]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
3241e449e748f2377165e40255be4477e3dab23d
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "cpu.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "exec/ioport.h"
23 #include "qapi/visitor.h"
24 #include "qemu/bitops.h"
25 #include "qemu/error-report.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
28
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/misc/mmio_interface.h"
34 #include "hw/qdev-properties.h"
35 #include "migration/vmstate.h"
36
37 //#define DEBUG_UNASSIGNED
38
39 static unsigned memory_region_transaction_depth;
40 static bool memory_region_update_pending;
41 static bool ioeventfd_update_pending;
42 static bool global_dirty_log = false;
43
44 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
45 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
46
47 static QTAILQ_HEAD(, AddressSpace) address_spaces
48 = QTAILQ_HEAD_INITIALIZER(address_spaces);
49
50 typedef struct AddrRange AddrRange;
51
52 /*
53 * Note that signed integers are needed for negative offsetting in aliases
54 * (large MemoryRegion::alias_offset).
55 */
56 struct AddrRange {
57 Int128 start;
58 Int128 size;
59 };
60
61 static AddrRange addrrange_make(Int128 start, Int128 size)
62 {
63 return (AddrRange) { start, size };
64 }
65
66 static bool addrrange_equal(AddrRange r1, AddrRange r2)
67 {
68 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
69 }
70
71 static Int128 addrrange_end(AddrRange r)
72 {
73 return int128_add(r.start, r.size);
74 }
75
76 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
77 {
78 int128_addto(&range.start, delta);
79 return range;
80 }
81
82 static bool addrrange_contains(AddrRange range, Int128 addr)
83 {
84 return int128_ge(addr, range.start)
85 && int128_lt(addr, addrrange_end(range));
86 }
87
88 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
89 {
90 return addrrange_contains(r1, r2.start)
91 || addrrange_contains(r2, r1.start);
92 }
93
94 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
95 {
96 Int128 start = int128_max(r1.start, r2.start);
97 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
98 return addrrange_make(start, int128_sub(end, start));
99 }
100
101 enum ListenerDirection { Forward, Reverse };
102
103 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
104 do { \
105 MemoryListener *_listener; \
106 \
107 switch (_direction) { \
108 case Forward: \
109 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
110 if (_listener->_callback) { \
111 _listener->_callback(_listener, ##_args); \
112 } \
113 } \
114 break; \
115 case Reverse: \
116 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
117 memory_listeners, link) { \
118 if (_listener->_callback) { \
119 _listener->_callback(_listener, ##_args); \
120 } \
121 } \
122 break; \
123 default: \
124 abort(); \
125 } \
126 } while (0)
127
128 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
129 do { \
130 MemoryListener *_listener; \
131 struct memory_listeners_as *list = &(_as)->listeners; \
132 \
133 switch (_direction) { \
134 case Forward: \
135 QTAILQ_FOREACH(_listener, list, link_as) { \
136 if (_listener->_callback) { \
137 _listener->_callback(_listener, _section, ##_args); \
138 } \
139 } \
140 break; \
141 case Reverse: \
142 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
143 link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
146 } \
147 } \
148 break; \
149 default: \
150 abort(); \
151 } \
152 } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, as); \
158 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
159 } while(0)
160
161 struct CoalescedMemoryRange {
162 AddrRange addr;
163 QTAILQ_ENTRY(CoalescedMemoryRange) link;
164 };
165
166 struct MemoryRegionIoeventfd {
167 AddrRange addr;
168 bool match_data;
169 uint64_t data;
170 EventNotifier *e;
171 };
172
173 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
174 MemoryRegionIoeventfd b)
175 {
176 if (int128_lt(a.addr.start, b.addr.start)) {
177 return true;
178 } else if (int128_gt(a.addr.start, b.addr.start)) {
179 return false;
180 } else if (int128_lt(a.addr.size, b.addr.size)) {
181 return true;
182 } else if (int128_gt(a.addr.size, b.addr.size)) {
183 return false;
184 } else if (a.match_data < b.match_data) {
185 return true;
186 } else if (a.match_data > b.match_data) {
187 return false;
188 } else if (a.match_data) {
189 if (a.data < b.data) {
190 return true;
191 } else if (a.data > b.data) {
192 return false;
193 }
194 }
195 if (a.e < b.e) {
196 return true;
197 } else if (a.e > b.e) {
198 return false;
199 }
200 return false;
201 }
202
203 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
204 MemoryRegionIoeventfd b)
205 {
206 return !memory_region_ioeventfd_before(a, b)
207 && !memory_region_ioeventfd_before(b, a);
208 }
209
210 typedef struct FlatRange FlatRange;
211 typedef struct FlatView FlatView;
212
213 /* Range of memory in the global map. Addresses are absolute. */
214 struct FlatRange {
215 MemoryRegion *mr;
216 hwaddr offset_in_region;
217 AddrRange addr;
218 uint8_t dirty_log_mask;
219 bool romd_mode;
220 bool readonly;
221 };
222
223 /* Flattened global view of current active memory hierarchy. Kept in sorted
224 * order.
225 */
226 struct FlatView {
227 struct rcu_head rcu;
228 unsigned ref;
229 FlatRange *ranges;
230 unsigned nr;
231 unsigned nr_allocated;
232 };
233
234 typedef struct AddressSpaceOps AddressSpaceOps;
235
236 #define FOR_EACH_FLAT_RANGE(var, view) \
237 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
238
239 static inline MemoryRegionSection
240 section_from_flat_range(FlatRange *fr, AddressSpace *as)
241 {
242 return (MemoryRegionSection) {
243 .mr = fr->mr,
244 .address_space = as,
245 .offset_within_region = fr->offset_in_region,
246 .size = fr->addr.size,
247 .offset_within_address_space = int128_get64(fr->addr.start),
248 .readonly = fr->readonly,
249 };
250 }
251
252 static bool flatrange_equal(FlatRange *a, FlatRange *b)
253 {
254 return a->mr == b->mr
255 && addrrange_equal(a->addr, b->addr)
256 && a->offset_in_region == b->offset_in_region
257 && a->romd_mode == b->romd_mode
258 && a->readonly == b->readonly;
259 }
260
261 static void flatview_init(FlatView *view)
262 {
263 view->ref = 1;
264 view->ranges = NULL;
265 view->nr = 0;
266 view->nr_allocated = 0;
267 }
268
269 /* Insert a range into a given position. Caller is responsible for maintaining
270 * sorting order.
271 */
272 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
273 {
274 if (view->nr == view->nr_allocated) {
275 view->nr_allocated = MAX(2 * view->nr, 10);
276 view->ranges = g_realloc(view->ranges,
277 view->nr_allocated * sizeof(*view->ranges));
278 }
279 memmove(view->ranges + pos + 1, view->ranges + pos,
280 (view->nr - pos) * sizeof(FlatRange));
281 view->ranges[pos] = *range;
282 memory_region_ref(range->mr);
283 ++view->nr;
284 }
285
286 static void flatview_destroy(FlatView *view)
287 {
288 int i;
289
290 for (i = 0; i < view->nr; i++) {
291 memory_region_unref(view->ranges[i].mr);
292 }
293 g_free(view->ranges);
294 g_free(view);
295 }
296
297 static bool flatview_ref(FlatView *view)
298 {
299 return atomic_fetch_inc_nonzero(&view->ref) > 0;
300 }
301
302 static void flatview_unref(FlatView *view)
303 {
304 if (atomic_fetch_dec(&view->ref) == 1) {
305 flatview_destroy(view);
306 }
307 }
308
309 static bool can_merge(FlatRange *r1, FlatRange *r2)
310 {
311 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
312 && r1->mr == r2->mr
313 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
314 r1->addr.size),
315 int128_make64(r2->offset_in_region))
316 && r1->dirty_log_mask == r2->dirty_log_mask
317 && r1->romd_mode == r2->romd_mode
318 && r1->readonly == r2->readonly;
319 }
320
321 /* Attempt to simplify a view by merging adjacent ranges */
322 static void flatview_simplify(FlatView *view)
323 {
324 unsigned i, j;
325
326 i = 0;
327 while (i < view->nr) {
328 j = i + 1;
329 while (j < view->nr
330 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
331 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
332 ++j;
333 }
334 ++i;
335 memmove(&view->ranges[i], &view->ranges[j],
336 (view->nr - j) * sizeof(view->ranges[j]));
337 view->nr -= j - i;
338 }
339 }
340
341 static bool memory_region_big_endian(MemoryRegion *mr)
342 {
343 #ifdef TARGET_WORDS_BIGENDIAN
344 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
345 #else
346 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
347 #endif
348 }
349
350 static bool memory_region_wrong_endianness(MemoryRegion *mr)
351 {
352 #ifdef TARGET_WORDS_BIGENDIAN
353 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
354 #else
355 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
356 #endif
357 }
358
359 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
360 {
361 if (memory_region_wrong_endianness(mr)) {
362 switch (size) {
363 case 1:
364 break;
365 case 2:
366 *data = bswap16(*data);
367 break;
368 case 4:
369 *data = bswap32(*data);
370 break;
371 case 8:
372 *data = bswap64(*data);
373 break;
374 default:
375 abort();
376 }
377 }
378 }
379
380 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
381 {
382 MemoryRegion *root;
383 hwaddr abs_addr = offset;
384
385 abs_addr += mr->addr;
386 for (root = mr; root->container; ) {
387 root = root->container;
388 abs_addr += root->addr;
389 }
390
391 return abs_addr;
392 }
393
394 static int get_cpu_index(void)
395 {
396 if (current_cpu) {
397 return current_cpu->cpu_index;
398 }
399 return -1;
400 }
401
402 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
403 hwaddr addr,
404 uint64_t *value,
405 unsigned size,
406 unsigned shift,
407 uint64_t mask,
408 MemTxAttrs attrs)
409 {
410 uint64_t tmp;
411
412 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
413 if (mr->subpage) {
414 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
415 } else if (mr == &io_mem_notdirty) {
416 /* Accesses to code which has previously been translated into a TB show
417 * up in the MMIO path, as accesses to the io_mem_notdirty
418 * MemoryRegion. */
419 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
420 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
421 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
422 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
423 }
424 *value |= (tmp & mask) << shift;
425 return MEMTX_OK;
426 }
427
428 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
429 hwaddr addr,
430 uint64_t *value,
431 unsigned size,
432 unsigned shift,
433 uint64_t mask,
434 MemTxAttrs attrs)
435 {
436 uint64_t tmp;
437
438 tmp = mr->ops->read(mr->opaque, addr, size);
439 if (mr->subpage) {
440 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
441 } else if (mr == &io_mem_notdirty) {
442 /* Accesses to code which has previously been translated into a TB show
443 * up in the MMIO path, as accesses to the io_mem_notdirty
444 * MemoryRegion. */
445 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
446 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
447 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
448 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
449 }
450 *value |= (tmp & mask) << shift;
451 return MEMTX_OK;
452 }
453
454 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
455 hwaddr addr,
456 uint64_t *value,
457 unsigned size,
458 unsigned shift,
459 uint64_t mask,
460 MemTxAttrs attrs)
461 {
462 uint64_t tmp = 0;
463 MemTxResult r;
464
465 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
466 if (mr->subpage) {
467 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
468 } else if (mr == &io_mem_notdirty) {
469 /* Accesses to code which has previously been translated into a TB show
470 * up in the MMIO path, as accesses to the io_mem_notdirty
471 * MemoryRegion. */
472 trace_memory_region_tb_read(get_cpu_index(), addr, tmp, size);
473 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
474 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
475 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
476 }
477 *value |= (tmp & mask) << shift;
478 return r;
479 }
480
481 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
482 hwaddr addr,
483 uint64_t *value,
484 unsigned size,
485 unsigned shift,
486 uint64_t mask,
487 MemTxAttrs attrs)
488 {
489 uint64_t tmp;
490
491 tmp = (*value >> shift) & mask;
492 if (mr->subpage) {
493 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
494 } else if (mr == &io_mem_notdirty) {
495 /* Accesses to code which has previously been translated into a TB show
496 * up in the MMIO path, as accesses to the io_mem_notdirty
497 * MemoryRegion. */
498 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
499 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
500 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
501 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
502 }
503 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
504 return MEMTX_OK;
505 }
506
507 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
508 hwaddr addr,
509 uint64_t *value,
510 unsigned size,
511 unsigned shift,
512 uint64_t mask,
513 MemTxAttrs attrs)
514 {
515 uint64_t tmp;
516
517 tmp = (*value >> shift) & mask;
518 if (mr->subpage) {
519 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
520 } else if (mr == &io_mem_notdirty) {
521 /* Accesses to code which has previously been translated into a TB show
522 * up in the MMIO path, as accesses to the io_mem_notdirty
523 * MemoryRegion. */
524 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
525 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
526 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
527 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
528 }
529 mr->ops->write(mr->opaque, addr, tmp, size);
530 return MEMTX_OK;
531 }
532
533 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
534 hwaddr addr,
535 uint64_t *value,
536 unsigned size,
537 unsigned shift,
538 uint64_t mask,
539 MemTxAttrs attrs)
540 {
541 uint64_t tmp;
542
543 tmp = (*value >> shift) & mask;
544 if (mr->subpage) {
545 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
546 } else if (mr == &io_mem_notdirty) {
547 /* Accesses to code which has previously been translated into a TB show
548 * up in the MMIO path, as accesses to the io_mem_notdirty
549 * MemoryRegion. */
550 trace_memory_region_tb_write(get_cpu_index(), addr, tmp, size);
551 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
552 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
553 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
554 }
555 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
556 }
557
558 static MemTxResult access_with_adjusted_size(hwaddr addr,
559 uint64_t *value,
560 unsigned size,
561 unsigned access_size_min,
562 unsigned access_size_max,
563 MemTxResult (*access_fn)
564 (MemoryRegion *mr,
565 hwaddr addr,
566 uint64_t *value,
567 unsigned size,
568 unsigned shift,
569 uint64_t mask,
570 MemTxAttrs attrs),
571 MemoryRegion *mr,
572 MemTxAttrs attrs)
573 {
574 uint64_t access_mask;
575 unsigned access_size;
576 unsigned i;
577 MemTxResult r = MEMTX_OK;
578
579 if (!access_size_min) {
580 access_size_min = 1;
581 }
582 if (!access_size_max) {
583 access_size_max = 4;
584 }
585
586 /* FIXME: support unaligned access? */
587 access_size = MAX(MIN(size, access_size_max), access_size_min);
588 access_mask = -1ULL >> (64 - access_size * 8);
589 if (memory_region_big_endian(mr)) {
590 for (i = 0; i < size; i += access_size) {
591 r |= access_fn(mr, addr + i, value, access_size,
592 (size - access_size - i) * 8, access_mask, attrs);
593 }
594 } else {
595 for (i = 0; i < size; i += access_size) {
596 r |= access_fn(mr, addr + i, value, access_size, i * 8,
597 access_mask, attrs);
598 }
599 }
600 return r;
601 }
602
603 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
604 {
605 AddressSpace *as;
606
607 while (mr->container) {
608 mr = mr->container;
609 }
610 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
611 if (mr == as->root) {
612 return as;
613 }
614 }
615 return NULL;
616 }
617
618 /* Render a memory region into the global view. Ranges in @view obscure
619 * ranges in @mr.
620 */
621 static void render_memory_region(FlatView *view,
622 MemoryRegion *mr,
623 Int128 base,
624 AddrRange clip,
625 bool readonly)
626 {
627 MemoryRegion *subregion;
628 unsigned i;
629 hwaddr offset_in_region;
630 Int128 remain;
631 Int128 now;
632 FlatRange fr;
633 AddrRange tmp;
634
635 if (!mr->enabled) {
636 return;
637 }
638
639 int128_addto(&base, int128_make64(mr->addr));
640 readonly |= mr->readonly;
641
642 tmp = addrrange_make(base, mr->size);
643
644 if (!addrrange_intersects(tmp, clip)) {
645 return;
646 }
647
648 clip = addrrange_intersection(tmp, clip);
649
650 if (mr->alias) {
651 int128_subfrom(&base, int128_make64(mr->alias->addr));
652 int128_subfrom(&base, int128_make64(mr->alias_offset));
653 render_memory_region(view, mr->alias, base, clip, readonly);
654 return;
655 }
656
657 /* Render subregions in priority order. */
658 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
659 render_memory_region(view, subregion, base, clip, readonly);
660 }
661
662 if (!mr->terminates) {
663 return;
664 }
665
666 offset_in_region = int128_get64(int128_sub(clip.start, base));
667 base = clip.start;
668 remain = clip.size;
669
670 fr.mr = mr;
671 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
672 fr.romd_mode = mr->romd_mode;
673 fr.readonly = readonly;
674
675 /* Render the region itself into any gaps left by the current view. */
676 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
677 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
678 continue;
679 }
680 if (int128_lt(base, view->ranges[i].addr.start)) {
681 now = int128_min(remain,
682 int128_sub(view->ranges[i].addr.start, base));
683 fr.offset_in_region = offset_in_region;
684 fr.addr = addrrange_make(base, now);
685 flatview_insert(view, i, &fr);
686 ++i;
687 int128_addto(&base, now);
688 offset_in_region += int128_get64(now);
689 int128_subfrom(&remain, now);
690 }
691 now = int128_sub(int128_min(int128_add(base, remain),
692 addrrange_end(view->ranges[i].addr)),
693 base);
694 int128_addto(&base, now);
695 offset_in_region += int128_get64(now);
696 int128_subfrom(&remain, now);
697 }
698 if (int128_nz(remain)) {
699 fr.offset_in_region = offset_in_region;
700 fr.addr = addrrange_make(base, remain);
701 flatview_insert(view, i, &fr);
702 }
703 }
704
705 /* Render a memory topology into a list of disjoint absolute ranges. */
706 static FlatView *generate_memory_topology(MemoryRegion *mr)
707 {
708 FlatView *view;
709
710 view = g_new(FlatView, 1);
711 flatview_init(view);
712
713 if (mr) {
714 render_memory_region(view, mr, int128_zero(),
715 addrrange_make(int128_zero(), int128_2_64()), false);
716 }
717 flatview_simplify(view);
718
719 return view;
720 }
721
722 static void address_space_add_del_ioeventfds(AddressSpace *as,
723 MemoryRegionIoeventfd *fds_new,
724 unsigned fds_new_nb,
725 MemoryRegionIoeventfd *fds_old,
726 unsigned fds_old_nb)
727 {
728 unsigned iold, inew;
729 MemoryRegionIoeventfd *fd;
730 MemoryRegionSection section;
731
732 /* Generate a symmetric difference of the old and new fd sets, adding
733 * and deleting as necessary.
734 */
735
736 iold = inew = 0;
737 while (iold < fds_old_nb || inew < fds_new_nb) {
738 if (iold < fds_old_nb
739 && (inew == fds_new_nb
740 || memory_region_ioeventfd_before(fds_old[iold],
741 fds_new[inew]))) {
742 fd = &fds_old[iold];
743 section = (MemoryRegionSection) {
744 .address_space = as,
745 .offset_within_address_space = int128_get64(fd->addr.start),
746 .size = fd->addr.size,
747 };
748 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
749 fd->match_data, fd->data, fd->e);
750 ++iold;
751 } else if (inew < fds_new_nb
752 && (iold == fds_old_nb
753 || memory_region_ioeventfd_before(fds_new[inew],
754 fds_old[iold]))) {
755 fd = &fds_new[inew];
756 section = (MemoryRegionSection) {
757 .address_space = as,
758 .offset_within_address_space = int128_get64(fd->addr.start),
759 .size = fd->addr.size,
760 };
761 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
762 fd->match_data, fd->data, fd->e);
763 ++inew;
764 } else {
765 ++iold;
766 ++inew;
767 }
768 }
769 }
770
771 static FlatView *address_space_get_flatview(AddressSpace *as)
772 {
773 FlatView *view;
774
775 rcu_read_lock();
776 do {
777 view = atomic_rcu_read(&as->current_map);
778 /* If somebody has replaced as->current_map concurrently,
779 * flatview_ref returns false.
780 */
781 } while (!flatview_ref(view));
782 rcu_read_unlock();
783 return view;
784 }
785
786 static void address_space_update_ioeventfds(AddressSpace *as)
787 {
788 FlatView *view;
789 FlatRange *fr;
790 unsigned ioeventfd_nb = 0;
791 MemoryRegionIoeventfd *ioeventfds = NULL;
792 AddrRange tmp;
793 unsigned i;
794
795 view = address_space_get_flatview(as);
796 FOR_EACH_FLAT_RANGE(fr, view) {
797 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
798 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
799 int128_sub(fr->addr.start,
800 int128_make64(fr->offset_in_region)));
801 if (addrrange_intersects(fr->addr, tmp)) {
802 ++ioeventfd_nb;
803 ioeventfds = g_realloc(ioeventfds,
804 ioeventfd_nb * sizeof(*ioeventfds));
805 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
806 ioeventfds[ioeventfd_nb-1].addr = tmp;
807 }
808 }
809 }
810
811 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
812 as->ioeventfds, as->ioeventfd_nb);
813
814 g_free(as->ioeventfds);
815 as->ioeventfds = ioeventfds;
816 as->ioeventfd_nb = ioeventfd_nb;
817 flatview_unref(view);
818 }
819
820 static void address_space_update_topology_pass(AddressSpace *as,
821 const FlatView *old_view,
822 const FlatView *new_view,
823 bool adding)
824 {
825 unsigned iold, inew;
826 FlatRange *frold, *frnew;
827
828 /* Generate a symmetric difference of the old and new memory maps.
829 * Kill ranges in the old map, and instantiate ranges in the new map.
830 */
831 iold = inew = 0;
832 while (iold < old_view->nr || inew < new_view->nr) {
833 if (iold < old_view->nr) {
834 frold = &old_view->ranges[iold];
835 } else {
836 frold = NULL;
837 }
838 if (inew < new_view->nr) {
839 frnew = &new_view->ranges[inew];
840 } else {
841 frnew = NULL;
842 }
843
844 if (frold
845 && (!frnew
846 || int128_lt(frold->addr.start, frnew->addr.start)
847 || (int128_eq(frold->addr.start, frnew->addr.start)
848 && !flatrange_equal(frold, frnew)))) {
849 /* In old but not in new, or in both but attributes changed. */
850
851 if (!adding) {
852 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
853 }
854
855 ++iold;
856 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
857 /* In both and unchanged (except logging may have changed) */
858
859 if (adding) {
860 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
861 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
862 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
863 frold->dirty_log_mask,
864 frnew->dirty_log_mask);
865 }
866 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
867 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
868 frold->dirty_log_mask,
869 frnew->dirty_log_mask);
870 }
871 }
872
873 ++iold;
874 ++inew;
875 } else {
876 /* In new */
877
878 if (adding) {
879 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
880 }
881
882 ++inew;
883 }
884 }
885 }
886
887 static void address_space_update_topology(AddressSpace *as)
888 {
889 FlatView *old_view = address_space_get_flatview(as);
890 FlatView *new_view = generate_memory_topology(as->root);
891 int i;
892
893 mem_begin(as);
894 for (i = 0; i < new_view->nr; i++) {
895 MemoryRegionSection mrs =
896 section_from_flat_range(&new_view->ranges[i], as);
897 mem_add(as, &mrs);
898 }
899 mem_commit(as);
900
901 if (!QTAILQ_EMPTY(&as->listeners)) {
902 address_space_update_topology_pass(as, old_view, new_view, false);
903 address_space_update_topology_pass(as, old_view, new_view, true);
904 }
905
906 /* Writes are protected by the BQL. */
907 atomic_rcu_set(&as->current_map, new_view);
908 call_rcu(old_view, flatview_unref, rcu);
909
910 /* Note that all the old MemoryRegions are still alive up to this
911 * point. This relieves most MemoryListeners from the need to
912 * ref/unref the MemoryRegions they get---unless they use them
913 * outside the iothread mutex, in which case precise reference
914 * counting is necessary.
915 */
916 flatview_unref(old_view);
917
918 address_space_update_ioeventfds(as);
919 }
920
921 void memory_region_transaction_begin(void)
922 {
923 qemu_flush_coalesced_mmio_buffer();
924 ++memory_region_transaction_depth;
925 }
926
927 void memory_region_transaction_commit(void)
928 {
929 AddressSpace *as;
930
931 assert(memory_region_transaction_depth);
932 assert(qemu_mutex_iothread_locked());
933
934 --memory_region_transaction_depth;
935 if (!memory_region_transaction_depth) {
936 if (memory_region_update_pending) {
937 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
938
939 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
940 address_space_update_topology(as);
941 }
942 memory_region_update_pending = false;
943 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
944 } else if (ioeventfd_update_pending) {
945 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
946 address_space_update_ioeventfds(as);
947 }
948 ioeventfd_update_pending = false;
949 }
950 }
951 }
952
953 static void memory_region_destructor_none(MemoryRegion *mr)
954 {
955 }
956
957 static void memory_region_destructor_ram(MemoryRegion *mr)
958 {
959 qemu_ram_free(mr->ram_block);
960 }
961
962 static bool memory_region_need_escape(char c)
963 {
964 return c == '/' || c == '[' || c == '\\' || c == ']';
965 }
966
967 static char *memory_region_escape_name(const char *name)
968 {
969 const char *p;
970 char *escaped, *q;
971 uint8_t c;
972 size_t bytes = 0;
973
974 for (p = name; *p; p++) {
975 bytes += memory_region_need_escape(*p) ? 4 : 1;
976 }
977 if (bytes == p - name) {
978 return g_memdup(name, bytes + 1);
979 }
980
981 escaped = g_malloc(bytes + 1);
982 for (p = name, q = escaped; *p; p++) {
983 c = *p;
984 if (unlikely(memory_region_need_escape(c))) {
985 *q++ = '\\';
986 *q++ = 'x';
987 *q++ = "0123456789abcdef"[c >> 4];
988 c = "0123456789abcdef"[c & 15];
989 }
990 *q++ = c;
991 }
992 *q = 0;
993 return escaped;
994 }
995
996 static void memory_region_do_init(MemoryRegion *mr,
997 Object *owner,
998 const char *name,
999 uint64_t size)
1000 {
1001 mr->size = int128_make64(size);
1002 if (size == UINT64_MAX) {
1003 mr->size = int128_2_64();
1004 }
1005 mr->name = g_strdup(name);
1006 mr->owner = owner;
1007 mr->ram_block = NULL;
1008
1009 if (name) {
1010 char *escaped_name = memory_region_escape_name(name);
1011 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1012
1013 if (!owner) {
1014 owner = container_get(qdev_get_machine(), "/unattached");
1015 }
1016
1017 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1018 object_unref(OBJECT(mr));
1019 g_free(name_array);
1020 g_free(escaped_name);
1021 }
1022 }
1023
1024 void memory_region_init(MemoryRegion *mr,
1025 Object *owner,
1026 const char *name,
1027 uint64_t size)
1028 {
1029 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1030 memory_region_do_init(mr, owner, name, size);
1031 }
1032
1033 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1034 void *opaque, Error **errp)
1035 {
1036 MemoryRegion *mr = MEMORY_REGION(obj);
1037 uint64_t value = mr->addr;
1038
1039 visit_type_uint64(v, name, &value, errp);
1040 }
1041
1042 static void memory_region_get_container(Object *obj, Visitor *v,
1043 const char *name, void *opaque,
1044 Error **errp)
1045 {
1046 MemoryRegion *mr = MEMORY_REGION(obj);
1047 gchar *path = (gchar *)"";
1048
1049 if (mr->container) {
1050 path = object_get_canonical_path(OBJECT(mr->container));
1051 }
1052 visit_type_str(v, name, &path, errp);
1053 if (mr->container) {
1054 g_free(path);
1055 }
1056 }
1057
1058 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1059 const char *part)
1060 {
1061 MemoryRegion *mr = MEMORY_REGION(obj);
1062
1063 return OBJECT(mr->container);
1064 }
1065
1066 static void memory_region_get_priority(Object *obj, Visitor *v,
1067 const char *name, void *opaque,
1068 Error **errp)
1069 {
1070 MemoryRegion *mr = MEMORY_REGION(obj);
1071 int32_t value = mr->priority;
1072
1073 visit_type_int32(v, name, &value, errp);
1074 }
1075
1076 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1077 void *opaque, Error **errp)
1078 {
1079 MemoryRegion *mr = MEMORY_REGION(obj);
1080 uint64_t value = memory_region_size(mr);
1081
1082 visit_type_uint64(v, name, &value, errp);
1083 }
1084
1085 static void memory_region_initfn(Object *obj)
1086 {
1087 MemoryRegion *mr = MEMORY_REGION(obj);
1088 ObjectProperty *op;
1089
1090 mr->ops = &unassigned_mem_ops;
1091 mr->enabled = true;
1092 mr->romd_mode = true;
1093 mr->global_locking = true;
1094 mr->destructor = memory_region_destructor_none;
1095 QTAILQ_INIT(&mr->subregions);
1096 QTAILQ_INIT(&mr->coalesced);
1097
1098 op = object_property_add(OBJECT(mr), "container",
1099 "link<" TYPE_MEMORY_REGION ">",
1100 memory_region_get_container,
1101 NULL, /* memory_region_set_container */
1102 NULL, NULL, &error_abort);
1103 op->resolve = memory_region_resolve_container;
1104
1105 object_property_add(OBJECT(mr), "addr", "uint64",
1106 memory_region_get_addr,
1107 NULL, /* memory_region_set_addr */
1108 NULL, NULL, &error_abort);
1109 object_property_add(OBJECT(mr), "priority", "uint32",
1110 memory_region_get_priority,
1111 NULL, /* memory_region_set_priority */
1112 NULL, NULL, &error_abort);
1113 object_property_add(OBJECT(mr), "size", "uint64",
1114 memory_region_get_size,
1115 NULL, /* memory_region_set_size, */
1116 NULL, NULL, &error_abort);
1117 }
1118
1119 static void iommu_memory_region_initfn(Object *obj)
1120 {
1121 MemoryRegion *mr = MEMORY_REGION(obj);
1122
1123 mr->is_iommu = true;
1124 }
1125
1126 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1127 unsigned size)
1128 {
1129 #ifdef DEBUG_UNASSIGNED
1130 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1131 #endif
1132 if (current_cpu != NULL) {
1133 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1134 }
1135 return 0;
1136 }
1137
1138 static void unassigned_mem_write(void *opaque, hwaddr addr,
1139 uint64_t val, unsigned size)
1140 {
1141 #ifdef DEBUG_UNASSIGNED
1142 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1143 #endif
1144 if (current_cpu != NULL) {
1145 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1146 }
1147 }
1148
1149 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1150 unsigned size, bool is_write)
1151 {
1152 return false;
1153 }
1154
1155 const MemoryRegionOps unassigned_mem_ops = {
1156 .valid.accepts = unassigned_mem_accepts,
1157 .endianness = DEVICE_NATIVE_ENDIAN,
1158 };
1159
1160 static uint64_t memory_region_ram_device_read(void *opaque,
1161 hwaddr addr, unsigned size)
1162 {
1163 MemoryRegion *mr = opaque;
1164 uint64_t data = (uint64_t)~0;
1165
1166 switch (size) {
1167 case 1:
1168 data = *(uint8_t *)(mr->ram_block->host + addr);
1169 break;
1170 case 2:
1171 data = *(uint16_t *)(mr->ram_block->host + addr);
1172 break;
1173 case 4:
1174 data = *(uint32_t *)(mr->ram_block->host + addr);
1175 break;
1176 case 8:
1177 data = *(uint64_t *)(mr->ram_block->host + addr);
1178 break;
1179 }
1180
1181 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1182
1183 return data;
1184 }
1185
1186 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1187 uint64_t data, unsigned size)
1188 {
1189 MemoryRegion *mr = opaque;
1190
1191 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1192
1193 switch (size) {
1194 case 1:
1195 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1196 break;
1197 case 2:
1198 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1199 break;
1200 case 4:
1201 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1202 break;
1203 case 8:
1204 *(uint64_t *)(mr->ram_block->host + addr) = data;
1205 break;
1206 }
1207 }
1208
1209 static const MemoryRegionOps ram_device_mem_ops = {
1210 .read = memory_region_ram_device_read,
1211 .write = memory_region_ram_device_write,
1212 .endianness = DEVICE_HOST_ENDIAN,
1213 .valid = {
1214 .min_access_size = 1,
1215 .max_access_size = 8,
1216 .unaligned = true,
1217 },
1218 .impl = {
1219 .min_access_size = 1,
1220 .max_access_size = 8,
1221 .unaligned = true,
1222 },
1223 };
1224
1225 bool memory_region_access_valid(MemoryRegion *mr,
1226 hwaddr addr,
1227 unsigned size,
1228 bool is_write)
1229 {
1230 int access_size_min, access_size_max;
1231 int access_size, i;
1232
1233 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1234 return false;
1235 }
1236
1237 if (!mr->ops->valid.accepts) {
1238 return true;
1239 }
1240
1241 access_size_min = mr->ops->valid.min_access_size;
1242 if (!mr->ops->valid.min_access_size) {
1243 access_size_min = 1;
1244 }
1245
1246 access_size_max = mr->ops->valid.max_access_size;
1247 if (!mr->ops->valid.max_access_size) {
1248 access_size_max = 4;
1249 }
1250
1251 access_size = MAX(MIN(size, access_size_max), access_size_min);
1252 for (i = 0; i < size; i += access_size) {
1253 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1254 is_write)) {
1255 return false;
1256 }
1257 }
1258
1259 return true;
1260 }
1261
1262 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1263 hwaddr addr,
1264 uint64_t *pval,
1265 unsigned size,
1266 MemTxAttrs attrs)
1267 {
1268 *pval = 0;
1269
1270 if (mr->ops->read) {
1271 return access_with_adjusted_size(addr, pval, size,
1272 mr->ops->impl.min_access_size,
1273 mr->ops->impl.max_access_size,
1274 memory_region_read_accessor,
1275 mr, attrs);
1276 } else if (mr->ops->read_with_attrs) {
1277 return access_with_adjusted_size(addr, pval, size,
1278 mr->ops->impl.min_access_size,
1279 mr->ops->impl.max_access_size,
1280 memory_region_read_with_attrs_accessor,
1281 mr, attrs);
1282 } else {
1283 return access_with_adjusted_size(addr, pval, size, 1, 4,
1284 memory_region_oldmmio_read_accessor,
1285 mr, attrs);
1286 }
1287 }
1288
1289 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1290 hwaddr addr,
1291 uint64_t *pval,
1292 unsigned size,
1293 MemTxAttrs attrs)
1294 {
1295 MemTxResult r;
1296
1297 if (!memory_region_access_valid(mr, addr, size, false)) {
1298 *pval = unassigned_mem_read(mr, addr, size);
1299 return MEMTX_DECODE_ERROR;
1300 }
1301
1302 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1303 adjust_endianness(mr, pval, size);
1304 return r;
1305 }
1306
1307 /* Return true if an eventfd was signalled */
1308 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1309 hwaddr addr,
1310 uint64_t data,
1311 unsigned size,
1312 MemTxAttrs attrs)
1313 {
1314 MemoryRegionIoeventfd ioeventfd = {
1315 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1316 .data = data,
1317 };
1318 unsigned i;
1319
1320 for (i = 0; i < mr->ioeventfd_nb; i++) {
1321 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1322 ioeventfd.e = mr->ioeventfds[i].e;
1323
1324 if (memory_region_ioeventfd_equal(ioeventfd, mr->ioeventfds[i])) {
1325 event_notifier_set(ioeventfd.e);
1326 return true;
1327 }
1328 }
1329
1330 return false;
1331 }
1332
1333 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1334 hwaddr addr,
1335 uint64_t data,
1336 unsigned size,
1337 MemTxAttrs attrs)
1338 {
1339 if (!memory_region_access_valid(mr, addr, size, true)) {
1340 unassigned_mem_write(mr, addr, data, size);
1341 return MEMTX_DECODE_ERROR;
1342 }
1343
1344 adjust_endianness(mr, &data, size);
1345
1346 if ((!kvm_eventfds_enabled()) &&
1347 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1348 return MEMTX_OK;
1349 }
1350
1351 if (mr->ops->write) {
1352 return access_with_adjusted_size(addr, &data, size,
1353 mr->ops->impl.min_access_size,
1354 mr->ops->impl.max_access_size,
1355 memory_region_write_accessor, mr,
1356 attrs);
1357 } else if (mr->ops->write_with_attrs) {
1358 return
1359 access_with_adjusted_size(addr, &data, size,
1360 mr->ops->impl.min_access_size,
1361 mr->ops->impl.max_access_size,
1362 memory_region_write_with_attrs_accessor,
1363 mr, attrs);
1364 } else {
1365 return access_with_adjusted_size(addr, &data, size, 1, 4,
1366 memory_region_oldmmio_write_accessor,
1367 mr, attrs);
1368 }
1369 }
1370
1371 void memory_region_init_io(MemoryRegion *mr,
1372 Object *owner,
1373 const MemoryRegionOps *ops,
1374 void *opaque,
1375 const char *name,
1376 uint64_t size)
1377 {
1378 memory_region_init(mr, owner, name, size);
1379 mr->ops = ops ? ops : &unassigned_mem_ops;
1380 mr->opaque = opaque;
1381 mr->terminates = true;
1382 }
1383
1384 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1385 Object *owner,
1386 const char *name,
1387 uint64_t size,
1388 Error **errp)
1389 {
1390 memory_region_init(mr, owner, name, size);
1391 mr->ram = true;
1392 mr->terminates = true;
1393 mr->destructor = memory_region_destructor_ram;
1394 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1395 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1396 }
1397
1398 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1399 Object *owner,
1400 const char *name,
1401 uint64_t size,
1402 uint64_t max_size,
1403 void (*resized)(const char*,
1404 uint64_t length,
1405 void *host),
1406 Error **errp)
1407 {
1408 memory_region_init(mr, owner, name, size);
1409 mr->ram = true;
1410 mr->terminates = true;
1411 mr->destructor = memory_region_destructor_ram;
1412 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1413 mr, errp);
1414 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1415 }
1416
1417 #ifdef __linux__
1418 void memory_region_init_ram_from_file(MemoryRegion *mr,
1419 struct Object *owner,
1420 const char *name,
1421 uint64_t size,
1422 bool share,
1423 const char *path,
1424 Error **errp)
1425 {
1426 memory_region_init(mr, owner, name, size);
1427 mr->ram = true;
1428 mr->terminates = true;
1429 mr->destructor = memory_region_destructor_ram;
1430 mr->ram_block = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1431 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1432 }
1433
1434 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1435 struct Object *owner,
1436 const char *name,
1437 uint64_t size,
1438 bool share,
1439 int fd,
1440 Error **errp)
1441 {
1442 memory_region_init(mr, owner, name, size);
1443 mr->ram = true;
1444 mr->terminates = true;
1445 mr->destructor = memory_region_destructor_ram;
1446 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
1447 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1448 }
1449 #endif
1450
1451 void memory_region_init_ram_ptr(MemoryRegion *mr,
1452 Object *owner,
1453 const char *name,
1454 uint64_t size,
1455 void *ptr)
1456 {
1457 memory_region_init(mr, owner, name, size);
1458 mr->ram = true;
1459 mr->terminates = true;
1460 mr->destructor = memory_region_destructor_ram;
1461 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1462
1463 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1464 assert(ptr != NULL);
1465 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1466 }
1467
1468 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1469 Object *owner,
1470 const char *name,
1471 uint64_t size,
1472 void *ptr)
1473 {
1474 memory_region_init_ram_ptr(mr, owner, name, size, ptr);
1475 mr->ram_device = true;
1476 mr->ops = &ram_device_mem_ops;
1477 mr->opaque = mr;
1478 }
1479
1480 void memory_region_init_alias(MemoryRegion *mr,
1481 Object *owner,
1482 const char *name,
1483 MemoryRegion *orig,
1484 hwaddr offset,
1485 uint64_t size)
1486 {
1487 memory_region_init(mr, owner, name, size);
1488 mr->alias = orig;
1489 mr->alias_offset = offset;
1490 }
1491
1492 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1493 struct Object *owner,
1494 const char *name,
1495 uint64_t size,
1496 Error **errp)
1497 {
1498 memory_region_init(mr, owner, name, size);
1499 mr->ram = true;
1500 mr->readonly = true;
1501 mr->terminates = true;
1502 mr->destructor = memory_region_destructor_ram;
1503 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1504 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1505 }
1506
1507 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1508 Object *owner,
1509 const MemoryRegionOps *ops,
1510 void *opaque,
1511 const char *name,
1512 uint64_t size,
1513 Error **errp)
1514 {
1515 assert(ops);
1516 memory_region_init(mr, owner, name, size);
1517 mr->ops = ops;
1518 mr->opaque = opaque;
1519 mr->terminates = true;
1520 mr->rom_device = true;
1521 mr->destructor = memory_region_destructor_ram;
1522 mr->ram_block = qemu_ram_alloc(size, mr, errp);
1523 }
1524
1525 void memory_region_init_iommu(void *_iommu_mr,
1526 size_t instance_size,
1527 const char *mrtypename,
1528 Object *owner,
1529 const char *name,
1530 uint64_t size)
1531 {
1532 struct IOMMUMemoryRegion *iommu_mr;
1533 struct MemoryRegion *mr;
1534
1535 object_initialize(_iommu_mr, instance_size, mrtypename);
1536 mr = MEMORY_REGION(_iommu_mr);
1537 memory_region_do_init(mr, owner, name, size);
1538 iommu_mr = IOMMU_MEMORY_REGION(mr);
1539 mr->terminates = true; /* then re-forwards */
1540 QLIST_INIT(&iommu_mr->iommu_notify);
1541 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1542 }
1543
1544 static void memory_region_finalize(Object *obj)
1545 {
1546 MemoryRegion *mr = MEMORY_REGION(obj);
1547
1548 assert(!mr->container);
1549
1550 /* We know the region is not visible in any address space (it
1551 * does not have a container and cannot be a root either because
1552 * it has no references, so we can blindly clear mr->enabled.
1553 * memory_region_set_enabled instead could trigger a transaction
1554 * and cause an infinite loop.
1555 */
1556 mr->enabled = false;
1557 memory_region_transaction_begin();
1558 while (!QTAILQ_EMPTY(&mr->subregions)) {
1559 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1560 memory_region_del_subregion(mr, subregion);
1561 }
1562 memory_region_transaction_commit();
1563
1564 mr->destructor(mr);
1565 memory_region_clear_coalescing(mr);
1566 g_free((char *)mr->name);
1567 g_free(mr->ioeventfds);
1568 }
1569
1570 Object *memory_region_owner(MemoryRegion *mr)
1571 {
1572 Object *obj = OBJECT(mr);
1573 return obj->parent;
1574 }
1575
1576 void memory_region_ref(MemoryRegion *mr)
1577 {
1578 /* MMIO callbacks most likely will access data that belongs
1579 * to the owner, hence the need to ref/unref the owner whenever
1580 * the memory region is in use.
1581 *
1582 * The memory region is a child of its owner. As long as the
1583 * owner doesn't call unparent itself on the memory region,
1584 * ref-ing the owner will also keep the memory region alive.
1585 * Memory regions without an owner are supposed to never go away;
1586 * we do not ref/unref them because it slows down DMA sensibly.
1587 */
1588 if (mr && mr->owner) {
1589 object_ref(mr->owner);
1590 }
1591 }
1592
1593 void memory_region_unref(MemoryRegion *mr)
1594 {
1595 if (mr && mr->owner) {
1596 object_unref(mr->owner);
1597 }
1598 }
1599
1600 uint64_t memory_region_size(MemoryRegion *mr)
1601 {
1602 if (int128_eq(mr->size, int128_2_64())) {
1603 return UINT64_MAX;
1604 }
1605 return int128_get64(mr->size);
1606 }
1607
1608 const char *memory_region_name(const MemoryRegion *mr)
1609 {
1610 if (!mr->name) {
1611 ((MemoryRegion *)mr)->name =
1612 object_get_canonical_path_component(OBJECT(mr));
1613 }
1614 return mr->name;
1615 }
1616
1617 bool memory_region_is_ram_device(MemoryRegion *mr)
1618 {
1619 return mr->ram_device;
1620 }
1621
1622 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1623 {
1624 uint8_t mask = mr->dirty_log_mask;
1625 if (global_dirty_log && mr->ram_block) {
1626 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1627 }
1628 return mask;
1629 }
1630
1631 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1632 {
1633 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1634 }
1635
1636 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr)
1637 {
1638 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1639 IOMMUNotifier *iommu_notifier;
1640 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1641
1642 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1643 flags |= iommu_notifier->notifier_flags;
1644 }
1645
1646 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1647 imrc->notify_flag_changed(iommu_mr,
1648 iommu_mr->iommu_notify_flags,
1649 flags);
1650 }
1651
1652 iommu_mr->iommu_notify_flags = flags;
1653 }
1654
1655 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1656 IOMMUNotifier *n)
1657 {
1658 IOMMUMemoryRegion *iommu_mr;
1659
1660 if (mr->alias) {
1661 memory_region_register_iommu_notifier(mr->alias, n);
1662 return;
1663 }
1664
1665 /* We need to register for at least one bitfield */
1666 iommu_mr = IOMMU_MEMORY_REGION(mr);
1667 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1668 assert(n->start <= n->end);
1669 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1670 memory_region_update_iommu_notify_flags(iommu_mr);
1671 }
1672
1673 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1674 {
1675 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1676
1677 if (imrc->get_min_page_size) {
1678 return imrc->get_min_page_size(iommu_mr);
1679 }
1680 return TARGET_PAGE_SIZE;
1681 }
1682
1683 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1684 {
1685 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1686 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1687 hwaddr addr, granularity;
1688 IOMMUTLBEntry iotlb;
1689
1690 /* If the IOMMU has its own replay callback, override */
1691 if (imrc->replay) {
1692 imrc->replay(iommu_mr, n);
1693 return;
1694 }
1695
1696 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1697
1698 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1699 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE);
1700 if (iotlb.perm != IOMMU_NONE) {
1701 n->notify(n, &iotlb);
1702 }
1703
1704 /* if (2^64 - MR size) < granularity, it's possible to get an
1705 * infinite loop here. This should catch such a wraparound */
1706 if ((addr + granularity) < addr) {
1707 break;
1708 }
1709 }
1710 }
1711
1712 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr)
1713 {
1714 IOMMUNotifier *notifier;
1715
1716 IOMMU_NOTIFIER_FOREACH(notifier, iommu_mr) {
1717 memory_region_iommu_replay(iommu_mr, notifier);
1718 }
1719 }
1720
1721 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1722 IOMMUNotifier *n)
1723 {
1724 IOMMUMemoryRegion *iommu_mr;
1725
1726 if (mr->alias) {
1727 memory_region_unregister_iommu_notifier(mr->alias, n);
1728 return;
1729 }
1730 QLIST_REMOVE(n, node);
1731 iommu_mr = IOMMU_MEMORY_REGION(mr);
1732 memory_region_update_iommu_notify_flags(iommu_mr);
1733 }
1734
1735 void memory_region_notify_one(IOMMUNotifier *notifier,
1736 IOMMUTLBEntry *entry)
1737 {
1738 IOMMUNotifierFlag request_flags;
1739
1740 /*
1741 * Skip the notification if the notification does not overlap
1742 * with registered range.
1743 */
1744 if (notifier->start > entry->iova + entry->addr_mask + 1 ||
1745 notifier->end < entry->iova) {
1746 return;
1747 }
1748
1749 if (entry->perm & IOMMU_RW) {
1750 request_flags = IOMMU_NOTIFIER_MAP;
1751 } else {
1752 request_flags = IOMMU_NOTIFIER_UNMAP;
1753 }
1754
1755 if (notifier->notifier_flags & request_flags) {
1756 notifier->notify(notifier, entry);
1757 }
1758 }
1759
1760 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1761 IOMMUTLBEntry entry)
1762 {
1763 IOMMUNotifier *iommu_notifier;
1764
1765 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1766
1767 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1768 memory_region_notify_one(iommu_notifier, &entry);
1769 }
1770 }
1771
1772 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1773 {
1774 uint8_t mask = 1 << client;
1775 uint8_t old_logging;
1776
1777 assert(client == DIRTY_MEMORY_VGA);
1778 old_logging = mr->vga_logging_count;
1779 mr->vga_logging_count += log ? 1 : -1;
1780 if (!!old_logging == !!mr->vga_logging_count) {
1781 return;
1782 }
1783
1784 memory_region_transaction_begin();
1785 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1786 memory_region_update_pending |= mr->enabled;
1787 memory_region_transaction_commit();
1788 }
1789
1790 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1791 hwaddr size, unsigned client)
1792 {
1793 assert(mr->ram_block);
1794 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr) + addr,
1795 size, client);
1796 }
1797
1798 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1799 hwaddr size)
1800 {
1801 assert(mr->ram_block);
1802 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
1803 size,
1804 memory_region_get_dirty_log_mask(mr));
1805 }
1806
1807 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1808 hwaddr size, unsigned client)
1809 {
1810 assert(mr->ram_block);
1811 return cpu_physical_memory_test_and_clear_dirty(
1812 memory_region_get_ram_addr(mr) + addr, size, client);
1813 }
1814
1815 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1816 hwaddr addr,
1817 hwaddr size,
1818 unsigned client)
1819 {
1820 assert(mr->ram_block);
1821 return cpu_physical_memory_snapshot_and_clear_dirty(
1822 memory_region_get_ram_addr(mr) + addr, size, client);
1823 }
1824
1825 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
1826 hwaddr addr, hwaddr size)
1827 {
1828 assert(mr->ram_block);
1829 return cpu_physical_memory_snapshot_get_dirty(snap,
1830 memory_region_get_ram_addr(mr) + addr, size);
1831 }
1832
1833 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1834 {
1835 MemoryListener *listener;
1836 AddressSpace *as;
1837 FlatView *view;
1838 FlatRange *fr;
1839
1840 /* If the same address space has multiple log_sync listeners, we
1841 * visit that address space's FlatView multiple times. But because
1842 * log_sync listeners are rare, it's still cheaper than walking each
1843 * address space once.
1844 */
1845 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1846 if (!listener->log_sync) {
1847 continue;
1848 }
1849 as = listener->address_space;
1850 view = address_space_get_flatview(as);
1851 FOR_EACH_FLAT_RANGE(fr, view) {
1852 if (fr->mr == mr) {
1853 MemoryRegionSection mrs = section_from_flat_range(fr, as);
1854 listener->log_sync(listener, &mrs);
1855 }
1856 }
1857 flatview_unref(view);
1858 }
1859 }
1860
1861 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1862 {
1863 if (mr->readonly != readonly) {
1864 memory_region_transaction_begin();
1865 mr->readonly = readonly;
1866 memory_region_update_pending |= mr->enabled;
1867 memory_region_transaction_commit();
1868 }
1869 }
1870
1871 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1872 {
1873 if (mr->romd_mode != romd_mode) {
1874 memory_region_transaction_begin();
1875 mr->romd_mode = romd_mode;
1876 memory_region_update_pending |= mr->enabled;
1877 memory_region_transaction_commit();
1878 }
1879 }
1880
1881 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1882 hwaddr size, unsigned client)
1883 {
1884 assert(mr->ram_block);
1885 cpu_physical_memory_test_and_clear_dirty(
1886 memory_region_get_ram_addr(mr) + addr, size, client);
1887 }
1888
1889 int memory_region_get_fd(MemoryRegion *mr)
1890 {
1891 int fd;
1892
1893 rcu_read_lock();
1894 while (mr->alias) {
1895 mr = mr->alias;
1896 }
1897 fd = mr->ram_block->fd;
1898 rcu_read_unlock();
1899
1900 return fd;
1901 }
1902
1903 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1904 {
1905 void *ptr;
1906 uint64_t offset = 0;
1907
1908 rcu_read_lock();
1909 while (mr->alias) {
1910 offset += mr->alias_offset;
1911 mr = mr->alias;
1912 }
1913 assert(mr->ram_block);
1914 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
1915 rcu_read_unlock();
1916
1917 return ptr;
1918 }
1919
1920 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
1921 {
1922 RAMBlock *block;
1923
1924 block = qemu_ram_block_from_host(ptr, false, offset);
1925 if (!block) {
1926 return NULL;
1927 }
1928
1929 return block->mr;
1930 }
1931
1932 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1933 {
1934 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
1935 }
1936
1937 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1938 {
1939 assert(mr->ram_block);
1940
1941 qemu_ram_resize(mr->ram_block, newsize, errp);
1942 }
1943
1944 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1945 {
1946 FlatView *view;
1947 FlatRange *fr;
1948 CoalescedMemoryRange *cmr;
1949 AddrRange tmp;
1950 MemoryRegionSection section;
1951
1952 view = address_space_get_flatview(as);
1953 FOR_EACH_FLAT_RANGE(fr, view) {
1954 if (fr->mr == mr) {
1955 section = (MemoryRegionSection) {
1956 .address_space = as,
1957 .offset_within_address_space = int128_get64(fr->addr.start),
1958 .size = fr->addr.size,
1959 };
1960
1961 MEMORY_LISTENER_CALL(as, coalesced_mmio_del, Reverse, &section,
1962 int128_get64(fr->addr.start),
1963 int128_get64(fr->addr.size));
1964 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1965 tmp = addrrange_shift(cmr->addr,
1966 int128_sub(fr->addr.start,
1967 int128_make64(fr->offset_in_region)));
1968 if (!addrrange_intersects(tmp, fr->addr)) {
1969 continue;
1970 }
1971 tmp = addrrange_intersection(tmp, fr->addr);
1972 MEMORY_LISTENER_CALL(as, coalesced_mmio_add, Forward, &section,
1973 int128_get64(tmp.start),
1974 int128_get64(tmp.size));
1975 }
1976 }
1977 }
1978 flatview_unref(view);
1979 }
1980
1981 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1982 {
1983 AddressSpace *as;
1984
1985 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1986 memory_region_update_coalesced_range_as(mr, as);
1987 }
1988 }
1989
1990 void memory_region_set_coalescing(MemoryRegion *mr)
1991 {
1992 memory_region_clear_coalescing(mr);
1993 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1994 }
1995
1996 void memory_region_add_coalescing(MemoryRegion *mr,
1997 hwaddr offset,
1998 uint64_t size)
1999 {
2000 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2001
2002 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2003 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2004 memory_region_update_coalesced_range(mr);
2005 memory_region_set_flush_coalesced(mr);
2006 }
2007
2008 void memory_region_clear_coalescing(MemoryRegion *mr)
2009 {
2010 CoalescedMemoryRange *cmr;
2011 bool updated = false;
2012
2013 qemu_flush_coalesced_mmio_buffer();
2014 mr->flush_coalesced_mmio = false;
2015
2016 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2017 cmr = QTAILQ_FIRST(&mr->coalesced);
2018 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2019 g_free(cmr);
2020 updated = true;
2021 }
2022
2023 if (updated) {
2024 memory_region_update_coalesced_range(mr);
2025 }
2026 }
2027
2028 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2029 {
2030 mr->flush_coalesced_mmio = true;
2031 }
2032
2033 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2034 {
2035 qemu_flush_coalesced_mmio_buffer();
2036 if (QTAILQ_EMPTY(&mr->coalesced)) {
2037 mr->flush_coalesced_mmio = false;
2038 }
2039 }
2040
2041 void memory_region_set_global_locking(MemoryRegion *mr)
2042 {
2043 mr->global_locking = true;
2044 }
2045
2046 void memory_region_clear_global_locking(MemoryRegion *mr)
2047 {
2048 mr->global_locking = false;
2049 }
2050
2051 static bool userspace_eventfd_warning;
2052
2053 void memory_region_add_eventfd(MemoryRegion *mr,
2054 hwaddr addr,
2055 unsigned size,
2056 bool match_data,
2057 uint64_t data,
2058 EventNotifier *e)
2059 {
2060 MemoryRegionIoeventfd mrfd = {
2061 .addr.start = int128_make64(addr),
2062 .addr.size = int128_make64(size),
2063 .match_data = match_data,
2064 .data = data,
2065 .e = e,
2066 };
2067 unsigned i;
2068
2069 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2070 userspace_eventfd_warning))) {
2071 userspace_eventfd_warning = true;
2072 error_report("Using eventfd without MMIO binding in KVM. "
2073 "Suboptimal performance expected");
2074 }
2075
2076 if (size) {
2077 adjust_endianness(mr, &mrfd.data, size);
2078 }
2079 memory_region_transaction_begin();
2080 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2081 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
2082 break;
2083 }
2084 }
2085 ++mr->ioeventfd_nb;
2086 mr->ioeventfds = g_realloc(mr->ioeventfds,
2087 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2088 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2089 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2090 mr->ioeventfds[i] = mrfd;
2091 ioeventfd_update_pending |= mr->enabled;
2092 memory_region_transaction_commit();
2093 }
2094
2095 void memory_region_del_eventfd(MemoryRegion *mr,
2096 hwaddr addr,
2097 unsigned size,
2098 bool match_data,
2099 uint64_t data,
2100 EventNotifier *e)
2101 {
2102 MemoryRegionIoeventfd mrfd = {
2103 .addr.start = int128_make64(addr),
2104 .addr.size = int128_make64(size),
2105 .match_data = match_data,
2106 .data = data,
2107 .e = e,
2108 };
2109 unsigned i;
2110
2111 if (size) {
2112 adjust_endianness(mr, &mrfd.data, size);
2113 }
2114 memory_region_transaction_begin();
2115 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2116 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
2117 break;
2118 }
2119 }
2120 assert(i != mr->ioeventfd_nb);
2121 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2122 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2123 --mr->ioeventfd_nb;
2124 mr->ioeventfds = g_realloc(mr->ioeventfds,
2125 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2126 ioeventfd_update_pending |= mr->enabled;
2127 memory_region_transaction_commit();
2128 }
2129
2130 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2131 {
2132 MemoryRegion *mr = subregion->container;
2133 MemoryRegion *other;
2134
2135 memory_region_transaction_begin();
2136
2137 memory_region_ref(subregion);
2138 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2139 if (subregion->priority >= other->priority) {
2140 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2141 goto done;
2142 }
2143 }
2144 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2145 done:
2146 memory_region_update_pending |= mr->enabled && subregion->enabled;
2147 memory_region_transaction_commit();
2148 }
2149
2150 static void memory_region_add_subregion_common(MemoryRegion *mr,
2151 hwaddr offset,
2152 MemoryRegion *subregion)
2153 {
2154 assert(!subregion->container);
2155 subregion->container = mr;
2156 subregion->addr = offset;
2157 memory_region_update_container_subregions(subregion);
2158 }
2159
2160 void memory_region_add_subregion(MemoryRegion *mr,
2161 hwaddr offset,
2162 MemoryRegion *subregion)
2163 {
2164 subregion->priority = 0;
2165 memory_region_add_subregion_common(mr, offset, subregion);
2166 }
2167
2168 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2169 hwaddr offset,
2170 MemoryRegion *subregion,
2171 int priority)
2172 {
2173 subregion->priority = priority;
2174 memory_region_add_subregion_common(mr, offset, subregion);
2175 }
2176
2177 void memory_region_del_subregion(MemoryRegion *mr,
2178 MemoryRegion *subregion)
2179 {
2180 memory_region_transaction_begin();
2181 assert(subregion->container == mr);
2182 subregion->container = NULL;
2183 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2184 memory_region_unref(subregion);
2185 memory_region_update_pending |= mr->enabled && subregion->enabled;
2186 memory_region_transaction_commit();
2187 }
2188
2189 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2190 {
2191 if (enabled == mr->enabled) {
2192 return;
2193 }
2194 memory_region_transaction_begin();
2195 mr->enabled = enabled;
2196 memory_region_update_pending = true;
2197 memory_region_transaction_commit();
2198 }
2199
2200 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2201 {
2202 Int128 s = int128_make64(size);
2203
2204 if (size == UINT64_MAX) {
2205 s = int128_2_64();
2206 }
2207 if (int128_eq(s, mr->size)) {
2208 return;
2209 }
2210 memory_region_transaction_begin();
2211 mr->size = s;
2212 memory_region_update_pending = true;
2213 memory_region_transaction_commit();
2214 }
2215
2216 static void memory_region_readd_subregion(MemoryRegion *mr)
2217 {
2218 MemoryRegion *container = mr->container;
2219
2220 if (container) {
2221 memory_region_transaction_begin();
2222 memory_region_ref(mr);
2223 memory_region_del_subregion(container, mr);
2224 mr->container = container;
2225 memory_region_update_container_subregions(mr);
2226 memory_region_unref(mr);
2227 memory_region_transaction_commit();
2228 }
2229 }
2230
2231 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2232 {
2233 if (addr != mr->addr) {
2234 mr->addr = addr;
2235 memory_region_readd_subregion(mr);
2236 }
2237 }
2238
2239 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2240 {
2241 assert(mr->alias);
2242
2243 if (offset == mr->alias_offset) {
2244 return;
2245 }
2246
2247 memory_region_transaction_begin();
2248 mr->alias_offset = offset;
2249 memory_region_update_pending |= mr->enabled;
2250 memory_region_transaction_commit();
2251 }
2252
2253 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2254 {
2255 return mr->align;
2256 }
2257
2258 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2259 {
2260 const AddrRange *addr = addr_;
2261 const FlatRange *fr = fr_;
2262
2263 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2264 return -1;
2265 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2266 return 1;
2267 }
2268 return 0;
2269 }
2270
2271 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2272 {
2273 return bsearch(&addr, view->ranges, view->nr,
2274 sizeof(FlatRange), cmp_flatrange_addr);
2275 }
2276
2277 bool memory_region_is_mapped(MemoryRegion *mr)
2278 {
2279 return mr->container ? true : false;
2280 }
2281
2282 /* Same as memory_region_find, but it does not add a reference to the
2283 * returned region. It must be called from an RCU critical section.
2284 */
2285 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2286 hwaddr addr, uint64_t size)
2287 {
2288 MemoryRegionSection ret = { .mr = NULL };
2289 MemoryRegion *root;
2290 AddressSpace *as;
2291 AddrRange range;
2292 FlatView *view;
2293 FlatRange *fr;
2294
2295 addr += mr->addr;
2296 for (root = mr; root->container; ) {
2297 root = root->container;
2298 addr += root->addr;
2299 }
2300
2301 as = memory_region_to_address_space(root);
2302 if (!as) {
2303 return ret;
2304 }
2305 range = addrrange_make(int128_make64(addr), int128_make64(size));
2306
2307 view = atomic_rcu_read(&as->current_map);
2308 fr = flatview_lookup(view, range);
2309 if (!fr) {
2310 return ret;
2311 }
2312
2313 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2314 --fr;
2315 }
2316
2317 ret.mr = fr->mr;
2318 ret.address_space = as;
2319 range = addrrange_intersection(range, fr->addr);
2320 ret.offset_within_region = fr->offset_in_region;
2321 ret.offset_within_region += int128_get64(int128_sub(range.start,
2322 fr->addr.start));
2323 ret.size = range.size;
2324 ret.offset_within_address_space = int128_get64(range.start);
2325 ret.readonly = fr->readonly;
2326 return ret;
2327 }
2328
2329 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2330 hwaddr addr, uint64_t size)
2331 {
2332 MemoryRegionSection ret;
2333 rcu_read_lock();
2334 ret = memory_region_find_rcu(mr, addr, size);
2335 if (ret.mr) {
2336 memory_region_ref(ret.mr);
2337 }
2338 rcu_read_unlock();
2339 return ret;
2340 }
2341
2342 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2343 {
2344 MemoryRegion *mr;
2345
2346 rcu_read_lock();
2347 mr = memory_region_find_rcu(container, addr, 1).mr;
2348 rcu_read_unlock();
2349 return mr && mr != container;
2350 }
2351
2352 void memory_global_dirty_log_sync(void)
2353 {
2354 MemoryListener *listener;
2355 AddressSpace *as;
2356 FlatView *view;
2357 FlatRange *fr;
2358
2359 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2360 if (!listener->log_sync) {
2361 continue;
2362 }
2363 as = listener->address_space;
2364 view = address_space_get_flatview(as);
2365 FOR_EACH_FLAT_RANGE(fr, view) {
2366 if (fr->dirty_log_mask) {
2367 MemoryRegionSection mrs = section_from_flat_range(fr, as);
2368 listener->log_sync(listener, &mrs);
2369 }
2370 }
2371 flatview_unref(view);
2372 }
2373 }
2374
2375 static VMChangeStateEntry *vmstate_change;
2376
2377 void memory_global_dirty_log_start(void)
2378 {
2379 if (vmstate_change) {
2380 qemu_del_vm_change_state_handler(vmstate_change);
2381 vmstate_change = NULL;
2382 }
2383
2384 global_dirty_log = true;
2385
2386 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2387
2388 /* Refresh DIRTY_LOG_MIGRATION bit. */
2389 memory_region_transaction_begin();
2390 memory_region_update_pending = true;
2391 memory_region_transaction_commit();
2392 }
2393
2394 static void memory_global_dirty_log_do_stop(void)
2395 {
2396 global_dirty_log = false;
2397
2398 /* Refresh DIRTY_LOG_MIGRATION bit. */
2399 memory_region_transaction_begin();
2400 memory_region_update_pending = true;
2401 memory_region_transaction_commit();
2402
2403 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2404 }
2405
2406 static void memory_vm_change_state_handler(void *opaque, int running,
2407 RunState state)
2408 {
2409 if (running) {
2410 memory_global_dirty_log_do_stop();
2411
2412 if (vmstate_change) {
2413 qemu_del_vm_change_state_handler(vmstate_change);
2414 vmstate_change = NULL;
2415 }
2416 }
2417 }
2418
2419 void memory_global_dirty_log_stop(void)
2420 {
2421 if (!runstate_is_running()) {
2422 if (vmstate_change) {
2423 return;
2424 }
2425 vmstate_change = qemu_add_vm_change_state_handler(
2426 memory_vm_change_state_handler, NULL);
2427 return;
2428 }
2429
2430 memory_global_dirty_log_do_stop();
2431 }
2432
2433 static void listener_add_address_space(MemoryListener *listener,
2434 AddressSpace *as)
2435 {
2436 FlatView *view;
2437 FlatRange *fr;
2438
2439 if (listener->begin) {
2440 listener->begin(listener);
2441 }
2442 if (global_dirty_log) {
2443 if (listener->log_global_start) {
2444 listener->log_global_start(listener);
2445 }
2446 }
2447
2448 view = address_space_get_flatview(as);
2449 FOR_EACH_FLAT_RANGE(fr, view) {
2450 MemoryRegionSection section = {
2451 .mr = fr->mr,
2452 .address_space = as,
2453 .offset_within_region = fr->offset_in_region,
2454 .size = fr->addr.size,
2455 .offset_within_address_space = int128_get64(fr->addr.start),
2456 .readonly = fr->readonly,
2457 };
2458 if (fr->dirty_log_mask && listener->log_start) {
2459 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2460 }
2461 if (listener->region_add) {
2462 listener->region_add(listener, &section);
2463 }
2464 }
2465 if (listener->commit) {
2466 listener->commit(listener);
2467 }
2468 flatview_unref(view);
2469 }
2470
2471 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2472 {
2473 MemoryListener *other = NULL;
2474
2475 listener->address_space = as;
2476 if (QTAILQ_EMPTY(&memory_listeners)
2477 || listener->priority >= QTAILQ_LAST(&memory_listeners,
2478 memory_listeners)->priority) {
2479 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2480 } else {
2481 QTAILQ_FOREACH(other, &memory_listeners, link) {
2482 if (listener->priority < other->priority) {
2483 break;
2484 }
2485 }
2486 QTAILQ_INSERT_BEFORE(other, listener, link);
2487 }
2488
2489 if (QTAILQ_EMPTY(&as->listeners)
2490 || listener->priority >= QTAILQ_LAST(&as->listeners,
2491 memory_listeners)->priority) {
2492 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2493 } else {
2494 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2495 if (listener->priority < other->priority) {
2496 break;
2497 }
2498 }
2499 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2500 }
2501
2502 listener_add_address_space(listener, as);
2503 }
2504
2505 void memory_listener_unregister(MemoryListener *listener)
2506 {
2507 if (!listener->address_space) {
2508 return;
2509 }
2510
2511 QTAILQ_REMOVE(&memory_listeners, listener, link);
2512 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2513 listener->address_space = NULL;
2514 }
2515
2516 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr)
2517 {
2518 void *host;
2519 unsigned size = 0;
2520 unsigned offset = 0;
2521 Object *new_interface;
2522
2523 if (!mr || !mr->ops->request_ptr) {
2524 return false;
2525 }
2526
2527 /*
2528 * Avoid an update if the request_ptr call
2529 * memory_region_invalidate_mmio_ptr which seems to be likely when we use
2530 * a cache.
2531 */
2532 memory_region_transaction_begin();
2533
2534 host = mr->ops->request_ptr(mr->opaque, addr - mr->addr, &size, &offset);
2535
2536 if (!host || !size) {
2537 memory_region_transaction_commit();
2538 return false;
2539 }
2540
2541 new_interface = object_new("mmio_interface");
2542 qdev_prop_set_uint64(DEVICE(new_interface), "start", offset);
2543 qdev_prop_set_uint64(DEVICE(new_interface), "end", offset + size - 1);
2544 qdev_prop_set_bit(DEVICE(new_interface), "ro", true);
2545 qdev_prop_set_ptr(DEVICE(new_interface), "host_ptr", host);
2546 qdev_prop_set_ptr(DEVICE(new_interface), "subregion", mr);
2547 object_property_set_bool(OBJECT(new_interface), true, "realized", NULL);
2548
2549 memory_region_transaction_commit();
2550 return true;
2551 }
2552
2553 typedef struct MMIOPtrInvalidate {
2554 MemoryRegion *mr;
2555 hwaddr offset;
2556 unsigned size;
2557 int busy;
2558 int allocated;
2559 } MMIOPtrInvalidate;
2560
2561 #define MAX_MMIO_INVALIDATE 10
2562 static MMIOPtrInvalidate mmio_ptr_invalidate_list[MAX_MMIO_INVALIDATE];
2563
2564 static void memory_region_do_invalidate_mmio_ptr(CPUState *cpu,
2565 run_on_cpu_data data)
2566 {
2567 MMIOPtrInvalidate *invalidate_data = (MMIOPtrInvalidate *)data.host_ptr;
2568 MemoryRegion *mr = invalidate_data->mr;
2569 hwaddr offset = invalidate_data->offset;
2570 unsigned size = invalidate_data->size;
2571 MemoryRegionSection section = memory_region_find(mr, offset, size);
2572
2573 qemu_mutex_lock_iothread();
2574
2575 /* Reset dirty so this doesn't happen later. */
2576 cpu_physical_memory_test_and_clear_dirty(offset, size, 1);
2577
2578 if (section.mr != mr) {
2579 /* memory_region_find add a ref on section.mr */
2580 memory_region_unref(section.mr);
2581 if (MMIO_INTERFACE(section.mr->owner)) {
2582 /* We found the interface just drop it. */
2583 object_property_set_bool(section.mr->owner, false, "realized",
2584 NULL);
2585 object_unref(section.mr->owner);
2586 object_unparent(section.mr->owner);
2587 }
2588 }
2589
2590 qemu_mutex_unlock_iothread();
2591
2592 if (invalidate_data->allocated) {
2593 g_free(invalidate_data);
2594 } else {
2595 invalidate_data->busy = 0;
2596 }
2597 }
2598
2599 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
2600 unsigned size)
2601 {
2602 size_t i;
2603 MMIOPtrInvalidate *invalidate_data = NULL;
2604
2605 for (i = 0; i < MAX_MMIO_INVALIDATE; i++) {
2606 if (atomic_cmpxchg(&(mmio_ptr_invalidate_list[i].busy), 0, 1) == 0) {
2607 invalidate_data = &mmio_ptr_invalidate_list[i];
2608 break;
2609 }
2610 }
2611
2612 if (!invalidate_data) {
2613 invalidate_data = g_malloc0(sizeof(MMIOPtrInvalidate));
2614 invalidate_data->allocated = 1;
2615 }
2616
2617 invalidate_data->mr = mr;
2618 invalidate_data->offset = offset;
2619 invalidate_data->size = size;
2620
2621 async_safe_run_on_cpu(first_cpu, memory_region_do_invalidate_mmio_ptr,
2622 RUN_ON_CPU_HOST_PTR(invalidate_data));
2623 }
2624
2625 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2626 {
2627 memory_region_ref(root);
2628 memory_region_transaction_begin();
2629 as->ref_count = 1;
2630 as->root = root;
2631 as->malloced = false;
2632 as->current_map = g_new(FlatView, 1);
2633 flatview_init(as->current_map);
2634 as->ioeventfd_nb = 0;
2635 as->ioeventfds = NULL;
2636 QTAILQ_INIT(&as->listeners);
2637 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2638 as->name = g_strdup(name ? name : "anonymous");
2639 as->dispatch = NULL;
2640 memory_region_update_pending |= root->enabled;
2641 memory_region_transaction_commit();
2642 }
2643
2644 static void do_address_space_destroy(AddressSpace *as)
2645 {
2646 bool do_free = as->malloced;
2647
2648 address_space_destroy_dispatch(as);
2649 assert(QTAILQ_EMPTY(&as->listeners));
2650
2651 flatview_unref(as->current_map);
2652 g_free(as->name);
2653 g_free(as->ioeventfds);
2654 memory_region_unref(as->root);
2655 if (do_free) {
2656 g_free(as);
2657 }
2658 }
2659
2660 AddressSpace *address_space_init_shareable(MemoryRegion *root, const char *name)
2661 {
2662 AddressSpace *as;
2663
2664 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2665 if (root == as->root && as->malloced) {
2666 as->ref_count++;
2667 return as;
2668 }
2669 }
2670
2671 as = g_malloc0(sizeof *as);
2672 address_space_init(as, root, name);
2673 as->malloced = true;
2674 return as;
2675 }
2676
2677 void address_space_destroy(AddressSpace *as)
2678 {
2679 MemoryRegion *root = as->root;
2680
2681 as->ref_count--;
2682 if (as->ref_count) {
2683 return;
2684 }
2685 /* Flush out anything from MemoryListeners listening in on this */
2686 memory_region_transaction_begin();
2687 as->root = NULL;
2688 memory_region_transaction_commit();
2689 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2690
2691 /* At this point, as->dispatch and as->current_map are dummy
2692 * entries that the guest should never use. Wait for the old
2693 * values to expire before freeing the data.
2694 */
2695 as->root = root;
2696 call_rcu(as, do_address_space_destroy, rcu);
2697 }
2698
2699 static const char *memory_region_type(MemoryRegion *mr)
2700 {
2701 if (memory_region_is_ram_device(mr)) {
2702 return "ramd";
2703 } else if (memory_region_is_romd(mr)) {
2704 return "romd";
2705 } else if (memory_region_is_rom(mr)) {
2706 return "rom";
2707 } else if (memory_region_is_ram(mr)) {
2708 return "ram";
2709 } else {
2710 return "i/o";
2711 }
2712 }
2713
2714 typedef struct MemoryRegionList MemoryRegionList;
2715
2716 struct MemoryRegionList {
2717 const MemoryRegion *mr;
2718 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2719 };
2720
2721 typedef QTAILQ_HEAD(mrqueue, MemoryRegionList) MemoryRegionListHead;
2722
2723 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2724 int128_sub((size), int128_one())) : 0)
2725 #define MTREE_INDENT " "
2726
2727 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2728 const MemoryRegion *mr, unsigned int level,
2729 hwaddr base,
2730 MemoryRegionListHead *alias_print_queue)
2731 {
2732 MemoryRegionList *new_ml, *ml, *next_ml;
2733 MemoryRegionListHead submr_print_queue;
2734 const MemoryRegion *submr;
2735 unsigned int i;
2736 hwaddr cur_start, cur_end;
2737
2738 if (!mr) {
2739 return;
2740 }
2741
2742 for (i = 0; i < level; i++) {
2743 mon_printf(f, MTREE_INDENT);
2744 }
2745
2746 cur_start = base + mr->addr;
2747 cur_end = cur_start + MR_SIZE(mr->size);
2748
2749 /*
2750 * Try to detect overflow of memory region. This should never
2751 * happen normally. When it happens, we dump something to warn the
2752 * user who is observing this.
2753 */
2754 if (cur_start < base || cur_end < cur_start) {
2755 mon_printf(f, "[DETECTED OVERFLOW!] ");
2756 }
2757
2758 if (mr->alias) {
2759 MemoryRegionList *ml;
2760 bool found = false;
2761
2762 /* check if the alias is already in the queue */
2763 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2764 if (ml->mr == mr->alias) {
2765 found = true;
2766 }
2767 }
2768
2769 if (!found) {
2770 ml = g_new(MemoryRegionList, 1);
2771 ml->mr = mr->alias;
2772 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2773 }
2774 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2775 " (prio %d, %s): alias %s @%s " TARGET_FMT_plx
2776 "-" TARGET_FMT_plx "%s\n",
2777 cur_start, cur_end,
2778 mr->priority,
2779 memory_region_type((MemoryRegion *)mr),
2780 memory_region_name(mr),
2781 memory_region_name(mr->alias),
2782 mr->alias_offset,
2783 mr->alias_offset + MR_SIZE(mr->size),
2784 mr->enabled ? "" : " [disabled]");
2785 } else {
2786 mon_printf(f,
2787 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %s): %s%s\n",
2788 cur_start, cur_end,
2789 mr->priority,
2790 memory_region_type((MemoryRegion *)mr),
2791 memory_region_name(mr),
2792 mr->enabled ? "" : " [disabled]");
2793 }
2794
2795 QTAILQ_INIT(&submr_print_queue);
2796
2797 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2798 new_ml = g_new(MemoryRegionList, 1);
2799 new_ml->mr = submr;
2800 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2801 if (new_ml->mr->addr < ml->mr->addr ||
2802 (new_ml->mr->addr == ml->mr->addr &&
2803 new_ml->mr->priority > ml->mr->priority)) {
2804 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2805 new_ml = NULL;
2806 break;
2807 }
2808 }
2809 if (new_ml) {
2810 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2811 }
2812 }
2813
2814 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2815 mtree_print_mr(mon_printf, f, ml->mr, level + 1, cur_start,
2816 alias_print_queue);
2817 }
2818
2819 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2820 g_free(ml);
2821 }
2822 }
2823
2824 static void mtree_print_flatview(fprintf_function p, void *f,
2825 AddressSpace *as)
2826 {
2827 FlatView *view = address_space_get_flatview(as);
2828 FlatRange *range = &view->ranges[0];
2829 MemoryRegion *mr;
2830 int n = view->nr;
2831
2832 if (n <= 0) {
2833 p(f, MTREE_INDENT "No rendered FlatView for "
2834 "address space '%s'\n", as->name);
2835 flatview_unref(view);
2836 return;
2837 }
2838
2839 while (n--) {
2840 mr = range->mr;
2841 if (range->offset_in_region) {
2842 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2843 TARGET_FMT_plx " (prio %d, %s): %s @" TARGET_FMT_plx "\n",
2844 int128_get64(range->addr.start),
2845 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2846 mr->priority,
2847 range->readonly ? "rom" : memory_region_type(mr),
2848 memory_region_name(mr),
2849 range->offset_in_region);
2850 } else {
2851 p(f, MTREE_INDENT TARGET_FMT_plx "-"
2852 TARGET_FMT_plx " (prio %d, %s): %s\n",
2853 int128_get64(range->addr.start),
2854 int128_get64(range->addr.start) + MR_SIZE(range->addr.size),
2855 mr->priority,
2856 range->readonly ? "rom" : memory_region_type(mr),
2857 memory_region_name(mr));
2858 }
2859 range++;
2860 }
2861
2862 flatview_unref(view);
2863 }
2864
2865 void mtree_info(fprintf_function mon_printf, void *f, bool flatview)
2866 {
2867 MemoryRegionListHead ml_head;
2868 MemoryRegionList *ml, *ml2;
2869 AddressSpace *as;
2870
2871 if (flatview) {
2872 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2873 mon_printf(f, "address-space (flat view): %s\n", as->name);
2874 mtree_print_flatview(mon_printf, f, as);
2875 mon_printf(f, "\n");
2876 }
2877 return;
2878 }
2879
2880 QTAILQ_INIT(&ml_head);
2881
2882 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2883 mon_printf(f, "address-space: %s\n", as->name);
2884 mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2885 mon_printf(f, "\n");
2886 }
2887
2888 /* print aliased regions */
2889 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
2890 mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2891 mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2892 mon_printf(f, "\n");
2893 }
2894
2895 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
2896 g_free(ml);
2897 }
2898 }
2899
2900 void memory_region_init_ram(MemoryRegion *mr,
2901 struct Object *owner,
2902 const char *name,
2903 uint64_t size,
2904 Error **errp)
2905 {
2906 DeviceState *owner_dev;
2907 Error *err = NULL;
2908
2909 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
2910 if (err) {
2911 error_propagate(errp, err);
2912 return;
2913 }
2914 /* This will assert if owner is neither NULL nor a DeviceState.
2915 * We only want the owner here for the purposes of defining a
2916 * unique name for migration. TODO: Ideally we should implement
2917 * a naming scheme for Objects which are not DeviceStates, in
2918 * which case we can relax this restriction.
2919 */
2920 owner_dev = DEVICE(owner);
2921 vmstate_register_ram(mr, owner_dev);
2922 }
2923
2924 void memory_region_init_rom(MemoryRegion *mr,
2925 struct Object *owner,
2926 const char *name,
2927 uint64_t size,
2928 Error **errp)
2929 {
2930 DeviceState *owner_dev;
2931 Error *err = NULL;
2932
2933 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
2934 if (err) {
2935 error_propagate(errp, err);
2936 return;
2937 }
2938 /* This will assert if owner is neither NULL nor a DeviceState.
2939 * We only want the owner here for the purposes of defining a
2940 * unique name for migration. TODO: Ideally we should implement
2941 * a naming scheme for Objects which are not DeviceStates, in
2942 * which case we can relax this restriction.
2943 */
2944 owner_dev = DEVICE(owner);
2945 vmstate_register_ram(mr, owner_dev);
2946 }
2947
2948 void memory_region_init_rom_device(MemoryRegion *mr,
2949 struct Object *owner,
2950 const MemoryRegionOps *ops,
2951 void *opaque,
2952 const char *name,
2953 uint64_t size,
2954 Error **errp)
2955 {
2956 DeviceState *owner_dev;
2957 Error *err = NULL;
2958
2959 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
2960 name, size, &err);
2961 if (err) {
2962 error_propagate(errp, err);
2963 return;
2964 }
2965 /* This will assert if owner is neither NULL nor a DeviceState.
2966 * We only want the owner here for the purposes of defining a
2967 * unique name for migration. TODO: Ideally we should implement
2968 * a naming scheme for Objects which are not DeviceStates, in
2969 * which case we can relax this restriction.
2970 */
2971 owner_dev = DEVICE(owner);
2972 vmstate_register_ram(mr, owner_dev);
2973 }
2974
2975 static const TypeInfo memory_region_info = {
2976 .parent = TYPE_OBJECT,
2977 .name = TYPE_MEMORY_REGION,
2978 .instance_size = sizeof(MemoryRegion),
2979 .instance_init = memory_region_initfn,
2980 .instance_finalize = memory_region_finalize,
2981 };
2982
2983 static const TypeInfo iommu_memory_region_info = {
2984 .parent = TYPE_MEMORY_REGION,
2985 .name = TYPE_IOMMU_MEMORY_REGION,
2986 .class_size = sizeof(IOMMUMemoryRegionClass),
2987 .instance_size = sizeof(IOMMUMemoryRegion),
2988 .instance_init = iommu_memory_region_initfn,
2989 .abstract = true,
2990 };
2991
2992 static void memory_register_types(void)
2993 {
2994 type_register_static(&memory_region_info);
2995 type_register_static(&iommu_memory_region_info);
2996 }
2997
2998 type_init(memory_register_types)