]> git.proxmox.com Git - mirror_qemu.git/blob - linux-user/vm86.c
Linux user memory access API change (initial patch by Thayne Harbaugh)
[mirror_qemu.git] / linux-user / vm86.c
1 /*
2 * vm86 linux syscall support
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <stdlib.h>
21 #include <stdio.h>
22 #include <stdarg.h>
23 #include <string.h>
24 #include <errno.h>
25 #include <unistd.h>
26
27 #include "qemu.h"
28
29 //#define DEBUG_VM86
30
31 #define set_flags(X,new,mask) \
32 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
33
34 #define SAFE_MASK (0xDD5)
35 #define RETURN_MASK (0xDFF)
36
37 static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
38 {
39 return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
40 }
41
42 static inline void vm_putw(uint8_t *segptr, unsigned int reg16, unsigned int val)
43 {
44 stw(segptr + (reg16 & 0xffff), val);
45 }
46
47 static inline void vm_putl(uint8_t *segptr, unsigned int reg16, unsigned int val)
48 {
49 stl(segptr + (reg16 & 0xffff), val);
50 }
51
52 static inline unsigned int vm_getw(uint8_t *segptr, unsigned int reg16)
53 {
54 return lduw(segptr + (reg16 & 0xffff));
55 }
56
57 static inline unsigned int vm_getl(uint8_t *segptr, unsigned int reg16)
58 {
59 return ldl(segptr + (reg16 & 0xffff));
60 }
61
62 void save_v86_state(CPUX86State *env)
63 {
64 TaskState *ts = env->opaque;
65 struct target_vm86plus_struct * target_v86;
66
67 if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
68 /* FIXME - should return an error */
69 return;
70 /* put the VM86 registers in the userspace register structure */
71 target_v86->regs.eax = tswap32(env->regs[R_EAX]);
72 target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
73 target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
74 target_v86->regs.edx = tswap32(env->regs[R_EDX]);
75 target_v86->regs.esi = tswap32(env->regs[R_ESI]);
76 target_v86->regs.edi = tswap32(env->regs[R_EDI]);
77 target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
78 target_v86->regs.esp = tswap32(env->regs[R_ESP]);
79 target_v86->regs.eip = tswap32(env->eip);
80 target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
81 target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
82 target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
83 target_v86->regs.es = tswap16(env->segs[R_ES].selector);
84 target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
85 target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
86 set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
87 target_v86->regs.eflags = tswap32(env->eflags);
88 unlock_user_struct(target_v86, ts->target_v86, 1);
89 #ifdef DEBUG_VM86
90 fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
91 env->eflags, env->segs[R_CS].selector, env->eip);
92 #endif
93
94 /* restore 32 bit registers */
95 env->regs[R_EAX] = ts->vm86_saved_regs.eax;
96 env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
97 env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
98 env->regs[R_EDX] = ts->vm86_saved_regs.edx;
99 env->regs[R_ESI] = ts->vm86_saved_regs.esi;
100 env->regs[R_EDI] = ts->vm86_saved_regs.edi;
101 env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
102 env->regs[R_ESP] = ts->vm86_saved_regs.esp;
103 env->eflags = ts->vm86_saved_regs.eflags;
104 env->eip = ts->vm86_saved_regs.eip;
105
106 cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
107 cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
108 cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
109 cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
110 cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
111 cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
112 }
113
114 /* return from vm86 mode to 32 bit. The vm86() syscall will return
115 'retval' */
116 static inline void return_to_32bit(CPUX86State *env, int retval)
117 {
118 #ifdef DEBUG_VM86
119 fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval);
120 #endif
121 save_v86_state(env);
122 env->regs[R_EAX] = retval;
123 }
124
125 static inline int set_IF(CPUX86State *env)
126 {
127 TaskState *ts = env->opaque;
128
129 ts->v86flags |= VIF_MASK;
130 if (ts->v86flags & VIP_MASK) {
131 return_to_32bit(env, TARGET_VM86_STI);
132 return 1;
133 }
134 return 0;
135 }
136
137 static inline void clear_IF(CPUX86State *env)
138 {
139 TaskState *ts = env->opaque;
140
141 ts->v86flags &= ~VIF_MASK;
142 }
143
144 static inline void clear_TF(CPUX86State *env)
145 {
146 env->eflags &= ~TF_MASK;
147 }
148
149 static inline void clear_AC(CPUX86State *env)
150 {
151 env->eflags &= ~AC_MASK;
152 }
153
154 static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
155 {
156 TaskState *ts = env->opaque;
157
158 set_flags(ts->v86flags, eflags, ts->v86mask);
159 set_flags(env->eflags, eflags, SAFE_MASK);
160 if (eflags & IF_MASK)
161 return set_IF(env);
162 else
163 clear_IF(env);
164 return 0;
165 }
166
167 static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
168 {
169 TaskState *ts = env->opaque;
170
171 set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
172 set_flags(env->eflags, flags, SAFE_MASK);
173 if (flags & IF_MASK)
174 return set_IF(env);
175 else
176 clear_IF(env);
177 return 0;
178 }
179
180 static inline unsigned int get_vflags(CPUX86State *env)
181 {
182 TaskState *ts = env->opaque;
183 unsigned int flags;
184
185 flags = env->eflags & RETURN_MASK;
186 if (ts->v86flags & VIF_MASK)
187 flags |= IF_MASK;
188 flags |= IOPL_MASK;
189 return flags | (ts->v86flags & ts->v86mask);
190 }
191
192 #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
193
194 /* handle VM86 interrupt (NOTE: the CPU core currently does not
195 support TSS interrupt revectoring, so this code is always executed) */
196 static void do_int(CPUX86State *env, int intno)
197 {
198 TaskState *ts = env->opaque;
199 uint32_t *int_ptr, segoffs;
200 uint8_t *ssp;
201 unsigned int sp;
202
203 if (env->segs[R_CS].selector == TARGET_BIOSSEG)
204 goto cannot_handle;
205 if (is_revectored(intno, &ts->vm86plus.int_revectored))
206 goto cannot_handle;
207 if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
208 &ts->vm86plus.int21_revectored))
209 goto cannot_handle;
210 int_ptr = (uint32_t *)(intno << 2);
211 segoffs = tswap32(*int_ptr);
212 if ((segoffs >> 16) == TARGET_BIOSSEG)
213 goto cannot_handle;
214 #if defined(DEBUG_VM86)
215 fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
216 intno, segoffs >> 16, segoffs & 0xffff);
217 #endif
218 /* save old state */
219 ssp = (uint8_t *)(env->segs[R_SS].selector << 4);
220 sp = env->regs[R_ESP] & 0xffff;
221 vm_putw(ssp, sp - 2, get_vflags(env));
222 vm_putw(ssp, sp - 4, env->segs[R_CS].selector);
223 vm_putw(ssp, sp - 6, env->eip);
224 ADD16(env->regs[R_ESP], -6);
225 /* goto interrupt handler */
226 env->eip = segoffs & 0xffff;
227 cpu_x86_load_seg(env, R_CS, segoffs >> 16);
228 clear_TF(env);
229 clear_IF(env);
230 clear_AC(env);
231 return;
232 cannot_handle:
233 #if defined(DEBUG_VM86)
234 fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno);
235 #endif
236 return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
237 }
238
239 void handle_vm86_trap(CPUX86State *env, int trapno)
240 {
241 if (trapno == 1 || trapno == 3) {
242 return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
243 } else {
244 do_int(env, trapno);
245 }
246 }
247
248 #define CHECK_IF_IN_TRAP() \
249 if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
250 (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
251 newflags |= TF_MASK
252
253 #define VM86_FAULT_RETURN \
254 if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
255 (ts->v86flags & (IF_MASK | VIF_MASK))) \
256 return_to_32bit(env, TARGET_VM86_PICRETURN); \
257 return
258
259 void handle_vm86_fault(CPUX86State *env)
260 {
261 TaskState *ts = env->opaque;
262 uint8_t *csp, *pc, *ssp;
263 unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
264 int data32, pref_done;
265
266 csp = (uint8_t *)(env->segs[R_CS].selector << 4);
267 ip = env->eip & 0xffff;
268 pc = csp + ip;
269
270 ssp = (uint8_t *)(env->segs[R_SS].selector << 4);
271 sp = env->regs[R_ESP] & 0xffff;
272
273 #if defined(DEBUG_VM86)
274 fprintf(logfile, "VM86 exception %04x:%08x %02x %02x\n",
275 env->segs[R_CS].selector, env->eip, pc[0], pc[1]);
276 #endif
277
278 data32 = 0;
279 pref_done = 0;
280 do {
281 opcode = csp[ip];
282 ADD16(ip, 1);
283 switch (opcode) {
284 case 0x66: /* 32-bit data */ data32=1; break;
285 case 0x67: /* 32-bit address */ break;
286 case 0x2e: /* CS */ break;
287 case 0x3e: /* DS */ break;
288 case 0x26: /* ES */ break;
289 case 0x36: /* SS */ break;
290 case 0x65: /* GS */ break;
291 case 0x64: /* FS */ break;
292 case 0xf2: /* repnz */ break;
293 case 0xf3: /* rep */ break;
294 default: pref_done = 1;
295 }
296 } while (!pref_done);
297
298 /* VM86 mode */
299 switch(opcode) {
300 case 0x9c: /* pushf */
301 if (data32) {
302 vm_putl(ssp, sp - 4, get_vflags(env));
303 ADD16(env->regs[R_ESP], -4);
304 } else {
305 vm_putw(ssp, sp - 2, get_vflags(env));
306 ADD16(env->regs[R_ESP], -2);
307 }
308 env->eip = ip;
309 VM86_FAULT_RETURN;
310
311 case 0x9d: /* popf */
312 if (data32) {
313 newflags = vm_getl(ssp, sp);
314 ADD16(env->regs[R_ESP], 4);
315 } else {
316 newflags = vm_getw(ssp, sp);
317 ADD16(env->regs[R_ESP], 2);
318 }
319 env->eip = ip;
320 CHECK_IF_IN_TRAP();
321 if (data32) {
322 if (set_vflags_long(newflags, env))
323 return;
324 } else {
325 if (set_vflags_short(newflags, env))
326 return;
327 }
328 VM86_FAULT_RETURN;
329
330 case 0xcd: /* int */
331 intno = csp[ip];
332 ADD16(ip, 1);
333 env->eip = ip;
334 if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
335 if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
336 (intno &7)) & 1) {
337 return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
338 return;
339 }
340 }
341 do_int(env, intno);
342 break;
343
344 case 0xcf: /* iret */
345 if (data32) {
346 newip = vm_getl(ssp, sp) & 0xffff;
347 newcs = vm_getl(ssp, sp + 4) & 0xffff;
348 newflags = vm_getl(ssp, sp + 8);
349 ADD16(env->regs[R_ESP], 12);
350 } else {
351 newip = vm_getw(ssp, sp);
352 newcs = vm_getw(ssp, sp + 2);
353 newflags = vm_getw(ssp, sp + 4);
354 ADD16(env->regs[R_ESP], 6);
355 }
356 env->eip = newip;
357 cpu_x86_load_seg(env, R_CS, newcs);
358 CHECK_IF_IN_TRAP();
359 if (data32) {
360 if (set_vflags_long(newflags, env))
361 return;
362 } else {
363 if (set_vflags_short(newflags, env))
364 return;
365 }
366 VM86_FAULT_RETURN;
367
368 case 0xfa: /* cli */
369 env->eip = ip;
370 clear_IF(env);
371 VM86_FAULT_RETURN;
372
373 case 0xfb: /* sti */
374 env->eip = ip;
375 if (set_IF(env))
376 return;
377 VM86_FAULT_RETURN;
378
379 default:
380 /* real VM86 GPF exception */
381 return_to_32bit(env, TARGET_VM86_UNKNOWN);
382 break;
383 }
384 }
385
386 int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
387 {
388 TaskState *ts = env->opaque;
389 struct target_vm86plus_struct * target_v86;
390 int ret;
391
392 switch (subfunction) {
393 case TARGET_VM86_REQUEST_IRQ:
394 case TARGET_VM86_FREE_IRQ:
395 case TARGET_VM86_GET_IRQ_BITS:
396 case TARGET_VM86_GET_AND_RESET_IRQ:
397 gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
398 ret = -EINVAL;
399 goto out;
400 case TARGET_VM86_PLUS_INSTALL_CHECK:
401 /* NOTE: on old vm86 stuff this will return the error
402 from verify_area(), because the subfunction is
403 interpreted as (invalid) address to vm86_struct.
404 So the installation check works.
405 */
406 ret = 0;
407 goto out;
408 }
409
410 /* save current CPU regs */
411 ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
412 ts->vm86_saved_regs.ebx = env->regs[R_EBX];
413 ts->vm86_saved_regs.ecx = env->regs[R_ECX];
414 ts->vm86_saved_regs.edx = env->regs[R_EDX];
415 ts->vm86_saved_regs.esi = env->regs[R_ESI];
416 ts->vm86_saved_regs.edi = env->regs[R_EDI];
417 ts->vm86_saved_regs.ebp = env->regs[R_EBP];
418 ts->vm86_saved_regs.esp = env->regs[R_ESP];
419 ts->vm86_saved_regs.eflags = env->eflags;
420 ts->vm86_saved_regs.eip = env->eip;
421 ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
422 ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
423 ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
424 ts->vm86_saved_regs.es = env->segs[R_ES].selector;
425 ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
426 ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
427
428 ts->target_v86 = vm86_addr;
429 if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
430 return -EFAULT;
431 /* build vm86 CPU state */
432 ts->v86flags = tswap32(target_v86->regs.eflags);
433 env->eflags = (env->eflags & ~SAFE_MASK) |
434 (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
435
436 ts->vm86plus.cpu_type = tswapl(target_v86->cpu_type);
437 switch (ts->vm86plus.cpu_type) {
438 case TARGET_CPU_286:
439 ts->v86mask = 0;
440 break;
441 case TARGET_CPU_386:
442 ts->v86mask = NT_MASK | IOPL_MASK;
443 break;
444 case TARGET_CPU_486:
445 ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
446 break;
447 default:
448 ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
449 break;
450 }
451
452 env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
453 env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
454 env->regs[R_EDX] = tswap32(target_v86->regs.edx);
455 env->regs[R_ESI] = tswap32(target_v86->regs.esi);
456 env->regs[R_EDI] = tswap32(target_v86->regs.edi);
457 env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
458 env->regs[R_ESP] = tswap32(target_v86->regs.esp);
459 env->eip = tswap32(target_v86->regs.eip);
460 cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
461 cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
462 cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
463 cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
464 cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
465 cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
466 ret = tswap32(target_v86->regs.eax); /* eax will be restored at
467 the end of the syscall */
468 memcpy(&ts->vm86plus.int_revectored,
469 &target_v86->int_revectored, 32);
470 memcpy(&ts->vm86plus.int21_revectored,
471 &target_v86->int21_revectored, 32);
472 ts->vm86plus.vm86plus.flags = tswapl(target_v86->vm86plus.flags);
473 memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
474 target_v86->vm86plus.vm86dbg_intxxtab, 32);
475 unlock_user_struct(target_v86, vm86_addr, 0);
476
477 #ifdef DEBUG_VM86
478 fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n",
479 env->segs[R_CS].selector, env->eip);
480 #endif
481 /* now the virtual CPU is ready for vm86 execution ! */
482 out:
483 return ret;
484 }
485