(p, arg1, 0);
8021 }
8022 break;
8023 #endif
8024 #if defined(TARGET_NR_renameat)
8025 case TARGET_NR_renameat:
8026 {
8027 void *p2;
8028 p = lock_user_string(arg2);
8029 p2 = lock_user_string(arg4);
8030 if (!p || !p2)
8031 ret = -TARGET_EFAULT;
8032 else
8033 ret = get_errno(renameat(arg1, p, arg3, p2));
8034 unlock_user(p2, arg4, 0);
8035 unlock_user(p, arg2, 0);
8036 }
8037 break;
8038 #endif
8039 #ifdef TARGET_NR_mkdir
8040 case TARGET_NR_mkdir:
8041 if (!(p = lock_user_string(arg1)))
8042 goto efault;
8043 ret = get_errno(mkdir(p, arg2));
8044 unlock_user(p, arg1, 0);
8045 break;
8046 #endif
8047 #if defined(TARGET_NR_mkdirat)
8048 case TARGET_NR_mkdirat:
8049 if (!(p = lock_user_string(arg2)))
8050 goto efault;
8051 ret = get_errno(mkdirat(arg1, p, arg3));
8052 unlock_user(p, arg2, 0);
8053 break;
8054 #endif
8055 #ifdef TARGET_NR_rmdir
8056 case TARGET_NR_rmdir:
8057 if (!(p = lock_user_string(arg1)))
8058 goto efault;
8059 ret = get_errno(rmdir(p));
8060 unlock_user(p, arg1, 0);
8061 break;
8062 #endif
8063 case TARGET_NR_dup:
8064 ret = get_errno(dup(arg1));
8065 if (ret >= 0) {
8066 fd_trans_dup(arg1, ret);
8067 }
8068 break;
8069 #ifdef TARGET_NR_pipe
8070 case TARGET_NR_pipe:
8071 ret = do_pipe(cpu_env, arg1, 0, 0);
8072 break;
8073 #endif
8074 #ifdef TARGET_NR_pipe2
8075 case TARGET_NR_pipe2:
8076 ret = do_pipe(cpu_env, arg1,
8077 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
8078 break;
8079 #endif
8080 case TARGET_NR_times:
8081 {
8082 struct target_tms *tmsp;
8083 struct tms tms;
8084 ret = get_errno(times(&tms));
8085 if (arg1) {
8086 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
8087 if (!tmsp)
8088 goto efault;
8089 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
8090 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
8091 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
8092 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
8093 }
8094 if (!is_error(ret))
8095 ret = host_to_target_clock_t(ret);
8096 }
8097 break;
8098 #ifdef TARGET_NR_prof
8099 case TARGET_NR_prof:
8100 goto unimplemented;
8101 #endif
8102 #ifdef TARGET_NR_signal
8103 case TARGET_NR_signal:
8104 goto unimplemented;
8105 #endif
8106 case TARGET_NR_acct:
8107 if (arg1 == 0) {
8108 ret = get_errno(acct(NULL));
8109 } else {
8110 if (!(p = lock_user_string(arg1)))
8111 goto efault;
8112 ret = get_errno(acct(path(p)));
8113 unlock_user(p, arg1, 0);
8114 }
8115 break;
8116 #ifdef TARGET_NR_umount2
8117 case TARGET_NR_umount2:
8118 if (!(p = lock_user_string(arg1)))
8119 goto efault;
8120 ret = get_errno(umount2(p, arg2));
8121 unlock_user(p, arg1, 0);
8122 break;
8123 #endif
8124 #ifdef TARGET_NR_lock
8125 case TARGET_NR_lock:
8126 goto unimplemented;
8127 #endif
8128 case TARGET_NR_ioctl:
8129 ret = do_ioctl(arg1, arg2, arg3);
8130 break;
8131 case TARGET_NR_fcntl:
8132 ret = do_fcntl(arg1, arg2, arg3);
8133 break;
8134 #ifdef TARGET_NR_mpx
8135 case TARGET_NR_mpx:
8136 goto unimplemented;
8137 #endif
8138 case TARGET_NR_setpgid:
8139 ret = get_errno(setpgid(arg1, arg2));
8140 break;
8141 #ifdef TARGET_NR_ulimit
8142 case TARGET_NR_ulimit:
8143 goto unimplemented;
8144 #endif
8145 #ifdef TARGET_NR_oldolduname
8146 case TARGET_NR_oldolduname:
8147 goto unimplemented;
8148 #endif
8149 case TARGET_NR_umask:
8150 ret = get_errno(umask(arg1));
8151 break;
8152 case TARGET_NR_chroot:
8153 if (!(p = lock_user_string(arg1)))
8154 goto efault;
8155 ret = get_errno(chroot(p));
8156 unlock_user(p, arg1, 0);
8157 break;
8158 #ifdef TARGET_NR_ustat
8159 case TARGET_NR_ustat:
8160 goto unimplemented;
8161 #endif
8162 #ifdef TARGET_NR_dup2
8163 case TARGET_NR_dup2:
8164 ret = get_errno(dup2(arg1, arg2));
8165 if (ret >= 0) {
8166 fd_trans_dup(arg1, arg2);
8167 }
8168 break;
8169 #endif
8170 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
8171 case TARGET_NR_dup3:
8172 ret = get_errno(dup3(arg1, arg2, arg3));
8173 if (ret >= 0) {
8174 fd_trans_dup(arg1, arg2);
8175 }
8176 break;
8177 #endif
8178 #ifdef TARGET_NR_getppid /* not on alpha */
8179 case TARGET_NR_getppid:
8180 ret = get_errno(getppid());
8181 break;
8182 #endif
8183 #ifdef TARGET_NR_getpgrp
8184 case TARGET_NR_getpgrp:
8185 ret = get_errno(getpgrp());
8186 break;
8187 #endif
8188 case TARGET_NR_setsid:
8189 ret = get_errno(setsid());
8190 break;
8191 #ifdef TARGET_NR_sigaction
8192 case TARGET_NR_sigaction:
8193 {
8194 #if defined(TARGET_ALPHA)
8195 struct target_sigaction act, oact, *pact = 0;
8196 struct target_old_sigaction *old_act;
8197 if (arg2) {
8198 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8199 goto efault;
8200 act._sa_handler = old_act->_sa_handler;
8201 target_siginitset(&act.sa_mask, old_act->sa_mask);
8202 act.sa_flags = old_act->sa_flags;
8203 act.sa_restorer = 0;
8204 unlock_user_struct(old_act, arg2, 0);
8205 pact = &act;
8206 }
8207 ret = get_errno(do_sigaction(arg1, pact, &oact));
8208 if (!is_error(ret) && arg3) {
8209 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8210 goto efault;
8211 old_act->_sa_handler = oact._sa_handler;
8212 old_act->sa_mask = oact.sa_mask.sig[0];
8213 old_act->sa_flags = oact.sa_flags;
8214 unlock_user_struct(old_act, arg3, 1);
8215 }
8216 #elif defined(TARGET_MIPS)
8217 struct target_sigaction act, oact, *pact, *old_act;
8218
8219 if (arg2) {
8220 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8221 goto efault;
8222 act._sa_handler = old_act->_sa_handler;
8223 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
8224 act.sa_flags = old_act->sa_flags;
8225 unlock_user_struct(old_act, arg2, 0);
8226 pact = &act;
8227 } else {
8228 pact = NULL;
8229 }
8230
8231 ret = get_errno(do_sigaction(arg1, pact, &oact));
8232
8233 if (!is_error(ret) && arg3) {
8234 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8235 goto efault;
8236 old_act->_sa_handler = oact._sa_handler;
8237 old_act->sa_flags = oact.sa_flags;
8238 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
8239 old_act->sa_mask.sig[1] = 0;
8240 old_act->sa_mask.sig[2] = 0;
8241 old_act->sa_mask.sig[3] = 0;
8242 unlock_user_struct(old_act, arg3, 1);
8243 }
8244 #else
8245 struct target_old_sigaction *old_act;
8246 struct target_sigaction act, oact, *pact;
8247 if (arg2) {
8248 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
8249 goto efault;
8250 act._sa_handler = old_act->_sa_handler;
8251 target_siginitset(&act.sa_mask, old_act->sa_mask);
8252 act.sa_flags = old_act->sa_flags;
8253 act.sa_restorer = old_act->sa_restorer;
8254 unlock_user_struct(old_act, arg2, 0);
8255 pact = &act;
8256 } else {
8257 pact = NULL;
8258 }
8259 ret = get_errno(do_sigaction(arg1, pact, &oact));
8260 if (!is_error(ret) && arg3) {
8261 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
8262 goto efault;
8263 old_act->_sa_handler = oact._sa_handler;
8264 old_act->sa_mask = oact.sa_mask.sig[0];
8265 old_act->sa_flags = oact.sa_flags;
8266 old_act->sa_restorer = oact.sa_restorer;
8267 unlock_user_struct(old_act, arg3, 1);
8268 }
8269 #endif
8270 }
8271 break;
8272 #endif
8273 case TARGET_NR_rt_sigaction:
8274 {
8275 #if defined(TARGET_ALPHA)
8276 struct target_sigaction act, oact, *pact = 0;
8277 struct target_rt_sigaction *rt_act;
8278
8279 if (arg4 != sizeof(target_sigset_t)) {
8280 ret = -TARGET_EINVAL;
8281 break;
8282 }
8283 if (arg2) {
8284 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
8285 goto efault;
8286 act._sa_handler = rt_act->_sa_handler;
8287 act.sa_mask = rt_act->sa_mask;
8288 act.sa_flags = rt_act->sa_flags;
8289 act.sa_restorer = arg5;
8290 unlock_user_struct(rt_act, arg2, 0);
8291 pact = &act;
8292 }
8293 ret = get_errno(do_sigaction(arg1, pact, &oact));
8294 if (!is_error(ret) && arg3) {
8295 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
8296 goto efault;
8297 rt_act->_sa_handler = oact._sa_handler;
8298 rt_act->sa_mask = oact.sa_mask;
8299 rt_act->sa_flags = oact.sa_flags;
8300 unlock_user_struct(rt_act, arg3, 1);
8301 }
8302 #else
8303 struct target_sigaction *act;
8304 struct target_sigaction *oact;
8305
8306 if (arg4 != sizeof(target_sigset_t)) {
8307 ret = -TARGET_EINVAL;
8308 break;
8309 }
8310 if (arg2) {
8311 if (!lock_user_struct(VERIFY_READ, act, arg2, 1))
8312 goto efault;
8313 } else
8314 act = NULL;
8315 if (arg3) {
8316 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
8317 ret = -TARGET_EFAULT;
8318 goto rt_sigaction_fail;
8319 }
8320 } else
8321 oact = NULL;
8322 ret = get_errno(do_sigaction(arg1, act, oact));
8323 rt_sigaction_fail:
8324 if (act)
8325 unlock_user_struct(act, arg2, 0);
8326 if (oact)
8327 unlock_user_struct(oact, arg3, 1);
8328 #endif
8329 }
8330 break;
8331 #ifdef TARGET_NR_sgetmask /* not on alpha */
8332 case TARGET_NR_sgetmask:
8333 {
8334 sigset_t cur_set;
8335 abi_ulong target_set;
8336 ret = do_sigprocmask(0, NULL, &cur_set);
8337 if (!ret) {
8338 host_to_target_old_sigset(&target_set, &cur_set);
8339 ret = target_set;
8340 }
8341 }
8342 break;
8343 #endif
8344 #ifdef TARGET_NR_ssetmask /* not on alpha */
8345 case TARGET_NR_ssetmask:
8346 {
8347 sigset_t set, oset, cur_set;
8348 abi_ulong target_set = arg1;
8349 /* We only have one word of the new mask so we must read
8350 * the rest of it with do_sigprocmask() and OR in this word.
8351 * We are guaranteed that a do_sigprocmask() that only queries
8352 * the signal mask will not fail.
8353 */
8354 ret = do_sigprocmask(0, NULL, &cur_set);
8355 assert(!ret);
8356 target_to_host_old_sigset(&set, &target_set);
8357 sigorset(&set, &set, &cur_set);
8358 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
8359 if (!ret) {
8360 host_to_target_old_sigset(&target_set, &oset);
8361 ret = target_set;
8362 }
8363 }
8364 break;
8365 #endif
8366 #ifdef TARGET_NR_sigprocmask
8367 case TARGET_NR_sigprocmask:
8368 {
8369 #if defined(TARGET_ALPHA)
8370 sigset_t set, oldset;
8371 abi_ulong mask;
8372 int how;
8373
8374 switch (arg1) {
8375 case TARGET_SIG_BLOCK:
8376 how = SIG_BLOCK;
8377 break;
8378 case TARGET_SIG_UNBLOCK:
8379 how = SIG_UNBLOCK;
8380 break;
8381 case TARGET_SIG_SETMASK:
8382 how = SIG_SETMASK;
8383 break;
8384 default:
8385 ret = -TARGET_EINVAL;
8386 goto fail;
8387 }
8388 mask = arg2;
8389 target_to_host_old_sigset(&set, &mask);
8390
8391 ret = do_sigprocmask(how, &set, &oldset);
8392 if (!is_error(ret)) {
8393 host_to_target_old_sigset(&mask, &oldset);
8394 ret = mask;
8395 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
8396 }
8397 #else
8398 sigset_t set, oldset, *set_ptr;
8399 int how;
8400
8401 if (arg2) {
8402 switch (arg1) {
8403 case TARGET_SIG_BLOCK:
8404 how = SIG_BLOCK;
8405 break;
8406 case TARGET_SIG_UNBLOCK:
8407 how = SIG_UNBLOCK;
8408 break;
8409 case TARGET_SIG_SETMASK:
8410 how = SIG_SETMASK;
8411 break;
8412 default:
8413 ret = -TARGET_EINVAL;
8414 goto fail;
8415 }
8416 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8417 goto efault;
8418 target_to_host_old_sigset(&set, p);
8419 unlock_user(p, arg2, 0);
8420 set_ptr = &set;
8421 } else {
8422 how = 0;
8423 set_ptr = NULL;
8424 }
8425 ret = do_sigprocmask(how, set_ptr, &oldset);
8426 if (!is_error(ret) && arg3) {
8427 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8428 goto efault;
8429 host_to_target_old_sigset(p, &oldset);
8430 unlock_user(p, arg3, sizeof(target_sigset_t));
8431 }
8432 #endif
8433 }
8434 break;
8435 #endif
8436 case TARGET_NR_rt_sigprocmask:
8437 {
8438 int how = arg1;
8439 sigset_t set, oldset, *set_ptr;
8440
8441 if (arg4 != sizeof(target_sigset_t)) {
8442 ret = -TARGET_EINVAL;
8443 break;
8444 }
8445
8446 if (arg2) {
8447 switch(how) {
8448 case TARGET_SIG_BLOCK:
8449 how = SIG_BLOCK;
8450 break;
8451 case TARGET_SIG_UNBLOCK:
8452 how = SIG_UNBLOCK;
8453 break;
8454 case TARGET_SIG_SETMASK:
8455 how = SIG_SETMASK;
8456 break;
8457 default:
8458 ret = -TARGET_EINVAL;
8459 goto fail;
8460 }
8461 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
8462 goto efault;
8463 target_to_host_sigset(&set, p);
8464 unlock_user(p, arg2, 0);
8465 set_ptr = &set;
8466 } else {
8467 how = 0;
8468 set_ptr = NULL;
8469 }
8470 ret = do_sigprocmask(how, set_ptr, &oldset);
8471 if (!is_error(ret) && arg3) {
8472 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
8473 goto efault;
8474 host_to_target_sigset(p, &oldset);
8475 unlock_user(p, arg3, sizeof(target_sigset_t));
8476 }
8477 }
8478 break;
8479 #ifdef TARGET_NR_sigpending
8480 case TARGET_NR_sigpending:
8481 {
8482 sigset_t set;
8483 ret = get_errno(sigpending(&set));
8484 if (!is_error(ret)) {
8485 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8486 goto efault;
8487 host_to_target_old_sigset(p, &set);
8488 unlock_user(p, arg1, sizeof(target_sigset_t));
8489 }
8490 }
8491 break;
8492 #endif
8493 case TARGET_NR_rt_sigpending:
8494 {
8495 sigset_t set;
8496
8497 /* Yes, this check is >, not != like most. We follow the kernel's
8498 * logic and it does it like this because it implements
8499 * NR_sigpending through the same code path, and in that case
8500 * the old_sigset_t is smaller in size.
8501 */
8502 if (arg2 > sizeof(target_sigset_t)) {
8503 ret = -TARGET_EINVAL;
8504 break;
8505 }
8506
8507 ret = get_errno(sigpending(&set));
8508 if (!is_error(ret)) {
8509 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
8510 goto efault;
8511 host_to_target_sigset(p, &set);
8512 unlock_user(p, arg1, sizeof(target_sigset_t));
8513 }
8514 }
8515 break;
8516 #ifdef TARGET_NR_sigsuspend
8517 case TARGET_NR_sigsuspend:
8518 {
8519 TaskState *ts = cpu->opaque;
8520 #if defined(TARGET_ALPHA)
8521 abi_ulong mask = arg1;
8522 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
8523 #else
8524 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8525 goto efault;
8526 target_to_host_old_sigset(&ts->sigsuspend_mask, p);
8527 unlock_user(p, arg1, 0);
8528 #endif
8529 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8530 SIGSET_T_SIZE));
8531 if (ret != -TARGET_ERESTARTSYS) {
8532 ts->in_sigsuspend = 1;
8533 }
8534 }
8535 break;
8536 #endif
8537 case TARGET_NR_rt_sigsuspend:
8538 {
8539 TaskState *ts = cpu->opaque;
8540
8541 if (arg2 != sizeof(target_sigset_t)) {
8542 ret = -TARGET_EINVAL;
8543 break;
8544 }
8545 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8546 goto efault;
8547 target_to_host_sigset(&ts->sigsuspend_mask, p);
8548 unlock_user(p, arg1, 0);
8549 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
8550 SIGSET_T_SIZE));
8551 if (ret != -TARGET_ERESTARTSYS) {
8552 ts->in_sigsuspend = 1;
8553 }
8554 }
8555 break;
8556 case TARGET_NR_rt_sigtimedwait:
8557 {
8558 sigset_t set;
8559 struct timespec uts, *puts;
8560 siginfo_t uinfo;
8561
8562 if (arg4 != sizeof(target_sigset_t)) {
8563 ret = -TARGET_EINVAL;
8564 break;
8565 }
8566
8567 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
8568 goto efault;
8569 target_to_host_sigset(&set, p);
8570 unlock_user(p, arg1, 0);
8571 if (arg3) {
8572 puts = &uts;
8573 target_to_host_timespec(puts, arg3);
8574 } else {
8575 puts = NULL;
8576 }
8577 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
8578 SIGSET_T_SIZE));
8579 if (!is_error(ret)) {
8580 if (arg2) {
8581 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
8582 0);
8583 if (!p) {
8584 goto efault;
8585 }
8586 host_to_target_siginfo(p, &uinfo);
8587 unlock_user(p, arg2, sizeof(target_siginfo_t));
8588 }
8589 ret = host_to_target_signal(ret);
8590 }
8591 }
8592 break;
8593 case TARGET_NR_rt_sigqueueinfo:
8594 {
8595 siginfo_t uinfo;
8596
8597 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
8598 if (!p) {
8599 goto efault;
8600 }
8601 target_to_host_siginfo(&uinfo, p);
8602 unlock_user(p, arg1, 0);
8603 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
8604 }
8605 break;
8606 #ifdef TARGET_NR_sigreturn
8607 case TARGET_NR_sigreturn:
8608 if (block_signals()) {
8609 ret = -TARGET_ERESTARTSYS;
8610 } else {
8611 ret = do_sigreturn(cpu_env);
8612 }
8613 break;
8614 #endif
8615 case TARGET_NR_rt_sigreturn:
8616 if (block_signals()) {
8617 ret = -TARGET_ERESTARTSYS;
8618 } else {
8619 ret = do_rt_sigreturn(cpu_env);
8620 }
8621 break;
8622 case TARGET_NR_sethostname:
8623 if (!(p = lock_user_string(arg1)))
8624 goto efault;
8625 ret = get_errno(sethostname(p, arg2));
8626 unlock_user(p, arg1, 0);
8627 break;
8628 case TARGET_NR_setrlimit:
8629 {
8630 int resource = target_to_host_resource(arg1);
8631 struct target_rlimit *target_rlim;
8632 struct rlimit rlim;
8633 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
8634 goto efault;
8635 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
8636 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
8637 unlock_user_struct(target_rlim, arg2, 0);
8638 ret = get_errno(setrlimit(resource, &rlim));
8639 }
8640 break;
8641 case TARGET_NR_getrlimit:
8642 {
8643 int resource = target_to_host_resource(arg1);
8644 struct target_rlimit *target_rlim;
8645 struct rlimit rlim;
8646
8647 ret = get_errno(getrlimit(resource, &rlim));
8648 if (!is_error(ret)) {
8649 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
8650 goto efault;
8651 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
8652 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
8653 unlock_user_struct(target_rlim, arg2, 1);
8654 }
8655 }
8656 break;
8657 case TARGET_NR_getrusage:
8658 {
8659 struct rusage rusage;
8660 ret = get_errno(getrusage(arg1, &rusage));
8661 if (!is_error(ret)) {
8662 ret = host_to_target_rusage(arg2, &rusage);
8663 }
8664 }
8665 break;
8666 case TARGET_NR_gettimeofday:
8667 {
8668 struct timeval tv;
8669 ret = get_errno(gettimeofday(&tv, NULL));
8670 if (!is_error(ret)) {
8671 if (copy_to_user_timeval(arg1, &tv))
8672 goto efault;
8673 }
8674 }
8675 break;
8676 case TARGET_NR_settimeofday:
8677 {
8678 struct timeval tv, *ptv = NULL;
8679 struct timezone tz, *ptz = NULL;
8680
8681 if (arg1) {
8682 if (copy_from_user_timeval(&tv, arg1)) {
8683 goto efault;
8684 }
8685 ptv = &tv;
8686 }
8687
8688 if (arg2) {
8689 if (copy_from_user_timezone(&tz, arg2)) {
8690 goto efault;
8691 }
8692 ptz = &tz;
8693 }
8694
8695 ret = get_errno(settimeofday(ptv, ptz));
8696 }
8697 break;
8698 #if defined(TARGET_NR_select)
8699 case TARGET_NR_select:
8700 #if defined(TARGET_WANT_NI_OLD_SELECT)
8701 /* some architectures used to have old_select here
8702 * but now ENOSYS it.
8703 */
8704 ret = -TARGET_ENOSYS;
8705 #elif defined(TARGET_WANT_OLD_SYS_SELECT)
8706 ret = do_old_select(arg1);
8707 #else
8708 ret = do_select(arg1, arg2, arg3, arg4, arg5);
8709 #endif
8710 break;
8711 #endif
8712 #ifdef TARGET_NR_pselect6
8713 case TARGET_NR_pselect6:
8714 {
8715 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
8716 fd_set rfds, wfds, efds;
8717 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
8718 struct timespec ts, *ts_ptr;
8719
8720 /*
8721 * The 6th arg is actually two args smashed together,
8722 * so we cannot use the C library.
8723 */
8724 sigset_t set;
8725 struct {
8726 sigset_t *set;
8727 size_t size;
8728 } sig, *sig_ptr;
8729
8730 abi_ulong arg_sigset, arg_sigsize, *arg7;
8731 target_sigset_t *target_sigset;
8732
8733 n = arg1;
8734 rfd_addr = arg2;
8735 wfd_addr = arg3;
8736 efd_addr = arg4;
8737 ts_addr = arg5;
8738
8739 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
8740 if (ret) {
8741 goto fail;
8742 }
8743 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
8744 if (ret) {
8745 goto fail;
8746 }
8747 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
8748 if (ret) {
8749 goto fail;
8750 }
8751
8752 /*
8753 * This takes a timespec, and not a timeval, so we cannot
8754 * use the do_select() helper ...
8755 */
8756 if (ts_addr) {
8757 if (target_to_host_timespec(&ts, ts_addr)) {
8758 goto efault;
8759 }
8760 ts_ptr = &ts;
8761 } else {
8762 ts_ptr = NULL;
8763 }
8764
8765 /* Extract the two packed args for the sigset */
8766 if (arg6) {
8767 sig_ptr = &sig;
8768 sig.size = SIGSET_T_SIZE;
8769
8770 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
8771 if (!arg7) {
8772 goto efault;
8773 }
8774 arg_sigset = tswapal(arg7[0]);
8775 arg_sigsize = tswapal(arg7[1]);
8776 unlock_user(arg7, arg6, 0);
8777
8778 if (arg_sigset) {
8779 sig.set = &set;
8780 if (arg_sigsize != sizeof(*target_sigset)) {
8781 /* Like the kernel, we enforce correct size sigsets */
8782 ret = -TARGET_EINVAL;
8783 goto fail;
8784 }
8785 target_sigset = lock_user(VERIFY_READ, arg_sigset,
8786 sizeof(*target_sigset), 1);
8787 if (!target_sigset) {
8788 goto efault;
8789 }
8790 target_to_host_sigset(&set, target_sigset);
8791 unlock_user(target_sigset, arg_sigset, 0);
8792 } else {
8793 sig.set = NULL;
8794 }
8795 } else {
8796 sig_ptr = NULL;
8797 }
8798
8799 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
8800 ts_ptr, sig_ptr));
8801
8802 if (!is_error(ret)) {
8803 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
8804 goto efault;
8805 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
8806 goto efault;
8807 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
8808 goto efault;
8809
8810 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
8811 goto efault;
8812 }
8813 }
8814 break;
8815 #endif
8816 #ifdef TARGET_NR_symlink
8817 case TARGET_NR_symlink:
8818 {
8819 void *p2;
8820 p = lock_user_string(arg1);
8821 p2 = lock_user_string(arg2);
8822 if (!p || !p2)
8823 ret = -TARGET_EFAULT;
8824 else
8825 ret = get_errno(symlink(p, p2));
8826 unlock_user(p2, arg2, 0);
8827 unlock_user(p, arg1, 0);
8828 }
8829 break;
8830 #endif
8831 #if defined(TARGET_NR_symlinkat)
8832 case TARGET_NR_symlinkat:
8833 {
8834 void *p2;
8835 p = lock_user_string(arg1);
8836 p2 = lock_user_string(arg3);
8837 if (!p || !p2)
8838 ret = -TARGET_EFAULT;
8839 else
8840 ret = get_errno(symlinkat(p, arg2, p2));
8841 unlock_user(p2, arg3, 0);
8842 unlock_user(p, arg1, 0);
8843 }
8844 break;
8845 #endif
8846 #ifdef TARGET_NR_oldlstat
8847 case TARGET_NR_oldlstat:
8848 goto unimplemented;
8849 #endif
8850 #ifdef TARGET_NR_readlink
8851 case TARGET_NR_readlink:
8852 {
8853 void *p2;
8854 p = lock_user_string(arg1);
8855 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
8856 if (!p || !p2) {
8857 ret = -TARGET_EFAULT;
8858 } else if (!arg3) {
8859 /* Short circuit this for the magic exe check. */
8860 ret = -TARGET_EINVAL;
8861 } else if (is_proc_myself((const char *)p, "exe")) {
8862 char real[PATH_MAX], *temp;
8863 temp = realpath(exec_path, real);
8864 /* Return value is # of bytes that we wrote to the buffer. */
8865 if (temp == NULL) {
8866 ret = get_errno(-1);
8867 } else {
8868 /* Don't worry about sign mismatch as earlier mapping
8869 * logic would have thrown a bad address error. */
8870 ret = MIN(strlen(real), arg3);
8871 /* We cannot NUL terminate the string. */
8872 memcpy(p2, real, ret);
8873 }
8874 } else {
8875 ret = get_errno(readlink(path(p), p2, arg3));
8876 }
8877 unlock_user(p2, arg2, ret);
8878 unlock_user(p, arg1, 0);
8879 }
8880 break;
8881 #endif
8882 #if defined(TARGET_NR_readlinkat)
8883 case TARGET_NR_readlinkat:
8884 {
8885 void *p2;
8886 p = lock_user_string(arg2);
8887 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
8888 if (!p || !p2) {
8889 ret = -TARGET_EFAULT;
8890 } else if (is_proc_myself((const char *)p, "exe")) {
8891 char real[PATH_MAX], *temp;
8892 temp = realpath(exec_path, real);
8893 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
8894 snprintf((char *)p2, arg4, "%s", real);
8895 } else {
8896 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
8897 }
8898 unlock_user(p2, arg3, ret);
8899 unlock_user(p, arg2, 0);
8900 }
8901 break;
8902 #endif
8903 #ifdef TARGET_NR_uselib
8904 case TARGET_NR_uselib:
8905 goto unimplemented;
8906 #endif
8907 #ifdef TARGET_NR_swapon
8908 case TARGET_NR_swapon:
8909 if (!(p = lock_user_string(arg1)))
8910 goto efault;
8911 ret = get_errno(swapon(p, arg2));
8912 unlock_user(p, arg1, 0);
8913 break;
8914 #endif
8915 case TARGET_NR_reboot:
8916 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
8917 /* arg4 must be ignored in all other cases */
8918 p = lock_user_string(arg4);
8919 if (!p) {
8920 goto efault;
8921 }
8922 ret = get_errno(reboot(arg1, arg2, arg3, p));
8923 unlock_user(p, arg4, 0);
8924 } else {
8925 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
8926 }
8927 break;
8928 #ifdef TARGET_NR_readdir
8929 case TARGET_NR_readdir:
8930 goto unimplemented;
8931 #endif
8932 #ifdef TARGET_NR_mmap
8933 case TARGET_NR_mmap:
8934 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
8935 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
8936 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
8937 || defined(TARGET_S390X)
8938 {
8939 abi_ulong *v;
8940 abi_ulong v1, v2, v3, v4, v5, v6;
8941 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
8942 goto efault;
8943 v1 = tswapal(v[0]);
8944 v2 = tswapal(v[1]);
8945 v3 = tswapal(v[2]);
8946 v4 = tswapal(v[3]);
8947 v5 = tswapal(v[4]);
8948 v6 = tswapal(v[5]);
8949 unlock_user(v, arg1, 0);
8950 ret = get_errno(target_mmap(v1, v2, v3,
8951 target_to_host_bitmask(v4, mmap_flags_tbl),
8952 v5, v6));
8953 }
8954 #else
8955 ret = get_errno(target_mmap(arg1, arg2, arg3,
8956 target_to_host_bitmask(arg4, mmap_flags_tbl),
8957 arg5,
8958 arg6));
8959 #endif
8960 break;
8961 #endif
8962 #ifdef TARGET_NR_mmap2
8963 case TARGET_NR_mmap2:
8964 #ifndef MMAP_SHIFT
8965 #define MMAP_SHIFT 12
8966 #endif
8967 ret = get_errno(target_mmap(arg1, arg2, arg3,
8968 target_to_host_bitmask(arg4, mmap_flags_tbl),
8969 arg5,
8970 arg6 << MMAP_SHIFT));
8971 break;
8972 #endif
8973 case TARGET_NR_munmap:
8974 ret = get_errno(target_munmap(arg1, arg2));
8975 break;
8976 case TARGET_NR_mprotect:
8977 {
8978 TaskState *ts = cpu->opaque;
8979 /* Special hack to detect libc making the stack executable. */
8980 if ((arg3 & PROT_GROWSDOWN)
8981 && arg1 >= ts->info->stack_limit
8982 && arg1 <= ts->info->start_stack) {
8983 arg3 &= ~PROT_GROWSDOWN;
8984 arg2 = arg2 + arg1 - ts->info->stack_limit;
8985 arg1 = ts->info->stack_limit;
8986 }
8987 }
8988 ret = get_errno(target_mprotect(arg1, arg2, arg3));
8989 break;
8990 #ifdef TARGET_NR_mremap
8991 case TARGET_NR_mremap:
8992 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
8993 break;
8994 #endif
8995 /* ??? msync/mlock/munlock are broken for softmmu. */
8996 #ifdef TARGET_NR_msync
8997 case TARGET_NR_msync:
8998 ret = get_errno(msync(g2h(arg1), arg2, arg3));
8999 break;
9000 #endif
9001 #ifdef TARGET_NR_mlock
9002 case TARGET_NR_mlock:
9003 ret = get_errno(mlock(g2h(arg1), arg2));
9004 break;
9005 #endif
9006 #ifdef TARGET_NR_munlock
9007 case TARGET_NR_munlock:
9008 ret = get_errno(munlock(g2h(arg1), arg2));
9009 break;
9010 #endif
9011 #ifdef TARGET_NR_mlockall
9012 case TARGET_NR_mlockall:
9013 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
9014 break;
9015 #endif
9016 #ifdef TARGET_NR_munlockall
9017 case TARGET_NR_munlockall:
9018 ret = get_errno(munlockall());
9019 break;
9020 #endif
9021 case TARGET_NR_truncate:
9022 if (!(p = lock_user_string(arg1)))
9023 goto efault;
9024 ret = get_errno(truncate(p, arg2));
9025 unlock_user(p, arg1, 0);
9026 break;
9027 case TARGET_NR_ftruncate:
9028 ret = get_errno(ftruncate(arg1, arg2));
9029 break;
9030 case TARGET_NR_fchmod:
9031 ret = get_errno(fchmod(arg1, arg2));
9032 break;
9033 #if defined(TARGET_NR_fchmodat)
9034 case TARGET_NR_fchmodat:
9035 if (!(p = lock_user_string(arg2)))
9036 goto efault;
9037 ret = get_errno(fchmodat(arg1, p, arg3, 0));
9038 unlock_user(p, arg2, 0);
9039 break;
9040 #endif
9041 case TARGET_NR_getpriority:
9042 /* Note that negative values are valid for getpriority, so we must
9043 differentiate based on errno settings. */
9044 errno = 0;
9045 ret = getpriority(arg1, arg2);
9046 if (ret == -1 && errno != 0) {
9047 ret = -host_to_target_errno(errno);
9048 break;
9049 }
9050 #ifdef TARGET_ALPHA
9051 /* Return value is the unbiased priority. Signal no error. */
9052 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
9053 #else
9054 /* Return value is a biased priority to avoid negative numbers. */
9055 ret = 20 - ret;
9056 #endif
9057 break;
9058 case TARGET_NR_setpriority:
9059 ret = get_errno(setpriority(arg1, arg2, arg3));
9060 break;
9061 #ifdef TARGET_NR_profil
9062 case TARGET_NR_profil:
9063 goto unimplemented;
9064 #endif
9065 case TARGET_NR_statfs:
9066 if (!(p = lock_user_string(arg1)))
9067 goto efault;
9068 ret = get_errno(statfs(path(p), &stfs));
9069 unlock_user(p, arg1, 0);
9070 convert_statfs:
9071 if (!is_error(ret)) {
9072 struct target_statfs *target_stfs;
9073
9074 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
9075 goto efault;
9076 __put_user(stfs.f_type, &target_stfs->f_type);
9077 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9078 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9079 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9080 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9081 __put_user(stfs.f_files, &target_stfs->f_files);
9082 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9083 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9084 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9085 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9086 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9087 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9088 unlock_user_struct(target_stfs, arg2, 1);
9089 }
9090 break;
9091 case TARGET_NR_fstatfs:
9092 ret = get_errno(fstatfs(arg1, &stfs));
9093 goto convert_statfs;
9094 #ifdef TARGET_NR_statfs64
9095 case TARGET_NR_statfs64:
9096 if (!(p = lock_user_string(arg1)))
9097 goto efault;
9098 ret = get_errno(statfs(path(p), &stfs));
9099 unlock_user(p, arg1, 0);
9100 convert_statfs64:
9101 if (!is_error(ret)) {
9102 struct target_statfs64 *target_stfs;
9103
9104 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
9105 goto efault;
9106 __put_user(stfs.f_type, &target_stfs->f_type);
9107 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
9108 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
9109 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
9110 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
9111 __put_user(stfs.f_files, &target_stfs->f_files);
9112 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
9113 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
9114 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
9115 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
9116 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
9117 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
9118 unlock_user_struct(target_stfs, arg3, 1);
9119 }
9120 break;
9121 case TARGET_NR_fstatfs64:
9122 ret = get_errno(fstatfs(arg1, &stfs));
9123 goto convert_statfs64;
9124 #endif
9125 #ifdef TARGET_NR_ioperm
9126 case TARGET_NR_ioperm:
9127 goto unimplemented;
9128 #endif
9129 #ifdef TARGET_NR_socketcall
9130 case TARGET_NR_socketcall:
9131 ret = do_socketcall(arg1, arg2);
9132 break;
9133 #endif
9134 #ifdef TARGET_NR_accept
9135 case TARGET_NR_accept:
9136 ret = do_accept4(arg1, arg2, arg3, 0);
9137 break;
9138 #endif
9139 #ifdef TARGET_NR_accept4
9140 case TARGET_NR_accept4:
9141 ret = do_accept4(arg1, arg2, arg3, arg4);
9142 break;
9143 #endif
9144 #ifdef TARGET_NR_bind
9145 case TARGET_NR_bind:
9146 ret = do_bind(arg1, arg2, arg3);
9147 break;
9148 #endif
9149 #ifdef TARGET_NR_connect
9150 case TARGET_NR_connect:
9151 ret = do_connect(arg1, arg2, arg3);
9152 break;
9153 #endif
9154 #ifdef TARGET_NR_getpeername
9155 case TARGET_NR_getpeername:
9156 ret = do_getpeername(arg1, arg2, arg3);
9157 break;
9158 #endif
9159 #ifdef TARGET_NR_getsockname
9160 case TARGET_NR_getsockname:
9161 ret = do_getsockname(arg1, arg2, arg3);
9162 break;
9163 #endif
9164 #ifdef TARGET_NR_getsockopt
9165 case TARGET_NR_getsockopt:
9166 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5);
9167 break;
9168 #endif
9169 #ifdef TARGET_NR_listen
9170 case TARGET_NR_listen:
9171 ret = get_errno(listen(arg1, arg2));
9172 break;
9173 #endif
9174 #ifdef TARGET_NR_recv
9175 case TARGET_NR_recv:
9176 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
9177 break;
9178 #endif
9179 #ifdef TARGET_NR_recvfrom
9180 case TARGET_NR_recvfrom:
9181 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
9182 break;
9183 #endif
9184 #ifdef TARGET_NR_recvmsg
9185 case TARGET_NR_recvmsg:
9186 ret = do_sendrecvmsg(arg1, arg2, arg3, 0);
9187 break;
9188 #endif
9189 #ifdef TARGET_NR_send
9190 case TARGET_NR_send:
9191 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0);
9192 break;
9193 #endif
9194 #ifdef TARGET_NR_sendmsg
9195 case TARGET_NR_sendmsg:
9196 ret = do_sendrecvmsg(arg1, arg2, arg3, 1);
9197 break;
9198 #endif
9199 #ifdef TARGET_NR_sendmmsg
9200 case TARGET_NR_sendmmsg:
9201 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
9202 break;
9203 case TARGET_NR_recvmmsg:
9204 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
9205 break;
9206 #endif
9207 #ifdef TARGET_NR_sendto
9208 case TARGET_NR_sendto:
9209 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
9210 break;
9211 #endif
9212 #ifdef TARGET_NR_shutdown
9213 case TARGET_NR_shutdown:
9214 ret = get_errno(shutdown(arg1, arg2));
9215 break;
9216 #endif
9217 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
9218 case TARGET_NR_getrandom:
9219 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
9220 if (!p) {
9221 goto efault;
9222 }
9223 ret = get_errno(getrandom(p, arg2, arg3));
9224 unlock_user(p, arg1, ret);
9225 break;
9226 #endif
9227 #ifdef TARGET_NR_socket
9228 case TARGET_NR_socket:
9229 ret = do_socket(arg1, arg2, arg3);
9230 fd_trans_unregister(ret);
9231 break;
9232 #endif
9233 #ifdef TARGET_NR_socketpair
9234 case TARGET_NR_socketpair:
9235 ret = do_socketpair(arg1, arg2, arg3, arg4);
9236 break;
9237 #endif
9238 #ifdef TARGET_NR_setsockopt
9239 case TARGET_NR_setsockopt:
9240 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
9241 break;
9242 #endif
9243
9244 case TARGET_NR_syslog:
9245 if (!(p = lock_user_string(arg2)))
9246 goto efault;
9247 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
9248 unlock_user(p, arg2, 0);
9249 break;
9250
9251 case TARGET_NR_setitimer:
9252 {
9253 struct itimerval value, ovalue, *pvalue;
9254
9255 if (arg2) {
9256 pvalue = &value;
9257 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
9258 || copy_from_user_timeval(&pvalue->it_value,
9259 arg2 + sizeof(struct target_timeval)))
9260 goto efault;
9261 } else {
9262 pvalue = NULL;
9263 }
9264 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
9265 if (!is_error(ret) && arg3) {
9266 if (copy_to_user_timeval(arg3,
9267 &ovalue.it_interval)
9268 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
9269 &ovalue.it_value))
9270 goto efault;
9271 }
9272 }
9273 break;
9274 case TARGET_NR_getitimer:
9275 {
9276 struct itimerval value;
9277
9278 ret = get_errno(getitimer(arg1, &value));
9279 if (!is_error(ret) && arg2) {
9280 if (copy_to_user_timeval(arg2,
9281 &value.it_interval)
9282 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
9283 &value.it_value))
9284 goto efault;
9285 }
9286 }
9287 break;
9288 #ifdef TARGET_NR_stat
9289 case TARGET_NR_stat:
9290 if (!(p = lock_user_string(arg1)))
9291 goto efault;
9292 ret = get_errno(stat(path(p), &st));
9293 unlock_user(p, arg1, 0);
9294 goto do_stat;
9295 #endif
9296 #ifdef TARGET_NR_lstat
9297 case TARGET_NR_lstat:
9298 if (!(p = lock_user_string(arg1)))
9299 goto efault;
9300 ret = get_errno(lstat(path(p), &st));
9301 unlock_user(p, arg1, 0);
9302 goto do_stat;
9303 #endif
9304 case TARGET_NR_fstat:
9305 {
9306 ret = get_errno(fstat(arg1, &st));
9307 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
9308 do_stat:
9309 #endif
9310 if (!is_error(ret)) {
9311 struct target_stat *target_st;
9312
9313 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
9314 goto efault;
9315 memset(target_st, 0, sizeof(*target_st));
9316 __put_user(st.st_dev, &target_st->st_dev);
9317 __put_user(st.st_ino, &target_st->st_ino);
9318 __put_user(st.st_mode, &target_st->st_mode);
9319 __put_user(st.st_uid, &target_st->st_uid);
9320 __put_user(st.st_gid, &target_st->st_gid);
9321 __put_user(st.st_nlink, &target_st->st_nlink);
9322 __put_user(st.st_rdev, &target_st->st_rdev);
9323 __put_user(st.st_size, &target_st->st_size);
9324 __put_user(st.st_blksize, &target_st->st_blksize);
9325 __put_user(st.st_blocks, &target_st->st_blocks);
9326 __put_user(st.st_atime, &target_st->target_st_atime);
9327 __put_user(st.st_mtime, &target_st->target_st_mtime);
9328 __put_user(st.st_ctime, &target_st->target_st_ctime);
9329 unlock_user_struct(target_st, arg2, 1);
9330 }
9331 }
9332 break;
9333 #ifdef TARGET_NR_olduname
9334 case TARGET_NR_olduname:
9335 goto unimplemented;
9336 #endif
9337 #ifdef TARGET_NR_iopl
9338 case TARGET_NR_iopl:
9339 goto unimplemented;
9340 #endif
9341 case TARGET_NR_vhangup:
9342 ret = get_errno(vhangup());
9343 break;
9344 #ifdef TARGET_NR_idle
9345 case TARGET_NR_idle:
9346 goto unimplemented;
9347 #endif
9348 #ifdef TARGET_NR_syscall
9349 case TARGET_NR_syscall:
9350 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
9351 arg6, arg7, arg8, 0);
9352 break;
9353 #endif
9354 case TARGET_NR_wait4:
9355 {
9356 int status;
9357 abi_long status_ptr = arg2;
9358 struct rusage rusage, *rusage_ptr;
9359 abi_ulong target_rusage = arg4;
9360 abi_long rusage_err;
9361 if (target_rusage)
9362 rusage_ptr = &rusage;
9363 else
9364 rusage_ptr = NULL;
9365 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
9366 if (!is_error(ret)) {
9367 if (status_ptr && ret) {
9368 status = host_to_target_waitstatus(status);
9369 if (put_user_s32(status, status_ptr))
9370 goto efault;
9371 }
9372 if (target_rusage) {
9373 rusage_err = host_to_target_rusage(target_rusage, &rusage);
9374 if (rusage_err) {
9375 ret = rusage_err;
9376 }
9377 }
9378 }
9379 }
9380 break;
9381 #ifdef TARGET_NR_swapoff
9382 case TARGET_NR_swapoff:
9383 if (!(p = lock_user_string(arg1)))
9384 goto efault;
9385 ret = get_errno(swapoff(p));
9386 unlock_user(p, arg1, 0);
9387 break;
9388 #endif
9389 case TARGET_NR_sysinfo:
9390 {
9391 struct target_sysinfo *target_value;
9392 struct sysinfo value;
9393 ret = get_errno(sysinfo(&value));
9394 if (!is_error(ret) && arg1)
9395 {
9396 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
9397 goto efault;
9398 __put_user(value.uptime, &target_value->uptime);
9399 __put_user(value.loads[0], &target_value->loads[0]);
9400 __put_user(value.loads[1], &target_value->loads[1]);
9401 __put_user(value.loads[2], &target_value->loads[2]);
9402 __put_user(value.totalram, &target_value->totalram);
9403 __put_user(value.freeram, &target_value->freeram);
9404 __put_user(value.sharedram, &target_value->sharedram);
9405 __put_user(value.bufferram, &target_value->bufferram);
9406 __put_user(value.totalswap, &target_value->totalswap);
9407 __put_user(value.freeswap, &target_value->freeswap);
9408 __put_user(value.procs, &target_value->procs);
9409 __put_user(value.totalhigh, &target_value->totalhigh);
9410 __put_user(value.freehigh, &target_value->freehigh);
9411 __put_user(value.mem_unit, &target_value->mem_unit);
9412 unlock_user_struct(target_value, arg1, 1);
9413 }
9414 }
9415 break;
9416 #ifdef TARGET_NR_ipc
9417 case TARGET_NR_ipc:
9418 ret = do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
9419 break;
9420 #endif
9421 #ifdef TARGET_NR_semget
9422 case TARGET_NR_semget:
9423 ret = get_errno(semget(arg1, arg2, arg3));
9424 break;
9425 #endif
9426 #ifdef TARGET_NR_semop
9427 case TARGET_NR_semop:
9428 ret = do_semop(arg1, arg2, arg3);
9429 break;
9430 #endif
9431 #ifdef TARGET_NR_semctl
9432 case TARGET_NR_semctl:
9433 ret = do_semctl(arg1, arg2, arg3, arg4);
9434 break;
9435 #endif
9436 #ifdef TARGET_NR_msgctl
9437 case TARGET_NR_msgctl:
9438 ret = do_msgctl(arg1, arg2, arg3);
9439 break;
9440 #endif
9441 #ifdef TARGET_NR_msgget
9442 case TARGET_NR_msgget:
9443 ret = get_errno(msgget(arg1, arg2));
9444 break;
9445 #endif
9446 #ifdef TARGET_NR_msgrcv
9447 case TARGET_NR_msgrcv:
9448 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5);
9449 break;
9450 #endif
9451 #ifdef TARGET_NR_msgsnd
9452 case TARGET_NR_msgsnd:
9453 ret = do_msgsnd(arg1, arg2, arg3, arg4);
9454 break;
9455 #endif
9456 #ifdef TARGET_NR_shmget
9457 case TARGET_NR_shmget:
9458 ret = get_errno(shmget(arg1, arg2, arg3));
9459 break;
9460 #endif
9461 #ifdef TARGET_NR_shmctl
9462 case TARGET_NR_shmctl:
9463 ret = do_shmctl(arg1, arg2, arg3);
9464 break;
9465 #endif
9466 #ifdef TARGET_NR_shmat
9467 case TARGET_NR_shmat:
9468 ret = do_shmat(cpu_env, arg1, arg2, arg3);
9469 break;
9470 #endif
9471 #ifdef TARGET_NR_shmdt
9472 case TARGET_NR_shmdt:
9473 ret = do_shmdt(arg1);
9474 break;
9475 #endif
9476 case TARGET_NR_fsync:
9477 ret = get_errno(fsync(arg1));
9478 break;
9479 case TARGET_NR_clone:
9480 /* Linux manages to have three different orderings for its
9481 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
9482 * match the kernel's CONFIG_CLONE_* settings.
9483 * Microblaze is further special in that it uses a sixth
9484 * implicit argument to clone for the TLS pointer.
9485 */
9486 #if defined(TARGET_MICROBLAZE)
9487 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
9488 #elif defined(TARGET_CLONE_BACKWARDS)
9489 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
9490 #elif defined(TARGET_CLONE_BACKWARDS2)
9491 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
9492 #else
9493 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
9494 #endif
9495 break;
9496 #ifdef __NR_exit_group
9497 /* new thread calls */
9498 case TARGET_NR_exit_group:
9499 #ifdef TARGET_GPROF
9500 _mcleanup();
9501 #endif
9502 gdb_exit(cpu_env, arg1);
9503 ret = get_errno(exit_group(arg1));
9504 break;
9505 #endif
9506 case TARGET_NR_setdomainname:
9507 if (!(p = lock_user_string(arg1)))
9508 goto efault;
9509 ret = get_errno(setdomainname(p, arg2));
9510 unlock_user(p, arg1, 0);
9511 break;
9512 case TARGET_NR_uname:
9513 /* no need to transcode because we use the linux syscall */
9514 {
9515 struct new_utsname * buf;
9516
9517 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
9518 goto efault;
9519 ret = get_errno(sys_uname(buf));
9520 if (!is_error(ret)) {
9521 /* Overwrite the native machine name with whatever is being
9522 emulated. */
9523 strcpy (buf->machine, cpu_to_uname_machine(cpu_env));
9524 /* Allow the user to override the reported release. */
9525 if (qemu_uname_release && *qemu_uname_release) {
9526 g_strlcpy(buf->release, qemu_uname_release,
9527 sizeof(buf->release));
9528 }
9529 }
9530 unlock_user_struct(buf, arg1, 1);
9531 }
9532 break;
9533 #ifdef TARGET_I386
9534 case TARGET_NR_modify_ldt:
9535 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3);
9536 break;
9537 #if !defined(TARGET_X86_64)
9538 case TARGET_NR_vm86old:
9539 goto unimplemented;
9540 case TARGET_NR_vm86:
9541 ret = do_vm86(cpu_env, arg1, arg2);
9542 break;
9543 #endif
9544 #endif
9545 case TARGET_NR_adjtimex:
9546 goto unimplemented;
9547 #ifdef TARGET_NR_create_module
9548 case TARGET_NR_create_module:
9549 #endif
9550 case TARGET_NR_init_module:
9551 case TARGET_NR_delete_module:
9552 #ifdef TARGET_NR_get_kernel_syms
9553 case TARGET_NR_get_kernel_syms:
9554 #endif
9555 goto unimplemented;
9556 case TARGET_NR_quotactl:
9557 goto unimplemented;
9558 case TARGET_NR_getpgid:
9559 ret = get_errno(getpgid(arg1));
9560 break;
9561 case TARGET_NR_fchdir:
9562 ret = get_errno(fchdir(arg1));
9563 break;
9564 #ifdef TARGET_NR_bdflush /* not on x86_64 */
9565 case TARGET_NR_bdflush:
9566 goto unimplemented;
9567 #endif
9568 #ifdef TARGET_NR_sysfs
9569 case TARGET_NR_sysfs:
9570 goto unimplemented;
9571 #endif
9572 case TARGET_NR_personality:
9573 ret = get_errno(personality(arg1));
9574 break;
9575 #ifdef TARGET_NR_afs_syscall
9576 case TARGET_NR_afs_syscall:
9577 goto unimplemented;
9578 #endif
9579 #ifdef TARGET_NR__llseek /* Not on alpha */
9580 case TARGET_NR__llseek:
9581 {
9582 int64_t res;
9583 #if !defined(__NR_llseek)
9584 res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
9585 if (res == -1) {
9586 ret = get_errno(res);
9587 } else {
9588 ret = 0;
9589 }
9590 #else
9591 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
9592 #endif
9593 if ((ret == 0) && put_user_s64(res, arg4)) {
9594 goto efault;
9595 }
9596 }
9597 break;
9598 #endif
9599 #ifdef TARGET_NR_getdents
9600 case TARGET_NR_getdents:
9601 #ifdef __NR_getdents
9602 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
9603 {
9604 struct target_dirent *target_dirp;
9605 struct linux_dirent *dirp;
9606 abi_long count = arg3;
9607
9608 dirp = g_try_malloc(count);
9609 if (!dirp) {
9610 ret = -TARGET_ENOMEM;
9611 goto fail;
9612 }
9613
9614 ret = get_errno(sys_getdents(arg1, dirp, count));
9615 if (!is_error(ret)) {
9616 struct linux_dirent *de;
9617 struct target_dirent *tde;
9618 int len = ret;
9619 int reclen, treclen;
9620 int count1, tnamelen;
9621
9622 count1 = 0;
9623 de = dirp;
9624 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9625 goto efault;
9626 tde = target_dirp;
9627 while (len > 0) {
9628 reclen = de->d_reclen;
9629 tnamelen = reclen - offsetof(struct linux_dirent, d_name);
9630 assert(tnamelen >= 0);
9631 treclen = tnamelen + offsetof(struct target_dirent, d_name);
9632 assert(count1 + treclen <= count);
9633 tde->d_reclen = tswap16(treclen);
9634 tde->d_ino = tswapal(de->d_ino);
9635 tde->d_off = tswapal(de->d_off);
9636 memcpy(tde->d_name, de->d_name, tnamelen);
9637 de = (struct linux_dirent *)((char *)de + reclen);
9638 len -= reclen;
9639 tde = (struct target_dirent *)((char *)tde + treclen);
9640 count1 += treclen;
9641 }
9642 ret = count1;
9643 unlock_user(target_dirp, arg2, ret);
9644 }
9645 g_free(dirp);
9646 }
9647 #else
9648 {
9649 struct linux_dirent *dirp;
9650 abi_long count = arg3;
9651
9652 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9653 goto efault;
9654 ret = get_errno(sys_getdents(arg1, dirp, count));
9655 if (!is_error(ret)) {
9656 struct linux_dirent *de;
9657 int len = ret;
9658 int reclen;
9659 de = dirp;
9660 while (len > 0) {
9661 reclen = de->d_reclen;
9662 if (reclen > len)
9663 break;
9664 de->d_reclen = tswap16(reclen);
9665 tswapls(&de->d_ino);
9666 tswapls(&de->d_off);
9667 de = (struct linux_dirent *)((char *)de + reclen);
9668 len -= reclen;
9669 }
9670 }
9671 unlock_user(dirp, arg2, ret);
9672 }
9673 #endif
9674 #else
9675 /* Implement getdents in terms of getdents64 */
9676 {
9677 struct linux_dirent64 *dirp;
9678 abi_long count = arg3;
9679
9680 dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
9681 if (!dirp) {
9682 goto efault;
9683 }
9684 ret = get_errno(sys_getdents64(arg1, dirp, count));
9685 if (!is_error(ret)) {
9686 /* Convert the dirent64 structs to target dirent. We do this
9687 * in-place, since we can guarantee that a target_dirent is no
9688 * larger than a dirent64; however this means we have to be
9689 * careful to read everything before writing in the new format.
9690 */
9691 struct linux_dirent64 *de;
9692 struct target_dirent *tde;
9693 int len = ret;
9694 int tlen = 0;
9695
9696 de = dirp;
9697 tde = (struct target_dirent *)dirp;
9698 while (len > 0) {
9699 int namelen, treclen;
9700 int reclen = de->d_reclen;
9701 uint64_t ino = de->d_ino;
9702 int64_t off = de->d_off;
9703 uint8_t type = de->d_type;
9704
9705 namelen = strlen(de->d_name);
9706 treclen = offsetof(struct target_dirent, d_name)
9707 + namelen + 2;
9708 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
9709
9710 memmove(tde->d_name, de->d_name, namelen + 1);
9711 tde->d_ino = tswapal(ino);
9712 tde->d_off = tswapal(off);
9713 tde->d_reclen = tswap16(treclen);
9714 /* The target_dirent type is in what was formerly a padding
9715 * byte at the end of the structure:
9716 */
9717 *(((char *)tde) + treclen - 1) = type;
9718
9719 de = (struct linux_dirent64 *)((char *)de + reclen);
9720 tde = (struct target_dirent *)((char *)tde + treclen);
9721 len -= reclen;
9722 tlen += treclen;
9723 }
9724 ret = tlen;
9725 }
9726 unlock_user(dirp, arg2, ret);
9727 }
9728 #endif
9729 break;
9730 #endif /* TARGET_NR_getdents */
9731 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
9732 case TARGET_NR_getdents64:
9733 {
9734 struct linux_dirent64 *dirp;
9735 abi_long count = arg3;
9736 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9737 goto efault;
9738 ret = get_errno(sys_getdents64(arg1, dirp, count));
9739 if (!is_error(ret)) {
9740 struct linux_dirent64 *de;
9741 int len = ret;
9742 int reclen;
9743 de = dirp;
9744 while (len > 0) {
9745 reclen = de->d_reclen;
9746 if (reclen > len)
9747 break;
9748 de->d_reclen = tswap16(reclen);
9749 tswap64s((uint64_t *)&de->d_ino);
9750 tswap64s((uint64_t *)&de->d_off);
9751 de = (struct linux_dirent64 *)((char *)de + reclen);
9752 len -= reclen;
9753 }
9754 }
9755 unlock_user(dirp, arg2, ret);
9756 }
9757 break;
9758 #endif /* TARGET_NR_getdents64 */
9759 #if defined(TARGET_NR__newselect)
9760 case TARGET_NR__newselect:
9761 ret = do_select(arg1, arg2, arg3, arg4, arg5);
9762 break;
9763 #endif
9764 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
9765 # ifdef TARGET_NR_poll
9766 case TARGET_NR_poll:
9767 # endif
9768 # ifdef TARGET_NR_ppoll
9769 case TARGET_NR_ppoll:
9770 # endif
9771 {
9772 struct target_pollfd *target_pfd;
9773 unsigned int nfds = arg2;
9774 struct pollfd *pfd;
9775 unsigned int i;
9776
9777 pfd = NULL;
9778 target_pfd = NULL;
9779 if (nfds) {
9780 if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
9781 ret = -TARGET_EINVAL;
9782 break;
9783 }
9784
9785 target_pfd = lock_user(VERIFY_WRITE, arg1,
9786 sizeof(struct target_pollfd) * nfds, 1);
9787 if (!target_pfd) {
9788 goto efault;
9789 }
9790
9791 pfd = alloca(sizeof(struct pollfd) * nfds);
9792 for (i = 0; i < nfds; i++) {
9793 pfd[i].fd = tswap32(target_pfd[i].fd);
9794 pfd[i].events = tswap16(target_pfd[i].events);
9795 }
9796 }
9797
9798 switch (num) {
9799 # ifdef TARGET_NR_ppoll
9800 case TARGET_NR_ppoll:
9801 {
9802 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
9803 target_sigset_t *target_set;
9804 sigset_t _set, *set = &_set;
9805
9806 if (arg3) {
9807 if (target_to_host_timespec(timeout_ts, arg3)) {
9808 unlock_user(target_pfd, arg1, 0);
9809 goto efault;
9810 }
9811 } else {
9812 timeout_ts = NULL;
9813 }
9814
9815 if (arg4) {
9816 if (arg5 != sizeof(target_sigset_t)) {
9817 unlock_user(target_pfd, arg1, 0);
9818 ret = -TARGET_EINVAL;
9819 break;
9820 }
9821
9822 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
9823 if (!target_set) {
9824 unlock_user(target_pfd, arg1, 0);
9825 goto efault;
9826 }
9827 target_to_host_sigset(set, target_set);
9828 } else {
9829 set = NULL;
9830 }
9831
9832 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
9833 set, SIGSET_T_SIZE));
9834
9835 if (!is_error(ret) && arg3) {
9836 host_to_target_timespec(arg3, timeout_ts);
9837 }
9838 if (arg4) {
9839 unlock_user(target_set, arg4, 0);
9840 }
9841 break;
9842 }
9843 # endif
9844 # ifdef TARGET_NR_poll
9845 case TARGET_NR_poll:
9846 {
9847 struct timespec ts, *pts;
9848
9849 if (arg3 >= 0) {
9850 /* Convert ms to secs, ns */
9851 ts.tv_sec = arg3 / 1000;
9852 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
9853 pts = &ts;
9854 } else {
9855 /* -ve poll() timeout means "infinite" */
9856 pts = NULL;
9857 }
9858 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
9859 break;
9860 }
9861 # endif
9862 default:
9863 g_assert_not_reached();
9864 }
9865
9866 if (!is_error(ret)) {
9867 for(i = 0; i < nfds; i++) {
9868 target_pfd[i].revents = tswap16(pfd[i].revents);
9869 }
9870 }
9871 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
9872 }
9873 break;
9874 #endif
9875 case TARGET_NR_flock:
9876 /* NOTE: the flock constant seems to be the same for every
9877 Linux platform */
9878 ret = get_errno(safe_flock(arg1, arg2));
9879 break;
9880 case TARGET_NR_readv:
9881 {
9882 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
9883 if (vec != NULL) {
9884 ret = get_errno(safe_readv(arg1, vec, arg3));
9885 unlock_iovec(vec, arg2, arg3, 1);
9886 } else {
9887 ret = -host_to_target_errno(errno);
9888 }
9889 }
9890 break;
9891 case TARGET_NR_writev:
9892 {
9893 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
9894 if (vec != NULL) {
9895 ret = get_errno(safe_writev(arg1, vec, arg3));
9896 unlock_iovec(vec, arg2, arg3, 0);
9897 } else {
9898 ret = -host_to_target_errno(errno);
9899 }
9900 }
9901 break;
9902 case TARGET_NR_getsid:
9903 ret = get_errno(getsid(arg1));
9904 break;
9905 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
9906 case TARGET_NR_fdatasync:
9907 ret = get_errno(fdatasync(arg1));
9908 break;
9909 #endif
9910 #ifdef TARGET_NR__sysctl
9911 case TARGET_NR__sysctl:
9912 /* We don't implement this, but ENOTDIR is always a safe
9913 return value. */
9914 ret = -TARGET_ENOTDIR;
9915 break;
9916 #endif
9917 case TARGET_NR_sched_getaffinity:
9918 {
9919 unsigned int mask_size;
9920 unsigned long *mask;
9921
9922 /*
9923 * sched_getaffinity needs multiples of ulong, so need to take
9924 * care of mismatches between target ulong and host ulong sizes.
9925 */
9926 if (arg2 & (sizeof(abi_ulong) - 1)) {
9927 ret = -TARGET_EINVAL;
9928 break;
9929 }
9930 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
9931
9932 mask = alloca(mask_size);
9933 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
9934
9935 if (!is_error(ret)) {
9936 if (ret > arg2) {
9937 /* More data returned than the caller's buffer will fit.
9938 * This only happens if sizeof(abi_long) < sizeof(long)
9939 * and the caller passed us a buffer holding an odd number
9940 * of abi_longs. If the host kernel is actually using the
9941 * extra 4 bytes then fail EINVAL; otherwise we can just
9942 * ignore them and only copy the interesting part.
9943 */
9944 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
9945 if (numcpus > arg2 * 8) {
9946 ret = -TARGET_EINVAL;
9947 break;
9948 }
9949 ret = arg2;
9950 }
9951
9952 if (copy_to_user(arg3, mask, ret)) {
9953 goto efault;
9954 }
9955 }
9956 }
9957 break;
9958 case TARGET_NR_sched_setaffinity:
9959 {
9960 unsigned int mask_size;
9961 unsigned long *mask;
9962
9963 /*
9964 * sched_setaffinity needs multiples of ulong, so need to take
9965 * care of mismatches between target ulong and host ulong sizes.
9966 */
9967 if (arg2 & (sizeof(abi_ulong) - 1)) {
9968 ret = -TARGET_EINVAL;
9969 break;
9970 }
9971 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
9972
9973 mask = alloca(mask_size);
9974 if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) {
9975 goto efault;
9976 }
9977 memcpy(mask, p, arg2);
9978 unlock_user_struct(p, arg2, 0);
9979
9980 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
9981 }
9982 break;
9983 case TARGET_NR_sched_setparam:
9984 {
9985 struct sched_param *target_schp;
9986 struct sched_param schp;
9987
9988 if (arg2 == 0) {
9989 return -TARGET_EINVAL;
9990 }
9991 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
9992 goto efault;
9993 schp.sched_priority = tswap32(target_schp->sched_priority);
9994 unlock_user_struct(target_schp, arg2, 0);
9995 ret = get_errno(sched_setparam(arg1, &schp));
9996 }
9997 break;
9998 case TARGET_NR_sched_getparam:
9999 {
10000 struct sched_param *target_schp;
10001 struct sched_param schp;
10002
10003 if (arg2 == 0) {
10004 return -TARGET_EINVAL;
10005 }
10006 ret = get_errno(sched_getparam(arg1, &schp));
10007 if (!is_error(ret)) {
10008 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
10009 goto efault;
10010 target_schp->sched_priority = tswap32(schp.sched_priority);
10011 unlock_user_struct(target_schp, arg2, 1);
10012 }
10013 }
10014 break;
10015 case TARGET_NR_sched_setscheduler:
10016 {
10017 struct sched_param *target_schp;
10018 struct sched_param schp;
10019 if (arg3 == 0) {
10020 return -TARGET_EINVAL;
10021 }
10022 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
10023 goto efault;
10024 schp.sched_priority = tswap32(target_schp->sched_priority);
10025 unlock_user_struct(target_schp, arg3, 0);
10026 ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
10027 }
10028 break;
10029 case TARGET_NR_sched_getscheduler:
10030 ret = get_errno(sched_getscheduler(arg1));
10031 break;
10032 case TARGET_NR_sched_yield:
10033 ret = get_errno(sched_yield());
10034 break;
10035 case TARGET_NR_sched_get_priority_max:
10036 ret = get_errno(sched_get_priority_max(arg1));
10037 break;
10038 case TARGET_NR_sched_get_priority_min:
10039 ret = get_errno(sched_get_priority_min(arg1));
10040 break;
10041 case TARGET_NR_sched_rr_get_interval:
10042 {
10043 struct timespec ts;
10044 ret = get_errno(sched_rr_get_interval(arg1, &ts));
10045 if (!is_error(ret)) {
10046 ret = host_to_target_timespec(arg2, &ts);
10047 }
10048 }
10049 break;
10050 case TARGET_NR_nanosleep:
10051 {
10052 struct timespec req, rem;
10053 target_to_host_timespec(&req, arg1);
10054 ret = get_errno(safe_nanosleep(&req, &rem));
10055 if (is_error(ret) && arg2) {
10056 host_to_target_timespec(arg2, &rem);
10057 }
10058 }
10059 break;
10060 #ifdef TARGET_NR_query_module
10061 case TARGET_NR_query_module:
10062 goto unimplemented;
10063 #endif
10064 #ifdef TARGET_NR_nfsservctl
10065 case TARGET_NR_nfsservctl:
10066 goto unimplemented;
10067 #endif
10068 case TARGET_NR_prctl:
10069 switch (arg1) {
10070 case PR_GET_PDEATHSIG:
10071 {
10072 int deathsig;
10073 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
10074 if (!is_error(ret) && arg2
10075 && put_user_ual(deathsig, arg2)) {
10076 goto efault;
10077 }
10078 break;
10079 }
10080 #ifdef PR_GET_NAME
10081 case PR_GET_NAME:
10082 {
10083 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
10084 if (!name) {
10085 goto efault;
10086 }
10087 ret = get_errno(prctl(arg1, (unsigned long)name,
10088 arg3, arg4, arg5));
10089 unlock_user(name, arg2, 16);
10090 break;
10091 }
10092 case PR_SET_NAME:
10093 {
10094 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
10095 if (!name) {
10096 goto efault;
10097 }
10098 ret = get_errno(prctl(arg1, (unsigned long)name,
10099 arg3, arg4, arg5));
10100 unlock_user(name, arg2, 0);
10101 break;
10102 }
10103 #endif
10104 default:
10105 /* Most prctl options have no pointer arguments */
10106 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
10107 break;
10108 }
10109 break;
10110 #ifdef TARGET_NR_arch_prctl
10111 case TARGET_NR_arch_prctl:
10112 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
10113 ret = do_arch_prctl(cpu_env, arg1, arg2);
10114 break;
10115 #else
10116 goto unimplemented;
10117 #endif
10118 #endif
10119 #ifdef TARGET_NR_pread64
10120 case TARGET_NR_pread64:
10121 if (regpairs_aligned(cpu_env)) {
10122 arg4 = arg5;
10123 arg5 = arg6;
10124 }
10125 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
10126 goto efault;
10127 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
10128 unlock_user(p, arg2, ret);
10129 break;
10130 case TARGET_NR_pwrite64:
10131 if (regpairs_aligned(cpu_env)) {
10132 arg4 = arg5;
10133 arg5 = arg6;
10134 }
10135 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
10136 goto efault;
10137 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
10138 unlock_user(p, arg2, 0);
10139 break;
10140 #endif
10141 case TARGET_NR_getcwd:
10142 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
10143 goto efault;
10144 ret = get_errno(sys_getcwd1(p, arg2));
10145 unlock_user(p, arg1, ret);
10146 break;
10147 case TARGET_NR_capget:
10148 case TARGET_NR_capset:
10149 {
10150 struct target_user_cap_header *target_header;
10151 struct target_user_cap_data *target_data = NULL;
10152 struct __user_cap_header_struct header;
10153 struct __user_cap_data_struct data[2];
10154 struct __user_cap_data_struct *dataptr = NULL;
10155 int i, target_datalen;
10156 int data_items = 1;
10157
10158 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
10159 goto efault;
10160 }
10161 header.version = tswap32(target_header->version);
10162 header.pid = tswap32(target_header->pid);
10163
10164 if (header.version != _LINUX_CAPABILITY_VERSION) {
10165 /* Version 2 and up takes pointer to two user_data structs */
10166 data_items = 2;
10167 }
10168
10169 target_datalen = sizeof(*target_data) * data_items;
10170
10171 if (arg2) {
10172 if (num == TARGET_NR_capget) {
10173 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
10174 } else {
10175 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
10176 }
10177 if (!target_data) {
10178 unlock_user_struct(target_header, arg1, 0);
10179 goto efault;
10180 }
10181
10182 if (num == TARGET_NR_capset) {
10183 for (i = 0; i < data_items; i++) {
10184 data[i].effective = tswap32(target_data[i].effective);
10185 data[i].permitted = tswap32(target_data[i].permitted);
10186 data[i].inheritable = tswap32(target_data[i].inheritable);
10187 }
10188 }
10189
10190 dataptr = data;
10191 }
10192
10193 if (num == TARGET_NR_capget) {
10194 ret = get_errno(capget(&header, dataptr));
10195 } else {
10196 ret = get_errno(capset(&header, dataptr));
10197 }
10198
10199 /* The kernel always updates version for both capget and capset */
10200 target_header->version = tswap32(header.version);
10201 unlock_user_struct(target_header, arg1, 1);
10202
10203 if (arg2) {
10204 if (num == TARGET_NR_capget) {
10205 for (i = 0; i < data_items; i++) {
10206 target_data[i].effective = tswap32(data[i].effective);
10207 target_data[i].permitted = tswap32(data[i].permitted);
10208 target_data[i].inheritable = tswap32(data[i].inheritable);
10209 }
10210 unlock_user(target_data, arg2, target_datalen);
10211 } else {
10212 unlock_user(target_data, arg2, 0);
10213 }
10214 }
10215 break;
10216 }
10217 case TARGET_NR_sigaltstack:
10218 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env));
10219 break;
10220
10221 #ifdef CONFIG_SENDFILE
10222 case TARGET_NR_sendfile:
10223 {
10224 off_t *offp = NULL;
10225 off_t off;
10226 if (arg3) {
10227 ret = get_user_sal(off, arg3);
10228 if (is_error(ret)) {
10229 break;
10230 }
10231 offp = &off;
10232 }
10233 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10234 if (!is_error(ret) && arg3) {
10235 abi_long ret2 = put_user_sal(off, arg3);
10236 if (is_error(ret2)) {
10237 ret = ret2;
10238 }
10239 }
10240 break;
10241 }
10242 #ifdef TARGET_NR_sendfile64
10243 case TARGET_NR_sendfile64:
10244 {
10245 off_t *offp = NULL;
10246 off_t off;
10247 if (arg3) {
10248 ret = get_user_s64(off, arg3);
10249 if (is_error(ret)) {
10250 break;
10251 }
10252 offp = &off;
10253 }
10254 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
10255 if (!is_error(ret) && arg3) {
10256 abi_long ret2 = put_user_s64(off, arg3);
10257 if (is_error(ret2)) {
10258 ret = ret2;
10259 }
10260 }
10261 break;
10262 }
10263 #endif
10264 #else
10265 case TARGET_NR_sendfile:
10266 #ifdef TARGET_NR_sendfile64
10267 case TARGET_NR_sendfile64:
10268 #endif
10269 goto unimplemented;
10270 #endif
10271
10272 #ifdef TARGET_NR_getpmsg
10273 case TARGET_NR_getpmsg:
10274 goto unimplemented;
10275 #endif
10276 #ifdef TARGET_NR_putpmsg
10277 case TARGET_NR_putpmsg:
10278 goto unimplemented;
10279 #endif
10280 #ifdef TARGET_NR_vfork
10281 case TARGET_NR_vfork:
10282 ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD,
10283 0, 0, 0, 0));
10284 break;
10285 #endif
10286 #ifdef TARGET_NR_ugetrlimit
10287 case TARGET_NR_ugetrlimit:
10288 {
10289 struct rlimit rlim;
10290 int resource = target_to_host_resource(arg1);
10291 ret = get_errno(getrlimit(resource, &rlim));
10292 if (!is_error(ret)) {
10293 struct target_rlimit *target_rlim;
10294 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
10295 goto efault;
10296 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
10297 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
10298 unlock_user_struct(target_rlim, arg2, 1);
10299 }
10300 break;
10301 }
10302 #endif
10303 #ifdef TARGET_NR_truncate64
10304 case TARGET_NR_truncate64:
10305 if (!(p = lock_user_string(arg1)))
10306 goto efault;
10307 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
10308 unlock_user(p, arg1, 0);
10309 break;
10310 #endif
10311 #ifdef TARGET_NR_ftruncate64
10312 case TARGET_NR_ftruncate64:
10313 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
10314 break;
10315 #endif
10316 #ifdef TARGET_NR_stat64
10317 case TARGET_NR_stat64:
10318 if (!(p = lock_user_string(arg1)))
10319 goto efault;
10320 ret = get_errno(stat(path(p), &st));
10321 unlock_user(p, arg1, 0);
10322 if (!is_error(ret))
10323 ret = host_to_target_stat64(cpu_env, arg2, &st);
10324 break;
10325 #endif
10326 #ifdef TARGET_NR_lstat64
10327 case TARGET_NR_lstat64:
10328 if (!(p = lock_user_string(arg1)))
10329 goto efault;
10330 ret = get_errno(lstat(path(p), &st));
10331 unlock_user(p, arg1, 0);
10332 if (!is_error(ret))
10333 ret = host_to_target_stat64(cpu_env, arg2, &st);
10334 break;
10335 #endif
10336 #ifdef TARGET_NR_fstat64
10337 case TARGET_NR_fstat64:
10338 ret = get_errno(fstat(arg1, &st));
10339 if (!is_error(ret))
10340 ret = host_to_target_stat64(cpu_env, arg2, &st);
10341 break;
10342 #endif
10343 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
10344 #ifdef TARGET_NR_fstatat64
10345 case TARGET_NR_fstatat64:
10346 #endif
10347 #ifdef TARGET_NR_newfstatat
10348 case TARGET_NR_newfstatat:
10349 #endif
10350 if (!(p = lock_user_string(arg2)))
10351 goto efault;
10352 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
10353 if (!is_error(ret))
10354 ret = host_to_target_stat64(cpu_env, arg3, &st);
10355 break;
10356 #endif
10357 #ifdef TARGET_NR_lchown
10358 case TARGET_NR_lchown:
10359 if (!(p = lock_user_string(arg1)))
10360 goto efault;
10361 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
10362 unlock_user(p, arg1, 0);
10363 break;
10364 #endif
10365 #ifdef TARGET_NR_getuid
10366 case TARGET_NR_getuid:
10367 ret = get_errno(high2lowuid(getuid()));
10368 break;
10369 #endif
10370 #ifdef TARGET_NR_getgid
10371 case TARGET_NR_getgid:
10372 ret = get_errno(high2lowgid(getgid()));
10373 break;
10374 #endif
10375 #ifdef TARGET_NR_geteuid
10376 case TARGET_NR_geteuid:
10377 ret = get_errno(high2lowuid(geteuid()));
10378 break;
10379 #endif
10380 #ifdef TARGET_NR_getegid
10381 case TARGET_NR_getegid:
10382 ret = get_errno(high2lowgid(getegid()));
10383 break;
10384 #endif
10385 case TARGET_NR_setreuid:
10386 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
10387 break;
10388 case TARGET_NR_setregid:
10389 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
10390 break;
10391 case TARGET_NR_getgroups:
10392 {
10393 int gidsetsize = arg1;
10394 target_id *target_grouplist;
10395 gid_t *grouplist;
10396 int i;
10397
10398 grouplist = alloca(gidsetsize * sizeof(gid_t));
10399 ret = get_errno(getgroups(gidsetsize, grouplist));
10400 if (gidsetsize == 0)
10401 break;
10402 if (!is_error(ret)) {
10403 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
10404 if (!target_grouplist)
10405 goto efault;
10406 for(i = 0;i < ret; i++)
10407 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
10408 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
10409 }
10410 }
10411 break;
10412 case TARGET_NR_setgroups:
10413 {
10414 int gidsetsize = arg1;
10415 target_id *target_grouplist;
10416 gid_t *grouplist = NULL;
10417 int i;
10418 if (gidsetsize) {
10419 grouplist = alloca(gidsetsize * sizeof(gid_t));
10420 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
10421 if (!target_grouplist) {
10422 ret = -TARGET_EFAULT;
10423 goto fail;
10424 }
10425 for (i = 0; i < gidsetsize; i++) {
10426 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
10427 }
10428 unlock_user(target_grouplist, arg2, 0);
10429 }
10430 ret = get_errno(setgroups(gidsetsize, grouplist));
10431 }
10432 break;
10433 case TARGET_NR_fchown:
10434 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
10435 break;
10436 #if defined(TARGET_NR_fchownat)
10437 case TARGET_NR_fchownat:
10438 if (!(p = lock_user_string(arg2)))
10439 goto efault;
10440 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
10441 low2highgid(arg4), arg5));
10442 unlock_user(p, arg2, 0);
10443 break;
10444 #endif
10445 #ifdef TARGET_NR_setresuid
10446 case TARGET_NR_setresuid:
10447 ret = get_errno(sys_setresuid(low2highuid(arg1),
10448 low2highuid(arg2),
10449 low2highuid(arg3)));
10450 break;
10451 #endif
10452 #ifdef TARGET_NR_getresuid
10453 case TARGET_NR_getresuid:
10454 {
10455 uid_t ruid, euid, suid;
10456 ret = get_errno(getresuid(&ruid, &euid, &suid));
10457 if (!is_error(ret)) {
10458 if (put_user_id(high2lowuid(ruid), arg1)
10459 || put_user_id(high2lowuid(euid), arg2)
10460 || put_user_id(high2lowuid(suid), arg3))
10461 goto efault;
10462 }
10463 }
10464 break;
10465 #endif
10466 #ifdef TARGET_NR_getresgid
10467 case TARGET_NR_setresgid:
10468 ret = get_errno(sys_setresgid(low2highgid(arg1),
10469 low2highgid(arg2),
10470 low2highgid(arg3)));
10471 break;
10472 #endif
10473 #ifdef TARGET_NR_getresgid
10474 case TARGET_NR_getresgid:
10475 {
10476 gid_t rgid, egid, sgid;
10477 ret = get_errno(getresgid(&rgid, &egid, &sgid));
10478 if (!is_error(ret)) {
10479 if (put_user_id(high2lowgid(rgid), arg1)
10480 || put_user_id(high2lowgid(egid), arg2)
10481 || put_user_id(high2lowgid(sgid), arg3))
10482 goto efault;
10483 }
10484 }
10485 break;
10486 #endif
10487 #ifdef TARGET_NR_chown
10488 case TARGET_NR_chown:
10489 if (!(p = lock_user_string(arg1)))
10490 goto efault;
10491 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
10492 unlock_user(p, arg1, 0);
10493 break;
10494 #endif
10495 case TARGET_NR_setuid:
10496 ret = get_errno(sys_setuid(low2highuid(arg1)));
10497 break;
10498 case TARGET_NR_setgid:
10499 ret = get_errno(sys_setgid(low2highgid(arg1)));
10500 break;
10501 case TARGET_NR_setfsuid:
10502 ret = get_errno(setfsuid(arg1));
10503 break;
10504 case TARGET_NR_setfsgid:
10505 ret = get_errno(setfsgid(arg1));
10506 break;
10507
10508 #ifdef TARGET_NR_lchown32
10509 case TARGET_NR_lchown32:
10510 if (!(p = lock_user_string(arg1)))
10511 goto efault;
10512 ret = get_errno(lchown(p, arg2, arg3));
10513 unlock_user(p, arg1, 0);
10514 break;
10515 #endif
10516 #ifdef TARGET_NR_getuid32
10517 case TARGET_NR_getuid32:
10518 ret = get_errno(getuid());
10519 break;
10520 #endif
10521
10522 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
10523 /* Alpha specific */
10524 case TARGET_NR_getxuid:
10525 {
10526 uid_t euid;
10527 euid=geteuid();
10528 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
10529 }
10530 ret = get_errno(getuid());
10531 break;
10532 #endif
10533 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
10534 /* Alpha specific */
10535 case TARGET_NR_getxgid:
10536 {
10537 uid_t egid;
10538 egid=getegid();
10539 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
10540 }
10541 ret = get_errno(getgid());
10542 break;
10543 #endif
10544 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
10545 /* Alpha specific */
10546 case TARGET_NR_osf_getsysinfo:
10547 ret = -TARGET_EOPNOTSUPP;
10548 switch (arg1) {
10549 case TARGET_GSI_IEEE_FP_CONTROL:
10550 {
10551 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env);
10552
10553 /* Copied from linux ieee_fpcr_to_swcr. */
10554 swcr = (fpcr >> 35) & SWCR_STATUS_MASK;
10555 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
10556 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
10557 | SWCR_TRAP_ENABLE_DZE
10558 | SWCR_TRAP_ENABLE_OVF);
10559 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF
10560 | SWCR_TRAP_ENABLE_INE);
10561 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
10562 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
10563
10564 if (put_user_u64 (swcr, arg2))
10565 goto efault;
10566 ret = 0;
10567 }
10568 break;
10569
10570 /* case GSI_IEEE_STATE_AT_SIGNAL:
10571 -- Not implemented in linux kernel.
10572 case GSI_UACPROC:
10573 -- Retrieves current unaligned access state; not much used.
10574 case GSI_PROC_TYPE:
10575 -- Retrieves implver information; surely not used.
10576 case GSI_GET_HWRPB:
10577 -- Grabs a copy of the HWRPB; surely not used.
10578 */
10579 }
10580 break;
10581 #endif
10582 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
10583 /* Alpha specific */
10584 case TARGET_NR_osf_setsysinfo:
10585 ret = -TARGET_EOPNOTSUPP;
10586 switch (arg1) {
10587 case TARGET_SSI_IEEE_FP_CONTROL:
10588 {
10589 uint64_t swcr, fpcr, orig_fpcr;
10590
10591 if (get_user_u64 (swcr, arg2)) {
10592 goto efault;
10593 }
10594 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
10595 fpcr = orig_fpcr & FPCR_DYN_MASK;
10596
10597 /* Copied from linux ieee_swcr_to_fpcr. */
10598 fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
10599 fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
10600 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
10601 | SWCR_TRAP_ENABLE_DZE
10602 | SWCR_TRAP_ENABLE_OVF)) << 48;
10603 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
10604 | SWCR_TRAP_ENABLE_INE)) << 57;
10605 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
10606 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
10607
10608 cpu_alpha_store_fpcr(cpu_env, fpcr);
10609 ret = 0;
10610 }
10611 break;
10612
10613 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
10614 {
10615 uint64_t exc, fpcr, orig_fpcr;
10616 int si_code;
10617
10618 if (get_user_u64(exc, arg2)) {
10619 goto efault;
10620 }
10621
10622 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
10623
10624 /* We only add to the exception status here. */
10625 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35);
10626
10627 cpu_alpha_store_fpcr(cpu_env, fpcr);
10628 ret = 0;
10629
10630 /* Old exceptions are not signaled. */
10631 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK);
10632
10633 /* If any exceptions set by this call,
10634 and are unmasked, send a signal. */
10635 si_code = 0;
10636 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) {
10637 si_code = TARGET_FPE_FLTRES;
10638 }
10639 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) {
10640 si_code = TARGET_FPE_FLTUND;
10641 }
10642 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) {
10643 si_code = TARGET_FPE_FLTOVF;
10644 }
10645 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) {
10646 si_code = TARGET_FPE_FLTDIV;
10647 }
10648 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) {
10649 si_code = TARGET_FPE_FLTINV;
10650 }
10651 if (si_code != 0) {
10652 target_siginfo_t info;
10653 info.si_signo = SIGFPE;
10654 info.si_errno = 0;
10655 info.si_code = si_code;
10656 info._sifields._sigfault._addr
10657 = ((CPUArchState *)cpu_env)->pc;
10658 queue_signal((CPUArchState *)cpu_env, info.si_signo,
10659 QEMU_SI_FAULT, &info);
10660 }
10661 }
10662 break;
10663
10664 /* case SSI_NVPAIRS:
10665 -- Used with SSIN_UACPROC to enable unaligned accesses.
10666 case SSI_IEEE_STATE_AT_SIGNAL:
10667 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
10668 -- Not implemented in linux kernel
10669 */
10670 }
10671 break;
10672 #endif
10673 #ifdef TARGET_NR_osf_sigprocmask
10674 /* Alpha specific. */
10675 case TARGET_NR_osf_sigprocmask:
10676 {
10677 abi_ulong mask;
10678 int how;
10679 sigset_t set, oldset;
10680
10681 switch(arg1) {
10682 case TARGET_SIG_BLOCK:
10683 how = SIG_BLOCK;
10684 break;
10685 case TARGET_SIG_UNBLOCK:
10686 how = SIG_UNBLOCK;
10687 break;
10688 case TARGET_SIG_SETMASK:
10689 how = SIG_SETMASK;
10690 break;
10691 default:
10692 ret = -TARGET_EINVAL;
10693 goto fail;
10694 }
10695 mask = arg2;
10696 target_to_host_old_sigset(&set, &mask);
10697 ret = do_sigprocmask(how, &set, &oldset);
10698 if (!ret) {
10699 host_to_target_old_sigset(&mask, &oldset);
10700 ret = mask;
10701 }
10702 }
10703 break;
10704 #endif
10705
10706 #ifdef TARGET_NR_getgid32
10707 case TARGET_NR_getgid32:
10708 ret = get_errno(getgid());
10709 break;
10710 #endif
10711 #ifdef TARGET_NR_geteuid32
10712 case TARGET_NR_geteuid32:
10713 ret = get_errno(geteuid());
10714 break;
10715 #endif
10716 #ifdef TARGET_NR_getegid32
10717 case TARGET_NR_getegid32:
10718 ret = get_errno(getegid());
10719 break;
10720 #endif
10721 #ifdef TARGET_NR_setreuid32
10722 case TARGET_NR_setreuid32:
10723 ret = get_errno(setreuid(arg1, arg2));
10724 break;
10725 #endif
10726 #ifdef TARGET_NR_setregid32
10727 case TARGET_NR_setregid32:
10728 ret = get_errno(setregid(arg1, arg2));
10729 break;
10730 #endif
10731 #ifdef TARGET_NR_getgroups32
10732 case TARGET_NR_getgroups32:
10733 {
10734 int gidsetsize = arg1;
10735 uint32_t *target_grouplist;
10736 gid_t *grouplist;
10737 int i;
10738
10739 grouplist = alloca(gidsetsize * sizeof(gid_t));
10740 ret = get_errno(getgroups(gidsetsize, grouplist));
10741 if (gidsetsize == 0)
10742 break;
10743 if (!is_error(ret)) {
10744 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
10745 if (!target_grouplist) {
10746 ret = -TARGET_EFAULT;
10747 goto fail;
10748 }
10749 for(i = 0;i < ret; i++)
10750 target_grouplist[i] = tswap32(grouplist[i]);
10751 unlock_user(target_grouplist, arg2, gidsetsize * 4);
10752 }
10753 }
10754 break;
10755 #endif
10756 #ifdef TARGET_NR_setgroups32
10757 case TARGET_NR_setgroups32:
10758 {
10759 int gidsetsize = arg1;
10760 uint32_t *target_grouplist;
10761 gid_t *grouplist;
10762 int i;
10763
10764 grouplist = alloca(gidsetsize * sizeof(gid_t));
10765 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
10766 if (!target_grouplist) {
10767 ret = -TARGET_EFAULT;
10768 goto fail;
10769 }
10770 for(i = 0;i < gidsetsize; i++)
10771 grouplist[i] = tswap32(target_grouplist[i]);
10772 unlock_user(target_grouplist, arg2, 0);
10773 ret = get_errno(setgroups(gidsetsize, grouplist));
10774 }
10775 break;
10776 #endif
10777 #ifdef TARGET_NR_fchown32
10778 case TARGET_NR_fchown32:
10779 ret = get_errno(fchown(arg1, arg2, arg3));
10780 break;
10781 #endif
10782 #ifdef TARGET_NR_setresuid32
10783 case TARGET_NR_setresuid32:
10784 ret = get_errno(sys_setresuid(arg1, arg2, arg3));
10785 break;
10786 #endif
10787 #ifdef TARGET_NR_getresuid32
10788 case TARGET_NR_getresuid32:
10789 {
10790 uid_t ruid, euid, suid;
10791 ret = get_errno(getresuid(&ruid, &euid, &suid));
10792 if (!is_error(ret)) {
10793 if (put_user_u32(ruid, arg1)
10794 || put_user_u32(euid, arg2)
10795 || put_user_u32(suid, arg3))
10796 goto efault;
10797 }
10798 }
10799 break;
10800 #endif
10801 #ifdef TARGET_NR_setresgid32
10802 case TARGET_NR_setresgid32:
10803 ret = get_errno(sys_setresgid(arg1, arg2, arg3));
10804 break;
10805 #endif
10806 #ifdef TARGET_NR_getresgid32
10807 case TARGET_NR_getresgid32:
10808 {
10809 gid_t rgid, egid, sgid;
10810 ret = get_errno(getresgid(&rgid, &egid, &sgid));
10811 if (!is_error(ret)) {
10812 if (put_user_u32(rgid, arg1)
10813 || put_user_u32(egid, arg2)
10814 || put_user_u32(sgid, arg3))
10815 goto efault;
10816 }
10817 }
10818 break;
10819 #endif
10820 #ifdef TARGET_NR_chown32
10821 case TARGET_NR_chown32:
10822 if (!(p = lock_user_string(arg1)))
10823 goto efault;
10824 ret = get_errno(chown(p, arg2, arg3));
10825 unlock_user(p, arg1, 0);
10826 break;
10827 #endif
10828 #ifdef TARGET_NR_setuid32
10829 case TARGET_NR_setuid32:
10830 ret = get_errno(sys_setuid(arg1));
10831 break;
10832 #endif
10833 #ifdef TARGET_NR_setgid32
10834 case TARGET_NR_setgid32:
10835 ret = get_errno(sys_setgid(arg1));
10836 break;
10837 #endif
10838 #ifdef TARGET_NR_setfsuid32
10839 case TARGET_NR_setfsuid32:
10840 ret = get_errno(setfsuid(arg1));
10841 break;
10842 #endif
10843 #ifdef TARGET_NR_setfsgid32
10844 case TARGET_NR_setfsgid32:
10845 ret = get_errno(setfsgid(arg1));
10846 break;
10847 #endif
10848
10849 case TARGET_NR_pivot_root:
10850 goto unimplemented;
10851 #ifdef TARGET_NR_mincore
10852 case TARGET_NR_mincore:
10853 {
10854 void *a;
10855 ret = -TARGET_EFAULT;
10856 if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0)))
10857 goto efault;
10858 if (!(p = lock_user_string(arg3)))
10859 goto mincore_fail;
10860 ret = get_errno(mincore(a, arg2, p));
10861 unlock_user(p, arg3, ret);
10862 mincore_fail:
10863 unlock_user(a, arg1, 0);
10864 }
10865 break;
10866 #endif
10867 #ifdef TARGET_NR_arm_fadvise64_64
10868 case TARGET_NR_arm_fadvise64_64:
10869 /* arm_fadvise64_64 looks like fadvise64_64 but
10870 * with different argument order: fd, advice, offset, len
10871 * rather than the usual fd, offset, len, advice.
10872 * Note that offset and len are both 64-bit so appear as
10873 * pairs of 32-bit registers.
10874 */
10875 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
10876 target_offset64(arg5, arg6), arg2);
10877 ret = -host_to_target_errno(ret);
10878 break;
10879 #endif
10880
10881 #if TARGET_ABI_BITS == 32
10882
10883 #ifdef TARGET_NR_fadvise64_64
10884 case TARGET_NR_fadvise64_64:
10885 /* 6 args: fd, offset (high, low), len (high, low), advice */
10886 if (regpairs_aligned(cpu_env)) {
10887 /* offset is in (3,4), len in (5,6) and advice in 7 */
10888 arg2 = arg3;
10889 arg3 = arg4;
10890 arg4 = arg5;
10891 arg5 = arg6;
10892 arg6 = arg7;
10893 }
10894 ret = -host_to_target_errno(posix_fadvise(arg1,
10895 target_offset64(arg2, arg3),
10896 target_offset64(arg4, arg5),
10897 arg6));
10898 break;
10899 #endif
10900
10901 #ifdef TARGET_NR_fadvise64
10902 case TARGET_NR_fadvise64:
10903 /* 5 args: fd, offset (high, low), len, advice */
10904 if (regpairs_aligned(cpu_env)) {
10905 /* offset is in (3,4), len in 5 and advice in 6 */
10906 arg2 = arg3;
10907 arg3 = arg4;
10908 arg4 = arg5;
10909 arg5 = arg6;
10910 }
10911 ret = -host_to_target_errno(posix_fadvise(arg1,
10912 target_offset64(arg2, arg3),
10913 arg4, arg5));
10914 break;
10915 #endif
10916
10917 #else /* not a 32-bit ABI */
10918 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
10919 #ifdef TARGET_NR_fadvise64_64
10920 case TARGET_NR_fadvise64_64:
10921 #endif
10922 #ifdef TARGET_NR_fadvise64
10923 case TARGET_NR_fadvise64:
10924 #endif
10925 #ifdef TARGET_S390X
10926 switch (arg4) {
10927 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
10928 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
10929 case 6: arg4 = POSIX_FADV_DONTNEED; break;
10930 case 7: arg4 = POSIX_FADV_NOREUSE; break;
10931 default: break;
10932 }
10933 #endif
10934 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
10935 break;
10936 #endif
10937 #endif /* end of 64-bit ABI fadvise handling */
10938
10939 #ifdef TARGET_NR_madvise
10940 case TARGET_NR_madvise:
10941 /* A straight passthrough may not be safe because qemu sometimes
10942 turns private file-backed mappings into anonymous mappings.
10943 This will break MADV_DONTNEED.
10944 This is a hint, so ignoring and returning success is ok. */
10945 ret = get_errno(0);
10946 break;
10947 #endif
10948 #if TARGET_ABI_BITS == 32
10949 case TARGET_NR_fcntl64:
10950 {
10951 int cmd;
10952 struct flock64 fl;
10953 from_flock64_fn *copyfrom = copy_from_user_flock64;
10954 to_flock64_fn *copyto = copy_to_user_flock64;
10955
10956 #ifdef TARGET_ARM
10957 if (((CPUARMState *)cpu_env)->eabi) {
10958 copyfrom = copy_from_user_eabi_flock64;
10959 copyto = copy_to_user_eabi_flock64;
10960 }
10961 #endif
10962
10963 cmd = target_to_host_fcntl_cmd(arg2);
10964 if (cmd == -TARGET_EINVAL) {
10965 ret = cmd;
10966 break;
10967 }
10968
10969 switch(arg2) {
10970 case TARGET_F_GETLK64:
10971 ret = copyfrom(&fl, arg3);
10972 if (ret) {
10973 break;
10974 }
10975 ret = get_errno(fcntl(arg1, cmd, &fl));
10976 if (ret == 0) {
10977 ret = copyto(arg3, &fl);
10978 }
10979 break;
10980
10981 case TARGET_F_SETLK64:
10982 case TARGET_F_SETLKW64:
10983 ret = copyfrom(&fl, arg3);
10984 if (ret) {
10985 break;
10986 }
10987 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
10988 break;
10989 default:
10990 ret = do_fcntl(arg1, arg2, arg3);
10991 break;
10992 }
10993 break;
10994 }
10995 #endif
10996 #ifdef TARGET_NR_cacheflush
10997 case TARGET_NR_cacheflush:
10998 /* self-modifying code is handled automatically, so nothing needed */
10999 ret = 0;
11000 break;
11001 #endif
11002 #ifdef TARGET_NR_security
11003 case TARGET_NR_security:
11004 goto unimplemented;
11005 #endif
11006 #ifdef TARGET_NR_getpagesize
11007 case TARGET_NR_getpagesize:
11008 ret = TARGET_PAGE_SIZE;
11009 break;
11010 #endif
11011 case TARGET_NR_gettid:
11012 ret = get_errno(gettid());
11013 break;
11014 #ifdef TARGET_NR_readahead
11015 case TARGET_NR_readahead:
11016 #if TARGET_ABI_BITS == 32
11017 if (regpairs_aligned(cpu_env)) {
11018 arg2 = arg3;
11019 arg3 = arg4;
11020 arg4 = arg5;
11021 }
11022 ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4));
11023 #else
11024 ret = get_errno(readahead(arg1, arg2, arg3));
11025 #endif
11026 break;
11027 #endif
11028 #ifdef CONFIG_ATTR
11029 #ifdef TARGET_NR_setxattr
11030 case TARGET_NR_listxattr:
11031 case TARGET_NR_llistxattr:
11032 {
11033 void *p, *b = 0;
11034 if (arg2) {
11035 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11036 if (!b) {
11037 ret = -TARGET_EFAULT;
11038 break;
11039 }
11040 }
11041 p = lock_user_string(arg1);
11042 if (p) {
11043 if (num == TARGET_NR_listxattr) {
11044 ret = get_errno(listxattr(p, b, arg3));
11045 } else {
11046 ret = get_errno(llistxattr(p, b, arg3));
11047 }
11048 } else {
11049 ret = -TARGET_EFAULT;
11050 }
11051 unlock_user(p, arg1, 0);
11052 unlock_user(b, arg2, arg3);
11053 break;
11054 }
11055 case TARGET_NR_flistxattr:
11056 {
11057 void *b = 0;
11058 if (arg2) {
11059 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
11060 if (!b) {
11061 ret = -TARGET_EFAULT;
11062 break;
11063 }
11064 }
11065 ret = get_errno(flistxattr(arg1, b, arg3));
11066 unlock_user(b, arg2, arg3);
11067 break;
11068 }
11069 case TARGET_NR_setxattr:
11070 case TARGET_NR_lsetxattr:
11071 {
11072 void *p, *n, *v = 0;
11073 if (arg3) {
11074 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11075 if (!v) {
11076 ret = -TARGET_EFAULT;
11077 break;
11078 }
11079 }
11080 p = lock_user_string(arg1);
11081 n = lock_user_string(arg2);
11082 if (p && n) {
11083 if (num == TARGET_NR_setxattr) {
11084 ret = get_errno(setxattr(p, n, v, arg4, arg5));
11085 } else {
11086 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
11087 }
11088 } else {
11089 ret = -TARGET_EFAULT;
11090 }
11091 unlock_user(p, arg1, 0);
11092 unlock_user(n, arg2, 0);
11093 unlock_user(v, arg3, 0);
11094 }
11095 break;
11096 case TARGET_NR_fsetxattr:
11097 {
11098 void *n, *v = 0;
11099 if (arg3) {
11100 v = lock_user(VERIFY_READ, arg3, arg4, 1);
11101 if (!v) {
11102 ret = -TARGET_EFAULT;
11103 break;
11104 }
11105 }
11106 n = lock_user_string(arg2);
11107 if (n) {
11108 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
11109 } else {
11110 ret = -TARGET_EFAULT;
11111 }
11112 unlock_user(n, arg2, 0);
11113 unlock_user(v, arg3, 0);
11114 }
11115 break;
11116 case TARGET_NR_getxattr:
11117 case TARGET_NR_lgetxattr:
11118 {
11119 void *p, *n, *v = 0;
11120 if (arg3) {
11121 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11122 if (!v) {
11123 ret = -TARGET_EFAULT;
11124 break;
11125 }
11126 }
11127 p = lock_user_string(arg1);
11128 n = lock_user_string(arg2);
11129 if (p && n) {
11130 if (num == TARGET_NR_getxattr) {
11131 ret = get_errno(getxattr(p, n, v, arg4));
11132 } else {
11133 ret = get_errno(lgetxattr(p, n, v, arg4));
11134 }
11135 } else {
11136 ret = -TARGET_EFAULT;
11137 }
11138 unlock_user(p, arg1, 0);
11139 unlock_user(n, arg2, 0);
11140 unlock_user(v, arg3, arg4);
11141 }
11142 break;
11143 case TARGET_NR_fgetxattr:
11144 {
11145 void *n, *v = 0;
11146 if (arg3) {
11147 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
11148 if (!v) {
11149 ret = -TARGET_EFAULT;
11150 break;
11151 }
11152 }
11153 n = lock_user_string(arg2);
11154 if (n) {
11155 ret = get_errno(fgetxattr(arg1, n, v, arg4));
11156 } else {
11157 ret = -TARGET_EFAULT;
11158 }
11159 unlock_user(n, arg2, 0);
11160 unlock_user(v, arg3, arg4);
11161 }
11162 break;
11163 case TARGET_NR_removexattr:
11164 case TARGET_NR_lremovexattr:
11165 {
11166 void *p, *n;
11167 p = lock_user_string(arg1);
11168 n = lock_user_string(arg2);
11169 if (p && n) {
11170 if (num == TARGET_NR_removexattr) {
11171 ret = get_errno(removexattr(p, n));
11172 } else {
11173 ret = get_errno(lremovexattr(p, n));
11174 }
11175 } else {
11176 ret = -TARGET_EFAULT;
11177 }
11178 unlock_user(p, arg1, 0);
11179 unlock_user(n, arg2, 0);
11180 }
11181 break;
11182 case TARGET_NR_fremovexattr:
11183 {
11184 void *n;
11185 n = lock_user_string(arg2);
11186 if (n) {
11187 ret = get_errno(fremovexattr(arg1, n));
11188 } else {
11189 ret = -TARGET_EFAULT;
11190 }
11191 unlock_user(n, arg2, 0);
11192 }
11193 break;
11194 #endif
11195 #endif /* CONFIG_ATTR */
11196 #ifdef TARGET_NR_set_thread_area
11197 case TARGET_NR_set_thread_area:
11198 #if defined(TARGET_MIPS)
11199 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
11200 ret = 0;
11201 break;
11202 #elif defined(TARGET_CRIS)
11203 if (arg1 & 0xff)
11204 ret = -TARGET_EINVAL;
11205 else {
11206 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
11207 ret = 0;
11208 }
11209 break;
11210 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
11211 ret = do_set_thread_area(cpu_env, arg1);
11212 break;
11213 #elif defined(TARGET_M68K)
11214 {
11215 TaskState *ts = cpu->opaque;
11216 ts->tp_value = arg1;
11217 ret = 0;
11218 break;
11219 }
11220 #else
11221 goto unimplemented_nowarn;
11222 #endif
11223 #endif
11224 #ifdef TARGET_NR_get_thread_area
11225 case TARGET_NR_get_thread_area:
11226 #if defined(TARGET_I386) && defined(TARGET_ABI32)
11227 ret = do_get_thread_area(cpu_env, arg1);
11228 break;
11229 #elif defined(TARGET_M68K)
11230 {
11231 TaskState *ts = cpu->opaque;
11232 ret = ts->tp_value;
11233 break;
11234 }
11235 #else
11236 goto unimplemented_nowarn;
11237 #endif
11238 #endif
11239 #ifdef TARGET_NR_getdomainname
11240 case TARGET_NR_getdomainname:
11241 goto unimplemented_nowarn;
11242 #endif
11243
11244 #ifdef TARGET_NR_clock_gettime
11245 case TARGET_NR_clock_gettime:
11246 {
11247 struct timespec ts;
11248 ret = get_errno(clock_gettime(arg1, &ts));
11249 if (!is_error(ret)) {
11250 host_to_target_timespec(arg2, &ts);
11251 }
11252 break;
11253 }
11254 #endif
11255 #ifdef TARGET_NR_clock_getres
11256 case TARGET_NR_clock_getres:
11257 {
11258 struct timespec ts;
11259 ret = get_errno(clock_getres(arg1, &ts));
11260 if (!is_error(ret)) {
11261 host_to_target_timespec(arg2, &ts);
11262 }
11263 break;
11264 }
11265 #endif
11266 #ifdef TARGET_NR_clock_nanosleep
11267 case TARGET_NR_clock_nanosleep:
11268 {
11269 struct timespec ts;
11270 target_to_host_timespec(&ts, arg3);
11271 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
11272 &ts, arg4 ? &ts : NULL));
11273 if (arg4)
11274 host_to_target_timespec(arg4, &ts);
11275
11276 #if defined(TARGET_PPC)
11277 /* clock_nanosleep is odd in that it returns positive errno values.
11278 * On PPC, CR0 bit 3 should be set in such a situation. */
11279 if (ret && ret != -TARGET_ERESTARTSYS) {
11280 ((CPUPPCState *)cpu_env)->crf[0] |= 1;
11281 }
11282 #endif
11283 break;
11284 }
11285 #endif
11286
11287 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
11288 case TARGET_NR_set_tid_address:
11289 ret = get_errno(set_tid_address((int *)g2h(arg1)));
11290 break;
11291 #endif
11292
11293 case TARGET_NR_tkill:
11294 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
11295 break;
11296
11297 case TARGET_NR_tgkill:
11298 ret = get_errno(safe_tgkill((int)arg1, (int)arg2,
11299 target_to_host_signal(arg3)));
11300 break;
11301
11302 #ifdef TARGET_NR_set_robust_list
11303 case TARGET_NR_set_robust_list:
11304 case TARGET_NR_get_robust_list:
11305 /* The ABI for supporting robust futexes has userspace pass
11306 * the kernel a pointer to a linked list which is updated by
11307 * userspace after the syscall; the list is walked by the kernel
11308 * when the thread exits. Since the linked list in QEMU guest
11309 * memory isn't a valid linked list for the host and we have
11310 * no way to reliably intercept the thread-death event, we can't
11311 * support these. Silently return ENOSYS so that guest userspace
11312 * falls back to a non-robust futex implementation (which should
11313 * be OK except in the corner case of the guest crashing while
11314 * holding a mutex that is shared with another process via
11315 * shared memory).
11316 */
11317 goto unimplemented_nowarn;
11318 #endif
11319
11320 #if defined(TARGET_NR_utimensat)
11321 case TARGET_NR_utimensat:
11322 {
11323 struct timespec *tsp, ts[2];
11324 if (!arg3) {
11325 tsp = NULL;
11326 } else {
11327 target_to_host_timespec(ts, arg3);
11328 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
11329 tsp = ts;
11330 }
11331 if (!arg2)
11332 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
11333 else {
11334 if (!(p = lock_user_string(arg2))) {
11335 ret = -TARGET_EFAULT;
11336 goto fail;
11337 }
11338 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
11339 unlock_user(p, arg2, 0);
11340 }
11341 }
11342 break;
11343 #endif
11344 case TARGET_NR_futex:
11345 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
11346 break;
11347 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
11348 case TARGET_NR_inotify_init:
11349 ret = get_errno(sys_inotify_init());
11350 break;
11351 #endif
11352 #ifdef CONFIG_INOTIFY1
11353 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
11354 case TARGET_NR_inotify_init1:
11355 ret = get_errno(sys_inotify_init1(arg1));
11356 break;
11357 #endif
11358 #endif
11359 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
11360 case TARGET_NR_inotify_add_watch:
11361 p = lock_user_string(arg2);
11362 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
11363 unlock_user(p, arg2, 0);
11364 break;
11365 #endif
11366 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
11367 case TARGET_NR_inotify_rm_watch:
11368 ret = get_errno(sys_inotify_rm_watch(arg1, arg2));
11369 break;
11370 #endif
11371
11372 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
11373 case TARGET_NR_mq_open:
11374 {
11375 struct mq_attr posix_mq_attr, *attrp;
11376
11377 p = lock_user_string(arg1 - 1);
11378 if (arg4 != 0) {
11379 copy_from_user_mq_attr (&posix_mq_attr, arg4);
11380 attrp = &posix_mq_attr;
11381 } else {
11382 attrp = 0;
11383 }
11384 ret = get_errno(mq_open(p, arg2, arg3, attrp));
11385 unlock_user (p, arg1, 0);
11386 }
11387 break;
11388
11389 case TARGET_NR_mq_unlink:
11390 p = lock_user_string(arg1 - 1);
11391 if (!p) {
11392 ret = -TARGET_EFAULT;
11393 break;
11394 }
11395 ret = get_errno(mq_unlink(p));
11396 unlock_user (p, arg1, 0);
11397 break;
11398
11399 case TARGET_NR_mq_timedsend:
11400 {
11401 struct timespec ts;
11402
11403 p = lock_user (VERIFY_READ, arg2, arg3, 1);
11404 if (arg5 != 0) {
11405 target_to_host_timespec(&ts, arg5);
11406 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
11407 host_to_target_timespec(arg5, &ts);
11408 } else {
11409 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
11410 }
11411 unlock_user (p, arg2, arg3);
11412 }
11413 break;
11414
11415 case TARGET_NR_mq_timedreceive:
11416 {
11417 struct timespec ts;
11418 unsigned int prio;
11419
11420 p = lock_user (VERIFY_READ, arg2, arg3, 1);
11421 if (arg5 != 0) {
11422 target_to_host_timespec(&ts, arg5);
11423 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
11424 &prio, &ts));
11425 host_to_target_timespec(arg5, &ts);
11426 } else {
11427 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
11428 &prio, NULL));
11429 }
11430 unlock_user (p, arg2, arg3);
11431 if (arg4 != 0)
11432 put_user_u32(prio, arg4);
11433 }
11434 break;
11435
11436 /* Not implemented for now... */
11437 /* case TARGET_NR_mq_notify: */
11438 /* break; */
11439
11440 case TARGET_NR_mq_getsetattr:
11441 {
11442 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
11443 ret = 0;
11444 if (arg3 != 0) {
11445 ret = mq_getattr(arg1, &posix_mq_attr_out);
11446 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
11447 }
11448 if (arg2 != 0) {
11449 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
11450 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out);
11451 }
11452
11453 }
11454 break;
11455 #endif
11456
11457 #ifdef CONFIG_SPLICE
11458 #ifdef TARGET_NR_tee
11459 case TARGET_NR_tee:
11460 {
11461 ret = get_errno(tee(arg1,arg2,arg3,arg4));
11462 }
11463 break;
11464 #endif
11465 #ifdef TARGET_NR_splice
11466 case TARGET_NR_splice:
11467 {
11468 loff_t loff_in, loff_out;
11469 loff_t *ploff_in = NULL, *ploff_out = NULL;
11470 if (arg2) {
11471 if (get_user_u64(loff_in, arg2)) {
11472 goto efault;
11473 }
11474 ploff_in = &loff_in;
11475 }
11476 if (arg4) {
11477 if (get_user_u64(loff_out, arg4)) {
11478 goto efault;
11479 }
11480 ploff_out = &loff_out;
11481 }
11482 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
11483 if (arg2) {
11484 if (put_user_u64(loff_in, arg2)) {
11485 goto efault;
11486 }
11487 }
11488 if (arg4) {
11489 if (put_user_u64(loff_out, arg4)) {
11490 goto efault;
11491 }
11492 }
11493 }
11494 break;
11495 #endif
11496 #ifdef TARGET_NR_vmsplice
11497 case TARGET_NR_vmsplice:
11498 {
11499 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
11500 if (vec != NULL) {
11501 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
11502 unlock_iovec(vec, arg2, arg3, 0);
11503 } else {
11504 ret = -host_to_target_errno(errno);
11505 }
11506 }
11507 break;
11508 #endif
11509 #endif /* CONFIG_SPLICE */
11510 #ifdef CONFIG_EVENTFD
11511 #if defined(TARGET_NR_eventfd)
11512 case TARGET_NR_eventfd:
11513 ret = get_errno(eventfd(arg1, 0));
11514 fd_trans_unregister(ret);
11515 break;
11516 #endif
11517 #if defined(TARGET_NR_eventfd2)
11518 case TARGET_NR_eventfd2:
11519 {
11520 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
11521 if (arg2 & TARGET_O_NONBLOCK) {
11522 host_flags |= O_NONBLOCK;
11523 }
11524 if (arg2 & TARGET_O_CLOEXEC) {
11525 host_flags |= O_CLOEXEC;
11526 }
11527 ret = get_errno(eventfd(arg1, host_flags));
11528 fd_trans_unregister(ret);
11529 break;
11530 }
11531 #endif
11532 #endif /* CONFIG_EVENTFD */
11533 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
11534 case TARGET_NR_fallocate:
11535 #if TARGET_ABI_BITS == 32
11536 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
11537 target_offset64(arg5, arg6)));
11538 #else
11539 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
11540 #endif
11541 break;
11542 #endif
11543 #if defined(CONFIG_SYNC_FILE_RANGE)
11544 #if defined(TARGET_NR_sync_file_range)
11545 case TARGET_NR_sync_file_range:
11546 #if TARGET_ABI_BITS == 32
11547 #if defined(TARGET_MIPS)
11548 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
11549 target_offset64(arg5, arg6), arg7));
11550 #else
11551 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
11552 target_offset64(arg4, arg5), arg6));
11553 #endif /* !TARGET_MIPS */
11554 #else
11555 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
11556 #endif
11557 break;
11558 #endif
11559 #if defined(TARGET_NR_sync_file_range2)
11560 case TARGET_NR_sync_file_range2:
11561 /* This is like sync_file_range but the arguments are reordered */
11562 #if TARGET_ABI_BITS == 32
11563 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
11564 target_offset64(arg5, arg6), arg2));
11565 #else
11566 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
11567 #endif
11568 break;
11569 #endif
11570 #endif
11571 #if defined(TARGET_NR_signalfd4)
11572 case TARGET_NR_signalfd4:
11573 ret = do_signalfd4(arg1, arg2, arg4);
11574 break;
11575 #endif
11576 #if defined(TARGET_NR_signalfd)
11577 case TARGET_NR_signalfd:
11578 ret = do_signalfd4(arg1, arg2, 0);
11579 break;
11580 #endif
11581 #if defined(CONFIG_EPOLL)
11582 #if defined(TARGET_NR_epoll_create)
11583 case TARGET_NR_epoll_create:
11584 ret = get_errno(epoll_create(arg1));
11585 break;
11586 #endif
11587 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
11588 case TARGET_NR_epoll_create1:
11589 ret = get_errno(epoll_create1(arg1));
11590 break;
11591 #endif
11592 #if defined(TARGET_NR_epoll_ctl)
11593 case TARGET_NR_epoll_ctl:
11594 {
11595 struct epoll_event ep;
11596 struct epoll_event *epp = 0;
11597 if (arg4) {
11598 struct target_epoll_event *target_ep;
11599 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
11600 goto efault;
11601 }
11602 ep.events = tswap32(target_ep->events);
11603 /* The epoll_data_t union is just opaque data to the kernel,
11604 * so we transfer all 64 bits across and need not worry what
11605 * actual data type it is.
11606 */
11607 ep.data.u64 = tswap64(target_ep->data.u64);
11608 unlock_user_struct(target_ep, arg4, 0);
11609 epp = &ep;
11610 }
11611 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp));
11612 break;
11613 }
11614 #endif
11615
11616 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
11617 #if defined(TARGET_NR_epoll_wait)
11618 case TARGET_NR_epoll_wait:
11619 #endif
11620 #if defined(TARGET_NR_epoll_pwait)
11621 case TARGET_NR_epoll_pwait:
11622 #endif
11623 {
11624 struct target_epoll_event *target_ep;
11625 struct epoll_event *ep;
11626 int epfd = arg1;
11627 int maxevents = arg3;
11628 int timeout = arg4;
11629
11630 if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
11631 ret = -TARGET_EINVAL;
11632 break;
11633 }
11634
11635 target_ep = lock_user(VERIFY_WRITE, arg2,
11636 maxevents * sizeof(struct target_epoll_event), 1);
11637 if (!target_ep) {
11638 goto efault;
11639 }
11640
11641 ep = alloca(maxevents * sizeof(struct epoll_event));
11642
11643 switch (num) {
11644 #if defined(TARGET_NR_epoll_pwait)
11645 case TARGET_NR_epoll_pwait:
11646 {
11647 target_sigset_t *target_set;
11648 sigset_t _set, *set = &_set;
11649
11650 if (arg5) {
11651 if (arg6 != sizeof(target_sigset_t)) {
11652 ret = -TARGET_EINVAL;
11653 break;
11654 }
11655
11656 target_set = lock_user(VERIFY_READ, arg5,
11657 sizeof(target_sigset_t), 1);
11658 if (!target_set) {
11659 unlock_user(target_ep, arg2, 0);
11660 goto efault;
11661 }
11662 target_to_host_sigset(set, target_set);
11663 unlock_user(target_set, arg5, 0);
11664 } else {
11665 set = NULL;
11666 }
11667
11668 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
11669 set, SIGSET_T_SIZE));
11670 break;
11671 }
11672 #endif
11673 #if defined(TARGET_NR_epoll_wait)
11674 case TARGET_NR_epoll_wait:
11675 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
11676 NULL, 0));
11677 break;
11678 #endif
11679 default:
11680 ret = -TARGET_ENOSYS;
11681 }
11682 if (!is_error(ret)) {
11683 int i;
11684 for (i = 0; i < ret; i++) {
11685 target_ep[i].events = tswap32(ep[i].events);
11686 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
11687 }
11688 }
11689 unlock_user(target_ep, arg2, ret * sizeof(struct target_epoll_event));
11690 break;
11691 }
11692 #endif
11693 #endif
11694 #ifdef TARGET_NR_prlimit64
11695 case TARGET_NR_prlimit64:
11696 {
11697 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
11698 struct target_rlimit64 *target_rnew, *target_rold;
11699 struct host_rlimit64 rnew, rold, *rnewp = 0;
11700 int resource = target_to_host_resource(arg2);
11701 if (arg3) {
11702 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
11703 goto efault;
11704 }
11705 rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
11706 rnew.rlim_max = tswap64(target_rnew->rlim_max);
11707 unlock_user_struct(target_rnew, arg3, 0);
11708 rnewp = &rnew;
11709 }
11710
11711 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
11712 if (!is_error(ret) && arg4) {
11713 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
11714 goto efault;
11715 }
11716 target_rold->rlim_cur = tswap64(rold.rlim_cur);
11717 target_rold->rlim_max = tswap64(rold.rlim_max);
11718 unlock_user_struct(target_rold, arg4, 1);
11719 }
11720 break;
11721 }
11722 #endif
11723 #ifdef TARGET_NR_gethostname
11724 case TARGET_NR_gethostname:
11725 {
11726 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
11727 if (name) {
11728 ret = get_errno(gethostname(name, arg2));
11729 unlock_user(name, arg1, arg2);
11730 } else {
11731 ret = -TARGET_EFAULT;
11732 }
11733 break;
11734 }
11735 #endif
11736 #ifdef TARGET_NR_atomic_cmpxchg_32
11737 case TARGET_NR_atomic_cmpxchg_32:
11738 {
11739 /* should use start_exclusive from main.c */
11740 abi_ulong mem_value;
11741 if (get_user_u32(mem_value, arg6)) {
11742 target_siginfo_t info;
11743 info.si_signo = SIGSEGV;
11744 info.si_errno = 0;
11745 info.si_code = TARGET_SEGV_MAPERR;
11746 info._sifields._sigfault._addr = arg6;
11747 queue_signal((CPUArchState *)cpu_env, info.si_signo,
11748 QEMU_SI_FAULT, &info);
11749 ret = 0xdeadbeef;
11750
11751 }
11752 if (mem_value == arg2)
11753 put_user_u32(arg1, arg6);
11754 ret = mem_value;
11755 break;
11756 }
11757 #endif
11758 #ifdef TARGET_NR_atomic_barrier
11759 case TARGET_NR_atomic_barrier:
11760 {
11761 /* Like the kernel implementation and the qemu arm barrier, no-op this? */
11762 ret = 0;
11763 break;
11764 }
11765 #endif
11766
11767 #ifdef TARGET_NR_timer_create
11768 case TARGET_NR_timer_create:
11769 {
11770 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
11771
11772 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
11773
11774 int clkid = arg1;
11775 int timer_index = next_free_host_timer();
11776
11777 if (timer_index < 0) {
11778 ret = -TARGET_EAGAIN;
11779 } else {
11780 timer_t *phtimer = g_posix_timers + timer_index;
11781
11782 if (arg2) {
11783 phost_sevp = &host_sevp;
11784 ret = target_to_host_sigevent(phost_sevp, arg2);
11785 if (ret != 0) {
11786 break;
11787 }
11788 }
11789
11790 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
11791 if (ret) {
11792 phtimer = NULL;
11793 } else {
11794 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
11795 goto efault;
11796 }
11797 }
11798 }
11799 break;
11800 }
11801 #endif
11802
11803 #ifdef TARGET_NR_timer_settime
11804 case TARGET_NR_timer_settime:
11805 {
11806 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
11807 * struct itimerspec * old_value */
11808 target_timer_t timerid = get_timer_id(arg1);
11809
11810 if (timerid < 0) {
11811 ret = timerid;
11812 } else if (arg3 == 0) {
11813 ret = -TARGET_EINVAL;
11814 } else {
11815 timer_t htimer = g_posix_timers[timerid];
11816 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
11817
11818 target_to_host_itimerspec(&hspec_new, arg3);
11819 ret = get_errno(
11820 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
11821 host_to_target_itimerspec(arg2, &hspec_old);
11822 }
11823 break;
11824 }
11825 #endif
11826
11827 #ifdef TARGET_NR_timer_gettime
11828 case TARGET_NR_timer_gettime:
11829 {
11830 /* args: timer_t timerid, struct itimerspec *curr_value */
11831 target_timer_t timerid = get_timer_id(arg1);
11832
11833 if (timerid < 0) {
11834 ret = timerid;
11835 } else if (!arg2) {
11836 ret = -TARGET_EFAULT;
11837 } else {
11838 timer_t htimer = g_posix_timers[timerid];
11839 struct itimerspec hspec;
11840 ret = get_errno(timer_gettime(htimer, &hspec));
11841
11842 if (host_to_target_itimerspec(arg2, &hspec)) {
11843 ret = -TARGET_EFAULT;
11844 }
11845 }
11846 break;
11847 }
11848 #endif
11849
11850 #ifdef TARGET_NR_timer_getoverrun
11851 case TARGET_NR_timer_getoverrun:
11852 {
11853 /* args: timer_t timerid */
11854 target_timer_t timerid = get_timer_id(arg1);
11855
11856 if (timerid < 0) {
11857 ret = timerid;
11858 } else {
11859 timer_t htimer = g_posix_timers[timerid];
11860 ret = get_errno(timer_getoverrun(htimer));
11861 }
11862 fd_trans_unregister(ret);
11863 break;
11864 }
11865 #endif
11866
11867 #ifdef TARGET_NR_timer_delete
11868 case TARGET_NR_timer_delete:
11869 {
11870 /* args: timer_t timerid */
11871 target_timer_t timerid = get_timer_id(arg1);
11872
11873 if (timerid < 0) {
11874 ret = timerid;
11875 } else {
11876 timer_t htimer = g_posix_timers[timerid];
11877 ret = get_errno(timer_delete(htimer));
11878 g_posix_timers[timerid] = 0;
11879 }
11880 break;
11881 }
11882 #endif
11883
11884 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
11885 case TARGET_NR_timerfd_create:
11886 ret = get_errno(timerfd_create(arg1,
11887 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
11888 break;
11889 #endif
11890
11891 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
11892 case TARGET_NR_timerfd_gettime:
11893 {
11894 struct itimerspec its_curr;
11895
11896 ret = get_errno(timerfd_gettime(arg1, &its_curr));
11897
11898 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
11899 goto efault;
11900 }
11901 }
11902 break;
11903 #endif
11904
11905 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
11906 case TARGET_NR_timerfd_settime:
11907 {
11908 struct itimerspec its_new, its_old, *p_new;
11909
11910 if (arg3) {
11911 if (target_to_host_itimerspec(&its_new, arg3)) {
11912 goto efault;
11913 }
11914 p_new = &its_new;
11915 } else {
11916 p_new = NULL;
11917 }
11918
11919 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
11920
11921 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
11922 goto efault;
11923 }
11924 }
11925 break;
11926 #endif
11927
11928 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
11929 case TARGET_NR_ioprio_get:
11930 ret = get_errno(ioprio_get(arg1, arg2));
11931 break;
11932 #endif
11933
11934 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
11935 case TARGET_NR_ioprio_set:
11936 ret = get_errno(ioprio_set(arg1, arg2, arg3));
11937 break;
11938 #endif
11939
11940 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
11941 case TARGET_NR_setns:
11942 ret = get_errno(setns(arg1, arg2));
11943 break;
11944 #endif
11945 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
11946 case TARGET_NR_unshare:
11947 ret = get_errno(unshare(arg1));
11948 break;
11949 #endif
11950
11951 default:
11952 unimplemented:
11953 gemu_log("qemu: Unsupported syscall: %d\n", num);
11954 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
11955 unimplemented_nowarn:
11956 #endif
11957 ret = -TARGET_ENOSYS;
11958 break;
11959 }
11960 fail:
11961 #ifdef DEBUG
11962 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret);
11963 #endif
11964 if(do_strace)
11965 print_syscall_ret(num, ret);
11966 trace_guest_user_syscall_ret(cpu, num, ret);
11967 return ret;
11968 efault:
11969 ret = -TARGET_EFAULT;
11970 goto fail;
11971 }