]> git.proxmox.com Git - mirror_qemu.git/blob - memory.c
memory: add parameter errp to memory_region_init_ram
[mirror_qemu.git] / memory.c
1 /*
2 * Physical memory management
3 *
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
5 *
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
11 *
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
14 */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 /* flat_view_mutex is taken around reading as->current_map; the critical
37 * section is extremely short, so I'm using a single mutex for every AS.
38 * We could also RCU for the read-side.
39 *
40 * The BQL is taken around transaction commits, hence both locks are taken
41 * while writing to as->current_map (with the BQL taken outside).
42 */
43 static QemuMutex flat_view_mutex;
44
45 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static void memory_init(void)
52 {
53 qemu_mutex_init(&flat_view_mutex);
54 }
55
56 typedef struct AddrRange AddrRange;
57
58 /*
59 * Note that signed integers are needed for negative offsetting in aliases
60 * (large MemoryRegion::alias_offset).
61 */
62 struct AddrRange {
63 Int128 start;
64 Int128 size;
65 };
66
67 static AddrRange addrrange_make(Int128 start, Int128 size)
68 {
69 return (AddrRange) { start, size };
70 }
71
72 static bool addrrange_equal(AddrRange r1, AddrRange r2)
73 {
74 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
75 }
76
77 static Int128 addrrange_end(AddrRange r)
78 {
79 return int128_add(r.start, r.size);
80 }
81
82 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
83 {
84 int128_addto(&range.start, delta);
85 return range;
86 }
87
88 static bool addrrange_contains(AddrRange range, Int128 addr)
89 {
90 return int128_ge(addr, range.start)
91 && int128_lt(addr, addrrange_end(range));
92 }
93
94 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
95 {
96 return addrrange_contains(r1, r2.start)
97 || addrrange_contains(r2, r1.start);
98 }
99
100 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
101 {
102 Int128 start = int128_max(r1.start, r2.start);
103 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
104 return addrrange_make(start, int128_sub(end, start));
105 }
106
107 enum ListenerDirection { Forward, Reverse };
108
109 static bool memory_listener_match(MemoryListener *listener,
110 MemoryRegionSection *section)
111 {
112 return !listener->address_space_filter
113 || listener->address_space_filter == section->address_space;
114 }
115
116 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
117 do { \
118 MemoryListener *_listener; \
119 \
120 switch (_direction) { \
121 case Forward: \
122 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
123 if (_listener->_callback) { \
124 _listener->_callback(_listener, ##_args); \
125 } \
126 } \
127 break; \
128 case Reverse: \
129 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
130 memory_listeners, link) { \
131 if (_listener->_callback) { \
132 _listener->_callback(_listener, ##_args); \
133 } \
134 } \
135 break; \
136 default: \
137 abort(); \
138 } \
139 } while (0)
140
141 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
142 do { \
143 MemoryListener *_listener; \
144 \
145 switch (_direction) { \
146 case Forward: \
147 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
148 if (_listener->_callback \
149 && memory_listener_match(_listener, _section)) { \
150 _listener->_callback(_listener, _section, ##_args); \
151 } \
152 } \
153 break; \
154 case Reverse: \
155 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
156 memory_listeners, link) { \
157 if (_listener->_callback \
158 && memory_listener_match(_listener, _section)) { \
159 _listener->_callback(_listener, _section, ##_args); \
160 } \
161 } \
162 break; \
163 default: \
164 abort(); \
165 } \
166 } while (0)
167
168 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
169 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback) \
170 MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) { \
171 .mr = (fr)->mr, \
172 .address_space = (as), \
173 .offset_within_region = (fr)->offset_in_region, \
174 .size = (fr)->addr.size, \
175 .offset_within_address_space = int128_get64((fr)->addr.start), \
176 .readonly = (fr)->readonly, \
177 }))
178
179 struct CoalescedMemoryRange {
180 AddrRange addr;
181 QTAILQ_ENTRY(CoalescedMemoryRange) link;
182 };
183
184 struct MemoryRegionIoeventfd {
185 AddrRange addr;
186 bool match_data;
187 uint64_t data;
188 EventNotifier *e;
189 };
190
191 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
192 MemoryRegionIoeventfd b)
193 {
194 if (int128_lt(a.addr.start, b.addr.start)) {
195 return true;
196 } else if (int128_gt(a.addr.start, b.addr.start)) {
197 return false;
198 } else if (int128_lt(a.addr.size, b.addr.size)) {
199 return true;
200 } else if (int128_gt(a.addr.size, b.addr.size)) {
201 return false;
202 } else if (a.match_data < b.match_data) {
203 return true;
204 } else if (a.match_data > b.match_data) {
205 return false;
206 } else if (a.match_data) {
207 if (a.data < b.data) {
208 return true;
209 } else if (a.data > b.data) {
210 return false;
211 }
212 }
213 if (a.e < b.e) {
214 return true;
215 } else if (a.e > b.e) {
216 return false;
217 }
218 return false;
219 }
220
221 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
222 MemoryRegionIoeventfd b)
223 {
224 return !memory_region_ioeventfd_before(a, b)
225 && !memory_region_ioeventfd_before(b, a);
226 }
227
228 typedef struct FlatRange FlatRange;
229 typedef struct FlatView FlatView;
230
231 /* Range of memory in the global map. Addresses are absolute. */
232 struct FlatRange {
233 MemoryRegion *mr;
234 hwaddr offset_in_region;
235 AddrRange addr;
236 uint8_t dirty_log_mask;
237 bool romd_mode;
238 bool readonly;
239 };
240
241 /* Flattened global view of current active memory hierarchy. Kept in sorted
242 * order.
243 */
244 struct FlatView {
245 unsigned ref;
246 FlatRange *ranges;
247 unsigned nr;
248 unsigned nr_allocated;
249 };
250
251 typedef struct AddressSpaceOps AddressSpaceOps;
252
253 #define FOR_EACH_FLAT_RANGE(var, view) \
254 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
255
256 static bool flatrange_equal(FlatRange *a, FlatRange *b)
257 {
258 return a->mr == b->mr
259 && addrrange_equal(a->addr, b->addr)
260 && a->offset_in_region == b->offset_in_region
261 && a->romd_mode == b->romd_mode
262 && a->readonly == b->readonly;
263 }
264
265 static void flatview_init(FlatView *view)
266 {
267 view->ref = 1;
268 view->ranges = NULL;
269 view->nr = 0;
270 view->nr_allocated = 0;
271 }
272
273 /* Insert a range into a given position. Caller is responsible for maintaining
274 * sorting order.
275 */
276 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
277 {
278 if (view->nr == view->nr_allocated) {
279 view->nr_allocated = MAX(2 * view->nr, 10);
280 view->ranges = g_realloc(view->ranges,
281 view->nr_allocated * sizeof(*view->ranges));
282 }
283 memmove(view->ranges + pos + 1, view->ranges + pos,
284 (view->nr - pos) * sizeof(FlatRange));
285 view->ranges[pos] = *range;
286 memory_region_ref(range->mr);
287 ++view->nr;
288 }
289
290 static void flatview_destroy(FlatView *view)
291 {
292 int i;
293
294 for (i = 0; i < view->nr; i++) {
295 memory_region_unref(view->ranges[i].mr);
296 }
297 g_free(view->ranges);
298 g_free(view);
299 }
300
301 static void flatview_ref(FlatView *view)
302 {
303 atomic_inc(&view->ref);
304 }
305
306 static void flatview_unref(FlatView *view)
307 {
308 if (atomic_fetch_dec(&view->ref) == 1) {
309 flatview_destroy(view);
310 }
311 }
312
313 static bool can_merge(FlatRange *r1, FlatRange *r2)
314 {
315 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
316 && r1->mr == r2->mr
317 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
318 r1->addr.size),
319 int128_make64(r2->offset_in_region))
320 && r1->dirty_log_mask == r2->dirty_log_mask
321 && r1->romd_mode == r2->romd_mode
322 && r1->readonly == r2->readonly;
323 }
324
325 /* Attempt to simplify a view by merging adjacent ranges */
326 static void flatview_simplify(FlatView *view)
327 {
328 unsigned i, j;
329
330 i = 0;
331 while (i < view->nr) {
332 j = i + 1;
333 while (j < view->nr
334 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
335 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
336 ++j;
337 }
338 ++i;
339 memmove(&view->ranges[i], &view->ranges[j],
340 (view->nr - j) * sizeof(view->ranges[j]));
341 view->nr -= j - i;
342 }
343 }
344
345 static bool memory_region_big_endian(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
349 #else
350 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static bool memory_region_wrong_endianness(MemoryRegion *mr)
355 {
356 #ifdef TARGET_WORDS_BIGENDIAN
357 return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
358 #else
359 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
360 #endif
361 }
362
363 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
364 {
365 if (memory_region_wrong_endianness(mr)) {
366 switch (size) {
367 case 1:
368 break;
369 case 2:
370 *data = bswap16(*data);
371 break;
372 case 4:
373 *data = bswap32(*data);
374 break;
375 case 8:
376 *data = bswap64(*data);
377 break;
378 default:
379 abort();
380 }
381 }
382 }
383
384 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
385 hwaddr addr,
386 uint64_t *value,
387 unsigned size,
388 unsigned shift,
389 uint64_t mask)
390 {
391 uint64_t tmp;
392
393 tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
394 trace_memory_region_ops_read(mr, addr, tmp, size);
395 *value |= (tmp & mask) << shift;
396 }
397
398 static void memory_region_read_accessor(MemoryRegion *mr,
399 hwaddr addr,
400 uint64_t *value,
401 unsigned size,
402 unsigned shift,
403 uint64_t mask)
404 {
405 uint64_t tmp;
406
407 if (mr->flush_coalesced_mmio) {
408 qemu_flush_coalesced_mmio_buffer();
409 }
410 tmp = mr->ops->read(mr->opaque, addr, size);
411 trace_memory_region_ops_read(mr, addr, tmp, size);
412 *value |= (tmp & mask) << shift;
413 }
414
415 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
416 hwaddr addr,
417 uint64_t *value,
418 unsigned size,
419 unsigned shift,
420 uint64_t mask)
421 {
422 uint64_t tmp;
423
424 tmp = (*value >> shift) & mask;
425 trace_memory_region_ops_write(mr, addr, tmp, size);
426 mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
427 }
428
429 static void memory_region_write_accessor(MemoryRegion *mr,
430 hwaddr addr,
431 uint64_t *value,
432 unsigned size,
433 unsigned shift,
434 uint64_t mask)
435 {
436 uint64_t tmp;
437
438 if (mr->flush_coalesced_mmio) {
439 qemu_flush_coalesced_mmio_buffer();
440 }
441 tmp = (*value >> shift) & mask;
442 trace_memory_region_ops_write(mr, addr, tmp, size);
443 mr->ops->write(mr->opaque, addr, tmp, size);
444 }
445
446 static void access_with_adjusted_size(hwaddr addr,
447 uint64_t *value,
448 unsigned size,
449 unsigned access_size_min,
450 unsigned access_size_max,
451 void (*access)(MemoryRegion *mr,
452 hwaddr addr,
453 uint64_t *value,
454 unsigned size,
455 unsigned shift,
456 uint64_t mask),
457 MemoryRegion *mr)
458 {
459 uint64_t access_mask;
460 unsigned access_size;
461 unsigned i;
462
463 if (!access_size_min) {
464 access_size_min = 1;
465 }
466 if (!access_size_max) {
467 access_size_max = 4;
468 }
469
470 /* FIXME: support unaligned access? */
471 access_size = MAX(MIN(size, access_size_max), access_size_min);
472 access_mask = -1ULL >> (64 - access_size * 8);
473 if (memory_region_big_endian(mr)) {
474 for (i = 0; i < size; i += access_size) {
475 access(mr, addr + i, value, access_size,
476 (size - access_size - i) * 8, access_mask);
477 }
478 } else {
479 for (i = 0; i < size; i += access_size) {
480 access(mr, addr + i, value, access_size, i * 8, access_mask);
481 }
482 }
483 }
484
485 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
486 {
487 AddressSpace *as;
488
489 while (mr->container) {
490 mr = mr->container;
491 }
492 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
493 if (mr == as->root) {
494 return as;
495 }
496 }
497 return NULL;
498 }
499
500 /* Render a memory region into the global view. Ranges in @view obscure
501 * ranges in @mr.
502 */
503 static void render_memory_region(FlatView *view,
504 MemoryRegion *mr,
505 Int128 base,
506 AddrRange clip,
507 bool readonly)
508 {
509 MemoryRegion *subregion;
510 unsigned i;
511 hwaddr offset_in_region;
512 Int128 remain;
513 Int128 now;
514 FlatRange fr;
515 AddrRange tmp;
516
517 if (!mr->enabled) {
518 return;
519 }
520
521 int128_addto(&base, int128_make64(mr->addr));
522 readonly |= mr->readonly;
523
524 tmp = addrrange_make(base, mr->size);
525
526 if (!addrrange_intersects(tmp, clip)) {
527 return;
528 }
529
530 clip = addrrange_intersection(tmp, clip);
531
532 if (mr->alias) {
533 int128_subfrom(&base, int128_make64(mr->alias->addr));
534 int128_subfrom(&base, int128_make64(mr->alias_offset));
535 render_memory_region(view, mr->alias, base, clip, readonly);
536 return;
537 }
538
539 /* Render subregions in priority order. */
540 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
541 render_memory_region(view, subregion, base, clip, readonly);
542 }
543
544 if (!mr->terminates) {
545 return;
546 }
547
548 offset_in_region = int128_get64(int128_sub(clip.start, base));
549 base = clip.start;
550 remain = clip.size;
551
552 fr.mr = mr;
553 fr.dirty_log_mask = mr->dirty_log_mask;
554 fr.romd_mode = mr->romd_mode;
555 fr.readonly = readonly;
556
557 /* Render the region itself into any gaps left by the current view. */
558 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
559 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
560 continue;
561 }
562 if (int128_lt(base, view->ranges[i].addr.start)) {
563 now = int128_min(remain,
564 int128_sub(view->ranges[i].addr.start, base));
565 fr.offset_in_region = offset_in_region;
566 fr.addr = addrrange_make(base, now);
567 flatview_insert(view, i, &fr);
568 ++i;
569 int128_addto(&base, now);
570 offset_in_region += int128_get64(now);
571 int128_subfrom(&remain, now);
572 }
573 now = int128_sub(int128_min(int128_add(base, remain),
574 addrrange_end(view->ranges[i].addr)),
575 base);
576 int128_addto(&base, now);
577 offset_in_region += int128_get64(now);
578 int128_subfrom(&remain, now);
579 }
580 if (int128_nz(remain)) {
581 fr.offset_in_region = offset_in_region;
582 fr.addr = addrrange_make(base, remain);
583 flatview_insert(view, i, &fr);
584 }
585 }
586
587 /* Render a memory topology into a list of disjoint absolute ranges. */
588 static FlatView *generate_memory_topology(MemoryRegion *mr)
589 {
590 FlatView *view;
591
592 view = g_new(FlatView, 1);
593 flatview_init(view);
594
595 if (mr) {
596 render_memory_region(view, mr, int128_zero(),
597 addrrange_make(int128_zero(), int128_2_64()), false);
598 }
599 flatview_simplify(view);
600
601 return view;
602 }
603
604 static void address_space_add_del_ioeventfds(AddressSpace *as,
605 MemoryRegionIoeventfd *fds_new,
606 unsigned fds_new_nb,
607 MemoryRegionIoeventfd *fds_old,
608 unsigned fds_old_nb)
609 {
610 unsigned iold, inew;
611 MemoryRegionIoeventfd *fd;
612 MemoryRegionSection section;
613
614 /* Generate a symmetric difference of the old and new fd sets, adding
615 * and deleting as necessary.
616 */
617
618 iold = inew = 0;
619 while (iold < fds_old_nb || inew < fds_new_nb) {
620 if (iold < fds_old_nb
621 && (inew == fds_new_nb
622 || memory_region_ioeventfd_before(fds_old[iold],
623 fds_new[inew]))) {
624 fd = &fds_old[iold];
625 section = (MemoryRegionSection) {
626 .address_space = as,
627 .offset_within_address_space = int128_get64(fd->addr.start),
628 .size = fd->addr.size,
629 };
630 MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
631 fd->match_data, fd->data, fd->e);
632 ++iold;
633 } else if (inew < fds_new_nb
634 && (iold == fds_old_nb
635 || memory_region_ioeventfd_before(fds_new[inew],
636 fds_old[iold]))) {
637 fd = &fds_new[inew];
638 section = (MemoryRegionSection) {
639 .address_space = as,
640 .offset_within_address_space = int128_get64(fd->addr.start),
641 .size = fd->addr.size,
642 };
643 MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
644 fd->match_data, fd->data, fd->e);
645 ++inew;
646 } else {
647 ++iold;
648 ++inew;
649 }
650 }
651 }
652
653 static FlatView *address_space_get_flatview(AddressSpace *as)
654 {
655 FlatView *view;
656
657 qemu_mutex_lock(&flat_view_mutex);
658 view = as->current_map;
659 flatview_ref(view);
660 qemu_mutex_unlock(&flat_view_mutex);
661 return view;
662 }
663
664 static void address_space_update_ioeventfds(AddressSpace *as)
665 {
666 FlatView *view;
667 FlatRange *fr;
668 unsigned ioeventfd_nb = 0;
669 MemoryRegionIoeventfd *ioeventfds = NULL;
670 AddrRange tmp;
671 unsigned i;
672
673 view = address_space_get_flatview(as);
674 FOR_EACH_FLAT_RANGE(fr, view) {
675 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
676 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
677 int128_sub(fr->addr.start,
678 int128_make64(fr->offset_in_region)));
679 if (addrrange_intersects(fr->addr, tmp)) {
680 ++ioeventfd_nb;
681 ioeventfds = g_realloc(ioeventfds,
682 ioeventfd_nb * sizeof(*ioeventfds));
683 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
684 ioeventfds[ioeventfd_nb-1].addr = tmp;
685 }
686 }
687 }
688
689 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
690 as->ioeventfds, as->ioeventfd_nb);
691
692 g_free(as->ioeventfds);
693 as->ioeventfds = ioeventfds;
694 as->ioeventfd_nb = ioeventfd_nb;
695 flatview_unref(view);
696 }
697
698 static void address_space_update_topology_pass(AddressSpace *as,
699 const FlatView *old_view,
700 const FlatView *new_view,
701 bool adding)
702 {
703 unsigned iold, inew;
704 FlatRange *frold, *frnew;
705
706 /* Generate a symmetric difference of the old and new memory maps.
707 * Kill ranges in the old map, and instantiate ranges in the new map.
708 */
709 iold = inew = 0;
710 while (iold < old_view->nr || inew < new_view->nr) {
711 if (iold < old_view->nr) {
712 frold = &old_view->ranges[iold];
713 } else {
714 frold = NULL;
715 }
716 if (inew < new_view->nr) {
717 frnew = &new_view->ranges[inew];
718 } else {
719 frnew = NULL;
720 }
721
722 if (frold
723 && (!frnew
724 || int128_lt(frold->addr.start, frnew->addr.start)
725 || (int128_eq(frold->addr.start, frnew->addr.start)
726 && !flatrange_equal(frold, frnew)))) {
727 /* In old but not in new, or in both but attributes changed. */
728
729 if (!adding) {
730 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
731 }
732
733 ++iold;
734 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
735 /* In both and unchanged (except logging may have changed) */
736
737 if (adding) {
738 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
739 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
740 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
741 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
742 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
743 }
744 }
745
746 ++iold;
747 ++inew;
748 } else {
749 /* In new */
750
751 if (adding) {
752 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
753 }
754
755 ++inew;
756 }
757 }
758 }
759
760
761 static void address_space_update_topology(AddressSpace *as)
762 {
763 FlatView *old_view = address_space_get_flatview(as);
764 FlatView *new_view = generate_memory_topology(as->root);
765
766 address_space_update_topology_pass(as, old_view, new_view, false);
767 address_space_update_topology_pass(as, old_view, new_view, true);
768
769 qemu_mutex_lock(&flat_view_mutex);
770 flatview_unref(as->current_map);
771 as->current_map = new_view;
772 qemu_mutex_unlock(&flat_view_mutex);
773
774 /* Note that all the old MemoryRegions are still alive up to this
775 * point. This relieves most MemoryListeners from the need to
776 * ref/unref the MemoryRegions they get---unless they use them
777 * outside the iothread mutex, in which case precise reference
778 * counting is necessary.
779 */
780 flatview_unref(old_view);
781
782 address_space_update_ioeventfds(as);
783 }
784
785 void memory_region_transaction_begin(void)
786 {
787 qemu_flush_coalesced_mmio_buffer();
788 ++memory_region_transaction_depth;
789 }
790
791 static void memory_region_clear_pending(void)
792 {
793 memory_region_update_pending = false;
794 ioeventfd_update_pending = false;
795 }
796
797 void memory_region_transaction_commit(void)
798 {
799 AddressSpace *as;
800
801 assert(memory_region_transaction_depth);
802 --memory_region_transaction_depth;
803 if (!memory_region_transaction_depth) {
804 if (memory_region_update_pending) {
805 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
806
807 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
808 address_space_update_topology(as);
809 }
810
811 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
812 } else if (ioeventfd_update_pending) {
813 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
814 address_space_update_ioeventfds(as);
815 }
816 }
817 memory_region_clear_pending();
818 }
819 }
820
821 static void memory_region_destructor_none(MemoryRegion *mr)
822 {
823 }
824
825 static void memory_region_destructor_ram(MemoryRegion *mr)
826 {
827 qemu_ram_free(mr->ram_addr);
828 }
829
830 static void memory_region_destructor_alias(MemoryRegion *mr)
831 {
832 memory_region_unref(mr->alias);
833 }
834
835 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
836 {
837 qemu_ram_free_from_ptr(mr->ram_addr);
838 }
839
840 static void memory_region_destructor_rom_device(MemoryRegion *mr)
841 {
842 qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
843 }
844
845 static bool memory_region_need_escape(char c)
846 {
847 return c == '/' || c == '[' || c == '\\' || c == ']';
848 }
849
850 static char *memory_region_escape_name(const char *name)
851 {
852 const char *p;
853 char *escaped, *q;
854 uint8_t c;
855 size_t bytes = 0;
856
857 for (p = name; *p; p++) {
858 bytes += memory_region_need_escape(*p) ? 4 : 1;
859 }
860 if (bytes == p - name) {
861 return g_memdup(name, bytes + 1);
862 }
863
864 escaped = g_malloc(bytes + 1);
865 for (p = name, q = escaped; *p; p++) {
866 c = *p;
867 if (unlikely(memory_region_need_escape(c))) {
868 *q++ = '\\';
869 *q++ = 'x';
870 *q++ = "0123456789abcdef"[c >> 4];
871 c = "0123456789abcdef"[c & 15];
872 }
873 *q++ = c;
874 }
875 *q = 0;
876 return escaped;
877 }
878
879 void memory_region_init(MemoryRegion *mr,
880 Object *owner,
881 const char *name,
882 uint64_t size)
883 {
884 if (!owner) {
885 owner = qdev_get_machine();
886 }
887
888 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
889 mr->size = int128_make64(size);
890 if (size == UINT64_MAX) {
891 mr->size = int128_2_64();
892 }
893 mr->name = g_strdup(name);
894
895 if (name) {
896 char *escaped_name = memory_region_escape_name(name);
897 char *name_array = g_strdup_printf("%s[*]", escaped_name);
898 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
899 object_unref(OBJECT(mr));
900 g_free(name_array);
901 g_free(escaped_name);
902 }
903 }
904
905 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
906 const char *name, Error **errp)
907 {
908 MemoryRegion *mr = MEMORY_REGION(obj);
909 uint64_t value = mr->addr;
910
911 visit_type_uint64(v, &value, name, errp);
912 }
913
914 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
915 const char *name, Error **errp)
916 {
917 MemoryRegion *mr = MEMORY_REGION(obj);
918 gchar *path = (gchar *)"";
919
920 if (mr->container) {
921 path = object_get_canonical_path(OBJECT(mr->container));
922 }
923 visit_type_str(v, &path, name, errp);
924 if (mr->container) {
925 g_free(path);
926 }
927 }
928
929 static Object *memory_region_resolve_container(Object *obj, void *opaque,
930 const char *part)
931 {
932 MemoryRegion *mr = MEMORY_REGION(obj);
933
934 return OBJECT(mr->container);
935 }
936
937 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
938 const char *name, Error **errp)
939 {
940 MemoryRegion *mr = MEMORY_REGION(obj);
941 int32_t value = mr->priority;
942
943 visit_type_int32(v, &value, name, errp);
944 }
945
946 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
947 {
948 MemoryRegion *mr = MEMORY_REGION(obj);
949
950 return mr->may_overlap;
951 }
952
953 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
954 const char *name, Error **errp)
955 {
956 MemoryRegion *mr = MEMORY_REGION(obj);
957 uint64_t value = memory_region_size(mr);
958
959 visit_type_uint64(v, &value, name, errp);
960 }
961
962 static void memory_region_initfn(Object *obj)
963 {
964 MemoryRegion *mr = MEMORY_REGION(obj);
965 ObjectProperty *op;
966
967 mr->ops = &unassigned_mem_ops;
968 mr->enabled = true;
969 mr->romd_mode = true;
970 mr->destructor = memory_region_destructor_none;
971 QTAILQ_INIT(&mr->subregions);
972 QTAILQ_INIT(&mr->coalesced);
973
974 op = object_property_add(OBJECT(mr), "container",
975 "link<" TYPE_MEMORY_REGION ">",
976 memory_region_get_container,
977 NULL, /* memory_region_set_container */
978 NULL, NULL, &error_abort);
979 op->resolve = memory_region_resolve_container;
980
981 object_property_add(OBJECT(mr), "addr", "uint64",
982 memory_region_get_addr,
983 NULL, /* memory_region_set_addr */
984 NULL, NULL, &error_abort);
985 object_property_add(OBJECT(mr), "priority", "uint32",
986 memory_region_get_priority,
987 NULL, /* memory_region_set_priority */
988 NULL, NULL, &error_abort);
989 object_property_add_bool(OBJECT(mr), "may-overlap",
990 memory_region_get_may_overlap,
991 NULL, /* memory_region_set_may_overlap */
992 &error_abort);
993 object_property_add(OBJECT(mr), "size", "uint64",
994 memory_region_get_size,
995 NULL, /* memory_region_set_size, */
996 NULL, NULL, &error_abort);
997 }
998
999 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1000 unsigned size)
1001 {
1002 #ifdef DEBUG_UNASSIGNED
1003 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1004 #endif
1005 if (current_cpu != NULL) {
1006 cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1007 }
1008 return 0;
1009 }
1010
1011 static void unassigned_mem_write(void *opaque, hwaddr addr,
1012 uint64_t val, unsigned size)
1013 {
1014 #ifdef DEBUG_UNASSIGNED
1015 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1016 #endif
1017 if (current_cpu != NULL) {
1018 cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1019 }
1020 }
1021
1022 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1023 unsigned size, bool is_write)
1024 {
1025 return false;
1026 }
1027
1028 const MemoryRegionOps unassigned_mem_ops = {
1029 .valid.accepts = unassigned_mem_accepts,
1030 .endianness = DEVICE_NATIVE_ENDIAN,
1031 };
1032
1033 bool memory_region_access_valid(MemoryRegion *mr,
1034 hwaddr addr,
1035 unsigned size,
1036 bool is_write)
1037 {
1038 int access_size_min, access_size_max;
1039 int access_size, i;
1040
1041 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1042 return false;
1043 }
1044
1045 if (!mr->ops->valid.accepts) {
1046 return true;
1047 }
1048
1049 access_size_min = mr->ops->valid.min_access_size;
1050 if (!mr->ops->valid.min_access_size) {
1051 access_size_min = 1;
1052 }
1053
1054 access_size_max = mr->ops->valid.max_access_size;
1055 if (!mr->ops->valid.max_access_size) {
1056 access_size_max = 4;
1057 }
1058
1059 access_size = MAX(MIN(size, access_size_max), access_size_min);
1060 for (i = 0; i < size; i += access_size) {
1061 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1062 is_write)) {
1063 return false;
1064 }
1065 }
1066
1067 return true;
1068 }
1069
1070 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1071 hwaddr addr,
1072 unsigned size)
1073 {
1074 uint64_t data = 0;
1075
1076 if (mr->ops->read) {
1077 access_with_adjusted_size(addr, &data, size,
1078 mr->ops->impl.min_access_size,
1079 mr->ops->impl.max_access_size,
1080 memory_region_read_accessor, mr);
1081 } else {
1082 access_with_adjusted_size(addr, &data, size, 1, 4,
1083 memory_region_oldmmio_read_accessor, mr);
1084 }
1085
1086 return data;
1087 }
1088
1089 static bool memory_region_dispatch_read(MemoryRegion *mr,
1090 hwaddr addr,
1091 uint64_t *pval,
1092 unsigned size)
1093 {
1094 if (!memory_region_access_valid(mr, addr, size, false)) {
1095 *pval = unassigned_mem_read(mr, addr, size);
1096 return true;
1097 }
1098
1099 *pval = memory_region_dispatch_read1(mr, addr, size);
1100 adjust_endianness(mr, pval, size);
1101 return false;
1102 }
1103
1104 static bool memory_region_dispatch_write(MemoryRegion *mr,
1105 hwaddr addr,
1106 uint64_t data,
1107 unsigned size)
1108 {
1109 if (!memory_region_access_valid(mr, addr, size, true)) {
1110 unassigned_mem_write(mr, addr, data, size);
1111 return true;
1112 }
1113
1114 adjust_endianness(mr, &data, size);
1115
1116 if (mr->ops->write) {
1117 access_with_adjusted_size(addr, &data, size,
1118 mr->ops->impl.min_access_size,
1119 mr->ops->impl.max_access_size,
1120 memory_region_write_accessor, mr);
1121 } else {
1122 access_with_adjusted_size(addr, &data, size, 1, 4,
1123 memory_region_oldmmio_write_accessor, mr);
1124 }
1125 return false;
1126 }
1127
1128 void memory_region_init_io(MemoryRegion *mr,
1129 Object *owner,
1130 const MemoryRegionOps *ops,
1131 void *opaque,
1132 const char *name,
1133 uint64_t size)
1134 {
1135 memory_region_init(mr, owner, name, size);
1136 mr->ops = ops;
1137 mr->opaque = opaque;
1138 mr->terminates = true;
1139 mr->ram_addr = ~(ram_addr_t)0;
1140 }
1141
1142 void memory_region_init_ram(MemoryRegion *mr,
1143 Object *owner,
1144 const char *name,
1145 uint64_t size,
1146 Error **errp)
1147 {
1148 memory_region_init(mr, owner, name, size);
1149 mr->ram = true;
1150 mr->terminates = true;
1151 mr->destructor = memory_region_destructor_ram;
1152 mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1153 }
1154
1155 #ifdef __linux__
1156 void memory_region_init_ram_from_file(MemoryRegion *mr,
1157 struct Object *owner,
1158 const char *name,
1159 uint64_t size,
1160 bool share,
1161 const char *path,
1162 Error **errp)
1163 {
1164 memory_region_init(mr, owner, name, size);
1165 mr->ram = true;
1166 mr->terminates = true;
1167 mr->destructor = memory_region_destructor_ram;
1168 mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1169 }
1170 #endif
1171
1172 void memory_region_init_ram_ptr(MemoryRegion *mr,
1173 Object *owner,
1174 const char *name,
1175 uint64_t size,
1176 void *ptr)
1177 {
1178 memory_region_init(mr, owner, name, size);
1179 mr->ram = true;
1180 mr->terminates = true;
1181 mr->destructor = memory_region_destructor_ram_from_ptr;
1182
1183 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1184 assert(ptr != NULL);
1185 mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1186 }
1187
1188 void memory_region_init_alias(MemoryRegion *mr,
1189 Object *owner,
1190 const char *name,
1191 MemoryRegion *orig,
1192 hwaddr offset,
1193 uint64_t size)
1194 {
1195 memory_region_init(mr, owner, name, size);
1196 memory_region_ref(orig);
1197 mr->destructor = memory_region_destructor_alias;
1198 mr->alias = orig;
1199 mr->alias_offset = offset;
1200 }
1201
1202 void memory_region_init_rom_device(MemoryRegion *mr,
1203 Object *owner,
1204 const MemoryRegionOps *ops,
1205 void *opaque,
1206 const char *name,
1207 uint64_t size)
1208 {
1209 memory_region_init(mr, owner, name, size);
1210 mr->ops = ops;
1211 mr->opaque = opaque;
1212 mr->terminates = true;
1213 mr->rom_device = true;
1214 mr->destructor = memory_region_destructor_rom_device;
1215 mr->ram_addr = qemu_ram_alloc(size, mr, &error_abort);
1216 }
1217
1218 void memory_region_init_iommu(MemoryRegion *mr,
1219 Object *owner,
1220 const MemoryRegionIOMMUOps *ops,
1221 const char *name,
1222 uint64_t size)
1223 {
1224 memory_region_init(mr, owner, name, size);
1225 mr->iommu_ops = ops,
1226 mr->terminates = true; /* then re-forwards */
1227 notifier_list_init(&mr->iommu_notify);
1228 }
1229
1230 void memory_region_init_reservation(MemoryRegion *mr,
1231 Object *owner,
1232 const char *name,
1233 uint64_t size)
1234 {
1235 memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1236 }
1237
1238 static void memory_region_finalize(Object *obj)
1239 {
1240 MemoryRegion *mr = MEMORY_REGION(obj);
1241
1242 assert(QTAILQ_EMPTY(&mr->subregions));
1243 assert(memory_region_transaction_depth == 0);
1244 mr->destructor(mr);
1245 memory_region_clear_coalescing(mr);
1246 g_free((char *)mr->name);
1247 g_free(mr->ioeventfds);
1248 }
1249
1250 Object *memory_region_owner(MemoryRegion *mr)
1251 {
1252 Object *obj = OBJECT(mr);
1253 return obj->parent;
1254 }
1255
1256 void memory_region_ref(MemoryRegion *mr)
1257 {
1258 /* MMIO callbacks most likely will access data that belongs
1259 * to the owner, hence the need to ref/unref the owner whenever
1260 * the memory region is in use.
1261 *
1262 * The memory region is a child of its owner. As long as the
1263 * owner doesn't call unparent itself on the memory region,
1264 * ref-ing the owner will also keep the memory region alive.
1265 * Memory regions without an owner are supposed to never go away,
1266 * but we still ref/unref them for debugging purposes.
1267 */
1268 Object *obj = OBJECT(mr);
1269 if (obj && obj->parent) {
1270 object_ref(obj->parent);
1271 } else {
1272 object_ref(obj);
1273 }
1274 }
1275
1276 void memory_region_unref(MemoryRegion *mr)
1277 {
1278 Object *obj = OBJECT(mr);
1279 if (obj && obj->parent) {
1280 object_unref(obj->parent);
1281 } else {
1282 object_unref(obj);
1283 }
1284 }
1285
1286 uint64_t memory_region_size(MemoryRegion *mr)
1287 {
1288 if (int128_eq(mr->size, int128_2_64())) {
1289 return UINT64_MAX;
1290 }
1291 return int128_get64(mr->size);
1292 }
1293
1294 const char *memory_region_name(const MemoryRegion *mr)
1295 {
1296 if (!mr->name) {
1297 ((MemoryRegion *)mr)->name =
1298 object_get_canonical_path_component(OBJECT(mr));
1299 }
1300 return mr->name;
1301 }
1302
1303 bool memory_region_is_ram(MemoryRegion *mr)
1304 {
1305 return mr->ram;
1306 }
1307
1308 bool memory_region_is_logging(MemoryRegion *mr)
1309 {
1310 return mr->dirty_log_mask;
1311 }
1312
1313 bool memory_region_is_rom(MemoryRegion *mr)
1314 {
1315 return mr->ram && mr->readonly;
1316 }
1317
1318 bool memory_region_is_iommu(MemoryRegion *mr)
1319 {
1320 return mr->iommu_ops;
1321 }
1322
1323 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1324 {
1325 notifier_list_add(&mr->iommu_notify, n);
1326 }
1327
1328 void memory_region_unregister_iommu_notifier(Notifier *n)
1329 {
1330 notifier_remove(n);
1331 }
1332
1333 void memory_region_notify_iommu(MemoryRegion *mr,
1334 IOMMUTLBEntry entry)
1335 {
1336 assert(memory_region_is_iommu(mr));
1337 notifier_list_notify(&mr->iommu_notify, &entry);
1338 }
1339
1340 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1341 {
1342 uint8_t mask = 1 << client;
1343
1344 memory_region_transaction_begin();
1345 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1346 memory_region_update_pending |= mr->enabled;
1347 memory_region_transaction_commit();
1348 }
1349
1350 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1351 hwaddr size, unsigned client)
1352 {
1353 assert(mr->terminates);
1354 return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1355 }
1356
1357 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1358 hwaddr size)
1359 {
1360 assert(mr->terminates);
1361 cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1362 }
1363
1364 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1365 hwaddr size, unsigned client)
1366 {
1367 bool ret;
1368 assert(mr->terminates);
1369 ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1370 if (ret) {
1371 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1372 }
1373 return ret;
1374 }
1375
1376
1377 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1378 {
1379 AddressSpace *as;
1380 FlatRange *fr;
1381
1382 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1383 FlatView *view = address_space_get_flatview(as);
1384 FOR_EACH_FLAT_RANGE(fr, view) {
1385 if (fr->mr == mr) {
1386 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1387 }
1388 }
1389 flatview_unref(view);
1390 }
1391 }
1392
1393 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1394 {
1395 if (mr->readonly != readonly) {
1396 memory_region_transaction_begin();
1397 mr->readonly = readonly;
1398 memory_region_update_pending |= mr->enabled;
1399 memory_region_transaction_commit();
1400 }
1401 }
1402
1403 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1404 {
1405 if (mr->romd_mode != romd_mode) {
1406 memory_region_transaction_begin();
1407 mr->romd_mode = romd_mode;
1408 memory_region_update_pending |= mr->enabled;
1409 memory_region_transaction_commit();
1410 }
1411 }
1412
1413 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1414 hwaddr size, unsigned client)
1415 {
1416 assert(mr->terminates);
1417 cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1418 }
1419
1420 int memory_region_get_fd(MemoryRegion *mr)
1421 {
1422 if (mr->alias) {
1423 return memory_region_get_fd(mr->alias);
1424 }
1425
1426 assert(mr->terminates);
1427
1428 return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1429 }
1430
1431 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1432 {
1433 if (mr->alias) {
1434 return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1435 }
1436
1437 assert(mr->terminates);
1438
1439 return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1440 }
1441
1442 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1443 {
1444 FlatView *view;
1445 FlatRange *fr;
1446 CoalescedMemoryRange *cmr;
1447 AddrRange tmp;
1448 MemoryRegionSection section;
1449
1450 view = address_space_get_flatview(as);
1451 FOR_EACH_FLAT_RANGE(fr, view) {
1452 if (fr->mr == mr) {
1453 section = (MemoryRegionSection) {
1454 .address_space = as,
1455 .offset_within_address_space = int128_get64(fr->addr.start),
1456 .size = fr->addr.size,
1457 };
1458
1459 MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1460 int128_get64(fr->addr.start),
1461 int128_get64(fr->addr.size));
1462 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1463 tmp = addrrange_shift(cmr->addr,
1464 int128_sub(fr->addr.start,
1465 int128_make64(fr->offset_in_region)));
1466 if (!addrrange_intersects(tmp, fr->addr)) {
1467 continue;
1468 }
1469 tmp = addrrange_intersection(tmp, fr->addr);
1470 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1471 int128_get64(tmp.start),
1472 int128_get64(tmp.size));
1473 }
1474 }
1475 }
1476 flatview_unref(view);
1477 }
1478
1479 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1480 {
1481 AddressSpace *as;
1482
1483 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1484 memory_region_update_coalesced_range_as(mr, as);
1485 }
1486 }
1487
1488 void memory_region_set_coalescing(MemoryRegion *mr)
1489 {
1490 memory_region_clear_coalescing(mr);
1491 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1492 }
1493
1494 void memory_region_add_coalescing(MemoryRegion *mr,
1495 hwaddr offset,
1496 uint64_t size)
1497 {
1498 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1499
1500 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1501 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1502 memory_region_update_coalesced_range(mr);
1503 memory_region_set_flush_coalesced(mr);
1504 }
1505
1506 void memory_region_clear_coalescing(MemoryRegion *mr)
1507 {
1508 CoalescedMemoryRange *cmr;
1509 bool updated = false;
1510
1511 qemu_flush_coalesced_mmio_buffer();
1512 mr->flush_coalesced_mmio = false;
1513
1514 while (!QTAILQ_EMPTY(&mr->coalesced)) {
1515 cmr = QTAILQ_FIRST(&mr->coalesced);
1516 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1517 g_free(cmr);
1518 updated = true;
1519 }
1520
1521 if (updated) {
1522 memory_region_update_coalesced_range(mr);
1523 }
1524 }
1525
1526 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1527 {
1528 mr->flush_coalesced_mmio = true;
1529 }
1530
1531 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1532 {
1533 qemu_flush_coalesced_mmio_buffer();
1534 if (QTAILQ_EMPTY(&mr->coalesced)) {
1535 mr->flush_coalesced_mmio = false;
1536 }
1537 }
1538
1539 void memory_region_add_eventfd(MemoryRegion *mr,
1540 hwaddr addr,
1541 unsigned size,
1542 bool match_data,
1543 uint64_t data,
1544 EventNotifier *e)
1545 {
1546 MemoryRegionIoeventfd mrfd = {
1547 .addr.start = int128_make64(addr),
1548 .addr.size = int128_make64(size),
1549 .match_data = match_data,
1550 .data = data,
1551 .e = e,
1552 };
1553 unsigned i;
1554
1555 adjust_endianness(mr, &mrfd.data, size);
1556 memory_region_transaction_begin();
1557 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1558 if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1559 break;
1560 }
1561 }
1562 ++mr->ioeventfd_nb;
1563 mr->ioeventfds = g_realloc(mr->ioeventfds,
1564 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1565 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1566 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1567 mr->ioeventfds[i] = mrfd;
1568 ioeventfd_update_pending |= mr->enabled;
1569 memory_region_transaction_commit();
1570 }
1571
1572 void memory_region_del_eventfd(MemoryRegion *mr,
1573 hwaddr addr,
1574 unsigned size,
1575 bool match_data,
1576 uint64_t data,
1577 EventNotifier *e)
1578 {
1579 MemoryRegionIoeventfd mrfd = {
1580 .addr.start = int128_make64(addr),
1581 .addr.size = int128_make64(size),
1582 .match_data = match_data,
1583 .data = data,
1584 .e = e,
1585 };
1586 unsigned i;
1587
1588 adjust_endianness(mr, &mrfd.data, size);
1589 memory_region_transaction_begin();
1590 for (i = 0; i < mr->ioeventfd_nb; ++i) {
1591 if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1592 break;
1593 }
1594 }
1595 assert(i != mr->ioeventfd_nb);
1596 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1597 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1598 --mr->ioeventfd_nb;
1599 mr->ioeventfds = g_realloc(mr->ioeventfds,
1600 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1601 ioeventfd_update_pending |= mr->enabled;
1602 memory_region_transaction_commit();
1603 }
1604
1605 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1606 {
1607 hwaddr offset = subregion->addr;
1608 MemoryRegion *mr = subregion->container;
1609 MemoryRegion *other;
1610
1611 memory_region_transaction_begin();
1612
1613 memory_region_ref(subregion);
1614 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1615 if (subregion->may_overlap || other->may_overlap) {
1616 continue;
1617 }
1618 if (int128_ge(int128_make64(offset),
1619 int128_add(int128_make64(other->addr), other->size))
1620 || int128_le(int128_add(int128_make64(offset), subregion->size),
1621 int128_make64(other->addr))) {
1622 continue;
1623 }
1624 #if 0
1625 printf("warning: subregion collision %llx/%llx (%s) "
1626 "vs %llx/%llx (%s)\n",
1627 (unsigned long long)offset,
1628 (unsigned long long)int128_get64(subregion->size),
1629 subregion->name,
1630 (unsigned long long)other->addr,
1631 (unsigned long long)int128_get64(other->size),
1632 other->name);
1633 #endif
1634 }
1635 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1636 if (subregion->priority >= other->priority) {
1637 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1638 goto done;
1639 }
1640 }
1641 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1642 done:
1643 memory_region_update_pending |= mr->enabled && subregion->enabled;
1644 memory_region_transaction_commit();
1645 }
1646
1647 static void memory_region_add_subregion_common(MemoryRegion *mr,
1648 hwaddr offset,
1649 MemoryRegion *subregion)
1650 {
1651 assert(!subregion->container);
1652 subregion->container = mr;
1653 subregion->addr = offset;
1654 memory_region_update_container_subregions(subregion);
1655 }
1656
1657 void memory_region_add_subregion(MemoryRegion *mr,
1658 hwaddr offset,
1659 MemoryRegion *subregion)
1660 {
1661 subregion->may_overlap = false;
1662 subregion->priority = 0;
1663 memory_region_add_subregion_common(mr, offset, subregion);
1664 }
1665
1666 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1667 hwaddr offset,
1668 MemoryRegion *subregion,
1669 int priority)
1670 {
1671 subregion->may_overlap = true;
1672 subregion->priority = priority;
1673 memory_region_add_subregion_common(mr, offset, subregion);
1674 }
1675
1676 void memory_region_del_subregion(MemoryRegion *mr,
1677 MemoryRegion *subregion)
1678 {
1679 memory_region_transaction_begin();
1680 assert(subregion->container == mr);
1681 subregion->container = NULL;
1682 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1683 memory_region_unref(subregion);
1684 memory_region_update_pending |= mr->enabled && subregion->enabled;
1685 memory_region_transaction_commit();
1686 }
1687
1688 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1689 {
1690 if (enabled == mr->enabled) {
1691 return;
1692 }
1693 memory_region_transaction_begin();
1694 mr->enabled = enabled;
1695 memory_region_update_pending = true;
1696 memory_region_transaction_commit();
1697 }
1698
1699 static void memory_region_readd_subregion(MemoryRegion *mr)
1700 {
1701 MemoryRegion *container = mr->container;
1702
1703 if (container) {
1704 memory_region_transaction_begin();
1705 memory_region_ref(mr);
1706 memory_region_del_subregion(container, mr);
1707 mr->container = container;
1708 memory_region_update_container_subregions(mr);
1709 memory_region_unref(mr);
1710 memory_region_transaction_commit();
1711 }
1712 }
1713
1714 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1715 {
1716 if (addr != mr->addr) {
1717 mr->addr = addr;
1718 memory_region_readd_subregion(mr);
1719 }
1720 }
1721
1722 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1723 {
1724 assert(mr->alias);
1725
1726 if (offset == mr->alias_offset) {
1727 return;
1728 }
1729
1730 memory_region_transaction_begin();
1731 mr->alias_offset = offset;
1732 memory_region_update_pending |= mr->enabled;
1733 memory_region_transaction_commit();
1734 }
1735
1736 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1737 {
1738 return mr->ram_addr;
1739 }
1740
1741 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1742 {
1743 const AddrRange *addr = addr_;
1744 const FlatRange *fr = fr_;
1745
1746 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1747 return -1;
1748 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1749 return 1;
1750 }
1751 return 0;
1752 }
1753
1754 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1755 {
1756 return bsearch(&addr, view->ranges, view->nr,
1757 sizeof(FlatRange), cmp_flatrange_addr);
1758 }
1759
1760 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1761 {
1762 MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1763 if (!mr || (mr == container)) {
1764 return false;
1765 }
1766 memory_region_unref(mr);
1767 return true;
1768 }
1769
1770 bool memory_region_is_mapped(MemoryRegion *mr)
1771 {
1772 return mr->container ? true : false;
1773 }
1774
1775 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1776 hwaddr addr, uint64_t size)
1777 {
1778 MemoryRegionSection ret = { .mr = NULL };
1779 MemoryRegion *root;
1780 AddressSpace *as;
1781 AddrRange range;
1782 FlatView *view;
1783 FlatRange *fr;
1784
1785 addr += mr->addr;
1786 for (root = mr; root->container; ) {
1787 root = root->container;
1788 addr += root->addr;
1789 }
1790
1791 as = memory_region_to_address_space(root);
1792 if (!as) {
1793 return ret;
1794 }
1795 range = addrrange_make(int128_make64(addr), int128_make64(size));
1796
1797 view = address_space_get_flatview(as);
1798 fr = flatview_lookup(view, range);
1799 if (!fr) {
1800 flatview_unref(view);
1801 return ret;
1802 }
1803
1804 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1805 --fr;
1806 }
1807
1808 ret.mr = fr->mr;
1809 ret.address_space = as;
1810 range = addrrange_intersection(range, fr->addr);
1811 ret.offset_within_region = fr->offset_in_region;
1812 ret.offset_within_region += int128_get64(int128_sub(range.start,
1813 fr->addr.start));
1814 ret.size = range.size;
1815 ret.offset_within_address_space = int128_get64(range.start);
1816 ret.readonly = fr->readonly;
1817 memory_region_ref(ret.mr);
1818
1819 flatview_unref(view);
1820 return ret;
1821 }
1822
1823 void address_space_sync_dirty_bitmap(AddressSpace *as)
1824 {
1825 FlatView *view;
1826 FlatRange *fr;
1827
1828 view = address_space_get_flatview(as);
1829 FOR_EACH_FLAT_RANGE(fr, view) {
1830 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1831 }
1832 flatview_unref(view);
1833 }
1834
1835 void memory_global_dirty_log_start(void)
1836 {
1837 global_dirty_log = true;
1838 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1839 }
1840
1841 void memory_global_dirty_log_stop(void)
1842 {
1843 global_dirty_log = false;
1844 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1845 }
1846
1847 static void listener_add_address_space(MemoryListener *listener,
1848 AddressSpace *as)
1849 {
1850 FlatView *view;
1851 FlatRange *fr;
1852
1853 if (listener->address_space_filter
1854 && listener->address_space_filter != as) {
1855 return;
1856 }
1857
1858 if (global_dirty_log) {
1859 if (listener->log_global_start) {
1860 listener->log_global_start(listener);
1861 }
1862 }
1863
1864 view = address_space_get_flatview(as);
1865 FOR_EACH_FLAT_RANGE(fr, view) {
1866 MemoryRegionSection section = {
1867 .mr = fr->mr,
1868 .address_space = as,
1869 .offset_within_region = fr->offset_in_region,
1870 .size = fr->addr.size,
1871 .offset_within_address_space = int128_get64(fr->addr.start),
1872 .readonly = fr->readonly,
1873 };
1874 if (listener->region_add) {
1875 listener->region_add(listener, &section);
1876 }
1877 }
1878 flatview_unref(view);
1879 }
1880
1881 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1882 {
1883 MemoryListener *other = NULL;
1884 AddressSpace *as;
1885
1886 listener->address_space_filter = filter;
1887 if (QTAILQ_EMPTY(&memory_listeners)
1888 || listener->priority >= QTAILQ_LAST(&memory_listeners,
1889 memory_listeners)->priority) {
1890 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1891 } else {
1892 QTAILQ_FOREACH(other, &memory_listeners, link) {
1893 if (listener->priority < other->priority) {
1894 break;
1895 }
1896 }
1897 QTAILQ_INSERT_BEFORE(other, listener, link);
1898 }
1899
1900 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1901 listener_add_address_space(listener, as);
1902 }
1903 }
1904
1905 void memory_listener_unregister(MemoryListener *listener)
1906 {
1907 QTAILQ_REMOVE(&memory_listeners, listener, link);
1908 }
1909
1910 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1911 {
1912 if (QTAILQ_EMPTY(&address_spaces)) {
1913 memory_init();
1914 }
1915
1916 memory_region_transaction_begin();
1917 as->root = root;
1918 as->current_map = g_new(FlatView, 1);
1919 flatview_init(as->current_map);
1920 as->ioeventfd_nb = 0;
1921 as->ioeventfds = NULL;
1922 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1923 as->name = g_strdup(name ? name : "anonymous");
1924 address_space_init_dispatch(as);
1925 memory_region_update_pending |= root->enabled;
1926 memory_region_transaction_commit();
1927 }
1928
1929 void address_space_destroy(AddressSpace *as)
1930 {
1931 MemoryListener *listener;
1932
1933 /* Flush out anything from MemoryListeners listening in on this */
1934 memory_region_transaction_begin();
1935 as->root = NULL;
1936 memory_region_transaction_commit();
1937 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1938 address_space_destroy_dispatch(as);
1939
1940 QTAILQ_FOREACH(listener, &memory_listeners, link) {
1941 assert(listener->address_space_filter != as);
1942 }
1943
1944 flatview_unref(as->current_map);
1945 g_free(as->name);
1946 g_free(as->ioeventfds);
1947 }
1948
1949 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1950 {
1951 return memory_region_dispatch_read(mr, addr, pval, size);
1952 }
1953
1954 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1955 uint64_t val, unsigned size)
1956 {
1957 return memory_region_dispatch_write(mr, addr, val, size);
1958 }
1959
1960 typedef struct MemoryRegionList MemoryRegionList;
1961
1962 struct MemoryRegionList {
1963 const MemoryRegion *mr;
1964 QTAILQ_ENTRY(MemoryRegionList) queue;
1965 };
1966
1967 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1968
1969 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1970 const MemoryRegion *mr, unsigned int level,
1971 hwaddr base,
1972 MemoryRegionListHead *alias_print_queue)
1973 {
1974 MemoryRegionList *new_ml, *ml, *next_ml;
1975 MemoryRegionListHead submr_print_queue;
1976 const MemoryRegion *submr;
1977 unsigned int i;
1978
1979 if (!mr || !mr->enabled) {
1980 return;
1981 }
1982
1983 for (i = 0; i < level; i++) {
1984 mon_printf(f, " ");
1985 }
1986
1987 if (mr->alias) {
1988 MemoryRegionList *ml;
1989 bool found = false;
1990
1991 /* check if the alias is already in the queue */
1992 QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1993 if (ml->mr == mr->alias) {
1994 found = true;
1995 }
1996 }
1997
1998 if (!found) {
1999 ml = g_new(MemoryRegionList, 1);
2000 ml->mr = mr->alias;
2001 QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2002 }
2003 mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2004 " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2005 "-" TARGET_FMT_plx "\n",
2006 base + mr->addr,
2007 base + mr->addr
2008 + (int128_nz(mr->size) ?
2009 (hwaddr)int128_get64(int128_sub(mr->size,
2010 int128_one())) : 0),
2011 mr->priority,
2012 mr->romd_mode ? 'R' : '-',
2013 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2014 : '-',
2015 memory_region_name(mr),
2016 memory_region_name(mr->alias),
2017 mr->alias_offset,
2018 mr->alias_offset
2019 + (int128_nz(mr->size) ?
2020 (hwaddr)int128_get64(int128_sub(mr->size,
2021 int128_one())) : 0));
2022 } else {
2023 mon_printf(f,
2024 TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2025 base + mr->addr,
2026 base + mr->addr
2027 + (int128_nz(mr->size) ?
2028 (hwaddr)int128_get64(int128_sub(mr->size,
2029 int128_one())) : 0),
2030 mr->priority,
2031 mr->romd_mode ? 'R' : '-',
2032 !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2033 : '-',
2034 memory_region_name(mr));
2035 }
2036
2037 QTAILQ_INIT(&submr_print_queue);
2038
2039 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2040 new_ml = g_new(MemoryRegionList, 1);
2041 new_ml->mr = submr;
2042 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2043 if (new_ml->mr->addr < ml->mr->addr ||
2044 (new_ml->mr->addr == ml->mr->addr &&
2045 new_ml->mr->priority > ml->mr->priority)) {
2046 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2047 new_ml = NULL;
2048 break;
2049 }
2050 }
2051 if (new_ml) {
2052 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2053 }
2054 }
2055
2056 QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2057 mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2058 alias_print_queue);
2059 }
2060
2061 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2062 g_free(ml);
2063 }
2064 }
2065
2066 void mtree_info(fprintf_function mon_printf, void *f)
2067 {
2068 MemoryRegionListHead ml_head;
2069 MemoryRegionList *ml, *ml2;
2070 AddressSpace *as;
2071
2072 QTAILQ_INIT(&ml_head);
2073
2074 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2075 mon_printf(f, "%s\n", as->name);
2076 mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2077 }
2078
2079 mon_printf(f, "aliases\n");
2080 /* print aliased regions */
2081 QTAILQ_FOREACH(ml, &ml_head, queue) {
2082 mon_printf(f, "%s\n", memory_region_name(ml->mr));
2083 mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2084 }
2085
2086 QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2087 g_free(ml);
2088 }
2089 }
2090
2091 static const TypeInfo memory_region_info = {
2092 .parent = TYPE_OBJECT,
2093 .name = TYPE_MEMORY_REGION,
2094 .instance_size = sizeof(MemoryRegion),
2095 .instance_init = memory_region_initfn,
2096 .instance_finalize = memory_region_finalize,
2097 };
2098
2099 static void memory_register_types(void)
2100 {
2101 type_register_static(&memory_region_info);
2102 }
2103
2104 type_init(memory_register_types)