]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
block/parallels: create bat_entry_off helper
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
37 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
38
39 static QTAILQ_HEAD(, AddressSpace) address_spaces
40 = QTAILQ_HEAD_INITIALIZER(address_spaces);
41
42 typedef struct AddrRange AddrRange;
43
44 /*
45 * Note that signed integers are needed for negative offsetting in aliases
46 * (large MemoryRegion::alias_offset).
47 */
48 struct AddrRange {
49 Int128 start;
50 Int128 size;
51 };
52
53 static AddrRange addrrange_make(Int128 start, Int128 size)
54 {
55 return (AddrRange) { start, size };
56 }
57
58 static bool addrrange_equal(AddrRange r1, AddrRange r2)
59 {
60 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
61 }
62
63 static Int128 addrrange_end(AddrRange r)
64 {
65 return int128_add(r.start, r.size);
66 }
67
68 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
69 {
70 int128_addto(&range.start, delta);
71 return range;
72 }
73
74 static bool addrrange_contains(AddrRange range, Int128 addr)
75 {
76 return int128_ge(addr, range.start)
77 && int128_lt(addr, addrrange_end(range));
78 }
79
80 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
81 {
82 return addrrange_contains(r1, r2.start)
83 || addrrange_contains(r2, r1.start);
84 }
85
86 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
87 {
88 Int128 start = int128_max(r1.start, r2.start);
89 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
90 return addrrange_make(start, int128_sub(end, start));
91 }
92
93 enum ListenerDirection { Forward, Reverse };
94
95 static bool memory_listener_match(MemoryListener *listener,
96 MemoryRegionSection *section)
97 {
98 return !listener->address_space_filter
99 || listener->address_space_filter == section->address_space;
100 }
101
102 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
103 do { \
104 MemoryListener *_listener; \
105 \
106 switch (_direction) { \
107 case Forward: \
108 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
109 if (_listener->_callback) { \
110 _listener->_callback(_listener, ##_args); \
111 } \
112 } \
113 break; \
114 case Reverse: \
115 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
116 memory_listeners, link) { \
117 if (_listener->_callback) { \
118 _listener->_callback(_listener, ##_args); \
119 } \
120 } \
121 break; \
122 default: \
123 abort(); \
124 } \
125 } while (0)
126
127 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
128 do { \
129 MemoryListener *_listener; \
130 \
131 switch (_direction) { \
132 case Forward: \
133 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
134 if (_listener->_callback \
135 && memory_listener_match(_listener, _section)) { \
136 _listener->_callback(_listener, _section, ##_args); \
137 } \
138 } \
139 break; \
140 case Reverse: \
141 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
142 memory_listeners, link) { \
143 if (_listener->_callback \
144 && memory_listener_match(_listener, _section)) { \
145 _listener->_callback(_listener, _section, ##_args); \
146 } \
147 } \
148 break; \
149 default: \
150 abort(); \
151 } \
152 } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
156 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
157 .mr = (fr)->mr, \
158 .address_space = (as), \
159 .offset_within_region = (fr)->offset_in_region, \
160 .size = (fr)->addr.size, \
161 .offset_within_address_space = int128_get64((fr)->addr.start), \
162 .readonly = (fr)->readonly, \
163 }))
164
165 struct CoalescedMemoryRange {
166 AddrRange addr;
167 QTAILQ_ENTRY(CoalescedMemoryRange) link;
168 };
169
170 struct MemoryRegionIoeventfd {
171 AddrRange addr;
172 bool match_data;
173 uint64_t data;
174 EventNotifier *e;
175 };
176
177 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
178 MemoryRegionIoeventfd b)
179 {
180 if (int128_lt(a.addr.start, b.addr.start)) {
181 return true;
182 } else if (int128_gt(a.addr.start, b.addr.start)) {
183 return false;
184 } else if (int128_lt(a.addr.size, b.addr.size)) {
185 return true;
186 } else if (int128_gt(a.addr.size, b.addr.size)) {
187 return false;
188 } else if (a.match_data < b.match_data) {
189 return true;
190 } else if (a.match_data > b.match_data) {
191 return false;
192 } else if (a.match_data) {
193 if (a.data < b.data) {
194 return true;
195 } else if (a.data > b.data) {
196 return false;
197 }
198 }
199 if (a.e < b.e) {
200 return true;
201 } else if (a.e > b.e) {
202 return false;
203 }
204 return false;
205 }
206
207 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
208 MemoryRegionIoeventfd b)
209 {
210 return !memory_region_ioeventfd_before(a, b)
211 && !memory_region_ioeventfd_before(b, a);
212 }
213
214 typedef struct FlatRange FlatRange;
215 typedef struct FlatView FlatView;
216
217 /* Range of memory in the global map. Addresses are absolute. */
218 struct FlatRange {
219 MemoryRegion *mr;
220 hwaddr offset_in_region;
221 AddrRange addr;
222 uint8_t dirty_log_mask;
223 bool romd_mode;
224 bool readonly;
225 };
226
227 /* Flattened global view of current active memory hierarchy. Kept in sorted
228 * order.
229 */
230 struct FlatView {
231 struct rcu_head rcu;
232 unsigned ref;
233 FlatRange *ranges;
234 unsigned nr;
235 unsigned nr_allocated;
236 };
237
238 typedef struct AddressSpaceOps AddressSpaceOps;
239
240 #define FOR_EACH_FLAT_RANGE(var, view) \
241 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
242
243 static bool flatrange_equal(FlatRange *a, FlatRange *b)
244 {
245 return a->mr == b->mr
246 && addrrange_equal(a->addr, b->addr)
247 && a->offset_in_region == b->offset_in_region
248 && a->romd_mode == b->romd_mode
249 && a->readonly == b->readonly;
250 }
251
252 static void flatview_init(FlatView *view)
253 {
254 view->ref = 1;
255 view->ranges = NULL;
256 view->nr = 0;
257 view->nr_allocated = 0;
258 }
259
260 /* Insert a range into a given position. Caller is responsible for maintaining
261 * sorting order.
262 */
263 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
264 {
265 if (view->nr == view->nr_allocated) {
266 view->nr_allocated = MAX(2 * view->nr, 10);
267 view->ranges = g_realloc(view->ranges,
268 view->nr_allocated * sizeof(*view->ranges));
269 }
270 memmove(view->ranges + pos + 1, view->ranges + pos,
271 (view->nr - pos) * sizeof(FlatRange));
272 view->ranges[pos] = *range;
273 memory_region_ref(range->mr);
274 ++view->nr;
275 }
276
277 static void flatview_destroy(FlatView *view)
278 {
279 int i;
280
281 for (i = 0; i < view->nr; i++) {
282 memory_region_unref(view->ranges[i].mr);
283 }
284 g_free(view->ranges);
285 g_free(view);
286 }
287
288 static void flatview_ref(FlatView *view)
289 {
290 atomic_inc(&view->ref);
291 }
292
293 static void flatview_unref(FlatView *view)
294 {
295 if (atomic_fetch_dec(&view->ref) == 1) {
296 flatview_destroy(view);
297 }
298 }
299
300 static bool can_merge(FlatRange *r1, FlatRange *r2)
301 {
302 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
303 && r1->mr == r2->mr
304 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
305 r1->addr.size),
306 int128_make64(r2->offset_in_region))
307 && r1->dirty_log_mask == r2->dirty_log_mask
308 && r1->romd_mode == r2->romd_mode
309 && r1->readonly == r2->readonly;
310 }
311
312 /* Attempt to simplify a view by merging adjacent ranges */
313 static void flatview_simplify(FlatView *view)
314 {
315 unsigned i, j;
316
317 i = 0;
318 while (i < view->nr) {
319 j = i + 1;
320 while (j < view->nr
321 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
322 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
323 ++j;
324 }
325 ++i;
326 memmove(&view->ranges[i], &view->ranges[j],
327 (view->nr - j) * sizeof(view->ranges[j]));
328 view->nr -= j - i;
329 }
330 }
331
332 static bool memory_region_big_endian(MemoryRegion *mr)
333 {
334 #ifdef TARGET_WORDS_BIGENDIAN
335 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
336 #else
337 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
338 #endif
339 }
340
341 static bool memory_region_wrong_endianness(MemoryRegion *mr)
342 {
343 #ifdef TARGET_WORDS_BIGENDIAN
344 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
345 #else
346 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
347 #endif
348 }
349
350 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
351 {
352 if (memory_region_wrong_endianness(mr)) {
353 switch (size) {
354 case 1:
355 break;
356 case 2:
357 *data = bswap16(*data);
358 break;
359 case 4:
360 *data = bswap32(*data);
361 break;
362 case 8:
363 *data = bswap64(*data);
364 break;
365 default:
366 abort();
367 }
368 }
369 }
370
371 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
372 hwaddr addr,
373 uint64_t *value,
374 unsigned size,
375 unsigned shift,
376 uint64_t mask,
377 MemTxAttrs attrs)
378 {
379 uint64_t tmp;
380
381 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
382 trace_memory_region_ops_read(mr, addr, tmp, size);
383 *value |= (tmp & mask) << shift;
384 return MEMTX_OK;
385 }
386
387 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
388 hwaddr addr,
389 uint64_t *value,
390 unsigned size,
391 unsigned shift,
392 uint64_t mask,
393 MemTxAttrs attrs)
394 {
395 uint64_t tmp;
396
397 if (mr->flush_coalesced_mmio) {
398 qemu_flush_coalesced_mmio_buffer();
399 }
400 tmp = mr->ops->read(mr->opaque, addr, size);
401 trace_memory_region_ops_read(mr, addr, tmp, size);
402 *value |= (tmp & mask) << shift;
403 return MEMTX_OK;
404 }
405
406 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
407 hwaddr addr,
408 uint64_t *value,
409 unsigned size,
410 unsigned shift,
411 uint64_t mask,
412 MemTxAttrs attrs)
413 {
414 uint64_t tmp = 0;
415 MemTxResult r;
416
417 if (mr->flush_coalesced_mmio) {
418 qemu_flush_coalesced_mmio_buffer();
419 }
420 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
421 trace_memory_region_ops_read(mr, addr, tmp, size);
422 *value |= (tmp & mask) << shift;
423 return r;
424 }
425
426 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
427 hwaddr addr,
428 uint64_t *value,
429 unsigned size,
430 unsigned shift,
431 uint64_t mask,
432 MemTxAttrs attrs)
433 {
434 uint64_t tmp;
435
436 tmp = (*value >> shift) & mask;
437 trace_memory_region_ops_write(mr, addr, tmp, size);
438 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
439 return MEMTX_OK;
440 }
441
442 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
443 hwaddr addr,
444 uint64_t *value,
445 unsigned size,
446 unsigned shift,
447 uint64_t mask,
448 MemTxAttrs attrs)
449 {
450 uint64_t tmp;
451
452 if (mr->flush_coalesced_mmio) {
453 qemu_flush_coalesced_mmio_buffer();
454 }
455 tmp = (*value >> shift) & mask;
456 trace_memory_region_ops_write(mr, addr, tmp, size);
457 mr->ops->write(mr->opaque, addr, tmp, size);
458 return MEMTX_OK;
459 }
460
461 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
462 hwaddr addr,
463 uint64_t *value,
464 unsigned size,
465 unsigned shift,
466 uint64_t mask,
467 MemTxAttrs attrs)
468 {
469 uint64_t tmp;
470
471 if (mr->flush_coalesced_mmio) {
472 qemu_flush_coalesced_mmio_buffer();
473 }
474 tmp = (*value >> shift) & mask;
475 trace_memory_region_ops_write(mr, addr, tmp, size);
476 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
477 }
478
479 static MemTxResult access_with_adjusted_size(hwaddr addr,
480 uint64_t *value,
481 unsigned size,
482 unsigned access_size_min,
483 unsigned access_size_max,
484 MemTxResult (*access)(MemoryRegion *mr,
485 hwaddr addr,
486 uint64_t *value,
487 unsigned size,
488 unsigned shift,
489 uint64_t mask,
490 MemTxAttrs attrs),
491 MemoryRegion *mr,
492 MemTxAttrs attrs)
493 {
494 uint64_t access_mask;
495 unsigned access_size;
496 unsigned i;
497 MemTxResult r = MEMTX_OK;
498
499 if (!access_size_min) {
500 access_size_min = 1;
501 }
502 if (!access_size_max) {
503 access_size_max = 4;
504 }
505
506 /* FIXME: support unaligned access? */
507 access_size = MAX(MIN(size, access_size_max), access_size_min);
508 access_mask = -1ULL >> (64 - access_size * 8);
509 if (memory_region_big_endian(mr)) {
510 for (i = 0; i < size; i += access_size) {
511 r |= access(mr, addr + i, value, access_size,
512 (size - access_size - i) * 8, access_mask, attrs);
513 }
514 } else {
515 for (i = 0; i < size; i += access_size) {
516 r |= access(mr, addr + i, value, access_size, i * 8,
517 access_mask, attrs);
518 }
519 }
520 return r;
521 }
522
523 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
524 {
525 AddressSpace *as;
526
527 while (mr->container) {
528 mr = mr->container;
529 }
530 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
531 if (mr == as->root) {
532 return as;
533 }
534 }
535 return NULL;
536 }
537
538 /* Render a memory region into the global view. Ranges in @view obscure
539 * ranges in @mr.
540 */
541 static void render_memory_region(FlatView *view,
542 MemoryRegion *mr,
543 Int128 base,
544 AddrRange clip,
545 bool readonly)
546 {
547 MemoryRegion *subregion;
548 unsigned i;
549 hwaddr offset_in_region;
550 Int128 remain;
551 Int128 now;
552 FlatRange fr;
553 AddrRange tmp;
554
555 if (!mr->enabled) {
556 return;
557 }
558
559 int128_addto(&base, int128_make64(mr->addr));
560 readonly |= mr->readonly;
561
562 tmp = addrrange_make(base, mr->size);
563
564 if (!addrrange_intersects(tmp, clip)) {
565 return;
566 }
567
568 clip = addrrange_intersection(tmp, clip);
569
570 if (mr->alias) {
571 int128_subfrom(&base, int128_make64(mr->alias->addr));
572 int128_subfrom(&base, int128_make64(mr->alias_offset));
573 render_memory_region(view, mr->alias, base, clip, readonly);
574 return;
575 }
576
577 /* Render subregions in priority order. */
578 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
579 render_memory_region(view, subregion, base, clip, readonly);
580 }
581
582 if (!mr->terminates) {
583 return;
584 }
585
586 offset_in_region = int128_get64(int128_sub(clip.start, base));
587 base = clip.start;
588 remain = clip.size;
589
590 fr.mr = mr;
591 fr.dirty_log_mask = mr->dirty_log_mask;
592 fr.romd_mode = mr->romd_mode;
593 fr.readonly = readonly;
594
595 /* Render the region itself into any gaps left by the current view. */
596 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
597 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
598 continue;
599 }
600 if (int128_lt(base, view->ranges[i].addr.start)) {
601 now = int128_min(remain,
602 int128_sub(view->ranges[i].addr.start, base));
603 fr.offset_in_region = offset_in_region;
604 fr.addr = addrrange_make(base, now);
605 flatview_insert(view, i, &fr);
606 ++i;
607 int128_addto(&base, now);
608 offset_in_region += int128_get64(now);
609 int128_subfrom(&remain, now);
610 }
611 now = int128_sub(int128_min(int128_add(base, remain),
612 addrrange_end(view->ranges[i].addr)),
613 base);
614 int128_addto(&base, now);
615 offset_in_region += int128_get64(now);
616 int128_subfrom(&remain, now);
617 }
618 if (int128_nz(remain)) {
619 fr.offset_in_region = offset_in_region;
620 fr.addr = addrrange_make(base, remain);
621 flatview_insert(view, i, &fr);
622 }
623 }
624
625 /* Render a memory topology into a list of disjoint absolute ranges. */
626 static FlatView *generate_memory_topology(MemoryRegion *mr)
627 {
628 FlatView *view;
629
630 view = g_new(FlatView, 1);
631 flatview_init(view);
632
633 if (mr) {
634 render_memory_region(view, mr, int128_zero(),
635 addrrange_make(int128_zero(), int128_2_64()), false);
636 }
637 flatview_simplify(view);
638
639 return view;
640 }
641
642 static void address_space_add_del_ioeventfds(AddressSpace *as,
643 MemoryRegionIoeventfd *fds_new,
644 unsigned fds_new_nb,
645 MemoryRegionIoeventfd *fds_old,
646 unsigned fds_old_nb)
647 {
648 unsigned iold, inew;
649 MemoryRegionIoeventfd *fd;
650 MemoryRegionSection section;
651
652 /* Generate a symmetric difference of the old and new fd sets, adding
653 * and deleting as necessary.
654 */
655
656 iold = inew = 0;
657 while (iold < fds_old_nb || inew < fds_new_nb) {
658 if (iold < fds_old_nb
659 && (inew == fds_new_nb
660 || memory_region_ioeventfd_before(fds_old[iold],
661 fds_new[inew]))) {
662 fd = &fds_old[iold];
663 section = (MemoryRegionSection) {
664 .address_space = as,
665 .offset_within_address_space = int128_get64(fd->addr.start),
666 .size = fd->addr.size,
667 };
668 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
669 fd->match_data, fd->data, fd->e);
670 ++iold;
671 } else if (inew < fds_new_nb
672 && (iold == fds_old_nb
673 || memory_region_ioeventfd_before(fds_new[inew],
674 fds_old[iold]))) {
675 fd = &fds_new[inew];
676 section = (MemoryRegionSection) {
677 .address_space = as,
678 .offset_within_address_space = int128_get64(fd->addr.start),
679 .size = fd->addr.size,
680 };
681 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
682 fd->match_data, fd->data, fd->e);
683 ++inew;
684 } else {
685 ++iold;
686 ++inew;
687 }
688 }
689 }
690
691 static FlatView *address_space_get_flatview(AddressSpace *as)
692 {
693 FlatView *view;
694
695 rcu_read_lock();
696 view = atomic_rcu_read(&as->current_map);
697 flatview_ref(view);
698 rcu_read_unlock();
699 return view;
700 }
701
702 static void address_space_update_ioeventfds(AddressSpace *as)
703 {
704 FlatView *view;
705 FlatRange *fr;
706 unsigned ioeventfd_nb = 0;
707 MemoryRegionIoeventfd *ioeventfds = NULL;
708 AddrRange tmp;
709 unsigned i;
710
711 view = address_space_get_flatview(as);
712 FOR_EACH_FLAT_RANGE(fr, view) {
713 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
714 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
715 int128_sub(fr->addr.start,
716 int128_make64(fr->offset_in_region)));
717 if (addrrange_intersects(fr->addr, tmp)) {
718 ++ioeventfd_nb;
719 ioeventfds = g_realloc(ioeventfds,
720 ioeventfd_nb * sizeof(*ioeventfds));
721 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
722 ioeventfds[ioeventfd_nb-1].addr = tmp;
723 }
724 }
725 }
726
727 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
728 as->ioeventfds, as->ioeventfd_nb);
729
730 g_free(as->ioeventfds);
731 as->ioeventfds = ioeventfds;
732 as->ioeventfd_nb = ioeventfd_nb;
733 flatview_unref(view);
734 }
735
736 static void address_space_update_topology_pass(AddressSpace *as,
737 const FlatView *old_view,
738 const FlatView *new_view,
739 bool adding)
740 {
741 unsigned iold, inew;
742 FlatRange *frold, *frnew;
743
744 /* Generate a symmetric difference of the old and new memory maps.
745 * Kill ranges in the old map, and instantiate ranges in the new map.
746 */
747 iold = inew = 0;
748 while (iold < old_view->nr || inew < new_view->nr) {
749 if (iold < old_view->nr) {
750 frold = &old_view->ranges[iold];
751 } else {
752 frold = NULL;
753 }
754 if (inew < new_view->nr) {
755 frnew = &new_view->ranges[inew];
756 } else {
757 frnew = NULL;
758 }
759
760 if (frold
761 && (!frnew
762 || int128_lt(frold->addr.start, frnew->addr.start)
763 || (int128_eq(frold->addr.start, frnew->addr.start)
764 && !flatrange_equal(frold, frnew)))) {
765 /* In old but not in new, or in both but attributes changed. */
766
767 if (!adding) {
768 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
769 }
770
771 ++iold;
772 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
773 /* In both and unchanged (except logging may have changed) */
774
775 if (adding) {
776 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
777 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
778 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
779 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
780 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
781 }
782 }
783
784 ++iold;
785 ++inew;
786 } else {
787 /* In new */
788
789 if (adding) {
790 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
791 }
792
793 ++inew;
794 }
795 }
796 }
797
798
799 static void address_space_update_topology(AddressSpace *as)
800 {
801 FlatView *old_view = address_space_get_flatview(as);
802 FlatView *new_view = generate_memory_topology(as->root);
803
804 address_space_update_topology_pass(as, old_view, new_view, false);
805 address_space_update_topology_pass(as, old_view, new_view, true);
806
807 /* Writes are protected by the BQL. */
808 atomic_rcu_set(&as->current_map, new_view);
809 call_rcu(old_view, flatview_unref, rcu);
810
811 /* Note that all the old MemoryRegions are still alive up to this
812 * point. This relieves most MemoryListeners from the need to
813 * ref/unref the MemoryRegions they get---unless they use them
814 * outside the iothread mutex, in which case precise reference
815 * counting is necessary.
816 */
817 flatview_unref(old_view);
818
819 address_space_update_ioeventfds(as);
820 }
821
822 void memory_region_transaction_begin(void)
823 {
824 qemu_flush_coalesced_mmio_buffer();
825 ++memory_region_transaction_depth;
826 }
827
828 static void memory_region_clear_pending(void)
829 {
830 memory_region_update_pending = false;
831 ioeventfd_update_pending = false;
832 }
833
834 void memory_region_transaction_commit(void)
835 {
836 AddressSpace *as;
837
838 assert(memory_region_transaction_depth);
839 --memory_region_transaction_depth;
840 if (!memory_region_transaction_depth) {
841 if (memory_region_update_pending) {
842 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
843
844 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
845 address_space_update_topology(as);
846 }
847
848 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
849 } else if (ioeventfd_update_pending) {
850 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
851 address_space_update_ioeventfds(as);
852 }
853 }
854 memory_region_clear_pending();
855 }
856 }
857
858 static void memory_region_destructor_none(MemoryRegion *mr)
859 {
860 }
861
862 static void memory_region_destructor_ram(MemoryRegion *mr)
863 {
864 qemu_ram_free(mr->ram_addr);
865 }
866
867 static void memory_region_destructor_alias(MemoryRegion *mr)
868 {
869 memory_region_unref(mr->alias);
870 }
871
872 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
873 {
874 qemu_ram_free_from_ptr(mr->ram_addr);
875 }
876
877 static void memory_region_destructor_rom_device(MemoryRegion *mr)
878 {
879 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
880 }
881
882 static bool memory_region_need_escape(char c)
883 {
884 return c == '/' || c == '[' || c == '\\' || c == ']';
885 }
886
887 static char *memory_region_escape_name(const char *name)
888 {
889 const char *p;
890 char *escaped, *q;
891 uint8_t c;
892 size_t bytes = 0;
893
894 for (p = name; *p; p++) {
895 bytes += memory_region_need_escape(*p) ? 4 : 1;
896 }
897 if (bytes == p - name) {
898 return g_memdup(name, bytes + 1);
899 }
900
901 escaped = g_malloc(bytes + 1);
902 for (p = name, q = escaped; *p; p++) {
903 c = *p;
904 if (unlikely(memory_region_need_escape(c))) {
905 *q++ = '\\';
906 *q++ = 'x';
907 *q++ = "0123456789abcdef"[c >> 4];
908 c = "0123456789abcdef"[c & 15];
909 }
910 *q++ = c;
911 }
912 *q = 0;
913 return escaped;
914 }
915
916 void memory_region_init(MemoryRegion *mr,
917 Object *owner,
918 const char *name,
919 uint64_t size)
920 {
921 if (!owner) {
922 owner = container_get(qdev_get_machine(), "/unattached");
923 }
924
925 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
926 mr->size = int128_make64(size);
927 if (size == UINT64_MAX) {
928 mr->size = int128_2_64();
929 }
930 mr->name = g_strdup(name);
931
932 if (name) {
933 char *escaped_name = memory_region_escape_name(name);
934 char *name_array = g_strdup_printf("%s[*]", escaped_name);
935 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
936 object_unref(OBJECT(mr));
937 g_free(name_array);
938 g_free(escaped_name);
939 }
940 }
941
942 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
943 const char *name, Error **errp)
944 {
945 MemoryRegion *mr = MEMORY_REGION(obj);
946 uint64_t value = mr->addr;
947
948 visit_type_uint64(v, &value, name, errp);
949 }
950
951 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
952 const char *name, Error **errp)
953 {
954 MemoryRegion *mr = MEMORY_REGION(obj);
955 gchar *path = (gchar *)"";
956
957 if (mr->container) {
958 path = object_get_canonical_path(OBJECT(mr->container));
959 }
960 visit_type_str(v, &path, name, errp);
961 if (mr->container) {
962 g_free(path);
963 }
964 }
965
966 static Object *memory_region_resolve_container(Object *obj, void *opaque,
967 const char *part)
968 {
969 MemoryRegion *mr = MEMORY_REGION(obj);
970
971 return OBJECT(mr->container);
972 }
973
974 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
975 const char *name, Error **errp)
976 {
977 MemoryRegion *mr = MEMORY_REGION(obj);
978 int32_t value = mr->priority;
979
980 visit_type_int32(v, &value, name, errp);
981 }
982
983 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
984 {
985 MemoryRegion *mr = MEMORY_REGION(obj);
986
987 return mr->may_overlap;
988 }
989
990 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
991 const char *name, Error **errp)
992 {
993 MemoryRegion *mr = MEMORY_REGION(obj);
994 uint64_t value = memory_region_size(mr);
995
996 visit_type_uint64(v, &value, name, errp);
997 }
998
999 static void memory_region_initfn(Object *obj)
1000 {
1001 MemoryRegion *mr = MEMORY_REGION(obj);
1002 ObjectProperty *op;
1003
1004 mr->ops = &unassigned_mem_ops;
1005 mr->enabled = true;
1006 mr->romd_mode = true;
1007 mr->destructor = memory_region_destructor_none;
1008 QTAILQ_INIT(&mr->subregions);
1009 QTAILQ_INIT(&mr->coalesced);
1010
1011 op = object_property_add(OBJECT(mr), "container",
1012 "link<" TYPE_MEMORY_REGION ">",
1013 memory_region_get_container,
1014 NULL, /* memory_region_set_container */
1015 NULL, NULL, &error_abort);
1016 op->resolve = memory_region_resolve_container;
1017
1018 object_property_add(OBJECT(mr), "addr", "uint64",
1019 memory_region_get_addr,
1020 NULL, /* memory_region_set_addr */
1021 NULL, NULL, &error_abort);
1022 object_property_add(OBJECT(mr), "priority", "uint32",
1023 memory_region_get_priority,
1024 NULL, /* memory_region_set_priority */
1025 NULL, NULL, &error_abort);
1026 object_property_add_bool(OBJECT(mr), "may-overlap",
1027 memory_region_get_may_overlap,
1028 NULL, /* memory_region_set_may_overlap */
1029 &error_abort);
1030 object_property_add(OBJECT(mr), "size", "uint64",
1031 memory_region_get_size,
1032 NULL, /* memory_region_set_size, */
1033 NULL, NULL, &error_abort);
1034 }
1035
1036 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1037 unsigned size)
1038 {
1039 #ifdef DEBUG_UNASSIGNED
1040 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1041 #endif
1042 if (current_cpu != NULL) {
1043 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1044 }
1045 return 0;
1046 }
1047
1048 static void unassigned_mem_write(void *opaque, hwaddr addr,
1049 uint64_t val, unsigned size)
1050 {
1051 #ifdef DEBUG_UNASSIGNED
1052 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1053 #endif
1054 if (current_cpu != NULL) {
1055 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1056 }
1057 }
1058
1059 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1060 unsigned size, bool is_write)
1061 {
1062 return false;
1063 }
1064
1065 const MemoryRegionOps unassigned_mem_ops = {
1066 .valid.accepts = unassigned_mem_accepts,
1067 .endianness = DEVICE_NATIVE_ENDIAN,
1068 };
1069
1070 bool memory_region_access_valid(MemoryRegion *mr,
1071 hwaddr addr,
1072 unsigned size,
1073 bool is_write)
1074 {
1075 int access_size_min, access_size_max;
1076 int access_size, i;
1077
1078 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1079 return false;
1080 }
1081
1082 if (!mr->ops->valid.accepts) {
1083 return true;
1084 }
1085
1086 access_size_min = mr->ops->valid.min_access_size;
1087 if (!mr->ops->valid.min_access_size) {
1088 access_size_min = 1;
1089 }
1090
1091 access_size_max = mr->ops->valid.max_access_size;
1092 if (!mr->ops->valid.max_access_size) {
1093 access_size_max = 4;
1094 }
1095
1096 access_size = MAX(MIN(size, access_size_max), access_size_min);
1097 for (i = 0; i < size; i += access_size) {
1098 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1099 is_write)) {
1100 return false;
1101 }
1102 }
1103
1104 return true;
1105 }
1106
1107 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1108 hwaddr addr,
1109 uint64_t *pval,
1110 unsigned size,
1111 MemTxAttrs attrs)
1112 {
1113 *pval = 0;
1114
1115 if (mr->ops->read) {
1116 return access_with_adjusted_size(addr, pval, size,
1117 mr->ops->impl.min_access_size,
1118 mr->ops->impl.max_access_size,
1119 memory_region_read_accessor,
1120 mr, attrs);
1121 } else if (mr->ops->read_with_attrs) {
1122 return access_with_adjusted_size(addr, pval, size,
1123 mr->ops->impl.min_access_size,
1124 mr->ops->impl.max_access_size,
1125 memory_region_read_with_attrs_accessor,
1126 mr, attrs);
1127 } else {
1128 return access_with_adjusted_size(addr, pval, size, 1, 4,
1129 memory_region_oldmmio_read_accessor,
1130 mr, attrs);
1131 }
1132 }
1133
1134 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1135 hwaddr addr,
1136 uint64_t *pval,
1137 unsigned size,
1138 MemTxAttrs attrs)
1139 {
1140 MemTxResult r;
1141
1142 if (!memory_region_access_valid(mr, addr, size, false)) {
1143 *pval = unassigned_mem_read(mr, addr, size);
1144 return MEMTX_DECODE_ERROR;
1145 }
1146
1147 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1148 adjust_endianness(mr, pval, size);
1149 return r;
1150 }
1151
1152 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1153 hwaddr addr,
1154 uint64_t data,
1155 unsigned size,
1156 MemTxAttrs attrs)
1157 {
1158 if (!memory_region_access_valid(mr, addr, size, true)) {
1159 unassigned_mem_write(mr, addr, data, size);
1160 return MEMTX_DECODE_ERROR;
1161 }
1162
1163 adjust_endianness(mr, &data, size);
1164
1165 if (mr->ops->write) {
1166 return access_with_adjusted_size(addr, &data, size,
1167 mr->ops->impl.min_access_size,
1168 mr->ops->impl.max_access_size,
1169 memory_region_write_accessor, mr,
1170 attrs);
1171 } else if (mr->ops->write_with_attrs) {
1172 return
1173 access_with_adjusted_size(addr, &data, size,
1174 mr->ops->impl.min_access_size,
1175 mr->ops->impl.max_access_size,
1176 memory_region_write_with_attrs_accessor,
1177 mr, attrs);
1178 } else {
1179 return access_with_adjusted_size(addr, &data, size, 1, 4,
1180 memory_region_oldmmio_write_accessor,
1181 mr, attrs);
1182 }
1183 }
1184
1185 void memory_region_init_io(MemoryRegion *mr,
1186 Object *owner,
1187 const MemoryRegionOps *ops,
1188 void *opaque,
1189 const char *name,
1190 uint64_t size)
1191 {
1192 memory_region_init(mr, owner, name, size);
1193 mr->ops = ops;
1194 mr->opaque = opaque;
1195 mr->terminates = true;
1196 mr->ram_addr = ~(ram_addr_t)0;
1197 }
1198
1199 void memory_region_init_ram(MemoryRegion *mr,
1200 Object *owner,
1201 const char *name,
1202 uint64_t size,
1203 Error **errp)
1204 {
1205 memory_region_init(mr, owner, name, size);
1206 mr->ram = true;
1207 mr->terminates = true;
1208 mr->destructor = memory_region_destructor_ram;
1209 mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1210 }
1211
1212 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1213 Object *owner,
1214 const char *name,
1215 uint64_t size,
1216 uint64_t max_size,
1217 void (*resized)(const char*,
1218 uint64_t length,
1219 void *host),
1220 Error **errp)
1221 {
1222 memory_region_init(mr, owner, name, size);
1223 mr->ram = true;
1224 mr->terminates = true;
1225 mr->destructor = memory_region_destructor_ram;
1226 mr->ram_addr = qemu_ram_alloc_resizeable(size, max_size, resized, mr, errp);
1227 }
1228
1229 #ifdef __linux__
1230 void memory_region_init_ram_from_file(MemoryRegion *mr,
1231 struct Object *owner,
1232 const char *name,
1233 uint64_t size,
1234 bool share,
1235 const char *path,
1236 Error **errp)
1237 {
1238 memory_region_init(mr, owner, name, size);
1239 mr->ram = true;
1240 mr->terminates = true;
1241 mr->destructor = memory_region_destructor_ram;
1242 mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1243 }
1244 #endif
1245
1246 void memory_region_init_ram_ptr(MemoryRegion *mr,
1247 Object *owner,
1248 const char *name,
1249 uint64_t size,
1250 void *ptr)
1251 {
1252 memory_region_init(mr, owner, name, size);
1253 mr->ram = true;
1254 mr->terminates = true;
1255 mr->destructor = memory_region_destructor_ram_from_ptr;
1256
1257 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1258 assert(ptr != NULL);
1259 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1260 }
1261
1262 void memory_region_set_skip_dump(MemoryRegion *mr)
1263 {
1264 mr->skip_dump = true;
1265 }
1266
1267 void memory_region_init_alias(MemoryRegion *mr,
1268 Object *owner,
1269 const char *name,
1270 MemoryRegion *orig,
1271 hwaddr offset,
1272 uint64_t size)
1273 {
1274 memory_region_init(mr, owner, name, size);
1275 memory_region_ref(orig);
1276 mr->destructor = memory_region_destructor_alias;
1277 mr->alias = orig;
1278 mr->alias_offset = offset;
1279 }
1280
1281 void memory_region_init_rom_device(MemoryRegion *mr,
1282 Object *owner,
1283 const MemoryRegionOps *ops,
1284 void *opaque,
1285 const char *name,
1286 uint64_t size,
1287 Error **errp)
1288 {
1289 memory_region_init(mr, owner, name, size);
1290 mr->ops = ops;
1291 mr->opaque = opaque;
1292 mr->terminates = true;
1293 mr->rom_device = true;
1294 mr->destructor = memory_region_destructor_rom_device;
1295 mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1296 }
1297
1298 void memory_region_init_iommu(MemoryRegion *mr,
1299 Object *owner,
1300 const MemoryRegionIOMMUOps *ops,
1301 const char *name,
1302 uint64_t size)
1303 {
1304 memory_region_init(mr, owner, name, size);
1305 mr->iommu_ops = ops,
1306 mr->terminates = true; /* then re-forwards */
1307 notifier_list_init(&mr->iommu_notify);
1308 }
1309
1310 void memory_region_init_reservation(MemoryRegion *mr,
1311 Object *owner,
1312 const char *name,
1313 uint64_t size)
1314 {
1315 memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1316 }
1317
1318 static void memory_region_finalize(Object *obj)
1319 {
1320 MemoryRegion *mr = MEMORY_REGION(obj);
1321
1322 assert(QTAILQ_EMPTY(&mr->subregions));
1323 mr->destructor(mr);
1324 memory_region_clear_coalescing(mr);
1325 g_free((char *)mr->name);
1326 g_free(mr->ioeventfds);
1327 }
1328
1329 Object *memory_region_owner(MemoryRegion *mr)
1330 {
1331 Object *obj = OBJECT(mr);
1332 return obj->parent;
1333 }
1334
1335 void memory_region_ref(MemoryRegion *mr)
1336 {
1337 /* MMIO callbacks most likely will access data that belongs
1338 * to the owner, hence the need to ref/unref the owner whenever
1339 * the memory region is in use.
1340 *
1341 * The memory region is a child of its owner. As long as the
1342 * owner doesn't call unparent itself on the memory region,
1343 * ref-ing the owner will also keep the memory region alive.
1344 * Memory regions without an owner are supposed to never go away,
1345 * but we still ref/unref them for debugging purposes.
1346 */
1347 Object *obj = OBJECT(mr);
1348 if (obj && obj->parent) {
1349 object_ref(obj->parent);
1350 } else {
1351 object_ref(obj);
1352 }
1353 }
1354
1355 void memory_region_unref(MemoryRegion *mr)
1356 {
1357 Object *obj = OBJECT(mr);
1358 if (obj && obj->parent) {
1359 object_unref(obj->parent);
1360 } else {
1361 object_unref(obj);
1362 }
1363 }
1364
1365 uint64_t memory_region_size(MemoryRegion *mr)
1366 {
1367 if (int128_eq(mr->size, int128_2_64())) {
1368 return UINT64_MAX;
1369 }
1370 return int128_get64(mr->size);
1371 }
1372
1373 const char *memory_region_name(const MemoryRegion *mr)
1374 {
1375 if (!mr->name) {
1376 ((MemoryRegion *)mr)->name =
1377 object_get_canonical_path_component(OBJECT(mr));
1378 }
1379 return mr->name;
1380 }
1381
1382 bool memory_region_is_ram(MemoryRegion *mr)
1383 {
1384 return mr->ram;
1385 }
1386
1387 bool memory_region_is_skip_dump(MemoryRegion *mr)
1388 {
1389 return mr->skip_dump;
1390 }
1391
1392 bool memory_region_is_logging(MemoryRegion *mr)
1393 {
1394 return mr->dirty_log_mask;
1395 }
1396
1397 bool memory_region_is_rom(MemoryRegion *mr)
1398 {
1399 return mr->ram && mr->readonly;
1400 }
1401
1402 bool memory_region_is_iommu(MemoryRegion *mr)
1403 {
1404 return mr->iommu_ops;
1405 }
1406
1407 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1408 {
1409 notifier_list_add(&mr->iommu_notify, n);
1410 }
1411
1412 void memory_region_unregister_iommu_notifier(Notifier *n)
1413 {
1414 notifier_remove(n);
1415 }
1416
1417 void memory_region_notify_iommu(MemoryRegion *mr,
1418 IOMMUTLBEntry entry)
1419 {
1420 assert(memory_region_is_iommu(mr));
1421 notifier_list_notify(&mr->iommu_notify, &entry);
1422 }
1423
1424 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1425 {
1426 uint8_t mask = 1 << client;
1427
1428 memory_region_transaction_begin();
1429 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1430 memory_region_update_pending |= mr->enabled;
1431 memory_region_transaction_commit();
1432 }
1433
1434 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1435 hwaddr size, unsigned client)
1436 {
1437 assert(mr->terminates);
1438 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1439 }
1440
1441 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1442 hwaddr size)
1443 {
1444 assert(mr->terminates);
1445 cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1446 }
1447
1448 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1449 hwaddr size, unsigned client)
1450 {
1451 bool ret;
1452 assert(mr->terminates);
1453 ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1454 if (ret) {
1455 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1456 }
1457 return ret;
1458 }
1459
1460
1461 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1462 {
1463 AddressSpace *as;
1464 FlatRange *fr;
1465
1466 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1467 FlatView *view = address_space_get_flatview(as);
1468 FOR_EACH_FLAT_RANGE(fr, view) {
1469 if (fr->mr == mr) {
1470 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1471 }
1472 }
1473 flatview_unref(view);
1474 }
1475 }
1476
1477 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1478 {
1479 if (mr->readonly != readonly) {
1480 memory_region_transaction_begin();
1481 mr->readonly = readonly;
1482 memory_region_update_pending |= mr->enabled;
1483 memory_region_transaction_commit();
1484 }
1485 }
1486
1487 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1488 {
1489 if (mr->romd_mode != romd_mode) {
1490 memory_region_transaction_begin();
1491 mr->romd_mode = romd_mode;
1492 memory_region_update_pending |= mr->enabled;
1493 memory_region_transaction_commit();
1494 }
1495 }
1496
1497 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1498 hwaddr size, unsigned client)
1499 {
1500 assert(mr->terminates);
1501 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1502 }
1503
1504 int memory_region_get_fd(MemoryRegion *mr)
1505 {
1506 if (mr->alias) {
1507 return memory_region_get_fd(mr->alias);
1508 }
1509
1510 assert(mr->terminates);
1511
1512 return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1513 }
1514
1515 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1516 {
1517 if (mr->alias) {
1518 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1519 }
1520
1521 assert(mr->terminates);
1522
1523 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1524 }
1525
1526 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1527 {
1528 assert(mr->terminates);
1529
1530 qemu_ram_resize(mr->ram_addr, newsize, errp);
1531 }
1532
1533 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1534 {
1535 FlatView *view;
1536 FlatRange *fr;
1537 CoalescedMemoryRange *cmr;
1538 AddrRange tmp;
1539 MemoryRegionSection section;
1540
1541 view = address_space_get_flatview(as);
1542 FOR_EACH_FLAT_RANGE(fr, view) {
1543 if (fr->mr == mr) {
1544 section = (MemoryRegionSection) {
1545 .address_space = as,
1546 .offset_within_address_space = int128_get64(fr->addr.start),
1547 .size = fr->addr.size,
1548 };
1549
1550 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1551 int128_get64(fr->addr.start),
1552 int128_get64(fr->addr.size));
1553 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1554 tmp = addrrange_shift(cmr->addr,
1555 int128_sub(fr->addr.start,
1556 int128_make64(fr->offset_in_region)));
1557 if (!addrrange_intersects(tmp, fr->addr)) {
1558 continue;
1559 }
1560 tmp = addrrange_intersection(tmp, fr->addr);
1561 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1562 int128_get64(tmp.start),
1563 int128_get64(tmp.size));
1564 }
1565 }
1566 }
1567 flatview_unref(view);
1568 }
1569
1570 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1571 {
1572 AddressSpace *as;
1573
1574 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1575 memory_region_update_coalesced_range_as(mr, as);
1576 }
1577 }
1578
1579 void memory_region_set_coalescing(MemoryRegion *mr)
1580 {
1581 memory_region_clear_coalescing(mr);
1582 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1583 }
1584
1585 void memory_region_add_coalescing(MemoryRegion *mr,
1586 hwaddr offset,
1587 uint64_t size)
1588 {
1589 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1590
1591 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1592 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1593 memory_region_update_coalesced_range(mr);
1594 memory_region_set_flush_coalesced(mr);
1595 }
1596
1597 void memory_region_clear_coalescing(MemoryRegion *mr)
1598 {
1599 CoalescedMemoryRange *cmr;
1600 bool updated = false;
1601
1602 qemu_flush_coalesced_mmio_buffer();
1603 mr->flush_coalesced_mmio = false;
1604
1605 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1606 cmr = QTAILQ_FIRST(&mr->coalesced);
1607 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1608 g_free(cmr);
1609 updated = true;
1610 }
1611
1612 if (updated) {
1613 memory_region_update_coalesced_range(mr);
1614 }
1615 }
1616
1617 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1618 {
1619 mr->flush_coalesced_mmio = true;
1620 }
1621
1622 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1623 {
1624 qemu_flush_coalesced_mmio_buffer();
1625 if (QTAILQ_EMPTY(&mr->coalesced)) {
1626 mr->flush_coalesced_mmio = false;
1627 }
1628 }
1629
1630 void memory_region_add_eventfd(MemoryRegion *mr,
1631 hwaddr addr,
1632 unsigned size,
1633 bool match_data,
1634 uint64_t data,
1635 EventNotifier *e)
1636 {
1637 MemoryRegionIoeventfd mrfd = {
1638 .addr.start = int128_make64(addr),
1639 .addr.size = int128_make64(size),
1640 .match_data = match_data,
1641 .data = data,
1642 .e = e,
1643 };
1644 unsigned i;
1645
1646 adjust_endianness(mr, &mrfd.data, size);
1647 memory_region_transaction_begin();
1648 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1649 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1650 break;
1651 }
1652 }
1653 ++mr->ioeventfd_nb;
1654 mr->ioeventfds = g_realloc(mr->ioeventfds,
1655 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1656 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1657 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1658 mr->ioeventfds[i] = mrfd;
1659 ioeventfd_update_pending |= mr->enabled;
1660 memory_region_transaction_commit();
1661 }
1662
1663 void memory_region_del_eventfd(MemoryRegion *mr,
1664 hwaddr addr,
1665 unsigned size,
1666 bool match_data,
1667 uint64_t data,
1668 EventNotifier *e)
1669 {
1670 MemoryRegionIoeventfd mrfd = {
1671 .addr.start = int128_make64(addr),
1672 .addr.size = int128_make64(size),
1673 .match_data = match_data,
1674 .data = data,
1675 .e = e,
1676 };
1677 unsigned i;
1678
1679 adjust_endianness(mr, &mrfd.data, size);
1680 memory_region_transaction_begin();
1681 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1682 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1683 break;
1684 }
1685 }
1686 assert(i != mr->ioeventfd_nb);
1687 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1688 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1689 --mr->ioeventfd_nb;
1690 mr->ioeventfds = g_realloc(mr->ioeventfds,
1691 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1692 ioeventfd_update_pending |= mr->enabled;
1693 memory_region_transaction_commit();
1694 }
1695
1696 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1697 {
1698 hwaddr offset = subregion->addr;
1699 MemoryRegion *mr = subregion->container;
1700 MemoryRegion *other;
1701
1702 memory_region_transaction_begin();
1703
1704 memory_region_ref(subregion);
1705 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1706 if (subregion->may_overlap || other->may_overlap) {
1707 continue;
1708 }
1709 if (int128_ge(int128_make64(offset),
1710 int128_add(int128_make64(other->addr), other->size))
1711 || int128_le(int128_add(int128_make64(offset), subregion->size),
1712 int128_make64(other->addr))) {
1713 continue;
1714 }
1715 #if 0
1716 printf("warning: subregion collision %llx/%llx (%s) "
1717 "vs %llx/%llx (%s)\n",
1718 (unsigned long long)offset,
1719 (unsigned long long)int128_get64(subregion->size),
1720 subregion->name,
1721 (unsigned long long)other->addr,
1722 (unsigned long long)int128_get64(other->size),
1723 other->name);
1724 #endif
1725 }
1726 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1727 if (subregion->priority >= other->priority) {
1728 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1729 goto done;
1730 }
1731 }
1732 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1733 done:
1734 memory_region_update_pending |= mr->enabled && subregion->enabled;
1735 memory_region_transaction_commit();
1736 }
1737
1738 static void memory_region_add_subregion_common(MemoryRegion *mr,
1739 hwaddr offset,
1740 MemoryRegion *subregion)
1741 {
1742 assert(!subregion->container);
1743 subregion->container = mr;
1744 subregion->addr = offset;
1745 memory_region_update_container_subregions(subregion);
1746 }
1747
1748 void memory_region_add_subregion(MemoryRegion *mr,
1749 hwaddr offset,
1750 MemoryRegion *subregion)
1751 {
1752 subregion->may_overlap = false;
1753 subregion->priority = 0;
1754 memory_region_add_subregion_common(mr, offset, subregion);
1755 }
1756
1757 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1758 hwaddr offset,
1759 MemoryRegion *subregion,
1760 int priority)
1761 {
1762 subregion->may_overlap = true;
1763 subregion->priority = priority;
1764 memory_region_add_subregion_common(mr, offset, subregion);
1765 }
1766
1767 void memory_region_del_subregion(MemoryRegion *mr,
1768 MemoryRegion *subregion)
1769 {
1770 memory_region_transaction_begin();
1771 assert(subregion->container == mr);
1772 subregion->container = NULL;
1773 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1774 memory_region_unref(subregion);
1775 memory_region_update_pending |= mr->enabled && subregion->enabled;
1776 memory_region_transaction_commit();
1777 }
1778
1779 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1780 {
1781 if (enabled == mr->enabled) {
1782 return;
1783 }
1784 memory_region_transaction_begin();
1785 mr->enabled = enabled;
1786 memory_region_update_pending = true;
1787 memory_region_transaction_commit();
1788 }
1789
1790 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1791 {
1792 Int128 s = int128_make64(size);
1793
1794 if (size == UINT64_MAX) {
1795 s = int128_2_64();
1796 }
1797 if (int128_eq(s, mr->size)) {
1798 return;
1799 }
1800 memory_region_transaction_begin();
1801 mr->size = s;
1802 memory_region_update_pending = true;
1803 memory_region_transaction_commit();
1804 }
1805
1806 static void memory_region_readd_subregion(MemoryRegion *mr)
1807 {
1808 MemoryRegion *container = mr->container;
1809
1810 if (container) {
1811 memory_region_transaction_begin();
1812 memory_region_ref(mr);
1813 memory_region_del_subregion(container, mr);
1814 mr->container = container;
1815 memory_region_update_container_subregions(mr);
1816 memory_region_unref(mr);
1817 memory_region_transaction_commit();
1818 }
1819 }
1820
1821 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1822 {
1823 if (addr != mr->addr) {
1824 mr->addr = addr;
1825 memory_region_readd_subregion(mr);
1826 }
1827 }
1828
1829 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1830 {
1831 assert(mr->alias);
1832
1833 if (offset == mr->alias_offset) {
1834 return;
1835 }
1836
1837 memory_region_transaction_begin();
1838 mr->alias_offset = offset;
1839 memory_region_update_pending |= mr->enabled;
1840 memory_region_transaction_commit();
1841 }
1842
1843 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1844 {
1845 return mr->ram_addr;
1846 }
1847
1848 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1849 {
1850 return mr->align;
1851 }
1852
1853 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1854 {
1855 const AddrRange *addr = addr_;
1856 const FlatRange *fr = fr_;
1857
1858 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1859 return -1;
1860 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1861 return 1;
1862 }
1863 return 0;
1864 }
1865
1866 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1867 {
1868 return bsearch(&addr, view->ranges, view->nr,
1869 sizeof(FlatRange), cmp_flatrange_addr);
1870 }
1871
1872 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1873 {
1874 MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1875 if (!mr || (mr == container)) {
1876 return false;
1877 }
1878 memory_region_unref(mr);
1879 return true;
1880 }
1881
1882 bool memory_region_is_mapped(MemoryRegion *mr)
1883 {
1884 return mr->container ? true : false;
1885 }
1886
1887 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1888 hwaddr addr, uint64_t size)
1889 {
1890 MemoryRegionSection ret = { .mr = NULL };
1891 MemoryRegion *root;
1892 AddressSpace *as;
1893 AddrRange range;
1894 FlatView *view;
1895 FlatRange *fr;
1896
1897 addr += mr->addr;
1898 for (root = mr; root->container; ) {
1899 root = root->container;
1900 addr += root->addr;
1901 }
1902
1903 as = memory_region_to_address_space(root);
1904 if (!as) {
1905 return ret;
1906 }
1907 range = addrrange_make(int128_make64(addr), int128_make64(size));
1908
1909 rcu_read_lock();
1910 view = atomic_rcu_read(&as->current_map);
1911 fr = flatview_lookup(view, range);
1912 if (!fr) {
1913 goto out;
1914 }
1915
1916 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1917 --fr;
1918 }
1919
1920 ret.mr = fr->mr;
1921 ret.address_space = as;
1922 range = addrrange_intersection(range, fr->addr);
1923 ret.offset_within_region = fr->offset_in_region;
1924 ret.offset_within_region += int128_get64(int128_sub(range.start,
1925 fr->addr.start));
1926 ret.size = range.size;
1927 ret.offset_within_address_space = int128_get64(range.start);
1928 ret.readonly = fr->readonly;
1929 memory_region_ref(ret.mr);
1930 out:
1931 rcu_read_unlock();
1932 return ret;
1933 }
1934
1935 void address_space_sync_dirty_bitmap(AddressSpace *as)
1936 {
1937 FlatView *view;
1938 FlatRange *fr;
1939
1940 view = address_space_get_flatview(as);
1941 FOR_EACH_FLAT_RANGE(fr, view) {
1942 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1943 }
1944 flatview_unref(view);
1945 }
1946
1947 void memory_global_dirty_log_start(void)
1948 {
1949 global_dirty_log = true;
1950 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1951 }
1952
1953 void memory_global_dirty_log_stop(void)
1954 {
1955 global_dirty_log = false;
1956 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1957 }
1958
1959 static void listener_add_address_space(MemoryListener *listener,
1960 AddressSpace *as)
1961 {
1962 FlatView *view;
1963 FlatRange *fr;
1964
1965 if (listener->address_space_filter
1966 && listener->address_space_filter != as) {
1967 return;
1968 }
1969
1970 if (global_dirty_log) {
1971 if (listener->log_global_start) {
1972 listener->log_global_start(listener);
1973 }
1974 }
1975
1976 view = address_space_get_flatview(as);
1977 FOR_EACH_FLAT_RANGE(fr, view) {
1978 MemoryRegionSection section = {
1979 .mr = fr->mr,
1980 .address_space = as,
1981 .offset_within_region = fr->offset_in_region,
1982 .size = fr->addr.size,
1983 .offset_within_address_space = int128_get64(fr->addr.start),
1984 .readonly = fr->readonly,
1985 };
1986 if (listener->region_add) {
1987 listener->region_add(listener, &section);
1988 }
1989 }
1990 flatview_unref(view);
1991 }
1992
1993 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1994 {
1995 MemoryListener *other = NULL;
1996 AddressSpace *as;
1997
1998 listener->address_space_filter = filter;
1999 if (QTAILQ_EMPTY(&memory_listeners)
2000 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2001 memory_listeners)->priority) {
2002 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2003 } else {
2004 QTAILQ_FOREACH(other, &memory_listeners, link) {
2005 if (listener->priority < other->priority) {
2006 break;
2007 }
2008 }
2009 QTAILQ_INSERT_BEFORE(other, listener, link);
2010 }
2011
2012 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2013 listener_add_address_space(listener, as);
2014 }
2015 }
2016
2017 void memory_listener_unregister(MemoryListener *listener)
2018 {
2019 QTAILQ_REMOVE(&memory_listeners, listener, link);
2020 }
2021
2022 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2023 {
2024 memory_region_ref(root);
2025 memory_region_transaction_begin();
2026 as->root = root;
2027 as->current_map = g_new(FlatView, 1);
2028 flatview_init(as->current_map);
2029 as->ioeventfd_nb = 0;
2030 as->ioeventfds = NULL;
2031 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2032 as->name = g_strdup(name ? name : "anonymous");
2033 address_space_init_dispatch(as);
2034 memory_region_update_pending |= root->enabled;
2035 memory_region_transaction_commit();
2036 }
2037
2038 static void do_address_space_destroy(AddressSpace *as)
2039 {
2040 MemoryListener *listener;
2041
2042 address_space_destroy_dispatch(as);
2043
2044 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2045 assert(listener->address_space_filter != as);
2046 }
2047
2048 flatview_unref(as->current_map);
2049 g_free(as->name);
2050 g_free(as->ioeventfds);
2051 memory_region_unref(as->root);
2052 }
2053
2054 void address_space_destroy(AddressSpace *as)
2055 {
2056 MemoryRegion *root = as->root;
2057
2058 /* Flush out anything from MemoryListeners listening in on this */
2059 memory_region_transaction_begin();
2060 as->root = NULL;
2061 memory_region_transaction_commit();
2062 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2063 address_space_unregister(as);
2064
2065 /* At this point, as->dispatch and as->current_map are dummy
2066 * entries that the guest should never use. Wait for the old
2067 * values to expire before freeing the data.
2068 */
2069 as->root = root;
2070 call_rcu(as, do_address_space_destroy, rcu);
2071 }
2072
2073 typedef struct MemoryRegionList MemoryRegionList;
2074
2075 struct MemoryRegionList {
2076 const MemoryRegion *mr;
2077 QTAILQ_ENTRY(MemoryRegionList) queue;
2078 };
2079
2080 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2081
2082 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2083 const MemoryRegion *mr, unsigned int level,
2084 hwaddr base,
2085 MemoryRegionListHead *alias_print_queue)
2086 {
2087 MemoryRegionList *new_ml, *ml, *next_ml;
2088 MemoryRegionListHead submr_print_queue;
2089 const MemoryRegion *submr;
2090 unsigned int i;
2091
2092 if (!mr) {
2093 return;
2094 }
2095
2096 for (i = 0; i < level; i++) {
2097 mon_printf(f, " ");
2098 }
2099
2100 if (mr->alias) {
2101 MemoryRegionList *ml;
2102 bool found = false;
2103
2104 /* check if the alias is already in the queue */
2105 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2106 if (ml->mr == mr->alias) {
2107 found = true;
2108 }
2109 }
2110
2111 if (!found) {
2112 ml = g_new(MemoryRegionList, 1);
2113 ml->mr = mr->alias;
2114 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2115 }
2116 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2117 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2118 "-" TARGET_FMT_plx "%s\n",
2119 base + mr->addr,
2120 base + mr->addr
2121 + (int128_nz(mr->size) ?
2122 (hwaddr)int128_get64(int128_sub(mr->size,
2123 int128_one())) : 0),
2124 mr->priority,
2125 mr->romd_mode ? 'R' : '-',
2126 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2127 : '-',
2128 memory_region_name(mr),
2129 memory_region_name(mr->alias),
2130 mr->alias_offset,
2131 mr->alias_offset
2132 + (int128_nz(mr->size) ?
2133 (hwaddr)int128_get64(int128_sub(mr->size,
2134 int128_one())) : 0),
2135 mr->enabled ? "" : " [disabled]");
2136 } else {
2137 mon_printf(f,
2138 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2139 base + mr->addr,
2140 base + mr->addr
2141 + (int128_nz(mr->size) ?
2142 (hwaddr)int128_get64(int128_sub(mr->size,
2143 int128_one())) : 0),
2144 mr->priority,
2145 mr->romd_mode ? 'R' : '-',
2146 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2147 : '-',
2148 memory_region_name(mr),
2149 mr->enabled ? "" : " [disabled]");
2150 }
2151
2152 QTAILQ_INIT(&submr_print_queue);
2153
2154 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2155 new_ml = g_new(MemoryRegionList, 1);
2156 new_ml->mr = submr;
2157 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2158 if (new_ml->mr->addr < ml->mr->addr ||
2159 (new_ml->mr->addr == ml->mr->addr &&
2160 new_ml->mr->priority > ml->mr->priority)) {
2161 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2162 new_ml = NULL;
2163 break;
2164 }
2165 }
2166 if (new_ml) {
2167 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2168 }
2169 }
2170
2171 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2172 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2173 alias_print_queue);
2174 }
2175
2176 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2177 g_free(ml);
2178 }
2179 }
2180
2181 void mtree_info(fprintf_function mon_printf, void *f)
2182 {
2183 MemoryRegionListHead ml_head;
2184 MemoryRegionList *ml, *ml2;
2185 AddressSpace *as;
2186
2187 QTAILQ_INIT(&ml_head);
2188
2189 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2190 mon_printf(f, "address-space: %s\n", as->name);
2191 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2192 mon_printf(f, "\n");
2193 }
2194
2195 /* print aliased regions */
2196 QTAILQ_FOREACH(ml, &ml_head, queue) {
2197 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2198 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2199 mon_printf(f, "\n");
2200 }
2201
2202 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2203 g_free(ml);
2204 }
2205 }
2206
2207 static const TypeInfo memory_region_info = {
2208 .parent = TYPE_OBJECT,
2209 .name = TYPE_MEMORY_REGION,
2210 .instance_size = sizeof(MemoryRegion),
2211 .instance_init = memory_region_initfn,
2212 .instance_finalize = memory_region_finalize,
2213 };
2214
2215 static void memory_register_types(void)
2216 {
2217 type_register_static(&memory_region_info);
2218 }
2219
2220 type_init(memory_register_types)